Sample records for dna detection protocol

  1. The DNA isolation method has effect on allele drop-out and on the results of fluorescent PCR and DNA fragment analysis.

    PubMed

    Nagy, Bálint; Bán, Zoltán; Papp, Zoltán

    2005-10-01

    The quality and the quantity of isolated DNA have an effect on PCR amplifications. The authors studied three DNA isolation protocols (resin binding method using fresh and frozen amniotic fluid samples, and silica adsorption method using fresh samples) on the quantity and on the quality of the isolated DNA. Amniotic fluid samples were obtained from 20 pregnant women. The isolated DNA concentrations were determined by real-time fluorimeter using SYBRGreen I method. Each sample was studied for the presence of 8 STR markers. The authors compared the number of the detected alleles, electrophoretograms and peak areas. There was a significant difference between the concentration of the obtained DNA and in the peak areas between the three isolation protocols. The numbers of detected alleles were different, we observed the most allele drop outs in the resin type DNA isolation protocol from the fresh sample (detected allele numbers 182), followed by resin binding protocol from the frozen samples (detected allele number 243) and by the silica adsorption method (detected allele number 264). The authors demonstrated that the DNA isolation method has an effect on the quantity and quality of the isolated DNA, and on further PCR amplifications.

  2. Two alternative DNA extraction methods to improve the detection of Mycobacterium-tuberculosis-complex members in cattle and red deer tissue samples.

    PubMed

    Fell, Shari; Bröckl, Stephanie; Büttner, Mathias; Rettinger, Anna; Zimmermann, Pia; Straubinger, Reinhard K

    2016-09-15

    Bovine tuberculosis (bTB), which is caused by Mycobacterium bovis and M. caprae, is a notifiable animal disease in Germany. Diagnostic procedure is based on a prescribed protocol that is published in the framework of German bTB legislation. In this protocol small sample volumes are used for DNA extraction followed by real-time PCR analyses. As mycobacteria tend to concentrate in granuloma and the infected tissue in early stages of infection does not necessarily show any visible lesions, it is likely that DNA extraction from only small tissue samples (20-40 mg) of a randomly chosen spot from the organ and following PCR testing may result in false negative results. In this study two DNA extraction methods were developed to process larger sample volumes to increase the detection sensitivity of mycobacterial DNA in animal tissue. The first extraction method is based on magnetic capture, in which specific capture oligonucleotides were utilized. These nucleotides are linked to magnetic particles and capture Mycobacterium-tuberculosis-complex (MTC) DNA released from 10 to 15 g of tissue material. In a second approach remaining sediments from the magnetic capture protocol were further processed with a less complex extraction protocol that can be used in daily routine diagnostics. A total number of 100 tissue samples from 34 cattle (n = 74) and 18 red deer (n = 26) were analyzed with the developed protocols and results were compared to the prescribed protocol. All three extraction methods yield reliable results by the real-time PCR analysis. The use of larger sample volume led to a sensitivity increase of DNA detection which was shown by the decrease of Ct-values. Furthermore five samples which were tested negative or questionable by the official extraction protocol were detected positive by real time PCR when the alternative extraction methods were used. By calculating the kappa index, the three extraction protocols resulted in a moderate (0.52; protocol 1 vs 3) to almost perfect agreement (1.00; red deer sample testing with all protocols). Both new methods yielded increased detection rates for MTC DNA detection in large sample volumes and consequently improve the official diagnostic protocol.

  3. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples

    USGS Publications Warehouse

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.

    2013-01-01

    Environmental DNA (eDNA) methods for detecting aquatic species are advancing rapidly, but with little evaluation of field protocols or precision of resulting estimates. We compared sampling results from traditional field methods with eDNA methods for two amphibians in 13 streams in central Idaho, USA. We also evaluated three water collection protocols and the influence of sampling location, time of day, and distance from animals on eDNA concentration in the water. We found no difference in detection or amount of eDNA among water collection protocols. eDNA methods had slightly higher detection rates than traditional field methods, particularly when species occurred at low densities. eDNA concentration was positively related to field-measured density, biomass, and proportion of transects occupied. Precision of eDNA-based abundance estimates increased with the amount of eDNA in the water and the number of replicate subsamples collected. eDNA concentration did not vary significantly with sample location in the stream, time of day, or distance downstream from animals. Our results further advance the implementation of eDNA methods for monitoring aquatic vertebrates in stream habitats.

  4. Novel quantitative real-time LCR for the sensitive detection of SNP frequencies in pooled DNA: method development, evaluation and application.

    PubMed

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-19

    Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food.

  5. Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    PubMed Central

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-01

    Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808

  6. Combined DNA-RNA Fluorescent In situ Hybridization (FISH) to Study X Chromosome Inactivation in Differentiated Female Mouse Embryonic Stem Cells

    PubMed Central

    Barakat, Tahsin Stefan; Gribnau, Joost

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a molecular technique which enables the detection of nucleic acids in cells. DNA FISH is often used in cytogenetics and cancer diagnostics, and can detect aberrations of the genome, which often has important clinical implications. RNA FISH can be used to detect RNA molecules in cells and has provided important insights in regulation of gene expression. Combining DNA and RNA FISH within the same cell is technically challenging, as conditions suitable for DNA FISH might be too harsh for fragile, single stranded RNA molecules. We here present an easily applicable protocol which enables the combined, simultaneous detection of Xist RNA and DNA encoded by the X chromosomes. This combined DNA-RNA FISH protocol can likely be applied to other systems where both RNA and DNA need to be detected. PMID:24961515

  7. Molecular detection of Borrelia burgdorferi sensu lato – An analytical comparison of real-time PCR protocols from five different Scandinavian laboratories

    PubMed Central

    Faller, Maximilian; Wilhelmsson, Peter; Kjelland, Vivian; Andreassen, Åshild; Dargis, Rimtas; Quarsten, Hanne; Dessau, Ram; Fingerle, Volker; Margos, Gabriele; Noraas, Sølvi; Ornstein, Katharina; Petersson, Ann-Cathrine; Matussek, Andreas; Lindgren, Per-Eric; Henningsson, Anna J.

    2017-01-01

    Introduction Lyme borreliosis (LB) is the most common tick transmitted disease in Europe. The diagnosis of LB today is based on the patient´s medical history, clinical presentation and laboratory findings. The laboratory diagnostics are mainly based on antibody detection, but in certain conditions molecular detection by polymerase chain reaction (PCR) may serve as a complement. Aim The purpose of this study was to evaluate the analytical sensitivity, analytical specificity and concordance of eight different real-time PCR methods at five laboratories in Sweden, Norway and Denmark. Method Each participating laboratory was asked to analyse three different sets of samples (reference panels; all blinded) i) cDNA extracted and transcribed from water spiked with cultured Borrelia strains, ii) cerebrospinal fluid spiked with cultured Borrelia strains, and iii) DNA dilution series extracted from cultured Borrelia and relapsing fever strains. The results and the method descriptions of each laboratory were systematically evaluated. Results and conclusions The analytical sensitivities and the concordance between the eight protocols were in general high. The concordance was especially high between the protocols using 16S rRNA as the target gene, however, this concordance was mainly related to cDNA as the type of template. When comparing cDNA and DNA as the type of template the analytical sensitivity was in general higher for the protocols using DNA as template regardless of the use of target gene. The analytical specificity for all eight protocols was high. However, some protocols were not able to detect Borrelia spielmanii, Borrelia lusitaniae or Borrelia japonica. PMID:28937997

  8. Detection of proteins using a colorimetric bio-barcode assay.

    PubMed

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  9. Evaluation of a manual DNA extraction protocol and an isothermal amplification assay for detecting HIV-1 DNA from dried blood spots for use in resource-limited settings.

    PubMed

    Jordan, Jeanne A; Ibe, Christine O; Moore, Miranda S; Host, Christel; Simon, Gary L

    2012-05-01

    In resource-limited settings (RLS) dried blood spots (DBS) are collected on infants and transported through provincial laboratories to a central facility where HIV-1 DNA PCR testing is performed using specialized equipment. Implementing a simpler approach not requiring such equipment or skilled personnel could allow the more numerous provincial laboratories to offer testing, improving turn-around-time to identify and treat infected infants sooner. Assess performances of a manual DNA extraction method and helicase-dependent amplification (HDA) assay for detecting HIV-1 DNA from DBS. 60 HIV-1 infected adults were enrolled, blood samples taken and DBS made. DBS extracts were assessed for DNA concentration and beta globin amplification using PCR and melt-curve analysis. These same extracts were then tested for HIV-1 DNA using HDA and compared to results generated by PCR and pyrosequencing. Finally, HDA limit of detection (LOD) studies were performed using DBS extracts prepared with known numbers of 8E5 cells. The manual extraction protocol consistently yielded high concentrations of amplifiable DNA from DBS. LOD assessment demonstrated HDA detected ∼470 copies/ml of HIV-1 DNA extracts in 4/4 replicates. No statistical difference was found using the McNemar's test when comparing HDA to PCR for detecting HIV-1 DNA from DBS. Using just a magnet, heat block and pipettes, the manual extraction protocol and HDA assay detected HIV-1 DNA from DBS at levels that would be useful for early infant diagnosis. Next steps will include assessing HDA for non-B HIV-1 subtypes recognition and comparison to Roche HIV-1 DNA v1.5 PCR assay. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Evaluation of DNA extraction protocols for Brucella abortus pcr detection in aborted fetuses or calves born from cows experimentally infected with strain 2308

    PubMed Central

    Matrone, M.; Keid, L.B.; Rocha, V.C.M.; Vejarano, M.P.; Ikuta, C.Y.; Rodriguez, C.A.R.; Ferreira, F.; Dias, R.A.; Ferreira Neto, J.S

    2009-01-01

    The objective of the present study was to improve the detection of B. abortus by PCR in organs of aborted fetuses from infected cows, an important mechanism to find infected herds on the eradication phase of the program. So, different DNA extraction protocols were compared, focusing the PCR detection of B. abortus in clinical samples collected from aborted fetuses or calves born from cows challenged with the 2308 B. abortus strain. Therefore, two gold standard groups were built based on classical bacteriology, formed from: 32 lungs (17 positives), 26 spleens (11 positives), 23 livers (8 positives) and 22 bronchial lymph nodes (7 positives). All samples were submitted to three DNA extraction protocols, followed by the same amplification process with the primers B4 and B5. From the accumulated results for organ, the proportion of positives for the lungs was higher than the livers (p=0.04) or bronchial lymph nodes (p=0.004) and equal to the spleens (p=0.18). From the accumulated results for DNA extraction protocol, the proportion of positives for the Boom protocol was bigger than the PK (p< 0.0001) and GT (p=0.0004). There was no difference between the PK and GT protocols (p=0.5). Some positive samples from the classical bacteriology were negative to the PCR and vice-versa. Therefore, the best strategy for B. abortus detection in the organs of aborted fetuses or calves born from infected cows is the use, in parallel, of isolation by classical bacteriology and the PCR, with the DNA extraction performed by the Boom protocol. PMID:24031391

  11. Ultrasensitive Electrochemical Detection of mRNA Using Branched DNA Amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Xun; Liu, Guodong; Wang, Shengfu

    2008-11-01

    We describe here an ultrasensitive electrochemical detection of m RNA protocol without RNA purification and PCR amplification. The new m RNA electrical detection capability is coupled to the amplification feature of branched DNA (bDNA) technology and with the nagnetic beads based electrochemical bioassay.

  12. Measurement of DNA damage in rat urinary bladder transitional cells: improved selective harvest of transitional cells and detailed Comet assay protocols.

    PubMed

    Wang, Amy; Robertson, John L; Holladay, Steven D; Tennant, Alan H; Lengi, Andrea J; Ahmed, S Ansar; Huckle, William R; Kligerman, Andrew D

    2007-12-01

    Urinary bladder transitional epithelium is the main site of bladder cancer, and the use of transitional cells to study carcinogenesis/genotoxicity is recommended over the use of whole bladders. Because the transitional epithelium is only a small fraction of the whole bladder, the alkaline single cell gel electrophoresis assay (Comet assay), which requires only a small number of cells per sample, is especially suitable for measuring DNA damage in transitional cells. However, existed procedures of cell collection did not yield transitional cells with a high purity, and pooling of samples was needed for Comet assay. The goal of this study was to develop an optimized protocol to evaluate DNA damage in the urinary bladder transitional epithelium. This was achieved by an enzymatic stripping method (trypsin-EDTA incubation plus gentle scraping) to selectively harvest transitional cells from rat bladders, and the use of the alkaline Comet assay to detect DNA strand breaks, alkaline labile sites, and DNA-protein crosslinks. Step by step procedures are reported here. Cells collected from a single rat bladder were sufficient for multiple Comet assays. With this new protocol, increases in DNA damage were detected in transitional cells after in vitro exposure to the positive control agents, hydrogen peroxide or formaldehyde. Repair of the induced DNA damage occurred within 4h. This indicated the capacity for DNA repair was maintained in the harvested cells. The new protocol provides a simple and inexpensive method to detect various types of DNA damage and to measure DNA damage repair in urinary bladder transitional cells.

  13. Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing.

    PubMed

    Li, Qing; Hermanson, Peter J; Springer, Nathan M

    2018-01-01

    DNA methylation plays an important role in the regulation of the expression of transposons and genes. Various methods have been developed to assay DNA methylation levels. Bisulfite sequencing is considered to be the "gold standard" for single-base resolution measurement of DNA methylation levels. Coupled with next-generation sequencing, whole-genome bisulfite sequencing (WGBS) allows DNA methylation to be evaluated at a genome-wide scale. Here, we described a protocol for WGBS in plant species with large genomes. This protocol has been successfully applied to assay genome-wide DNA methylation levels in maize and barley. This protocol has also been successfully coupled with sequence capture technology to assay DNA methylation levels in a targeted set of genomic regions.

  14. A semi-nested real-time PCR method to detect low chimerism percentage in small quantity of hematopoietic stem cell transplant DNA samples.

    PubMed

    Aloisio, Michelangelo; Bortot, Barbara; Gandin, Ilaria; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2017-02-01

    Chimerism status evaluation of post-allogeneic hematopoietic stem cell transplantation samples is essential to predict post-transplant relapse. The most commonly used technique capable of detecting small increments of chimerism is quantitative real-time PCR. Although this method is already used in several laboratories, previously described protocols often lack sensitivity and the amount of the DNA required for each chimerism analysis is too high. In the present study, we compared a novel semi-nested allele-specific real-time PCR (sNAS-qPCR) protocol with our in-house standard allele-specific real-time PCR (gAS-qPCR) protocol. We selected two genetic markers and analyzed technical parameters (slope, y-intercept, R2, and standard deviation) useful to determine the performances of the two protocols. The sNAS-qPCR protocol showed better sensitivity and precision. Moreover, the sNAS-qPCR protocol requires, as input, only 10 ng of DNA, which is at least 10-fold less than the gAS-qPCR protocols described in the literature. Finally, the proposed sNAS-qPCR protocol could prove very useful for performing chimerism analysis with a small amount of DNA, as in the case of blood cell subsets.

  15. A comparison of DNA extraction protocols from blood spotted on FTA cards for the detection of tick-borne pathogens by Reverse Line Blot hybridization.

    PubMed

    Hailemariam, Zerihun; Ahmed, Jabbar Sabir; Clausen, Peter-Henning; Nijhof, Ard Menzo

    2017-01-01

    An essential step in the molecular detection of tick-borne pathogens (TBPs) in blood is the extraction of DNA. When cooled storage of blood under field conditions prior to DNA extraction in a dedicated laboratory is not possible, the storage of blood on filter paper forms a promising alternative. We evaluated six DNA extraction methods from blood spotted on FTA Classic ® cards (FTA cards), to determine the optimal protocol for the subsequent molecular detection of TBPs by PCR and the Reverse Line Blot hybridization assay (RLB). Ten-fold serial dilutions of bovine blood infected with Babesia bovis, Theileria mutans, Anaplasma marginale or Ehrlichia ruminantium were made by dilution with uninfected blood and spotted on FTA cards. Subsequently, DNA was extracted from FTA cards using six different DNA extraction protocols. DNA was also isolated from whole blood dilutions using a commercial kit. PCR/RLB results showed that washing of 3mm discs punched from FTA cards with FTA purification reagent followed by DNA extraction using Chelex ® resin was the most sensitive procedure. The detection limit could be improved when more discs were used as starting material for the DNA extraction, whereby the use of sixteen 3mm discs proved to be most practical. The presented best practice method for the extraction of DNA from blood spotted on FTA cards will facilitate epidemiological studies on TBPs. It may be particularly useful for field studies where a cold chain is absent. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Evaluation of commercial DNA and RNA extraction methods for high-throughput sequencing of FFPE samples.

    PubMed

    Kresse, Stine H; Namløs, Heidi M; Lorenz, Susanne; Berner, Jeanne-Marie; Myklebost, Ola; Bjerkehagen, Bodil; Meza-Zepeda, Leonardo A

    2018-01-01

    Nucleic acid material of adequate quality is crucial for successful high-throughput sequencing (HTS) analysis. DNA and RNA isolated from archival FFPE material are frequently degraded and not readily amplifiable due to chemical damage introduced during fixation. To identify optimal nucleic acid extraction kits, DNA and RNA quantity, quality and performance in HTS applications were evaluated. DNA and RNA were isolated from five sarcoma archival FFPE blocks, using eight extraction protocols from seven kits from three different commercial vendors. For DNA extraction, the truXTRAC FFPE DNA kit from Covaris gave higher yields and better amplifiable DNA, but all protocols gave comparable HTS library yields using Agilent SureSelect XT and performed well in downstream variant calling. For RNA extraction, all protocols gave comparable yields and amplifiable RNA. However, for fusion gene detection using the Archer FusionPlex Sarcoma Assay, the truXTRAC FFPE RNA kit from Covaris and Agencourt FormaPure kit from Beckman Coulter showed the highest percentage of unique read-pairs, providing higher complexity of HTS data and more frequent detection of recurrent fusion genes. truXTRAC simultaneous DNA and RNA extraction gave similar outputs as individual protocols. These findings show that although successful HTS libraries could be generated in most cases, the different protocols gave variable quantity and quality for FFPE nucleic acid extraction. Selecting the optimal procedure is highly valuable and may generate results in borderline quality specimens.

  17. Protocol for the use of a rapid real-time PCR method for the detection of HIV-1 proviral DNA using double-stranded primer.

    PubMed

    Pau, Chou-Pong; Wells, Susan K; Granade, Timothy C

    2012-01-01

    This chapter describes a real-time PCR method for the detection of HIV-1 proviral DNA in whole blood samples using a novel double-stranded primer system. The assay utilizes a simple commercially available DNA extraction method and a rapid and easy-to-perform real-time PCR protocol to consistently detect a minimum of four copies of HIV-1 group M proviral DNA in as little as 90 min after sample (whole blood) collection. Co-amplification of the human RNase P gene serves as an internal control to monitor the efficiency of both the DNA extraction and amplification. Once the assay is validated properly, it may be suitable as an alternative confirmation test for HIV-1 infections in a variety of HIV testing venues including the mother-to-child transmission testing sites, clinics, and diagnostic testing centers.

  18. Comparative effectiveness of light-microscopic techniques and PCR in detecting Thelohania solenopsae (Microsporidia) infections in red imported fire ants (Solenopsis invicta).

    PubMed

    Milks, Maynard L; Sokolova, Yuliya Y; Isakova, Irina A; Fuxa, James R; Mitchell, Forrest; Snowden, Karen F; Vinson, S Bradleigh

    2004-01-01

    The main goal of this study was to compare the effectiveness of three staining techniques (calcofluor white M2R, Giemsa and modified trichrome), and the polymerase chain reaction (PCR) in detecting the microsporidium Thelohania solenopsae in red imported fire ants (Solenopsis invicta). The effect of the number of ants in a sample on the sensitivity of the staining techniques and the PCR, and the effect of three DNA extraction protocols on the sensitivity of PCR were also examined. In the first protocol, the ants were macerated and the crude homogenate was used immediately in the PCR. In the second protocol, the homogenate was placed on a special membrane (FTA card) that traps DNA, which is subsequently used in the PCR. In the third protocol, the DNA was purified from the homogenate by traditional phenol-chloroform extraction. Except for PCR using FTA cards, the sensitivity (number of samples positive for T. solenopsae) of all detection techniques increased with the number of ants in the sample. Overall, Giemsa was the least sensitive of all detection techniques. Calcofluor was more sensitive than modified trichrome with ants from one site and was equally as sensitive as PCR with crude DNA or a FTA card with ants from both sites. Trichrome staining was equally as sensitive as PCR with a FTA card at both sites, but it was less sensitive than PCR with crude DNA at one site. PCR on FTA cards was less sensitive than PCR with crude DNA for ants from one site but not the other. There was no difference whether crude or phenol-chloroform purified DNA was used as template. In summary, the results of this study show that PCR based on a crude DNA solution is equal to or more sensitive in detecting T. solenopsae than the other detection techniques investigated, and that it can be used as a reliable diagnostic tool for screening field samples of S. invicta for T. solenopsae. Nevertheless, ant smear stained with calcofluor or modified trichrome should be used to buttress findings from PCR.

  19. High Prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae Detected in the Human Gut Using an Improved DNA Detection Protocol

    PubMed Central

    Dridi, Bédis; Henry, Mireille; El Khéchine, Amel; Raoult, Didier; Drancourt, Michel

    2009-01-01

    Background The low and variable prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae DNA in human stool contrasts with the paramount role of these methanogenic Archaea in digestion processes. We hypothesized that this contrast is a consequence of the inefficiencies of current protocols for archaeon DNA extraction. We developed a new protocol for the extraction and PCR-based detection of M. smithii and M. stadtmanae DNA in human stool. Methodology/Principal Findings Stool specimens collected from 700 individuals were filtered, mechanically lysed twice, and incubated overnight with proteinase K prior to DNA extraction using a commercial DNA extraction kit. Total DNA was used as a template for quantitative real-time PCR targeting M. smithii and M. stadtmanae 16S rRNA and rpoB genes. Amplification of 16S rRNA and rpoB yielded positive detection of M. smithii in 95.7% and M. stadtmanae in 29.4% of specimens. Sequencing of 16S rRNA gene PCR products from 30 randomly selected specimens (15 for M. smithii and 15 for M. stadtmanae) yielded a sequence similarity of 99–100% using the reference M. smithii ATCC 35061 and M. stadtmanae DSM 3091 sequences. Conclusions/Significance In contrast to previous reports, these data indicate a high prevalence of the methanogens M. smithii and M. stadtmanae in the human gut, with the former being an almost ubiquitous inhabitant of the intestinal microbiome. PMID:19759898

  20. Quantification of Global DNA Methylation Levels by Mass Spectrometry.

    PubMed

    Fernandez, Agustin F; Valledor, Luis; Vallejo, Fernando; Cañal, Maria Jesús; Fraga, Mario F

    2018-01-01

    Global DNA methylation was classically considered the relative percentage of 5-methylcysine (5mC) with respect to total cytosine (C). Early approaches were based on the use of high-performance separation technologies and UV detection. However, the recent development of protocols using mass spectrometry for the detection has increased sensibility and permitted the precise identification of peak compounds based on their molecular masses. This allows work to be conducted with much less genomic DNA starting material and also to quantify 5-hydroxymethyl-cytosine (5hmC), a recently identified form of methylated cytosine that could play an important role in active DNA demethylation. Here, we describe the protocol that we currently use in our laboratory to analyze 5mC and 5hmC by mass spectrometry. The protocol, which is based on the method originally developed by Le and colleagues using Ultra Performance Liquid Chromatography (UPLC) and mass spectrometry (triple Quadrupole (QqQ)) detection, allows for the rapid and accurate quantification of relative global 5mC and 5hmC levels starting from just 1 μg of genomic DNA, which allows for the rapid and accurate quantification of relative global 5mC and 5hmC levels.

  1. DNA Extraction from Protozoan Oocysts/Cysts in Feces for Diagnostic PCR

    PubMed Central

    2014-01-01

    PCR detection of intestinal protozoa is often restrained by a poor DNA recovery or by inhibitors present in feces. The need for an extraction protocol that can overcome these obstacles is therefore clear. QIAamp® DNA Stool Mini Kit (Qiagen) was evaluated for its ability to recover DNA from oocysts/cysts directly from feces. Twenty-five Giardia-positive, 15 Cryptosporidium-positive, 15 Entamoeba histolytica-positive, and 45 protozoa-free samples were processed as control by microscopy and immunoassay tests. DNA extracts were amplified using 3 sets of published primers. Following the manufacturer's protocol, the kit showed sensitivity and specificity of 100% towards Giardia and Entamoeba. However, for Cryptosporidium, the sensitivity and specificity were 60% (9/15) and 100%, respectively. A series of optimization experiments involving various steps of the kit's protocol were conducted using Cryptosporidium-positive samples. The best DNA recoveries were gained by raising the lysis temperature to the boiling point for 10 min and the incubation time of the InhibitEX tablet to 5 min. Also, using a pre-cooled ethanol for nucleic acid precipitation and small elution volume (50-100 µl) were valuable. The sensitivity of the amended protocol to Cryptosporidium was raised to 100%. Cryptosporidium DNA was successfully amplified by either the first or the second primer set. When applied on parasite-free feces spiked with variable oocysts/cysts counts, ≈ 2 oocysts/cysts were theoretically enough for detection by PCR. To conclude, the Qiagen kit with the amended protocol was proved to be suitable for protozoan DNA extraction directly from feces and support PCR diagnosis. PMID:25031466

  2. DNA extraction from protozoan oocysts/cysts in feces for diagnostic PCR.

    PubMed

    Hawash, Yousry

    2014-06-01

    PCR detection of intestinal protozoa is often restrained by a poor DNA recovery or by inhibitors present in feces. The need for an extraction protocol that can overcome these obstacles is therefore clear. QIAamp® DNA Stool Mini Kit (Qiagen) was evaluated for its ability to recover DNA from oocysts/cysts directly from feces. Twenty-five Giardia-positive, 15 Cryptosporidium-positive, 15 Entamoeba histolytica-positive, and 45 protozoa-free samples were processed as control by microscopy and immunoassay tests. DNA extracts were amplified using 3 sets of published primers. Following the manufacturer's protocol, the kit showed sensitivity and specificity of 100% towards Giardia and Entamoeba. However, for Cryptosporidium, the sensitivity and specificity were 60% (9/15) and 100%, respectively. A series of optimization experiments involving various steps of the kit's protocol were conducted using Cryptosporidium-positive samples. The best DNA recoveries were gained by raising the lysis temperature to the boiling point for 10 min and the incubation time of the InhibitEX tablet to 5 min. Also, using a pre-cooled ethanol for nucleic acid precipitation and small elution volume (50-100 µl) were valuable. The sensitivity of the amended protocol to Cryptosporidium was raised to 100%. Cryptosporidium DNA was successfully amplified by either the first or the second primer set. When applied on parasite-free feces spiked with variable oocysts/cysts counts, ≈ 2 oocysts/cysts were theoretically enough for detection by PCR. To conclude, the Qiagen kit with the amended protocol was proved to be suitable for protozoan DNA extraction directly from feces and support PCR diagnosis.

  3. Rapid and simultaneous detection of Mycobacterium tuberculosis complex and Beijing/W genotype in sputum by an optimized DNA extraction protocol and a novel multiplex real-time PCR.

    PubMed

    Leung, Eric T Y; Zheng, L; Wong, Rity Y K; Chan, Edward W C; Au, T K; Chan, Raphael C Y; Lui, Grace; Lee, Nelson; Ip, Margaret

    2011-07-01

    Rapid diagnosis and genotyping of Mycobacterium tuberculosis by molecular methods are often limited by the amount and purity of DNA extracted from body fluids. In this study, we evaluated 12 DNA extraction methods and developed a highly sensitive protocol for mycobacterial DNA extraction directly from sputa using surface-coated magnetic particles. We have also developed a novel multiplex real-time PCR for simultaneous identification of M. tuberculosis complex and the Beijing/W genotype (a hypervirulent sublineage of M. tuberculosis) by using multiple fluorogenic probes targeting both the M. tuberculosis IS6110 and the Rv0927c-pstS3 intergenic region. With reference strains and clinical isolates, our real-time PCR accurately identified 20 non-Beijing/W and 20 Beijing/W M. tuberculosis strains from 17 different species of nontuberculosis Mycobacterium (NTM). Further assessment of our DNA extraction protocol and real-time PCR with 335 nonduplicate sputum specimens correctly identified all 74 M. tuberculosis culture-positive specimens. In addition, 15 culture-negative specimens from patients with confirmed tuberculosis were also identified. No cross-reactivity was detected with NTM specimens (n = 31). The detection limit of the assay is 10 M. tuberculosis bacilli, as determined by endpoint dilution analysis. In conclusion, an optimized DNA extraction protocol coupled with a novel multiprobe multiplex real-time PCR for the direct detection of M. tuberculosis, including Beijing/W M. tuberculosis, was found to confer high sensitivity and specificity. The combined procedure has the potential to compensate for the drawbacks of conventional mycobacterial culture in routine clinical laboratory setting, such as the lengthy incubation period and the limitation to viable organisms.

  4. Quantitative PCR and Digital PCR for Detection of Ascaris lumbricoides Eggs in Reclaimed Water

    PubMed Central

    Santísima-Trinidad, Ana Belén; Bornay-Llinares, Fernando Jorge; Martín González, Marcos; Pascual Valero, José Antonio; Ros Muñoz, Margarita

    2017-01-01

    The reuse of reclaimed water from wastewater depuration is a widespread and necessary practice in many areas around the world and must be accompanied by adequate and continuous quality control. Ascaris lumbricoides is one of the soil-transmitted helminths (STH) with risk for humans due to its high infectivity and an important determinant of transmission is the inadequacy of water supplies and sanitation. The World Health Organization (WHO) recommends a limit equal to or lower than one parasitic helminth egg per liter, to reuse reclaimed water for unrestricted irrigation. We present two new protocols of DNA extraction from large volumes of reclaimed water. Quantitative PCR (qPCR) and digital PCR (dPCR) were able to detect low amounts of A. lumbricoides eggs. By using the first extraction protocol, which processes 500 mL of reclaimed water, qPCR can detect DNA concentrations as low as one A. lumbricoides egg equivalent, while dPCR can detect DNA concentrations as low as five A. lumbricoides egg equivalents. By using the second protocol, which processes 10 L of reclaimed water, qPCR was able to detect DNA concentrations equivalent to 20 A. lumbricoides eggs. This fact indicated the importance of developing new methodologies to detect helminth eggs with higher sensitivity and precision avoiding possible human infection risks. PMID:28377928

  5. Use of a Filter Cartridge for Filtration of Water Samples and Extraction of Environmental DNA.

    PubMed

    Miya, Masaki; Minamoto, Toshifumi; Yamanaka, Hiroki; Oka, Shin-Ichiro; Sato, Keiichi; Yamamoto, Satoshi; Sado, Tetsuya; Doi, Hideyuki

    2016-11-25

    Recent studies demonstrated the use of environmental DNA (eDNA) from fishes to be appropriate as a non-invasive monitoring tool. Most of these studies employed disk fiber filters to collect eDNA from water samples, although a number of microbial studies in aquatic environments have employed filter cartridges, because the cartridge has the advantage of accommodating large water volumes and of overall ease of use. Here we provide a protocol for filtration of water samples using the filter cartridge and extraction of eDNA from the filter without having to cut open the housing. The main portions of this protocol consists of 1) filtration of water samples (water volumes ≤4 L or >4 L); (2) extraction of DNA on the filter using a roller shaker placed in a preheated incubator; and (3) purification of DNA using a commercial kit. With the use of this and previously-used protocols, we perform metabarcoding analysis of eDNA taken from a huge aquarium tank (7,500 m 3 ) with known species composition, and show the number of detected species per library from the two protocols as the representative results. This protocol has been developed for metabarcoding eDNA from fishes, but is also applicable to eDNA from other organisms.

  6. Rapid screening method for male DNA by using the loop-mediated isothermal amplification assay.

    PubMed

    Kitamura, Masashi; Kubo, Seiji; Tanaka, Jin; Adachi, Tatsushi

    2017-08-12

    Screening for male-derived biological material from collected samples plays an important role in criminal investigations, especially those involving sexual assaults. We have developed a loop-mediated isothermal amplification (LAMP) assay targeting multi-repeat sequences of the Y chromosome for detecting male DNA. Successful amplification occurred with 0.5 ng of male DNA under isothermal conditions of 61 to 67 °C, but no amplification occurred with up to 10 ng of female DNA. Under the optimized conditions, the LAMP reaction initiated amplification within 10 min and amplified for 20 min. The LAMP reaction was sensitive at levels as low as 1-pg male DNA, and a quantitative LAMP assay could be developed because of the strong correlation between the reaction time and the amount of template DNA in the range of 10 pg to 10 ng. Furthermore, to apply the LAMP assay to on-site screening for male-derived samples, we evaluated a protocol using a simple DNA extraction method and a colorimetric intercalating dye that allows detection of the LAMP reaction by evaluating the change in color of the solution. Using this protocol, samples of male-derived blood and saliva stains were processed in approximately 30 min from DNA extraction to detection. Because our protocol does not require much hands-on time or special equipment, this LAMP assay promises to become a rapid and simple screening method for male-derived samples in forensic investigations.

  7. High-speed shaking of frozen blood clots for extraction of human and malaria parasite DNA.

    PubMed

    Lundblom, Klara; Macharia, Alex; Lebbad, Marianne; Mohammed, Adan; Färnert, Anna

    2011-08-08

    Frozen blood clots remaining after serum collection is an often disregarded source of host and pathogen DNA due to troublesome handling and suboptimal outcome. High-speed shaking of clot samples in a cell disruptor manufactured for homogenization of tissue and faecal specimens was evaluated for processing frozen blood clots for DNA extraction. The method was compared to two commercial clot protocols based on a chemical kit and centrifugation through a plastic sieve, followed by the same DNA extraction protocol. Blood clots with different levels of parasitaemia (1-1,000 p/μl) were prepared from parasite cultures to assess sensitivity of PCR detection. In addition, clots retrieved from serum samples collected within two epidemiological studies in Kenya (n = 630) were processed by high speed shaking and analysed by PCR for detection of malaria parasites and the human α-thalassaemia gene. High speed shaking succeeded in fully dispersing the clots and the method generated the highest DNA yield. The level of PCR detection of P. falciparum parasites and the human thalassaemia gene was the same as samples optimally collected with an anticoagulant. The commercial clot protocol and centrifugation through a sieve failed to fully dissolve the clots and resulted in lower sensitivity of PCR detection. High speed shaking was a simple and efficacious method for homogenizing frozen blood clots before DNA purification and resulted in PCR templates of high quality both from humans and malaria parasites. This novel method enables genetic studies from stored blood clots.

  8. Widespread Environmental Contamination with Mycobacterium tuberculosis Complex Revealed by a Molecular Detection Protocol

    PubMed Central

    Santos, Nuno; Santos, Catarina; Valente, Teresa; Gortázar, Christian; Almeida, Virgílio; Correia-Neves, Margarida

    2015-01-01

    Environmental contamination with Mycobacterium tuberculosis complex (MTC) has been considered crucial for bovine tuberculosis persistence in multi-host-pathogen systems. However, MTC contamination has been difficult to detect due to methodological issues. In an attempt to overcome this limitation we developed an improved protocol for the detection of MTC DNA. MTC DNA concentration was estimated by the Most Probable Number (MPN) method. Making use of this protocol we showed that MTC contamination is widespread in different types of environmental samples from the Iberian Peninsula, which supports indirect transmission as a contributing mechanism for the maintenance of bovine tuberculosis in this multi-host-pathogen system. The proportion of MTC DNA positive samples was higher in the bovine tuberculosis-infected than in presumed negative area (0.32 and 0.18, respectively). Detection varied with the type of environmental sample and was more frequent in sediment from dams and less frequent in water also from dams (0.22 and 0.05, respectively). The proportion of MTC-positive samples was significantly higher in spring (p<0.001), but MTC DNA concentration per sample was higher in autumn and lower in summer. The average MTC DNA concentration in positive samples was 0.82 MPN/g (CI95 0.70–0.98 MPN/g). We were further able to amplify a DNA sequence specific of Mycobacterium bovis/caprae in 4 environmental samples from the bTB-infected area. PMID:26561038

  9. Multiplex Preamplification of Serum DNA to Facilitate Reliable Detection of Extremely Rare Cancer Mutations in Circulating DNA by Digital PCR.

    PubMed

    Jackson, Jennifer B; Choi, Daniel S; Luketich, James D; Pennathur, Arjun; Ståhlberg, Anders; Godfrey, Tony E

    2016-03-01

    Tumor-specific mutations can be identified in circulating, cell-free DNA in plasma or serum and may serve as a clinically relevant alternative to biopsy. Detection of tumor-specific mutations in the plasma, however, is technically challenging. First, mutant allele fractions are typically low in a large background of wild-type circulating, cell-free DNA. Second, the amount of circulating, cell-free DNA acquired from plasma is also low. Even when using digital PCR (dPCR), rare mutation detection is challenging because there is not enough circulating, cell-free DNA to run technical replicates and assay or instrument noise does not easily allow for mutation detection <0.1%. This study was undertaken to improve on the robustness of dPCR for mutation detection. A multiplexed, preamplification step using a high-fidelity polymerase before dPCR was developed to increase total DNA and the number of targets and technical replicates that can be assayed from a single sample. We were able to detect multiple cancer-relevant mutations within tumor-derived samples down to 0.01%. Importantly, the signal/noise ratio was improved for all preamplified targets, allowing for easier discrimination of low-abundance mutations against false-positive signal. Furthermore, we used this protocol on clinical samples to detect known, tumor-specific mutations in patient sera. This study provides a protocol for robust, sensitive detection of circulating tumor DNA for future clinical applications. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. A DNA-based pattern classifier with in vitro learning and associative recall for genomic characterization and biosensing without explicit sequence knowledge.

    PubMed

    Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo

    2014-01-01

    Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.

  11. Highly multiplexed targeted DNA sequencing from single nuclei.

    PubMed

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  12. Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA.

    PubMed

    Weiberg, Arne; Pöhler, Dirk; Morgenstern, Burkhard; Karlovsky, Petr

    2008-10-13

    cDNA-AFLP is a transcriptomics technique which does not require prior sequence information and can therefore be used as a gene discovery tool. The method is based on selective amplification of cDNA fragments generated by restriction endonucleases, electrophoretic separation of the products and comparison of the band patterns between treated samples and controls. Unequal distribution of restriction sites used to generate cDNA fragments negatively affects the performance of cDNA-AFLP. Some transcripts are represented by more than one fragment while other escape detection, causing redundancy and reducing the coverage of the analysis, respectively. With the goal of improving the coverage of cDNA-AFLP without increasing its redundancy, we designed a modified cDNA-AFLP protocol. Immobilized cDNA is sequentially digested with several restriction endonucleases and the released DNA fragments are collected in mutually exclusive pools. To investigate the performance of the protocol, software tool MECS (Multiple Enzyme cDNA-AFLP Simulation) was written in Perl. cDNA-AFLP protocols described in the literature and the new sequential digestion protocol were simulated on sets of cDNA sequences from mouse, human and Arabidopsis thaliana. The redundancy and coverage, the total number of PCR reactions, and the average fragment length were calculated for each protocol and cDNA set. Simulation revealed that sequential digestion of immobilized cDNA followed by the partitioning of released fragments into mutually exclusive pools outperformed other cDNA-AFLP protocols in terms of coverage, redundancy, fragment length, and the total number of PCRs. Primers generating 30 to 70 amplicons per PCR provided the highest fraction of electrophoretically distinguishable fragments suitable for normalization. For A. thaliana, human and mice transcriptome, the use of two marking enzymes and three sequentially applied releasing enzymes for each of the marking enzymes is recommended.

  13. Novel primers and PCR protocols for the specific detection and quantification of Sphingobium suberifaciens in situ

    USDA-ARS?s Scientific Manuscript database

    The pathogen causing corky root on lettuce, Sphingobium suberifaciens, is recalcitrant to standard epidemiological methods. Primers were selected from 16S rDNA sequences useful for the specific detection and quantification of S. suberifaciens. Conventional (PCR) and quantitative (qPCR) PCR protocols...

  14. Detection of genetically modified organisms in foods by DNA amplification techniques.

    PubMed

    García-Cañas, Virginia; Cifuentes, Alejandro; González, Ramón

    2004-01-01

    In this article, the different DNA amplification techniques that are being used for detecting genetically modified organisms (GMOs) in foods are examined. This study intends to provide an updated overview (including works published till June 2002) on the principal applications of such techniques together with their main advantages and drawbacks in GMO detection in foods. Some relevant facts on sampling, DNA isolation, and DNA amplification methods are discussed. Moreover; these analytical protocols are discuissed from a quantitative point of view, including the newest investigations on multiplex detection of GMOs in foods and validation of methods.

  15. Detecting in situ copepod diet diversity using molecular technique: development of a copepod/symbiotic ciliate-excluding eukaryote-inclusive PCR protocol.

    PubMed

    Hu, Simin; Guo, Zhiling; Li, Tao; Carpenter, Edward J; Liu, Sheng; Lin, Senjie

    2014-01-01

    Knowledge of in situ copepod diet diversity is crucial for accurately describing pelagic food web structure but is challenging to achieve due to lack of an easily applicable methodology. To enable analysis with whole copepod-derived DNAs, we developed a copepod-excluding 18S rDNA-based PCR protocol. Although it is effective in depressing amplification of copepod 18S rDNA, its applicability to detect diverse eukaryotes in both mono- and mixed-species has not been demonstrated. Besides, the protocol suffers from the problem that sequences from symbiotic ciliates are overrepresented in the retrieved 18S rDNA libraries. In this study, we designed a blocking primer to make a combined primer set (copepod/symbiotic ciliate-excluding eukaryote-common: CEEC) to depress PCR amplification of symbiotic ciliate sequences while maximizing the range of eukaryotes amplified. We firstly examined the specificity and efficacy of CEEC by PCR-amplifying DNAs from 16 copepod species, 37 representative organisms that are potential prey of copepods and a natural microplankton sample, and then evaluated the efficiency in reconstructing diet composition by detecting the food of both lab-reared and field-collected copepods. Our results showed that the CEEC primer set can successfully amplify 18S rDNA from a wide range of isolated species and mixed-species samples while depressing amplification of that from copepod and targeted symbiotic ciliate, indicating the universality of CEEC in specifically detecting prey of copepods. All the predetermined food offered to copepods in the laboratory were successfully retrieved, suggesting that the CEEC-based protocol can accurately reconstruct the diets of copepods without interference of copepods and their associated ciliates present in the DNA samples. Our initial application to analyzing the food composition of field-collected copepods uncovered diverse prey species, including those currently known, and those that are unsuspected, as copepod prey. While testing is required, this protocol provides a useful strategy for depicting in situ dietary composition of copepods.

  16. Establishing a novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping.

    PubMed

    Beiter, Thomas; Zimmermann, Martina; Fragasso, Annunziata; Armeanu, Sorin; Lauer, Ulrich M; Bitzer, Michael; Su, Hua; Young, William L; Niess, Andreas M; Simon, Perikles

    2008-01-01

    So far, the abuse of gene transfer technology in sport, so-called gene doping, is undetectable. However, recent studies in somatic gene therapy indicate that long-term presence of transgenic DNA (tDNA) following various gene transfer protocols can be found in DNA isolated from whole blood using conventional PCR protocols. Application of these protocols for the direct detection of gene doping would require almost complete knowledge about the sequence of the genetic information that has been transferred. Here, we develop and describe the novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure that overcomes this difficulty. Apart from the interesting perspectives that this spiPCR procedure offers in the fight against gene doping, this technology could also be of interest in biodistribution and biosafety studies for gene therapeutic applications.

  17. On-chip PMA labeling of foodborne pathogenic bacteria for viable qPCR and qLAMP detection

    USDA-ARS?s Scientific Manuscript database

    Propidium monoazide (PMA) is a membrane impermeable molecule that covalently bonds to double stranded DNA when exposed to light and inhibits the polymerase activity, thus enabling DNA amplification detection protocols that discriminate between viable and non-viable entities. Here, we present a micro...

  18. PCR-based detection of a rare linear DNA in cell culture.

    PubMed

    Saveliev, Sergei V.

    2002-11-11

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 10(7) or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.

  19. PCR-based detection of a rare linear DNA in cell culture

    PubMed Central

    2002-01-01

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 107 or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials. PMID:12734566

  20. High-speed shaking of frozen blood clots for extraction of human and malaria parasite DNA

    PubMed Central

    2011-01-01

    Background Frozen blood clots remaining after serum collection is an often disregarded source of host and pathogen DNA due to troublesome handling and suboptimal outcome. Methods High-speed shaking of clot samples in a cell disruptor manufactured for homogenization of tissue and faecal specimens was evaluated for processing frozen blood clots for DNA extraction. The method was compared to two commercial clot protocols based on a chemical kit and centrifugation through a plastic sieve, followed by the same DNA extraction protocol. Blood clots with different levels of parasitaemia (1-1,000 p/μl) were prepared from parasite cultures to assess sensitivity of PCR detection. In addition, clots retrieved from serum samples collected within two epidemiological studies in Kenya (n = 630) were processed by high speed shaking and analysed by PCR for detection of malaria parasites and the human α-thalassaemia gene. Results High speed shaking succeeded in fully dispersing the clots and the method generated the highest DNA yield. The level of PCR detection of P. falciparum parasites and the human thalassaemia gene was the same as samples optimally collected with an anticoagulant. The commercial clot protocol and centrifugation through a sieve failed to fully dissolve the clots and resulted in lower sensitivity of PCR detection. Conclusions High speed shaking was a simple and efficacious method for homogenizing frozen blood clots before DNA purification and resulted in PCR templates of high quality both from humans and malaria parasites. This novel method enables genetic studies from stored blood clots. PMID:21824391

  1. A novel copro-diagnostic molecular method for qualitative detection and identification of parasitic nematodes in amphibians and reptiles.

    PubMed

    Huggins, Lucas G; Michaels, Christopher J; Cruickshank, Sheena M; Preziosi, Richard F; Else, Kathryn J

    2017-01-01

    Anthropogenic disturbance via resource acquisition, habitat fragmentation and climate change, amongst other factors, has led to catastrophic global biodiversity losses and species extinctions at an accelerating rate. Amphibians are currently one of the worst affected classes with at least a third of species categorised as being threatened with extinction. At the same time, they are also critically important for many habitats and provide man with a powerful proxy for ecosystem health by acting as a bioindicator group. Whilst the causes of synchronised amphibian losses are varied recent research has begun to highlight a growing role that macroparasites are playing in amphibian declines. However, diagnosing parasite infection in the field can be problematic, principally relying on collection and euthanasia of hosts, followed by necropsy and morphological identification of parasites in situ. The current study developed a non-invasive PCR-based methodology for sensitive detection and identification of parasitic nematode DNA released in the faeces of infected amphibians as egg or tissue fragments (environmental DNA). A DNA extraction protocol optimised for liberation of DNA from resilient parasite eggs was developed alongside the design of a novel, nematode universal, degenerate primer pair, thus avoiding the difficulties of using species specific primers in situations where common parasite species are unknown. Used in conjunction this protocol and primer pair was tested on a wide range of faecal samples from captive and wild amphibians. The primers and protocol were validated and detected infections, including a Railletnema nematode infection in poison dart frogs from ZSL London Zoo and Mantella cowani frogs in the wild. Furthermore, we demonstrate the efficacy of our PCR-based protocol for detecting nematode infection in other hosts, such as the presence of pinworm (Aspiculuris) in two tortoise species and whipworm (Trichuris muris) in mice. Our environmental DNA approach mitigates problems associated with microscopic identification and can be applied to detect nematode parasitoses in wild and captive hosts for infection surveillance and maintenance of healthy populations.

  2. A novel copro-diagnostic molecular method for qualitative detection and identification of parasitic nematodes in amphibians and reptiles

    PubMed Central

    Michaels, Christopher J.

    2017-01-01

    Anthropogenic disturbance via resource acquisition, habitat fragmentation and climate change, amongst other factors, has led to catastrophic global biodiversity losses and species extinctions at an accelerating rate. Amphibians are currently one of the worst affected classes with at least a third of species categorised as being threatened with extinction. At the same time, they are also critically important for many habitats and provide man with a powerful proxy for ecosystem health by acting as a bioindicator group. Whilst the causes of synchronised amphibian losses are varied recent research has begun to highlight a growing role that macroparasites are playing in amphibian declines. However, diagnosing parasite infection in the field can be problematic, principally relying on collection and euthanasia of hosts, followed by necropsy and morphological identification of parasites in situ. The current study developed a non-invasive PCR-based methodology for sensitive detection and identification of parasitic nematode DNA released in the faeces of infected amphibians as egg or tissue fragments (environmental DNA). A DNA extraction protocol optimised for liberation of DNA from resilient parasite eggs was developed alongside the design of a novel, nematode universal, degenerate primer pair, thus avoiding the difficulties of using species specific primers in situations where common parasite species are unknown. Used in conjunction this protocol and primer pair was tested on a wide range of faecal samples from captive and wild amphibians. The primers and protocol were validated and detected infections, including a Railletnema nematode infection in poison dart frogs from ZSL London Zoo and Mantella cowani frogs in the wild. Furthermore, we demonstrate the efficacy of our PCR-based protocol for detecting nematode infection in other hosts, such as the presence of pinworm (Aspiculuris) in two tortoise species and whipworm (Trichuris muris) in mice. Our environmental DNA approach mitigates problems associated with microscopic identification and can be applied to detect nematode parasitoses in wild and captive hosts for infection surveillance and maintenance of healthy populations. PMID:28934299

  3. A protocol for collecting environmental DNA samples from streams

    Treesearch

    Kellie J. Carim; Kevin S. McKelvey; Michael K. Young; Taylor M. Wilcox; Michael K. Schwartz

    2016-01-01

    Environmental DNA (eDNA) is DNA that has been released by an organism into its environment, such that the DNA can be found in air, water, or soil. In aquatic systems, eDNA has been shown to provide a sampling approach that is more sensitive for detecting target organisms faster, and less expensively than previous approaches. However, eDNA needs to be sampled in a...

  4. Dientamoeba fragilis DNA detection in Enterobius vermicularis eggs

    PubMed Central

    Ögren, Jessica; Dienus, Olaf; Löfgren, Sture; Iveroth, Peter; Matussek, Andreas

    2013-01-01

    Dientamoeba fragilis is an intestinal protozoan suspected of causing gastrointestinal symptoms, and its mode of transmission is unknown, although first described almost a century ago. A hypothesis is that Enterobius vermicularis is a vector for D. fragilis, and recently, D. fragilis DNA was detected within surface-sterilized eggs of E. vermicularis. Using real-time PCR, we detected D. fragilis DNA in 18 (85%) of 21 samples of E. vermicularis eggs collected from patients harbouring D. fragilis in faeces. This finding supports the hypothesis that E. vermicularis may have an important role in the transmission of D. fragilis. This paper describes a protocol to wash and surface-sterilize E. vermicularis eggs, with the aim of showing presence of both E. vermicularis and D. fragilis specific DNA within, and the results from 20 co-infected patients. The study has merit as a confirmatory study of the trials by Röser et al. (2013), and includes improvements of the protocol. PMID:23893951

  5. Optimization of PMA-PCR Protocol for Viability Detection of Pathogens

    NASA Technical Reports Server (NTRS)

    Mikkelson, Brian J.; Lee, Christine M.; Ponce, Adrian

    2011-01-01

    This presented study demonstrates the need that PMA-PCR can be used to capture the loss of viability of a sample that is much more specific and time-efficient than alternative methods. This protocol is particularly useful in scenarios in which sterilization treatments may inactivate organisms but not degrade their DNA. The use of a PCR-based method of pathogen detection without first inactivating the DNA of nonviable cells will potentially lead to false positives. The loss of culturability, by heat-killing, did not prevent amplified PCR products, which supports the use of PMA to prevent amplification and differentiate between viable and dead cells. PMA was shown to inhibit the amplification of DNA by PCR in vegetative cells that had been heat-killed.

  6. New Application of the Comet Assay

    PubMed Central

    Cortés-Gutiérrez, Elva I.; Dávila-Rodríguez, Martha I.; Fernández, José Luís; López-Fernández, Carmen; Gosálbez, Altea; Gosálvez, Jaime

    2011-01-01

    The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains. PMID:21540337

  7. Incorporating thyroid markers in Down syndrome screening protocols.

    PubMed

    Dhaifalah, Ishraq; Salek, Tomas; Langova, Dagmar; Cuckle, Howard

    2017-05-01

    The article aimed to assess the benefit of incorporating maternal serum thyroid disease marker levels (thyroid-stimulating hormone and free thyroxine) into first trimester Down syndrome screening protocols. Statistical modelling was used to predict performance with and without the thyroid markers. Two protocols were considered: the combined test and the contingent cell-free DNA (cfDNA) test, where 15-40% women are selected for cfDNA because of increased risk based on combined test results. Published parameters were used for the combined test, cfDNA and the Down syndrome means for thyroid-stimulating hormone and free thyroxine; other parameters were derived from a series of 5230 women screened for both thyroid disease and Down syndrome. Combined test: For a fixed 85% detection rate, the predicted false positive rate was reduced from 5.3% to 3.6% with the addition of the thyroid markers. Contingent cfDNA test: For a fixed 95% detection rate, the proportion of women selected for cfDNA was reduced from 25.6% to 20.2%. When screening simultaneously for maternal thyroid disease and Down syndrome, thyroid marker levels should be used in the calculation of Down syndrome risk. The benefit is modest but can be achieved with no additional cost. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  8. [Application of DNA extraction kit, 'GM quicker' for detection of genetically modified soybeans].

    PubMed

    Sato, Noriko; Sugiura, Yoshitsugu; Tanaka, Toshitsugu

    2012-01-01

    Several DNA extraction methods have been officially introduced to detect genetically modified soybeans, but the choice of DNA extraction kits depend on the nature of the samples, such as grains or processed foods. To overcome this disadvantage, we examined whether the GM quicker kit is available for both grains and processed foods. We compared GM quicker with four approved DNA extraction kits in respect of DNA purity, copy numbers of lectin gene, and working time. We found that the DNA quality of GM quicker was superior to that of the other kits for grains, and the procedure was faster. However, in the case of processed foods, GM quicker was not superior to the other kits. We therefore investigated an unapproved GM quicker 3 kit, which is available for DNA extraction from processed foods, such as tofu and boiled soybeans. The GM quicker 3 kit provided good DNA quality from both grains and processed foods, so we made a minor modification of the GM quicker-based protocol that was suitable for processed foods, using GM quicker and its reagents. The modified method enhanced the performance of GM quicker with processed foods. We believe that GM quicker with the modified protocol is an excellent tool to obtain high-quality DNA from grains and processed foods for detection of genetically modified soybeans.

  9. Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification.

    PubMed

    Ji, Hanxu; Yan, Feng; Lei, Jianping; Ju, Huangxian

    2012-08-21

    An ultrasensitive protocol for electrochemical detection of DNA is designed with quantum dots (QDs) as a signal tag by combining the template enhanced hybridization process (TEHP) and rolling circle amplification (RCA). Upon the recognition of the molecular beacon (MB) to target DNA, the MB hybridizes with assistants and target DNA to form a ternary ''Y-junction''. The target DNA can be dissociated from the structure under the reaction of nicking endonuclease to initiate the next hybridization process. The template enhanced MB fragments further act as the primers of the RCA reaction to produce thousands of repeated oligonucleotide sequences, which can bind with oligonucleotide functionalized QDs. The attached signal tags can be easily read out by square-wave voltammetry after dissolving with acid. Because of the cascade signal amplification and the specific TEHP and RCA reaction, this newly designed protocol provides an ultrasensitive electrochemical detection of DNA down to the attomolar level (11 aM) with a linear range of 6 orders of magnitude (from 1 × 10(-17) to 1 × 10(-11) M) and can discriminate mismatched DNA from perfect matched target DNA with high selectivity. The high sensitivity and specificity make this method a great potential for early diagnosis in gene-related diseases.

  10. Direct and long-term detection of gene doping in conventional blood samples.

    PubMed

    Beiter, T; Zimmermann, M; Fragasso, A; Hudemann, J; Niess, A M; Bitzer, M; Lauer, U M; Simon, P

    2011-03-01

    The misuse of somatic gene therapy for the purpose of enhancing athletic performance is perceived as a coming threat to the world of sports and categorized as 'gene doping'. This article describes a direct detection approach for gene doping that gives a clear yes-or-no answer based on the presence or absence of transgenic DNA in peripheral blood samples. By exploiting a priming strategy to specifically amplify intronless DNA sequences, we developed PCR protocols allowing the detection of very small amounts of transgenic DNA in genomic DNA samples to screen for six prime candidate genes. Our detection strategy was verified in a mouse model, giving positive signals from minute amounts (20 μl) of blood samples for up to 56 days following intramuscular adeno-associated virus-mediated gene transfer, one of the most likely candidate vector systems to be misused for gene doping. To make our detection strategy amenable for routine testing, we implemented a robust sample preparation and processing protocol that allows cost-efficient analysis of small human blood volumes (200 μl) with high specificity and reproducibility. The practicability and reliability of our detection strategy was validated by a screening approach including 327 blood samples taken from professional and recreational athletes under field conditions.

  11. Photocleavable DNA Barcoding Antibodies for Multiplexed Protein Analysis in Single Cells.

    PubMed

    Ullal, Adeeti V; Weissleder, Ralph

    2015-01-01

    We describe a DNA-barcoded antibody sensing technique for single cell protein analysis in which the barcodes are photocleaved and digitally detected without amplification steps (Ullal et al., Sci Transl Med 6:219, 2014). After photocleaving the unique ~70 mer DNA barcodes we use a fluorescent hybridization technology for detection, similar to what is commonly done for nucleic acid readouts. This protocol offers a simple method for multiplexed protein detection using 100+ antibodies and can be performed on clinical samples as well as single cells.

  12. Development of a Method to Implement Whole-Genome Bisulfite Sequencing of cfDNA from Cancer Patients and a Mouse Tumor Model.

    PubMed

    Maggi, Elaine C; Gravina, Silvia; Cheng, Haiying; Piperdi, Bilal; Yuan, Ziqiang; Dong, Xiao; Libutti, Steven K; Vijg, Jan; Montagna, Cristina

    2018-01-01

    The goal of this study was to develop a method for whole genome cell-free DNA (cfDNA) methylation analysis in humans and mice with the ultimate goal to facilitate the identification of tumor derived DNA methylation changes in the blood. Plasma or serum from patients with pancreatic neuroendocrine tumors or lung cancer, and plasma from a murine model of pancreatic adenocarcinoma was used to develop a protocol for cfDNA isolation, library preparation and whole-genome bisulfite sequencing of ultra low quantities of cfDNA, including tumor-specific DNA. The protocol developed produced high quality libraries consistently generating a conversion rate >98% that will be applicable for the analysis of human and mouse plasma or serum to detect tumor-derived changes in DNA methylation.

  13. A ready-to-use duplex qPCR to detect Leishmania infantum DNA in naturally infected dogs.

    PubMed

    Rampazzo, Rita de Cássia Pontello; Solcà, Manuela da Silva; Santos, Liliane Celestino Sales; Pereira, Lais de Novaes; Guedes, José Carlos Oliveira; Veras, Patrícia Sampaio Tavares; Fraga, Deborah Bittencourt Mothé; Krieger, Marco Aurélio; Costa, Alexandre Dias Tavares

    2017-11-15

    Canine visceral leishmaniasis (CVL) is a systemic disease caused by Leishmania infantum. A precise CVL diagnosis would allow for a faster and more specific treatment. Quantitative PCR (qPCR) is a sensitive and specific technique that can diagnose CVL and also monitor parasite load in the animal during the course of the infection or treatment. The aim of this study was to develop a ready-to-use (gelified and freezer-free) duplex qPCR for the identification of infected animals. We combined a new qPCR protocol that detects the canine 18S rRNA gene with an existing protocol for L. infantum kDNA detection, creating a duplex qPCR. This duplex method was then developed into a ready-to-use format. The performance of the duplex and singleplex reactions were compared in the traditional format (liquid and freezer-stored). Furthermore, the duplex qPCR performance was compared between the ready-to-use and traditional formats. The singleplex and new duplex qPCR exhibited the same detection limit in the traditional format (0.1 parasites/reaction). The ready-to-use format showed a detection limit of 1 parasite/reaction without affecting the reaction efficiency. The performance of the new qPCR protocol in the two formats was assessed using canine tissue samples from 82 dogs in an endemic CVL area that were previously characterized by standard serological and parasitological protocols. Splenic aspirates provided a higher rate of positivity (92.9%) followed by skin (50%) and blood (35.7%). The reported detection limits were observed for all tissues studied. Our results show that the amplification of L. infantum kDNA and canine DNA in a single tube, using either the traditional or ready-to-use format, exhibited the same diagnostic performance as amplification of the parasite kDNA alone. The detection of the host gene strengthens the qPCR results by confirming the presence and quality of DNA in the samples and the absence of polymerase inhibitors. The ready-to-use duplex qPCR format has many advantages. By joining two qPCR protocols into one, more results can be obtained in the same amount of time with reduced costs and embedded quality control. Reagents are preloaded and stored on the plate, reducing the operator's hands-on time to set up a reaction, as well as decreasing manipulation steps, which reduces the risk of mistakes or contamination. Thus, the ready-to-use duplex format turns qPCR into a robust, easy-to-use tool, which could help increase the availability of qPCR for CVL diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Incorporating DNA Sequencing into Current Prenatal Screening Practice for Down's Syndrome

    PubMed Central

    Wald, Nicholas J.; Bestwick, Jonathan P.

    2013-01-01

    Background Prenatal screening for Down's syndrome is performed using biochemical and ultrasound markers measured in early pregnancy such as the Integrated test using first and second trimester markers. Recently, DNA sequencing methods have been introduced on free DNA in maternal plasma, yielding a high screening performance. These methods are expensive and there is a test failure rate. We determined the screening performance of merging the Integrated test with the newer DNA techniques in a protocol that substantially reduces the cost compared with universal DNA testing and still achieves high screening performance with no test failures. Methods Published data were used to model screening performance of a protocol in which all women receive the first stage of the Integrated test at about 11 weeks of pregnancy. On the basis of this higher risk women have reflex DNA testing and lower risk women as well as those with a failed DNA test complete the Integrated test at about 15 weeks. Results The overall detection rate was 95% with a 0.1% false-positive rate if 20% of women were selected to receive DNA testing. If all women had DNA testing the detection rate would be 3 to 4 percentage points higher with a false-positive rate 30 times greater if women with failed tests were treated as positive and offered a diagnostic amniocentesis, or 3 times greater if they had a second trimester screening test (Quadruple test) and treated as positive only if this were positive. The cost per women screened would be about one-fifth, compared with universal DNA testing, if the DNA test were 20 times the cost of the Integrated test. Conclusion The proposed screening protocol achieves a high screening performance without programme test failures and at a substantially lower cost than offering all women DNA testing. PMID:23527014

  15. A simplified protocol for molecular identification of Eimeria species in field samples.

    PubMed

    Haug, Anita; Thebo, Per; Mattsson, Jens G

    2007-05-15

    This study aimed to find a fast, sensitive and efficient protocol for molecular identification of chicken Eimeria spp. in field samples. Various methods for each of the three steps of the protocol were evaluated: oocyst wall rupturing methods, DNA extraction methods, and identification of species-specific DNA sequences by PCR. We then compared and evaluated five complete protocols. Three series of oocyst suspensions of known number of oocysts from Eimeria mitis, Eimeria praecox, Eimeria maxima and Eimeria tenella were prepared and ground using glass beads or mini-pestle. DNA was extracted from ruptured oocysts using commercial systems (GeneReleaser, Qiagen Stoolkit and Prepman) or phenol-chloroform DNA extraction, followed by identification of species-specific ITS-1 sequences by optimised single species PCR assays. The Stoolkit and Prepman protocols showed insufficient repeatability, and the former was also expensive and relatively time-consuming. In contrast, both the GeneReleaser protocol and phenol-chloroform protocols were robust and sensitive, detecting less than 0.4 oocysts of each species per PCR. Finally, we evaluated our new protocol on 68 coccidia positive field samples. Our data suggests that rupturing the oocysts by mini-pestle grinding, preparing the DNA with GeneReleaser, followed by optimised single species PCR assays, makes a robust and sensitive procedure for identifying chicken Eimeria species in field samples. Importantly, it also provides minimal hands-on-time in the pre-PCR process, lower contamination risk and no handling of toxic chemicals.

  16. Rapid DNA extraction protocol for detection of alpha-1 antitrypsin deficiency from dried blood spots by real-time PCR.

    PubMed

    Struniawski, R; Szpechcinski, A; Poplawska, B; Skronski, M; Chorostowska-Wynimko, J

    2013-01-01

    The dried blood spot (DBS) specimens have been successfully employed for the large-scale diagnostics of α1-antitrypsin (AAT) deficiency as an easy to collect and transport alternative to plasma/serum. In the present study we propose a fast, efficient, and cost effective protocol of DNA extraction from dried blood spot (DBS) samples that provides sufficient quantity and quality of DNA and effectively eliminates any natural PCR inhibitors, allowing for successful AAT genotyping by real-time PCR and direct sequencing. DNA extracted from 84 DBS samples from chronic obstructive pulmonary disease patients was genotyped for AAT deficiency variants by real-time PCR. The results of DBS AAT genotyping were validated by serum IEF phenotyping and AAT concentration measurement. The proposed protocol allowed successful DNA extraction from all analyzed DBS samples. Both quantity and quality of DNA were sufficient for further real-time PCR and, if necessary, for genetic sequence analysis. A 100% concordance between AAT DBS genotypes and serum phenotypes in positive detection of two major deficiency S- and Z- alleles was achieved. Both assays, DBS AAT genotyping by real-time PCR and serum AAT phenotyping by IEF, positively identified PI*S and PI*Z allele in 8 out of the 84 (9.5%) and 16 out of 84 (19.0%) patients, respectively. In conclusion, the proposed protocol noticeably reduces the costs and the hand-on-time of DBS samples preparation providing genomic DNA of sufficient quantity and quality for further real-time PCR or genetic sequence analysis. Consequently, it is ideally suited for large-scale AAT deficiency screening programs and should be method of choice.

  17. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater.

    PubMed

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen's' reports and fish community monitorings.

  18. Evaluation of a shortened QIAsymphony DNA extraction protocol for stool samples using a multiplex real-time PCR for the detection of enteric pathogens.

    PubMed

    van Zanten, E; Wisselink, G J; Stoll, S; Alvarez, R; Kooistra-Smid, A M D

    2011-02-01

    A shortened DNA extraction protocol for the QIAsymphony SP was evaluated by quantitative and qualitative comparison of real-time PCR results of 150 co-extracted stool samples. The average ∆Cycle threshold value for positive pathogenic targets was 0.28 Ct. A consensus of 96.91%, with a correlation coefficient of 0.9880 was recorded. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Human immunodeficiency virus bDNA assay for pediatric cases.

    PubMed

    Avila, M M; Liberatore, D; Martínez Peralta, L; Biglione, M; Libonatti, O; Coll Cárdenas, P; Hodara, V L

    2000-01-01

    Techniques to quantify plasma HIV-1 RNA viral load (VL) are commercially available, and they are adequate for monitoring adults infected by HIV and treated with antiretroviral drugs. Little experience on HIV VL has been reported in pediatric cases. In Argentina, the evaluation of several assays for VL in pediatrics are now being considered. To evaluate the pediatric protocol for bDNA assay in HIV-infected children, 25 samples from HIV-infected children (according to CDC criteria for pediatric AIDS) were analyzed by using Quantiplex HIV RNA 2.0 Assay (Chiron Corporation) following the manufacturer's recommendations in a protocol that uses 50 microliters of patient's plasma (sensitivity: 10,000 copies/ml). When HIV-RNA was not detected, samples were run with the 1 ml standard bDNA protocol (sensitivity: 500 HIV-RNA c/ml). Nine samples belonged to infants under 12 months of age (group A) and 16 were over 12 months (group B). All infants under one year of age had high HIV-RNA copies in plasma. VL ranged from 30,800 to 2,560,000 RNA copies/ml (median = 362,000 c/ml) for group A and < 10,000 to 554,600 c/ml (median = < 10,000) for group B. Only 25% of children in group B had detectable HIV-RNA. By using the standard test of quantification, none of the patients had non detectable HIV-RNA, ranging between 950 and 226,200 c/ml for group B (median = 23,300 RNA c/ml). The suggested pediatric protocol could be useful in children under 12 months of age, but 1 ml standard protocol must be used for older children. Samples with undetectable results from children under one year of age should be repeated using the standard protocol.

  20. A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes

    PubMed Central

    Wang, Dan Ohtan; Matsuno, Hitomi; Ikeda, Shuji; Nakamura, Akiko; Yanagisawa, Hiroyuki; Hayashi, Yasunori; Okamoto, Akimitsu

    2012-01-01

    Fluorescence in situ hybridization (FISH) is a powerful tool used in karyotyping, cytogenotyping, cancer diagnosis, species specification, and gene-expression analysis. Although widely used, conventional FISH protocols are cumbersome and time consuming. We have now developed a FISH method using exciton-controlled hybridization-sensitive fluorescent oligodeoxynucleotide (ECHO) probes. ECHO–FISH uses a 25-min protocol from fixation to mounting that includes no stringency washing steps. We use ECHO–FISH to detect both specific DNA and RNA sequences with multicolor probes. ECHO–FISH is highly reproducible, stringent, and compatible with other fluorescent cellular labeling techniques. The resolution allows detection of intranuclear speckles of poly(A) RNA in HeLa cells and dissociated hippocampal primary cultures, and mRNAs in the distal dendrites of hippocampal neurons. We also demonstrate detection of telomeric and centromeric DNA on metaphase mouse chromosomes. The simplicity of the ECHO–FISH method will likely accelerate cytogenetic and gene-expression analysis with high resolution. PMID:22101241

  1. Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA)

    PubMed Central

    Schultz, Martin T.; Lance, Richard F.

    2015-01-01

    The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives. PMID:26509674

  2. Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA).

    PubMed

    Schultz, Martin T; Lance, Richard F

    2015-01-01

    The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives.

  3. Cytosine DNA Methylation Is Found in Drosophila melanogaster but Absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Other Yeast Species

    PubMed Central

    2014-01-01

    The methylation of cytosine to 5-methylcytosine (5-meC) is an important epigenetic DNA modification in many bacteria, plants, and mammals, but its relevance for important model organisms, including Caenorhabditis elegans and Drosophila melanogaster, is still equivocal. By reporting the presence of 5-meC in a broad variety of wild, laboratory, and industrial yeasts, a recent study also challenged the dogma about the absence of DNA methylation in yeast species. We would like to bring to attention that the protocol used for gas chromatography/mass spectrometry involved hydrolysis of the DNA preparations. As this process separates cytosine and 5-meC from the sugar phosphate backbone, this method is unable to distinguish DNA- from RNA-derived 5-meC. We employed an alternative LC–MS/MS protocol where by targeting 5-methyldeoxycytidine moieties after enzymatic digestion, only 5-meC specifically derived from DNA is quantified. This technique unambiguously identified cytosine DNA methylation in Arabidopsis thaliana (14.0% of cytosines methylated), Mus musculus (7.6%), and Escherichia coli (2.3%). Despite achieving a detection limit at 250 attomoles (corresponding to <0.00002 methylated cytosines per nonmethylated cytosine), we could not confirm any cytosine DNA methylation in laboratory and industrial strains of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Saccharomyces boulardii, Saccharomyces paradoxus, or Pichia pastoris. The protocol however unequivocally confirmed DNA methylation in adult Drosophila melanogaster at a value (0.034%) that is up to 2 orders of magnitude below the detection limit of bisulphite sequencing. Thus, 5-meC is a rare DNA modification in drosophila but absent in yeast. PMID:24640988

  4. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis

    USGS Publications Warehouse

    Wilcox, Taylor M; Mckelvey, Kevin S.; Young, Michael K.; Sepulveda, Adam; Shepard, Bradley B.; Jane, Stephen F; Whiteley, Andrew R.; Lowe, Winsor H.; Schwartz, Michael K.

    2016-01-01

    Environmental DNA sampling (eDNA) has emerged as a powerful tool for detecting aquatic animals. Previous research suggests that eDNA methods are substantially more sensitive than traditional sampling. However, the factors influencing eDNA detection and the resulting sampling costs are still not well understood. Here we use multiple experiments to derive independent estimates of eDNA production rates and downstream persistence from brook trout (Salvelinus fontinalis) in streams. We use these estimates to parameterize models comparing the false negative detection rates of eDNA sampling and traditional backpack electrofishing. We find that using the protocols in this study eDNA had reasonable detection probabilities at extremely low animal densities (e.g., probability of detection 0.18 at densities of one fish per stream kilometer) and very high detection probabilities at population-level densities (e.g., probability of detection > 0.99 at densities of ≥ 3 fish per 100 m). This is substantially more sensitive than traditional electrofishing for determining the presence of brook trout and may translate into important cost savings when animals are rare. Our findings are consistent with a growing body of literature showing that eDNA sampling is a powerful tool for the detection of aquatic species, particularly those that are rare and difficult to sample using traditional methods.

  5. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  6. "Signal-on" photoelectrochemical biosensor for sensitive detection of human T-Cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension.

    PubMed

    Shen, Qingming; Han, Li; Fan, Gaochao; Zhang, Jian-Rong; Jiang, Liping; Zhu, Jun-Jie

    2015-01-01

    A novel "signal-on" photoelectrochemical (PEC) biosensor for sensitive detection of human T-cell lymphotropic virus type II (HTLV-II) DNA was developed on the basis of enzymatic amplification coupled with terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. The intensity of the photocurrent signal was proportional to the concentration of the HTLV-II DNA-target DNA (tDNA) by dual signal amplification. In this protocol, GR-CdS:Mn/ZnS nanocomposites were used as photoelectric conversion material, while pDNA was used as the tDNA recognizing unit. Moreover, the TdT-mediated extension and the enzymatic signal amplification technique were used to enhance the sensitivity of detection. Using this novel dual signal amplification strategy, the prototype of PEC DNA sensor can detect as low as ∼0.033 fM of HTLV-II DNA with a linear range of 0.1-5000 fM, with excellent differentiation ability even for single-base mismatches. This PEC DNA assay opens a promising platform to detect various DNA targets at ultralow levels for early diagnoses of different diseases.

  7. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater

    PubMed Central

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen’s’ reports and fish community monitorings. PMID:26814998

  8. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  9. Extended PCR conditions to reduce drop-out frequencies in low template STR typing including unequal mixtures.

    PubMed

    Weiler, Natalie E C; Matai, Anuska S; Sijen, Titia

    2012-01-01

    Forensic laboratories employ various approaches to obtain short tandem repeat (STR) profiles from minimal traces (<100 pg DNA input). Most approaches aim to sensitize DNA profiling by increasing the amplification level by a higher cycle number or enlarging the amount of PCR products analyzed during capillary electrophoresis. These methods have limitations when unequal mixtures are genotyped, since the major component will be over-amplified or over-loaded. This study explores an alternative strategy for improved detection of the minor components in low template (LT) DNA typing that may be better suited for the detection of the minor component in mixtures. The strategy increases the PCR amplification efficiency by extending the primer annealing time several folds. When the AmpFℓSTR(®) Identifiler(®) amplification parameters are changed to an annealing time of 20 min during all 28 cycles, the drop-out frequency is reduced for both pristine DNA and single or multiple donor mock case work samples. In addition, increased peak heights and slightly more drop-ins are observed while the heterozygous peak balance remains similar as with the conventional Identifiler protocol. By this extended protocol, full DNA profiles were obtained from only 12 sperm heads (which corresponds to 36 pg of DNA) that were collected by laser micro dissection. Notwithstanding the improved detection, allele drop-outs do persist, albeit in lower frequencies. Thus a LT interpretation strategy such as deducing consensus profiles from multiple independent amplifications is appropriate. The use of extended PCR conditions represents a general approach to improve detection of unequal mixtures as shown using four commercially available kits (AmpFℓSTR(®) Identifiler, SEfiler Plus, NGM and Yfiler). The extended PCR protocol seems to amplify more of the molecules in LT samples during PCR, which results in a lower drop-out frequency. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Solid-phase proximity ligation assays for individual or parallel protein analyses with readout via real-time PCR or sequencing.

    PubMed

    Nong, Rachel Yuan; Wu, Di; Yan, Junhong; Hammond, Maria; Gu, Gucci Jijuan; Kamali-Moghaddam, Masood; Landegren, Ulf; Darmanis, Spyros

    2013-06-01

    Solid-phase proximity ligation assays share properties with the classical sandwich immunoassays for protein detection. The proteins captured via antibodies on solid supports are, however, detected not by single antibodies with detectable functions, but by pairs of antibodies with attached DNA strands. Upon recognition by these sets of three antibodies, pairs of DNA strands brought in proximity are joined by ligation. The ligated reporter DNA strands are then detected via methods such as real-time PCR or next-generation sequencing (NGS). We describe how to construct assays that can offer improved detection specificity by virtue of recognition by three antibodies, as well as enhanced sensitivity owing to reduced background and amplified detection. Finally, we also illustrate how the assays can be applied for parallel detection of proteins, taking advantage of the oligonucleotide ligation step to avoid background problems that might arise with multiplexing. The protocol for the singleplex solid-phase proximity ligation assay takes ~5 h. The multiplex version of the assay takes 7-8 h depending on whether quantitative PCR (qPCR) or sequencing is used as the readout. The time for the sequencing-based protocol includes the library preparation but not the actual sequencing, as times may vary based on the choice of sequencing platform.

  11. Use of FTA elute card impregnated with cervicovaginal sample directly into the amplification reaction increases the detection of human papillomavirus DNA.

    PubMed

    Santos, Carla R; Franciscatto, Laura G; Barcellos, Regina B; Almeida, Sabrina E M; Rossetti, Maria Lucia R

    2012-01-01

    This study aimed to evaluate the use of the FTA elute card(TM) impregnated with cervicovaginal sample directly in the PCR amplification for detection of HPV-DNA. The results were compared to a reference technique. This method was more efficient than the protocol indicated by the manufacturer, identifying 91.7% against 54.2% of the positive samples.

  12. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection.

    PubMed

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T; Carr, Christopher E

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.

  13. Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis

    PubMed Central

    Huang, Shichu; Do, Jaephil; Mahalanabis, Madhumita; Fan, Andy; Zhao, Lei; Jepeal, Lisa; Singh, Satish K.; Klapperich, Catherine M.

    2013-01-01

    In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA) to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10−2 pg of C. difficile DNA) while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health. PMID:23555883

  14. Clearing muddied waters: Capture of environmental DNA from turbid waters.

    PubMed

    Williams, Kelly E; Huyvaert, Kathryn P; Piaggio, Antoinette J

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest.

  15. Clearing muddied waters: Capture of environmental DNA from turbid waters

    PubMed Central

    Huyvaert, Kathryn P.; Piaggio, Antoinette J.

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest. PMID:28686659

  16. Identification of forensic samples by using an infrared-based automatic DNA sequencer.

    PubMed

    Ricci, Ugo; Sani, Ilaria; Klintschar, Michael; Cerri, Nicoletta; De Ferrari, Francesco; Giovannucci Uzielli, Maria Luisa

    2003-06-01

    We have recently introduced a new protocol for analyzing all core loci of the Federal Bureau of Investigation's (FBI) Combined DNA Index System (CODIS) with an infrared (IR) automatic DNA sequencer (LI-COR 4200). The amplicons were labeled with forward oligonucleotide primers, covalently linked to a new infrared fluorescent molecule (IRDye 800). The alleles were displayed as familiar autoradiogram-like images with real-time detection. This protocol was employed for paternity testing, population studies, and identification of degraded forensic samples. We extensively analyzed some simulated forensic samples and mixed stains (blood, semen, saliva, bones, and fixed archival embedded tissues), comparing the results with donor samples. Sensitivity studies were also performed for the four multiplex systems. Our results show the efficiency, reliability, and accuracy of the IR system for the analysis of forensic samples. We also compared the efficiency of the multiplex protocol with ultraviolet (UV) technology. Paternity tests, undegraded DNA samples, and real forensic samples were analyzed with this approach based on IR technology and with UV-based automatic sequencers in combination with commercially-available kits. The comparability of the results with the widespread UV methods suggests that it is possible to exchange data between laboratories using the same core group of markers but different primer sets and detection methods.

  17. A simple procedure for the extraction of DNA from long-term formalin-preserved brain tissues for the detection of EBV by PCR.

    PubMed

    Hassani, Asma; Khan, Gulfaraz

    2015-12-01

    Long-term formalin fixed brain tissues are potentially an important source of material for molecular studies. Ironically, very few protocols have been published describing DNA extraction from such material for use in PCR analysis. In our attempt to investigate the role of Epstein-Barr virus (EBV) in the pathogenesis of multiple sclerosis (MS), extracting PCR quality DNA from brain samples fixed in formalin for 2-22 years, proved to be very difficult and challenging. As expected, DNA extracted from these samples was not only of poor quality and quantity, but more importantly, it was frequently found to be non-amplifiable due to the presence of PCR inhibitors. Here, we describe a simple and reproducible procedure for extracting DNA using a modified proteinase K and phenol-chloroform methodology. Central to this protocol is the thorough pre-digestion washing of the tissues in PBS, extensive digestion with proteinase K in low SDS containing buffer, and using low NaCl concentration during DNA precipitation. The optimized protocol was used in extracting DNA from meninges of 26 MS and 6 non-MS cases. Although the quality of DNA from these samples was generally poor, small size amplicons (100-200 nucleotides) of the house-keeping gene, β-globin could be reliably amplified from all the cases. PCR for EBV revealed positivity in 35% (9/26) MS cases, but 0/6 non-MS cases. These findings indicate that the method described here is suitable for PCR detection of viral sequences in long-term formalin persevered brain tissues. Our findings also support a possible role for EBV in the pathogenesis of MS. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Use of FTA elute card impregnated with cervicovaginal sample directly into the amplification reaction increases the detection of human papillomavirus DNA

    PubMed Central

    Santos, Carla R.; Franciscatto, Laura G.; Barcellos, Regina B.; Almeida, Sabrina E. M.; Rossetti, Maria Lucia R.

    2012-01-01

    This study aimed to evaluate the use of the FTA elute cardTM impregnated with cervicovaginal sample directly in the PCR amplification for detection of HPV-DNA. The results were compared to a reference technique. This method was more efficient than the protocol indicated by the manufacturer, identifying 91.7% against 54.2% of the positive samples. PMID:24031844

  19. Protein blotting protocol for beginners.

    PubMed

    Petrasovits, Lars A

    2014-01-01

    The transfer and immobilization of biological macromolecules onto solid nitrocellulose or nylon (polyvinylidene difluoride (PVDF)) membranes subsequently followed by specific detection is referred to as blotting. DNA blots are called Southerns after the inventor of the technique, Edwin Southern. By analogy, RNA blots are referred to as northerns and protein blots as westerns (Burnette, Anal Biochem 112:195-203, 1981). With few exceptions, western blotting involves five steps, namely, sample collection, preparation, separation, immobilization, and detection. In this chapter, protocols for the entire process from sample collection to detection are described.

  20. Environmental DNA as a Tool for Inventory and Monitoring of Aquatic Vertebrates

    DTIC Science & Technology

    2017-07-01

    geomorphic calculations and description of each reach. Methods Channel Surveys We initially selected reaches based on access and visual indicators...WA 99164 I-2 Environmental DNA lab protocol: designing species-specific qPCR assays Species-specific surveys should use quantitative polymerase...to traditional field sampling with respect to sensitivity, detection probabilities, and cost efficiency. Compared to field surveys , eDNA sampling

  1. A lab-on-chip for biothreat detection using single-molecule DNA mapping.

    PubMed

    Meltzer, Robert H; Krogmeier, Jeffrey R; Kwok, Lisa W; Allen, Richard; Crane, Bryan; Griffis, Joshua W; Knaian, Linda; Kojanian, Nanor; Malkin, Gene; Nahas, Michelle K; Papkov, Vyacheslav; Shaikh, Saad; Vyavahare, Kedar; Zhong, Qun; Zhou, Yi; Larson, Jonathan W; Gilmanshin, Rudolf

    2011-03-07

    Rapid, specific, and sensitive detection of airborne bacteria, viruses, and toxins is critical for biodefense, yet the diverse nature of the threats poses a challenge for integrated surveillance, as each class of pathogens typically requires different detection strategies. Here, we present a laboratory-on-a-chip microfluidic device (LOC-DLA) that integrates two unique assays for the detection of airborne pathogens: direct linear analysis (DLA) with unsurpassed specificity for bacterial threats and Digital DNA for toxins and viruses. The LOC-DLA device also prepares samples for analysis, incorporating upstream functions for concentrating and fractionating DNA. Both DLA and Digital DNA assays are single molecule detection technologies, therefore the assay sensitivities depend on the throughput of individual molecules. The microfluidic device and its accompanying operation protocols have been heavily optimized to maximize throughput and minimize the loss of analyzable DNA. We present here the design and operation of the LOC-DLA device, demonstrate multiplex detection of rare bacterial targets in the presence of 100-fold excess complex bacterial mixture, and demonstrate detection of picogram quantities of botulinum toxoid.

  2. The Lambda Select cII Mutation Detection System.

    PubMed

    Besaratinia, Ahmad; Tommasi, Stella

    2018-04-26

    A number of transgenic animal models and mutation detection systems have been developed for mutagenicity testing of carcinogens in mammalian cells. Of these, transgenic mice and the Lambda (λ) Select cII Mutation Detection System have been employed for mutagenicity experiments by many research groups worldwide. Here, we describe a detailed protocol for the Lambda Select cII mutation assay, which can be applied to cultured cells of transgenic mice/rats or the corresponding animals treated with a chemical/physical agent of interest. The protocol consists of the following steps: (1) isolation of genomic DNA from the cells or organs/tissues of transgenic animals treated in vitro or in vivo, respectively, with a test compound; (2) recovery of the lambda shuttle vector carrying a mutational reporter gene (i.e., cII transgene) from the genomic DNA; (3) packaging of the rescued vectors into infectious bacteriophages; (4) infecting a host bacteria and culturing under selective conditions to allow propagation of the induced cII mutations; and (5) scoring the cII-mutants and DNA sequence analysis to determine the cII mutant frequency and mutation spectrum, respectively.

  3. Ultrasensitive detection of nucleic acids by template enhanced hybridization followed by rolling circle amplification and catalytic hairpin assembly.

    PubMed

    Song, Weiling; Zhang, Qiao; Sun, Wenbo

    2015-02-11

    An ultrasensitive protocol for fluorescent detection of DNA is designed by combining the template enhanced hybridization process (TEHP) with Rolling Circle Amplification (RCA) and Catalytic Hairpin Assembly (CHA), showing a remarkable amplification efficiency.

  4. Critical issues with the in vivo comet assay: A report of the comet assay working group in the 6th International Workshop on Genotoxicity Testing (IWGT).

    PubMed

    Speit, Günter; Kojima, Hajime; Burlinson, Brian; Collins, Andrew R; Kasper, Peter; Plappert-Helbig, Ulla; Uno, Yoshifumi; Vasquez, Marie; Beevers, Carol; De Boeck, Marlies; Escobar, Patricia A; Kitamoto, Sachiko; Pant, Kamala; Pfuhler, Stefan; Tanaka, Jin; Levy, Dan D

    2015-05-01

    As a part of the 6th IWGT, an expert working group on the comet assay evaluated critical topics related to the use of the in vivo comet assay in regulatory genotoxicity testing. The areas covered were: identification of the domain of applicability and regulatory acceptance, identification of critical parameters of the protocol and attempts to standardize the assay, experience with combination and integration with other in vivo studies, demonstration of laboratory proficiency, sensitivity and power of the protocol used, use of different tissues, freezing of samples, and choice of appropriate measures of cytotoxicity. The standard protocol detects various types of DNA lesions but it does not detect all types of DNA damage. Modifications of the standard protocol may be used to detect additional types of specific DNA damage (e.g., cross-links, bulky adducts, oxidized bases). In addition, the working group identified critical parameters that should be carefully controlled and described in detail in every published study protocol. In vivo comet assay results are more reliable if they were obtained in laboratories that have demonstrated proficiency. This includes demonstration of adequate response to vehicle controls and an adequate response to a positive control for each tissue being examined. There was a general agreement that freezing of samples is an option but more data are needed in order to establish generally accepted protocols. With regard to tissue toxicity, the working group concluded that cytotoxicity could be a confounder of comet results. It is recommended to look at multiple parameters such as histopathological observations, organ-specific clinical chemistry as well as indicators of tissue inflammation to decide whether compound-specific toxicity might influence the result. The expert working group concluded that the alkaline in vivo comet assay is a mature test for the evaluation of genotoxicity and can be recommended to regulatory agencies for use. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Development of an Escherichia coli K12-specific quantitative polymerase chain reaction assay and DNA isolation suited to biofilms associated with iron drinking water pipe corrosion products.

    PubMed

    Lu, Jingrang; Gerke, Tammie L; Buse, Helen Y; Ashbolt, Nicholas J

    2014-12-01

    A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.

  6. Critical considerations for the application of environmental DNA methods to detect aquatic species

    USGS Publications Warehouse

    Goldberg, Caren S.; Turner, Cameron R.; Deiner, Kristy; Klymus, Katy E.; Thomsen, Philip Francis; Murphy, Melanie A.; Spear, Stephen F.; McKee, Anna; Oyler-McCance, Sara J.; Cornman, Robert S.; Laramie, Matthew B.; Mahon, Andrew R.; Lance, Richard F.; Pilliod, David S.; Strickler, Katherine M.; Waits, Lisette P.; Fremier, Alexander K.; Takahara, Teruhiko; Herder, Jelger E.; Taberlet, Pierre

    2016-01-01

    Species detection using environmental DNA (eDNA) has tremendous potential for contributing to the understanding of the ecology and conservation of aquatic species. Detecting species using eDNA methods, rather than directly sampling the organisms, can reduce impacts on sensitive species and increase the power of field surveys for rare and elusive species. The sensitivity of eDNA methods, however, requires a heightened awareness and attention to quality assurance and quality control protocols. Additionally, the interpretation of eDNA data demands careful consideration of multiple factors. As eDNA methods have grown in application, diverse approaches have been implemented to address these issues. With interest in eDNA continuing to expand, supportive guidelines for undertaking eDNA studies are greatly needed.Environmental DNA researchers from around the world have collaborated to produce this set of guidelines and considerations for implementing eDNA methods to detect aquatic macroorganisms.Critical considerations for study design include preventing contamination in the field and the laboratory, choosing appropriate sample analysis methods, validating assays, testing for sample inhibition and following minimum reporting guidelines. Critical considerations for inference include temporal and spatial processes, limits of correlation of eDNA with abundance, uncertainty of positive and negative results, and potential sources of allochthonous DNA.We present a synthesis of knowledge at this stage for application of this new and powerful detection method.

  7. Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species.

    PubMed

    Palacio-Bielsa, Ana; Cubero, Jaime; Cambra, Miguel A; Collados, Raquel; Berruete, Isabel M; López, María M

    2011-01-01

    Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruit, is considered a quarantine organism by the European Union and the European and Mediterranean Plant Protection Organization (EPPO). The bacterium can undergo an epiphytic phase and/or be latent and can be transmitted by plant material, but currently, only visual inspections are used to certify plants as being X. arboricola pv. pruni free. A novel and highly sensitive real-time TaqMan PCR detection protocol was designed based on a sequence of a gene for a putative protein related to an ABC transporter ATP-binding system in X. arboricola pv. pruni. Pathogen detection can be completed within a few hours with a sensitivity of 10(2) CFU ml(-1), thus surpassing the sensitivity of the existing conventional PCR. Specificity was assessed for X. arboricola pv. pruni strains from different origins as well as for closely related Xanthomonas species, non-Xanthomonas species, saprophytic bacteria, and healthy Prunus samples. The efficiency of the developed protocol was evaluated with field samples of 14 Prunus species and rootstocks. For symptomatic leaf samples, the protocol was very efficient even when washed tissues of the leaves were directly amplified without any previous DNA extraction. For samples of 117 asymptomatic leaves and 285 buds, the protocol was more efficient after a simple DNA extraction, and X. arboricola pv. pruni was detected in 9.4% and 9.1% of the 402 samples analyzed, respectively, demonstrating its frequent epiphytic or endophytic phase. This newly developed real-time PCR protocol can be used as a quantitative assay, offers a reliable and sensitive test for X. arboricola pv. pruni, and is suitable as a screening test for symptomatic as well as asymptomatic plant material.

  8. Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples.

    PubMed

    Lewandowska, Dagmara W; Zagordi, Osvaldo; Geissberger, Fabienne-Desirée; Kufner, Verena; Schmutz, Stefan; Böni, Jürg; Metzner, Karin J; Trkola, Alexandra; Huber, Michael

    2017-08-08

    Sequence-specific PCR is the most common approach for virus identification in diagnostic laboratories. However, as specific PCR only detects pre-defined targets, novel virus strains or viruses not included in routine test panels will be missed. Recently, advances in high-throughput sequencing allow for virus-sequence-independent identification of entire virus populations in clinical samples, yet standardized protocols are needed to allow broad application in clinical diagnostics. Here, we describe a comprehensive sample preparation protocol for high-throughput metagenomic virus sequencing using random amplification of total nucleic acids from clinical samples. In order to optimize metagenomic sequencing for application in virus diagnostics, we tested different enrichment and amplification procedures on plasma samples spiked with RNA and DNA viruses. A protocol including filtration, nuclease digestion, and random amplification of RNA and DNA in separate reactions provided the best results, allowing reliable recovery of viral genomes and a good correlation of the relative number of sequencing reads with the virus input. We further validated our method by sequencing a multiplexed viral pathogen reagent containing a range of human viruses from different virus families. Our method proved successful in detecting the majority of the included viruses with high read numbers and compared well to other protocols in the field validated against the same reference reagent. Our sequencing protocol does work not only with plasma but also with other clinical samples such as urine and throat swabs. The workflow for virus metagenomic sequencing that we established proved successful in detecting a variety of viruses in different clinical samples. Our protocol supplements existing virus-specific detection strategies providing opportunities to identify atypical and novel viruses commonly not accounted for in routine diagnostic panels.

  9. A simple method of DNA isolation from jute (Corchorus olitorius) seed suitable for PCR-based detection of the pathogen Macrophomina phaseolina (Tassi) Goid.

    PubMed

    Biswas, C; Dey, P; Satpathy, S; Sarkar, S K; Bera, A; Mahapatra, B S

    2013-02-01

    A simple method was developed for isolating DNA from jute seed, which contains high amounts of mucilage and secondary metabolites, and a PCR protocol was standardized for detecting the seedborne pathogen Macrophomina phaseolina. The cetyl trimethyl ammonium bromide method was modified with increased salt concentration and a simple sodium acetate treatment to extract genomic as well as fungal DNA directly from infected jute seed. The Miniprep was evaluated along with five other methods of DNA isolation in terms of yield and quality of DNA and number of PCR positive samples. The Miniprep consistently recovered high amounts of DNA with good spectral qualities at A260/A280. The DNA isolated from jute seed was found suitable for PCR amplification. Macrophomina phaseolina could be detected by PCR from artificially inoculated as well as naturally infected jute seeds. The limit of PCR-based detection of M. phaseolina in jute seed was determined to be 0·62 × 10(-7) CFU g(-1) seed. © 2012 The Society for Applied Microbiology.

  10. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    PubMed Central

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.

    2017-01-01

    Abstract Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry–dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a “universal” nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments—Nucleic acids—Mars—Panspermia. Astrobiology 17, 747–760. PMID:28704064

  11. Infection control in healthcare settings: perspectives for mfDNA analysis in monitoring sanitation procedures.

    PubMed

    Valeriani, Federica; Protano, Carmela; Gianfranceschi, Gianluca; Cozza, Paola; Campanella, Vincenzo; Liguori, Giorgio; Vitali, Matteo; Divizia, Maurizio; Romano Spica, Vincenzo

    2016-08-09

    Appropriate sanitation procedures and monitoring of their actual efficacy represent critical points for improving hygiene and reducing the risk of healthcare-associated infections. Presently, surveillance is based on traditional protocols and classical microbiology. Innovation in monitoring is required not only to enhance safety or speed up controls but also to prevent cross infections due to novel or uncultivable pathogens. In order to improve surveillance monitoring, we propose that biological fluid microflora (mf) on reprocessed devices is a potential indicator of sanitation failure, when tested by an mfDNA-based approach. The survey focused on oral microflora traces in dental care settings. Experimental tests (n = 48) and an "in field" trial (n = 83) were performed on dental instruments. Conventional microbiology and amplification of bacterial genes by multiple real-time PCR were applied to detect traces of salivary microflora. Six different sanitation protocols were considered. A monitoring protocol was developed and performance of the mfDNA assay was evaluated by sensitivity and specificity. Contaminated samples resulted positive for saliva traces by the proposed approach (CT < 35). In accordance with guidelines, only fully sanitized samples were considered negative (100 %). Culture-based tests confirmed disinfectant efficacy, but failed in detecting incomplete sanitation. The method provided sensitivity and specificity over 95 %. The principle of detecting biological fluids by mfDNA analysis seems promising for monitoring the effectiveness of instrument reprocessing. The molecular approach is simple, fast and can provide a valid support for surveillance in dental care or other hospital settings.

  12. Normalization of environmental metagenomic DNA enhances the discovery of under-represented microbial community members.

    PubMed

    Ramond, J-B; Makhalanyane, T P; Tuffin, M I; Cowan, D A

    2015-04-01

    Normalization is a procedure classically employed to detect rare sequences in cellular expression profiles (i.e. cDNA libraries). Here, we present a normalization protocol involving the direct treatment of extracted environmental metagenomic DNA with S1 nuclease, referred to as normalization of metagenomic DNA: NmDNA. We demonstrate that NmDNA, prior to post hoc PCR-based experiments (16S rRNA gene T-RFLP fingerprinting and clone library), increased the diversity of sequences retrieved from environmental microbial communities by detection of rarer sequences. This approach could be used to enhance the resolution of detection of ecologically relevant rare members in environmental microbial assemblages and therefore is promising in enabling a better understanding of ecosystem functioning. This study is the first testing 'normalization' on environmental metagenomic DNA (mDNA). The aim of this procedure was to improve the identification of rare phylotypes in environmental communities. Using hypoliths as model systems, we present evidence that this post-mDNA extraction molecular procedure substantially enhances the detection of less common phylotypes and could even lead to the discovery of novel microbial genotypes within a given environment. © 2014 The Society for Applied Microbiology.

  13. Molecular beacons for DNA binding proteins: an emerging technology for detection of DNA binding proteins and their ligands.

    PubMed

    Dummitt, Benjamin; Chang, Yie-Hwa

    2006-06-01

    Quantitation of the level or activity of specific proteins is one of the most commonly performed experiments in biomedical research. Protein detection has historically been difficult to adapt to high throughput platforms because of heavy reliance upon antibodies for protein detection. Molecular beacons for DNA binding proteins is a recently developed technology that attempts to overcome such limitations. Protein detection is accomplished using inexpensive, easy-to-synthesize oligonucleotides, accompanied by a fluorescence readout. Importantly, detection of the protein and reporting of the signal occur simultaneously, allowing for one-step protocols and increased potential for use in high throughput analysis. While the initial iteration of the technology allowed only for the detection of sequence-specific DNA binding proteins, more recent adaptations allow for the possibility of development of beacons for any protein, independent of native DNA binding activity. Here, we discuss the development of the technology, the mechanism of the reaction, and recent improvements and modifications made to improve the assay in terms of sensitivity, potential for multiplexing, and broad applicability.

  14. What is in your cup of tea? DNA Verity Test to characterize black and green commercial teas

    PubMed Central

    Comparone, Maria; Di Maio, Antonietta; Del Guacchio, Emanuele; Menale, Bruno; Troisi, Jacopo; Aliberti, Francesco

    2017-01-01

    In this study, we used several molecular techniques to develop a fast and reliable protocol (DNA Verity Test, DVT) for the characterization and confirmation of the species or taxa present in herbal infusions. As a model plant for this protocol, Camellia sinensis, a traditional tea plant, was selected due to the following reasons: its historical popularity as a (healthy) beverage, its high selling value, the importation of barely recognizable raw product (i.e., crushed), and the scarcity of studies concerning adulterants or contamination. The DNA Verity Test includes both the sequencing of DNA barcoding markers and genotyping of labeled-PCR DNA barcoding fragments for each sample analyzed. This protocol (DVT) was successively applied to verify the authenticity of 32 commercial teas (simple or admixture), and the main results can be summarized as follows: (1) the DVT protocol is suitable to detect adulteration in tea matrices (contaminations or absence of certified ingredients), and the method can be exported for the study of other similar systems; (2) based on the BLAST analysis of the sequences of rbcL+matK±rps7-trnV(GAC) chloroplast markers, C. sinensis can be taxonomically characterized; (3) rps7-trnV(GAC) can be employed to discriminate C. sinensis from C. pubicosta; (4) ITS2 is not an ideal DNA barcode for tea samples, reflecting potential incomplete lineage sorting and hybridization/introgression phenomena in C. sinensis taxa; (5) the genotyping approach is an easy, inexpensive and rapid pre-screening method to detect anomalies in the tea templates using the trnH(GUG)-psbA barcoding marker; (6) two herbal companies provided no authentic products with a contaminant or without some of the listed ingredients; and (7) the leaf matrices present in some teabags could be constituted using an admixture of different C. sinensis haplotypes and/or allied species (C. pubicosta). PMID:28542606

  15. Extraction of DNA from orange juice, and detection of bacterium Candidatus Liberibacter asiaticus by real-time PCR.

    PubMed

    Bai, Jinhe; Baldwin, Elizabeth; Liao, Hui-Ling; Zhao, Wei; Kostenyuk, Igor; Burns, Jacqueline; Irey, Mike

    2013-10-02

    Orange juice processed from Huanglongbing (HLB) affected fruit is often associated with bitter taste and/or off-flavor. HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium. The current standard to confirm CLas for citrus trees is to take samples from midribs of leaves, which are rich in phloem tissues, and use a quantitative real-time polymerase chain reaction (qPCR) test to detect the 16S rDNA gene of CLas. It is extremely difficult to detect CLas in orange juice because of the low CLas population, high sugar and pectin concentration, low pH, and possible existence of an inhibitor to DNA amplification. The objective of this research was to improve extraction of DNA from orange juice and detection of CLas by qPCR. Homogenization using a sonicator increased DNA yield by 86% in comparison to mortar and pestle extraction. It is difficult to separate DNA from pectin; however, DNA was successfully extracted by treating the juice with pectinase. Application of an elution column successfully removed the unidentified inhibitor to DNA amplification. This work provided a protocol to extract DNA from whole orange juice and detect CLas in HLB-affected fruit.

  16. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons

    PubMed Central

    Tan, Carlyn Rose C.; Zhou, Lanlan

    2016-01-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned. PMID:27516729

  17. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons.

    PubMed

    Tan, Carlyn Rose C; Zhou, Lanlan; El-Deiry, Wafik S

    2016-06-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.

  18. Using Environmental DNA for Invasive Species Surveillance and Monitoring.

    PubMed

    Mahon, Andrew R; Jerde, Christopher L

    2016-01-01

    The method employed for environmental DNA (eDNA) surveillance for detection and monitoring of rare species in aquatic systems has evolved dramatically since its first large-scale applications. Both active (targeted) and passive (total diversity) surveillance methods provide helpful information for management groups, but each has a suite of techniques that necessitate proper equipment training and use. The protocols described in this chapter represent some of the latest iterations in eDNA surveillance being applied in aquatic and marine systems.

  19. Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.

    PubMed

    Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter

    2017-02-01

    DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.

  20. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    PubMed

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  1. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances.

    PubMed

    Dougherty, Matthew M; Larson, Eric R; Renshaw, Mark A; Gantz, Crysta A; Egan, Scott P; Erickson, Daniel M; Lodge, David M

    2016-06-01

    Early detection is invaluable for the cost-effective control and eradication of invasive species, yet many traditional sampling techniques are ineffective at the low population abundances found at the onset of the invasion process. Environmental DNA (eDNA) is a promising and sensitive tool for early detection of some invasive species, but its efficacy has not yet been evaluated for many taxonomic groups and habitat types.We evaluated the ability of eDNA to detect the invasive rusty crayfish Orconectes rusticus and to reflect patterns of its relative abundance, in upper Midwest, USA, inland lakes. We paired conventional baited trapping as a measure of crayfish relative abundance with water samples for eDNA, which were analysed in the laboratory with a qPCR assay. We modelled detection probability for O. rusticus eDNA using relative abundance and site characteristics as covariates and also tested the relationship between eDNA copy number and O. rusticus relative abundance.We detected O. rusticus eDNA in all lakes where this species was collected by trapping, down to low relative abundances, as well as in two lakes where trap catch was zero. Detection probability of O. rusticus eDNA was well predicted by relative abundance of this species and lake water clarity. However, there was poor correspondence between eDNA copy number and O. rusticus relative abundance estimated by trap catches. Synthesis and applications . Our study demonstrates a field and laboratory protocol for eDNA monitoring of crayfish invasions, with results of statistical models that provide guidance of sampling effort and detection probabilities for researchers in other regions and systems. We propose eDNA be included as a tool in surveillance for invasive or imperilled crayfishes and other benthic arthropods.

  2. Detection of Trypanosoma cruzi by Polymerase Chain Reaction.

    PubMed

    Márquez, María Elizabeth; Concepción, Juan Luis; González-Marcano, Eglys; Mondolfi, Alberto Paniz

    2016-01-01

    American Trypanosomiasis (Chagas disease) is an infectious disease caused by the hemoflagellate parasite Trypanosoma cruzi which is transmitted by reduviid bugs. T. cruzi infection occurs in a broad spectrum of reservoir animals throughout North, Central, and South America and usually evolves into an asymptomatic chronic clinical stage of the disease in which diagnosis is often challenging. This chapter describes the application of polymerase chain reaction (PCR) for the detection of Trypanosoma cruzi DNA including protocols for sample preparation, DNA extraction, and target amplification methods.

  3. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  4. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  5. Identification of phlebotomine sand fly blood meals by real-time PCR.

    PubMed

    Sales, Kamila Gaudêncio da Silva; Costa, Pietra Lemos; de Morais, Rayana Carla Silva; Otranto, Domenico; Brandão-Filho, Sinval Pinto; Cavalcanti, Milena de Paiva; Dantas-Torres, Filipe

    2015-04-16

    Phlebotomine sand flies are blood-feeding insects of great medical and veterinary significance acting as vectors of Leishmania parasites. Studying the blood-feeding pattern of these insects may help in the understanding of their interactions with potential reservoir hosts of Leishmania parasites. In this study, we developed real time PCR assays for the identification of sand fly blood meal. Six pairs of primers were designed based on cytochrome b gene sequences available in GenBank of the following potential hosts: dog, cat, horse, chicken, black rat, and human. Firstly, SYBR Green-based real time PCR assays were conducted using a standard curve with eight different concentrations (i.e., 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg and 1 fg per 2 μl) of DNA samples extracted from EDTA blood samples from each target animal. Then, DNA samples extracted from field-collected engorged female sand flies belonging to three species (i.e., Lutzomyia longipalpis, L. migonei and L. lenti) were tested by the protocols standardized herein. Additionally, female sand flies were experimentally fed on a black rat (Rattus rattus) and used for evaluating the time course of the detection of the protocol targeting this species. The protocols performed well with detection limits of 10 pg to 100 fg. Field-collected female sand flies were fed on blood from humans (73%), chickens (23%), dogs (22%), horses (15%), black rats (11%) and cats (2%). Interestingly, 76.1% of the L. longipalpis females were positive for human blood. In total, 48% of the tested females were fed on single sources, 31% on two and 12% on three. The analysis of the time course showed that the real time PCR protocol targeting the black rat DNA was able to detect small amounts of the host DNA up to 5 days after the blood meal. The real time PCR assays standardized herein successfully detected small amounts of host DNA in female sand flies fed on different vertebrate species and, specifically for the black rats, up to 5 days after the blood meal. These assays represent promising tools for the identification of blood meal in field-collected female sand flies.

  6. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller.

    PubMed

    Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun

    2017-01-03

    Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.

  7. Detection of isotype switch rearrangement in bulk culture by PCR.

    PubMed

    Max, E E; Mills, F C; Chu, C

    2001-05-01

    When a B lymphocyte changes from synthesizing IgM to synthesizing IgG, IgA, or IgE, this isotype switch is generally accompanied by a unique DNA rearrangement. The protocols in this unit describe two polymerase chain reaction (PCR)-based strategies for detecting switch rearrangements in bulk culture. The first involves direct PCR across the switch junctions, providing the opportunity for characterizing the recombination products by nucleotide sequence analysis; however, because of characteristics inherent to the PCR methodology this strategy cannot easily be used as a quantitative assay for recombination. A support protocol details the preparation of the 5' Su PCR probe for this protocol. The second basic protocol describes a method known as digestion-circularization PCR (DCPCR) that is more amenable to quantitation but yields no information on structure of the recombination products. Both techniques should be capable of detecting reciprocal deletion circles as well as functional recombination products remaining on the expressed chromosome.

  8. ChIP-nexus: a novel ChIP-exo protocol for improved detection of in vivo transcription factor binding footprints

    PubMed Central

    He, Qiye; Johnston, Jeff; Zeitlinger, Julia

    2014-01-01

    Understanding how eukaryotic enhancers are bound and regulated by specific combinations of transcription factors is still a major challenge. To better map transcription factor binding genome-wide at nucleotide resolution in vivo, we have developed a robust ChIP-exo protocol called ChIP experiments with nucleotide resolution through exonuclease, unique barcode and single ligation (ChIP-nexus), which utilizes an efficient DNA self-circularization step during library preparation. Application of ChIP-nexus to four proteins—human TBP and Drosophila NFkB, Twist and Max— demonstrates that it outperforms existing ChIP protocols in resolution and specificity, pinpoints relevant binding sites within enhancers containing multiple binding motifs and allows the analysis of in vivo binding specificities. Notably, we show that Max frequently interacts with DNA sequences next to its motif, and that this binding pattern correlates with local DNA sequence features such as DNA shape. ChIP-nexus will be broadly applicable to studying in vivo transcription factor binding specificity and its relationship to cis-regulatory changes in humans and model organisms. PMID:25751057

  9. Forensic identification of CITES protected slimming cactus (Hoodia) using DNA barcoding.

    PubMed

    Gathier, Gerard; van der Niet, Timotheus; Peelen, Tamara; van Vugt, Rogier R; Eurlings, Marcel C M; Gravendeel, Barbara

    2013-11-01

    Slimming cactus (Hoodia), found only in southwestern Africa, is a well-known herbal product for losing weight. Consequently, Hoodia extracts are sought-after worldwide despite a CITES Appendix II status. The failure to eradicate illegal trade is due to problems with detecting and identifying Hoodia using morphological and chemical characters. Our aim was to evaluate the potential of molecular identification of Hoodia based on DNA barcoding. Screening of nrITS1 and psbA-trnH DNA sequences from 26 accessions of Ceropegieae resulted in successful identification, while conventional chemical profiling using DLI-MS led to inaccurate detection and identification of Hoodia. The presence of Hoodia in herbal products was also successfully established using DNA sequences. A validation procedure of our DNA barcoding protocol demonstrated its robustness to changes in PCR conditions. We conclude that DNA barcoding is an effective tool for Hoodia detection and identification which can contribute to preventing illegal trade. © 2013 American Academy of Forensic Sciences.

  10. Measurement of fecal elastase improves performance of newborn screening for cystic fibrosis.

    PubMed

    Barben, Juerg; Rueegg, Corina S; Jurca, Maja; Spalinger, Johannes; Kuehni, Claudia E

    2016-05-01

    The aim of newborn screening (NBS) for CF is to detect children with 'classic' CF where early treatment is possible and improves prognosis. Children with inconclusive CF diagnosis (CFSPID) should not be detected, as there is no evidence for improvement through early treatment. No algorithm in current NBS guidelines explains what to do when sweat test (ST) fails. This study compares the performance of three different algorithms for further diagnostic evaluations when first ST is unsuccessful, regarding the numbers of children detected with CF and CFSPID, and the time until a definite diagnosis. In Switzerland, CF-NBS was introduced in January 2011 using an IRT-DNA-IRT algorithm followed by a ST. In children, in whom ST was not possible (no or insufficient sweat), 3 different protocols were applied between 2011 and 2014: in 2011, ST was repeated until it was successful (protocol A), in 2012 we proceeded directly to diagnostic DNA testing (protocol B), and 2013-2014, fecal elastase (FE) was measured in the stool, in order to determine a pancreas insufficiency needing immediate treatment (protocol C). The ratio CF:CFSPID was 7:1 (27/4) with protocol A, 2:1 (22/10) with protocol B, and 14:1 (54/4) with protocol C. The mean time to definite diagnosis was significantly shorter with protocol C (33days) compared to protocol A or B (42 and 40days; p=0.014 compared to A, and p=0.036 compared to B). The algorithm for the diagnostic part of the newborn screening used in the CF centers is important and affects the performance of a CF-NBS program with regard to the ratio CF:CFSPID and the time until definite diagnosis. Our results suggest to include FE after initial sweat test failure in the CF-NBS guidelines to keep the proportion of CFSPID low and the time until definite diagnosis short. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  11. A new real-time PCR protocol for detection of avian haemosporidians.

    PubMed

    Bell, Jeffrey A; Weckstein, Jason D; Fecchio, Alan; Tkach, Vasyl V

    2015-07-19

    Birds possess the most diverse assemblage of haemosporidian parasites; including three genera, Plasmodium, Haemoproteus, and Leucocytozoon. Currently there are over 200 morphologically identified avian haemosporidian species, although true species richness is unknown due to great genetic diversity and insufficient sampling in highly diverse regions. Studies aimed at surveying haemosporidian diversity involve collecting and screening samples from hundreds to thousands of individuals. Currently, screening relies on microscopy and/or single or nested standard PCR. Although effective, these methods are time and resource consuming, and in the case of microscopy require substantial expertise. Here we report a newly developed real-time PCR protocol designed to quickly and reliably detect all three genera of avian haemosporidians in a single biochemical reaction. Using available DNA sequences from avian haemosporidians we designed primers R330F and R480RL, which flank a 182 base pair fragment of mitochondrial conserved rDNA. These primers were initially tested using real-time PCR on samples from Malawi, Africa, previously screened for avian haemosporidians using traditional nested PCR. Our real time protocol was further tested on 94 samples from the Cerrado biome of Brazil, previously screened using a single PCR assay for haemosporidian parasites. These samples were also amplified using modified nested PCR protocols, allowing for comparisons between the three different screening methods (single PCR, nested PCR, real-time PCR). The real-time PCR protocol successfully identified all three genera of avian haemosporidians from both single and mixed infections previously detected from Malawi. There was no significant difference between the three different screening protocols used for the 94 samples from the Brazilian Cerrado (χ(2) = 0.3429, df = 2, P = 0.842). After proving effective, the real-time protocol was used to screen 2113 Brazilian samples, identifying 693 positive samples. Our real-time PCR assay proved as effective as two widely used molecular screening techniques, single PCR and nested PCR. However, the real-time protocol has the distinct advantage of detecting all three genera in a single reaction, which significantly increases efficiency by greatly decreasing screening time and cost. Our real-time PCR protocol is therefore a valuable tool in the quickly expanding field of avian haemosporidian research.

  12. Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil

    NASA Astrophysics Data System (ADS)

    Canfora, L.; Malusà, E.; Tkaczuk, C.; Tartanus, M.; Łabanowska, B. H.; Pinzari, F.

    2016-03-01

    A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil.

  13. Non-invasive prenatal diagnosis of paternally inherited disorders from maternal plasma: detection of NF1 and CFTR mutations using droplet digital PCR.

    PubMed

    Gruber, Aurélia; Pacault, Mathilde; El Khattabi, Laila Allach; Vaucouleur, Nicolas; Orhant, Lucie; Bienvenu, Thierry; Girodon, Emmanuelle; Vidaud, Dominique; Leturcq, France; Costa, Catherine; Letourneur, Franck; Anselem, Olivia; Tsatsaris, Vassilis; Goffinet, François; Viot, Géraldine; Vidaud, Michel; Nectoux, Juliette

    2018-04-25

    To limit risks of miscarriages associated with invasive procedures of current prenatal diagnosis practice, we aim to develop a personalized medicine-based protocol for non-invasive prenatal diagnosis (NIPD) of monogenic disorders relying on the detection of paternally inherited mutations in maternal blood using droplet digital PCR (ddPCR). This study included four couples at risk of transmitting paternal neurofibromatosis type 1 (NF1) mutations and four couples at risk of transmitting compound heterozygous CFTR mutations. NIPD was performed between 8 and 15 weeks of gestation, in parallel to conventional invasive diagnosis. We designed specific hydrolysis probes to detect the paternal mutation and to assess the presence of cell-free fetal DNA by ddPCR. Analytical performances of each assay were determined from paternal sample, an then fetal genotype was inferred from maternal plasma sample. Presence or absence of the paternal mutant allele was correctly determined in all the studied plasma DNA samples. We report an NIPD protocol suitable for implementation in an experienced laboratory of molecular genetics. Our proof-of-principle results point out a high accuracy for early detection of paternal NF1 and CFTR mutations in cell-free DNA, and open new perspectives for extending the technology to NIPD of many other monogenic diseases.

  14. Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil

    PubMed Central

    Canfora, L.; Malusà, E.; Tkaczuk, C.; Tartanus, M.; Łabanowska, B.H.; Pinzari, F.

    2016-01-01

    A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil. PMID:26975931

  15. Evaluation of four molecular methods to detect Leishmania infection in dogs.

    PubMed

    Albuquerque, Andreia; Campino, Lenea; Cardoso, Luís; Cortes, Sofia

    2017-03-13

    Canine leishmaniasis, a zoonotic disease caused by Leishmania infantum vectored by phlebotomine sand flies, is considered a relevant veterinary and public health problem in various countries, namely in the Mediterranean basin and Brazil, where dogs are considered the main reservoir hosts. Not only diseased dogs but also those subclinically infected play a relevant role in the transmission of L. infantum to vectors; therefore, early diagnosis is essential, under both a clinical and an epidemiological perspective. Molecular tools can be a more accurate and sensitive approach for diagnosis, with a wide range of protocols currently in use. The aim of the present report was to compare four PCR based protocols for the diagnosis of canine Leishmania infection in a cohort of dogs from the Douro region, Portugal. A total of 229 bone marrow samples were collected from dogs living in the Douro region, an endemic region for leishmaniasis. Four PCR protocols were evaluated for Leishmania DNA detection in canine samples, three single (ITS1-PCR, MC-PCR and Uni21/Lmj4-PCR) and one nested (nested SSU rRNA-PCR). Two of the protocols were based on nuclear targets and the other two on kinetoplastid targets. The higher overall percentage of infected dogs was detected with the nested SSU rRNA-PCR (37.6%), which also was able to detect Leishmania DNA in a higher number of samples from apparently healthy dogs (25.3%). The ITS1-PCR presented the lowest level of Leishmania detection. Nested SSU rRNA-PCR is an appropriate method to detect Leishmania infection in dogs. Accurate and early diagnosis in clinically suspect as well as apparently healthy dogs is essential, in order to treat and protect animals and public health and contribute to the control and awareness of the disease.

  16. A new protocol to detect multiple foodborne pathogens with PCR dipstick DNA chromatography after a six-hour enrichment culture in a broad-range food pathogen enrichment broth.

    PubMed

    Hayashi, Masahiro; Natori, Tatsuya; Kubota-Hayashi, Sayoko; Miyata, Machiko; Ohkusu, Kiyofumi; Kawamoto, Keiko; Kurazono, Hisao; Makino, Souichi; Ezaki, Takayuki

    2013-01-01

    A quick foodborne pathogen screening method after six-hour enrichment culture with a broad-range food pathogen enrichment broth is described. Pathogenic factors of Salmonella enterica, Shigella spp., enteroinvasive Escherichia coli, and enterohemorrhagic E. coli are amplified with a cocktail primer and rapid polymerase chain reaction (PCR), which finishes amplification in 30 min. The PCR amplicon was differentiated with a dipstick DNA chromatography assay in 5-10 min. Starting from a four- to six-hour enrichment culture, this assay was finished within 45 min. Detection sensitivity of this protocol was less than 2.5 CFU/25 g for S. enterica and 3.3 CFU/25 g for enterohemorrhagic E. coli in spiked ground meat experiments.

  17. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    NASA Astrophysics Data System (ADS)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.; Carr, Christopher E.

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars.

  18. Gold nanoparticles modified electrode via simple electrografting of in situ generated mercaptophenyl diazonium cations for development of DNA electrochemical biosensor.

    PubMed

    Li, Feng; Feng, Yan; Dong, Pingjun; Yang, Limin; Tang, Bo

    2011-01-15

    A novel protocol for development of DNA electrochemical biosensor based on gold nanoparticles (AuNPs) modified glassy carbon electrode (GCE) was proposed, which was carried out by the self-assembly of AuNPs on the mercaptophenyl film (MPF) via simple electrografting of in situ generated mercaptophenyl diazonium cations. The resulting MPF was covalently immobilized on GCE surface via C-C bond with high stability, which was desirable in fabrication of excellent performance biosensors. Probe DNA was self-assembled on AuNPs through the well-known Au-thiol binding. The recognition of fabricated DNA electrochemical biosensor toward complementary single-stranded DNA was determined by differential pulse voltammetry with the use of Co(phen)(3)(3+) as the electrochemical indicator. Taking advantage of amplification effects of AuNPs and stability of MPF, the developed biosensor could detect target DNA with the detection limit of 7.2×10(-11) M, which also exhibits good selectivity, stability and regeneration ability for DNA detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Assessment of environmental DNA for detecting presence of imperiled aquatic amphibian species in isolated wetlands

    USGS Publications Warehouse

    Mckee, Anna; Calhoun, Daniel L.; Barichivich, William J.; Spear, Stephen F.; Goldberg, Caren S.; Glenn, Travis C

    2015-01-01

    Environmental DNA (eDNA) is an emerging tool that allows low-impact sampling for aquatic species by isolating DNA from water samples and screening for DNA sequences specific to species of interest. However, researchers have not tested this method in naturally acidic wetlands that provide breeding habitat for a number of imperiled species, including the frosted salamander (Ambystoma cingulatum), reticulated flatwoods salamanders (Ambystoma bishopi), striped newt (Notophthalmus perstriatus), and gopher frog (Lithobates capito). Our objectives for this study were to develop and optimize eDNA survey protocols and assays to complement and enhance capture-based survey methods for these amphibian species. We collected three or more water samples, dipnetted or trapped larval and adult amphibians, and conducted visual encounter surveys for egg masses for target species at 40 sites on 12 different longleaf pine (Pinus palustris) tracts. We used quantitative PCRs to screen eDNA from each site for target species presence. We detected flatwoods salamanders at three sites with eDNA but did not detect them during physical surveys. Based on the sample location we assumed these eDNA detections to indicate the presence of frosted flatwoods salamanders. We did not detect reticulated flatwoods salamanders. We detected striped newts with physical and eDNA surveys at two wetlands. We detected gopher frogs at 12 sites total, three with eDNA alone, two with physical surveys alone, and seven with physical and eDNA surveys. We detected our target species with eDNA at 9 of 11 sites where they were present as indicated from traditional surveys and at six sites where they were not detected with traditional surveys. It was, however, critical to use at least three water samples per site for eDNA. Our results demonstrate eDNA surveys can be a useful complement to traditional survey methods for detecting imperiled pond-breeding amphibians. Environmental DNA may be particularly useful in situations where detection probability using traditional survey methods is low or access by trained personnel is limited.

  20. In situ detection of a PCR-synthesized human pancentromeric DNA hybridization probe by color pigment immunostaining: application for dicentric assay automation.

    PubMed

    Kolanko, C J; Pyle, M D; Nath, J; Prasanna, P G; Loats, H; Blakely, W F

    2000-03-01

    We report a low cost and efficient method for synthesizing a human pancentromeric DNA probe by the polymerase chain reaction (PRC) and an optimized protocol for in situ detection using color pigment immunostaining. The DNA template used in the PCR was a 2.4 kb insert containing human alphoid repeated sequences of pancentromeric DNA subcloned into pUC9 (Miller et al. 1988) and the primers hybridized to internal sequences of the 172 bp consensus tandem repeat associated with human centromeres. PCR was performed in the presence of biotin-11-dUTP, and the product was used for in situ hybridization to detect the pancentromeric region of human chromosomes in metaphase spreads. Detection of pancentromeric probe was achieved by immunoenzymatic color pigment painting to yield a permanent image detected at high resolution by bright field microscopy. The ability to synthesize the centromeric probe rapidly and to detect it with color pigment immunostaining will lead to enhanced identification and eventually to automation of various chromosome aberration assays.

  1. A cascade signal amplification strategy for surface enhanced Raman spectroscopy detection of thrombin based on DNAzyme assistant DNA recycling and rolling circle amplification.

    PubMed

    Gao, Fenglei; Du, Lili; Tang, Daoquan; Lu, Yao; Zhang, Yanzhuo; Zhang, Lixian

    2015-04-15

    A sensitive protocol for surface enhanced Raman spectroscopy (SERS) detection of thrombin is designed with R6G-Ag NPs as a signal tag by combining DNAzyme assistant DNA recycling and rolling circle amplification (RCA). Molecular beacon (MB) as recognition probe immobilizes on the glass slides and performs the amplification procedure. After thrombin-induced structure-switching DNA hairpins of probe 1, the DNAzyme is liberated from the caged structure, which hybridizes with the MB for cleavage of the MB in the presence of cofactor Zn(2+) and initiates the DNA recycling process, leading to the cleavage of a large number of MB and the generation of numerous primers for triggering RCA reaction. The long amplified RCA product which contained hundreds of tandem-repeat sequences, which can bind with oligonucleotide functionalized Ag NPs reporters. The attached signal tags can be easily read out by SERS. Because of the cascade signal amplification, these newly designed protocols provides a sensitive SERS detection of thrombin down to the femolar level (2.3fM) with a linear range of 5 orders of magnitude (from 10(-14) to 10(-9)M) and have high selectivity toward its target protein. The proposed method is expected to be a good clinical tool for the diagnosis of a thrombotic disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Magnetic nanobeads present during enzymatic amplification and labeling for a simplified DNA detection protocol based on AC susceptometry

    NASA Astrophysics Data System (ADS)

    Bejhed, Rebecca S.; Strømme, Maria; Svedlindh, Peter; Ahlford, Annika; Strömberg, Mattias

    2015-12-01

    Magnetic biosensors are promising candidates for low-cost point-of-care biodiagnostic devices. For optimal efficiency it is crucial to minimize the time and complexity of the assay protocol including target recognition, amplification, labeling and read-out. In this work, possibilities for protocol simplifications for a DNA biodetection principle relying on hybridization of magnetic nanobeads to rolling circle amplification (RCA) products are investigated. The target DNA is recognized through a padlock ligation assay resulting in DNA circles serving as templates for the RCA process. It is found that beads can be present during amplification without noticeably interfering with the enzyme used for RCA (phi29 polymerase). As a result, the bead-coil hybridization can be performed immediately after amplification in a one-step manner at elevated temperature within a few minutes prior to read-out in an AC susceptometer setup, i.e. a combined protocol approach. Moreover, by recording the phase angle ξ = arctan(χ″/χ'), where χ and χ″ are the in-phase and out-of-phase components of the AC susceptibility, respectively, at one single frequency the total assay time for the optimized combined protocol would be no more than 1.5 hours, often a relevant time frame for diagnosis of cancer and infectious disease. Also, applying the phase angle method normalization of AC susceptibility data is not needed. These findings are useful for the development of point-of-care biodiagnostic devices relying on bead-coil binding and magnetic AC susceptometry.

  3. Safety study and characterization of E1A-liposome complex gene-delivery protocol in an ovarian cancer model.

    PubMed

    Xing, X; Zhang, S; Chang, J Y; Tucker, S D; Chen, H; Huang, L; Hung, M C

    1998-11-01

    A phase I clinical trial of E1A-liposome complex is currently ongoing in patients with HER-2/neu-overexpressing breast or ovarian cancers. To optimize the E1A-liposome complex for a further stage of clinical trial, several aspects of the current protocol have been examined in an animal model. In the orthotopic ovarian cancer model, different doses of lipid in the the E1A-liposome complex, which is currently used in clinical trials, were tested for the in vivo gene-transfer efficacy and tumor-suppression function. A lowered lipid dose--1/13 of the previous amount--produced gene expression level and E1A tumor-suppression efficacy similar to that of the original protocol. Mini-E1A, an E1A construct without its immortalization domain and yet capable of repressing HER-2/neu, was proved to be as potent as E1A in suppressing tumor development in vivo. These changes in the E1A-liposome complex will significantly reduce any potential adverse effects caused by lipid vector and E1A DNA. To examine further whether residual E1A DNA may still exist in normal organs after the E1A-liposome treatment, PCR was used to detect E1A DNA in mice that survived for 1 1/2 years after the last treatment. E1A DNA was detected only in the lungs and kidneys, but not in livers, hearts, spleens, brains, uterus or the ovaries. Furthermore, resistance of the E1A DNA extracted from tissues to the digestion of Dpnl restriction enzyme, which can cleave the methylated E1A plasmid DNA generated by methylation-competent bacteria, suggested integration of E1A DNA into the chromosome of the lungs and kidneys. Experimental results presented here provide important information for safety concerns and for the design of future phase II and phase III trials.

  4. Assessment of an improved bone washing protocol for deceased donor human bone.

    PubMed

    Eagle, M J; Man, J; Rooney, P; Hogg, P; Kearney, J N

    2015-03-01

    NHSBT Tissue Services issues bone to surgeons in the UK in two formats, fresh-frozen unprocessed bone from living donors and processed bone from deceased donors. Processed bone may be frozen or freeze dried and all processed bone is currently subjected to a washing protocol to remove blood and bone marrow. In this study we have improved the current bone washing protocol for cancellous bone and assessed the success of the protocol by measuring the removal of the bone marrow components: soluble protein, DNA and haemoglobin at each step in the process, and residual components in the bone at the end of the process. The bone washing protocol is a combination of sonication, warm water washes, centrifugation and chemical (ethanol and hydrogen peroxide) treatments. We report that the bone washing protocol is capable of removing up to 99.85 % soluble protein, 99.95 % DNA and 100 % of haemoglobin from bone. The new bone washing protocol does not render any bone cytotoxic as shown by contact cytotoxicity assays. No microbiological cell growth was detected in any of the wash steps. This process is now in use for processed cancellous bone issued by NHSBT.

  5. A Sequence-Independent Strategy for Detection and Cloning of Circular DNA Virus Genomes by Using Multiply Primed Rolling-Circle Amplification

    PubMed Central

    Rector, Annabel; Tachezy, Ruth; Van Ranst, Marc

    2004-01-01

    The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with φ29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 × 104-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information. PMID:15113879

  6. Integrating prior knowledge in multiple testing under dependence with applications to detecting differential DNA methylation.

    PubMed

    Kuan, Pei Fen; Chiang, Derek Y

    2012-09-01

    DNA methylation has emerged as an important hallmark of epigenetics. Numerous platforms including tiling arrays and next generation sequencing, and experimental protocols are available for profiling DNA methylation. Similar to other tiling array data, DNA methylation data shares the characteristics of inherent correlation structure among nearby probes. However, unlike gene expression or protein DNA binding data, the varying CpG density which gives rise to CpG island, shore and shelf definition provides exogenous information in detecting differential methylation. This article aims to introduce a robust testing and probe ranking procedure based on a nonhomogeneous hidden Markov model that incorporates the above-mentioned features for detecting differential methylation. We revisit the seminal work of Sun and Cai (2009, Journal of the Royal Statistical Society: Series B (Statistical Methodology)71, 393-424) and propose modeling the nonnull using a nonparametric symmetric distribution in two-sided hypothesis testing. We show that this model improves probe ranking and is robust to model misspecification based on extensive simulation studies. We further illustrate that our proposed framework achieves good operating characteristics as compared to commonly used methods in real DNA methylation data that aims to detect differential methylation sites. © 2012, The International Biometric Society.

  7. A New Protocol to Detect Multiple Foodborne Pathogens with PCR Dipstick DNA Chromatography after a Six-Hour Enrichment Culture in a Broad-Range Food Pathogen Enrichment Broth

    PubMed Central

    Hayashi, Masahiro; Natori, Tatsuya; Kubota-Hayashi, Sayoko; Miyata, Machiko; Ohkusu, Kiyofumi; Kurazono, Hisao; Makino, Souichi; Ezaki, Takayuki

    2013-01-01

    A quick foodborne pathogen screening method after six-hour enrichment culture with a broad-range food pathogen enrichment broth is described. Pathogenic factors of Salmonella enterica, Shigella spp., enteroinvasive Escherichia coli, and enterohemorrhagic E. coli are amplified with a cocktail primer and rapid polymerase chain reaction (PCR), which finishes amplification in 30 min. The PCR amplicon was differentiated with a dipstick DNA chromatography assay in 5–10 min. Starting from a four- to six-hour enrichment culture, this assay was finished within 45 min. Detection sensitivity of this protocol was less than 2.5 CFU/25 g for S. enterica and 3.3 CFU/25 g for enterohemorrhagic E. coli in spiked ground meat experiments. PMID:24364031

  8. Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders

    PubMed Central

    Goldberg, Caren S.; Pilliod, David S.; Arkle, Robert S.; Waits, Lisette P.

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research. PMID:21818382

  9. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    PubMed

    Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  10. Fine-tuning for the tropics: application of eDNA technology for invasive fish detection in tropical freshwater ecosystems.

    PubMed

    Robson, Heather L A; Noble, Tansyn H; Saunders, Richard J; Robson, Simon K A; Burrows, Damien W; Jerry, Dean R

    2016-07-01

    Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large-pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2-3 min per 2-L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species. © 2016 John Wiley & Sons Ltd.

  11. Molecular detection of vertebrates in stream water: A demonstration using rocky mountain tailed frogs and Idaho giant salamanders

    USGS Publications Warehouse

    Goldberg, C.S.; Pilliod, D.S.; Arkle, R.S.; Waits, L.P.

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  12. A preamplification approach to GMO detection in processed foods.

    PubMed

    Del Gaudio, S; Cirillo, A; Di Bernardo, G; Galderisi, U; Cipollaro, M

    2010-03-01

    DNA is widely used as a target for GMO analysis because of its stability and high detectability. Real-time PCR is the method routinely used in most analytical laboratories due to its quantitative performance and great sensitivity. Accurate DNA detection and quantification is dependent on the specificity and sensitivity of the amplification protocol as well as on the quality and quantity of the DNA used in the PCR reaction. In order to enhance the sensitivity of real-time PCR and consequently expand the number of analyzable target genes, we applied a preamplification technique to processed foods where DNA can be present in low amounts and/or in degraded forms thereby affecting the reliability of qualitative and quantitative results. The preamplification procedure utilizes a pool of primers targeting genes of interest and is followed by real-time PCR reactions specific for each gene. An improvement of Ct values was found comparing preamplified vs. non-preamplified DNA. The strategy reported in the present study will be also applicable to other fields requiring quantitative DNA testing by real-time PCR.

  13. Coupling a universal DNA circuit with graphene sheets/polyaniline/AuNPs nanocomposites for the detection of BCR/ABL fusion gene.

    PubMed

    Chen, Xueping; Wang, Li; Sheng, Shangchun; Wang, Teng; Yang, Juan; Xie, Guoming; Feng, Wenli

    2015-08-19

    This article described a novel method by coupling a universal DNA circuit with graphene sheets/polyaniline/AuNPs nanocomposites (GS/PANI/AuNPs) for highly sensitive and specific detection of BCR/ABL fusion gene (bcr/abl) in chronic myeloid leukemia (CML). DNA circuit known as catalyzed hairpin assembly (CHA) is enzyme-free and can be simply operated to achieve exponential amplification, which has been widely employed in biosensing. However, application of CHA has been hindered by the need of specially redesigned sequences for each single-stranded DNA input. Herein, a transducer hairpin (HP) was designed to obtain a universal DNA circuit with favorable signal-to-background ratio. To further improve signal amplification, GS/PANI/AuNPs with excellent conductivity and enlarged effective area were introduced into this DNA circuit. Consequently, by combining the advantages of CHA and GS/PANI/AuNPs, bcr/abl could be detected in a linear range from 10 pM to 20 nM with a detection limit of 1.05 pM. Moreover, this protocol showed excellent specificity, good stability and was successfully applied for the detection of real sample, which demonstrated its great potential in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Molecular discrimination of Echinococcus granulosus and Echinococcus multilocularis by sequencing and a new PCR-RFLP method with the potential use for other Echinococcus species.

    PubMed

    Şakalar, Çağrı; Kuk, Salih; Erensoy, Ahmet; Dağli, Adile Ferda; Özercan, İbrahim Hanifi; Çetınkaya, Ülfet; Yazar, Süleyman

    2014-01-01

    To develop a novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol using a new genomic marker sequence and a novel set of restriction enzymes in order to detect and discriminate 2 Echinococcus species, E. granulosus and E. multilocularis, found in formalin-fixed paraffin-embedded (FFPE) human tissues. DNA was isolated from 11 FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis. A mitochondrial genomic marker region was amplified and sequenced using a novel primer pair and a new PCR-RFLP protocol was developed for the detection and discrimination of E. granulosus and E. multilocularis using a set of restriction enzymes including AccI, MboI, MboII, and TsoI. The selected marker region was amplified using DNA isolated from FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis and the discrimination of E. granulosus and E. multilocularis was accomplished by use of the novel PCR-RFLP method. In this PCR-RFLP protocol, use of any single restriction enzyme is enough for the discrimination of E. granulosus and E. multilocularis. The PCR-RFLP protocol can be potentially used for the discrimination of 5 other Echinococcus species: E. oligarthus, E. shiquicus, E. ortleppi, E. canadensis, and E. vogeli.

  15. Accurate and Phenol Free DNA Sexing of Day 30 Porcine Embryos by PCR.

    PubMed

    Blanes, Milena S; Tsoi, Stephen C M; Dyck, Michael K

    2016-02-14

    Research into prenatal programming in the pig has shown that the sex of the developing embryo or fetus can influence the developmental outcome. Therefore, the ability to determine an embryo's sex is necessary in many experiments particularly regarding early development. The present protocol demonstrates an inexpensive, rapid and non-toxic preparation of pig genomic DNA for use with PCR. Day 30 embryos must be humanely collected according to the guidelines established by Institutional Animal Policy and Welfare Committees for the present protocol. The preparation of the whole embryo for this PCR based sexing technique simply involves grinding the frozen embryo to a fine powder using a pre-chilled mortar and pestle. PCR-quality DNA is released from a small amount of embryo powder by applying a hot incubation in an alkaline lysis reagent. Next, the DNA solution is mixed with neutralization buffer and used directly for PCR. Two primer pairs are generated to detect specific sex determining region of the Y- chromosome (SRY) and ZFX region of the X- chromosome with high accuracy and specificity. The same protocol can be applied to other elongated embryos (Day 10 to Day 14) earlier than Day 30. Also, this protocol can be carried with 96-welled plates when screening a large number of embryos, making it feasible for automation and high-throughput sex typing.

  16. Accurate and Phenol Free DNA Sexing of Day 30 Porcine Embryos by PCR

    PubMed Central

    Dyck, Michael K.

    2016-01-01

    Research into prenatal programming in the pig has shown that the sex of the developing embryo or fetus can influence the developmental outcome. Therefore, the ability to determine an embryo's sex is necessary in many experiments particularly regarding early development. The present protocol demonstrates an inexpensive, rapid and non-toxic preparation of pig genomic DNA for use with PCR. Day 30 embryos must be humanely collected according to the guidelines established by Institutional Animal Policy and Welfare Committees for the present protocol. The preparation of the whole embryo for this PCR based sexing technique simply involves grinding the frozen embryo to a fine powder using a pre-chilled mortar and pestle. PCR-quality DNA is released from a small amount of embryo powder by applying a hot incubation in an alkaline lysis reagent. Next, the DNA solution is mixed with neutralization buffer and used directly for PCR. Two primer pairs are generated to detect specific sex determining region of the Y- chromosome (SRY) and ZFX region of the X- chromosome with high accuracy and specificity. The same protocol can be applied to other elongated embryos (Day 10 to Day 14) earlier than Day 30. Also, this protocol can be carried with 96-welled plates when screening a large number of embryos, making it feasible for automation and high-throughput sex typing. PMID:26966900

  17. Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy.

    PubMed

    Camborde, Laurent; Jauneau, Alain; Brière, Christian; Deslandes, Laurent; Dumas, Bernard; Gaulin, Elodie

    2017-09-01

    DNA-binding proteins (DNA-BPs) and RNA-binding proteins (RNA-BPs) have critical roles in living cells in all kingdoms of life. Various experimental approaches exist for the study of nucleic acid-protein interactions in vitro and in vivo, but the detection of such interactions at the subcellular level remains challenging. Here we describe how to detect nucleic acid-protein interactions in plant leaves by using a fluorescence resonance energy transfer (FRET) approach coupled to fluorescence lifetime imaging microscopy (FLIM). Proteins of interest (POI) are tagged with a GFP and transiently expressed in plant cells to serve as donor fluorophore. After sample fixation and cell wall permeabilization, leaves are treated with Sytox Orange, a nucleic acid dye that can function as a FRET acceptor. Upon close association of the GFP-tagged POI with Sytox-Orange-stained nucleic acids, a substantial decrease of the GFP lifetime due to FRET between the donor and the acceptor can be monitored. Treatment with RNase before FRET-FLIM measurements allows determination of whether the POI associates with DNA and/or RNA. A step-by-step protocol is provided for sample preparation, data acquisition and analysis. We describe how to calibrate the equipment and include a tutorial explaining the use of the FLIM software. To illustrate our approach, we provide experimental procedures to detect the interaction between plant DNA and two proteins (the AeCRN13 effector from the oomycete Aphanomyces euteiches and the AtWRKY22 defensive transcription factor from Arabidopsis). This protocol allows the detection of protein-nucleic acid interactions in plant cells and can be completed in <2 d.

  18. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    PubMed

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  19. A highly selective and sensitive "turn-on" fluorescence chemodosimeter for the detection of mustard gas.

    PubMed

    Raghavender Goud, D; Purohit, Ajay Kumar; Tak, Vijay; Dubey, Devendra Kumar; Kumar, Pravin; Pardasani, Deepak

    2014-10-21

    A new chemodosimetric protocol based on a tandem S-alkylation followed by desulfurisation reaction of rhodamine-thioamide with mustard gas is reported. The chemodosimeter is highly selective for potential DNA alkylating agents like sulfur mustard, over other simple alkyl halides with the limit of detection of 4.75 μM.

  20. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients

    PubMed Central

    Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.

    2015-01-01

    Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent “gold standard”. Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution), at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients. PMID:26562020

  1. Detection of Hepatitis B Virus DNA among Chronic and potential Occult HBV patients in resource-limited settings by Loop-Mediated Isothermal Amplification assay.

    PubMed

    Akram, Arifa; Islam, S M Rashedul; Munshi, Saif Ullah; Tabassum, Shahina

    2018-05-16

    Transmission of Hepatitis B Virus (HBV) usually occurs due to the transfusion of blood or blood products from chronic HBV (CHB) or occult HBV infected (OBI) patients. Besides serological tests e.g. HBsAg and anti-HBc (total), detection of HBV-DNA is necessary for the diagnosis of OBI patients. Different nucleic acid tests (NATs) including real-time-Polymerase Chain Reaction (qPCR) are used for the detect HBV-DNA. The NATs are expensive and require technical expertise which are barriers to introducing them in resource-limited settings. This study was undertaken to evaluate the use of Loop-Mediated Isothermal Amplification (LAMP) assay as an alternative to qPCR for the detection of HBV-DNA in CHB and potential OBI patients in resource-limited settings. Following the published protocols with some modifications, a LAMP assay was developed for detection of HBV-DNA by either using a heat block followed by detection in an agarose gel or using a qPCR thermocycler. The LAMP assay was applied to supernatant prepared from heat treated serum collected from CHB and potential OBI patients. HBV viral load in serum was measured by qPCR using a single step HBV-DNA quantification kit. Among 200 samples tested, qPCR was capable to detect HBV-DNA in 25.5% of cases, whereas LAMP assay detected HBV-DNA in 43.5% cases. The qPCR was able to detect 11 (9.16%) potential OBI cases, whereas LAMP assay identified HBV-DNA in 43 (35.83%) cases. In addition to tests for HBsAg and/or anti-HBc (total), detection of HBV-DNA by LAMP assay may aid in preventing post-transfusion HBV infection in resource-limited settings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Human DNA extraction from whole saliva that was fresh or stored for 3, 6 or 12 months using five different protocols

    PubMed Central

    GARBIERI, Thais Francini; BROZOSKI, Daniel Thomas; DIONÍSIO, Thiago José; SANTOS, Carlos Ferreira; NEVES, Lucimara Teixeira das

    2017-01-01

    Abstract Saliva when compared to blood collection has the following advantages: it requires no specialized personnel for collection, allows for remote collection by the patient, is painless, well accepted by participants, has decreased risks of disease transmission, does not clot, can be frozen before DNA extraction and possibly has a longer storage time. Objective and Material and Methods This study aimed to compare the quantity and quality of human DNA extracted from saliva that was fresh or frozen for three, six and twelve months using five different DNA extraction protocols: protocol 1 – Oragene™ commercial kit, protocol 2 – QIAamp DNA mini kit, protocol 3 – DNA extraction using ammonium acetate, protocol 4 – Instagene™ Matrix and protocol 5 – Instagene™ Matrix diluted 1:1 using proteinase K and 1% SDS. Briefly, DNA was analyzed using spectrophotometry, electrophoresis and PCR. Results Results indicated that time spent in storage typically decreased the DNA quantity with the exception of protocol 1. The purity of DNA was generally not affected by storage times for the commercial based protocols, while the purity of the DNA samples extracted by the noncommercial protocols typically decreased when the saliva was stored longer. Only protocol 1 consistently extracted unfragmented DNA samples. In general, DNA samples extracted through protocols 1, 2, 3 and 4, regardless of storage time, were amplified by human specific primers whereas protocol 5 produced almost no samples that were able to be amplified by human specific primers. Depending on the protocol used, it was possible to extract DNA in high quantities and of good quality using whole saliva, and furthermore, for the purposes of DNA extraction, saliva can be reliably stored for relatively long time periods. Conclusions In summary, a complicated picture emerges when taking into account the extracted DNA’s quantity, purity and quality; depending on a given researchers needs, one protocol’s particular strengths and costs might be the deciding factor for its employment. PMID:28403355

  3. Comparison of three methods of DNA extraction from peripheral blood mononuclear cells and lung fragments of equines.

    PubMed

    Santos, E M; Paula, J F R; Motta, P M C; Heinemann, M B; Leite, R C; Haddad, J P A; Del Puerto, H L; Reis, J K P

    2010-08-17

    We compared three different protocols for DNA extraction from horse peripheral blood mononuclear cells (PBMC) and lung fragments, determining average final DNA concentration, purity, percentage of PCR amplification using beta-actin, and cost. Thirty-four samples from PBMC, and 33 samples from lung fragments were submitted to DNA extraction by three different protocols. Protocol A consisted of a phenol-chloroform and isoamylic alcohol extraction, Protocol B used alkaline extraction with NaOH, and Protocol C used the DNAzol((R)) reagent kit. Protocol A was the best option for DNA extraction from lung fragments, producing high DNA concentrations, with high sensitivity in PCR amplification (100%), followed by Protocols C and B. On the other hand, for PBMC samples, Protocol B gave the highest sensitivity in PCR amplification (100%), followed by Protocols C and A. We conclude that Protocol A should be used for PCR diagnosis from lung fragment samples, while Protocol B should be used for PBMC.

  4. AN EVALUATION OF CRYPTOSPORIDIUM PARVUM GENOTYPING

    EPA Science Inventory

    We evaluated the specificity and sensitivity of 11 previously described species differentiation and genotyping PCR protocols for detection of Cryptosporidium parasites. Genomic DNA from three species of Crytosporidium parasites (genotype 1 and genotype 2 of C. parvum, C. muris, a...

  5. Validation and Application of a Real-time PCR Protocol for the Specific Detection and Quantification of Clavibacter michiganensis subsp. sepedonicus in Potato.

    PubMed

    Cho, Min Seok; Park, Duck Hwan; Namgung, Min; Ahn, Tae-Young; Park, Dong Suk

    2015-06-01

    Clavibacter michiganensis subsp. sepedonicus (Cms) multiplies very rapidly, passing through the vascular strands and into the stems and petioles of a diseased potato. Therefore, the rapid and specific detection of this pathogen is highly important for the effective control of the pathogen. Although several PCR assays have been developed for detection, they cannot afford specific detection of Cms. Therefore, in this study, a computational genome analysis was performed to compare the sequenced genomes of the C. michiganensis subspecies and to identify an appropriate gene for the development of a subspecies-specific PCR primer set (Cms89F/R). The specificity of the primer set based on the putative phage-related protein was evaluated using genomic DNA from seven isolates of Cms and 27 other reference strains. The Cms89F/R primer set was more specific and sensitive than the existing assays in detecting Cms in in vitro using Cms cells and its genomic DNA. This assay was also able to detect at least 1.47×10(2) copies/μl of cloned-amplified target DNA, 5 fg of DNA using genomic DNA or 10(-6) dilution point of 0.12 at OD600 units of cells per reaction using a calibrated cell suspension.

  6. Validation and Application of a Real-time PCR Protocol for the Specific Detection and Quantification of Clavibacter michiganensis subsp. sepedonicus in Potato

    PubMed Central

    Cho, Min Seok; Park, Duck Hwan; Namgung, Min; Ahn, Tae-Young; Park, Dong Suk

    2015-01-01

    Clavibacter michiganensis subsp. sepedonicus (Cms) multiplies very rapidly, passing through the vascular strands and into the stems and petioles of a diseased potato. Therefore, the rapid and specific detection of this pathogen is highly important for the effective control of the pathogen. Although several PCR assays have been developed for detection, they cannot afford specific detection of Cms. Therefore, in this study, a computational genome analysis was performed to compare the sequenced genomes of the C. michiganensis subspecies and to identify an appropriate gene for the development of a subspecies-specific PCR primer set (Cms89F/R). The specificity of the primer set based on the putative phage-related protein was evaluated using genomic DNA from seven isolates of Cms and 27 other reference strains. The Cms89F/R primer set was more specific and sensitive than the existing assays in detecting Cms in in vitro using Cms cells and its genomic DNA. This assay was also able to detect at least 1.47×102 copies/μl of cloned-amplified target DNA, 5 fg of DNA using genomic DNA or 10−6 dilution point of 0.12 at OD600 units of cells per reaction using a calibrated cell suspension. PMID:26060431

  7. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    PubMed Central

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209

  8. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    NASA Astrophysics Data System (ADS)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  9. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification.

    PubMed

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-05

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  10. A Modified Protocol with Improved Detection Rate for Mis-Matched Donor HLA from Low Quantities of DNA in Urine Samples from Kidney Graft Recipients.

    PubMed

    Kwok, Janette; Choi, Leo C W; Ho, Jenny C Y; Chan, Gavin S W; Mok, Maggie M Y; Lam, Man-Fei; Chak, Wai-Leung; Cheuk, Au; Chau, Ka-Foon; Tong, Matthew; Chan, Kwok-Wah; Chan, Tak-Mao

    2016-01-01

    Urine from kidney transplant recipient has proven to be a viable source for donor DNA. However, an optimized protocol would be required to determine mis-matched donor HLA specificities in view of the scarcity of DNA obtained in some cases. In this study, fresh early morning urine specimens were obtained from 155 kidney transplant recipients with known donor HLA phenotype. DNA was extracted and typing of HLA-A, B and DRB1 loci by polymerase chain reaction-specific sequence primers was performed using tailor-made condition according to the concentration of extracted DNA. HLA typing of DNA extracted from urine revealed both recipient and donor HLA phenotypes, allowing the deduction of the unknown donor HLA and hence the degree of HLA mis-match. By adopting the modified procedures, mis-matched donor HLA phenotypes were successfully deduced in all of 35 tested urine samples at DNA quantities spanning the range of 620-24,000 ng. This urine-based method offers a promising and reliable non-invasive means for the identification of mis-matched donor HLA antigens in kidney transplant recipients with unknown donor HLA phenotype or otherwise inadequate donor information.

  11. Detection of Vibrio vulnificus biotypes 1 and 2 in eels and oysters by PCR amplification.

    PubMed Central

    Coleman, S S; Melanson, D M; Biosca, E G; Oliver, J D

    1996-01-01

    DNA extraction procedures and PCR conditions to detect Vibrio vulnificus cells naturally occurring in oysters were developed. In addition, PCR amplification of V. vulnificus from oysters seeded with biotype 1 cells was demonstrated. By the methods described, V. vulnificus cells on a medium (colistin-polymyxin B-cellobiose agar) selective for this pathogen were detectable in oysters harvested in January and March, containing no culturable cells (< 67 CFU/g), as well as in oysters harvested in May and June, containing culturable cells. It was possible to complete DNA extraction, PCR, and gel electrophoresis within 10 h by using the protocol described for oysters. V. vulnificus biotype 2 cells were also detected in eel tissues that had been infected with this strain and subsequently preserved in formalin. The protocol used for detection of V. vulnificus cells in eels required less than 5 h to complete. Optimum MgCl2 concentrations for the PCR of V. vulnificus from oysters and eels were different, although the same primer pair was used for both. This is the first report on the detection of cells of V. vulnificus naturally present in shellfish and represents a potentially powerful method for monitoring this important human and eel pathogen. PMID:8919800

  12. Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics.

    PubMed

    van Ginkel, Joost H; van den Broek, Daan A; van Kuik, Joyce; Linders, Dorothé; de Weger, Roel; Willems, Stefan M; Huibers, Manon M H

    2017-10-01

    In current molecular cancer diagnostics, using blood samples of cancer patients for the detection of genetic alterations in plasma (cell-free) circulating tumor DNA (ctDNA) is an emerging practice. Since ctDNA levels in blood are low, highly sensitive Droplet Digital PCR (ddPCR) can be used for detecting rare mutational targets. In order to perform ddPCR on blood samples, a standardized procedure for processing and analyzing blood samples is necessary to facilitate implementation into clinical practice. Therefore, we assessed the technical sample workup procedure for ddPCR on blood plasma samples. Blood samples from healthy individuals, as well as lung cancer patients were analyzed. We compared different methods and protocols for sample collection, storage, centrifugation, isolation, and quantification. Cell-free DNA (cfDNA) concentrations of several wild-type targets and BRAF and EGFR-mutant ctDNA concentrations quantified by ddPCR were primary outcome measurements. Highest cfDNA concentrations were measured in blood collected in serum tubes. No significant differences in cfDNA concentrations were detected between various time points of up to 24 h until centrifugation. Highest cfDNA concentrations were detected after DNA isolation with the Quick cfDNA Serum & Plasma Kit, while plasma isolation using the QIAamp Circulating Nucleic Acid Kit yielded the most consistent results. DdPCR results on cfDNA are highly dependent on multiple factors during preanalytical sample workup, which need to be addressed during the development of this diagnostic tool for cancer diagnostics in the future. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. Comparison of two DNA extraction protocols from leave samples of Cotinus coggygria, Citrus sinensis and Genus juglans.

    PubMed

    Fallah, F; Minaei Chenar, H; Amiri, H; Omodipour, S; Shirbande Ghods, F; Kahrizi, D; Sohrabi, M; Ghorbani, T; Kazemi, E

    2017-02-28

    High quality DNA is essential for molecular research. Secondary metabolites can affect the quantity and quality DNA. In current research two DNA isolation methods including CTAB and Delaporta (protocols 1 & 2 respectively) were applied in three leave samples from Cotinus coggygria, Citrus sinensis and Genus juglans that their leaves are rich of secondary metabolites. We successfully isolated DNA from C. coggygria, C. sinensis and Genus Juglans using the two protocols described above. Good quality DNA was isolated from C. coggygria, C. sinensis and Genus Juglans using protocol 1, while protocol 2 failed to produce usable DNA from these sources. The highest amount of DNA (1.3-1.6) was obtained from them using protocol 1. As we discovered, procedure 1 may work better for plants with secondary metabolites.

  14. Separation of endogenous viral elements from infectious Penaeus stylirostris densovirus using recombinase polymerase amplification.

    PubMed

    Jaroenram, Wansadaj; Owens, Leigh

    2014-01-01

    Non-infectious Penaeus stylirostris densovirus (PstDV)-related sequences in the shrimp genome cause false positive results with current PCR protocols. Here, we examined and mapped PstDV insertion profile in the genome of Australian Penaeus monodon. A DNA sequence which is likely to represent infectious PstDV was also identified and used as a target sequence for recombinase polymerase amplification (RPA)-based approach, developed for specifically detecting PstDV. The RPA protocol at 37 °C for 30 min showed no cross-reaction with other shrimp viruses, and was 10 times more sensitive than the 309F/R PCR protocol currently recommended by the World Organization for Animal Health (OIE) for PstDV diagnosis. These features, together with the simplicity of the protocol, requiring only a heating block for the reaction, offer opportunities for rapid and efficient detection of PstDV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Single-strand conformation polymorphism analysis of ribosomal DNA for detection of Phytophthora ramorum directly from plant tissues

    Treesearch

    Ping Kong; Patricia A. Richardson; Chuanxue Hong; Thomas L. Kubisiak

    2006-01-01

    At the first Sudden Oak Death Science Symposium, we reported on the use of a single strand conformation polymorphism (SSCP) analysis for rapid identification of Phytophthora ramorum in culture. We have since assessed and improved the fingerprinting technique for detecting this pathogen directly from plant tissues. The improved SSCP protocol uses a...

  16. Biochip-Based Detection of KRAS Mutation in Non-Small Cell Lung Cancer

    PubMed Central

    Kriegshäuser, Gernot; Fabjani, Gerhild; Ziegler, Barbara; Zöchbauer-Müller, Sabine; End, Adelheid; Zeillinger, Robert

    2011-01-01

    This study is aimed at evaluating the potential of a biochip assay to sensitively detect KRAS mutation in DNA from non-small cell lung cancer (NSCLC) tissue samples. The assay covers 10 mutations in codons 12 and 13 of the KRAS gene, and is based on mutant-enriched PCR followed by reverse-hybridization of biotinylated amplification products to an array of sequence-specific probes immobilized on the tip of a rectangular plastic stick (biochip). Biochip hybridization identified 17 (21%) samples to carry a KRAS mutation of which 16 (33%) were adenocarcinomas and 1 (3%) was a squamous cell carcinoma. All mutations were confirmed by DNA sequencing. Using 10 ng of starting DNA, the biochip assay demonstrated a detection limit of 1% mutant sequence in a background of wild-type DNA. Our results suggest that the biochip assay is a sensitive alternative to protocols currently in use for KRAS mutation testing on limited quantity samples. PMID:22272089

  17. Development and accuracy of quantitative real-time polymerase chain reaction assays for detection and quantification of enterotoxigenic Escherichia coli (ETEC) heat labile and heat stable toxin genes in travelers' diarrhea samples.

    PubMed

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples.

  18. Development of a Highly Sensitive Nested-PCR Procedure Using a Single Closed Tube for Detection of Erwinia amylovora in Asymptomatic Plant Material

    PubMed Central

    Llop, Pablo; Bonaterra, Anna; Peñalver, Javier; López, María M.

    2000-01-01

    A novel method, which involves a nested PCR in a single closed tube, was developed for the sensitive detection of Erwinia amylovora in plant material. The external and internal primer pairs used had different annealing temperatures and directed the amplification of a specific DNA fragment from plasmid pEA29. The procedure involved two consecutive PCRs, the first of which was performed at a higher annealing temperature that allowed amplification only by the external primer pair. Using pure cultures of E. amylovora, the sensitivity of the nested PCR in one tube was similar to that of a standard nested PCR in two tubes. The specificity and sensitivity were greater than those of standard PCR procedures that used a single primer pair. The presence of inhibitors in plant material, very common in E. amylovora hosts, is overcome with this system in combination with a simple DNA extraction protocol because it eliminates many of the inhibitory compounds. In addition, it needs a very small sample volume (1 μl of DNA extracted). With 83 samples of naturally infected material, this method achieved better results than any other PCR technique: standard PCR detected 55% of positive samples, two-tube nested PCR detected 71% of positive samples, and nested PCR in a single closed tube detected 78% of positive samples. When analyzing asymptomatic plant material, the number of positive samples detected by the developed nested PCR was also the highest, compared with the PCR protocols indicated previously (17, 20, and 25% of 251 samples analyzed, respectively). This method is proposed for the detection of endophytic and epiphytic populations of E. amylovora in epidemiological studies and for routine use in quarantine surveys, due to its high sensitivity, specificity, speed, and simplicity. PMID:10788384

  19. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl

    USGS Publications Warehouse

    Smith, Matthew M.; Schmutz, Joel A.; Apelgren, Chloe; Ramey, Andy M.

    2015-01-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n = 105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R2 = 0.694, P = 0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species.

  20. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching.

    PubMed

    Zhang, Yanan; Ning, Xinping; Mao, Guobin; Ji, Xinghu; He, Zhike

    2018-05-01

    We have developed a new enzyme-free method for target sequence DNA detection based on the dynamic quenching of fluorescent silicon nanodots (SiNDs) toward Cy5-tagged DNA probe. Fascinatingly, the water-soluble SiNDs can quench the fluorescence of cyanine (Cy5) in Cy5-tagged DNA probe in homogeneous solution, and the fluorescence of Cy5-tagged DNA probe can be restored in the presence of target sequence DNA (the synthetic target miRNA-27a). Based on this phenomenon, a SiND-featured fluorescent sensor has been constructed for "turn-on" detection of the synthetic target miRNA-27a for the first time. This newly developed approach possesses the merits of low cost, simple design, and convenient operation since no enzymatic reaction, toxic reagents, or separation procedures are involved. The established method achieves a detection limit of 0.16 nM, and the relative standard deviation of this method is 9% (1 nM, n = 5). The linear range is 0.5-20 nM, and the recoveries in spiked human fluids are in the range of 90-122%. This protocol provides a new tactic in the development of the nonenzymic miRNA biosensors and opens a promising avenue for early diagnosis of miRNA-associated disease. Graphical abstract The SiND-based fluorescent sensor for detection of S-miR-27a.

  1. Freeze-dried stallion spermatozoa: evaluation of two chelating agents and comparative analysis of three sperm DNA damage assays.

    PubMed

    Olaciregui, M; Luño, V; Martí, J I; Aramayona, J; Gil, L

    2016-11-01

    During the freeze-drying procedure, sperm DNA might become damaged by both freezing and drying stresses. Sperm DNA status can be detected using well-established assays; however, most techniques are expensive and involve elaborate protocols and equipment. Indirect assessments can provide alternative strategies. The objective of this study was to compare a simple test of DNA status using Diff-Quik (DQ) with two established procedures: acridine orange test (AOT) and sperm chromatin dispersion (SCD) on freeze-dried (FD) stallion spermatozoa. Ejaculated spermatozoa from three stallions were freeze-dried in basic medium supplemented with two different chelating agents: EGTA or EDTA. After rehydration, the spermatozoa were subjected to DNA damage detection using a SCDt, AOT and DQ stain simultaneously. The results showed that the DNA damage levels in the EGTA group were significantly lower than those in the EDTA group. AOT detected a significantly higher proportion of spermatozoa with fragmented DNA than DQ and SCD. The results of the SCD test and DQ stain exhibited a significant positive correlation for DNA fragmentation (r = 0.528), whereas a negative correlation was observed between SCD, DQ and AOT (r = -0.134 and r = -0.332 respectively). The present study shows that both the SCD test and DQ assay are effective methods for detecting FD stallion sperm DNA fragmentation, whereas using of AOT is questionable. © 2016 Blackwell Verlag GmbH.

  2. Development of molecular techniques for detection of lymphocystis disease virus in different marine fish species.

    PubMed

    Cano, I; Ferro, P; Alonso, M C; Bergmann, S M; Römer-Oberdörfer, A; Garcia-Rosado, E; Castro, D; Borrego, J J

    2007-01-01

    The development and evaluation of a protocol based on polymerase chain reaction (PCR) and nucleic acid hybridization techniques for the specific detection of lymphocystis disease virus (LCDV) in several marine fish species. The pair of primers for PCR, OBL3 and OBL4, was designed based on published nucleotide sequence (LCDV-1) and amplifies a fragment within the major capsid protein. The sensitivity was evaluated using DNA from purified viral particles, as well as from cells inoculated with several viral concentrations. The PCR combined with slot blot was the most sensitive methodology, detecting 2.5 ng of viral DNA. Using this methodology LCDV was detected at 5 days postinoculation from SAF-1 cells initially inoculated with 10(-5) TCID(50) ml(-1). The combination of PCR with membrane hybridization has also been proved to be adequate to detect LCDV from apparently healthy carriers by means of caudal fin sample analysis. This asymptomatic infection was also demonstrated by classical virological methods (cell culture and immunoblot). The protocol described in this study allows the specific detection of LCDV, both in cell cultures and in fin homogenates from asymptomatic fish. The detection of asymptomatic carriers by a rapid molecular method using caudal fin sampling, which does not imply animal killing, could be an important tool to control epizootics caused by LCDV, as fish could be analysed before their introduction and/or mobilization in farm facilities.

  3. Optimization, validation, and application of a real-time PCR protocol for quantification of viable bacterial cells in municipal sewage sludge and biosolids using reporter genes and Escherichia coli.

    PubMed

    van Frankenhuyzen, Jessica K; Trevors, Jack T; Flemming, Cecily A; Lee, Hung; Habash, Marc B

    2013-11-01

    Biosolids result from treatment of sewage sludge to meet jurisdictional standards, including pathogen reduction. Once government regulations are met, materials can be applied to agricultural lands. Culture-based methods are used to enumerate pathogen indicator microorganisms but may underestimate cell densities, which is partly due to bacteria existing in a viable but non-culturable physiological state. Viable indicators can also be quantified by realtime polymerase chain reaction (qPCR) used with propidium monoazide (PMA), a dye that inhibits amplification of DNA found extracellularly or in dead cells. The objectives of this study were to test an optimized PMA-qPCR method for viable pathogen detection in wastewater solids and to validate it by comparing results to data obtained by conventional plating. Reporter genes from genetically marked Pseudomonas sp. UG14Lr and Agrobacterium tumefaciens 542 cells were spiked into samples of primary sludge, and anaerobically digested and Lystek-treated biosolids as cell-free DNA, dead cells, viable cells, and mixtures of live and dead cells, followed by DNA extraction with and without PMA, and qPCR. The protocol was then used for Escherichia coli quantification in the three matrices, and results compared to plate counts. PMA-qPCR selectively detected viable cells, while inhibiting signals from cell-free DNA and DNA found in membrane-compromised cells. PMA-qPCR detected 0.5-1 log unit more viable E. coli cells in both primary solids and dewatered biosolids than plate counts. No viable E. coli was found in Lystek-treated biosolids. These data suggest PMA-qPCR may more accurately estimate pathogen cell numbers than traditional culture methods.

  4. Enhanced solid-phase recombinase polymerase amplification and electrochemical detection.

    PubMed

    Del Río, Jonathan Sabaté; Lobato, Ivan Magriñà; Mayboroda, Olena; Katakis, Ioanis; O'Sullivan, Ciara K

    2017-05-01

    Recombinase polymerase amplification (RPA) is an elegant method for the rapid, isothermal amplification of nucleic acids. Here, we elucidate the optimal surface chemistry for rapid and efficient solid-phase RPA, which was fine-tuned in order to obtain a maximum signal-to-noise ratio, defining the optimal DNA probe density, probe-to-lateral spacer ratio (1:0, 1:1, 1:10 and 1:100) and length of a vertical spacer of the probe as well as investigating the effect of different types of lateral spacers. The use of different labelling strategies was also examined in order to reduce the number of steps required for the analysis, using biotin or horseradish peroxidase-labelled reverse primers. Optimisation of the amplification temperature used and the use of surface blocking agents were also pursued. The combination of these changes facilitated a significantly more rapid amplification and detection protocol, with a lowered limit of detection (LOD) of 1 · 10 -15 M. The optimised protocol was applied to the detection of Francisella tularensis in real samples from hares and a clear correlation with PCR and qPCR results observed and the solid-phase RPA demonstrated to be capable of detecting 500 fM target DNA in real samples. Graphical abstract Relative size of thiolated lateral spacers tested versus the primer and the uvsx recombinase protein.

  5. DNA detection rates of host mtDNA in bloodmeals of human body lice (Pediculus humanus L., 1758).

    PubMed

    Davey, J S; Casey, C S; Burgess, I F; Cable, J

    2007-09-01

    Using polymerase chain reaction, we investigated the extent to which digestion affects the potential to amplify 12S mitochondrial DNA sequences from bloodmeals of individual human body lice (Pediculus humanus L.) (Phthiraptera, Pediculidae) up to 72 h after feeding on a surrogate rabbit host (Oryctolagus cuniculus L.) (Lagomorpha, Leporidae). Two rabbit-specific primer pairs were developed to produce amplicons of 199 bp and 283 bp, the smaller of which was found to have a significantly slower decay rate. Median detection periods (T50) for the amplicons were 20 h and 12 h, with maximum detection periods of 24 h and 12 h, respectively, suggesting an inversely proportional linear relationship between amplicon size and digestion time. The data provide an indication of timeframes essential for the design of forensic sampling protocols and a basis for investigating the feeding frequency of human lice.

  6. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    PubMed

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  7. Development of PCR protocols for specific identification of Clostridium spiroforme and detection of sas and sbs genes.

    PubMed

    Drigo, Ilenia; Bacchin, Cosetta; Cocchi, Monia; Bano, Luca; Agnoletti, Fabrizio

    2008-10-15

    Rabbit diarrhoea caused by toxigenic Clostridium spiroforme is responsible for significant losses in commercial rabbitries but the accurate identification of this micro-organism is difficult due to the absence of both a commercial biochemical panel and biomolecular methods. The aim of this study was therefore to develop PCR protocols for specific detection of C. spiroforme and its binary toxin encoding genes. The C. spiroforme specie-specific primers were designed based on its 16S rDNA published sequences and the specificity of these primers was tested with DNA extracted from closely related Clostridium species. The sa/bs_F and sa/bs _R C. spiroforme binary toxin specific primers were designed to be complementary, respectively, to a sequence of 21 bases on the 3' and of sas gene and on the 5' of the sbs gene. The detection limits of in house developed PCR protocols were 25CFU/ml of bacterial suspension and 1.38x10(4)CFU/g of caecal content for specie-specific primers and 80CFU/ml of bacterial suspension and 2.8x10(4)CFU/g of caecal content in case of sa/bs primers. These results indicated that the described PCR assays enable specific identification of C. spiroforme and its binary toxin genes and can therefore be considered a rapid, reliable tool for the diagnosis of C. spiroforme-related enterotoxaemia.

  8. Two different PCR approaches for universal diagnosis of brown rot and identification of Monilinia spp. in stone fruit trees.

    PubMed

    Gell, I; Cubero, J; Melgarejo, P

    2007-12-01

    To design a protocol for the universal diagnosis of brown rot by polymerase chain reaction (PCR) in plant material and subsequently Monilinia spp. identification. Primers for discrimination of Monilinia spp. from other fungal genera by PCR were designed following a ribosomal DNA analysis. Discrimination among species of Monilinia was subsequently achieved by developing primers using SCAR (Sequence Characterised Amplified Region) markers obtained after a random amplified polymorphic DNA study. In addition, an internal control (IC) based on the utilization of a mimic plasmid was designed to be used in the diagnostic protocol of brown rot to recognize false negatives due to the inhibition of PCR. The four sets of primers designed allowed detection and discrimination of all Monilinia spp. causing brown rot in fruit trees. Addition of an IC in each PCR reaction performed increased the reliability of the diagnostic protocol. The detection protocol presented here, that combined a set of universal primers and the inclusion of the plasmid pGMON as an IC for diagnosis of all Monilinia spp., and three sets of primers to discriminate the most important species of Monilinia, could be an useful and valuable tool for epidemiological studies. The method developed could be used in programmes to avoid the spread and introduction of this serious disease in new areas.

  9. LTR real-time PCR for HIV-1 DNA quantitation in blood cells for early diagnosis in infants born to seropositive mothers treated in HAART area (ANRS CO 01).

    PubMed

    Avettand-Fènoël, Véronique; Chaix, Marie-Laure; Blanche, Stéphane; Burgard, Marianne; Floch, Corinne; Toure, Kadidia; Allemon, Marie-Christine; Warszawski, Josiane; Rouzioux, Christine

    2009-02-01

    HIV-1 diagnosis in babies born to seropositive mothers is one of the challenges of HIV epidemics in children. A simple, rapid protocol was developed for quantifying HIV-1 DNA in whole blood samples and was used in the ANRS French pediatric cohort in conditions of prevention of mother-to-child transmission. A quantitative HIV-1 DNA protocol (LTR real-time PCR) requiring small blood volumes was developed. First, analytical reproducibility was evaluated on 172 samples. Results obtained on blood cell pellets and Ficoll-Hypaque separated mononuclear cells were compared in 48 adult HIV-1 samples. Second, the protocol was applied to HIV-1 diagnosis in infants in parallel with plasma HIV-RNA quantitation. This prospective study was performed in children born between May 2005 and April 2007 included in the ANRS cohort. The assay showed good reproducibility. The 95% detection cut-off value was 6 copies/PCR, that is, 40 copies/10(6) leukocytes. HIV-DNA levels in whole blood were highly correlated with those obtained after Ficoll-Hypaque separation (r = 0.900, P < 0.0001). A total of 3,002 specimens from 1,135 infants were tested. The specificity of HIV-DNA and HIV-RNA assays was 100%. HIV-1 infection was diagnosed in nine infants before age 60 days. HIV-DNA levels were low, underlining the need for sensitive assays when highly active antiretroviral therapy (HAART) has been given. The performances of this HIV-DNA assay showed that it is adapted to early diagnosis in children. The results were equivalent to those of HIV-RNA assay. HIV-DNA may be used even in masked primary infection in newborns whose mothers have received HAART. (c) 2008 Wiley-Liss, Inc.

  10. Accurate, simple, and inexpensive assays to diagnose F8 gene inversion mutations in hemophilia A patients and carriers.

    PubMed

    Dutta, Debargh; Gunasekera, Devi; Ragni, Margaret V; Pratt, Kathleen P

    2016-12-27

    The most frequent mutations resulting in hemophilia A are an intron 22 or intron 1 gene inversion, which together cause ∼50% of severe hemophilia A cases. We report a simple and accurate RNA-based assay to detect these mutations in patients and heterozygous carriers. The assays do not require specialized equipment or expensive reagents; therefore, they may provide useful and economic protocols that could be standardized for central laboratory testing. RNA is purified from a blood sample, and reverse transcription nested polymerase chain reaction (RT-NPCR) reactions amplify DNA fragments with the F8 sequence spanning the exon 22 to 23 splice site (intron 22 inversion test) or the exon 1 to 2 splice site (intron 1 inversion test). These sequences will be amplified only from F8 RNA without an intron 22 or intron 1 inversion mutation, respectively. Additional RT-NPCR reactions are then carried out to amplify the inverted sequences extending from F8 exon 19 to the first in-frame stop codon within intron 22 or a chimeric transcript containing F8 exon 1 and the VBP1 gene. These latter 2 products are produced only by individuals with an intron 22 or intron 1 inversion mutation, respectively. The intron 22 inversion mutations may be further classified (eg, as type 1 or type 2, reflecting the specific homologous recombination sites) by the standard DNA-based "inverse-shifting" PCR assay if desired. Efficient Bcl I and T4 DNA ligase enzymes that cleave and ligate DNA in minutes were used, which is a substantial improvement over previous protocols that required overnight incubations. These protocols can accurately detect F8 inversion mutations via same-day testing of patient samples.

  11. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp.

    PubMed

    Williams, Maggie R; Stedtfeld, Robert D; Engle, Cathrine; Salach, Paul; Fakher, Umama; Stedtfeld, Tiffany; Dreelin, Erin; Stevenson, R Jan; Latimore, Jo; Hashsham, Syed A

    2017-01-01

    Loop-mediated isothermal amplification (LAMP) of aquatic invasive species environmental DNA (AIS eDNA) was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA) basin. The method was validated for two uses including i) direct amplification of eDNA using a hand filtration system and ii) confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels) per L for Dreissena sp.) or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i) filtered concentrate for direct amplification validation and ii) 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification), direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a portable device (Gene-Z) showed the method could be used in the field to obtain results within one hr (from sample to result). Overall, the direct amplification has the potential to simplify the eDNA-based monitoring of multiple aquatic invasive species. Additional studies are warranted to establish quantitative correlation between eDNA copy number, veliger, biomass or organismal abundance in the field.

  12. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp.

    PubMed Central

    Stedtfeld, Robert D.; Engle, Cathrine; Salach, Paul; Fakher, Umama; Stedtfeld, Tiffany; Dreelin, Erin; Stevenson, R. Jan; Latimore, Jo; Hashsham, Syed A.

    2017-01-01

    Loop-mediated isothermal amplification (LAMP) of aquatic invasive species environmental DNA (AIS eDNA) was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA) basin. The method was validated for two uses including i) direct amplification of eDNA using a hand filtration system and ii) confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels) per L for Dreissena sp.) or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i) filtered concentrate for direct amplification validation and ii) 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification), direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a portable device (Gene-Z) showed the method could be used in the field to obtain results within one hr (from sample to result). Overall, the direct amplification has the potential to simplify the eDNA-based monitoring of multiple aquatic invasive species. Additional studies are warranted to establish quantitative correlation between eDNA copy number, veliger, biomass or organismal abundance in the field. PMID:29036210

  13. Development of an in situ hybridization assay for the detection of ostreid herpesvirus type 1 mRNAs in the Pacific oyster, Crassostrea gigas.

    PubMed

    Corbeil, Serge; Faury, Nicole; Segarra, Amélie; Renault, Tristan

    2015-01-01

    An in situ hybridization protocol for detecting mRNAs of ostreid herpesvirus type 1 (OsHV-1) which infects Pacific oysters, Crassostrea gigas, was developed. Three RNA probes were synthesized by cloning three partial OsHV-1 genes into plasmids using three specific primer pairs, and performing a transcription in the presence of digoxigenin dUTP. The RNA probes were able to detect the virus mRNAs in paraffin sections of experimentally infected oysters 26 h post-injection. The in situ hybridization showed that the OsHV-1 mRNAs were mainly present in connective tissues in gills, mantle, adductor muscle, digestive gland and gonads. DNA detection by in situ hybridization using a DNA probe and viral DNA quantitation by real-time PCR were also performed and results were compared with those obtained using RNA probes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Molecular Detection and Identification of Brettanomyces/Dekkera bruxellensis and Brettanomyces/Dekkera anomalus in Spoiled Wines

    PubMed Central

    Cocolin, Luca; Rantsiou, Kalliopi; Iacumin, Lucilla; Zironi, Roberto; Comi, Giuseppe

    2004-01-01

    In this paper we describe the development of a PCR protocol to specifically detect Brettanomyces bruxellensis and B. anomalus. Primers DB90F and DB394R, targeting the D1-D2 loop of the 26S rRNA gene, were able to produce amplicons only when the DNA from these two species were used. No amplification product was obtained when DNA from other Brettanomyces spp. or wine yeasts were used as the templates. The 305-bp product was subjected to restriction enzyme analysis with DdeI to differentiate between B. bruxellensis and B. anomalus, and each species could be identified on the basis of the different restriction profiles. After optimization of the method by using strains from international collections, wine isolates were tested with the method proposed. Total agreement between traditional identification and molecular identification was observed. The protocol developed was also used for direct detection of B. bruxellensis and B. anomalus in wines suspected to be spoiled by Brettanomyces spp. Application of culture-based and molecular methods led us to the conclusion that 8 of 12 samples were spoiled by B. bruxellensis. Results based on the application of molecular methods suggested that two of the eight positive samples had been infected more recently, since specific signals were obtained at both the DNA and RNA levels. PMID:15006752

  15. Molecular detection and identification of Brettanomyces/Dekkera bruxellensis and Brettanomyces/Dekkera anomalus in spoiled wines.

    PubMed

    Cocolin, Luca; Rantsiou, Kalliopi; Iacumin, Lucilla; Zironi, Roberto; Comi, Giuseppe

    2004-03-01

    In this paper we describe the development of a PCR protocol to specifically detect Brettanomyces bruxellensis and B. anomalus. Primers DB90F and DB394R, targeting the D1-D2 loop of the 26S rRNA gene, were able to produce amplicons only when the DNA from these two species were used. No amplification product was obtained when DNA from other Brettanomyces spp. or wine yeasts were used as the templates. The 305-bp product was subjected to restriction enzyme analysis with DdeI to differentiate between B. bruxellensis and B. anomalus, and each species could be identified on the basis of the different restriction profiles. After optimization of the method by using strains from international collections, wine isolates were tested with the method proposed. Total agreement between traditional identification and molecular identification was observed. The protocol developed was also used for direct detection of B. bruxellensis and B. anomalus in wines suspected to be spoiled by Brettanomyces spp. Application of culture-based and molecular methods led us to the conclusion that 8 of 12 samples were spoiled by B. bruxellensis. Results based on the application of molecular methods suggested that two of the eight positive samples had been infected more recently, since specific signals were obtained at both the DNA and RNA levels.

  16. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise.

    PubMed

    Soliman, Taha; Yang, Sung-Yin; Yamazaki, Tomoko; Jenke-Kodama, Holger

    2017-01-01

    Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil ® DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin ® Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P  < 0.006). In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.

  17. Evaluation of pre-analytical conditions and comparison of the performance of several digital PCR assays for the detection of major EGFR mutations in circulating DNA from non-small cell lung cancers: the CIRCAN_0 study

    PubMed Central

    Garcia, Jessica; Dusserre, Eric; Cheynet, Valérie; Bringuier, Pierre Paul; Brengle-Pesce, Karen; Wozny, Anne-Sophie; Rodriguez-Lafrasse, Claire; Freyer, Gilles; Brevet, Marie; Payen, Léa; Couraud, Sébastien

    2017-01-01

    Non invasive somatic detection assays are suitable for repetitive tumor characterization or for detecting the appearance of somatic resistance during lung cancer. Molecular diagnosis based on circulating free DNA (cfDNA) offers the opportunity to track the genomic evolution of the tumor, and was chosen to assess the molecular profile of several EGFR alterations, including deletions in exon 19 (delEX19), the L858R substitution on exon 21 and the EGFR resistance mutation T790M on exon 20. Our study aimed at determining optimal pre-analytical conditions and EGFR mutation detection assays for analyzing cfDNA using the picoliter-droplet digital polymerase chain reaction (ddPCR) assay. Within the framework of the CIRCAN project set-up at the Lyon University Hospital, plasma samples were collected to establish a pre-analytical and analytical workflow of cfDNA analysis. We evaluated all of the steps from blood sampling to mutation detection output, including shipping conditions (4H versus 24H in EDTA tubes), the reproducibility of cfDNA extraction, the specificity/sensitivity of ddPCR (using external controls), and the comparison of different PCR assays for the detection of the three most important EGFR hotspots, which highlighted the increased sensitivity of our in-house primers/probes. Hence, we have described a new protocol facilitating the molecular detection of somatic mutations in cancer patients from liquid biopsies, improving their diagnosis and introducing a less traumatic monitoring system during tumor progression. PMID:29152135

  18. Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit

    PubMed Central

    Yang, Xue; Hameed, Uzma; Zhang, Ai-Fang; Zang, Hao-Yu; Gu, Chun-Yan; Chen, Yu; Xu, Yi-Liu

    2017-01-01

    Pilidiella granati, a causal agent of twig blight and crown rot of pomegranate, is an emerging threat that may cause severe risk to the pomegranate industry in the future. Development of a rapid assay for the timely and accurate detection of P. granati will be helpful in the active surveillance and management of the disease caused by this pathogen. In this study, a nested PCR method was established for the detection of P. granati. Comparative analysis of genetic diversity within 5.8S rDNA internal transcribed spacer (ITS) sequences of P. granati and 21 other selected fungal species was performed to design species-specific primers (S1 and S2). This primer pair successfully amplified a 450 bp product exclusively from the genomic DNA of P. granati. The developed method can detect 10 pg genomic DNA of the pathogen in about 6 h. This technique was successfully applied to detect the natural infection of P. granati in the pomegranate fruit. The designed protocol is rapid and precise with a high degree of sensitivity. PMID:28106107

  19. Application of FTA sample collection and DNA purification system on the determination of CTG trinucleotide repeat size by PCR-based Southern blotting.

    PubMed

    Hsiao, K M; Lin, H M; Pan, H; Li, T C; Chen, S S; Jou, S B; Chiu, Y L; Wu, M F; Lin, C C; Li, S Y

    1999-01-01

    Myotonic dystrophy (DM) is caused by a CTG trinucleotide expansion mutation at exon 15 of the myotonic dystrophy protein kinase gene. The clinical severity of this disease correlates with the length of the CTG trinucleotide repeats. Determination of the CTG repeat length has been primarily relied on by Southern blot analysis of restriction enzyme-digested genomic DNA. The development of PCR-based Southern blotting methodology provides a much more sensitive and simpler protocol for DM diagnosis. However, the quality of the template and the high (G+C) ratio of the amplified region hamper the use of PCR on the diagnosis of DM. A modified PCR protocol to amplify different lengths of CTG repeat region using various concentrations of 7deaza-dGTP has been reported (1). Here we describe a procedure including sample collection, DNA purification, and PCR analysis of CTG repeat length without using 7-deaza-dGTP. This protocol is very sensitive and convenient because only a small number of nucleate cells are needed for detection of CTG expansion. Therefore, it could be very useful in clinical and prenatal diagnosis as well as in prevalence study of DM.

  20. A direct detection of Escherichia coli genomic DNA using gold nanoprobes

    PubMed Central

    2012-01-01

    Background In situation like diagnosis of clinical and forensic samples there exists a need for highly sensitive, rapid and specific DNA detection methods. Though conventional DNA amplification using PCR can provide fast results, it is not widely practised in diagnostic laboratories partially because it requires skilled personnel and expensive equipment. To overcome these limitations nanoparticles have been explored as signalling probes for ultrasensitive DNA detection that can be used in field applications. Among the nanomaterials, gold nanoparticles (AuNPs) have been extensively used mainly because of its optical property and ability to get functionalized with a variety of biomolecules. Results We report a protocol for the use of gold nanoparticles functionalized with single stranded oligonucleotide (AuNP- oligo probe) as visual detection probes for rapid and specific detection of Escherichia coli. The AuNP- oligo probe on hybridization with target DNA containing complementary sequences remains red whereas test samples without complementary DNA sequences to the probe turns purple due to acid induced aggregation of AuNP- oligo probes. The color change of the solution is observed visually by naked eye demonstrating direct and rapid detection of the pathogenic Escherichia coli from its genomic DNA without the need for PCR amplification. The limit of detection was ~54 ng for unamplified genomic DNA. The method requires less than 30 minutes to complete after genomic DNA extraction. However, by using unamplified enzymatic digested genomic DNA, the detection limit of 11.4 ng was attained. Results of UV-Vis spectroscopic measurement and AFM imaging further support the hypothesis of aggregation based visual discrimination. To elucidate its utility in medical diagnostic, the assay was validated on clinical strains of pathogenic Escherichia coli obtained from local hospitals and spiked urine samples. It was found to be 100% sensitive and proves to be highly specific without any cross reaction with non-Escherichia coli strains. Conclusion This work gives entry into a new class of DNA/gold nanoparticles hybrid materials which might have optical property that can be controlled for application in diagnostics. We note that it should be possible to extend this strategy easily for developing new types of DNA biosensor for point of care detection. The salient feature of this approach includes low-cost, robust reagents and simple colorimetric detection of pathogen. PMID:22309695

  1. Distribution of Parvovirus B19 DNA in Blood Compartments and Persistence of Virus in Blood Donors

    PubMed Central

    Lee, Tzong-Hae; Kleinman, Steven H.; Wen, Li; Montalvo, Lani; Todd, Deborah S.; Wright, David J.; Tobler, Leslie H.; Busch, Michael P.

    2013-01-01

    Introduction Because the receptor for Parvovirus B19 (B19V) is on erythrocytes, we investigated B19V distribution in blood by in-vitro spiking experiments and evaluated viral compartmentalization and persistence in natural infection. Methods Two whole blood protocols (ultracentrifugation and a rapid RBC lysis/removal protocol) were evaluated using quantitative real-time PCR. Whole blood (WB) was spiked with known concentrations of B19V and recovery in various blood fractions was determined. The rapid RBC lysis/removal protocol was then used to compare B19V concentrations in 104 paired whole blood and plasma samples collected longitudinally from 43 B19V infected donors with frozen specimens in the REDS Allogeneic Donor and Recipient Repository (RADAR). Results In B19V spiking experiments, ~one-third of viral DNA was recovered in plasma and two-thirds was loosely bound to erythrocytes. In the IgM positive stage of infection in blood donors when plasma B19V DNA concentrations were > 100 IU/mL, median DNA concentrations were ~30-fold higher in WB than in plasma. In contrast, when IgM was absent and when the B19V DNA concentration was lower, the median whole blood to plasma ratio was ~1. Analysis of longitudinal samples demonstrated persistent detection of B19V in WB but declining ratios of WB/plasma B19V with declining plasma VL levels and loss of IgM-reactivity. Conclusions The WB/plasma B19V DNA ratio varies by stage of infection. Further study is required to determine if this is related to the presence of circulating DNA-positive erythrocytes derived from B19V infected erythroblasts, B19V-specific IgM mediated binding of virus to cells, or other factors. PMID:21303368

  2. A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification

    NASA Astrophysics Data System (ADS)

    Bai, Lijuan; Chai, Yaqin; Pu, Xiaoyun; Yuan, Ruo

    2014-02-01

    Endotoxin, also known as lipopolysaccharide (LPS), is able to induce a strong immune response on its internalization into mammalian cells. To date, aptamer-based biosensors for LPS detection have been rarely reported. This work describes a new signal-on electrochemical aptasensor for the ultrasensitive detection of LPS by combining the three-way DNA hybridization process and nanotechnology-based amplification. With the help of DNA1 (associated with the concentration of target LPS), the capture probe hybridizes with DNA1 and the assistant probe to open its hairpin structure and form a ternary ``Y'' junction structure. The DNA1 can be released from the structure in the presence of nicking endonuclease to initiate the next hybridization process. Then a great deal of cleaved capture probe produced in the cyclic process can bind with DNA2-nanocomposite, which contains the electroactive toluidine blue (Tb) with the amplification materials graphene (Gra) and gold nanoparticles (AuNPs). Thus, an enhanced electrochemical signal can be easily read out. With the cascade signal amplification, this newly designed protocol provides an ultrasensitive electrochemical detection of LPS down to the femtogram level (8.7 fg mL-1) with a linear range of 6 orders of magnitude (from 10 fg mL-1 to 50 ng mL-1). Moreover, the high sensitivity and specificity make this method versatile for the detection of other biomolecules by changing the corresponding sequences of the capture probe and the assistant probe.

  3. Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification.

    PubMed

    Sabaté Del Río, Jonathan; Steylaerts, Tim; Henry, Olivier Y F; Bienstman, Peter; Stakenborg, Tim; Van Roy, Wim; O'Sullivan, Ciara K

    2015-11-15

    In this work we present the use of a silicon-on-insulator (SOI) chip featuring an array of 64 optical ring resonators used as refractive index sensors for real-time and label-free DNA detection. Single ring functionalisation was achieved using a click reaction after precise nanolitre spotting of specific hexynyl-terminated DNA capture probes to link to an azido-silanised chip surface. To demonstrate detectability using the ring resonators and to optimise conditions for solid-phase amplification, hybridisation between short 25-mer single stranded DNA (ssDNA) fragments and a complementary capture probe immobilised on the surface of the ring resonators was carried out and detected through the shift in the resonant wavelength. Using the optimised conditions demonstrated via the solid-phase hybridisation, a 144-bp double stranded DNA (dsDNA) was then detected directly using recombinase and polymerase proteins through on-chip target amplification and solid-phase elongation of immobilised forward primers on specific rings, at a constant temperature of 37°C and in less than 60min, achieving a limit of detection of 7.8·10(-13)M (6·10(5) copies in 50µL). The use of an automatic liquid handler injection instrument connected to an integrated resealable chip interface (RCI) allowed programmable multiple injection protocols. Air plugs between different solutions were introduced to prevent intermixing and a proportional-integral-derivative (PID) temperature controller minimised temperature based drifts. Published by Elsevier B.V.

  4. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments.

    PubMed

    Povedano, Eloy; Vargas, Eva; Montiel, Víctor Ruiz-Valdepeñas; Torrente-Rodríguez, Rebeca M; Pedrero, María; Barderas, Rodrigo; Segundo-Acosta, Pablo San; Peláez-García, Alberto; Mendiola, Marta; Hardisson, David; Campuzano, Susana; Pingarrón, José M

    2018-04-23

    This paper describes two different electrochemical affinity biosensing approaches for the simple, fast and bisulfite and PCR-free quantification of 5-methylated cytosines (5-mC) in DNA using the anti-5-mC antibody as biorecognition element. One of the biosensing approaches used the anti-5-mC as capture bioreceptor and a sandwich type immunoassay, while the other one involved the use of a specific DNA probe and the anti-5-mC as a detector bioreceptor of the captured methylated DNA. Both strategies, named for simplicity in the text as immunosensor and DNA sensor, respectively, were implemented on the surface of magnetic microparticles and the transduction was accomplished by amperometry at screen-printed carbon electrodes by means of the hydrogen peroxide/hydroquinone system. The resulting amperometric biosensors demonstrated reproducibility throughout the entire protocol, sensitive determination with no need for using amplification strategies, and competitiveness with the conventional enzyme-linked immunosorbent assay methodology and the few electrochemical biosensors reported so far in terms of simplicity, sensitivity and assay time. The DNA sensor exhibited higher sensitivity and allowed the detection of the gene-specific methylations conversely to the immunosensor, which detected global DNA methylation. In addition, the DNA sensor demonstrated successful applicability for 1 h-analysis of specific methylation in two relevant tumor suppressor genes in spiked biological fluids and in genomic DNA extracted from human glioblastoma cells.

  5. A method for release and multiple strand amplification of small quantities of DNA from endospores of the fastidious bacterium Pasteuria penetrans.

    PubMed

    Mauchline, T H; Mohan, S; Davies, K G; Schaff, J E; Opperman, C H; Kerry, B R; Hirsch, P R

    2010-05-01

    To establish a reliable protocol to extract DNA from Pasteuria penetrans endospores for use as template in multiple strand amplification, thus providing sufficient material for genetic analyses. To develop a highly sensitive PCR-based diagnostic tool for P. penetrans. An optimized method to decontaminate endospores, release and purify DNA enabled multiple strand amplification. DNA purity was assessed by cloning and sequencing gyrB and 16S rRNA gene fragments obtained from PCR using generic primers. Samples indicated to be 100%P. penetrans by the gyrB assay were estimated at 46% using the 16S rRNA gene. No bias was detected on cloning and sequencing 12 housekeeping and sporulation gene fragments from amplified DNA. The detection limit by PCR with Pasteuria-specific 16S rRNA gene primers following multiple strand amplification of DNA extracted using the method was a single endospore. Generation of large quantities DNA will facilitate genomic sequencing of P. penetrans. Apparent differences in sample purity are explained by variations in 16S rRNA gene copy number in Eubacteria leading to exaggerated estimations of sample contamination. Detection of single endospores will facilitate investigations of P. penetrans molecular ecology. These methods will advance studies on P. penetrans and facilitate research on other obligate and fastidious micro-organisms where it is currently impractical to obtain DNA in sufficient quantity and quality.

  6. Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.)

    PubMed Central

    Turner, Cameron R.; Miller, Derryl J.; Coyne, Kathryn J.; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species. PMID:25474207

  7. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).

    PubMed

    Turner, Cameron R; Miller, Derryl J; Coyne, Kathryn J; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.

  8. Detection of Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing.

    PubMed

    Leo, Stefano; Gaïa, Nadia; Ruppé, Etienne; Emonet, Stephane; Girard, Myriam; Lazarevic, Vladimir; Schrenzel, Jacques

    2017-09-20

    The applications of whole-metagenome shotgun sequencing (WMGS) in routine clinical analysis are still limited. A combination of a DNA extraction procedure, sequencing, and bioinformatics tools is essential for the removal of human DNA and for improving bacterial species identification in a timely manner. We tackled these issues with a broncho-alveolar lavage (BAL) sample from an immunocompromised patient who had developed severe chronic pneumonia. We extracted DNA from the BAL sample with protocols based either on sequential lysis of human and bacterial cells or on the mechanical disruption of all cells. Metagenomic libraries were sequenced on Illumina HiSeq platforms. Microbial community composition was determined by k-mer analysis or by mapping to taxonomic markers. Results were compared to those obtained by conventional clinical culture and molecular methods. Compared to mechanical cell disruption, a sequential lysis protocol resulted in a significantly increased proportion of bacterial DNA over human DNA and higher sequence coverage of Mycobacterium abscessus , Corynebacterium jeikeium and Rothia dentocariosa , the bacteria reported by clinical microbiology tests. In addition, we identified anaerobic bacteria not searched for by the clinical laboratory. Our results further support the implementation of WMGS in clinical routine diagnosis for bacterial identification.

  9. Optimized DNA extraction from neonatal dried blood spots: application in methylome profiling

    PubMed Central

    2014-01-01

    Background Neonatal dried blood spots (DBS) represent an inexpensive method for long-term biobanking worldwide and are considered gold mines for research for several human diseases, including those of metabolic, infectious, genetic and epigenetic origin. However, the utility of DBS is restricted by the limited amount and quality of extractable biomolecules (including DNA), especially for genome wide profiling. Degradation of DNA in DBS often occurs during storage and extraction. Moreover, amplifying small quantities of DNA often leads to a bias in subsequent data, particularly in methylome profiles. Thus it is important to develop methodologies that maximize both the yield and quality of DNA from DBS for downstream analyses. Results Using combinations of in-house-derived and modified commercial extraction kits, we developed a robust and efficient protocol, compatible with methylome studies, many of which require stringent bisulfite conversion steps. Several parameters were tested in a step-wise manner, including blood extraction, cell lysis, protein digestion, and DNA precipitation, purification and elution. DNA quality was assessed based on spectrophotometric measurements, DNA detectability by PCR, and DNA integrity by gel electrophoresis and bioanalyzer analyses. Genome scale Infinium HumanMethylation450 and locus-specific pyrosequencing data generated using the refined DBS extraction protocol were of high quality, reproducible and consistent. Conclusions This study may prove useful to meet the increased demand for research on prenatal, particularly epigenetic, origins of human diseases and for newborn screening programs, all of which are often based on DNA extracted from DBS. PMID:24980254

  10. A combined method for DNA analysis and radiocarbon dating from a single sample.

    PubMed

    Korlević, Petra; Talamo, Sahra; Meyer, Matthias

    2018-03-07

    Current protocols for ancient DNA and radiocarbon analysis of ancient bones and teeth call for multiple destructive samplings of a given specimen, thereby increasing the extent of undesirable damage to precious archaeological material. Here we present a method that makes it possible to obtain both ancient DNA sequences and radiocarbon dates from the same sample material. This is achieved by releasing DNA from the bone matrix through incubation with either EDTA or phosphate buffer prior to complete demineralization and collagen extraction utilizing the acid-base-acid-gelatinization and ultrafiltration procedure established in most radiocarbon dating laboratories. Using a set of 12 bones of different ages and preservation conditions we demonstrate that on average 89% of the DNA can be released from sample powder with minimal, or 38% without any, detectable collagen loss. We also detect no skews in radiocarbon dates compared to untreated samples. Given the different material demands for radiocarbon dating (500 mg of bone/dentine) and DNA analysis (10-100 mg), combined DNA and collagen extraction not only streamlines the sampling process but also drastically increases the amount of DNA that can be recovered from limited sample material.

  11. Comparison of American Fisheries Society (AFS) standard fish sampling techniques and environmental DNA for characterizing fish communities in a large reservoir

    USGS Publications Warehouse

    Perez, Christina R.; Bonar, Scott A.; Amberg, Jon J.; Ladell, Bridget; Rees, Christopher B.; Stewart, William T.; Gill, Curtis J.; Cantrell, Chris; Robinson, Anthony

    2017-01-01

    Recently, methods involving examination of environmental DNA (eDNA) have shown promise for characterizing fish species presence and distribution in waterbodies. We evaluated the use of eDNA for standard fish monitoring surveys in a large reservoir. Specifically, we compared the presence, relative abundance, biomass, and relative percent composition of Largemouth Bass Micropterus salmoides and Gizzard Shad Dorosoma cepedianum measured through eDNA methods and established American Fisheries Society standard sampling methods for Theodore Roosevelt Lake, Arizona. Catches at electrofishing and gillnetting sites were compared with eDNA water samples at sites, within spatial strata, and over the entire reservoir. Gizzard Shad were detected at a higher percentage of sites with eDNA methods than with boat electrofishing in both spring and fall. In contrast, spring and fall gillnetting detected Gizzard Shad at more sites than eDNA. Boat electrofishing and gillnetting detected Largemouth Bass at more sites than eDNA; the exception was fall gillnetting, for which the number of sites of Largemouth Bass detection was equal to that for eDNA. We observed no relationship between relative abundance and biomass of Largemouth Bass and Gizzard Shad measured by established methods and eDNA copies at individual sites or lake sections. Reservoirwide catch composition for Largemouth Bass and Gizzard Shad (numbers and total weight [g] of fish) as determined through a combination of gear types (boat electrofishing plus gillnetting) was similar to the proportion of total eDNA copies from each species in spring and fall field sampling. However, no similarity existed between proportions of fish caught via spring and fall boat electrofishing and the proportion of total eDNA copies from each species. Our study suggests that eDNA field sampling protocols, filtration, DNA extraction, primer design, and DNA sequencing methods need further refinement and testing before incorporation into standard fish sampling surveys.

  12. A magnetic nanobead-based bioassay provides sensitive detection of single- and biplex bacterial DNA using a portable AC susceptometer

    PubMed Central

    Strömberg, Mattias; Zardán Gómez de la Torre, Teresa; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria

    2014-01-01

    Bioassays relying on magnetic read-out using probe-tagged magnetic nanobeads are potential platforms for low-cost biodiagnostic devices for pathogen detection. For optimal assay performance it is crucial to apply an easy, efficient and robust bead-probe conjugation protocol. In this paper, sensitive (1.5 pM) singleplex detection of bacterial DNA sequences is demonstrated in a portable AC susceptometer by a magnetic nanobead-based bioassay principle; the volume-amplified magnetic nanobead detection assay (VAM-NDA). Two bead sizes, 100 and 250 nm, are investigated along with a highly efficient, rapid, robust, and stable conjugation chemistry relying on the avidin–biotin interaction for bead-probe attachment. Avidin-biotin conjugation gives easy control of the number of detection probes per bead; thus allowing for systematic investigation of the impact of varying the detection probe surface coverage upon bead immobilization in rolling circle amplified DNA-coils. The existence of an optimal surface coverage is discussed. Biplex VAM-NDA detection is for the first time demonstrated in the susceptometer: Semi-quantitative results are obtained and it is concluded that the concentration of DNA-coils in the incubation volume is of crucial importance for target quantification. The present findings bring the development of commercial biodiagnostic devices relying on the VAM–NDA further towards implementation in point-of-care and outpatient settings. PMID:24174315

  13. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl.

    PubMed

    Smith, Matthew M; Schmutz, Joel; Apelgren, Chloe; Ramey, Andrew M

    2015-04-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n=105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R(2)=0.694, P=0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species. Published by Elsevier B.V.

  14. Validity of combined cytology and human papillomavirus (HPV) genotyping with adjuvant DNA-cytometry in routine cervical screening: results from 31031 women from the Bonn-region in West Germany.

    PubMed

    Bollmann, Reinhard; Bankfalvi, Agnes; Griefingholt, Harald; Trosic, Ante; Speich, Norbert; Schmitt, Christoph; Bollmann, Magdolna

    2005-05-01

    Our aim was to improve the accuracy of routine cervical screening by a risk-adapted multimodal protocol with special focus on possible reduction and prognostic assessment of false positive results. A cohort of 31031 women from the Bonn-region in West Germany, median age 36 years, were screened by cytology (conventional or liquid-based), followed by PCR-based HVP detection with genotyping and adjuvant DNA image cytometry, if indicated, in a sequential manner. The true prevalence of high-grade cervical intraepithelial neoplasia and carcinoma (>/=CIN2) was 0.32% in the population as projected from cervical biopsies of 123 women (0.4%), of whom 100 showed >/=CIN2. Sensitivity of the cytology screening program at PapIIID/HSIL threshold for detecting histologically confirmed >/=CIN2 cases was 81%, with specificity, positive predictive value (PPV) and negative predictive value (NPV) of 99, 20.9 and 99.9%, respectively. Of 38 women receiving the complete screening protocol, all the 31 >/=CIN2 cases were correctly detected by cytology alone, 30 by positive high-risk HPV genotype and 30 by aneuploid DNA profile. The combination of the three methods resulted in an up to 6.9% increase in PPV for >/=CIN2 at practically unchanged detection rate with the additional benefit of being able to predict the probable outcome of CIN1 lesions detected as false positives with any single test. Multimodal cervical screening might permit identification of those women with low-grade squamous intraepithelial lesions likely to progress at an earlier and curable stage of disease and lengthen the screening interval in those with transient minor lesions caused by productive HPV infection.

  15. A PCR method for the detection and differentiation of Lentinus edodes and Trametes versicolor in defined-mixed cultures used for wastewater treatment.

    PubMed

    García-Mena, Jaime; Cano-Ramirez, Claudia; Garibay-Orijel, Claudio; Ramirez-Canseco, Sergio; Poggi-Varaldo, Héctor M

    2005-06-01

    A PCR-based method for the quantitative detection of Lentinus edodes and Trametes versicolor, two ligninolytic fungi applied for wastewater treatment and bioremediation, was developed. Genomic DNA was used to optimize a PCR method targeting the conserved copper-binding sequence of laccase genes. The method allowed the quantitative detection and differentiation of these fungi in single and defined-mixed cultures after fractionation of the PCR products by electrophoresis in agarose gels. Amplified products of about 150 bp for L. edodes, and about 200 bp for T. versicolor were purified and cloned. The PCR method showed a linear detection response in the 1.0 microg-1 ng range. The same method was tested with genomic DNA from a third fungus (Phanerochaete chrysosporium), yielding a fragment of about 400 bp. Southern-blot and DNA sequence analysis indicated that a specific PCR product was amplified from each genome, and that these corresponded to sequences of laccase genes. This PCR protocol permits the detection and differentiation of three ligninolytic fungi by amplifying DNA fragments of different sizes using a single pair of primers, without further enzymatic restriction of the PCR products. This method has potential use in the monitoring, evaluation, and improvement of fungal cultures used in wastewater treatment processes.

  16. Introducing automation to the molecular diagnosis of Trypanosoma cruzi infection: A comparative study of sample treatments, DNA extraction methods and real-time PCR assays.

    PubMed

    Abras, Alba; Ballart, Cristina; Llovet, Teresa; Roig, Carme; Gutiérrez, Cristina; Tebar, Silvia; Berenguer, Pere; Pinazo, María-Jesús; Posada, Elizabeth; Gascón, Joaquim; Schijman, Alejandro G; Gállego, Montserrat; Muñoz, Carmen

    2018-01-01

    Polymerase chain reaction (PCR) has become a useful tool for the diagnosis of Trypanosoma cruzi infection. The development of automated DNA extraction methodologies and PCR systems is an important step toward the standardization of protocols in routine diagnosis. To date, there are only two commercially available Real-Time PCR assays for the routine laboratory detection of T. cruzi DNA in clinical samples: TCRUZIDNA.CE (Diagnostic Bioprobes Srl) and RealCycler CHAG (Progenie Molecular). Our aim was to evaluate the RealCycler CHAG assay taking into account the whole process. We assessed the usefulness of an automated DNA extraction system based on magnetic particles (EZ1 Virus Mini Kit v2.0, Qiagen) combined with a commercially available Real-Time PCR assay targeting satellite DNA (SatDNA) of T. cruzi (RealCycler CHAG), a methodology used for routine diagnosis in our hospital. It was compared with a well-known strategy combining a commercial DNA isolation kit based on silica columns (High Pure PCR Template Preparation Kit, Roche Diagnostics) with an in-house Real-Time PCR targeting SatDNA. The results of the two methodologies were in almost perfect agreement, indicating they can be used interchangeably. However, when variations in protocol factors were applied (sample treatment, extraction method and Real-Time PCR), the results were less convincing. A comprehensive fine-tuning of the whole procedure is the key to successful results. Guanidine EDTA-blood (GEB) samples are not suitable for DNA extraction based on magnetic particles due to inhibition, at least when samples are not processed immediately. This is the first study to evaluate the RealCycler CHAG assay taking into account the overall process, including three variables (sample treatment, extraction method and Real-Time PCR). Our findings may contribute to the harmonization of protocols between laboratories and to a wider application of Real-Time PCR in molecular diagnostic laboratories associated with health centers.

  17. Cell-free fetal DNA screening in the USA: a cost analysis of screening strategies.

    PubMed

    Evans, M I; Sonek, J D; Hallahan, T W; Krantz, D A

    2015-01-01

    To determine whether implementation of primary cell-free fetal DNA (cffDNA) screening would be cost-effective in the USA and to evaluate potential lower-cost alternatives. Three strategies to screen for trisomy 21 were evaluated using decision tree analysis: 1) a primary strategy in which cffDNA screening was offered to all patients, 2) a contingent strategy in which cffDNA screening was offered only to patients who were high risk on traditional first-trimester screening and 3) a hybrid strategy in which cffDNA screening was offered to all patients ≥ 35 years of age and only to patients < 35 years who were high risk after first-trimester screening. Four traditional screening protocols were evaluated, each assessing nuchal translucency (NT) and pregnancy-associated plasma protein-A (PAPP-A) along with either free or total beta-human chorionic gonadotropin (β-hCG), with or without nasal bone (NB) assessment. Utilizing a primary cffDNA screening strategy, the cost per patient was 1017 US$. With a traditional screening protocol using free β-hCG, PAPP-A and NT assessment as part of a hybrid screening strategy, a contingent strategy with a 1/300 cut-off and a contingent strategy with a 1/1000 cut-off, the cost per patient was 474, 430 and 409 US$, respectively. Findings were similar using the other traditional screening protocols. Marginal cost per viable case detected for the primary screening strategy as compared to the other strategies was 3-16 times greater than the cost of care for a missed case. Primary cffDNA screening is not currently a cost-effective strategy. The contingent strategy was the lowest-cost alternative, especially with a risk cut-off of 1/1000. The hybrid strategy, although less costly than primary cffDNA screening, was more costly than the contingent strategy. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  18. RNA-DNA hybrid (R-loop) immunoprecipitation mapping: an analytical workflow to evaluate inherent biases

    PubMed Central

    Halász, László; Karányi, Zsolt; Boros-Oláh, Beáta; Kuik-Rózsa, Tímea; Sipos, Éva; Nagy, Éva; Mosolygó-L, Ágnes; Mázló, Anett; Rajnavölgyi, Éva; Halmos, Gábor; Székvölgyi, Lóránt

    2017-01-01

    The impact of R-loops on the physiology and pathology of chromosomes has been demonstrated extensively by chromatin biology research. The progress in this field has been driven by technological advancement of R-loop mapping methods that largely relied on a single approach, DNA-RNA immunoprecipitation (DRIP). Most of the DRIP protocols use the experimental design that was developed by a few laboratories, without paying attention to the potential caveats that might affect the outcome of RNA-DNA hybrid mapping. To assess the accuracy and utility of this technology, we pursued an analytical approach to estimate inherent biases and errors in the DRIP protocol. By performing DRIP-sequencing, qPCR, and receiver operator characteristic (ROC) analysis, we tested the effect of formaldehyde fixation, cell lysis temperature, mode of genome fragmentation, and removal of free RNA on the efficacy of RNA-DNA hybrid detection and implemented workflows that were able to distinguish complex and weak DRIP signals in a noisy background with high confidence. We also show that some of the workflows perform poorly and generate random answers. Furthermore, we found that the most commonly used genome fragmentation method (restriction enzyme digestion) led to the overrepresentation of lengthy DRIP fragments over coding ORFs, and this bias was enhanced at the first exons. Biased genome sampling severely compromised mapping resolution and prevented the assignment of precise biological function to a significant fraction of R-loops. The revised workflow presented herein is established and optimized using objective ROC analyses and provides reproducible and highly specific RNA-DNA hybrid detection. PMID:28341774

  19. DNase I and Proteinase K eliminate DNA from injured or dead bacteria but not from living bacteria in microbial reference systems and natural drinking water biofilms for subsequent molecular biology analyses.

    PubMed

    Villarreal, Jessica Varela; Jungfer, Christina; Obst, Ursula; Schwartz, Thomas

    2013-09-01

    Molecular techniques, such as polymerase chain reaction (PCR) and quantitative PCR (qPCR), are very sensitive, but may detect total DNA present in a sample, including extracellular DNA (eDNA) and DNA coming from live and dead cells. DNase I is an endonuclease that non-specifically cleaves single- and double-stranded DNA. This enzyme was tested in this study to analyze its capacity of digesting DNA coming from dead cells with damaged cell membranes, leaving DNA from living cells with intact cell membranes available for DNA-based methods. For this purpose, an optimized DNase I/Proteinase K (DNase/PK) protocol was developed. Intact Staphylococcus aureus cells, heat-killed Pseudomonas aeruginosa cells, free genomic DNA of Salmonella enterica, and a mixture of these targets were treated according to the developed DNase/PK protocol. In parallel, these samples were treated with propidium monoazide (PMA) as an already described assay for live-dead discrimination. Quantitative PCR and PCR-DGGE of the eubacterial 16S rDNA fragment were used to test the ability of the DNase/PK and PMA treatments to distinguish DNA coming from cells with intact cell membranes in the presence of DNA from dead cells and free genomic DNA. The methods were applied to three months old autochthonous drinking water biofilms from a pilot facility built at a German waterworks. Shifts in the DNA patterns observed after DGGE analysis demonstrated the applicability of DNase/PK as well as of the PMA treatment for natural biofilm investigation. However, the DNase/PK treatment demonstrated some practical advantages in comparison with the PMA treatment for live/dead discrimination of bacterial targets in drinking water systems. © 2013 Elsevier B.V. All rights reserved.

  20. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  1. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE PAGES

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea; ...

    2014-06-01

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  2. Development and performance assessment of a luminex xMAP® direct hybridization assay for the detection and identification of indoor air fungal contamination.

    PubMed

    Libert, Xavier; Packeu, Ann; Bureau, Fabrice; Roosens, Nancy H; De Keersmaecker, Sigrid C J

    2017-01-01

    Considered as a public health problem, indoor fungal contamination is generally monitored using classical protocols based on culturing. However, this culture dependency could influence the representativeness of the fungal population detected in an analyzed sample as this includes the dead and uncultivable fraction. Moreover, culture-based protocols are often time-consuming. In this context, molecular tools are a powerful alternative, especially those allowing multiplexing. In this study a Luminex xMAP® assay was developed for the simultaneous detection of 10 fungal species which are most frequently in indoor air and that may cause health problems. This xMAP® assay was found to be sensitive, i.e. its limit of detection is ranging between 0.05 and 0.01 ng of gDNA. The assay was subsequently tested with environmental air samples which were also analyzed with a classical protocol. All the species identified with the classical method were also detected with the xMAP® assay, however in a shorter time frame. These results demonstrate that the Luminex xMAP® fungal assay developed in this study could contribute to the improvement of public health and specifically to the indoor fungal contamination treatment.

  3. Diagnostic accuracy of the ROCHE Septifast PCR system for the rapid detection of blood pathogens in neonatal sepsis-A prospective clinical trial.

    PubMed

    Straub, Julia; Paula, Helga; Mayr, Michaela; Kasper, David; Assadian, Ojan; Berger, Angelika; Rittenschober-Böhm, Judith

    2017-01-01

    Diagnosis of neonatal sepsis remains a major challenge in neonatology. Most molecular-based methods are not customized for neonatal requirements. The aim of the present study was to assess the diagnostic accuracy of a modified multiplex PCR protocol for the detection of neonatal sepsis using small blood volumes. 212 episodes of suspected neonatal late onset sepsis were analyzed prospectively using the Roche SeptiFast® MGRADE PCR with a modified DNA extraction protocol and software-handling tool. Results were compared to blood culture, laboratory biomarkers and clinical signs of sepsis. Of 212 episodes, 85 (40.1%) were categorized as "not infected". Among these episodes, 1 was false positive by blood culture (1.2%) and 23 were false positive by PCR (27.1%). Of 51 (24.1%) episodes diagnosed as "culture proven sepsis", the same pathogen was detected by blood culture and PCR in 39 episodes (76.5%). In 8 episodes, more pathogens were detected by PCR compared to blood culture, and in 4 episodes the pathogen detected by blood culture was not found by PCR. One of these episodes was caused by Bacillus cereus, a pathogen not included in the PCR panel. In 76/212 (35.8%) episodes, clinical sepsis was diagnosed. Among these, PCR yielded positive results in 39.5% of episodes (30/76 episodes). For culture-positive sepsis, PCR showed a sensitivity of 90.2% (95%CI 86.2-94.2%) and a specificity of 72.9% (95%CI 67.0-79.0%). The Roche SeptiFast® MGRADE PCR using a modified DNA extraction protocol showed acceptable results for rapid detection of neonatal sepsis in addition to conventional blood culture. The benefit of rapid pathogen detection has to be balanced against the considerable risk of contamination, loss of information on antibiotic sensitivity pattern and increased costs.

  4. Extraction of High Quality DNA from Seized Moroccan Cannabis Resin (Hashish)

    PubMed Central

    El Alaoui, Moulay Abdelaziz; Melloul, Marouane; Alaoui Amine, Sanaâ; Stambouli, Hamid; El Bouri, Aziz; Soulaymani, Abdelmajid; El Fahime, Elmostafa

    2013-01-01

    The extraction and purification of nucleic acids is the first step in most molecular biology analysis techniques. The objective of this work is to obtain highly purified nucleic acids derived from Cannabis sativa resin seizure in order to conduct a DNA typing method for the individualization of cannabis resin samples. To obtain highly purified nucleic acids from cannabis resin (Hashish) free from contaminants that cause inhibition of PCR reaction, we have tested two protocols: the CTAB protocol of Wagner and a CTAB protocol described by Somma (2004) adapted for difficult matrix. We obtained high quality genomic DNA from 8 cannabis resin seizures using the adapted protocol. DNA extracted by the Wagner CTAB protocol failed to give polymerase chain reaction (PCR) amplification of tetrahydrocannabinolic acid (THCA) synthase coding gene. However, the extracted DNA by the second protocol permits amplification of THCA synthase coding gene using different sets of primers as assessed by PCR. We describe here for the first time the possibility of DNA extraction from (Hashish) resin derived from Cannabis sativa. This allows the use of DNA molecular tests under special forensic circumstances. PMID:24124454

  5. Development of a PCR protocol to detect aflatoxigenic molds in food products.

    PubMed

    Luque, M Isabel; Rodríguez, Alicia; Andrade, María J; Martín, Alberto; Córdoba, Juan J

    2012-01-01

    Aflatoxins are secondary metabolites produced mainly by Aspergillus species growing in foodstuffs. Because aflatoxins have important health effects, the detection of early contamination of foods by aflatoxigenic molds should be useful. In the present work, a reliable conventional PCR method for detecting aflatoxigenic molds of various species was developed. Fifty-six aflatoxigenic and nonaflatoxigenic strains commonly reported in foodstuffs were tested. Aflatoxin production was first confirmed by micellar electrokinetic capillary electrophoresis or/and high-pressure liquid chromatography-mass spectrometry. Based on the conserved regions of the O-methyltransferase gene (omt-1) involved in the aflatoxin biosynthetic pathway, six primer pairs were designed. With only the designed primer pair AFF1-AFR3, the expected PCR product (381 bp) was obtained in all of the tested aflatoxigenic strains of various species and genera. Amplification products were not obtained with this primer pair for any of the nonaflatoxigenic reference molds. However, an amplicon of 453 bp was obtained for all aflatoxigenic and nonaflatoxigenic mold reference strains with a PCR protocol based on the constitutive fungal β-tubulin gene, which was used as a positive fungal control. The PCR protocol based on omt-1 detected as little as 15 pg of DNA from aflatoxigenic molds and 10(2) to 10(3) CFU/g in contaminated food samples. This PCR protocol should be used as a routine technique to detect aflatoxigenic molds in foods.

  6. Hindering the illegal trade in dog and cat furs through a DNA-based protocol for species identification.

    PubMed

    Garofalo, Luisa; Mariacher, Alessia; Fanelli, Rita; Fico, Rosario; Lorenzini, Rita

    2018-01-01

    In Western countries dogs and cats are the most popular pets, and people are increasingly opposed to their rearing for the fur industry. In 2007, a Regulation of the European Union (EU) banned the use and trade of dog and cat furs, but an official analytical protocol to identify them as source species was not provided, and violations of law are still frequent in all Member States. In this paper we report on the development and validation of a simple and affordable DNA method for species detection in furs to use as an effective tool to combat illegal trade in fur products. A set of mitochondrial primers was designed for amplification of partial cytochrome b, control region and ND1 gene in highly degraded samples, like furs and pelts. Our amplification workflow involved the use of a non-specific primer pair to perform a first test to identify the species through sequencing, then the application of species-specific primer pairs to use in singleplex end-point PCRs as confirmation tests. The advantage of this two-step procedure is twofold: on the one hand it minimises the possibility of negative test results from degraded samples, since failure of amplification with a first set of primers can be offset by successful amplification of the second, and on the other it adds confidence and reliability to final authentication of species. All designed primers were validated on a reference collection of tissue samples, obtaining solid results in terms of specificity, sensitivity, repeatability and reproducibility. Application of the protocol on real caseworks from seized furs yielded successful results also from old and dyed furs, suggesting that age and chemical staining do not necessarily affect positive amplifications. Major pros of this approach are: (1) sensitive and informative primer sets for detection of species; (2) short PCR amplicons for the analysis of poor quality DNA; (3) binding primers that avoid contamination from human DNA; (4) user-friendly protocol for any laboratory equipped for analysis of low-copy-number DNA. Our molecular procedure proved to be a good starting point for enforcing the EU Regulation against dog and cat fur trade in forensic contexts where source attribution is essential to the assignment of responsibilities.

  7. Digital gene expression analysis with sample multiplexing and PCR duplicate detection: A straightforward protocol.

    PubMed

    Rozenberg, Andrey; Leese, Florian; Weiss, Linda C; Tollrian, Ralph

    2016-01-01

    Tag-Seq is a high-throughput approach used for discovering SNPs and characterizing gene expression. In comparison to RNA-Seq, Tag-Seq eases data processing and allows detection of rare mRNA species using only one tag per transcript molecule. However, reduced library complexity raises the issue of PCR duplicates, which distort gene expression levels. Here we present a novel Tag-Seq protocol that uses the least biased methods for RNA library preparation combined with a novel approach for joint PCR template and sample labeling. In our protocol, input RNA is fragmented by hydrolysis, and poly(A)-bearing RNAs are selected and directly ligated to mixed DNA-RNA P5 adapters. The P5 adapters contain i5 barcodes composed of sample-specific (moderately) degenerate base regions (mDBRs), which later allow detection of PCR duplicates. The P7 adapter is attached via reverse transcription with individual i7 barcodes added during the amplification step. The resulting libraries can be sequenced on an Illumina sequencer. After sample demultiplexing and PCR duplicate removal with a free software tool we designed, the data are ready for downstream analysis. Our protocol was tested on RNA samples from predator-induced and control Daphnia microcrustaceans.

  8. Non-radioactive detection of trinucleotide repeat size variability.

    PubMed

    Tomé, Stéphanie; Nicole, Annie; Gomes-Pereira, Mario; Gourdon, Genevieve

    2014-03-06

    Many human diseases are associated with the abnormal expansion of unstable trinucleotide repeat sequences. The mechanisms of trinucleotide repeat size mutation have not been fully dissected, and their understanding must be grounded on the detailed analysis of repeat size distributions in human tissues and animal models. Small-pool PCR (SP-PCR) is a robust, highly sensitive and efficient PCR-based approach to assess the levels of repeat size variation, providing both quantitative and qualitative data. The method relies on the amplification of a very low number of DNA molecules, through sucessive dilution of a stock genomic DNA solution. Radioactive Southern blot hybridization is sensitive enough to detect SP-PCR products derived from single template molecules, separated by agarose gel electrophoresis and transferred onto DNA membranes. We describe a variation of the detection method that uses digoxigenin-labelled locked nucleic acid probes. This protocol keeps the sensitivity of the original method, while eliminating the health risks associated with the manipulation of radiolabelled probes, and the burden associated with their regulation, manipulation and waste disposal.

  9. Detection and quantitation of Kaposi's sarcoma-associated herpesvirus (KSHV) by a single competitive-quantitative polymerase chain reaction.

    PubMed

    Curreli, Francesca; Robles, Monica A; Friedman-Kien, Alvin E; Flore, Ornella

    2003-02-01

    Kaposi's sarcoma-associated herpesvirus is a novel herpesvirus linked to AIDS-related neoplasms. Currently it is difficult to evaluate the number of virions in viral preparation or in samples obtained from patients with Kaposi's sarcoma (KS), since no protocol for determining the plaque forming units of KSHV exists. We constructed a fragment of a different size than the target viral DNA to carry out a competitive-quantitative PCR. Both fragment and viral DNA were added to a single PCR reaction to compete for the same set of primers. By knowing the amount of the competitor added to the reaction, we could determine the number of viral DNA molecules. We used this assay successfully to detect and quantify KSHV genomes from KS skin biopsies and pleural effusion lymphoma, and from different viral preparations. To date, this is the most convenient and economic method that allows an accurate and fast viral detection/quantitation with a single PCR.

  10. Electrophoretic mobility shift scanning using an automated infrared DNA sequencer.

    PubMed

    Sano, M; Ohyama, A; Takase, K; Yamamoto, M; Machida, M

    2001-11-01

    Electrophoretic mobility shift assay (EMSA) is widely used in the study of sequence-specific DNA-binding proteins, including transcription factors and mismatch binding proteins. We have established a non-radioisotope-based protocol for EMSA that features an automated DNA sequencer with an infrared fluorescent dye (IRDye) detection unit. Our modification of the elec- trophoresis unit, which includes cooling the gel plates with a reduced well-to-read length, has made it possible to detect shifted bands within 1 h. Further, we have developed a rapid ligation-based method for generating IRDye-labeled probes with an approximately 60% cost reduction. This method has the advantages of real-time scanning, stability of labeled probes, and better safety associated with nonradioactive methods of detection. Analysis of a promoter from an industrially important filamentous fungus, Aspergillus oryzae, in a prototype experiment revealed that the method we describe has potential for use in systematic scanning and identification of the functionally important elements to which cellular factors bind in a sequence-specific manner.

  11. Production of anti-digoxigenin antibody HRP conjugate for PCR-ELISA DIG detection system.

    PubMed

    Gill, Pooria; Forouzandeh, Mehdi; Rahbarizadeh, Fatemeh; Ramezani, Reihaneh; Rasaee, Mohammad Javad

    2006-01-01

    There are several methods used to visualize the end product of polymerase chain reactions. One of these methods is an ELISA-based detection system (PCR-ELISA) which is very sensitive and can be used to measure the PCR products quantitatively by a colorimetric method. According to this technique, copies of DNA segments from genomic DNA are amplified by PCR with incorporation of digoxigenin-11-dUTP. Samples are analyzed in a microtiter plate format by alkaline denaturation and are hybridized to biotinylated allele-specific capture probes bound to streptavidin coated plates. Use of the produced anti-digoxigenin antibody horseradish peroxidase conjugate and the substrate 2,2'-azino-di-3-ethylbenzthiazolinsulfonate (ABTS) detected the hybridized DNA. One of the key components in this procedure is the anti-digoxigenin antibody HRP conjugate. Described here is the preparation, purification, and characterization of anti-digoxigenin antibody HRP conjugate for use in the PCR-ELISA DIG detection system. Several biochemical protocols and modifications were applied to increase the sensitivity and specificity of this conjugate for an efficient and cost-effective product.

  12. Detection of minor and major satellite DNA in cytokinesis-blocked mouse splenocytes by a PRINS tandem labelling approach.

    PubMed

    Russo, A; Tommasi, A M; Renzi, L

    1996-11-01

    A protocol for the simultaneous visualization of minor and major satellite DNA by primed in situ DNA synthesis (PRINS) was developed in cytokinesis-blocked murine splenocytes. After individuation of optimal experimental conditions, a micronucleus (MN) test was carried out by treating splenocytes in vitro with the clastogenic agent mitomycin C and the aneugenic compound Colcemid. It was found that PRINS gives highly reproducible results, also comparable with the literature on MN results obtained by fluorescent in situ hybridization (FISH). Therefore the PRINS methodology may be proposed as a fast alternative to FISH for the characterization of induced MN.

  13. Novel Multiplex MethyLight Protocol for Detection of DNA Methylation in Patient Tissues and Bodily Fluids

    PubMed Central

    Olkhov-Mitsel, Ekaterina; Zdravic, Darko; Kron, Ken; van der Kwast, Theodorus; Fleshner, Neil; Bapat, Bharati

    2014-01-01

    Aberrant DNA methylation is a hallmark of cancer and is an important potential biomarker. Particularly, combined analysis of a panel of hypermethylated genes shows the most promising clinical performance. Herein, we developed, optimized and standardized a multiplex MethyLight assay to simultaneously detect hypermethylation of APC, HOXD3 and TGFB2 in DNA extracted from prostate cancer (PCa) cell lines, archival tissue specimens, and urine samples. We established that the assay is capable of discriminating between fully methylated and unmethylated alleles with 100% specificity and demonstrated the assay as highly accurate and reproducible as the singleplex approach. For proof of principle, we analyzed the methylation status of these genes in tissue and urine samples of PCa patients as well as PCa-free controls. These data show that the multiplex MethyLight assay offers a significant advantage when working with limited quantities of DNA and has potential applications in research and clinical settings. PMID:24651255

  14. Impact of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization method.

    PubMed

    do Nascimento, Cássio; dos Santos, Janine Navarro; Pedrazzi, Vinícius; Pita, Murillo Sucena; Monesi, Nadia; Ribeiro, Ricardo Faria; de Albuquerque, Rubens Ferreira

    2014-01-01

    Molecular diagnosis methods have been largely used in epidemiological or clinical studies to detect and quantify microbial species that may colonize the oral cavity in healthy or disease. The preservation of genetic material from samples remains the major challenge to ensure the feasibility of these methodologies. Long-term storage may compromise the final result. The aim of this study was to evaluate the effect of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization. Saliva and supragingival biofilm were taken from 10 healthy subjects, aliquoted (n=364) and processed according to proposed protocols: immediate processing and processed after 2 or 4 weeks, and 6 or 12 months of storage at 4°C, -20°C and -80°C. Either total or individual microbial counts were recorded in lower values for samples processed after 12 months of storage, irrespective of temperatures tested. Samples stored up to 6 months at cold temperatures showed similar counts to those immediately processed. The microbial incidence was also significantly reduced in samples stored during 12 months in all temperatures. Temperature and time of oral samples storage have relevant impact in the detection and quantification of bacterial and fungal species by Checkerboard DNA-DNA hybridization method. Samples should be processed immediately after collection or up to 6 months if conserved at cold temperatures to avoid false-negative results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. j5 DNA assembly design automation.

    PubMed

    Hillson, Nathan J

    2014-01-01

    Modern standardized methodologies, described in detail in the previous chapters of this book, have enabled the software-automated design of optimized DNA construction protocols. This chapter describes how to design (combinatorial) scar-less DNA assembly protocols using the web-based software j5. j5 assists biomedical and biotechnological researchers construct DNA by automating the design of optimized protocols for flanking homology sequence as well as type IIS endonuclease-mediated DNA assembly methodologies. Unlike any other software tool available today, j5 designs scar-less combinatorial DNA assembly protocols, performs a cost-benefit analysis to identify which portions of an assembly process would be less expensive to outsource to a DNA synthesis service provider, and designs hierarchical DNA assembly strategies to mitigate anticipated poor assembly junction sequence performance. Software integrated with j5 add significant value to the j5 design process through graphical user-interface enhancement and downstream liquid-handling robotic laboratory automation.

  16. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    PubMed

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  17. Amplification of Mycoplasma haemofelis DNA by a PCR for point-of-care use.

    PubMed

    Hawley, Jennifer; Yaaran, Tal; Maurice, Sarah; Lappin, Michael R

    2018-01-01

    We compared a qualitative in-clinic (IC)-PCR for the detection of Mycoplasma haemofelis DNA with the results of a commercial qualitative laboratory-based, conventional (c)PCR. In order to determine the specificity of both tests, Bartonella spp. samples were included. Forty-three previously tested blood samples with known PCR results for hemoplasmas and Bartonella spp. were selected. The samples were split between 2 laboratories. At the first laboratory, DNA was purified and run on 2 cPCR assays for the detection of hemoplasmas and Bartonella spp. At the second laboratory, DNA was purified using 2 purification protocols and both run in the IC-PCR assay. The cPCR results confirmed that 18 samples were positive for M. haemofelis, 5 for ' Candidatus M. haemominutum', 8 for Bartonella henselae, 2 for Bartonella clarridgeiae, and 10 were negative for both genera. No mixed infections were observed. The IC-PCR assay for the detection of M. haemofelis had a sensitivity of 94.4% and specificity of 96%, when using the same DNA purification method as the first laboratory. Using the second purification method, the sensitivity of the IC-PCR assay was 77.8% and specificity was 96%. Bartonella species were not detected by the IC-PCR M. haemofelis assay. The IC-PCR assay decreased the amount of time to final result compared to a cPCR assay.

  18. Design of molecular beacons as signaling probes for adenosine triphosphate detection in cancer cells based on chemiluminescence resonance energy transfer.

    PubMed

    Zhang, Shusheng; Yan, Yameng; Bi, Sai

    2009-11-01

    In the present study, binary and triplex DNA molecular beacons, as signaling probes based on a luminol-H(2)O(2)-horseradish peroxidase (HRP)-fluorescein chemiluminescence resonance energy transfer (CRET) system and structure-switching aptamers for highly sensitive detection of small molecules, are developed using adenosine triphosphate (ATP) as a model analyte to demonstrate the generality of the strategy. This CRET process occurs from donor luminol to acceptor fluorescein, which is oxidized by H(2)O(2) and catalyzed by HRP. DNA aptamer for ATP is first attached on the surface of magnetic nanoparticles (MNPs). The cDNA linker has an extension that hybridizes with two other DNAs (LumAuNP-DNA and F-DNA) or three other DNAs (HRP-DNA, LumAuNP-DNA, and F-DNA) to fabricate CRET-BMBP-MNP or CRET-TMBP-MNP conjugates that provide the CRET signals. Thus, in the absence of ATP, when the MNPs are removed from the solution, they also take with them the linker DNA and the CRET signal probes, and no CRET signal can be detected. However, when ATP is introduced, a competition for the ATP aptamer between ATP and the cDNA linker occurs. As a result, CRET-BMBP and CRET-TMBP are forced to dissociate from the MNP surface based on the structure switching of the aptamer. The CRET signals are proportional to the concentration of ATP. In order to accelerate the rate of the aptamer structure-switching process, an invader DNA is introduced into the proposed strategy. The present CRET system provides a low detection limit of 1.1 x 10(-7) and 3.2 x 10(-7) M for ATP detection by BMBP and TMBP, respectively, which also exhibits a good selectivity for ATP detection. Sample assays of ATP in K562 leukemia cells and 4T1 breast cancer cells confirm the reliability and practicality of the protocol, which reveal a good prospect of this platform for biological sample analysis.

  19. Detection of enterotoxigenic Clostridium perfringens in meat samples by using molecular methods.

    PubMed

    Kaneko, Ikuko; Miyamoto, Kazuaki; Mimura, Kanako; Yumine, Natsuko; Utsunomiya, Hirotoshi; Akimoto, Shigeru; McClane, Bruce A

    2011-11-01

    To prevent food-borne bacterial diseases and to trace bacterial contamination events to foods, microbial source tracking (MST) methods provide important epidemiological information. To apply molecular methods to MST, it is necessary not only to amplify bacterial cells to detection limit levels but also to prepare DNA with reduced inhibitory compounds and contamination. Isolates carrying the Clostridium perfringens enterotoxin gene (cpe) on the chromosome or a plasmid rank among the most important food-borne pathogens. Previous surveys indicated that cpe-positive C. perfringens isolates are present in only ∼5% of nonoutbreak food samples and then only at low numbers, usually less than 3 cells/g. In this study, four molecular assays for the detection of cpe-positive C. perfringens isolates, i.e., ordinary PCR, nested PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP), were developed and evaluated for their reliability using purified DNA. For use in the artificial contamination of meat samples, DNA templates were prepared by three different commercial DNA preparation kits. The four molecular assays always detected cpe when >10³ cells/g of cpe-positive C. perfringens were present, using any kit. Of three tested commercial DNA preparation kits, the InstaGene matrix kit appeared to be most suitable for the testing of a large number of samples. By using the InstaGene matrix kit, the four molecular assays efficiently detected cpe using DNA prepared from enrichment culture specimens of meat samples contaminated with low numbers of cpe-positive C. perfringens vegetative cells or spores. Overall, the current study developed molecular assay protocols for MST to detect the contamination of foods with low numbers of cells, and at a low frequency, of cpe-positive C. perfringens isolates.

  20. Applicability of three alternative instruments for food authenticity analysis: GMO identification.

    PubMed

    Burrell, A; Foy, C; Burns, M

    2011-03-06

    Ensuring foods are correctly labelled for ingredients derived from genetically modified organisms (GMOs) is an issue facing manufacturers, retailers, and enforcement agencies. DNA approaches for the determination of food authenticitys often use the polymerase chain reaction (PCR), and PCR products can be detected using capillary or gel electrophoresis. This study examines the fitness for purpose of the application of three laboratory electrophoresis instruments (Agilent Bioanalyzer 2100, Lab901 TapeStation, and Shimadzu MCE-202 MultiNA) for the detection of GMOs using PCR based on a previously validated protocol. Whilst minor differences in the performance characteristics of bias and precision were observed, all three instruments demonstrated their applicability in using this protocol for screening of GMO ingredients.

  1. Applicability of Three Alternative Instruments for Food Authenticity Analysis: GMO Identification

    PubMed Central

    Burrell, A.; Foy, C.; Burns, M.

    2011-01-01

    Ensuring foods are correctly labelled for ingredients derived from genetically modified organisms (GMOs) is an issue facing manufacturers, retailers, and enforcement agencies. DNA approaches for the determination of food authenticitys often use the polymerase chain reaction (PCR), and PCR products can be detected using capillary or gel electrophoresis. This study examines the fitness for purpose of the application of three laboratory electrophoresis instruments (Agilent Bioanalyzer 2100, Lab901 TapeStation, and Shimadzu MCE-202 MultiNA) for the detection of GMOs using PCR based on a previously validated protocol. Whilst minor differences in the performance characteristics of bias and precision were observed, all three instruments demonstrated their applicability in using this protocol for screening of GMO ingredients. PMID:21527985

  2. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    PubMed

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.

  3. Assessment of DNA Contamination in RNA Samples Based on Ribosomal DNA

    PubMed Central

    Hashemipetroudi, Seyyed Hamidreza; Nematzadeh, Ghorbanali; Ahmadian, Gholamreza; Yamchi, Ahad; Kuhlmann, Markus

    2018-01-01

    One method extensively used for the quantification of gene expression changes and transcript abundances is reverse-transcription quantitative real-time PCR (RT-qPCR). It provides accurate, sensitive, reliable, and reproducible results. Several factors can affect the sensitivity and specificity of RT-qPCR. Residual genomic DNA (gDNA) contaminating RNA samples is one of them. In gene expression analysis, non-specific amplification due to gDNA contamination will overestimate the abundance of transcript levels and can affect the RT-qPCR results. Generally, gDNA is detected by qRT-PCR using primer pairs annealing to intergenic regions or an intron of the gene of interest. Unfortunately, intron/exon annotations are not yet known for all genes from vertebrate, bacteria, protist, fungi, plant, and invertebrate metazoan species. Here we present a protocol for detection of gDNA contamination in RNA samples by using ribosomal DNA (rDNA)-based primers. The method is based on the unique features of rDNA: their multigene nature, highly conserved sequences, and high frequency in the genome. Also as a case study, a unique set of primers were designed based on the conserved region of ribosomal DNA (rDNA) in the Poaceae family. The universality of these primer pairs was tested by melt curve analysis and agarose gel electrophoresis. Although our method explains how rDNA-based primers can be applied for the gDNA contamination assay in the Poaceae family, it could be easily used to other prokaryote and eukaryote species PMID:29443017

  4. An Efficient Strategy for Broad-Range Detection of Low Abundance Bacteria without DNA Decontamination of PCR Reagents

    PubMed Central

    Chang, Shy-Shin; Hsu, Hsung-Ling; Cheng, Ju-Chien; Tseng, Ching-Ping

    2011-01-01

    Background Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found. Methodology/Principal Findings We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3′-end complementary to the template bacterial sequence and a 5′-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10–100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species. Conclusions/Significance Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories. PMID:21637859

  5. Studying DNA looping by single-molecule FRET.

    PubMed

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  6. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  7. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    PubMed

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.

  8. The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans.

    PubMed

    Imanikia, Soudabeh; Galea, Francesca; Nagy, Eszter; Phillips, David H; Stürzenbaum, Stephen R; Arlt, Volker M

    2016-07-01

    This study aimed to establish a protocol for cell dissociation from the nematode Caenorhabditis elegans (C. elegans) to assess the genotoxicity of the environmental pollutant benzo[a]pyrene (BaP) using the alkaline version of the single cell electrophoresis assay (comet assay). BaP genotoxicity was assessed in C. elegans (wild-type [WT]; N2, Bristol) after 48h exposure (0-40μM). Induction of comets by BaP was concentration-dependent up to 20μM; comet% tail DNA was ∼30% at 20μM BaP and ∼10% in controls. Similarly, BaP-induced DNA damage was evaluated in C. elegans mutant strains deficient in DNA repair. In xpa-1 and apn-1 mutants BaP-induced comet formation was diminished to WT background levels suggesting that the damage formed by BaP that is detected in the comet assay is not recognised in cells deficient in nucleotide and base excision repair, respectively. In summary, our study provides a protocol to evaluate DNA damage of environmental pollutants in whole nematodes using the comet assay. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Assembling and auditing a comprehensive DNA barcode reference library for European marine fishes.

    PubMed

    Oliveira, L M; Knebelsberger, T; Landi, M; Soares, P; Raupach, M J; Costa, F O

    2016-12-01

    A large-scale comprehensive reference library of DNA barcodes for European marine fishes was assembled, allowing the evaluation of taxonomic uncertainties and species genetic diversity that were otherwise hidden in geographically restricted studies. A total of 4118 DNA barcodes were assigned to 358 species generating 366 Barcode Index Numbers (BIN). Initial examination revealed as much as 141 BIN discordances (more than one species in each BIN). After implementing an auditing and five-grade (A-E) annotation protocol, the number of discordant species BINs was reduced to 44 (13% grade E), while concordant species BINs amounted to 271 (78% grades A and B) and 14 other had insufficient data (grade D). Fifteen species displayed comparatively high intraspecific divergences ranging from 2·6 to 18·5% (grade C), which is biologically paramount information to be considered in fish species monitoring and stock assessment. On balance, this compilation contributed to the detection of 59 European fish species probably in need of taxonomic clarification or re-evaluation. The generalized implementation of an auditing and annotation protocol for reference libraries of DNA barcodes is recommended. © 2016 The Fisheries Society of the British Isles.

  10. Comparative Analytical Utility of DNA Derived from Alternative Human Specimens for Molecular Autopsy and Diagnostics

    PubMed Central

    Klassen, Tara L.; von Rüden, Eva-Lotta; Drabek, Janice; Noebels, Jeffrey L.; Goldman, Alica M.

    2013-01-01

    Genetic testing and research have increased the demand for high-quality DNA that has traditionally been obtained by venipuncture. However, venous blood collection may prove difficult in special populations and when large-scale specimen collection or exchange is prerequisite for international collaborative investigations. Guthrie/FTA card–based blood spots, buccal scrapes, and finger nail clippings are DNA-containing specimens that are uniquely accessible and thus attractive as alternative tissue sources (ATS). The literature details a variety of protocols for extraction of nucleic acids from a singular ATS type, but their utility has not been systematically analyzed in comparison with conventional sources such as venous blood. Additionally, the efficacy of each protocol is often equated with the overall nucleic acid yield but not with the analytical performance of the DNA during mutation detection. Together with a critical in-depth literature review of published extraction methods, we developed and evaluated an all-inclusive approach for serial, systematic, and direct comparison of DNA utility from multiple biological samples. Our results point to the often underappreciated value of these alternative tissue sources and highlight ways to maximize the ATS-derived DNA for optimal quantity, quality, and utility as a function of extraction method. Our comparative analysis clarifies the value of ATS in genomic analysis projects for population-based screening, diagnostics, molecular autopsy, medico-legal investigations, or multi-organ surveys of suspected mosaicisms. PMID:22796560

  11. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    DOE PAGES

    None

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illuminamore » 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.« less

  12. High frequency detection of Toxoplasma gondii DNA in human neonatal tissue from Libya.

    PubMed

    Haq, Sameena Z H; Abushahama, Muftah S; Gerwash, Omar; Hughes, Jacqueline M; Wright, Elizabeth A; Elmahaishi, Mohamed S; Lun, Zhao-Rong; Thomasson, Denise; Hide, Geoff

    2016-09-01

    Toxoplasma gondii is a parasite that causes significant disease in humans. Toxoplasmosis is normally asymptomatic, unless associated with congenital transmission, or in immunocompromised people. Congenital transmission generally occurs at low frequencies. In this study, we use PCR to investigate possible congenital transmission of T. gondii during pregnancy in a cohort of mothers from Libya. Two hundred and seventy two pregnant women (producing 276 neonates) were recruited to obtain umbilical cord tissue from their neonates at birth; DNA was extracted from that tissue and tested for T. gondii DNA using two specific PCR protocols based on the sag 1 and sag 3 genes. Toxoplasma gondii DNA was detected in the umbilical cord DNA from 27 of the 276 neonates giving a prevalence of 9.9% (95% CI 6.8-13.9%). Compared with more commonly reported rates of congenital transmission of 0.1% of live births, this is high. There was no association of infection with unsuccessful pregnancy. This study shows a high frequency presence of T. gondii DNA associated with neonatal tissue at birth in this cohort of 276 neonates from Libya. Although PCR cannot detect living parasites, there is the possibility that this indicates a higher than usual frequency of congenital transmission. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples.

    PubMed

    Maukonen, Johanna; Simões, Catarina; Saarela, Maria

    2012-03-01

    Recently several human health-related microbiota studies have had partly contradictory results. As some differences may be explained by methodologies applied, we evaluated how different storage conditions and commonly used DNA-extraction kits affect bacterial composition, diversity, and numbers of human fecal microbiota. According to our results, the DNA-extraction did not affect the diversity, composition, or quantity of Bacteroides spp., whereas after a week's storage at -20 °C, the numbers of Bacteroides spp. were 1.6-2.5 log units lower (P < 0.05). Furthermore, the numbers of predominant bacteria, Eubacterium rectale (Erec)-group, Clostridium leptum group, bifidobacteria, and Atopobium group were 0.5-4 log units higher (P < 0.05) after mechanical DNA-extraction as detected with qPCR, regardless of storage. Furthermore, the bacterial composition of Erec-group differed significantly after different DNA-extractions; after enzymatic DNA-extraction, the most prevalent genera detected were Roseburia (39% of clones) and Coprococcus (10%), whereas after mechanical DNA-extraction, the most prevalent genera were Blautia (30%), Coprococcus (13%), and Dorea (10%). According to our results, rigorous mechanical lysis enables detection of higher bacterial numbers and diversity from human fecal samples. As it was shown that the results of clostridial and actinobacterial populations are highly dependent on the DNA-extraction methods applied, the use of different DNA-extraction protocols may explain the contradictory results previously obtained. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Protocol for quantitative tracing of surface water with synthetic DNA

    NASA Astrophysics Data System (ADS)

    Foppen, J. W.; Bogaard, T. A.

    2012-04-01

    Based on experiments we carried out in 2010 with various synthetic single stranded DNA markers with a size of 80 nucleotides (ssDNA; Foppen et al., 2011), we concluded that ssDNA can be used to carry out spatially distributed multi-tracer experiments in the environment. Main advantages are in principle unlimited amount of tracers, environmental friendly and tracer recovery at very high dilution rates (detection limit is very low). However, when ssDNA was injected in headwater streams, we found that at selected downstream locations, the total mass recovery was less than 100%. The exact reason for low mass recovery was unknown. In order to start identifying the cause of the loss of mass in these surface waters, and to increase our knowledge of the behaviour of synthetic ssDNA in the environment, we examined the effect of laboratory and field protocols working with artificial DNA by performing numerous batch experiments. Then, we carried out several field tests in different headwater streams in the Netherlands and in Luxembourg. The laboratory experiments consisted of a batch of water in a vessel with in the order of 10^10 ssDNA molecules injected into the batch. The total duration of each experiment was 10 hour, and, at regular time intervals, 100 µl samples were collected in a 1.5 ml Eppendorf vial for qPCR analyses. The waters we used ranged from milliQ water to river water with an Electrical Conductivity of around 400 μS/cm. The batch experiments were performed in different vessel types: polyethylene bottles, polypropylene copolymer bottles , and glass bottles. In addition, two filter types were tested: 1 µm pore size glass fibre filters and 0.2 µm pore size cellulose acetate filters. Lastly, stream bed sediment was added to the batch experiments to quantify interaction of the DNA with sediment. For each field experiment around 10^15 ssDNA molecules were injected, and water samples were collected 100 - 600 m downstream of the point of injection. Additionally, the field tests were performed with salt and deuterium as tracer. To study possible decay by sunlight and/or microbial activity for synthetic DNA, immediately in the field and for the duration of the entire experiment, we carried out batch experiments. All samples were stored in a 1.5 ml Eppendorf vial in a cool-box in dry ice (-80°C). Quantitative PCR on a Mini Opticon (Bio Rad, Hercules, CA, USA) was carried out to determine DNA concentrations in the samples. Results showed the importance of a strict protocol for working with ssDNA as a tracer for quantitative tracing, since ssDNA interacts with surface areas of glass and plastic, depending on water quality and ionic strength. Interaction with the sediment and decay due to sunlight and/or microbial activity was negligible in most cases. The ssDNA protocol was then tested in natural streams. Promising results were obtained using ssDNA as quantitative tracer. The breakthrough curves using ssDNA were similar to the ones of salt or deuterium. We will present the revised protocol to use ssDNA for multi-tracing experiments in natural streams and discuss the opportunities and limitations.

  15. Molecular tools for the identification of Tuber melanosporum in agroindustry.

    PubMed

    Séjalon-Delmas, N; Roux, C; Martins, M; Kulifaj, M; Bécard, G; Dargent, R

    2000-06-01

    Tuber melanosporum Vitt., Tuber magnatum Pico, and Tuber uncinatum Chat. can be differentiated by their morphological characters. Fraud problems have arisen recently with the importation to Europe of truffles from China. T. melanosporum is morphologically very close, but distinct from the Chinese species [Tuber indicum (Cooke and Massee) and T. himalayense BC (Zhang and Winter)]. We have optimized molecular tools to unequivocally identify T. melanosporum. DNA extraction from ascocarps of black truffles is not straightforward. Problems to obtain pure DNA are due to high contents of phenolic compounds, melanine, and various polymers (proteins, polysaccharides, etc). These compounds coprecipitate with the DNA during extraction and strongly inhibit the PCR reaction. We have developed an efficient and reliable protocol for DNA extraction from truffle ascocarps. It was used successfully for DNA extraction from mycorrhizal root tips as well as from canned preparations of T. melanosporum. Several approaches to identify T. melanosporum by PCR were developed. Two specific primers for T. melanosporum were designed after comparison of the ITS region of this species with those of three Chinese fungi. They proved to be efficient to specifically detect the presence of T. melanosporum by PCR. The mycorrhizal status of trees inoculated with T. melanosporum but unable to produce truffles was confirmed in a single-step PCR reaction. A multiplex PCR approach was also developed with three sets of primers (including a specific one for Chinese truffles) to detect, in one PCR reaction, the presence of any other Tuber species mixed with T. melanosporum ascocarps. This optimized protocol, in association with the specific primers we designed, is applicable to quality control in the truffle industry from the production stages to final commercial products.

  16. Establishment and Application of a Loop-Mediated Isothermal Amplification Method for Simple, Specific, Sensitive and Rapid Detection of Toxoplasma gondii

    PubMed Central

    CAO, Lili; CHENG, Ronghua; YAO, Lin; YUAN, Shuxian; YAO, Xinhua

    2013-01-01

    ABSTRACT The Loop-mediated isothermal amplification (LAMP) method amplifies DNA with high simply, specificity, sensitivity and rapidity. In this study, A LAMP assay with 6 primers targeting a highly conserved region of the GRA1 gene was developed to diagnose Toxoplasma gondii. The reaction time of the LAMP assay was shortened to 30 min after optimizing the reaction system. The LAMP assay was found to be highly specific and stable. The detection limit of the LAMP assay was 10 copies, the same as that of the conventional PCR. We used the LAMP assay to develop a real-time fluorogenic protocol to quantitate T. gondii DNA and generated a log-linear regression plot by plotting the time-to-threshold values against genomic equivalent copies. Furthermore, the LAMP assay was applied to detect T. gondii DNA in 423 blood samples and 380 lymph node samples from 10 pig farms, and positive results were obtained for 7.8% and 8.2% of samples, respectively. The results showed that the LAMP method is slightly more sensitive than conventional PCR (6.1% and 7.6%). Positive samples obtained from 6 pig farms. The LAMP assay established in this study resulted in simple, specific, sensitive and rapid detection of T. gondii DNA and is expected to play an important role in clinical detection of T. gondii. PMID:23965849

  17. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    PubMed

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Detection of Hepatocyte Clones Containing Integrated Hepatitis B Virus DNA Using Inverse Nested PCR.

    PubMed

    Tu, Thomas; Jilbert, Allison R

    2017-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC), leading to ~600,000 deaths per year worldwide. Many of the steps that occur during progression from the normal liver to cirrhosis and/or HCC are unknown. Integration of HBV DNA into random sites in the host cell genome occurs as a by-product of the HBV replication cycle and forms a unique junction between virus and cellular DNA. Analyses of integrated HBV DNA have revealed that HCCs are clonal and imply that they develop from the transformation of hepatocytes, the only liver cell known to be infected by HBV. Integrated HBV DNA has also been shown, at least in some tumors, to cause insertional mutagenesis in cancer driver genes, which may facilitate the development of HCC. Studies of HBV DNA integration in the histologically normal liver have provided additional insight into HBV-associated liver disease, suggesting that hepatocytes with a survival or growth advantage undergo high levels of clonal expansion even in the absence of oncogenic transformation. Here we describe inverse nested PCR (invPCR), a highly sensitive method that allows detection, sequencing, and enumeration of virus-cell DNA junctions formed by the integration of HBV DNA. The invPCR protocol is composed of two major steps: inversion of the virus-cell DNA junction and single-molecule nested PCR. The invPCR method is highly specific and inexpensive and can be tailored to DNA extracted from large or small amounts of liver. This procedure also allows detection of genome-wide random integration of any known DNA sequence and is therefore a useful technique for molecular biology, virology, and genetic research.

  19. Development of a portable NanoAptamer analyzer for the detection of bisphenol A

    NASA Astrophysics Data System (ADS)

    Son, Ahjeong; Lim, Hyun Jeong; Chua, Beelee

    2017-04-01

    We have demonstrated a portable NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (< 1 ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. NanoAptamer assay was developed and used as a sensing mechanism where signaling DNA and QD655 was tethered to QD565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD655 from the complex and hence corresponding decrease in QD655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0 ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients.

  20. Detection of bisphenol A using palm-size NanoAptamer analyzer.

    PubMed

    Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2017-08-15

    We have demonstrated a palm-size NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (<1ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. Modified NanoGene assay was used as the sensing mechanism where signaling DNA and QD 655 was tethered to QD 565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD 655 from the complex and hence corresponding decrease in QD 655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Evaluation of Aspergillus PCR protocols for testing serum specimens.

    PubMed

    White, P Lewis; Mengoli, Carlo; Bretagne, Stéphane; Cuenca-Estrella, Manuel; Finnstrom, Niklas; Klingspor, Lena; Melchers, Willem J G; McCulloch, Elaine; Barnes, Rosemary A; Donnelly, J Peter; Loeffler, Juergen

    2011-11-01

    A panel of human serum samples spiked with various amounts of Aspergillus fumigatus genomic DNA was distributed to 23 centers within the European Aspergillus PCR Initiative to determine analytical performance of PCR. Information regarding specific methodological components and PCR performance was requested. The information provided was made anonymous, and meta-regression analysis was performed to determine any procedural factors that significantly altered PCR performance. Ninety-seven percent of protocols were able to detect a threshold of 10 genomes/ml on at least one occasion, with 83% of protocols reproducibly detecting this concentration. Sensitivity and specificity were 86.1% and 93.6%, respectively. Positive associations between sensitivity and the use of larger sample volumes, an internal control PCR, and PCR targeting the internal transcribed spacer (ITS) region were shown. Negative associations between sensitivity and the use of larger elution volumes (≥100 μl) and PCR targeting the mitochondrial genes were demonstrated. Most Aspergillus PCR protocols used to test serum generate satisfactory analytical performance. Testing serum requires less standardization, and the specific recommendations shown in this article will only improve performance.

  2. Evaluation of Aspergillus PCR Protocols for Testing Serum Specimens▿†

    PubMed Central

    White, P. Lewis; Mengoli, Carlo; Bretagne, Stéphane; Cuenca-Estrella, Manuel; Finnstrom, Niklas; Klingspor, Lena; Melchers, Willem J. G.; McCulloch, Elaine; Barnes, Rosemary A.; Donnelly, J. Peter; Loeffler, Juergen

    2011-01-01

    A panel of human serum samples spiked with various amounts of Aspergillus fumigatus genomic DNA was distributed to 23 centers within the European Aspergillus PCR Initiative to determine analytical performance of PCR. Information regarding specific methodological components and PCR performance was requested. The information provided was made anonymous, and meta-regression analysis was performed to determine any procedural factors that significantly altered PCR performance. Ninety-seven percent of protocols were able to detect a threshold of 10 genomes/ml on at least one occasion, with 83% of protocols reproducibly detecting this concentration. Sensitivity and specificity were 86.1% and 93.6%, respectively. Positive associations between sensitivity and the use of larger sample volumes, an internal control PCR, and PCR targeting the internal transcribed spacer (ITS) region were shown. Negative associations between sensitivity and the use of larger elution volumes (≥100 μl) and PCR targeting the mitochondrial genes were demonstrated. Most Aspergillus PCR protocols used to test serum generate satisfactory analytical performance. Testing serum requires less standardization, and the specific recommendations shown in this article will only improve performance. PMID:21940479

  3. Dose-Response Assessment of Four Genotoxic Chemicals in a Combined Mouse and Rat Micronucleus and Comet Assay Protocol

    PubMed Central

    Recio, Leslie; Hobbs, Cheryl; Caspary, William; Witt, Kristine L.

    2012-01-01

    The in vivo micronucleus (MN) assay has proven to be an effective measure of genotoxicity potential. However, sampling a single tissue (bone marrow) for a single indicator of genetic damage using the MN assay provides a limited genotoxicity profile. The in vivo alkaline (pH>13) Comet assay, which detects a broad spectrum of DNA damage, can be applied to a variety of rodent tissues following administration of test agents. To determine if the Comet assay is a useful supplement to the in vivo MN assay, a combined test protocol (MN/Comet assay) was conducted in male B6C3F1 mice and F344/N rats using four model genotoxicants: ethyl methanesulfonate (EMS), acrylamide (ACM), cyclophosphamide (CP), and vincristine sulfate (VS). Test compounds were administered on 4 consecutive days at 24-hour intervals (VS was administered to rats for 3 days); animals were euthanized 4 hours after the last administration. All compounds induced significant increases in micronucleated reticulocytes (MN-RET) in the peripheral blood of mice, and all but ACM induced MN-RET in rats. EMS and ACM induced significant increases in DNA damage, measured by the Comet assay, in multiple tissues of mice and rats. CP-induced DNA damage was detected in leukocytes and duodenum cells. VS, a spindle fiber disrupting agent, was negative in the Comet assay. Based on these results, the MN/Comet assay holds promise for providing more comprehensive assessments of potential genotoxicants, and the National Toxicology Program is presently using this combined protocol in its overall evaluation of the genotoxicity of substances of public health concern. PMID:20371966

  4. DNA-based techniques for authentication of processed food and food supplements.

    PubMed

    Lo, Yat-Tung; Shaw, Pang-Chui

    2018-02-01

    Authentication of food or food supplements with medicinal values is important to avoid adverse toxic effects, provide consumer rights, as well as for certification purpose. Compared to morphological and spectrometric techniques, molecular authentication is found to be accurate, sensitive and reliable. However, DNA degradation and inclusion of inhibitors may lead to failure in PCR amplification. This paper reviews on the existing DNA extraction and PCR protocols, and the use of small size DNA markers with sufficient discriminative power for molecular authentication. Various emerging new molecular techniques such as isothermal amplification for on-site diagnosis, next-generation sequencing for high-throughput species identification, high resolution melting analysis for quick species differentiation, DNA array techniques for rapid detection and quantitative determination in food products are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Detection of Galba truncatula, Fasciola hepatica and Calicophoron daubneyi environmental DNA within water sources on pasture land, a future tool for fluke control?

    PubMed

    Jones, Rhys Aled; Brophy, Peter M; Davis, Chelsea N; Davies, Teri E; Emberson, Holly; Rees Stevens, Pauline; Williams, Hefin Wyn

    2018-06-08

    Increasing trematode prevalence and disease occurrence in livestock is a major concern. With the global spread of anthelmintic resistant trematodes, future control strategies must incorporate approaches focusing on avoidance of infection. The reliance of trematodes on intermediate snail hosts to successfully complete their life-cycle means livestock infections are linked to the availability of respective snail populations. By identifying intermediate snail host habitats, infection risk models may be strengthened whilst farmers may confidently apply pasture management strategies to disrupt the trematode life-cycle. However, accurately identifying and mapping these risk areas is challenging. In this study, environmental DNA (eDNA) assays were designed to reveal Galba truncatula, Fasciola hepatica and Calicophoron daubneyi presence within water sources on pasture land. eDNA was captured using a filter-based protocol, with DNA extracted using the DNeasy® PowerSoil® kit and amplified via PCR. In total, 19 potential G. truncatula habitats were analysed on four farms grazed by livestock infected with both F. hepatica and C. daubneyi. Galba truncatula eDNA was identified in 10/10 habitats where the snail was detected by eye. Galba truncatula eDNA was also identified in four further habitats where the snail was not physically detected. Fasciola hepatica and C. daubneyi eDNA was also identified in 5/19 and 8/19 habitats, respectively. This study demonstrated that eDNA assays have the capabilities of detecting G. truncatula, F. hepatica and C. daubneyi DNA in the environment. Further assay development will be required for a field test capable of identifying and quantifying F. hepatica and C. daubneyi infection risk areas, to support future control strategies. An eDNA test would also be a powerful new tool for epidemiological investigations of parasite infections on farms.

  6. Comparison of preprocessing methods and storage times for touch DNA samples

    PubMed Central

    Dong, Hui; Wang, Jing; Zhang, Tao; Ge, Jian-ye; Dong, Ying-qiang; Sun, Qi-fan; Liu, Chao; Li, Cai-xia

    2017-01-01

    Aim To select appropriate preprocessing methods for different substrates by comparing the effects of four different preprocessing methods on touch DNA samples and to determine the effect of various storage times on the results of touch DNA sample analysis. Method Hand touch DNA samples were used to investigate the detection and inspection results of DNA on different substrates. Four preprocessing methods, including the direct cutting method, stubbing procedure, double swab technique, and vacuum cleaner method, were used in this study. DNA was extracted from mock samples with four different preprocessing methods. The best preprocess protocol determined from the study was further used to compare performance after various storage times. DNA extracted from all samples was quantified and amplified using standard procedures. Results The amounts of DNA and the number of alleles detected on the porous substrates were greater than those on the non-porous substrates. The performances of the four preprocessing methods varied with different substrates. The direct cutting method displayed advantages for porous substrates, and the vacuum cleaner method was advantageous for non-porous substrates. No significant degradation trend was observed as the storage times increased. Conclusion Different substrates require the use of different preprocessing method in order to obtain the highest DNA amount and allele number from touch DNA samples. This study provides a theoretical basis for explorations of touch DNA samples and may be used as a reference when dealing with touch DNA samples in case work. PMID:28252870

  7. High Resolution Melting Analysis Targeting hsp70 as a Fast and Efficient Method for the Discrimination of Leishmania Species.

    PubMed

    Zampieri, Ricardo Andrade; Laranjeira-Silva, Maria Fernanda; Muxel, Sandra Marcia; Stocco de Lima, Ana Carolina; Shaw, Jeffrey Jon; Floeter-Winter, Lucile Maria

    2016-02-01

    Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol. Exploring the High Resolution Melting (HRM) dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR) targeting heat-shock protein 70 coding gene (hsp70) revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania) infantum chagasi, L. (L.) amazonensis, L. (L.) mexicana, L. (Viannia) lainsoni, L. (V.) braziliensis, L. (V.) guyanensis, L. (V.) naiffi and L. (V.) shawi, and three species found in Eurasia and Africa, including L. (L.) tropica, L. (L.) donovani and L. (L.) major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol. HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA.

  8. Transparent DNA/RNA Co-extraction Workflow Protocol Suitable for Inhibitor-Rich Environmental Samples That Focuses on Complete DNA Removal for Transcriptomic Analyses

    PubMed Central

    Lim, Natalie Y. N.; Roco, Constance A.; Frostegård, Åsa

    2016-01-01

    Adequate comparisons of DNA and cDNA libraries from complex environments require methods for co-extraction of DNA and RNA due to the inherent heterogeneity of such samples, or risk bias caused by variations in lysis and extraction efficiencies. Still, there are few methods and kits allowing simultaneous extraction of DNA and RNA from the same sample, and the existing ones generally require optimization. The proprietary nature of kit components, however, makes modifications of individual steps in the manufacturer’s recommended procedure difficult. Surprisingly, enzymatic treatments are often performed before purification procedures are complete, which we have identified here as a major problem when seeking efficient genomic DNA removal from RNA extracts. Here, we tested several DNA/RNA co-extraction commercial kits on inhibitor-rich soils, and compared them to a commonly used phenol-chloroform co-extraction method. Since none of the kits/methods co-extracted high-quality nucleic acid material, we optimized the extraction workflow by introducing small but important improvements. In particular, we illustrate the need for extensive purification prior to all enzymatic procedures, with special focus on the DNase digestion step in RNA extraction. These adjustments led to the removal of enzymatic inhibition in RNA extracts and made it possible to reduce genomic DNA to below detectable levels as determined by quantitative PCR. Notably, we confirmed that DNase digestion may not be uniform in replicate extraction reactions, thus the analysis of “representative samples” is insufficient. The modular nature of our workflow protocol allows optimization of individual steps. It also increases focus on additional purification procedures prior to enzymatic processes, in particular DNases, yielding genomic DNA-free RNA extracts suitable for metatranscriptomic analysis. PMID:27803690

  9. Design and performance testing of a real-time PCR assay for sensitive and reliable direct quantification of Brettanomyces in wine.

    PubMed

    Tessonnière, H; Vidal, S; Barnavon, L; Alexandre, H; Remize, F

    2009-02-28

    Because the yeast Brettanomyces produces volatile phenols and acetic acid, it is responsible for wine spoilage. The uncontrolled accumulation of these molecules in wine leads to sensorial defects that compromise wine quality. The need for a rapid, specific, sensitive and reliable method to detect this spoilage yeast has increased over the last decade. All these requirements are met by real-time PCR. We here propose improvements of existing methods to enhance the robustness of the assay. Six different protocols to isolate DNA from a wine and three PCR mix compositions were tested, and the best method was selected. Insoluble PVPP addition during DNA extraction by a classical phenol:chloroform protocol succeeded in the relief of PCR inhibitors from wine. We developed an internal control which was efficient to avoid false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The method was evaluated by an intra-laboratory study for its specificity, linearity, repeatability and reproducibility. A standard curve was established from 14 different wines artificially inoculated. The quantification limit was 31 cfu/mL.

  10. Detection of Variation in Long-Term Micropropagated Mature Pistachio via DNA-Based Molecular Markers.

    PubMed

    Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden

    2016-12-01

    Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.

  11. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    PubMed

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.

  12. Development of a Quantitative Recombinase Polymerase Amplification Assay with an Internal Positive Control

    PubMed Central

    Richards-Kortum, Rebecca

    2015-01-01

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest. PMID:25867513

  13. Development of a quantitative recombinase polymerase amplification assay with an internal positive control.

    PubMed

    Crannell, Zachary A; Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-03-30

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.

  14. Northern Blot Detection of Virus-Derived Small Interfering RNAs in Caenorhabditis elegans Using Nonradioactive Oligo Probes.

    PubMed

    Long, Tianyun; Lu, Rui

    2017-01-01

    Northern blot analysis has been widely used as a tool for detection and characterization of specific RNA molecules. When coupled with radioactive probe northern blot allows for robust detection and characterization of small RNA molecules of trace amount. Here, we describe the detection and size characterization of virus-derived small interfering RNAs (vsiRNAs) in C. elegans using nonradioactive DNA oligo probes in northern blotting. Our protocol allows for the detection and characterization of not only primary vsiRNAs but also secondary vsiRNAs, a class of single-stranded vsiRNAs that has distinct migration pattern, and can be easily adapted to the detection of vsiRNAs in other organisms.

  15. Simple procedures to obtain exogenous internal controls for use in RT-PCR detection of bovine pestiviruses.

    PubMed

    Golemba, Marcelo D; Parreño, Viviana; Jones, Leandro R

    2008-06-01

    Pestiviruses are ubiquitous pathogens of cattle and frequent adventitious viruses in biologicals. Furthermore, it has been suggested that these agents might be related to infantile gastroenteritis and microencephaly. Since the virus is highly prevalent in fetal bovine serum, the risk of contamination is high in most laboratories. Thus, the implementation of detection methods in all laboratories is of worth. Despite continuous surveillance, these agents have been detected in cell lines, fetal bovine serum, live and inactivated animal and human vaccines and interferon for human use. In this report, DNA and RNA internal controls (ICs) which can be implemented in laboratories with minimal equipment are described. The developed standards can be added before RNA purification, allowing to monitor all steps of the protocol (viral RNA extraction, reverse transcription and cDNA amplification). It is shown that inhibitory effects that could lead to decreased sensitivity can be minimized by controlling the amount of mimic molecules added to the samples. A method to avoid the problem of DNA traces present in in vitro transcribed RNA preparations is provided.

  16. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target.

    PubMed

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring.

  17. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target

    PubMed Central

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring. PMID:25898278

  18. Bacterial and fungal DNA extraction from blood samples: automated protocols.

    PubMed

    Lorenz, Michael G; Disqué, Claudia; Mühl, Helge

    2015-01-01

    Automation in DNA isolation is a necessity for routine practice employing molecular diagnosis of infectious agents. To this end, the development of automated systems for the molecular diagnosis of microorganisms directly in blood samples is at its beginning. Important characteristics of systems demanded for routine use include high recovery of microbial DNA, DNA-free containment for the reduction of DNA contamination from exogenous sources, DNA-free reagents and consumables, ideally a walkaway system, and economical pricing of the equipment and consumables. Such full automation of DNA extraction evaluated and in use for sepsis diagnostics is yet not available. Here, we present protocols for the semiautomated isolation of microbial DNA from blood culture and low- and high-volume blood samples. The protocols include a manual pretreatment step followed by automated extraction and purification of microbial DNA.

  19. Microbial Contamination of Allende and Murchison Carbonaceous Chondrites; Developing a Protocol for Life Detection in Extraterrestrial Materials Using Biotechnology

    NASA Technical Reports Server (NTRS)

    Steele, A.; Whitby, C.; Griffin, C.; Toporski, J. K. W.; Westall, F.; Saunders, J. R.; McKay, D. S.

    2001-01-01

    The arguments used to refute the McKay et al., (1996) hypothesis of possible Martian life in ALH84001 failed to use contamination of the meteorite as a source. This has worrying implications for our ability to detect terrestrial microbiota in meteorites and therefore any potential extraterrestrial biosignatures in both meteorites and possible returned samples. We report on imaging and microbial culturing of both Allende and Murchison carbonaceous chondrites and on the use of molecular biology techniques on a sample of Allende. Contaminating fungi and bacteria were observed (in the case of Murchison) and cultured from both meteorites. DNA was successfully extracted and subsequent PCR showed the presence of both bacterial and fungal DNA although no Archaea were detected. These results show that it is possible to use molecular biological techniques on very small quantities (300 mg) of extraterrestrial material.

  20. Sensitive and specific identification by polymerase chain reaction of Eimeria tenella and Eimeria maxima, important protozoan pathogens in laboratory avian facilities.

    PubMed

    Lee, Hyun-A; Hong, Sunhwa; Chung, Yungho; Kim, Okjin

    2011-09-01

    Eimeria tenella and Eimeria maxima are important pathogens causing intracellular protozoa infections in laboratory avian animals and are known to affect experimental results obtained from contaminated animals. This study aimed to find a fast, sensitive, and efficient protocol for the molecular identification of E. tenella and E. maxima in experimental samples using chickens as laboratory avian animals. DNA was extracted from fecal samples collected from chickens and polymerase chain reaction (PCR) analysis was employed to detect E. tenella and E. maxima from the extracted DNA. The target nucleic acid fragments were specifically amplified by PCR. Feces secreting E. tenella and E. maxima were detected by a positive PCR reaction. In this study, we were able to successfully detect E. tenella and E. maxima using the molecular diagnostic method of PCR. As such, we recommended PCR for monitoring E. tenella and E. maxima in laboratory avian facilities.

  1. Hotspot mutations in cancer genes may be missed in routine diagnostics due to neighbouring sequence variants.

    PubMed

    Bartels, Stephan; Schipper, Elisa; Hasemeier, Britta; Kreipe, Hans; Lehmann, Ulrich

    2018-05-27

    The detection of hotspot mutations in key cancer genes is now an essential part of the diagnostic work-up in molecular pathology. Nearly all assays for mutation detection involve an amplification step. A second single nucleotide variant (SNV) on the same allele adjacent to a mutational hotspot can interfere with primer binding, leading to unnoticed allele-specific amplification of the wild type allele and thereby false-negative mutation testing. We present two diagnostic cases with false negative sequence results for JAK2 and SRSF2. In both cases mutations would have escaped detection if only one strand of DNA had been analysed. Because many commercially available diagnostic kits rely on the analysis of only one DNA strand they are prone to fail in cases like these. Detailed protocols and quality control measures to prevent corresponding pitfalls are presented. Copyright © 2017. Published by Elsevier Inc.

  2. A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.

    PubMed

    Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie

    2011-06-15

    A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A rapid and efficient DNA extraction protocol from fresh and frozen human blood samples.

    PubMed

    Guha, Pokhraj; Das, Avishek; Dutta, Somit; Chaudhuri, Tapas Kumar

    2018-01-01

    Different methods available for extraction of human genomic DNA suffer from one or more drawbacks including low yield, compromised quality, cost, time consumption, use of toxic organic solvents, and many more. Herein, we aimed to develop a method to extract DNA from 500 μL of fresh or frozen human blood. Five hundred microliters of fresh and frozen human blood samples were used for standardization of the extraction procedure. Absorbance at 260 and 280 nm, respectively, (A 260 /A 280 ) were estimated to check the quality and quantity of the extracted DNA sample. Qualitative assessment of the extracted DNA was checked by Polymerase Chain reaction and double digestion of the DNA sample. Our protocol resulted in average yield of 22±2.97 μg and 20.5±3.97 μg from 500 μL of fresh and frozen blood, respectively, which were comparable to many reference protocols and kits. Besides yielding bulk amount of DNA, our protocol is rapid, economical, and avoids toxic organic solvents such as Phenol. Due to unaffected quality, the DNA is suitable for downstream applications. The protocol may also be useful for pursuing basic molecular researches in laboratories having limited funds. © 2017 Wiley Periodicals, Inc.

  4. Long distance PCR in detection of inversion mutations of F8C gene in hemophilia A patients.

    PubMed

    Poláková, H; Zmetáková, I; Kádasi, L'

    2003-06-01

    In the present paper, the experience with detection of intron 22 inversion of F8C gene in severe hemophilia A patients using a recently described long-distance PCR (LD-PCR) method was reported. To test the sensitivity and the specifity of the LD-PCR, analysis of 46 DNA samples of patients and their family members, previously tested by Southern hybridization, was performed. In addition, 16 DNA samples of severe hemophilia A patients in which causative mutation was unknown, were included in analysis. Four-primers, P, Q, A&B, which are able to differentiate between the affected males with or without the inversion, and in female carriers, were used in LD-PCR. Two primers, P&Q, are located within the F8C gene flanking int22h1. Two further primers, A&B, flank int22h2 and int22h3, extragene homologs of int22h1. Nine combinations of four primers were used to identify the optimal one. Four-primers (P, Q, A&B), three-primers (P,Q & B;P, A & B; A, B & Q;P, Q & A) and two-primers (A & B; P & Q; A & Q; P & B) PCR amplifications were performed in the hemophilia A patients as well as in obligate carriers DNA samples. Successful amplification required introduction of some modifications of the original protocol. The most reproducible and uniform results were obtained using two-primers PCR, performed in four single reactions. Thus, a total of 46 DNA samples, 22 were hemizygous for inversion, 6 without the inversion, 14 carriers and 4 non-carriers of inversion. Perfect correlation between genotypes determined using Southern hybridization and LD-PCR was achieved. The optimalized two-primers LD-PCR protocol was used for analysis of 16 DNA samples of severe hemophilia A patients with unknown mutation. Ten cases of inversions and six cases without them were detected. Thus in additional 10 severe hemophilic patients DNA diagnosis was completed. The most successful and reproducible results were obtained performing four single LD-PCR reactions with combinations of two-primers A & B; P & Q; A&Q, and P&B in each DNA sample and this approach is recommended for routine using in clinical practice.

  5. Detection and interrogation of biomolecules via nanoscale probes: From fundamental physics to DNA sequencing

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael

    2013-03-01

    A rapid and low-cost method to sequence DNA would revolutionize personalized medicine, where genetic information is used to diagnose, treat, and prevent diseases. There is a longstanding interest in nanopores as a platform for rapid interrogation of single DNA molecules. I will discuss a sequencing protocol based on the measurement of transverse electronic currents during the translocation of single-stranded DNA through nanopores. Using molecular dynamics simulations coupled to quantum mechanical calculations of the tunneling current, I will show that the DNA nucleotides are predicted to have distinguishable electronic signatures in experimentally realizable systems. Several recent experiments support our theoretical predictions. In addition to their possible impact in medicine and biology, the above methods offer ideal test beds to study open scientific issues in the relatively unexplored area at the interface between solids, liquids, and biomolecules at the nanometer length scale. http://mike.zwolak.org

  6. Contamination during criminal investigation: Detecting police contamination and secondary DNA transfer from evidence bags.

    PubMed

    Fonneløp, Ane Elida; Johannessen, Helen; Egeland, Thore; Gill, Peter

    2016-07-01

    As the profiling systems used in forensic analyses have become more sensitive in recent years, the risk of detecting a contamination in a DNA sample has increased proportionally. This requires more stringent work protocols and awareness to minimize the chance of contamination. Although there is high consciousness on contamination and best practice procedures in forensic labs, the same requirements are not always applied by the police. In this study we have investigated the risk of contamination from police staff. Environmental DNA was monitored by performing wipe tests (sampling of hot spots) at two large police units (scenes of crime departments). Additionally, the DNA profiles of the scenes of crime officers were compared to casework samples that their own unit had investigated in the period of 2009-2015. Furthermore, a pilot study to assess whether DNA from the outside package of an exhibit could be transferred to a DNA sample was carried out. Environmental DNA was detected in various samples from hot spots. Furthermore, 16 incidences of previously undetected police-staff contamination were found in casework that had been submitted between 2009 and 2015. In 6 cases the police officers with a matching DNA profile reported that they had not been involved with the case. We have demonstrated that DNA from the outside package can be transferred to an exhibit during examination. This experience demonstrates that when implementing the new multiplex systems, it is important to ensure that 'best practice' procedures are upgraded, and appropriate training is provided in order to ensure that police are aware of the increased contamination risks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Assessment of MagNA pure LC extraction system for detection of human papillomavirus (HPV) DNA in PreservCyt samples by the Roche AMPLICOR and LINEAR ARRAY HPV tests.

    PubMed

    Stevens, Matthew P; Rudland, Elice; Garland, Suzanne M; Tabrizi, Sepehr N

    2006-07-01

    Roche Molecular Systems recently released two PCR-based assays, AMPLICOR and LINEAR ARRAY (LA), for the detection and genotyping, respectively, of human papillomaviruses (HPVs). The manual specimen processing method recommended for use with both assays, AmpliLute, can be time-consuming and labor-intensive and is open to potential specimen cross-contamination. We evaluated the Roche MagNA Pure LC (MP) as an alternative for specimen processing prior to use with either assay. DNA was extracted from cervical brushings, collected in PreservCyt media, by AmpliLute and MP using DNA-I and Total Nucleic Acid (TNA) kits, from 150 patients with histologically confirmed cervical abnormalities. DNA was amplified and detected by AMPLICOR and the LA HPV test. Concordances of 96.5% (139 of 144) (kappa=0.93) and 95.1% (135 of 142) (kappa=0.90) were generated by AMPLICOR when we compared DNA extracts from AmpliLute to MP DNA-I and TNA, respectively. The HPV genotype profiles were identical in 78.7 and 74.7% of samples between AmpliLute and DNA-I or TNA, respectively. To improve LA concordance, all 150 specimens were extracted by MP DNA-I protocol after the centrifugation of 1-ml PreservCyt samples. This modified approach improved HPV genotype concordance levels between AmpliLute and MP DNA-I to 88.0% (P=0.043) without affecting AMPLICOR sensitivity. Laboratories that have an automated MP extraction system would find this procedure more feasible and easier to handle than the recommended manual extraction method and could substitute such extractions for AMPLICOR and LA HPV tests once internally validated.

  8. HER2 Oncogene-Induced DNA Damage Response as a Barrier that Must Be Overcome to Form Breast Tumors In Normal Mammary Epithelium

    DTIC Science & Technology

    2010-03-01

    Ras-driven lung carcinoma and chemically induced fibrosarcoma murine models (16). In breast carcinogenesis, apoptosis and senescence were detected in...permeabilized in 0.1% Triton-X before staining. The manu- facturer’s protocol for the MOM, Vectastain Elite ABCRabbit, or Rat kits (Vector Labs; cat no. PK

  9. Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions.

    PubMed

    Caraus, Iurie; Alsuwailem, Abdulaziz A; Nadon, Robert; Makarenkov, Vladimir

    2015-11-01

    Significant efforts have been made recently to improve data throughput and data quality in screening technologies related to drug design. The modern pharmaceutical industry relies heavily on high-throughput screening (HTS) and high-content screening (HCS) technologies, which include small molecule, complementary DNA (cDNA) and RNA interference (RNAi) types of screening. Data generated by these screening technologies are subject to several environmental and procedural systematic biases, which introduce errors into the hit identification process. We first review systematic biases typical of HTS and HCS screens. We highlight that study design issues and the way in which data are generated are crucial for providing unbiased screening results. Considering various data sets, including the publicly available ChemBank data, we assess the rates of systematic bias in experimental HTS by using plate-specific and assay-specific error detection tests. We describe main data normalization and correction techniques and introduce a general data preprocessing protocol. This protocol can be recommended for academic and industrial researchers involved in the analysis of current or next-generation HTS data. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Collection and Extraction of Occupational Air Samples for Analysis of Fungal DNA.

    PubMed

    Lemons, Angela R; Lindsley, William G; Green, Brett J

    2018-05-02

    Traditional methods of identifying fungal exposures in occupational environments, such as culture and microscopy-based approaches, have several limitations that have resulted in the exclusion of many species. Advances in the field over the last two decades have led occupational health researchers to turn to molecular-based approaches for identifying fungal hazards. These methods have resulted in the detection of many species within indoor and occupational environments that have not been detected using traditional methods. This protocol details an approach for determining fungal diversity within air samples through genomic DNA extraction, amplification, sequencing, and taxonomic identification of fungal internal transcribed spacer (ITS) regions. ITS sequencing results in the detection of many fungal species that are either not detected or difficult to identify to species level using culture or microscopy. While these methods do not provide quantitative measures of fungal burden, they offer a new approach to hazard identification and can be used to determine overall species richness and diversity within an occupational environment.

  11. Rapid Assessment of Genotoxicity by Flow Cytometric Detection of Cell Cycle Alterations.

    PubMed

    Bihari, Nevenka

    2017-01-01

    Flow cytometry is a convenient method for the determination of genotoxic effects of environmental pollution and can reveal genotoxic compounds in unknown environmental mixtures. It is especially suitable for the analyses of large numbers of samples during monitoring programs. The speed of detection is one of the advantages of this technique which permits the acquisition of 10 4 -10 5 cells per sample in 5 min. This method can rapidly detect cell cycle alterations resulting from DNA damage. The outcome of such an analysis is a diagram of DNA content across the cell cycle which indicates cell proliferation, G 2 arrests, G 1 delays, apoptosis, and ploidy.Here, we present the flow cytometric procedure for rapid assessment of genotoxicity via detection of cell cycle alterations. The described protocol simplifies the analysis of genotoxic effects in marine environments and is suitable for monitoring purposes. It uses marine mussel cells in the analysis and can be adapted to investigations on a broad range of marine invertebrates.

  12. Comparison of three DNA extraction methods for the detection and quantification of GMO in Ecuadorian manufactured food.

    PubMed

    Pacheco Coello, Ricardo; Pestana Justo, Jorge; Factos Mendoza, Andrés; Santos Ordoñez, Efrén

    2017-12-20

    In Ecuador, food products need to be labeled if exceeded 0.9% of transgenic content in whole products. For the detection of genetically modified organisms (GMOs), three DNA extraction methods were tested in 35 food products commercialized in Ecuador. Samples with positive amplification of endogenous genes were screened for the presence of the Cauliflower mosaic virus 35S-promoter (P35S) and the nopaline synthase-terminator (Tnos). TaqMan™ probes were used for determination of transgenic content of the GTS 40-3-2 and MON810 events through quantitative PCR (qPCR). Twenty-six processed food samples were positive for the P35S alone and eight samples for the Tnos and P35S. Absolute qPCR results indicated that eleven samples were positive for GTS 40-3-2 specific event and two for MON810 specific event. A total of nine samples for events GTS 40-3-2 and MON810 exceeded the umbral allowed of transgenic content in the whole food product with the specific events. Different food products may require different DNA extraction protocols for GMO detection through PCR. Among the three methods tested, the DNeasy mericon food kit DNA extraction method obtained higher proportion of amplified endogenous genes through PCR. Finally, event-specific GMOs were detected in food products in Ecuador.

  13. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients.

    PubMed

    Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W

    2004-01-01

    Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.

  14. Detection of multiple Mycoplasma species in bulk tank milk samples using real-time PCR and conventional culture and comparison of test sensitivities.

    PubMed

    Justice-Allen, A; Trujillo, J; Goodell, G; Wilson, D

    2011-07-01

    The objective of this study was to further validate a SYBR PCR protocol for Mycoplasma spp. by comparing it with standard microbial culture in the detection of Mycoplasma spp. in bulk tank milk samples. Additionally, we identified Mycoplasma spp. present by analysis of PCR-generated amplicons [dissociation (melt) temperature (T(m)), length, and DNA sequence]. The research presented herein tests the hypothesis that the SYBR PCR protocol is as sensitive as conventional culture for the detection of Mycoplasma spp. in bulk tank milk samples. Mycoplasmas cause several important disease syndromes in cattle, including mastitis in dairy cows. The standard diagnostic method at the herd level has been microbial isolation of mycoplasmas on 1 of several specialized media and speciation through biochemical or immunological techniques; repeated sampling schemes are recommended. The development of a real-time SYBR PCR protocol offers advantages in decrease of time to detection, cost, and complexity. The T(m) of the double-stranded DNA generated from the PCR reaction was used to detect the presence of and tentatively identify the species of mycoplasmas other than Mycoplasma bovis. In the SYBR PCR protocol, the presence of multiple species of mycoplasmas is indicated by an atypical dissociation curve. Gel electrophoresis and sequencing of the amplicons was used to confirm the mycoplasma species present when a non-M. bovis organism was detected (T(m) not equal to M. bovis) and used to identify all the mycoplasma species present for the samples with atypical dissociation curves. Mycoplasma bovis was identified in 83% of SYBR PCR mycoplasma-positive bulk tank samples. Another mycoplasma was identified either alone or in addition to M. bovis in 25% of SYBR PCR mycoplasma-positive bulk tank milk samples. Four species of mycoplasma other than M. bovis (Mycoplasma alkalescens, Mycoplasma arginini, Mycoplasma bovigenitalium, and Mycoplasma gateae) were identified in bulk tank milk samples tested with this method. Five farms had 2 mycoplasma species occurring at different times in their bulk tanks. Two mycoplasma species were identified in the same bulk tank sample in 7 instances on 2 farms. The finding of multiple Mycoplasma spp. coexisting on a farm and even in the same bulk tank milk sample indicates that the clinical significance of multiple mycoplasma species in the pathology of intramammary infections should be investigated further. In comparison with conventional culture, the SYBR PCR protocol was slightly (but not statistically significantly) more sensitive in the detection of mycoplasmas in bulk tank milk. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation.

    PubMed

    Nacheva, Elizabeth; Mokretar, Katya; Soenmez, Aynur; Pittman, Alan M; Grace, Colin; Valli, Roberto; Ejaz, Ayesha; Vattathil, Selina; Maserati, Emanuela; Houlden, Henry; Taanman, Jan-Willem; Schapira, Anthony H; Proukakis, Christos

    2017-01-01

    Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.

  16. DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation

    PubMed Central

    Nacheva, Elizabeth; Mokretar, Katya; Soenmez, Aynur; Pittman, Alan M.; Grace, Colin; Valli, Roberto; Ejaz, Ayesha; Vattathil, Selina; Maserati, Emanuela; Houlden, Henry; Taanman, Jan-Willem; Schapira, Anthony H.

    2017-01-01

    Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array “waves”, and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance. PMID:28683077

  17. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology

    PubMed Central

    2010-01-01

    Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1) DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2) Miniprep DNA from E. coli can be eluted with as little as 5 μl water, leading to high DNA concentrations (>1 μg/μl) for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG)-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3) Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4) High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research. PMID:20180960

  18. Overstretching of B-DNA with various pulling protocols: Appearance of structural polymorphism and S-DNA

    NASA Astrophysics Data System (ADS)

    Garai, Ashok; Mogurampelly, Santosh; Bag, Saientan; Maiti, Prabal K.

    2017-12-01

    We report a structural polymorphism of the S-DNA when a canonical B-DNA is stretched under different pulling protocols and provide a fundamental molecular understanding of the DNA stretching mechanism. Extensive all atom molecular dynamics simulations reveal a clear formation of S-DNA when the B-DNA is stretched along the 3' directions of the opposite strands (OS3) and is characterized by the changes in the number of H-bonds, entropy, and free energy. Stretching along the 5' directions of the opposite strands (OS5) leads to force induced melting form of the DNA. Interestingly, stretching along the opposite ends of the same strand leads to a coexistence of both the S- and melted M-DNA structures. We also do the structural characterization of the S-DNA by calculating various helical parameters. We find that the S-DNA has a twist of ˜10° which corresponds to a helical repeat length of ˜36 base pairs in close agreement with the previous experimental results. Moreover, we find that the free energy barrier between the canonical and overstretched states of DNA is higher for the same termini pulling protocol in comparison to all other protocols considered in this work. Overall, our observations not only reconcile with the available experimental results qualitatively but also enhance the understanding of different overstretched DNA structures.

  19. Sample-to-SNP kit: a reliable, easy and fast tool for the detection of HFE p.H63D and p.C282Y variations associated to hereditary hemochromatosis.

    PubMed

    Nielsen, Peter B; Petersen, Maja S; Ystaas, Viviana; Andersen, Rolf V; Hansen, Karin M; Blaabjerg, Vibeke; Refstrup, Mette

    2012-10-01

    Classical hereditary hemochromatosis involves the HFE-gene and diagnostic analysis of the DNA variants HFE p.C282Y (c.845G>A; rs1800562) and HFE p.H63D (c.187C>G; rs1799945). The affected protein alters the iron homeostasis resulting in iron overload in various tissues. The aim of this study was to validate the TaqMan-based Sample-to-SNP protocol for the analysis of the HFE-p.C282Y and p.H63D variants with regard to accuracy, usefulness and reproducibility compared to an existing SNP protocol. The Sample-to-SNP protocol uses an approach where the DNA template is made accessible from a cell lysate followed by TaqMan analysis. Besides the HFE-SNPs other eight SNPs were used as well. These SNPs were: Coagulation factor II-gene F2 c.20210G>A, Coagulation factor V-gene F5 p.R506Q (c.1517G>A; rs121917732), Mitochondria SNP: mt7028 G>A, Mitochondria SNP: mt12308 A>G, Proprotein convertase subtilisin/kexin type 9-gene PCSK9 p.R46L (c.137G>T), Plutathione S-transferase pi 1-gene GSTP1 p.I105V (c313A>G; rs1695), LXR g.-171 A>G, ZNF202 g.-118 G>T. In conclusion the Sample-to-SNP kit proved to be an accurate, reliable, robust, easy to use and rapid TaqMan-based SNP detection protocol, which could be quickly implemented in a routine diagnostic or research facility. Copyright © 2012. Published by Elsevier B.V.

  20. An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries.

    PubMed

    Verma, Digvijay; Satyanarayana, T

    2011-09-01

    An improved single-step protocol has been developed for extracting pure community humic substance-free DNA from alkaline soils and sediments. The method is based on direct cell lysis in the presence of powdered activated charcoal and polyvinylpolypyrrolidone followed by precipitation with polyethyleneglycol and isopropanol. The strategy allows simultaneous isolation and purification of DNA while minimizing the loss of DNA with respect to other available protocols for metagenomic DNA extraction. Moreover, the purity levels are significant, which are difficult to attain with any of the methods reported in the literature for DNA extraction from soils. The DNA thus extracted was free from humic substances and, therefore, could be processed for restriction digestion, PCR amplification as well as for the construction of metagenomic libraries.

  1. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan(®) real-time PCR.

    PubMed

    de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza

    2012-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.

  2. Improved protocols to accelerate the assembly of DNA barcode reference libraries for freshwater zooplankton.

    PubMed

    Elías-Gutiérrez, Manuel; Valdez-Moreno, Martha; Topan, Janet; Young, Monica R; Cohuo-Colli, José Angel

    2018-03-01

    Currently, freshwater zooplankton sampling and identification methodologies have remained virtually unchanged since they were first established in the beginning of the XX century. One major contributing factor to this slow progress is the limited success of modern genetic methodologies, such as DNA barcoding, in several of the main groups. This study demonstrates improved protocols which enable the rapid assessment of most animal taxa inhabiting any freshwater system by combining the use of light traps, careful fixation at low temperatures using ethanol, and zooplankton-specific primers. We DNA-barcoded 2,136 specimens from a diverse array of taxonomic assemblages (rotifers, mollusks, mites, crustaceans, insects, and fishes) from several Canadian and Mexican lakes with an average sequence success rate of 85.3%. In total, 325 Barcode Index Numbers (BINs) were detected with only three BINs (two cladocerans and one copepod) shared between Canada and Mexico, suggesting a much narrower distribution range of freshwater zooplankton than previously thought. This study is the first to broadly explore the metazoan biodiversity of freshwater systems with DNA barcodes to construct a reference library that represents the first step for future programs which aim to monitor ecosystem health, track invasive species, or improve knowledge of the ecology and distribution of freshwater zooplankton.

  3. Genotyping of Plant and Animal Samples without Prior DNA Purification

    PubMed Central

    Chum, Pak Y.; Haimes, Josh D.; André, Chas P.; Kuusisto, Pia K.; Kelley, Melissa L.

    2012-01-01

    The Direct PCR approach facilitates PCR amplification directly from small amounts of unpurified samples, and is demonstrated here for several plant and animal tissues (Figure 1). Direct PCR is based on specially engineered Thermo Scientific Phusion and Phire DNA Polymerases, which include a double-stranded DNA binding domain that gives them unique properties such as high tolerance of inhibitors. PCR-based target DNA detection has numerous applications in plant research, including plant genotype analysis and verification of transgenes. PCR from plant tissues traditionally involves an initial DNA isolation step, which may require expensive or toxic reagents. The process is time consuming and increases the risk of cross contamination1, 2. Conversely, by using Thermo Scientific Phire Plant Direct PCR Kit the target DNA can be easily detected, without prior DNA extraction. In the model demonstrated here, an example of derived cleaved amplified polymorphic sequence analysis (dCAPS)3,4 is performed directly from Arabidopsis plant leaves. dCAPS genotyping assays can be used to identify single nucleotide polymorphisms (SNPs) by SNP allele-specific restriction endonuclease digestion3. Some plant samples tend to be more challenging when using Direct PCR methods as they contain components that interfere with PCR, such as phenolic compounds. In these cases, an additional step to remove the compounds is traditionally required2,5. Here, this problem is overcome by using a quick and easy dilution protocol followed by Direct PCR amplification (Figure 1). Fifteen year-old oak leaves are used as a model for challenging plants as the specimen contains high amounts of phenolic compounds including tannins. Gene transfer into mice is broadly used to study the roles of genes in development, physiology and human disease. The use of these animals requires screening for the presence of the transgene, usually with PCR. Traditionally, this involves a time consuming DNA isolation step, during which DNA for PCR analysis is purified from ear, tail or toe tissues6,7. However, with the Thermo Scientific Phire Animal Tissue Direct PCR Kit transgenic mice can be genotyped without prior DNA purification. In this protocol transgenic mouse genotyping is achieved directly from mouse ear tissues, as demonstrated here for a challenging example where only one primer set is used for amplification of two fragments differing greatly in size. PMID:23051689

  4. Robust Sub-nanomolar Library Preparation for High Throughput Next Generation Sequencing.

    PubMed

    Wu, Wells W; Phue, Je-Nie; Lee, Chun-Ting; Lin, Changyi; Xu, Lai; Wang, Rong; Zhang, Yaqin; Shen, Rong-Fong

    2018-05-04

    Current library preparation protocols for Illumina HiSeq and MiSeq DNA sequencers require ≥2 nM initial library for subsequent loading of denatured cDNA onto flow cells. Such amounts are not always attainable from samples having a relatively low DNA or RNA input; or those for which a limited number of PCR amplification cycles is preferred (less PCR bias and/or more even coverage). A well-tested sub-nanomolar library preparation protocol for Illumina sequencers has however not been reported. The aim of this study is to provide a much needed working protocol for sub-nanomolar libraries to achieve outcomes as informative as those obtained with the higher library input (≥ 2 nM) recommended by Illumina's protocols. Extensive studies were conducted to validate a robust sub-nanomolar (initial library of 100 pM) protocol using PhiX DNA (as a control), genomic DNA (Bordetella bronchiseptica and microbial mock community B for 16S rRNA gene sequencing), messenger RNA, microRNA, and other small noncoding RNA samples. The utility of our protocol was further explored for PhiX library concentrations as low as 25 pM, which generated only slightly fewer than 50% of the reads achieved under the standard Illumina protocol starting with > 2 nM. A sub-nanomolar library preparation protocol (100 pM) could generate next generation sequencing (NGS) results as robust as the standard Illumina protocol. Following the sub-nanomolar protocol, libraries with initial concentrations as low as 25 pM could also be sequenced to yield satisfactory and reproducible sequencing results.

  5. Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection.

    PubMed

    Cattani-Scholz, Anna; Pedone, Daniel; Dubey, Manish; Neppl, Stefan; Nickel, Bert; Feulner, Peter; Schwartz, Jeffrey; Abstreiter, Gerhard; Tornow, Marc

    2008-08-01

    We investigated hydroxyalkylphosphonate monolayers as a novel platform for the biofunctionalization of silicon-based field effect sensor devices. This included a detailed study of the thin film properties of organophosphonate films on Si substrates using several surface analysis techniques, including AFM, ellipsometry, contact angle, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity, and current-voltage characteristics in electrolyte solution. Our results indicate the formation of a dense monolayer on the native silicon oxide that has excellent passivation properties. The monolayer was biofunctionalized with 12 mer peptide nucleic acid (PNA) receptor molecules in a two-step procedure using the heterobifunctional linker, 3-maleimidopropionic-acid-N-hydroxysuccinimidester. Successful surface modification with the probe PNA was verified by XPS and contact angle measurements, and hybridization with DNA was determined by fluorescence measurements. Finally, the PNA functionalization protocol was translated to 2 microm long, 100 nm wide Si nanowire field effect devices, which were successfully used for label-free DNA/PNA hybridization detection.

  6. Invoking Direct Exciton-Plasmon Interactions by Catalytic Ag Deposition on Au Nanoparticles: Photoelectrochemical Bioanalysis with High Efficiency.

    PubMed

    Ma, Zheng-Yuan; Xu, Fei; Qin, Yu; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-04-19

    In this work, direct exciton-plasmon interactions (EPI) between CdS quantum dots (QDs) and Ag nanoparticles (NPs) were invoked ingeniously by catalytic Ag deposition on Au NPs for the stimulation of high efficient damping effect toward the excitonic responses in CdS QDs, on the basis of which a novel photoelectrochemical (PEC) bioanalytical format was achieved for sensitive microRNA detection. Specifically, upon the configurational change from the hairpin probe DNA to the "Y"-shaped ternary conjugate consisting of the original probe DNA, assistant DNA, and the target microRNA, the alkaline phosphatase (ALP) catalytic chemistry would then trigger the transition of the interparticle interplay from the CdS QDs-Au NPs to the CdS QDs-Ag NPs systems for the microRNA detection due to the dependence of the photocurrent quenching on the target concentration. This work not only provided a unique method for EPI generation among the PEC nanosystems but also offered a versatile and general protocol for future PEC bioanalysis development.

  7. Back to basics: an evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples.

    PubMed

    Osmundson, Todd W; Eyre, Catherine A; Hayden, Katherine M; Dhillon, Jaskirn; Garbelotto, Matteo M

    2013-01-01

    The ubiquity, high diversity and often-cryptic manifestations of fungi and oomycetes frequently necessitate molecular tools for detecting and identifying them in the environment. In applications including DNA barcoding, pathogen detection from plant samples, and genotyping for population genetics and epidemiology, rapid and dependable DNA extraction methods scalable from one to hundreds of samples are desirable. We evaluated several rapid extraction methods (NaOH, Rapid one-step extraction (ROSE), Chelex 100, proteinase K) for their ability to obtain DNA of quantity and quality suitable for the following applications: PCR amplification of the multicopy barcoding locus ITS1/5.8S/ITS2 from various fungal cultures and sporocarps; single-copy microsatellite amplification from cultures of the phytopathogenic oomycete Phytophthora ramorum; probe-based P. ramorum detection from leaves. Several methods were effective for most of the applications, with NaOH extraction favored in terms of success rate, cost, speed and simplicity. Frozen dilutions of ROSE and NaOH extracts maintained PCR viability for over 32 months. DNA from rapid extractions performed poorly compared to CTAB/phenol-chloroform extracts for TaqMan diagnostics from tanoak leaves, suggesting that incomplete removal of PCR inhibitors is an issue for sensitive diagnostic procedures, especially from plants with recalcitrant leaf chemistry. NaOH extracts exhibited lower yield and size than CTAB/phenol-chloroform extracts; however, NaOH extraction facilitated obtaining clean sequence data from sporocarps contaminated by other fungi, perhaps due to dilution resulting from low DNA yield. We conclude that conventional extractions are often unnecessary for routine DNA sequencing or genotyping of fungi and oomycetes, and recommend simpler strategies where source materials and intended applications warrant such use. © 2012 Blackwell Publishing Ltd.

  8. Equine behavioral enrichment toys as tools for non-invasive recovery of viral and host DNA.

    PubMed

    Seeber, Peter A; Soilemetzidou, Sanatana E; East, Marion L; Walzer, Chris; Greenwood, Alex D

    2017-09-01

    Direct collection of samples from wildlife can be difficult and sometimes impossible. Non-invasive remote sampling for the purpose of DNA extraction is a potential tool for monitoring the presence of wildlife at the individual level, and for identifying the pathogens shed by wildlife. Equine herpesviruses (EHV) are common pathogens of equids that can be fatal if transmitted to other mammals. Transmission usually occurs by nasal aerosol discharge from virus-shedding individuals. The aim of this study was to validate a simple, non-invasive method to track EHV shedding in zebras and to establish an efficient protocol for genotyping individual zebras from environmental DNA (eDNA). A commercially available horse enrichment toy was deployed in captive Grévy's, mountain, and plains zebra enclosures and swabbed after 4-24 hr. Using eDNA extracted from these swabs four EHV strains (EHV-1, EHV-7, wild ass herpesvirus and zebra herpesvirus) were detected by PCR and confirmed by sequencing, and 12 of 16 zebras present in the enclosures were identified as having interacted with the enrichment toy by mitochondrial DNA amplification and sequencing. We conclude that, when direct sampling is difficult or prohibited, non-invasive sampling of eDNA can be a useful tool to determine the genetics of individuals or populations and for detecting pathogen shedding in captive wildlife. © 2017 Wiley Periodicals, Inc.

  9. Conventional and Real-Time PCRs for Detection of Erwinia piriflorinigrans Allow Its Distinction from the Fire Blight Pathogen, Erwinia amylovora

    PubMed Central

    Barbé, Silvia; Bertolini, Edson; Roselló, Montserrat; Llop, Pablo

    2014-01-01

    Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 103 cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 102 cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora. PMID:24509928

  10. Conventional and real-time PCRs for detection of Erwinia piriflorinigrans allow its distinction from the fire blight pathogen, Erwinia amylovora.

    PubMed

    Barbé, Silvia; Bertolini, Edson; Roselló, Montserrat; Llop, Pablo; López, María M

    2014-04-01

    Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 10(3) cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 10(2) cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora.

  11. Filtration Isolation of Nucleic Acids: A Simple and Rapid DNA Extraction Method.

    PubMed

    McFall, Sally M; Neto, Mário F; Reed, Jennifer L; Wagner, Robin L

    2016-08-06

    FINA, filtration isolation of nucleic acids, is a novel extraction method which utilizes vertical filtration via a separation membrane and absorbent pad to extract cellular DNA from whole blood in less than 2 min. The blood specimen is treated with detergent, mixed briefly and applied by pipet to the separation membrane. The lysate wicks into the blotting pad due to capillary action, capturing the genomic DNA on the surface of the separation membrane. The extracted DNA is retained on the membrane during a simple wash step wherein PCR inhibitors are wicked into the absorbent blotting pad. The membrane containing the entrapped DNA is then added to the PCR reaction without further purification. This simple method does not require laboratory equipment and can be easily implemented with inexpensive laboratory supplies. Here we describe a protocol for highly sensitive detection and quantitation of HIV-1 proviral DNA from 100 µl whole blood as a model for early infant diagnosis of HIV that could readily be adapted to other genetic targets.

  12. Flow cytometry for enrichment and titration in massively parallel DNA sequencing

    PubMed Central

    Sandberg, Julia; Ståhl, Patrik L.; Ahmadian, Afshin; Bjursell, Magnus K.; Lundeberg, Joakim

    2009-01-01

    Massively parallel DNA sequencing is revolutionizing genomics research throughout the life sciences. However, the reagent costs and labor requirements in current sequencing protocols are still substantial, although improvements are continuously being made. Here, we demonstrate an effective alternative to existing sample titration protocols for the Roche/454 system using Fluorescence Activated Cell Sorting (FACS) technology to determine the optimal DNA-to-bead ratio prior to large-scale sequencing. Our method, which eliminates the need for the costly pilot sequencing of samples during titration is capable of rapidly providing accurate DNA-to-bead ratios that are not biased by the quantification and sedimentation steps included in current protocols. Moreover, we demonstrate that FACS sorting can be readily used to highly enrich fractions of beads carrying template DNA, with near total elimination of empty beads and no downstream sacrifice of DNA sequencing quality. Automated enrichment by FACS is a simple approach to obtain pure samples for bead-based sequencing systems, and offers an efficient, low-cost alternative to current enrichment protocols. PMID:19304748

  13. Acetone facilitated DNA sampling from electrical tapes improves DNA recovery and enables latent fingerprints development.

    PubMed

    Feine, Ilan; Shpitzen, Moshe; Geller, Boris; Salmon, Eran; Peleg, Tsach; Roth, Jonathan; Gafny, Ron

    2017-07-01

    Electrical tapes (ETs) are a common component of improvised explosive devices (IEDs) used by terrorists or criminal organizations and represent a valuable forensic resource for DNA and latent fingerprints recovery. However, DNA recovery rates are typically low and usually below the minimal amount required for amplification. In addition, most DNA extraction methods are destructive and do not allow further latent fingerprints development. In the present study a cell culture based touch DNA model was used to demonstrate a two-step acetone-water DNA recovery protocol from ETs. This protocol involves only the adhesive side of the ET and increases DNA recovery rates by up to 70%. In addition, we demonstrated partially successful latent fingerprints development from the non-sticky side of the ETs. Taken together, this protocol maximizes the forensic examination of ETs and is recommended for routine casework processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. DNA stable-isotope probing (DNA-SIP).

    PubMed

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  15. From cheek swabs to consensus sequences: an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes

    PubMed Central

    2014-01-01

    Background Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Results Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). Conclusions All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources. PMID:24460871

  16. The effect of different methods and image analyzers on the results of the in vivo comet assay.

    PubMed

    Kyoya, Takahiro; Iwamoto, Rika; Shimanura, Yuko; Terada, Megumi; Masuda, Shuichi

    2018-01-01

    The in vivo comet assay is a widely used genotoxicity test that can detect DNA damage in a range of organs. It is included in the Organisation for Economic Co-operation and Development Guidelines for the Testing of Chemicals. However, various protocols are still used for this assay, and several different image analyzers are used routinely to evaluate the results. Here, we verified a protocol that largely contributes to the equivalence of results, and we assessed the effect on the results when slides made from the same sample were analyzed using two different image analyzers (Comet Assay IV vs Comet Analyzer). Standardizing the agarose concentrations and DNA unwinding and electrophoresis times had a large impact on the equivalence of the results between the different methods used for the in vivo comet assay. In addition, there was some variation in the sensitivity of the two different image analyzers tested; however this variation was considered to be minor and became negligible when the test conditions were standardized between the two different methods. By standardizing the concentrations of low melting agarose and DNA unwinding and electrophoresis times between both methods used in the current study, the sensitivity to detect the genotoxicity of a positive control substance in the in vivo comet assay became generally comparable, independently of the image analyzer used. However, there may still be the possibility that other conditions, except for the three described here, could affect the reproducibility of the in vivo comet assay.

  17. Evaluation of DNA extraction methods for Bacillus anthracis spores isolated from spiked food samples.

    PubMed

    Thomas, M C; Shields, M J; Hahn, K R; Janzen, T W; Goji, N; Amoako, K K

    2013-07-01

    Nine commercial DNA extraction kits were evaluated for the isolation of DNA from 10-fold serial dilutions of Bacillus anthracis spores using quantitative real-time PCR (qPCR). The three kits determined by qPCR to yield the most sensitive and consistent detection (Epicenter MasterPure Gram Positive; MoBio PowerFood; ABI PrepSeq) were subsequently tested for their ability to isolate DNA from trace amounts of B. anthracis spores (approx. 6·5 × 10(1) and 1·3 × 10(2)  CFU in 25 ml or 50 g of food sample) spiked into complex food samples including apple juice, ham, whole milk and bagged salad and recovered with immunomagnetic separation (IMS). The MasterPure kit effectively and consistently isolated DNA from low amounts of B. anthracis spores captured from food samples. Detection was achieved from apple juice, ham, whole milk and bagged salad from as few as 65 ± 14, 68 ± 8, 66 ± 4 and 52 ± 16 CFU, respectively, and IMS samples were demonstrated to be free of PCR inhibitors. Detection of B. anthracis spores isolated from food by IMS differs substantially between commercial DNA extraction kits; however, sensitive results can be obtained with the MasterPure Gram Positive kit. The extraction protocol identified herein combined with IMS is novel for B. anthracis and allows detection of low levels of B. anthracis spores from contaminated food samples. © Her Majesty the Queen in Right of Canada [2013]. Reproduced with the permission of the Canadian Food Inspection Agency.

  18. An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR.

    PubMed

    Karakousis, A; Tan, L; Ellis, D; Alexiou, H; Wormald, P J

    2006-04-01

    To date, no single reported DNA extraction method is suitable for the efficient extraction of DNA from all fungal species. The efficiency of extraction is of particular importance in PCR-based medical diagnostic applications where the quantity of fungus in a tissue biopsy may be limited. We subjected 16 medically relevant fungi to physical, chemical and enzymatic cell wall disruption methods which constitutes the first step in extracting DNA. Examination by light microscopy showed that grinding with mortar and pestle was the most efficient means of disrupting the rigid fungal cell walls of hyphae and conidia. We then trialled several published DNA isolation protocols to ascertain the most efficient method of extraction. Optimal extraction was achieved by incorporating a lyticase and proteinase K enzymatic digestion step and adapting a DNA extraction procedure from a commercial kit (MO BIO) to generate high yields of high quality DNA from all 16 species. DNA quality was confirmed by the successful PCR amplification of the conserved region of the fungal 18S small-subunit rRNA multicopy gene.

  19. A powerless on-the-spot detection protocol for transgenic crops within 30 min, from leaf sampling up to results.

    PubMed

    Wang, Liu; Wang, Rui; Yu, Yonghua; Zhang, Fang; Wang, Xiaofu; Ying, Yibin; Wu, Jian; Xu, Junfeng

    2016-01-01

    The requirement of power-dependent instruments or excessive operation time usually restricts current nucleic acid amplification methods from being used for detection of transgenic crops in the field. In this paper, an easy and rapid detection method which requires no electricity supply has been developed. The time-consuming process of nucleic acid purification is omitted in this method. DNA solution obtained from leaves with 0.5 M sodium hydroxide (NaOH) can be used for loop-mediated isothermal amplification (LAMP) only after simple dilution. Traditional instruments like a polymerase chain reaction (PCR) amplifier and water bath used for DNA amplification are abandoned. Three kinds of dewar flasks were tested and it turned out that the common dewar flask was the best. Combined with visual detection of LAMP amplicons by phosphate (Pi)-induced coloration reaction, the whole process of detection of transgenic crops via genetically pure material (leaf material of one plant) could be accomplished within 30 min. The feasibility of this method was also verified by analysis of practical samples.

  20. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction

    PubMed Central

    Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M

    2015-01-01

    Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol–chloroform–isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. PMID:24834966

  1. DNA tetrominoes: the construction of DNA nanostructures using self-organised heterogeneous deoxyribonucleic acids shapes.

    PubMed

    Ong, Hui San; Rahim, Mohd Syafiq; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan

    2015-01-01

    The unique programmability of nucleic acids offers alternative in constructing excitable and functional nanostructures. This work introduces an autonomous protocol to construct DNA Tetris shapes (L-Shape, B-Shape, T-Shape and I-Shape) using modular DNA blocks. The protocol exploits the rich number of sequence combinations available from the nucleic acid alphabets, thus allowing for diversity to be applied in designing various DNA nanostructures. Instead of a deterministic set of sequences corresponding to a particular design, the protocol promotes a large pool of DNA shapes that can assemble to conform to any desired structures. By utilising evolutionary programming in the design stage, DNA blocks are subjected to processes such as sequence insertion, deletion and base shifting in order to enrich the diversity of the resulting shapes based on a set of cascading filters. The optimisation algorithm allows mutation to be exerted indefinitely on the candidate sequences until these sequences complied with all the four fitness criteria. Generated candidates from the protocol are in agreement with the filter cascades and thermodynamic simulation. Further validation using gel electrophoresis indicated the formation of the designed shapes. Thus, supporting the plausibility of constructing DNA nanostructures in a more hierarchical, modular, and interchangeable manner.

  2. A magnetic nanobead-based bioassay provides sensitive detection of single- and biplex bacterial DNA using a portable AC susceptometer.

    PubMed

    Strömberg, Mattias; Zardán Gómez de la Torre, Teresa; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria

    2014-01-01

    Bioassays relying on magnetic read-out using probe-tagged magnetic nanobeads are potential platforms for low-cost biodiagnostic devices for pathogen detection. For optimal assay performance it is crucial to apply an easy, efficient and robust bead-probe conjugation protocol. In this paper, sensitive (1.5 pM) singleplex detection of bacterial DNA sequences is demonstrated in a portable AC susceptometer by a magnetic nanobead-based bioassay principle; the volume-amplified magnetic nanobead detection assay (VAM-NDA). Two bead sizes, 100 and 250 nm, are investigated along with a highly efficient, rapid, robust, and stable conjugation chemistry relying on the avidin-biotin interaction for bead-probe attachment. Avidin-biotin conjugation gives easy control of the number of detection probes per bead; thus allowing for systematic investigation of the impact of varying the detection probe surface coverage upon bead immobilization in rolling circle amplified DNA-coils. The existence of an optimal surface coverage is discussed. Biplex VAM-NDA detection is for the first time demonstrated in the susceptometer: Semi-quantitative results are obtained and it is concluded that the concentration of DNA-coils in the incubation volume is of crucial importance for target quantification. The present findings bring the development of commercial biodiagnostic devices relying on the VAM-NDA further towards implementation in point-of-care and outpatient settings. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-License, which permits use and distribution in any medium, provided the original work is properly cited.

  3. Southern blotting.

    PubMed

    Brown, T

    2001-05-01

    Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support (the properties and advantages of the different types of membrane, transfer buffer, and transfer method are discussed in detail), resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This appendix describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, using a high-salt transfer buffer to promote binding of DNA to the membrane. With the high-salt buffer, the DNA becomes bound to the membrane during transfer but not permanently immobilized. Immobilization is achieved by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. The advantage of this combination is that no post-transfer immobilization step is required, as the positively charged membrane binds DNA irreversibly under alkaline transfer conditions. The method can also be used with neutral nylon membranes but less DNA will be retained. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane described in the first basic and alternate protocols has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in the second alternate protocol is therefore more rapid than the basic protocol and can result in more complete transfer. Although the ease and reliability of capillary transfer methods makes this far and away the most popular system for Southern blotting with agarose gels, it unfortunately does not work with polyacrylamide gels, whose smaller pore size impedes the transverse movement of the DNA molecules. The third alternate protocol describes an electroblotting procedure that is currently the most reliable method for transfer of DNA from a polyacrylamide gel. Dot and slot blotting are also described.

  4. A Quantitative PCR Protocol for Detection of Oxyspirura petrowi in Northern Bobwhites (Colinus virginianus).

    PubMed

    Kistler, Whitney M; Parlos, Julie A; Peper, Steven T; Dunham, Nicholas R; Kendall, Ronald J

    2016-01-01

    Oxyspirura petrowi is a parasitic nematode that infects wild birds. This parasite has a broad host range, but has recently been reported in high prevalences from native Galliformes species in the United States. In order to better understand the impact O. petrowi has on wild bird populations, we developed a quantitative PCR protocol to detect infections in wild northern bobwhites (Colinus virginianus). We used paired fecal and cloacal swab samples from wild caught and experimentally infected northern bobwhites and matching fecal float data from experimentally infected birds to validate our assay. Overall we detected more positive birds from fecal samples than the paired cloacal swabs and there was strong agreement between the qPCR results from fecal samples and from fecal flotation (84%; κ = 0.69 [0.53-0.84 95% CI]). We also detected O. petrowi DNA in ten replicates of samples spiked with one O. petrowi egg. This qPCR assay is an effective assay to detect O. petrowi infections in wild birds. Our results suggest that fecal samples are the most appropriate sample for detecting infections; although, cloacal swabs can be useful for determining if O. petrowi is circulating in a population.

  5. A Quantitative PCR Protocol for Detection of Oxyspirura petrowi in Northern Bobwhites (Colinus virginianus)

    PubMed Central

    Kistler, Whitney M.; Parlos, Julie A.; Peper, Steven T.; Dunham, Nicholas R.; Kendall, Ronald J.

    2016-01-01

    Oxyspirura petrowi is a parasitic nematode that infects wild birds. This parasite has a broad host range, but has recently been reported in high prevalences from native Galliformes species in the United States. In order to better understand the impact O. petrowi has on wild bird populations, we developed a quantitative PCR protocol to detect infections in wild northern bobwhites (Colinus virginianus). We used paired fecal and cloacal swab samples from wild caught and experimentally infected northern bobwhites and matching fecal float data from experimentally infected birds to validate our assay. Overall we detected more positive birds from fecal samples than the paired cloacal swabs and there was strong agreement between the qPCR results from fecal samples and from fecal flotation (84%; κ = 0.69 [0.53–0.84 95% CI]). We also detected O. petrowi DNA in ten replicates of samples spiked with one O. petrowi egg. This qPCR assay is an effective assay to detect O. petrowi infections in wild birds. Our results suggest that fecal samples are the most appropriate sample for detecting infections; although, cloacal swabs can be useful for determining if O. petrowi is circulating in a population. PMID:27893772

  6. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  7. Evaluation of a real-time PCR assay based on the single-copy SAG1 gene for the detection of Toxoplasma gondii.

    PubMed

    Yu, Haijie; Huang, Bin; Zhuo, Xunhui; Chen, Xueqiu; Du, Aifang

    2013-11-08

    Real-time PCR-based detection of Toxoplasma gondii is very sensitive and convenient for diagnosing toxoplasmosis. However, the performance of the PCR assays could be influenced by the target gene chosen. Here we evaluate a real-time PCR assay using double-stranded DNA dyes (SYBR(®) Green I assay) with a new set of primers targeting the SAG1 gene for the fast and specific detection of T. gondii. The assay showed higher sensitivity than conventional PCR protocols using T. gondii DNA as template. The detection limit of the developed real-time PCR assay was in the order of 1 tachyzoite. The assay was also assessed by experimentally infected mice and showed positive results for blood (25%), spleen (50%) and lung (50%) as early as 1 dpi. The specificity of the assay was confirmed by using DNA from Neospora caninum, Escherichia coli, Babesia bovis, Trypanosoma brucei, Cryptosporidium parvum, and Toxocara canis. Assay applicability was successfully tested in blood samples collected from slaughtered pigs. These results indicate that, based on SYBR(®) green I, the quantitative SAG1 assay may also be useful in the study of the pathogenicity, immunoprophylaxis, and treatment of T. gondii. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Sensitive Detection of Xanthomonas oryzae Pathovars oryzae and oryzicola by Loop-Mediated Isothermal Amplification

    PubMed Central

    Lang, Jillian M.; Langlois, Paul; Nguyen, Marian Hanna R.; Triplett, Lindsay R.; Purdie, Laura; Holton, Timothy A.; Djikeng, Appolinaire; Vera Cruz, Casiana M.; Verdier, Valérie

    2014-01-01

    Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 104 to 105 CFU ml−1, while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens. PMID:24837384

  9. Enzyme-guided DNA Sewing Architecture

    PubMed Central

    Song, In Hyun; Shin, Seung Won; Park, Kyung Soo; Lansac, Yves; Jang, Yun Hee; Um, Soong Ho

    2015-01-01

    With the advent of nanotechnology, a variety of nanoarchitectures with varied physicochemical properties have been designed. Owing to the unique characteristics, DNAs have been used as a functional building block for novel nanoarchitecture. In particular, a self-assembly of long DNA molecules via a piece DNA staple has been utilized to attain such constructs. However, it needs many talented prerequisites (e.g., complicated computer program) with fewer yields of products. In addition, it has many limitations to overcome: for instance, (i) thermal instability under moderate environments and (ii) restraint in size caused by the restricted length of scaffold strands. Alternatively, the enzymatic sewing linkage of short DNA blocks is simply designed into long DNA assemblies but it is more error-prone due to the undeveloped sequence data. Here, we present, for the first time, a comprehensive study for directly combining DNA structures into higher DNA sewing constructs through the 5′-end cohesive ligation of T4 enzyme. Inspired by these achievements, the synthesized DNA nanomaterials were also utilized for effective detection and real-time diagnosis of cancer-specific and cytosolic RNA markers. This generalized protocol for generic DNA sewing is expected to be useful in several DNA nanotechnology as well as any nucleic acid-related fields. PMID:26634810

  10. Enzyme-guided DNA Sewing Architecture

    NASA Astrophysics Data System (ADS)

    Song, In Hyun; Shin, Seung Won; Park, Kyung Soo; Lansac, Yves; Jang, Yun Hee; Um, Soong Ho

    2015-12-01

    With the advent of nanotechnology, a variety of nanoarchitectures with varied physicochemical properties have been designed. Owing to the unique characteristics, DNAs have been used as a functional building block for novel nanoarchitecture. In particular, a self-assembly of long DNA molecules via a piece DNA staple has been utilized to attain such constructs. However, it needs many talented prerequisites (e.g., complicated computer program) with fewer yields of products. In addition, it has many limitations to overcome: for instance, (i) thermal instability under moderate environments and (ii) restraint in size caused by the restricted length of scaffold strands. Alternatively, the enzymatic sewing linkage of short DNA blocks is simply designed into long DNA assemblies but it is more error-prone due to the undeveloped sequence data. Here, we present, for the first time, a comprehensive study for directly combining DNA structures into higher DNA sewing constructs through the 5‧-end cohesive ligation of T4 enzyme. Inspired by these achievements, the synthesized DNA nanomaterials were also utilized for effective detection and real-time diagnosis of cancer-specific and cytosolic RNA markers. This generalized protocol for generic DNA sewing is expected to be useful in several DNA nanotechnology as well as any nucleic acid-related fields.

  11. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    PubMed

    Sachsenröder, Jana; Twardziok, Sven; Hammerl, Jens A; Janczyk, Pawel; Wrede, Paul; Hertwig, Stefan; Johne, Reimar

    2012-01-01

    Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2) with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9%) and mammalian viruses (23.9%); 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV), represents a novel pig virus. The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures comparability of the method and may be used for further method optimization.

  12. A robust method to analyze copy number alterations of less than 100 kb in single cells using oligonucleotide array CGH.

    PubMed

    Möhlendick, Birte; Bartenhagen, Christoph; Behrens, Bianca; Honisch, Ellen; Raba, Katharina; Knoefel, Wolfram T; Stoecklein, Nikolas H

    2013-01-01

    Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH) of single cells. The protocol is based on an established adapter-linker PCR (WGAM) and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS) could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost-) effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.

  13. Fast Technology Analysis (FTA) Enables Identification of Species and Genotypes of Latent Microsporidia Infections in Healthy Native Cameroonians

    PubMed Central

    Ndzi, Edward S.; Asonganyi, Tazoacha; Nkinin, Mary Bello; Xiao, Lihua; Didier, Elizabeth S.; Bowers, Lisa C.; Nkinin, Stephenson W.; Kaneshiro, Edna S.

    2015-01-01

    Several enteric microsporidia species have been detected in humans and other vertebrates and their identifications at the genotype level are currently being elucidated. As advanced methods, reagents, and disposal kits for detecting and identifying pathogens become commercially available, it is important to test them in settings other than in laboratories with “state-of-the-art” equipment and well-trained staff members. In the present study, we sought to detect microsporidia DNA preserved and extracted from FTA (fast technology analysis) cards spotted with human fecal suspensions obtained from Cameroonian volunteers living in the capital city of Yaoundé to preclude the need for employing spore-concentrating protocols. Further, we tested whether amplicon nucleotide sequencing approaches could be used on small aliquots taken from the cards to elucidate the diversity of microsporidia species and strains infecting native residents. Of 196 samples analyzed, 12 (6.1%) were positive for microsporidia DNA; Enterocytozoon bieneusi (Type IV and KIN-1), Encephalitozoon cuniculi, and Encephalitozoon intestinalis were identified. These data demonstrate the utility of the FTA cards in identifying genotypes of microsporidia DNA in human fecal samples that may be applied to field testing for prevalence studies. PMID:26303263

  14. Cephalosporium maydis is a distinct species in the Gaeumannomyces-Harpophora species complex.

    PubMed

    Saleh, Amgad A; Leslie, John F

    2004-01-01

    Cephalosporium maydis is an important plant pathogen whose phylogenetic position relative to other fungi has not been established clearly. We compared strains of C. maydis, strains from several other plant-pathogenic Cephalosporium spp. and several possible relatives within the Gaeumannomyces-Harpophora species complex, to which C. maydis has been suggested to belong based on previous preliminary DNA sequence analyses. DNA sequences of the nuclear genes encoding the rDNA ITS region, β-tubulin, histone H3, and MAT-2 support the hypothesis that C. maydis is a distinct taxon within the Gaeumannomyces-Harpophora species complex. Based on amplified fragment length polymorphism (AFLP) profiles, C. maydis also is distinct from the other tested species of Cephalosporium, Phialophora sensu lato and members of Gaeumannomyces-Harpophora species complex, which supports its classification as Harpophora maydis. Oligonucleotide primers for H. maydis were developed that can be used in a PCR diagnostic protocol to rapidly and reliably detect and identify this pathogen. These diagnostic PCR primers will aid the detection of H. maydis in diseased maize because this fungus can be difficult to detect and isolate, and the movement of authentic cultures may be limited by quarantine restrictions.

  15. Efficient isolation method for high-quality genomic DNA from cicada exuviae.

    PubMed

    Nguyen, Hoa Quynh; Kim, Ye Inn; Borzée, Amaël; Jang, Yikweon

    2017-10-01

    In recent years, animal ethics issues have led researchers to explore nondestructive methods to access materials for genetic studies. Cicada exuviae are among those materials because they are cast skins that individuals left after molt and are easily collected. In this study, we aim to identify the most efficient extraction method to obtain high quantity and quality of DNA from cicada exuviae. We compared relative DNA yield and purity of six extraction protocols, including both manual protocols and available commercial kits, extracting from four different exoskeleton parts. Furthermore, amplification and sequencing of genomic DNA were evaluated in terms of availability of sequencing sequence at the expected genomic size. Both the choice of protocol and exuvia part significantly affected DNA yield and purity. Only samples that were extracted using the PowerSoil DNA Isolation kit generated gel bands of expected size as well as successful sequencing results. The failed attempts to extract DNA using other protocols could be partially explained by a low DNA yield from cicada exuviae and partly by contamination with humic acids that exist in the soil where cicada nymphs reside before emergence, as shown by spectroscopic measurements. Genomic DNA extracted from cicada exuviae could provide valuable information for species identification, allowing the investigation of genetic diversity across consecutive broods, or spatiotemporal variation among various populations. Consequently, we hope to provide a simple method to acquire pure genomic DNA applicable for multiple research purposes.

  16. Detection and signal amplification in zebrafish RNA FISH.

    PubMed

    Hauptmann, Giselbert; Lauter, Gilbert; Söll, Iris

    2016-04-01

    In situ hybridization (ISH) has become an invaluable tool for the detection of RNA in cells, tissues and organisms. Due to improvements in target and signal amplification and in probe design remarkable progress has been made concerning sensitivity, specificity and resolution of chromogenic and fluorescent ISH (FISH). These advancements allow for exquisite cellular and sub-cellular resolution and for detecting multiple RNA species at a time by multiplexing. In zebrafish (F)ISH non-enzymatic and enzymatic amplification systems have been employed to obtain enhanced signal intensities and signal-to-noise ratios. These amplification strategies include branched DNA-based RNAscope and in situ hybridization chain reaction (HCR) techniques, as well as alkaline phosphatase (AP)- and horseradish peroxidase (PO)-based immunoassays. For practical application, we provide proven multiplex FISH protocols for AP- and PO-based visualization of mRNAs at high resolution. The protocols take advantage of optimized tyramide signal amplification (TSA) conditions of the PO assay and long-lasting high signal-to-noise ratio of the AP reaction, thereby enabling detection of less abundant transcripts. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Evaluation of massively parallel sequencing for forensic DNA methylation profiling.

    PubMed

    Richards, Rebecca; Patel, Jayshree; Stevenson, Kate; Harbison, SallyAnn

    2018-05-11

    Epigenetics is an emerging area of interest in forensic science. DNA methylation, a type of epigenetic modification, can be applied to chronological age estimation, identical twin differentiation and body fluid identification. However, there is not yet an agreed, established methodology for targeted detection and analysis of DNA methylation markers in forensic research. Recently a massively parallel sequencing-based approach has been suggested. The use of massively parallel sequencing is well established in clinical epigenetics and is emerging as a new technology in the forensic field. This review investigates the potential benefits, limitations and considerations of this technique for the analysis of DNA methylation in a forensic context. The importance of a robust protocol, regardless of the methodology used, that minimises potential sources of bias is highlighted. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Purification of circular DNA using benzoylated naphthoylated DEAE-cellulose.

    PubMed

    Gamper, H; Lehman, N; Piette, J; Hearst, J E

    1985-04-01

    Un-nicked circular DNA can be separated from protein, RNA, and other DNA in a simple three-step protocol consisting of exonuclease III digestion, extraction with benzoylated naphthoylated DEAE-cellulose (BND cellulose) in 1 M NaCl, and alcohol precipitation of the remaining supercoiled DNA. Exonuclease III treatment introduces single-stranded regions into contaminating linear and nicked circular DNA. This DNA, together with most RNA and protein, is adsorbed onto BND cellulose leaving form I DNA in solution. The protocol can be used to purify analytical as well as preparative amounts of supercoiled DNA. This procedure is a substitute for cesium chloride-ethidium bromide gradient ultracentrifugation and gives a comparable yield of pure form I DNA. Other classes of DNA can be isolated by changing the pretreatment step. Selective digestion of linear DNA with lambda exonuclease permits the isolation of both nicked circular and supercoiled DNA while brief heat-induced or alkali-induced denaturation leads to the recovery of rapidly reannealing DNA. In large-scale purifications, the basic protocol is usually preceded by one or more BND cellulose extractions in 1 M NaCl to remove contaminants absorbing UV or inhibiting exonuclease III.

  19. Development of a real-time PCR protocol for the species origin confirmation of isolated animal particles detected by NIRM.

    PubMed

    Fumière, O; Marien, A; Fernández Pierna, J A; Baeten, V; Berben, G

    2010-08-01

    At present, European legislation prohibits totally the use of processed animal proteins in feed for all farmed animals (Commission Regulation (EC) No. 1234/2003-extended feed ban). A softening of the feed ban for non-ruminants would nevertheless be considered if alternative methods could be used to gain more information concerning the species origin of processed animal proteins than that which can be provided by classical optical microscopy. This would allow control provisions such as the ban of feeding animals with proteins from the same species or intra-species recycling (Regulation (EC) No. 1774/2002). Two promising alternative methods, near-infrared microscopy (NIRM) and real-time polymerase chain reaction (PCR), were combined to authenticate, at the species level, the presence of animal particles. The paper describes the improvements of the real-time PCR method made to the DNA extraction protocol, allowing five PCR analyses to be performed with the DNA extracted from a single particle.

  20. Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer.

    PubMed

    Catarino, Raquel; Ferreira, Maria M; Rodrigues, Helena; Coelho, Ana; Nogal, Ana; Sousa, Abreu; Medeiros, Rui

    2008-08-01

    To determine whether the amounts of circulating DNA could discriminate between breast cancer patients and healthy individuals by using real-time PCR quantification methodology. Our standard protocol for quantification of cell-free plasma DNA involved 175 consecutive patients with breast cancer and 80 healthy controls. We found increased levels of circulating DNA in breast cancer patients compared to control individuals (105.2 vs. 77.06 ng/mL, p < 0.001). We also found statistically significant differences in circulating DNA amounts in patients before and after breast surgery (105.2 vs. 59.0 ng/mL, p = 0.001). Increased plasma cell-free DNA concentration was a strong risk factor for breast cancer, conferring an increased risk for the presence of this disease (OR, 12.32; 95% CI, 2.09-52.28; p < 0.001). Quantification of circulating DNA by real-time PCR may be a good and simple tool for detection of breast cancer with a potential to clinical applicability together with other current methods used for monitoring the disease.

  1. Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal.

    PubMed

    Bluhm, B H; Flaherty, J E; Cousin, M A; Woloshuk, C P

    2002-12-01

    The genus Fusarium comprises a diverse group of fungi including several species that produce mycotoxins in food commodities. In this study, a multiplex polymerase chain reaction (PCR) assay was developed for the group-specific detection of fumonisin-producing and trichothecene-producing species of Fusarium. Primers for genus-level recognition of Fusarium spp. were designed from the internal transcribed spacer regions (ITS1 and ITS2) of rDNA. Primers for group-specific detection were designed from the TRI6 gene involved in trichothecene biosynthesis and the FUM5 gene involved in fumonisin biosynthesis. Primer specificity was determined by testing for cross-reactivity against purified genomic DNA from 43 fungal species representing 14 genera, including 9 Aspergillus spp., 9 Fusarium spp., and 10 Penicillium spp. With purified genomic DNA as a template, genus-specific recognition was observed at 10 pg per reaction; group-specific recognition occurred at 100 pg of template per reaction for the trichothecene producer Fusarium graminearum and at 1 ng of template per reaction for the fumonisin producer Fusarium verticillioides. For the application of the PCR assay, a protocol was developed to isolate fungal DNA from cornmeal. The detection of F. graminearum and its differentiation from F. verticillioides were accomplished prior to visible fungal growth at <10(5) CFU/g of cornmeal. This level of detection is comparable to those of other methods such as enzyme-linked immunosorbent assay, and the assay described here can be used in the food industry's effort to monitor quality and safety.

  2. Elucidating the Burden of HIV in Tissues Using Multiplexed Immunofluorescence and In Situ Hybridization: Methods for the Single-Cell Phenotypic Characterization of Cells Harboring HIV In Situ.

    PubMed

    Vasquez, Joshua J; Hussien, Rajaa; Aguilar-Rodriguez, Brandon; Junger, Henrik; Dobi, Dejan; Henrich, Timothy J; Thanh, Cassandra; Gibson, Erica; Hogan, Louise E; McCune, Joseph; Hunt, Peter W; Stoddart, Cheryl A; Laszik, Zoltan G

    2018-06-01

    Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.

  3. Application of Metagenomic Sequencing to Food Safety: Detection of Shiga Toxin-Producing Escherichia coli on Fresh Bagged Spinach

    PubMed Central

    Leonard, Susan R.; Mammel, Mark K.; Lacher, David W.

    2015-01-01

    Culture-independent diagnostics reduce the reliance on traditional (and slower) culture-based methodologies. Here we capitalize on advances in next-generation sequencing (NGS) to apply this approach to food pathogen detection utilizing NGS as an analytical tool. In this study, spiking spinach with Shiga toxin-producing Escherichia coli (STEC) following an established FDA culture-based protocol was used in conjunction with shotgun metagenomic sequencing to determine the limits of detection, sensitivity, and specificity levels and to obtain information on the microbiology of the protocol. We show that an expected level of contamination (∼10 CFU/100 g) could be adequately detected (including key virulence determinants and strain-level specificity) within 8 h of enrichment at a sequencing depth of 10,000,000 reads. We also rationalize the relative benefit of static versus shaking culture conditions and the addition of selected antimicrobial agents, thereby validating the long-standing culture-based parameters behind such protocols. Moreover, the shotgun metagenomic approach was informative regarding the dynamics of microbial communities during the enrichment process, including initial surveys of the microbial loads associated with bagged spinach; the microbes found included key genera such as Pseudomonas, Pantoea, and Exiguobacterium. Collectively, our metagenomic study highlights and considers various parameters required for transitioning to such sequencing-based diagnostics for food safety and the potential to develop better enrichment processes in a high-throughput manner not previously possible. Future studies will investigate new species-specific DNA signature target regimens, rational design of medium components in concert with judicious use of additives, such as antibiotics, and alterations in the sample processing protocol to enhance detection. PMID:26386062

  4. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    PubMed

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Inexpensive metagenomic DNA extraction protocol with high quality from marine sediments contaminated by petroleum hydrocarbons.

    PubMed

    García-Bautista, I; Toledano-Thompson, T; Dantán-González, E; González-Montilla, J; Valdez-Ojeda, R

    2017-09-21

    Marine environments are a reservoir of relevant information on dangerous contaminants such as hydrocarbons, as well as microbial communities with probable degradation skills. However, to access microbial diversity, it is necessary to obtain high-quality DNA. An inexpensive, reliable, and effective metagenomic DNA (mgDNA) extraction protocol from marine sediments contaminated with petroleum hydrocarbons was established in this study from modifications to Zhou's protocol. The optimization included pretreatment of sediment with saline solutions for the removal of contaminants, a second precipitation and enzymatic degradation of RNA, followed by purification of mgDNA extracted by electroelution. The results obtained indicated that the modifications applied to 12 sediments with total petroleum hydrocarbon (TPH) concentrations from 22.6-174.3 (µg/g dry sediment) yielded 20.3-321.3 ng/µL mgDNA with A 260 /A 280 and A 260 /A 230 ratios of 1.75 ± 0.08 and 1.19 ± 0.22, respectively. The 16S rRNA amplification confirmed the purity of the mgDNA. The suitability of this mgDNA extraction protocol lies in the fact that all chemical solutions utilized are common in all molecular biology laboratories, and the use of dialysis membrane does not require any sophisticated or expensive equipment, only an electrophoretic chamber.

  6. Specific and quantitative detection of human polyomaviruses BKV, JCV, and SV40 by real time PCR.

    PubMed

    McNees, Adrienne L; White, Zoe S; Zanwar, Preeti; Vilchez, Regis A; Butel, Janet S

    2005-09-01

    The polyomaviruses that infect humans, BK virus (BKV), JC virus (JCV), and simian virus 40 (SV40), typically establish subclinical persistent infections. However, reactivation of these viruses in immunocompromised hosts is associated with renal nephropathy and hemorrhagic cystitis (HC) caused by BKV and with progressive multifocal leukoencephalopathy (PML) caused by JCV. Additionally, SV40 is associated with several types of human cancers including primary brain and bone cancers, mesotheliomas, and non-Hodgkin's lymphoma. Advancements in detection of these viruses may contribute to improved diagnosis and treatment of affected patients. To develop sensitive and specific real time quantitative polymerase chain reaction (RQ-PCR) assays for the detection of T-antigen DNA sequences of the human polyomaviruses BKV, JCV, and SV40 using the ABI Prism 7000 Sequence Detection System. Assays for absolute quantification of the viral T-ag sequences were designed and the sensitivity and specificity were evaluated. A quantitative assay to measure the single copy human RNAse P gene was also developed and evaluated in order to normalize viral gene copy numbers to cell numbers. Quantification of the target genes is sensitive and specific over a 7 log dynamic range. Ten copies each of the viral and cellular genes are reproducibly and accurately detected. The sensitivity of detection of the RQ-PCR assays is increased 10- to 100-fold compared to conventional PCR and agarose gel protocols. The primers and probes used to detect the viral genes are specific for each virus and there is no cross reactivity within the dynamic range of the standard dilutions. The sensitivity of detection for these assays is not reduced in human cellular extracts; however, different DNA extraction protocols may affect quantification. These assays provide a technique for rapid and specific quantification of polyomavirus genomes per cell in human samples.

  7. Nucleic acid isolation

    DOEpatents

    Longmire, J.L.; Lewis, A.K.; Hildebrand, C.E.

    1988-01-21

    A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduces the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without effect on the protocol.

  8. Improved multiple displacement amplification (iMDA) and ultraclean reagents.

    PubMed

    Motley, S Timothy; Picuri, John M; Crowder, Chris D; Minich, Jeremiah J; Hofstadler, Steven A; Eshoo, Mark W

    2014-06-06

    Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA). A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance and representation of the genome. The iMDA protocol in combination with DNA-free laboratory consumables, significantly improved the ability to sequence specimens with low levels of DNA. iMDA has broad utility in metagenomics, diagnostics, ancient DNA analysis, pre-implantation embryo screening, single-cell genomics, whole genome sequencing of unculturable organisms, and forensic applications for both human and microbial targets.

  9. Adenovirus 36 DNA in human adipose tissue.

    PubMed

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  10. A universal real-time PCR assay for the quantification of group-M HIV-1 proviral load.

    PubMed

    Malnati, Mauro S; Scarlatti, Gabriella; Gatto, Francesca; Salvatori, Francesca; Cassina, Giulia; Rutigliano, Teresa; Volpi, Rosy; Lusso, Paolo

    2008-01-01

    Quantification of human immunodeficiency virus type-1 (HIV-1) proviral DNA is increasingly used to measure the HIV-1 cellular reservoirs, a helpful marker to evaluate the efficacy of antiretroviral therapeutic regimens in HIV-1-infected individuals. Furthermore, the proviral DNA load represents a specific marker for the early diagnosis of perinatal HIV-1 infection and might be predictive of HIV-1 disease progression independently of plasma HIV-1 RNA levels and CD4(+) T-cell counts. The high degree of genetic variability of HIV-1 poses a serious challenge for the design of a universal quantitative assay capable of detecting all the genetic subtypes within the main (M) HIV-1 group with similar efficiency. Here, we describe a highly sensitive real-time PCR protocol that allows for the correct quantification of virtually all group-M HIV-1 strains with a higher degree of accuracy compared with other methods. The protocol involves three stages, namely DNA extraction/lysis, cellular DNA quantification and HIV-1 proviral load assessment. Owing to the robustness of the PCR design, this assay can be performed on crude cellular extracts, and therefore it may be suitable for the routine analysis of clinical samples even in developing countries. An accurate quantification of the HIV-1 proviral load can be achieved within 1 d from blood withdrawal.

  11. Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus.

    PubMed

    Wu, Xinghai; Chen, Chanfa; Xiao, Xizhi; Deng, Ming Jun

    2016-11-01

    A protocol for the reverse transcription-helicase-dependent amplification (RT-HDA) of isothermal DNA was developed for the detection of tomato spotted wilt virus (TSWV). Specific primers, which were based on the highly conserved region of the N gene sequence in TSWV, were used for the amplification of virus's RNA. The LOD of RT-HDA, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP), and reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted using 10-fold serial dilution of RNA eluates. TSWV sensitivity in RT-HDA and RT-LAMP was 4 pg RNA compared with 40 pg RNA in RT-PCR. The specificity of RT-HDA for TSWV was high, showing no cross-reactivity with other tomato and Tospovirus viruses including cucumber mosaic virus (CMV), tomato black ring virus (TBRV), tomato mosaic virus (ToMV), or impatiens necrotic spot virus (INSV). The RT-HDA method is effective for the detection of TSWV in plant samples and is a potential tool for early and rapid detection of TSWV.

  12. Fluorescence Visual Detection of Herbal Product Substitutions at Terminal Herbal Markets by CCP-based FRET technique.

    PubMed

    Jiang, Chao; Yuan, Yuan; Yang, Guang; Jin, Yan; Liu, Libing; Zhao, Yuyang; Huang, Luqi

    2016-10-21

    Inaccurate labeling of materials used in herbal products may compromise the therapeutic efficacy and may pose a threat to medicinal safety. In this paper, a rapid (within 3 h), sensitive and visual colorimetric method for identifying substitutions in terminal market products was developed using cationic conjugated polymer-based fluorescence resonance energy transfer (CCP-based FRET). Chinese medicinal materials with similar morphology and chemical composition were clearly distinguished by the single-nucleotide polymorphism (SNP) genotyping method. Assays using CCP-based FRET technology showed a high frequency of adulterants in Lu-Rong (52.83%) and Chuan-Bei-Mu (67.8%) decoction pieces, and patented Chinese drugs (71.4%, 5/7) containing Chuan-Bei-Mu ingredients were detected in the terminal herbal market. In comparison with DNA sequencing, this protocol simplifies procedures by eliminating the cumbersome workups and sophisticated instruments, and only a trace amount of DNA is required. The CCP-based method is particularly attractive because it can detect adulterants in admixture samples with high sensitivity. Therefore, the CCP-based detection system shows great potential for routine terminal market checks and drug safety controls.

  13. An ultrasensitive quantum dots fluorescent polarization immunoassay based on the antibody modified Au nanoparticles amplifying for the detection of adenosine triphosphate.

    PubMed

    He, Yanlong; Tian, Jianniao; Hu, Kun; Zhang, Juanni; Chen, Sheng; Jiang, Yixuan; Zhao, Yanchun; Zhao, Shulin

    2013-11-13

    In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8×10(-12) M to 2.40×10(-4) M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. Robust DNA Isolation and High-throughput Sequencing Library Construction for Herbarium Specimens.

    PubMed

    Saeidi, Saman; McKain, Michael R; Kellogg, Elizabeth A

    2018-03-08

    Herbaria are an invaluable source of plant material that can be used in a variety of biological studies. The use of herbarium specimens is associated with a number of challenges including sample preservation quality, degraded DNA, and destructive sampling of rare specimens. In order to more effectively use herbarium material in large sequencing projects, a dependable and scalable method of DNA isolation and library preparation is needed. This paper demonstrates a robust, beginning-to-end protocol for DNA isolation and high-throughput library construction from herbarium specimens that does not require modification for individual samples. This protocol is tailored for low quality dried plant material and takes advantage of existing methods by optimizing tissue grinding, modifying library size selection, and introducing an optional reamplification step for low yield libraries. Reamplification of low yield DNA libraries can rescue samples derived from irreplaceable and potentially valuable herbarium specimens, negating the need for additional destructive sampling and without introducing discernible sequencing bias for common phylogenetic applications. The protocol has been tested on hundreds of grass species, but is expected to be adaptable for use in other plant lineages after verification. This protocol can be limited by extremely degraded DNA, where fragments do not exist in the desired size range, and by secondary metabolites present in some plant material that inhibit clean DNA isolation. Overall, this protocol introduces a fast and comprehensive method that allows for DNA isolation and library preparation of 24 samples in less than 13 h, with only 8 h of active hands-on time with minimal modifications.

  15. An economical and effective high-throughput DNA extraction protocol for molecular marker analysis in honey bees

    USDA-ARS?s Scientific Manuscript database

    Extraction of DNA from tissue samples can be expensive both in time and monetary resources and can often require handling and disposal of hazardous chemicals. We have developed a high throughput protocol for extracting DNA from honey bees that is of a high enough quality and quantity to enable hundr...

  16. Development of a fast PCR protocol enabling rapid generation of AmpFℓSTR® Identifiler® profiles for genotyping of human DNA

    PubMed Central

    2012-01-01

    Background Traditional PCR methods for forensic STR genotyping require approximately 2.5 to 4 hours to complete, contributing a significant portion of the time required to process forensic DNA samples. The purpose of this study was to develop and validate a fast PCR protocol that enabled amplification of the 16 loci targeted by the AmpFℓSTR® Identifiler® primer set, allowing decreased cycling times. Methods Fast PCR conditions were achieved by substituting the traditional Taq polymerase for SpeedSTAR™ HS DNA polymerase which is designed for fast PCR, by upgrading to a thermal cycler with faster temperature ramping rates and by modifying cycling parameters (less time at each temperature) and adopting a two-step PCR approach. Results The total time required for the optimized protocol is 26 min. A total of 147 forensically relevant DNA samples were amplified using the fast PCR protocol for Identifiler. Heterozygote peak height ratios were not affected by fast PCR conditions, and full profiles were generated for single-source DNA amounts between 0.125 ng and 2.0 ng. Individual loci in profiles produced with the fast PCR protocol exhibited average n-4 stutter percentages ranging from 2.5 ± 0.9% (THO1) to 9.9 ± 2.7% (D2S1338). No increase in non-adenylation or other amplification artefacts was observed. Minor contributor alleles in two-person DNA mixtures were reliably discerned. Low level cross-reactivity (monomorphic peaks) was observed with some domestic animal DNA. Conclusions The fast PCR protocol presented offers a feasible alternative to current amplification methods and could aid in reducing the overall time in STR profile production or could be incorporated into a fast STR genotyping procedure for time-sensitive situations. PMID:22394458

  17. Development of a fast PCR protocol enabling rapid generation of AmpFℓSTR® Identifiler® profiles for genotyping of human DNA.

    PubMed

    Foster, Amanda; Laurin, Nancy

    2012-03-06

    Traditional PCR methods for forensic STR genotyping require approximately 2.5 to 4 hours to complete, contributing a significant portion of the time required to process forensic DNA samples. The purpose of this study was to develop and validate a fast PCR protocol that enabled amplification of the 16 loci targeted by the AmpFℓSTR® Identifiler® primer set, allowing decreased cycling times. Fast PCR conditions were achieved by substituting the traditional Taq polymerase for SpeedSTAR™ HS DNA polymerase which is designed for fast PCR, by upgrading to a thermal cycler with faster temperature ramping rates and by modifying cycling parameters (less time at each temperature) and adopting a two-step PCR approach. The total time required for the optimized protocol is 26 min. A total of 147 forensically relevant DNA samples were amplified using the fast PCR protocol for Identifiler. Heterozygote peak height ratios were not affected by fast PCR conditions, and full profiles were generated for single-source DNA amounts between 0.125 ng and 2.0 ng. Individual loci in profiles produced with the fast PCR protocol exhibited average n-4 stutter percentages ranging from 2.5 ± 0.9% (THO1) to 9.9 ± 2.7% (D2S1338). No increase in non-adenylation or other amplification artefacts was observed. Minor contributor alleles in two-person DNA mixtures were reliably discerned. Low level cross-reactivity (monomorphic peaks) was observed with some domestic animal DNA. The fast PCR protocol presented offers a feasible alternative to current amplification methods and could aid in reducing the overall time in STR profile production or could be incorporated into a fast STR genotyping procedure for time-sensitive situations.

  18. Electrospray ionization-tandem mass spectrometry and 32P-postlabeling analyses of tamoxifen-DNA adducts in humans.

    PubMed

    Beland, Frederick A; Churchwell, Mona I; Doerge, Daniel R; Parkin, Daniel R; Malejka-Giganti, Danuta; Hewer, Alan; Phillips, David H; Carmichael, Paul L; Gamboa da Costa, Gonçalo; Marques, M Matilde

    2004-07-21

    Although the nonsteroidal antiestrogen tamoxifen is used as an adjuvant chemotherapeutic agent to treat hormone-dependent breast cancer and as a chemopreventive agent in women with elevated risk of breast cancer, it has also been reported to increase the risk of endometrial cancer. Reports of low levels of tamoxifen-DNA adducts in human endometrial tissue have suggested that tamoxifen induces endometrial cancer by a genotoxic mechanism. However, these findings have been controversial. We used electrospray ionization-tandem mass spectrometry (ES-MS/MS) and 32P-postlabeling analyses to investigate the presence of tamoxifen-DNA adducts in human endometrial tissue. Endometrial DNA from eight tamoxifen-treated women and eight untreated women was hydrolyzed to nucleosides and assayed for (E)-alpha-(deoxyguanosin-N2-yl)-tamoxifen (dG-Tam) and (E)-alpha-(deoxyguanosin-N2-yl)-N-desmethyltamoxifen (dG-desMeTam), the two major tamoxifen-DNA adducts that have been reported to be present in humans and/or experimental animals treated with tamoxifen, using on-line sample preparation coupled with high-performance liquid chromatography (HPLC) and ES-MS/MS. The same DNA samples were assayed for the presence of dG-Tam and dG-desMeTam by (32)P-postlabeling methodology, using two different DNA digestion and labeling protocols, followed by both thin-layer chromatography and HPLC. We did not detect either tamoxifen-DNA adduct by HPLC-ES-MS/MS analyses (limits of detection for dG-Tam and dG-desMeTam were two adducts per 10(9) nucleotides and two adducts per 10(8) nucleotides, respectively) or by 32P-postlabeling analyses (limit of detection for both adducts was one adduct per 10(9) nucleotides) in any of the endometrial DNA samples. The initiation of endometrial cancer by tamoxifen is probably not due to a genotoxic mechanism involving the formation of dG-Tam or dG-desMeTam.

  19. Delineating the cell death mechanisms associated with skin electroporation.

    PubMed

    Schultheis, Katherine; Smith, Trevor R F; Kiosses, William B; Kraynyak, Kimberly A; Wong, Amelia; Oh, Janet; Broderick, Kate Elizabeth

    2018-06-28

    The immune responses elicited following delivery of DNA vaccines to the skin has previously been shown to be significantly enhanced by the addition of electroporation (EP) to the treatment protocol. Principally, EP increases the transfection of pDNA into the resident skin cells. In addition to increasing the levels of in vivo transfection, the physical insult induced by EP is associated with activation of innate pathways which are believed to mediate an adjuvant effect, further enhancing DNA vaccine responses. Here, we have investigated the possible mechanisms associated with this adjuvant effect, primarily focusing on the cell death pathways associated with the skin EP procedure independent of pDNA delivery. Using the minimally invasive CELLECTRA®-3P intradermal electroporation device that penetrates the epidermal and dermal layers of the skin, we have investigated apoptotic and necrotic cell death in relation to the vicinity of the electrode needles and electric field generated. Employing the well-established TUNEL assay, we detected apoptosis beginning as early as one hour after EP and peaking at the 4 hour time point. The majority of the apoptotic events were detected in the epidermal region directly adjacent to the electrode needle. Using a novel propidium iodide in vivo necrotic cell death assay, we detected necrotic events concentrated in the epidermal region adjacent to the electrode. Furthermore, we detected up-regulation of calreticulin expression on skin cells after EP, thus labeling these cells for uptake by dendritic cells and macrophages. These results allow us to delineate the cell death mechanisms occurring in the skin following intradermal EP independently of pDNA delivery. We believe these events contribute to the adjuvant effect observed following electroporation at the skin treatment site.

  20. Establishing a comprehensive genetic diagnosis strategy for hemophilia B and its application in Chinese population.

    PubMed

    Lin, X Y; Wang, J; Xiao, X; Xu, Y W; Yan, Q J; Jiang, W Y

    2018-04-01

    To reduce the incidence of hemophilia B (HB) which with no complete cure currently, prenatal diagnosis and preimplantation genetic diagnosis (PGD) are effective and feasible means. However, previous studies about genetic diagnosis in HB mostly just focused on the detection of patients and carriers. Here, we established a comprehensive genetic diagnosis strategy for HB and worked it out in Chinese population. The strategy includes the detection of patients and carriers, prenatal diagnosis, and PGD. Seven unrelated HB families from Chinese population involved in this study. Firstly, probands and available members were carried out coagulation laboratory assays, and the clinical information has been recorded. Secondly, we used DNA direct sequencing to screen the whole FIX gene of them. The pathogenicity of novel mutations was verified according to 2015 ACMG-AM guidelines. For prenatal diagnosis, a mix of DNA direct sequencing and STR linkage analysis was employed. To explore a better PGD protocol, Karyomapping was first applied in PGD of HB, comparing with conventional PCR-based methods. Six different pathogenic mutations including 1 novel duplication (c.660_661dup ATCA) were identified. The results of prenatal diagnosis were consistent with birth outcomes. In the PGD case, 4 of 11 embryos were confirmed to be normal and one of them was transferred and led to a healthy birth. The established genetic diagnosis strategy for HB in our study was comprehensive and well applied in clinic practice. Besides, we recommended that DNA direct sequencing combined with Karyomapping was a better PGD protocol. © 2017 John Wiley & Sons Ltd.

  1. Adjustment of Cell-Type Composition Minimizes Systematic Bias in Blood DNA Methylation Profiles Derived by DNA Collection Protocols

    PubMed Central

    Shiwa, Yuh; Hachiya, Tsuyoshi; Furukawa, Ryohei; Ohmomo, Hideki; Ono, Kanako; Kudo, Hisaaki; Hata, Jun; Hozawa, Atsushi; Iwasaki, Motoki; Matsuda, Koichi; Minegishi, Naoko; Satoh, Mamoru; Tanno, Kozo; Yamaji, Taiki; Wakai, Kenji; Hitomi, Jiro; Kiyohara, Yutaka; Kubo, Michiaki; Tanaka, Hideo; Tsugane, Shoichiro; Yamamoto, Masayuki; Sobue, Kenji; Shimizu, Atsushi

    2016-01-01

    Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS) using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03) when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50) when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λadjusted = 1.14) by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12–1.45) and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λadjusted = 1.00–1.17). These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models. PMID:26799745

  2. Adjustment of Cell-Type Composition Minimizes Systematic Bias in Blood DNA Methylation Profiles Derived by DNA Collection Protocols.

    PubMed

    Shiwa, Yuh; Hachiya, Tsuyoshi; Furukawa, Ryohei; Ohmomo, Hideki; Ono, Kanako; Kudo, Hisaaki; Hata, Jun; Hozawa, Atsushi; Iwasaki, Motoki; Matsuda, Koichi; Minegishi, Naoko; Satoh, Mamoru; Tanno, Kozo; Yamaji, Taiki; Wakai, Kenji; Hitomi, Jiro; Kiyohara, Yutaka; Kubo, Michiaki; Tanaka, Hideo; Tsugane, Shoichiro; Yamamoto, Masayuki; Sobue, Kenji; Shimizu, Atsushi

    2016-01-01

    Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS) using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03) when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50) when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λ adjusted = 1.14) by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12-1.45) and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λ adjusted = 1.00-1.17). These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models.

  3. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction.

    PubMed

    Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M

    2015-01-01

    Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol-chloroform-isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. © 2014 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  4. Droplet Microfluidic Device Fabrication and Use for Isothermal Amplification and Detection of MicroRNA.

    PubMed

    Giuffrida, Maria Chiara; D'Agata, Roberta; Spoto, Giuseppe

    2017-01-01

    Droplet microfluidics combined with the isothermal circular strand displacement polymerization (ICSDP) represents a powerful new technique to detect both single-stranded DNA and microRNA sequences. The method here described helps in overcoming some drawbacks of the lately introduced droplet polymerase chain reaction (PCR) amplification when implemented in microfluidic devices. The method also allows the detection of nanoliter droplets of nucleic acids sequences solutions, with a particular attention to microRNA sequences that are detected at the picomolar level. The integration of the ICSDP amplification protocol in droplet microfluidic devices reduces the time of analysis and the amount of sample required. In addition, there is also the possibility to design parallel analyses to be integrated in portable devices.

  5. Nucleic acid isolation process

    DOEpatents

    Longmire, Jonathan L.; Lewis, Annette K.; Hildebrand, Carl E.

    1990-01-01

    A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduce the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without affect on the protocol.

  6. Extracting DNA from 'jaws': high yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material.

    PubMed

    Nielsen, E E; Morgan, J A T; Maher, S L; Edson, J; Gauthier, M; Pepperell, J; Holmes, B J; Bennett, M B; Ovenden, J R

    2017-05-01

    Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples of white shark (Carcharodon carcharias). Application of the optimized methods to 38 museum and private angler trophy specimens dating back to 1912 yielded sufficient DNA for downstream genomic analysis for 68% of the samples. No clear relationships between age of samples, DNA quality and quantity were observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield. © 2016 John Wiley & Sons Ltd.

  7. Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures.

    PubMed

    Koussa, Mounir A; Sotomayor, Marcos; Wong, Wesley P

    2014-05-15

    Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. Copyright © 2014. Published by Elsevier Inc.

  8. Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures

    PubMed Central

    Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.

    2014-01-01

    Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. PMID:24568941

  9. A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification of 'Candidatus Phytoplasma prunorum'

    PubMed Central

    Minguzzi, Stefano; Terlizzi, Federica; Lanzoni, Chiara; Poggi Pollini, Carlo; Ratti, Claudio

    2016-01-01

    Many efforts have been made to develop a rapid and sensitive method for phytoplasma and virus detection. Taking our cue from previous works, different rapid sample preparation methods have been tested and applied to Candidatus Phytoplasma prunorum (‘Ca. P. prunorum’) detection by RT-qPCR. A duplex RT-qPCR has been optimized using the crude sap as a template to simultaneously amplify a fragment of 16S rRNA of the pathogen and 18S rRNA of the host plant. The specific plant 18S rRNA internal control allows comparison and relative quantification of samples. A comparison between DNA and RNA contribution to qPCR detection is provided, showing higher contribution of the latter. The method presented here has been validated on more than a hundred samples of apricot, plum and peach trees. Since 2013, this method has been successfully applied to monitor ‘Ca. P. prunorum’ infections in field and nursery. A triplex RT-qPCR assay has also been optimized to simultaneously detect ‘Ca. P. prunorum’ and Plum pox virus (PPV) in Prunus. PMID:26742106

  10. Evaluation of nifurtimox treatment of chronic Chagas disease by means of several parasitological methods.

    PubMed

    Muñoz, Catalina; Zulantay, Inés; Apt, Werner; Ortiz, Sylvia; Schijman, Alejandro G; Bisio, Margarita; Ferrada, Valentina; Herrera, Cinthya; Martínez, Gabriela; Solari, Aldo

    2013-09-01

    Currently, evaluation of drug efficacy for Chagas disease remains a controversial issue with no consensus. In this work, we evaluated the parasitological efficacy of Nifurtimox treatment in 21 women with chronic Chagas disease from an area of endemicity in Chile who were treated according to current protocols. Under pre- and posttherapy conditions, blood (B) samples and xenodiagnosis (XD) samples from these patients were subjected to analysis by real-time PCR targeting the nuclear satellite DNA of Trypanosoma cruzi (Sat DNA PCR-B, Sat DNA PCR-XD) and by PCR targeting the minicircle of kinetoplast DNA of T. cruzi (kDNA PCR-B, kDNA PCR-XD) and by T. cruzi genotyping using hybridization minicircle tests in blood and fecal samples of Triatoma infestans feed by XD. In pretherapy, kDNA PCR-B and kDNA PCR-XD detected T. cruzi in 12 (57%) and 18 (86%) cases, respectively, whereas Sat DNA quantitative PCR-B (qPCR-B) and Sat DNA qPCR-XD were positive in 18 cases (86%) each. Regarding T. cruzi genotype analysis, it was possible to observe in pretherapy the combination of TcI, TcII, and TcV lineages, including mixtures of T. cruzi strains in most of the cases. At 13 months posttherapy, T. cruzi DNA was detectable in 6 cases (29.6%) and 4 cases (19.1%) by means of Sat DNA PCR-XD and kDNA PCR-XD, respectively, indicating treatment failure with recovery of live parasites refractory to chemotherapy. In 3 cases, it was possible to identify persistence of the baseline genotypes. The remaining 15 baseline PCR-positive cases gave negative results by all molecular and parasitological methods at 13 months posttreatment, suggesting parasite response. Within this follow-up period, kDNA PCR-XD and Sat DNA qPCR-XD proved to be more sensitive tools for the parasitological evaluation of the efficacy of Nifurtimox treatment than the corresponding PCR methods performed directly from blood samples.

  11. Evaluation of Nifurtimox Treatment of Chronic Chagas Disease by Means of Several Parasitological Methods

    PubMed Central

    Muñoz, Catalina; Zulantay, Inés; Apt, Werner; Ortiz, Sylvia; Schijman, Alejandro G.; Bisio, Margarita; Ferrada, Valentina; Herrera, Cinthya; Martínez, Gabriela

    2013-01-01

    Currently, evaluation of drug efficacy for Chagas disease remains a controversial issue with no consensus. In this work, we evaluated the parasitological efficacy of Nifurtimox treatment in 21 women with chronic Chagas disease from an area of endemicity in Chile who were treated according to current protocols. Under pre- and posttherapy conditions, blood (B) samples and xenodiagnosis (XD) samples from these patients were subjected to analysis by real-time PCR targeting the nuclear satellite DNA of Trypanosoma cruzi (Sat DNA PCR-B, Sat DNA PCR-XD) and by PCR targeting the minicircle of kinetoplast DNA of T. cruzi (kDNA PCR-B, kDNA PCR-XD) and by T. cruzi genotyping using hybridization minicircle tests in blood and fecal samples of Triatoma infestans feed by XD. In pretherapy, kDNA PCR-B and kDNA PCR-XD detected T. cruzi in 12 (57%) and 18 (86%) cases, respectively, whereas Sat DNA quantitative PCR-B (qPCR-B) and Sat DNA qPCR-XD were positive in 18 cases (86%) each. Regarding T. cruzi genotype analysis, it was possible to observe in pretherapy the combination of TcI, TcII, and TcV lineages, including mixtures of T. cruzi strains in most of the cases. At 13 months posttherapy, T. cruzi DNA was detectable in 6 cases (29.6%) and 4 cases (19.1%) by means of Sat DNA PCR-XD and kDNA PCR-XD, respectively, indicating treatment failure with recovery of live parasites refractory to chemotherapy. In 3 cases, it was possible to identify persistence of the baseline genotypes. The remaining 15 baseline PCR-positive cases gave negative results by all molecular and parasitological methods at 13 months posttreatment, suggesting parasite response. Within this follow-up period, kDNA PCR-XD and Sat DNA qPCR-XD proved to be more sensitive tools for the parasitological evaluation of the efficacy of Nifurtimox treatment than the corresponding PCR methods performed directly from blood samples. PMID:23836179

  12. Simultaneous Recovery of Extracellular and Intracellular DNA Suitable for Molecular Studies from Marine Sediments

    PubMed Central

    Corinaldesi, Cinzia; Danovaro, Roberto; Dell'Anno, Antonio

    2005-01-01

    The occurrence of high extracellular DNA concentrations in aquatic sediments (concentrations that are 3 to 4 orders of magnitude greater than those in the water column) might play an important role in biogeochemical cycling, as well as in horizontal gene transfer through natural transformation. Since isolation of extracellular DNA from sediments is a difficult and unsolved task, in this study we developed an efficient procedure to recover simultaneously DNA associated with microbial cells and extracellular DNA from the same sediment sample. This procedure is specifically suitable for studying extracellular DNA because it avoids any contamination with DNA released by cell lysis during handling and extraction. Applying this procedure to different sediment types, we obtained extracellular DNA concentrations that were about 10 to 70 times higher than the intracellular DNA concentrations. Using specific targeted prokaryotic primers, we obtained evidence that extracellular DNA recovered from different sediments did not contain amplifiable 16S rRNA genes. By contrast, using DNA extracted from microbial cells as the template, we always amplified 16S rRNA genes. Although 16S rRNA genes were not detected in extracellular DNA, analyses of the sizes of extracellular DNA indicated the presence of high-molecular-weight fragments that might have contained other gene sequences. This protocol allows investigation of extracellular DNA and its possible participation in natural transformation processes. PMID:15640168

  13. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles

    PubMed Central

    Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia

    2016-01-01

    The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development. PMID:27684368

  14. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles.

    PubMed

    Fischer, Stefanie; Cornils, Kerstin; Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia

    The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.

  15. Rapid and Specific Detection of Salmonella spp. in Animal Feed Samples by PCR after Culture Enrichment

    PubMed Central

    Löfström, Charlotta; Knutsson, Rickard; Axelsson, Charlotta Engdahl; Rådström, Peter

    2004-01-01

    A PCR procedure has been developed for routine analysis of viable Salmonella spp. in feed samples. The objective was to develop a simple PCR-compatible enrichment procedure to enable DNA amplification without any sample pretreatment such as DNA extraction or cell lysis. PCR inhibition by 14 different feed samples and natural background flora was circumvented by the use of the DNA polymerase Tth. This DNA polymerase was found to exhibit a high level of resistance to PCR inhibitors present in these feed samples compared to DyNAzyme II, FastStart Taq, Platinum Taq, Pwo, rTth, Taq, and Tfl. The specificity of the Tth assay was confirmed by testing 101 Salmonella and 43 non-Salmonella strains isolated from feed and food samples. A sample preparation method based on culture enrichment in buffered peptone water and DNA amplification with Tth DNA polymerase was developed. The probability of detecting small numbers of salmonellae in feed, in the presence of natural background flora, was accurately determined and found to follow a logistic regression model. From this model, the probability of detecting 1 CFU per 25 g of feed in artificially contaminated soy samples was calculated and found to be 0.81. The PCR protocol was evaluated on 155 naturally contaminated feed samples and compared to an established culture-based method, NMKL-71. Eight percent of the samples were positive by PCR, compared with 3% with the conventional method. The reasons for the differences in sensitivity are discussed. Use of this method in the routine analysis of animal feed samples would improve safety in the food chain. PMID:14711627

  16. Protein Chips for Detection of Salmonella spp. from Enrichment Culture

    PubMed Central

    Poltronieri, Palmiro; Cimaglia, Fabio; De Lorenzis, Enrico; Chiesa, Maurizio; Mezzolla, Valeria; Reca, Ida Barbara

    2016-01-01

    Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions. PMID:27110786

  17. Confocal laser-induced fluorescence detector for narrow capillary system with yoctomole limit of detection.

    PubMed

    Weaver, Mitchell T; Lynch, Kyle B; Zhu, Zaifang; Chen, Huang; Lu, Joann J; Pu, Qiaosheng; Liu, Shaorong

    2017-04-01

    Laser-induced fluorescence (LIF) detectors for low-micrometer and sub-micrometer capillary on-column detection are not commercially available. In this paper, we describe in details how to construct a confocal LIF detector to address this issue. We characterize the detector by determining its limit of detection (LOD), linear dynamic range (LDR) and background signal drift; a very low LOD (~70 fluorescein molecules or 12 yoctomole fluorescein), a wide LDR (greater than 3 orders of magnitude) and a small background signal drift (~1.2-fold of the root mean square noise) are obtained. For detecting analytes inside a low-micrometer and sub-micrometer capillary, proper alignment is essential. We present a simple protocol to align the capillary with the optical system and use the position-lock capability of a translation stage to fix the capillary in position during the experiment. To demonstrate the feasibility of using this detector for narrow capillary systems, we build a 2-μm-i.d. capillary flow injection analysis (FIA) system using the newly developed LIF prototype as a detector and obtain an FIA LOD of 14 zeptomole fluorescein. We also separate a DNA ladder sample by bare narrow capillary - hydrodynamic chromatography and use the LIF prototype to monitor the resolved DNA fragments. We obtain not only well-resolved peaks but also the quantitative information of all DNA fragments. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. PCR-based Diagnosis of Toxoplasma Parasite in Ocular Infections Having Clinical Indications of Toxoplasmosis.

    PubMed

    Farhadi, Atieh; Haniloo, Ali; Fazaeli, Asghar; Moradian, Siamak; Farhadi, Mehdi

    2017-01-01

    The diagnosis of ocular toxoplasmosis is mainly based on clinical features. However, ocular fluid testing by PCR may be very helpful for approval or rejection of this etiology. In this study, we utilized a nested-PCR technique, targeting the B1 partial sequence to analyze the aqueous and vitreous samples for evaluating the presence of the Toxoplasma DNA. Fifty aqueous or vitreous humor samples were obtained from patients with clinical features of ocular toxoplasmosis admitted to ophthalmology hospitals and clinics in Iran, within 2014. The samples were subsequently subjected to DNA extraction and purification. For nested amplification of the Toxoplasma B1 gene, two primer pairs were used. The outer and inner primers are expected to produce a 193 bp and a 96 bp fragments, respectively. The first-round PCR resulted in the detection of T. gondii in 58% of samples by amplification of the expected 193bp DNA fragment. The nested-PCR using the inner primers, detected 15 additional samples from those with negative amplicons in the first round PCR (overall positivity of 88%). In addition, vitreous samples showed relatively more positive cases than aqueous humor in detection of the infection. The nested-PCR protocol using the B1 gene, with the high detection power, could be a useful complimentary method to clinical diagnose of ocular toxoplasmosis.

  19. Does more favourable handling of the cerebrospinal fluid increase the diagnostic sensitivity of Borrelia burgdorferi sensu lato-specific PCR in Lyme neuroborreliosis?

    PubMed

    Forselv, Kristine J N; Lorentzen, Åslaug R; Ljøstad, Unn; Mygland, Åse; Eikeland, Randi; Kjelland, Vivian; Noraas, Sølvi; Quarsten, Hanne

    2018-04-01

    Tests for direct detection of Borrelia burgdorferi sensu lato (Bb) in Lyme neuroborreliosis (LNB) are needed. Detection of Bb DNA using PCR is promising, but clinical utility is hampered by low diagnostic sensitivity. We aimed to examine whether diagnostic sensitivity can be improved by the use of larger cerebrospinal fluid (CSF) volumes and faster handling of samples. Patients who underwent CSF examination for LNB were included. We collected two millilitres of CSF for PCR analysis, extracted DNA from the pellets within 24 h and analysed the eluate by two real-time PCR protocols (16S rRNA and OspA). Patients who fulfilled diagnostic criteria for LNB were classified as LNB cases and the rest as controls. Bb DNA in CSF was detected by PCR in seven of 28 adults with LNB. Two were Bb antibody negative. No Bb DNA was detected in CSF from 137 controls. Diagnostic sensitivity was 25% and specificity 100%. There was a non-significant trend towards larger CSF sample volume, faster handling of the sample, shorter duration of symptoms, and higher CSF cell count in the PCR-positive cases. We did not find that optimized handling of CSF increased diagnostic sensitivity of PCR in adults with LNB. However, our case series is small and we hypothesize that the importance of these factors will be clarified in further studies with larger case series and altered study design. PCR for diagnosis of LNB may be useful in cases without Bb antibodies due to short duration of symptoms.

  20. High-throughput DNA extraction of forensic adhesive tapes.

    PubMed

    Forsberg, Christina; Jansson, Linda; Ansell, Ricky; Hedman, Johannes

    2016-09-01

    Tape-lifting has since its introduction in the early 2000's become a well-established sampling method in forensic DNA analysis. Sampling is quick and straightforward while the following DNA extraction is more challenging due to the "stickiness", rigidity and size of the tape. We have developed, validated and implemented a simple and efficient direct lysis DNA extraction protocol for adhesive tapes that requires limited manual labour. The method uses Chelex beads and is applied with SceneSafe FAST tape. This direct lysis protocol provided higher mean DNA yields than PrepFiler Express BTA on Automate Express, although the differences were not significant when using clothes worn in a controlled fashion as reference material (p=0.13 and p=0.34 for T-shirts and button-down shirts, respectively). Through in-house validation we show that the method is fit-for-purpose for application in casework, as it provides high DNA yields and amplifiability, as well as good reproducibility and DNA extract stability. After implementation in casework, the proportion of extracts with DNA concentrations above 0.01ng/μL increased from 71% to 76%. Apart from providing higher DNA yields compared with the previous method, the introduction of the developed direct lysis protocol also reduced the amount of manual labour by half and doubled the potential throughput for tapes at the laboratory. Generally, simplified manual protocols can serve as a cost-effective alternative to sophisticated automation solutions when the aim is to enable high-throughput DNA extraction of complex crime scene samples. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Evaluating Protocols for Porcine Faecal Microbiome Recollection, Storage and DNA Extraction: from the Farm to the Lab.

    PubMed

    Muiños-Bühl, Anixa; González-Recio, Oscar; Muñoz, María; Óvilo, Cristina; García-Casco, Juan; Fernández, Ana I

    2018-06-01

    There is a growing interest in understanding the role of the gut microbiome on productive and meat quality-related traits in livestock species in order to develop new useful tools for improving pig production systems and industry. Faecal samples are analysed as a proxy of gut microbiota and here the selection of suitable protocols for faecal sampling and DNA isolation is a critical first step in order to obtain reliable results, even more to compare results obtained from different studies. The aim of the current study was to establish in a cost-effective way, using automated ribosomal intergenic spacer analysis technique, a protocol for porcine faecal sampling and storage at farm and slaughterhouse and to determine the most efficient microbiota DNA isolation kit among those most widely used. Operational Taxonomic Unit profiles were compared from Iberian pig faecal samples collected from rectum or ground, stored with liquid N 2 , room temperature or RNAlater, and processed with QIAamp DNA Stool (Qiagen), PowerFecal DNA Isolation (Mobio) or SpeedTools Tissue DNA extraction (Biotools) commercial kits. The results, focused on prokaryote sampling, based on DNA yield and quality, OTU number and Sørensen similarity Indexes, indicate that the recommended protocol for porcine faecal microbiome sampling at farm should include: the collection from porcine rectum to avoid contamination; the storage in liquid N 2 or even at room temperature, but not in RNAlater; and the isolation of microbiota DNA using PowerFecal DNA Isolation kit. These conditions provide more reliable DNA samples for further microbiome analysis.

  2. Systematic study for DNA recovery and profiling from common IED substrates: From laboratory to casework.

    PubMed

    Phetpeng, Sukanya; Kitpipit, Thitika; Thanakiatkrai, Phuvadol

    2015-07-01

    Improvised explosive devices (IEDs) made from household items are encountered in terrorist attacks worldwide. Assembling an IED leaves trace DNA on its components, but deflagration degrades DNA. To maximize the amount of DNA recovered, a systematic evaluation of DNA collection methods was carried out and the most efficient methods were implemented with IED casework evidence as a validation exercise. Six swab types and six moistening agents were used to collect dried buffy coat stains on four common IED substrates. The most efficient swab/moistening agent combinations were then compared with tape-lifting using three brands of adhesive tape and also with direct DNA extraction from evidence. The most efficient collection methods for different IED substrates (post-study protocol) were then implemented for IED casework and compared with the pre-study protocol using 195 pieces of IED evidence. There was no single best swab type or moistening agent. Swab type had the largest effect on DNA recovery percentages, but moistening agents, substrates, and the interactions between factors all affected DNA recovery. The most efficient swab/moistening agent combinations performed equally well when compared with the best adhesive tape and direct extraction. The post-study protocol significantly improved STR profiles obtained from IED evidence. This paper outlines a comprehensive study of DNA collection methods for trace DNA and the validation of the most efficient collection methods with IED evidence. The findings from both parts of this study emphasize the need to continuously re-evaluate standard operating protocols with empirical studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. DNA elution from buccal cells stored on Whatman FTA Classic Cards using a modified methanol fixation method.

    PubMed

    Johanson, Helene C; Hyland, Valentine; Wicking, Carol; Sturm, Richard A

    2009-04-01

    We describe here a method for DNA elution from buccal cells and whole blood both collected onto Whatman FTA technology, using methanol fixation followed by an elution PCR program. Extracted DNA is comparable in quality to published Whatman FTA protocols, as judged by PCR-based genotyping. Elution of DNA from the dried sample is a known rate-limiting step in the published Whatman FTA protocol; this method enables the use of each 3-mm punch of sample for several PCR reactions instead of the standard, one PCR reaction per sample punch. This optimized protocol therefore extends the usefulness and cost effectiveness of each buccal swab sample collected, when used for nucleic acid PCR and genotyping.

  4. SYTO probes: markers of apoptotic cell demise.

    PubMed

    Wlodkowic, Donald; Skommer, Joanna

    2007-10-01

    As mechanistic studies on tumor cell death advance towards their ultimate translational goal, there is a need for specific, rapid, and high-throughput analytical tools to detect diverse cell demise modes. Patented DNA-binding SYTO probes, for example, are gaining increasing interest as easy-to-use markers of caspase-dependent apoptotic cell death. They are proving convenient for tracking apoptosis in diverse hematopoietic cell lines and primary tumor samples, and, due to their spectral characteristics, appear to be useful for the development of multiparameter flow cytometry assays. Herein, several protocols for multiparametric assessment of apoptotic events using SYTO probes are provided. There are protocols describing the use of green fluorescent SYTO 16 and red fluorescent SYTO 17 dyes in combination with plasma membrane permeability markers. Another protocol highlights the multiparametric use of SYTO 16 dye in conjunction with the mitochondrial membrane potential sensitive probe, tetramethylrhodamine methyl ester (TMRM), and the plasma membrane permeability marker, 7-aminoactinomycin D (7-AAD).

  5. Loop-mediated Isothermal Amplification (LAMP) Assays for the Species-specific Detection of Eimeria that Infect Chickens

    PubMed Central

    Barkway, Christopher P.; Pocock, Rebecca L.; Vrba, Vladimir; Blake, Damer P.

    2015-01-01

    Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm’s anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable. PMID:25741643

  6. Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens.

    PubMed

    Barkway, Christopher P; Pocock, Rebecca L; Vrba, Vladimir; Blake, Damer P

    2015-02-20

    Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm's anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.

  7. Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants.

    PubMed

    Triques, Karine; Piednoir, Elodie; Dalmais, Marion; Schmidt, Julien; Le Signor, Christine; Sharkey, Mark; Caboche, Michel; Sturbois, Bénédicte; Bendahmane, Abdelhafid

    2008-04-23

    Most enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA by a mismatch-specific endonuclease at mismatch sites and the analysis of the digestion product on a DNA sequencer. Important limitations of these methods are the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in pool of DNA, the cost of the analysis and the ease by which the technique could be implemented in a standard molecular biology laboratory. The co-agroinfiltration of ENDO1 and p19 constructs into N. benthamiana leaves allowed high level of transient expression of a mismatch-specific and sensitive endonuclease, ENDO1 from Arabidopsis thaliana. We demonstrate the broad range of uses of the produced enzyme in detection of mutations. In human, we report the diagnosis of the G1691A mutation in Leiden factor-V gene associated with venous thrombosis and the fingerprinting of HIV-1 quasispecies in patients subjected to antiretroviral treatments. In plants, we report the use of ENDO1 system for detection of mutant alleles of Retinoblastoma-related gene by TILLING in Pisum sativum and discovery of natural sequence variations by Eco-TILLING in Arabidopsis thaliana. We introduce a cost-effective tool based on a simplified purification protocol of a mismatch-specific and sensitive endonuclease, ENDO1. Especially, we report the successful applications of ENDO1 in mutation diagnostics in humans, fingerprinting of complex population of viruses, and in TILLING and Eco-TILLING in plants.

  8. Clinical whole-genome sequencing from routine formalin-fixed, paraffin-embedded specimens: pilot study for the 100,000 Genomes Project.

    PubMed

    Robbe, Pauline; Popitsch, Niko; Knight, Samantha J L; Antoniou, Pavlos; Becq, Jennifer; He, Miao; Kanapin, Alexander; Samsonova, Anastasia; Vavoulis, Dimitrios V; Ross, Mark T; Kingsbury, Zoya; Cabes, Maite; Ramos, Sara D C; Page, Suzanne; Dreau, Helene; Ridout, Kate; Jones, Louise J; Tuff-Lacey, Alice; Henderson, Shirley; Mason, Joanne; Buffa, Francesca M; Verrill, Clare; Maldonado-Perez, David; Roxanis, Ioannis; Collantes, Elena; Browning, Lisa; Dhar, Sunanda; Damato, Stephen; Davies, Susan; Caulfield, Mark; Bentley, David R; Taylor, Jenny C; Turnbull, Clare; Schuh, Anna

    2018-02-01

    PurposeFresh-frozen (FF) tissue is the optimal source of DNA for whole-genome sequencing (WGS) of cancer patients. However, it is not always available, limiting the widespread application of WGS in clinical practice. We explored the viability of using formalin-fixed, paraffin-embedded (FFPE) tissues, available routinely for cancer patients, as a source of DNA for clinical WGS.MethodsWe conducted a prospective study using DNAs from matched FF, FFPE, and peripheral blood germ-line specimens collected from 52 cancer patients (156 samples) following routine diagnostic protocols. We compared somatic variants detected in FFPE and matching FF samples.ResultsWe found the single-nucleotide variant agreement reached 71% across the genome and somatic copy-number alterations (CNAs) detection from FFPE samples was suboptimal (0.44 median correlation with FF) due to nonuniform coverage. CNA detection was improved significantly with lower reverse crosslinking temperature in FFPE DNA extraction (80 °C or 65 °C depending on the methods). Our final data showed somatic variant detection from FFPE for clinical decision making is possible. We detected 98% of clinically actionable variants (including 30/31 CNAs).ConclusionWe present the first prospective WGS study of cancer patients using FFPE specimens collected in a routine clinical environment proving WGS can be applied in the clinic.GENETICS in MEDICINE advance online publication, 1 February 2018; doi:10.1038/gim.2017.241.

  9. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions

    PubMed Central

    Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.

    2017-01-01

    Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne’s disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne’s test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne’s disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples. PMID:28210245

  10. EvaGreen real-time PCR protocol for specific 'Candidatus Phytoplasma mali' detection and quantification in insects.

    PubMed

    Monti, Monia; Martini, Marta; Tedeschi, Rosemarie

    2013-01-01

    In this paper the validation and implementation of a Real-time PCR protocol based on ribosomal protein genes has been carried out for sensitive and specific quantification of 'Candidatus (Ca.) Phytoplasma mali' (apple proliferation phytoplasma, APP) in insects. The method combines the use of EvaGreen(®) dye as chemistry detection system and the specific primer pair rpAP15f-mod/rpAP15r3, which amplifies a fragment of 238 bp of the ribosomal protein rplV (rpl22) gene of APP. Primers specificity was demonstrated by running in the same Real-time PCR 'Ca. Phytoplasma mali' samples with phytoplasmas belonging to the same group (16SrX) as 'Ca. Phytoplasma pyri' and 'Ca. Phytoplasma prunorum', and also phytoplasmas from different groups, as 'Ca. Phytoplasma phoenicium' (16SrIX) and Flavescence dorée phytoplasma (16SrV). 'Ca. Phytoplasma mali' titre in insects was quantified using a specific approach, which relates the concentration of the phytoplasma to insect 18S rDNA. Absolute quantification of APP and insect 18S rDNA were calculated using standard curves prepared from serial dilutions of plasmids containing rplV-rpsC and a portion of 18S rDNA genes, respectively. APP titre in insects was expressed as genome units (GU) of phytoplasma per picogram (pg) of individual insect 18S rDNA. 'Ca. Phytoplasma mali' concentration in examined samples (Cacopsylla melanoneura overwintered adults) ranged from 5.94 × 10(2) to 2.51 × 10(4) GU/pg of insect 18S rDNA. Repeatability and reproducibility of the method were also evaluated by calculation of the coefficient of variation (CV%) of GU of phytoplasma and pg of 18S rDNA fragment for both assays. CV less than 14% and 9% (for reproducibility test) and less than 10 and 11% (for repeatability test) were obtained for phytoplasma and insect qPCR assays, respectively. Sensitivity of the method was also evaluated, in comparison with conventional 16S rDNA-based nested-PCR procedure. The method described has been demonstrated reliable, sensitive and specific for the quantification of 'Ca. Phytoplasma mali' in insects. The possibility to study the trend of phytoplasma titre in the vectors will allow a deepen investigation on the epidemiology of the disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Immobilized-free miniaturized electrochemical sensing system for Pb2+ detection based on dual Pb2+-DNAzyme assistant feedback amplification strategy.

    PubMed

    Cai, Wei; Xie, Shunbi; Zhang, Jin; Tang, Dianyong; Tang, Ying

    2018-06-08

    We presented a novel dual-DNAzyme feedback amplification (DDFA) strategy for Pb 2+ detection based on a micropipette tip-based miniaturized homogeneous electrochemical device. The DDFA system involves two rolling circle amplification (RCA) processes in which two circular DNA templates (C1 and C2) have been designed with a Pb 2+ -DNAzyme sequence (8-17 DNAzyme, anti-GR-5 DNAzyme) and an antisense sequence of G-quadruplex. And a linear DNA (L-DNA), which consists of a primer sequence and a Pb 2+ -DNAzyme substrate sequence, could hybridize with C1 and C2 to form two DNA complexes. In presence of Pb 2+ , the Pb 2+ -DNAzyme exhibited excellent cleavage specificity toward the substrate sequence in L-DNA, leaving primer sequence to trigger two paths of RCA process and finally resulting in massive long nanosolo DNA strands with reduplicated G-quadruplex sequences. And then, methylene blue (MB) could selectively intercalate into G-quadruplex to reduce the free MB concentration in the solution. Thereafter, a carbon fiber microelectrode-based miniaturized electrochemical device was constructed to record the decrease of electrochemical signal due to the much lower diffusion rate of MB/G-quadruplex complex than that of free MB. Therefore, the concentration of Pb 2+ could be correctively and sensitively determined in a homogeneous solution by combining DDFA with miniaturized electrochemical device. This protocol not only exhibited high selectivity and sensitivity toward Pb 2+ with a detection limit of 0.048 pM, but also reduced sample volume to 10 µL. In addition, this sensing system has been successfully applied to Pb 2+ detection in Yangtze River with desirable quantitative manners, which matched well with the atomic absorption spectrometry (AAS). Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Decoding DNA labels by melting curve analysis using real-time PCR.

    PubMed

    Balog, József A; Fehér, Liliána Z; Puskás, László G

    2017-12-01

    Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.

  13. Focal epilepsy as a long term sequela of Parvovirus B19 encephalitis.

    PubMed

    Palermo, Concetta Ilenia; Costanzo, Carmela Maria; Franchina, Concetta; Castiglione, Giacomo; Giuliano, Loretta; Russo, Raffaela; Conti, Alessandro; Sofia, Vito; Scalia, Guido

    2016-07-01

    Human Parvovirus B19 (PVB19), the etiological agent of the fifth disease, is associated with a large spectrum of pathologies, among which is encephalitis. Since it has been detected from the central nervous system in children or in immunocompromised patients, its causative role in serious neurological manifestations is still unclear. Here we report the case of an 18-year-old healthy boy who developed encephalitis complicated by prolonged status epilepticus. The detection of PVB19 DNA in his serum and, subsequently, in his cerebrospinal fluid supports the hypothesis that this virus could potentially play a role in the pathogenesis of neurological complications. In addition, the detection of viral DNA and the presence of specific IgM and IgG antibodies in serum, together with clinical findings such as skin rash, support the presence of a disseminated viral infection. In the presence of neurological disorders, especially when there are no specific signs, but seizures and rash are present, it is important to search for PVB19 both in immunocompromised and immunocompetent patients. Moreover, the introduction of the PVB19 DNA test into diagnostic protocols of neuropathies, especially those undiagnosed, could clarify the etiological agent that otherwise could remain unrecognized. Copyright © 2016. Published by Elsevier B.V.

  14. Duplex Real-Time PCR Assay Distinguishes Aedes aegypti From Ae. albopictus (Diptera: Culicidae) Using DNA From Sonicated First-Instar Larvae.

    PubMed

    Kothera, Linda; Byrd, Brian; Savage, Harry M

    2017-11-07

    Aedes aegypti (L.) and Ae. albopictus (Skuse) are important arbovirus vectors in the United States, and the recent emergence of Zika virus disease as a public health concern in the Americas has reinforced a need for tools to rapidly distinguish between these species in collections made by vector control agencies. We developed a duplex real-time PCR assay that detects both species and does not cross-amplify in any of the other seven Aedes species tested. The lower limit of detection for our assay is equivalent to ∼0.03 of a first-instar larva in a 60-µl sample (0.016 ng of DNA per real-time PCR reaction). The assay was sensitive and specific in mixtures of both species that reflected up to a 2,000-fold difference in DNA concentration. In addition, we developed a simple protocol to extract DNA from sonicated first-instar larvae, and used that DNA to test the assay. Because it uses real-time PCR, the assay saves time by not requiring a separate visualization step. This assay can reduce the time needed for vector control agencies to make species identifications, and thus inform decisions about surveillance and control. Published by Oxford University Press on behalf of Entomological Society of America 2017 This work is written by US Government employees and is in the public domain in the US.

  15. Metagenome phylogenetic profiling of microbial community evolution in a tetrachloroethene-contaminated aquifer responding to enhanced reductive dechlorination protocols.

    PubMed

    Reiss, Rebecca A; Guerra, Peter; Makhnin, Oleg

    2016-01-01

    Chlorinated solvent contamination of potable water supplies is a serious problem worldwide. Biostimulation protocols can successfully remediate chlorinated solvent contamination through enhanced reductive dechlorination pathways, however the process is poorly understood and sometimes stalls creating a more serious problem. Whole metagenome techniques have the potential to reveal details of microbial community changes induced by biostimulation. Here we compare the metagenome of a tetrachloroethene contaminated Environmental Protection Agency Superfund Site before and after the application of biostimulation protocols. Environmental DNA was extracted from uncultured microbes that were harvested by on-site filtration of groundwater one month prior to and five months after the injection of emulsified vegetable oil, nutrients, and hydrogen gas bioamendments. Pair-end libraries were prepared for high-throughput DNA sequencing and 90 basepairs from both ends of randomly fragmented 400 basepair DNA fragments were sequenced. Over 31 millions reads were annotated with Metagenome Rapid Annotation using Subsystem Technology representing 32 prokaryotic phyla, 869 genera, and 3,181 species. A 3.6 log 2 fold increase in biomass as measured by DNA yield per mL water was measured, but there was a 9% decrease in the number of genera detected post-remediation. We apply Bayesian statistical methods to assign false discovery rates to fold-change abundance data and use Zipf's power law to filter genera with low read counts. Plotting the log-rank against the log-fold-change facilitates the visualization of the changes in the community in response to the enhanced reductive dechlorination protocol. Members of the Archaea domain increased 4.7 log 2 fold, dominated by methanogens. Prior to remediation, classes Alphaproteobacteria and Betaproteobacteria dominated the community but exhibit significant decreases five months after biostimulation. Geobacter and Sulfurospirillum replace " Sideroxydans " and Burkholderia as the most abundant genera. As a result of biostimulation, Deltaproteobacteria and Epsilonproteobacteria capable of dehalogenation, iron and sulfate reduction, and sulfur oxidation increase. Matches to thermophilic, haloalkane respiring archaea is evidence for additional species involved in biodegradation of chlorinated solvents. Additionally, potentially pathogenic bacteria increase, indicating that there may be unintended consequences of bioremediation.

  16. Development of a two-step high-resolution melting (HRM) analysis for screening sequence variants associated with resistance to the QoIs, benzimidazoles and dicarboximides in airborne inoculum of Botrytis cinerea.

    PubMed

    Chatzidimopoulos, Michael; Ganopoulos, Ioannis; Vellios, Evangelos; Madesis, Panagiotis; Tsaftaris, Athanasios; Pappas, Athanassios C

    2014-11-01

    A rapid, high-resolution melting (HRM) analysis protocol was developed to detect sequence variations associated with resistance to the QoIs, benzimidazoles and dicarboximides in Botrytis cinerea airborne inoculum. HRM analysis was applied directly in fungal DNA collected from air samplers with selective medium. Three and five different genotypes were detected and classified according to their melting profiles in BenA and bos1 genes associated with resistance to benzimidazoles and dicarboximides, respectively. The sensitivity of the methodology was evident in the case of the QoIs, where genotypes varying either by a single nucleotide polymorphism or an additional 1205-bp intron were separated accurately with a single pair of primers. The developed two-step protocol was completed in 82 min and showed reduced variation in the melting curves' formation. HRM analysis rapidly detected the major mutations found in greenhouse strains providing accurate data for successfully controlling grey mould. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. DNA in a bottle-Rapid metabarcoding survey for early alerts of invasive species in ports.

    PubMed

    Borrell, Yaisel J; Miralles, Laura; Do Huu, Hoang; Mohammed-Geba, Khaled; Garcia-Vazquez, Eva

    2017-01-01

    Biota monitoring in ports is increasingly needed for biosecurity reasons and safeguarding marine biodiversity from biological invasion. Present and future international biosecurity directives can be accomplished only if the biota acquired by maritime traffic in ports is controlled. Methodologies for biota inventory are diverse and now rely principally on extensive and labor-intensive sampling along with taxonomic identification by experts. In this study, we employed an extremely simplified environmental DNA (eDNA) sampling methodology from only three 1-L bottles of water per port, followed by metabarcoding (high-throughput sequencing and DNA-based species identification) using 18S rDNA and Cytochrome oxidase I as genetic barcodes. Eight Bay of Biscay ports with available inventory of fouling invertebrates were employed as a case study. Despite minimal sampling efforts, three invasive invertebrates were detected: the barnacle Austrominius modestus, the tubeworm Ficopomatus enigmaticus and the polychaete Polydora triglanda. The same species have been previously found from visual and DNA barcoding (genetic identification of individuals) surveys in the same ports. The current costs of visual surveys, conventional DNA barcoding and this simplified metabarcoding protocol were compared. The results encourage the use of metabarcoding for early biosecurity alerts.

  18. DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports

    PubMed Central

    Miralles, Laura; Do Huu, Hoang; Mohammed-Geba, Khaled; Garcia-Vazquez, Eva

    2017-01-01

    Biota monitoring in ports is increasingly needed for biosecurity reasons and safeguarding marine biodiversity from biological invasion. Present and future international biosecurity directives can be accomplished only if the biota acquired by maritime traffic in ports is controlled. Methodologies for biota inventory are diverse and now rely principally on extensive and labor-intensive sampling along with taxonomic identification by experts. In this study, we employed an extremely simplified environmental DNA (eDNA) sampling methodology from only three 1-L bottles of water per port, followed by metabarcoding (high-throughput sequencing and DNA-based species identification) using 18S rDNA and Cytochrome oxidase I as genetic barcodes. Eight Bay of Biscay ports with available inventory of fouling invertebrates were employed as a case study. Despite minimal sampling efforts, three invasive invertebrates were detected: the barnacle Austrominius modestus, the tubeworm Ficopomatus enigmaticus and the polychaete Polydora triglanda. The same species have been previously found from visual and DNA barcoding (genetic identification of individuals) surveys in the same ports. The current costs of visual surveys, conventional DNA barcoding and this simplified metabarcoding protocol were compared. The results encourage the use of metabarcoding for early biosecurity alerts. PMID:28873426

  19. International Study to Evaluate PCR Methods for Detection of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Schijman, Alejandro G.; Bisio, Margarita; Orellana, Liliana; Sued, Mariela; Duffy, Tomás; Mejia Jaramillo, Ana M.; Cura, Carolina; Auter, Frederic; Veron, Vincent; Qvarnstrom, Yvonne; Deborggraeve, Stijn; Hijar, Gisely; Zulantay, Inés; Lucero, Raúl Horacio; Velazquez, Elsa; Tellez, Tatiana; Sanchez Leon, Zunilda; Galvão, Lucia; Nolder, Debbie; Monje Rumi, María; Levi, José E.; Ramirez, Juan D.; Zorrilla, Pilar; Flores, María; Jercic, Maria I.; Crisante, Gladys; Añez, Néstor; De Castro, Ana M.; Gonzalez, Clara I.; Acosta Viana, Karla; Yachelini, Pedro; Torrico, Faustino; Robello, Carlos; Diosque, Patricio; Triana Chavez, Omar; Aznar, Christine; Russomando, Graciela; Büscher, Philippe; Assal, Azzedine; Guhl, Felipe; Sosa Estani, Sergio; DaSilva, Alexandre; Britto, Constança; Luquetti, Alejandro; Ladzins, Janis

    2011-01-01

    Background A century after its discovery, Chagas disease still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The purpose of this study was to evaluate the performance of PCR methods in detection of Trypanosoma cruzi DNA by an external quality evaluation. Methodology/Findings An international collaborative study was launched by expert PCR laboratories from 16 countries. Currently used strategies were challenged against serial dilutions of purified DNA from stocks representing T. cruzi discrete typing units (DTU) I, IV and VI (set A), human blood spiked with parasite cells (set B) and Guanidine Hidrochloride-EDTA blood samples from 32 seropositive and 10 seronegative patients from Southern Cone countries (set C). Forty eight PCR tests were reported for set A and 44 for sets B and C; 28 targeted minicircle DNA (kDNA), 13 satellite DNA (Sat-DNA) and the remainder low copy number sequences. In set A, commercial master mixes and Sat-DNA Real Time PCR showed better specificity, but kDNA-PCR was more sensitive to detect DTU I DNA. In set B, commercial DNA extraction kits presented better specificity than solvent extraction protocols. Sat-DNA PCR tests had higher specificity, with sensitivities of 0.05–0.5 parasites/mL whereas specific kDNA tests detected 5.10−3 par/mL. Sixteen specific and coherent methods had a Good Performance in both sets A and B (10 fg/µl of DNA from all stocks, 5 par/mL spiked blood). The median values of sensitivities, specificities and accuracies obtained in testing the Set C samples with the 16 tests determined to be good performing by analyzing Sets A and B samples varied considerably. Out of them, four methods depicted the best performing parameters in all three sets of samples, detecting at least 10 fg/µl for each DNA stock, 0.5 par/mL and a sensitivity between 83.3–94.4%, specificity of 85–95%, accuracy of 86.8–89.5% and kappa index of 0.7–0.8 compared to consensus PCR reports of the 16 good performing tests and 63–69%, 100%, 71.4–76.2% and 0.4–0.5, respectively compared to serodiagnosis. Method LbD2 used solvent extraction followed by Sybr-Green based Real time PCR targeted to Sat-DNA; method LbD3 used solvent DNA extraction followed by conventional PCR targeted to Sat-DNA. The third method (LbF1) used glass fiber column based DNA extraction followed by TaqMan Real Time PCR targeted to Sat-DNA (cruzi 1/cruzi 2 and cruzi 3 TaqMan probe) and the fourth method (LbQ) used solvent DNA extraction followed by conventional hot-start PCR targeted to kDNA (primer pairs 121/122). These four methods were further evaluated at the coordinating laboratory in a subset of human blood samples, confirming the performance obtained by the participating laboratories. Conclusion/Significance This study represents a first crucial step towards international validation of PCR procedures for detection of T. cruzi in human blood samples. PMID:21264349

  20. Non-invasive ancient DNA protocol for fluid-preserved specimens and phylogenetic systematics of the genus Orestias (Teleostei: Cyprinodontidae).

    PubMed

    Garrigos, Yareli Esquer; Hugueny, Bernard; Koerner, Kellie; Ibañez, Carla; Bonillo, Celine; Pruvost, Patrice; Causse, Romain; Cruaud, Corinne; Gaubert, Philippe

    2013-01-01

    Specimens stored in museum collections represent a crucial source of morphological and genetic information, notably for taxonomically problematic groups and extinct taxa. Although fluid-preserved specimens of groups such as teleosts may constitute an almost infinite source of DNA, few ancient DNA protocols have been applied to such material. In this study, we describe a non-invasive Guanidine-based (GuSCN) ancient DNA extraction protocol adapted to fluid-preserved specimens that we use to re-assess the systematics of the genus Orestias (Cyprinodontidae: Teleostei). The latter regroups pupfishes endemic to the inter-Andean basin that have been considered as a 'species flock', and for which the morphology-based taxonomic delimitations have been hotly debated. We extracted DNA from the type specimens of Orestias kept at the Muséum National d'Histoire Naturelle of Paris, France, including the extinct species O. cuvieri. We then built the first molecular (control region [CR] and rhodopsin [RH]) phylogeny including historical and recently collected representatives of all the Orestias complexes as recognized by Parenti (1984a): agassizii, cuvieri, gilsoni and mulleri. Our ancient DNA extraction protocol was validated after PCR amplification through an approach based on fragment-by-fragment chimera detection. After optimization, we were able to amplify < 200 bp fragments from both mitochondrial and nuclear DNA (CR and RH, respectively) from probably formalin-fixed type specimens bathed entirely in the extraction fluid. Most of the individuals exhibited few modifications of their external structures after GuSCN bath. Our approach combining type material and 'fresh' specimens allowed us to taxonomically delineate four clades recovered from the well-resolved CR tree into four redefined complexes: agassizii (sensu stricto, i.e. excluding luteus-like species), luteus, cuvieri and gilsoni. The mulleri complex is polyphyletic. Our phylogenetic analyses based on both mitochondrial and nuclear DNA revealed a main, deep dichotomy within the genus Orestias, separating the agassizii complex from a clade grouped under shallow dichotomies as (luteus, (cuvieri, gilsoni)). This 'deep and shallow' diversification pattern could fit within a scenario of ancient divergence between the agassizii complex and the rest of Orestias, followed by a recent diversification or adaptive radiation within each complex during the Pleistocene, in- and outside the Lake Titicaca. We could not recover the reciprocal monophyly of any of the 15 species or morphotypes that were considered in our analyses, possibly due to incomplete lineage sorting and/or hybridization events. As a consequence, our results starkly question the delineation of a series of diagnostic characters listed in the literature for Orestias. Although not included in our phylogenetic analysis, the syntype of O. jussiei could not be assigned to the agassizii complex as newly defined. The CR sequence of the extinct O. cuvieri was recovered within the cuvieri clade (same haplotype as one representative of O. pentlandii), so the mtDNA of the former species might still be represented in the wild.

  1. High sensitivity 5-hydroxymethylcytosine detection in Balb/C brain tissue.

    PubMed

    Davis, Theodore; Vaisvila, Romualdas

    2011-02-01

    DNA hydroxymethylation is a long known modification of DNA, but has recently become a focus in epigenetic research. Mammalian DNA is enzymatically modified at the 5(th) carbon position of cytosine (C) residues to 5-mC, predominately in the context of CpG dinucleotides. 5-mC is amenable to enzymatic oxidation to 5-hmC by the Tet family of enzymes, which are believed to be involved in development and disease. Currently, the biological role of 5-hmC is not fully understood, but is generating a lot of interest due to its potential as a biomarker. This is due to several groundbreaking studies identifying 5-hydroxymethylcytosine in mouse embryonic stem (ES) and neuronal cells. Research techniques, including bisulfite sequencing methods, are unable to easily distinguish between 5-mC and 5-hmC . A few protocols exist that can measure global amounts of 5-hydroxymethylcytosine in the genome, including liquid chromatography coupled with mass spectrometry analysis or thin layer chromatography of single nucleosides digested from genomic DNA. Antibodies that target 5-hydroxymethylcytosine also exist, which can be used for dot blot analysis, immunofluorescence, or precipitation of hydroxymethylated DNA, but these antibodies do not have single base resolution.In addition, resolution depends on the size of the immunoprecipitated DNA and for microarray experiments, depends on probe design. Since it is unknown exactly where 5-hydroxymethylcytosine exists in the genome or its role in epigenetic regulation, new techniques are required that can identify locus specific hydroxymethylation. The EpiMark 5-hmC and 5-mC Analysis Kit provides a solution for distinguishing between these two modifications at specific loci. The EpiMark 5-hmC and 5-mC Analysis Kit is a simple and robust method for the identification and quantitation of 5-methylcytosine and 5-hydroxymethylcytosine within a specific DNA locus. This enzymatic approach utilizes the differential methylation sensitivity of the isoschizomers MspI and HpaII in a simple 3-step protocol. Genomic DNA of interest is treated with T4-BGT, adding a glucose moeity to 5-hydroxymethylcytosine. This reaction is sequence-independent, therefore all 5-hmC will be glucosylated; unmodified or 5-mC containing DNA will not be affected. This glucosylation is then followed by restriction endonuclease digestion. MspI and HpaII recognize the same sequence (CCGG) but are sensitive to different methylation states. HpaII cleaves only a completely unmodified site: any modification (5-mC, 5-hmC or 5-ghmC) at either cytosine blocks cleavage. MspI recognizes and cleaves 5-mC and 5-hmC, but not 5-ghmC. The third part of the protocol is interrogation of the locus by PCR. As little as 20 ng of input DNA can be used. Amplification of the experimental (glucosylated and digested) and control (mock glucosylated and digested) target DNA with primers flanking a CCGG site of interest (100-200 bp) is performed. If the CpG site contains 5-hydroxymethylcytosine, a band is detected after glucosylation and digestion, but not in the non-glucosylated control reaction. Real time PCR will give an approximation of how much hydroxymethylcytosine is in this particular site. In this experiment, we will analyze the 5-hydroxymethylcytosine amount in a mouse Babl/C brain sample by end point PCR.

  2. High Throughput Multiplex PCR and Probe-based Detection with Luminex Beads for Seven Intestinal Parasites

    PubMed Central

    Taniuchi, Mami; Verweij, Jaco J.; Noor, Zannatun; Sobuz, Shihab U.; van Lieshout, Lisette; Petri, William A.; Haque, Rashidul; Houpt, Eric R.

    2011-01-01

    Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites—Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis—were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites. PMID:21292910

  3. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  4. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  5. Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor-resistant conventional and real-time PCR.

    PubMed

    Demeler, Janina; Ramünke, Sabrina; Wolken, Sonja; Ianiello, Davide; Rinaldi, Laura; Gahutu, Jean Bosco; Cringoli, Giuseppe; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2013-01-01

    Diagnosis of gastrointestinal nematodes relies predominantly on coproscopic methods such as flotation, Kato-Katz, McMaster or FLOTAC. Although FLOTAC allows accurate quantification, many nematode eggs can only be differentiated to genus or family level. Several molecular diagnostic tools discriminating closely related species suffer from high costs for DNA isolation from feces and limited sensitivity since most kits use only small amounts of feces (<1 g). A direct PCR from crude egg preparations was designed for full compatibility with FLOTAC to accurately quantify eggs per gram feces (epg) and determine species composition. Eggs were recovered from the flotation solution and concentrated by sieving. Lysis was achieved by repeated boiling and freezing cycles - only Trichuris eggs required additional mechanic disruption. Egg lysates were directly used as template for PCR with Phusion DNA polymerase which is particularly resistant to PCR inhibitors. Qualitative results were obtained with feces of goats, cattle, horses, swine, cats, dogs and mice. The finally established protocol was also compatible with quantitative real-time PCR in the presence of EvaGreen and no PCR inhibition was detectable when extracts were diluted at least fourfold. Sensitivity was comparable to DNA isolation protocols and spiked samples with five epg were reliably detected. For Toxocara cati a detection limit below one epg was demonstrated. It was possible to distinguish T. cati and Toxocara canis using high resolution melt (HRM) analysis, a rapid tool for species identification. In human samples, restriction fragment length polymorphism (RFLP) and HRM analysis were used to discriminate Necator americanus and Ancylostoma duodenale. The method is able to significantly improve molecular diagnosis of gastrointestinal nematodes by increasing speed and sensitivity while decreasing overall costs. For identification of species or resistance alleles, analysis of PCR products with many different post PCR methods can be used such as RFLP, reverse-line-blot, Sanger sequencing and HRM.

  6. Discrimination of Gastrointestinal Nematode Eggs from Crude Fecal Egg Preparations by Inhibitor-Resistant Conventional and Real-Time PCR

    PubMed Central

    Demeler, Janina; Ramünke, Sabrina; Wolken, Sonja; Ianiello, Davide; Rinaldi, Laura; Gahutu, Jean Bosco; Cringoli, Giuseppe; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2013-01-01

    Diagnosis of gastrointestinal nematodes relies predominantly on coproscopic methods such as flotation, Kato-Katz, McMaster or FLOTAC. Although FLOTAC allows accurate quantification, many nematode eggs can only be differentiated to genus or family level. Several molecular diagnostic tools discriminating closely related species suffer from high costs for DNA isolation from feces and limited sensitivity since most kits use only small amounts of feces (<1 g). A direct PCR from crude egg preparations was designed for full compatibility with FLOTAC to accurately quantify eggs per gram feces (epg) and determine species composition. Eggs were recovered from the flotation solution and concentrated by sieving. Lysis was achieved by repeated boiling and freezing cycles – only Trichuris eggs required additional mechanic disruption. Egg lysates were directly used as template for PCR with Phusion DNA polymerase which is particularly resistant to PCR inhibitors. Qualitative results were obtained with feces of goats, cattle, horses, swine, cats, dogs and mice. The finally established protocol was also compatible with quantitative real-time PCR in the presence of EvaGreen and no PCR inhibition was detectable when extracts were diluted at least fourfold. Sensitivity was comparable to DNA isolation protocols and spiked samples with five epg were reliably detected. For Toxocara cati a detection limit below one epg was demonstrated. It was possible to distinguish T. cati and Toxocara canis using high resolution melt (HRM) analysis, a rapid tool for species identification. In human samples, restriction fragment length polymorphism (RFLP) and HRM analysis were used to discriminate Necator americanus and Ancylostoma duodenale. The method is able to significantly improve molecular diagnosis of gastrointestinal nematodes by increasing speed and sensitivity while decreasing overall costs. For identification of species or resistance alleles, analysis of PCR products with many different post PCR methods can be used such as RFLP, reverse-line-blot, Sanger sequencing and HRM. PMID:23620739

  7. A novel method of genomic DNA extraction for Cactaceae1

    PubMed Central

    Fehlberg, Shannon D.; Allen, Jessica M.; Church, Kathleen

    2013-01-01

    • Premise of the study: Genetic studies of Cactaceae can at times be impeded by difficult sampling logistics and/or high mucilage content in tissues. Simplifying sampling and DNA isolation through the use of cactus spines has not previously been investigated. • Methods and Results: Several protocols for extracting DNA from spines were tested and modified to maximize yield, amplification, and sequencing. Sampling of and extraction from spines resulted in a simplified protocol overall and complete avoidance of mucilage as compared to typical tissue extractions. Sequences from one nuclear and three plastid regions were obtained across eight genera and 20 species of cacti using DNA extracted from spines. • Conclusions: Genomic DNA useful for amplification and sequencing can be obtained from cactus spines. The protocols described here are valuable for any cactus species, but are particularly useful for investigators interested in sampling living collections, extensive field sampling, and/or conservation genetic studies. PMID:25202521

  8. Gold Nanoparticles for the Detection of DNA Adducts as Biomarkers of Exposure to Acrylamide

    NASA Astrophysics Data System (ADS)

    Larguinho, Miguel Angelo Rodrigues

    The main objective of this thesis was the development of a gold nanoparticle-based methodology for detection of DNA adducts as biomarkers, to try and overcome existing drawbacks in currently employed techniques. For this objective to be achieved, the experimental work was divided in three components: sample preparation, method of detection and development of a model for exposure to acrylamide. Different techniques were employed and combined for de-complexation and purification of DNA samples (including ultrasonic energy, nuclease digestion and chromatography), resulting in a complete protocol for sample treatment, prior to detection. The detection of alkylated nucleotides using gold nanoparticles was performed by two distinct methodologies: mass spectrometry and colorimetric detection. In mass spectrometry, gold nanoparticles were employed for laser desorption/ionisation instead of the organic matrix. Identification of nucleotides was possible by fingerprint, however no specific mass signals were denoted when using gold nanoparticles to analyse biological samples. An alternate method using the colorimetric properties of gold nanoparticles was employed for detection. This method inspired in the non-cross-linking assay allowed the identification of glycidamide-guanine adducts and DNA adducts generated in vitro. For the development of a model of exposure, two different aquatic organisms were studies: a goldfish and a mussel. Organisms were exposed to waterborne acrylamide, after which mortality was recorded and effect concentrations were estimated. In goldfish, both genotoxicity and metabolic alterations were assessed and revealed dose-effect relationships of acrylamide. Histopathological alterations were verified primarily in pancreatic cells, but also in hepatocytes. Mussels showed higher effect concentrations than goldfish. Biomarkers of oxidative stress, biotransformation and neurotoxicity were analysed after prolonged exposure, showing mild oxidative stress in mussel cells, and induction of enzymes involved in detoxification of oxygen radicals. A qualitative histopathological screening revealed gonadotoxicity in female mussels, which may present some risk to population equilibrium.

  9. Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and Sod A gene targets for detection of M. leprae DNA from clinical and environmental samples.

    PubMed

    Turankar, Ravindra P; Pandey, Shradha; Lavania, Mallika; Singh, Itu; Nigam, Astha; Darlong, Joydeepa; Darlong, Fam; Sengupta, Utpal

    2015-03-01

    PCR assay is a highly sensitive, specific and reliable diagnostic tool for the identification of pathogens in many infectious diseases. Genome sequencing Mycobacterium leprae revealed several gene targets that could be used for the detection of DNA from clinical and environmental samples. The PCR sensitivity of particular gene targets for specific clinical and environmental isolates has not yet been established. The present study was conducted to compare the sensitivity of RLEP, rpoT, Sod A and 16S rRNA gene targets in the detection of M. leprae in slit skin smear (SSS), blood, soil samples of leprosy patients and their surroundings. Leprosy patients were classified into Paucibacillary (PB) and Multibacillary (MB) types. Ziehl-Neelsen (ZN) staining method for all the SSS samples and Bacteriological Index (BI) was calculated for all patients. Standard laboratory protocol was used for DNA extraction from SSS, blood and soil samples. PCR technique was performed for the detection of M. leprae DNA from all the above-mentioned samples. RLEP gene target was able to detect the presence of M. leprae in 83% of SSS, 100% of blood samples and in 36% of soil samples and was noted to be the best out of all other gene targets (rpoT, Sod A and 16S rRNA). It was noted that the RLEP gene target was able to detect the highest number (53%) of BI-negative leprosy patients amongst all the gene targets used in this study. Amongst all the gene targets used in this study, PCR positivity using RLEP gene target was the highest in all the clinical and environmental samples. Further, the RLEP gene target was able to detect 53% of blood samples as positive in BI-negative leprosy cases indicating its future standardization and use for diagnostic purposes. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  10. Multiparameter Cell Cycle Analysis.

    PubMed

    Jacobberger, James W; Sramkoski, R Michael; Stefan, Tammy; Woost, Philip G

    2018-01-01

    Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.

  11. Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR).

    PubMed

    Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe

    2008-01-01

    Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.

  12. A simplified field protocol for genetic sampling of birds using buccal swabs

    USGS Publications Warehouse

    Vilstrup, Julia T.; Mullins, Thomas D.; Miller, Mark P.; McDearman, Will; Walters, Jeffrey R.; Haig, Susan M.

    2018-01-01

    DNA sampling is an essential prerequisite for conducting population genetic studies. For many years, blood sampling has been the preferred method for obtaining DNA in birds because of their nucleated red blood cells. Nonetheless, use of buccal swabs has been gaining favor because they are less invasive yet still yield adequate amounts of DNA for amplifying mitochondrial and nuclear markers; however, buccal swab protocols often include steps (e.g., extended air-drying and storage under frozen conditions) not easily adapted to field settings. Furthermore, commercial extraction kits and swabs for buccal sampling can be expensive for large population studies. We therefore developed an efficient, cost-effective, and field-friendly protocol for sampling wild birds after comparing DNA yield among 3 inexpensive buccal swab types (2 with foam tips and 1 with a cotton tip). Extraction and amplification success was high (100% and 97.2% respectively) using inexpensive generic swabs. We found foam-tipped swabs provided higher DNA yields than cotton-tipped swabs. We further determined that omitting a drying step and storing swabs in Longmire buffer increased efficiency in the field while still yielding sufficient amounts of DNA for detailed population genetic studies using mitochondrial and nuclear markers. This new field protocol allows time- and cost-effective DNA sampling of juveniles or small-bodied birds for which drawing blood may cause excessive stress to birds and technicians alike.

  13. A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis

    PubMed Central

    2017-01-01

    Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described. PMID:28542338

  14. A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis.

    PubMed

    Young, Brian; King, Jonathan L; Budowle, Bruce; Armogida, Luigi

    2017-01-01

    Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described.

  15. Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus: methicillin-resistant isolates are detected directly in blood cultures by multiplex PCR.

    PubMed

    Pereira, Eliezer M; Schuenck, Ricardo P; Malvar, Karoline L; Iorio, Natalia L P; Matos, Pricilla D M; Olendzki, André N; Oelemann, Walter M R; dos Santos, Kátia R N

    2010-03-31

    In this study, we standardized and evaluated a multiplex-PCR methodology using specific primers to identify Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus and their methicillin-resistance directly from blood cultures. Staphylococci clinical isolates (149) and control strains (16) previously identified by conventional methods were used to establish the multiplex PCR protocol. Subsequently, this methodology was evaluated using a fast and cheap DNA extraction protocol from 25 staphylococci positive blood cultures. A wash step of the pellet with 0.1% bovine serum albumin (BSA) solution was performed to reduce PCR inhibitors. Amplicons of 154bp (mecA gene), 271bp (S. haemolyticus mvaA gene) and 108 and 124bp (S. aureus and S. epidermidis species-specific fragments, respectively) were observed. Reliable results were obtained for 100% of the evaluated strains, suggesting that this new multiplex-PCR combined with an appropriate DNA-extraction method could be useful in the laboratory for fast and accurate identification of three staphylococci species and simultaneously their methicillin resistance directly in blood cultures.

  16. Modified telomeric repeat amplification protocol: a quantitative radioactive assay for telomerase without using electrophoresis.

    PubMed

    Szatmari, I; Tókés, S; Dunn, C B; Bardos, T J; Aradi, J

    2000-06-15

    A polymerase chain reaction (PCR)-based radioactive telomerase assay was developed in our laboratory which is quantitative and does not require electrophoretic evaluation (designated as TP-TRAP; it utilizes two reverse primers). The main steps of the assay include (1) extension of a 20-mer oligonucleotide substrate (MTS) by telomerase, (2) amplification of the telomerase products in the presence of [(3)H]dTTP using the substrate oligonucleotide and two reverse primers (RPC3, 38 mer; RP, 20 mer), (3) isolation of the amplified radioactive dsDNA by precipitation and filtration, (4) determination of the radioactivity of the acid-insoluble DNA. The length of the telomerase products does not increase on amplification. This valuable feature of the assay is achieved by utilization of the two reverse primers and a highly specific PCR protocol. The assay is linear, accurate, and suitable for cell-biological studies where slight quantitative differences in telomerase activity must be detected. The assay is also suitable for screening and characterization of telomerase inhibitors, as shown with a chemically modified oligonucleotide reverse transcriptase inhibitor [(s(4)dU)(35)]. Copyright 2000 Academic Press.

  17. Southern blotting.

    PubMed

    Brown, T

    2001-05-01

    Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support, resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This unit describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, and subsequent immobilization by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in the second alternate protocol is therefore more rapid and can result in more complete transfer.

  18. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy.

    PubMed

    Landa, B B; López-Díaz, C; Jiménez-Fernández, D; Montes-Borrego, M; Muñoz-Ledesma, F J; Ortiz-Urquiza, A; Quesada-Moraga, E

    2013-10-01

    Beauveria bassiana strain 04/01-Tip obtained from larvae of the opium poppy stem gall Iraella luteipes endophytically colonizes opium poppy plants and protect it against this pest. Development of a specific, rapid and sensitive technique that allows accurately determining the process and factors leading to the establishment of this strain in opium poppy plants would be essential to achieve its efficient control in a large field scale. For that purpose in the present study, species-specific primers that can be used in conventional or quantitative PCR protocols were developed for specifically identification and detection of B. bassiana in plant tissues. The combination of the designed BB.fw/BB.rv primer set with the universal ITS1-F/ITS4 primer set in a two-step nested-PCR approach, has allowed the amplification of up to 10fg of B. bassiana. This represented an increase in sensitivity of 10000- and 1000-fold of detection than when using the BB.fw/BB.rv primers in a single or single-tube semi-nested PCR approaches, respectively. The BB.fw and BB.rv primer set were subsequently optimized to be used in real time quantitative PCR assays and allowed to accurately quantify B. bassiana DNA in different plant DNA backgrounds (leaves and seeds) without losing accuracy and efficiency. The qPCR protocol was used to monitor the endophytic colonization of opium poppy leaves byB. bassiana after inoculation with the strain EABb 04/01-Tip, detecting as low as 26fg of target DNA in leaves and a decrease in fungal biomass over time. PCR quantification data were supported in parallel with CLMS by the monitoring of spatial and temporal patterns of leaf and stem colonization using a GFP-tagged transformant of the B. bassiana EABb 04/01-Tip strain, which enabled to demonstrate that B. bassiana effectively colonizes aerial tissues of opium poppy plants mainly through intercellular spaces and even leaf trichomes. A decline in endophytic colonization was also observed by the last sampling times, i.e. from 10 to 15days after inoculation, although fungal structures still remained present in the leaf tissues. These newly developed molecular protocols should facilitate the detection, quantification and monitoring of endophytic B. bassiana strains in different tissues and host plants and would help to unravel the factors and process governing the specific endophytic association between opium poppy and strain EABb 04/01-Tip providing key insights to formulate a sustainable strategy for I. luteipes management in the host. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Non-invasive surveillance for Plasmodium in reservoir macaque species.

    PubMed

    Siregar, Josephine E; Faust, Christina L; Murdiyarso, Lydia S; Rosmanah, Lis; Saepuloh, Uus; Dobson, Andrew P; Iskandriati, Diah

    2015-10-12

    Primates are important reservoirs for human diseases, but their infection status and disease dynamics are difficult to track in the wild. Within the last decade, a macaque malaria, Plasmodium knowlesi, has caused disease in hundreds of humans in Southeast Asia. In order to track cases and understand zoonotic risk, it is imperative to be able to quantify infection status in reservoir macaque species. In this study, protocols for the collection of non-invasive samples and isolation of malaria parasites from naturally infected macaques are optimized. Paired faecal and blood samples from 60 Macaca fascicularis and four Macaca nemestrina were collected. All animals came from Sumatra or Java and were housed in semi-captive breeding colonies around West Java. DNA was extracted from samples using a modified protocol. Nested polymerase chain reactions (PCR) were run to detect Plasmodium using primers targeting mitochondrial DNA. Sensitivity of screening faecal samples for Plasmodium was compared to other studies using Kruskal Wallis tests and logistic regression models. The best primer set was 96.7 % (95 % confidence intervals (CI): 83.3-99.4 %) sensitive for detecting Plasmodium in faecal samples of naturally infected macaques (n = 30). This is the first study to produce definitive estimates of Plasmodium sensitivity and specificity in faecal samples from naturally infected hosts. The sensitivity was significantly higher than some other studies involving wild primates. Faecal samples can be used for detection of malaria infection in field surveys of macaques, even when there are no parasites visible in thin blood smears. Repeating samples from individuals will improve inferences of the epidemiology of malaria in wild primates.

  20. Optimization and evaluation of single-cell whole-genome multiple displacement amplification.

    PubMed

    Spits, C; Le Caignec, C; De Rycke, M; Van Haute, L; Van Steirteghem, A; Liebaers, I; Sermon, K

    2006-05-01

    The scarcity of genomic DNA can be a limiting factor in some fields of genetic research. One of the methods developed to overcome this difficulty is whole genome amplification (WGA). Recently, multiple displacement amplification (MDA) has proved very efficient in the WGA of small DNA samples and pools of cells, the reaction being catalyzed by the phi29 or the Bst DNA polymerases. The aim of the present study was to develop a reliable, efficient, and fast protocol for MDA at the single-cell level. We first compared the efficiency of phi29 and Bst polymerases on DNA samples and single cells. The phi29 polymerase generated accurately, in a short time and from a single cell, sufficient DNA for a large set of tests, whereas the Bst enzyme showed a low efficiency and a high error rate. A single-cell protocol was optimized using the phi29 polymerase and was evaluated on 60 single cells; the DNA obtained DNA was assessed by 22 locus-specific PCRs. This new protocol can be useful for many applications involving minute quantities of starting material, such as forensic DNA analysis, prenatal and preimplantation genetic diagnosis, or cancer research. (c) 2006 Wiley-Liss, Inc.

  1. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types

    PubMed Central

    Lever, Mark A.; Torti, Andrea; Eickenbusch, Philip; Michaud, Alexander B.; Šantl-Temkiv, Tina; Jørgensen, Bo Barker

    2015-01-01

    A method for the extraction of nucleic acids from a wide range of environmental samples was developed. This method consists of several modules, which can be individually modified to maximize yields in extractions of DNA and RNA or separations of DNA pools. Modules were designed based on elaborate tests, in which permutations of all nucleic acid extraction steps were compared. The final modular protocol is suitable for extractions from igneous rock, air, water, and sediments. Sediments range from high-biomass, organic rich coastal samples to samples from the most oligotrophic region of the world's oceans and the deepest borehole ever studied by scientific ocean drilling. Extraction yields of DNA and RNA are higher than with widely used commercial kits, indicating an advantage to optimizing extraction procedures to match specific sample characteristics. The ability to separate soluble extracellular DNA pools without cell lysis from intracellular and particle-complexed DNA pools may enable new insights into the cycling and preservation of DNA in environmental samples in the future. A general protocol is outlined, along with recommendations for optimizing this general protocol for specific sample types and research goals. PMID:26042110

  2. Screening of (-SEA) α-thalassaemia using an immunochromatographic strip assay for the ζ-globin chain in a population with a high prevalence and heterogeneity of haemoglobinopathies.

    PubMed

    Jomoui, Wittaya; Fucharoen, Goonnapa; Sanchaisuriya, Kanokwan; Fucharoen, Supan

    2017-01-01

    The presence of the ζ-globin chain is a good marker of (-- SEA ) α 0 -thalassaemia. We evaluated an immunochromatographic (IC) strip assay for ζ-globin in screening for (-- SEA ) α 0 -thalassaemia in a population with a high prevalence and heterogeneity of haemoglobinopathies. The study was carried out on 300 screen positive blood samples of Thai individuals. The IC strip assay for the ζ-globin chain was performed on all samples. The results were interpreted with thalassaemia genotyping using standard haemoglobin and DNA analyses. Several thalassaemia genotypes were noted. Among the 300 subjects investigated, 79 had a positive IC strip assay for ζ-globin and (-- SEA ) α 0 -thalassaemia was identified in 40 of them. No (-- SEA ) α 0 -thalassaemia was detected in the remaining 39 samples with a positive IC strip test result or in the 221 samples with a negative IC strip test result. Further DNA analysis identified α + -thalassaemia in 25 of the 39 (-- SEA ) α 0 -thalassaemia negative samples. Using this IC strip assay in combination with a conventional screening protocol for (-- SEA ) α 0 -thalassaemia could provide sensitivity and specificity of 100% and 90.4%, respectively. IC strip assay for ζ-globin is simple, rapid and does not require sophisticated equipment. Use of this test in addition to the existing screening protocol could detect potential (-- SEA ) α 0 -thalassaemia leading to a significant reduction in the workload of DNA analysis. This could be used in areas where haemoglobinopathies are prevalent and heterogeneous but molecular testing is not available. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus.

    PubMed

    Bartolomé, Carolina; Buendía, María; Benito, María; De la Rúa, Pilar; Ornosa, Concepción; Martín-Hernández, Raquel; Higes, Mariano; Maside, Xulio

    2018-05-01

    Trypanosomatids are highly prevalent pathogens of Hymenoptera; however, most molecular methods used to detect them in Apis and Bombus spp. do not allow the identification of the infecting species, which then becomes expensive and time consuming. To overcome this drawback, we developed a multiplex PCR protocol to readily identify in a single reaction the main trypanosomatids present in these hymenopterans (Lotmaria passim, Crithidia mellificae and Crithidia bombi), which will facilitate the study of their epidemiology and transmission dynamics. A battery of primers, designed to simultaneously amplify fragments of the RNA polymerase II large subunit (RPB1) of L. passim, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of C. mellificae and the DNA topoisomerase II (TOPII) of C. bombi, was tested for target specificity under single and mixed template conditions using DNA extracted from cell cultures (L. passim ATCC PRA403; C. mellificae ATCC 30254) and from a bumblebee specimen infected with C. bombi only (14_349). Once validated, the performance of the method was assessed using DNA extractions from seven Apis mellifera (Linnaeus, 1758) and five Bombus terrestris (Linnaeus, 1758) field samples infected with trypanosomatids whose identity had been previously determined by PCR-cloning and sequencing (P-C-S). The new method confirmed the results obtained by P-C-S: two of the honeybee samples were parasitized by L. passim, C. mellificae and C. bombi at the same time, whereas the other five were infected with L. passim only. The method confirmed the simultaneous presence of L. passim and C. mellificae in two B. terrestris, where these parasites had not previously been reported. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The potential of SNP-based PCR-RFLP capillary electrophoresis analysis to authenticate and detect admixtures of Mediterranean olive oils.

    PubMed

    Bazakos, Christos; Khanfir, Emna; Aoun, Mariem; Spano, Thodhoraq; Zein, Zeina El; Chalak, Lamis; Riachy, Milad El; Abou-Sleymane, Gretta; Ali, Sihem Ben; Grati Kammoun, Naziha; Kalaitzis, Panagiotis

    2016-07-01

    Authentication and traceability of extra virgin olive oil is a challenging research task due to the complexity of fraudulent practices. In this context, the monovarietal olive oils of Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) require new tests and cutting edge analytical technologies to detect mislabeling and misleading origin. Toward this direction, DNA-based technologies could serve as a complementary to the analytical techniques assay. Single nucleotide polymorphisms are ideal molecular markers since they require short PCR analytical targets which are a prerequisite for forensic applications in olive oil sector. In the present study, a small number of polymorphic SNPs were used with an SNP-based PCR-RFLP capillary electrophoresis platform to discriminate six out of 13 monovarietal olive oils of Mediterranean origin from three different countries, Greece, Tunisia, and Lebanon. Moreover, the high sensitivity of capillary electrophoresis in combination with the DNA extraction protocol lowered the limit of detection to 10% in an admixture of Tsounati in a Koroneiki olive oil matrix. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    PubMed

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.

  6. Newborn screening for cystic fibrosis in Wisconsin: comparison of biochemical and molecular methods.

    PubMed

    Gregg, R G; Simantel, A; Farrell, P M; Koscik, R; Kosorok, M R; Laxova, A; Laessig, R; Hoffman, G; Hassemer, D; Mischler, E H; Splaingard, M

    1997-06-01

    To evaluate neonatal screening for cystic fibrosis (CF), including study of the screening procedures and characteristics of false-positive infants, over the past 10 years in Wisconsin. An important objective evolving from the original design has been to compare use of a single-tier immunoreactive trypsinogen (IRT) screening method with that of a two-tier method using IRT and analyses of samples for the most common cystic fibrosis transmembrane regulator (CFTR) (DeltaF508) mutation. We also examined the benefit of including up to 10 additional CFTR mutations in the screening protocol. From 1985 to 1994, using either the IRT or IRT/DNA protocol, 220 862 and 104 308 neonates, respectively, were screened for CF. For the IRT protocol, neonates with an IRT >/=180 ng/mL were considered positive, and the standard sweat chloride test was administered to determine CF status. For the IRT/DNA protocol, samples from the original dried-blood specimen on the Guthrie card of neonates with an IRT >/=110 ng/mL were tested for the presence of the DeltaF508 CFTR allele, and if the DNA test revealed one or two DeltaF508 alleles, a sweat test was obtained. Both screening procedures had very high specificity. The sensitivity tended to be higher with the IRT/DNA protocol, but the differences were not statistically significant. The positive predictive value of the IRT/DNA screening protocol was 15.2% compared with 6.4% if the same samples had been screened by the IRT method. Assessment of the false-positive IRT/DNA population revealed that the two-tier method eliminates the disproportionate number of infants with low Apgar scores and also the high prevalence of African-Americans identified previously in our study of newborns with high IRT levels. We found that 55% of DNA-positive CF infants were homozygous for DeltaF508 and 40% had one DeltaF508 allele. Adding analyses for 10 more CFTR mutations has only a small effect on the sensitivity but is likely to add significantly to the cost of screening. Advantages of the IRT/DNA protocol over IRT analysis include improved positive predictive value, reduction of false-positive infants, and more rapid diagnosis with elimination of recall specimens.

  7. Mapping the yeast genome by melting in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Welch, Robert L.; Czolkos, Ilja; Sladek, Rob; Reisner, Walter

    2012-02-01

    Optical mapping of DNA provides large-scale genomic information that can be used to assemble contigs from next-generation sequencing, and to detect re-arrangements between single cells. A recent optical mapping technique called denaturation mapping has the unique advantage of using physical principles rather than the action of enzymes to probe genomic structure. The absence of reagents or reaction steps makes denaturation mapping simpler than other protocols. Denaturation mapping uses fluorescence microscopy to image the pattern of partial melting along a DNA molecule extended in a channel of cross-section ˜100nm at the heart of a nanofluidic device. We successfully aligned melting maps from single DNA molecules to a theoretical map of the yeast genome (11.6Mbp) to identify their location. By aligning hundreds of molecules we assembled a consensus melting map of the yeast genome with 95% coverage.

  8. Development and Evaluation of a Novel Multicopy-Element-Targeting Triplex PCR for Detection of Mycobacterium avium subsp. paratuberculosis in Feces

    PubMed Central

    Garrido, Joseba M.; Molina, Elena; Geijo, María V.; Elguezabal, Natalia; Vázquez, Patricia; Juste, Ramón A.

    2014-01-01

    The enteropathy called paratuberculosis (PTB), which mainly affects ruminants and has a worldwide distribution, is caused by Mycobacterium avium subsp. paratuberculosis. This disease significantly reduces the cost-effectiveness of ruminant farms, and therefore, reliable and rapid detection methods are needed to control the spread of the bacterium in livestock and in the environment. The aim of this study was to identify a specific and sensitive combination of DNA extraction and amplification to detect M. avium subsp. paratuberculosis in feces. Negative bovine fecal samples were inoculated with increasing concentrations of two different bacterial strains (field and reference) to compare the performance of four extraction and five amplification protocols. The best results were obtained using the JohnePrep and MagMax extraction kits combined with an in-house triplex real-time PCR designed to detect IS900, ISMap02 (an insertion sequence of M. avium subsp. paratuberculosis present in 6 copies per genome), and an internal amplification control DNA simultaneously. These combinations detected 10 M. avium subsp. paratuberculosis cells/g of spiked feces. The triplex PCR detected 1 fg of genomic DNA extracted from the reference strain K10. The performance of the robotized version of the MagMax extraction kit combined with the IS900 and ISMap02 PCR was further evaluated using 615 archival fecal samples from the first sampling of nine Friesian cattle herds included in a PTB control program and followed up for at least 4 years. The analysis of the results obtained in this survey demonstrated that the diagnostic method was highly specific and sensitive for the detection of M. avium subsp. paratuberculosis in fecal samples from cattle and a very valuable tool to be used in PTB control programs. PMID:24727272

  9. Automated high-throughput purification of genomic DNA from plant leaf or seed using MagneSil paramagnetic particles

    NASA Astrophysics Data System (ADS)

    Bitner, Rex M.; Koller, Susan C.

    2004-06-01

    Three different methods of automated high throughput purification of genomic DNA from plant materials processed in 96 well plates are described. One method uses MagneSil paramagnetic particles to purify DNA present in single leaf punch samples or small seed samples, using 320ul capacity 96 well plates which minimizes reagent and plate costs. A second method uses 2.2 ml and 1.2 ml capacity plates and allows the purification of larger amounts of DNA from 5-6 punches of materials or larger amounts of seeds. The third method uses the MagneSil ONE purification system to purify a fixed amount of DNA, thus simplifying the processing of downstream applications by normalizing the amounts of DNA so they do not require quantitation. Protocols for the purification of a fixed yield of DNA, e.g. 1 ug, from plant leaf or seed samples using MagneSil paramagnetic particles and a Beckman-Coulter BioMek FX robot are described. DNA from all three methods is suitable for applications such as PCR, RAPD, STR, READIT SNP analysis, and multiplexed PCR systems. The MagneSil ONE system is also suitable for use with SNP detection systems such as Third Wave Technology"s Invader methods.

  10. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study.

    PubMed

    Roschewski, Mark; Dunleavy, Kieron; Pittaluga, Stefania; Moorhead, Martin; Pepin, Francois; Kong, Katherine; Shovlin, Margaret; Jaffe, Elaine S; Staudt, Louis M; Lai, Catherine; Steinberg, Seth M; Chen, Clara C; Zheng, Jianbiao; Willis, Thomas D; Faham, Malek; Wilson, Wyndham H

    2015-05-01

    Diffuse large-B-cell lymphoma is curable, but when treatment fails, outcome is poor. Although imaging can help to identify patients at risk of treatment failure, they are often imprecise, and radiation exposure is a potential health risk. We aimed to assess whether circulating tumour DNA encoding the clonal immunoglobulin gene sequence could be detected in the serum of patients with diffuse large-B-cell lymphoma and used to predict clinical disease recurrence after frontline treatment. We used next-generation DNA sequencing to retrospectively analyse cell-free circulating tumour DNA in patients assigned to one of three treatment protocols between May 8, 1993, and June 6, 2013. Eligible patients had diffuse large-B-cell lymphoma, no evidence of indolent lymphoma, and were previously untreated. We obtained serial serum samples and concurrent CT scans at specified times during most treatment cycles and up to 5 years of follow-up. VDJ gene segments of the rearranged immunoglobulin receptor genes were amplified and sequenced from pretreatment specimens and serum circulating tumour DNA encoding the VDJ rearrangements was quantitated. Tumour clonotypes were identified in pretreatment specimens from 126 patients who were followed up for a median of 11 years (IQR 6·8-14·2). Interim monitoring of circulating tumour DNA at the end of two treatment cycles in 108 patients showed a 5-year time to progression of 41·7% (95% CI 22·2-60·1) in patients with detectable circulating tumour DNA and 80·2% (69·6-87·3) in those without detectable circulating tumour DNA (p<0·0001). Detectable interim circulating tumour DNA had a positive predictive value of 62·5% (95% CI 40·6-81·2) and a negative predictive value of 79·8% (69·6-87·8). Surveillance monitoring of circulating tumour DNA was done in 107 patients who achieved complete remission. A Cox proportional hazards model showed that the hazard ratio for clinical disease progression was 228 (95% CI 51-1022) for patients who developed detectable circulating tumour DNA during surveillance compared with patients with undetectable circulating tumour DNA (p<0·0001). Surveillance circulating tumour DNA had a positive predictive value of 88·2% (95% CI 63·6-98·5) and a negative predictive value of 97·8% (92·2-99·7) and identified risk of recurrence at a median of 3·5 months (range 0-200) before evidence of clinical disease. Surveillance circulating tumour DNA identifies patients at risk of recurrence before clinical evidence of disease in most patients and results in a reduced disease burden at relapse. Interim circulating tumour DNA is a promising biomarker to identify patients at high risk of treatment failure. National Cancer Institute and Adaptive Biotechnologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Detection of Reaction Intermediates in Mg2+-Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography.

    PubMed

    Samara, Nadine L; Gao, Yang; Wu, Jinjun; Yang, Wei

    2017-01-01

    Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates. Here we present protocols used for successful studies of Mg 2+ -dependent DNA polymerases and ribonucleases that are applicable to analyses of a variety of metal ion-dependent reactions. © 2017 Elsevier Inc. All rights reserved.

  12. Biomarkers in Cerebrospinal Fluid: Analysis of Cell-Free Circulating Mitochondrial DNA by Digital PCR.

    PubMed

    Podlesniy, Petar; Trullas, Ramon

    2018-01-01

    Cerebrospinal fluid (CSF) contains molecules directly linked with brain function because it permeates brain tissue. The analysis of protein biomarkers in CSF is currently recommended for the diagnosis of neurodegenerative disorders, but the clinical sensitivity and specificity are still being investigated. A major drawback is that most of the currently used biomarkers of neurodegenerative diseases are proteins that are found at very low concentrations in CSF and need to be measured by immunoassays that provide relative values, which sometimes are difficult to reproduce between laboratories. In contrast, the recent availability of digital PCR platforms allows the absolute quantification of nucleic acids at single-molecule resolution, but their presence in CSF has not been characterized. CSF contains cell-free mitochondrial DNA (mtDNA) and changes in the concentration of this nucleic acid are linked to neurodegeneration. Here we describe a method to measure the concentration of cell-free circulating mtDNA directly in unpurified CSF using droplet digital PCR with either hydrolysis probes or fluorescent DNA-binding dye methods. This protocol allows the detection and absolute quantification of mtDNA content in the CSF with high analytical sensitivity, specificity, and accuracy.

  13. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment.

    PubMed Central

    Lopata, M A; Cleveland, D W; Sollner-Webb, B

    1984-01-01

    Using a plasmid containing the bacterial chloramphenicol acetyl transferase gene, we have assayed for transient expression of DNA introduced into mouse L cells by a variety of transfection conditions. High efficiency uptake and expression of this foreign DNA have been achieved by modifying the DEAE dextran mediated transfection procedure of McCutchan and Pagano (1) to include a shock with either dimethyl sulfoxide or glycerol. Inclusion of the shock step can increase expression of the transfected gene a surprising approximately 50 fold. With plasmid constructs that do not replicate after transfection, we can readily detect CAT activity in an overnight autoradiographic exposure from less than 0.1% of an extract from a 60 mm dish of transfected cells. We have determined the amounts of DNA, the amount and time course of DEAE-dextran and dimethyl sulfoxide treatments, the effects of additional DNA, and the time after transfection which yield maximal expression. Overall, this transfection protocol using DEAE-dextran coupled to a shock treatment is simple, straightforward, and gives consistently high levels of expression of the input DNA. Images PMID:6589587

  14. Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta1

    PubMed Central

    Jordon-Thaden, Ingrid E.; Chanderbali, Andre S.; Gitzendanner, Matthew A.; Soltis, Douglas E.

    2015-01-01

    Premise of the study: Here we present a series of protocols for RNA extraction across a diverse array of plants; we focus on woody, aromatic, aquatic, and other chemically complex taxa. Methods and Results: Ninety-one taxa were subjected to RNA extraction with three methods presented here: (1) TRIzol/TURBO DNA-free kits using the manufacturer’s protocol with the addition of sarkosyl; (2) a combination method using cetyltrimethylammonium bromide (CTAB) and TRIzol/sarkosyl/TURBO DNA-free; and (3) a combination of CTAB and QIAGEN RNeasy Plant Mini Kit. Bench-ready protocols are given. Conclusions: After an iterative process of working with chemically complex taxa, we conclude that the use of TRIzol supplemented with sarkosyl and the TURBO DNA-free kit is an effective, efficient, and robust method for obtaining RNA from 100 mg of leaf tissue of land plant species (Embryophyta) examined. Our protocols can be used to provide RNA of suitable stability, quantity, and quality for transcriptome sequencing. PMID:25995975

  15. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay.

    PubMed

    Mondal, Dinesh; Ghosh, Prakash; Khan, Md Anik Ashfaq; Hossain, Faria; Böhlken-Fascher, Susanne; Matlashewski, Greg; Kroeger, Axel; Olliaro, Piero; Abd El Wahed, Ahmed

    2016-05-13

    Leishmania donovani (LD) is a protozoan parasite transmitted to humans from sand flies, which causes Visceral Leishmaniasis (VL). Currently, the diagnosis is based on presence of the anti-LD antibodies and clinical symptoms. Molecular diagnosis would require real-time PCR, which is not easy to implement at field settings. In this study, we report on the development and testing of a recombinase polymerase amplification (RPA) assay for the detection of LD. A genomic DNA sample was applied to determine the assay analytical sensitivity. The cross-reactivity of the assay was tested by DNA of Leishmania spp. and of pathogens considered for differential diagnosis. The clinical performance of the assay was evaluated on LD positive and negative samples. All results were compared with real-time PCR. To allow the use of the assay at field settings, a mobile suitcase laboratory (56 × 45.5 × 26.5 cm) was developed and operated at the local hospital in Mymensingh, Bangladesh. The LD RPA assay detected equivalent to one LD genomic DNA. The assay was performed at constant temperature (42 °C) in 15 min. The RPA assay also detected other Leishmania species (L. major, L. aethiopica and L. infantum), but did not identify nucleic acid of other pathogens. Forty-eight samples from VL, asymptomatic and post-kala-azar dermal leishmaniasis subjects were detected positive and 48 LD-negative samples were negative by both LD RPA and real-time PCR assays, which indicates 100 % agreement. The suitcase laboratory was successfully operated at the local hospital by using a solar-powered battery. DNA extraction was performed by a novel magnetic bead based method (SpeedXtract), in which a simple fast lysis protocol was applied. Moreover, All reagents were cold-chain independent. The mobile suitcase laboratory using RPA is ideal for rapid sensitive and specific detection of LD especially at low resource settings and could contribute to VL control and elimination programmes.

  16. Implementation of a protocol for assembling DNA in a Teflon tube

    NASA Astrophysics Data System (ADS)

    Walsh, Edmond J.; Feuerborn, Alexander; Cook, Peter R.

    2017-02-01

    Droplet based microfluidics continues to grow as a platform for chemical and biological reactions using small quantities of fluids, however complex protocols are rarely possible in existing devices. This paper implements a new approach to merging of drops, combined with magnetic bead manipulation, for the creation of ligated double-stranded DNA molecule using "Gibson assembly" chemistry. DNA assembly is initially accomplished through the merging, and mixing, of five drops followed by a thermal cycle. Then, integrating this drop merging method with magnetic beads enable the implementation of amore complete protocol consisting of nine wash steps,merging of four drop, transport of selective reagents between twelve drops using magnetic particles, followed by a thermal cycle and finally the deposition of a purified drop into an Eppendorf for downstream analysis. Gel electrophoresis is used to confirm successful DNA assembly.

  17. Short Communication An efficient method for simultaneous extraction of high-quality RNA and DNA from various plant tissues.

    PubMed

    Oliveira, R R; Viana, A J C; Reátegui, A C E; Vincentz, M G A

    2015-12-29

    Determination of gene expression is an important tool to study biological processes and relies on the quality of the extracted RNA. Changes in gene expression profiles may be directly related to mutations in regulatory DNA sequences or alterations in DNA cytosine methylation, which is an epigenetic mark. Correlation of gene expression with DNA sequence or epigenetic mark polymorphism is often desirable; for this, a robust protocol to isolate high-quality RNA and DNA simultaneously from the same sample is required. Although commercial kits and protocols are available, they are mainly optimized for animal tissues and, in general, restricted to RNA or DNA extraction, not both. In the present study, we describe an efficient and accessible method to extract both RNA and DNA simultaneously from the same sample of various plant tissues, using small amounts of starting material. The protocol was efficient in the extraction of high-quality nucleic acids from several Arabidopsis thaliana tissues (e.g., leaf, inflorescence stem, flower, fruit, cotyledon, seedlings, root, and embryo) and from other tissues of non-model plants, such as Avicennia schaueriana (Acanthaceae), Theobroma cacao (Malvaceae), Paspalum notatum (Poaceae), and Sorghum bicolor (Poaceae). The obtained nucleic acids were used as templates for downstream analyses, such as mRNA sequencing, quantitative real time-polymerase chain reaction, bisulfite treatment, and others; the results were comparable to those obtained with commercial kits. We believe that this protocol could be applied to a broad range of plant species, help avoid technical and sampling biases, and facilitate several RNA- and DNA-dependent analyses.

  18. A surface plasmon resonance based biochip for the detection of patulin toxin

    NASA Astrophysics Data System (ADS)

    Pennacchio, Anna; Ruggiero, Giuseppe; Staiano, Maria; Piccialli, Gennaro; Oliviero, Giorgia; Lewkowicz, Aneta; Synak, Anna; Bojarski, Piotr; D'Auria, Sabato

    2014-08-01

    Patulin is a toxic secondary metabolite of a number of fungal species belonging to the genera Penicillium and Aspergillus. One important aspect of the patulin toxicity in vivo is an injury of the gastrointestinal tract including ulceration and inflammation of the stomach and intestine. Recently, patulin has been shown to be genotoxic by causing oxidative damage to the DNA, and oxidative DNA base modifications have been considered to play a role in mutagenesis and cancer initiation. Conventional analytical methods for patulin detection involve chromatographic analyses, such as HPLC, GC, and, more recently, techniques such as LC/MS and GC/MS. All of these methods require the use of extensive protocols and the use of expensive analytical instrumentation. In this work, the conjugation of a new derivative of patulin to the bovine serum albumin for the production of polyclonal antibodies is described, and an innovative competitive immune-assay for detection of patulin is presented. Experimentally, an important part of the detection method is based on the optical technique called surface plasmon resonance (SPR). Laser beam induced interactions between probe and target molecules in the vicinity of gold surface of the biochip lead to the shift in resonance conditions and consequently to slight but easily detectable change of reflectivity.

  19. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity

    PubMed Central

    Lohman, Gregory J. S.; Bauer, Robert J.; Nichols, Nicole M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C.

    2016-01-01

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  20. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    PubMed

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. MsLDR-creator: a web service to design msLDR assays.

    PubMed

    Bormann, Felix; Dahl, Andreas; Sers, Christine

    2012-03-01

    MsLDR-creator is a free web service to design assays for the new DNA methylation detection method msLDR. The service provides the user with all necessary information about the oligonucleotides required for the measurement of a given CpG within a sequence of interest. The parameters are calculated by the nearest neighbour approach to achieve optimal behaviour during the experimental procedure. In addition, to guarantee a good start using msLDR, further information, like protocols and hints and tricks, are provided.

  2. Identification of Vibrio parahaemolyticus Strains at the Species Level by PCR Targeted to the toxR Gene

    PubMed Central

    Kim, Yung Bu; Okuda, Jun; Matsumoto, Chiho; Takahashi, Naoki; Hashimoto, Satoru; Nishibuchi, Mitsuaki

    1999-01-01

    The DNA colony hybridization test with the polynucleotide probe for Vibrio parahaemolyticus toxR gene was performed. All 373 strains of V. parahaemolyticus gave positive results, and the strains belonging to four other Vibrio species including Vibrio alginolyticus gave weakly positive results, suggesting that toxR sequence variation may reflect the phylogenetic relationships of Vibrio species. We then established a toxR-targeted PCR protocol for the specific detection of V. parahaemolyticus. PMID:10074546

  3. Click Chemistry for Analysis of Cell Proliferation in Flow Cytometry.

    PubMed

    Clarke, Scott T; Calderon, Veronica; Bradford, Jolene A

    2017-10-02

    The measurement of cellular proliferation is fundamental to the assessment of cellular health, genotoxicity, and the evaluation of drug efficacy. Labeling, detection, and quantification of cells in the synthesis phase of cell cycle progression are not only important for characterizing basic biology, but also in defining cellular responses to drug treatments. Changes in DNA replication during S-phase can provide valuable insights into mechanisms of cell growth, cell cycle kinetics, and cytotoxicity. A common method for detection of cell proliferation is the incorporation of a thymidine analog during DNA synthesis. This chapter presents a pulse labeling method using the thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU), with subsequent detection by click chemistry. EdU detection using click chemistry is bio-orthogonal to most living systems and does not non-specifically label other biomolecules. Live cells are first pulsed with EdU. After antibody labeling cell surface markers, fixation, and permeabilization, the incorporated EdU is covalently labeled using click chemistry thereby identifying proliferating cells. Improvements in click chemistry allow for labeling in the presence of fluorescent proteins and phycobiliproteins without quenching due to copper. Measuring DNA replication during cell cycle progression has cell health applications in flow cytometry, fluorescence microscopy, and high content imaging. This protocol has been developed and optimized for research use only and is not suitable for use in diagnostic procedures. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  4. Molecular survey of Dirofilaria immitis and Dirofilaria repens by new real-time TaqMan® PCR assay in dogs and mosquitoes (Diptera: Culicidae) in Corsica (France).

    PubMed

    Tahir, Djamel; Bittar, Fadi; Barré-Cardi, Hélène; Sow, Doudou; Dahmani, Mustapha; Mediannikov, Oleg; Raoult, Didier; Davoust, Bernard; Parola, Philippe

    2017-02-15

    Dirofilaria immitis and D. repens are filarioid nematodes of animals and humans, transmitted by the bite of infected mosquitoes. Domestic and wild canids are a major natural host and reservoir for these parasites. In this study, we designed a duplex real-time PCR protocol targeting the mitochondrial cytochrome c oxidase subunit I (COI) gene, detecting both D. immitis and D. repens using two primer pairs and two Dirofilaria-specific hydrolysable probes. The sensitivity and specificity of the primers and probes were tested in both experimental and naturally infected samples. The detection limits of this assay were evaluated using plasmid DNA from D. immitis and D. repens. No cross-reaction was observed when testing this system against DNA from other filarial nematodes. The detection limit of the real-time PCR system was one copy per reaction mixture containing 5μl of template DNA. Field application of the new duplex real-time assay was conducted in Corsica. The prevalence rate of D. immitis was 21.3% (20/94) in dogs. In a locality where most dogs with Dirofilaria spp. infection were found, D. immitis and D. repens were detected in 5% (20/389) and 1.5% (6/389) of the Aedes albopictus population, respectively. These results suggest that this sensitive assay is a powerful tool for monitoring dirofilariosis in endemic or high risk areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Preparation of Low-Input and Ligation-Free ChIP-seq Libraries Using Template-Switching Technology.

    PubMed

    Bolduc, Nathalie; Lehman, Alisa P; Farmer, Andrew

    2016-10-10

    Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) has become the gold standard for mapping of transcription factors and histone modifications throughout the genome. However, for ChIP experiments involving few cells or targeting low-abundance transcription factors, the small amount of DNA recovered makes ligation of adapters very challenging. In this unit, we describe a ChIP-seq workflow that can be applied to small cell numbers, including a robust single-tube and ligation-free method for preparation of sequencing libraries from sub-nanogram amounts of ChIP DNA. An example ChIP protocol is first presented, resulting in selective enrichment of DNA-binding proteins and cross-linked DNA fragments immobilized on beads via an antibody bridge. This is followed by a protocol for fast and easy cross-linking reversal and DNA recovery. Finally, we describe a fast, ligation-free library preparation protocol, featuring DNA SMART technology, resulting in samples ready for Illumina sequencing. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  6. DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms.

    PubMed

    Panova, Marina; Aronsson, Henrik; Cameron, R Andrew; Dahl, Peter; Godhe, Anna; Lind, Ulrika; Ortega-Martinez, Olga; Pereyra, Ricardo; Tesson, Sylvie V M; Wrange, Anna-Lisa; Blomberg, Anders; Johannesson, Kerstin

    2016-01-01

    The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.

  7. Design and optimization of a novel reverse transcription linear-after-the-exponential PCR for the detection of foot-and-mouth disease virus.

    PubMed

    Pierce, K E; Mistry, R; Reid, S M; Bharya, S; Dukes, J P; Hartshorn, C; King, D P; Wangh, L J

    2010-07-01

    A novel molecular assay for the detection of foot-and-mouth disease virus (FMDV) was developed using linear-after-the-exponential polymerase chain reaction (LATE-PCR). Pilot experiments using synthetic DNA targets demonstrated the ability of LATE-PCR to quantify initial target concentration through endpoint detection. A two-step protocol involving reverse transcription (RT) followed by LATE-PCR was then used to confirm the ability of the assay to detect FMDV RNA. Finally, RT and LATE-PCR were combined in a one-step duplex assay for co-amplification of an FMDV RNA segment and an internal control comprised of an Armored RNA. In that form, each of the excess primers in the reaction mixture hybridize to their respective RNA targets during a short pre-incubation, then generate cDNA strands during a 3-min RT step at 60°C, and the resulting cDNA is amplified by LATE-PCR without intervening sample processing. The RT-LATE-PCR assay generates fluorescent signals at endpoint that are proportional to the starting number of RNA targets and can detect a range of sequence variants using a single mismatch-tolerant probe. In addition to offering improvements over current laboratory-based molecular diagnostic assays for FMDV, this new assay is compatible with a novel portable ('point-of-care') device, the BioSeeq II, designed for the rapid diagnosis of FMD in the field. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  8. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Gyoyeon; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon; Lee, Hansol

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Ptmore » conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.« less

  9. Pyrrole-Imidazole Polyamides: Manual Solid-Phase Synthesis.

    PubMed

    Pauff, Steven M; Fallows, Andrew J; Mackay, Simon P; Su, Wu; Cullis, Paul M; Burley, Glenn A

    2015-12-01

    Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days. Copyright © 2015 John Wiley & Sons, Inc.

  10. Reverse transcription polymerase chain reaction protocols for cloning small circular RNAs.

    PubMed

    Navarro, B; Daròs, J A; Flores, R

    1998-07-01

    A protocol is described for general application for cloning small circular RNAs which requires only minimal amounts of template (approximately 50 ng) of unknown sequence. Both cDNA strands are synthesized with a 26-mer primer whose six 3'-terminal positions are totally degenerate in two consecutive reactions catalyzed by reverse transcriptase and DNA polymerase, respectively. The cDNAs are then PCR-amplified, using a 20-mer primer with the non-degenerate sequence of the previous primer, cloned and sequenced. This information permits the synthesis of one or more pairs of specific and adjacent primers for obtaining full-length cDNA clones by a protocol which is also described.

  11. Standardization and validation of real time PCR assays for the diagnosis of histoplasmosis using three molecular targets in an animal model.

    PubMed

    López, Luisa F; Muñoz, César O; Cáceres, Diego H; Tobón, Ángela M; Loparev, Vladimir; Clay, Oliver; Chiller, Tom; Litvintseva, Anastasia; Gade, Lalitha; González, Ángel; Gómez, Beatriz L

    2017-01-01

    Histoplasmosis is considered one of the most important endemic and systemic mycoses worldwide. Until now few molecular techniques have been developed for its diagnosis. The aim of this study was to develop and evaluate three real time PCR (qPCR) protocols for different protein-coding genes (100-kDa, H and M antigens) using an animal model. Fresh and formalin-fixed and paraffin-embedded (FFPE) lung tissues from BALB/c mice inoculated i.n. with 2.5x106 Histoplasma capsulatum yeast or PBS were obtained at 1, 2, 3, 4, 8, 12 and 16 weeks post-infection. A collection of DNA from cultures representing different clades of H. capsulatum (30 strains) and other medically relevant pathogens (36 strains of related fungi and Mycobacterium tuberculosis) were used to analyze sensitivity and specificity. Analytical sensitivity and specificity were 100% when DNAs from the different strains were tested. The highest fungal burden occurred at first week post-infection and complete fungal clearance was observed after the third week; similar results were obtained when the presence of H. capsulatum yeast cells was demonstrated in histopathological analysis. In the first week post-infection, all fresh and FFPE lung tissues from H. capsulatum-infected animals were positive for the qPCR protocols tested except for the M antigen protocol, which gave variable results when fresh lung tissue samples were analyzed. In the second week, all qPCR protocols showed variable results for both fresh and FFPE tissues. Samples from the infected mice at the remaining times post-infection and uninfected mice (controls) were negative for all protocols. Good agreement was observed between CFUs, histopathological analysis and qPCR results for the 100-kDa and H antigen protocols. We successfully standardized and validated three qPCR assays for detecting H. capsulatum DNA in fresh and FFPE tissues, and conclude that the 100-kDa and H antigen molecular assays are promising tests for diagnosing this mycosis.

  12. gDNA enrichment by a transposase-based technology for NGS analysis of the whole sequence of BRCA1, BRCA2, and 9 genes involved in DNA damage repair.

    PubMed

    Chevrier, Sandy; Boidot, Romain

    2014-10-06

    The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3'-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.

  13. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    PubMed

    Sankaranarayanan, Krithivasan; Timofeeff, Michael N; Spathis, Rita; Lowenstein, Tim K; Lum, J Koji

    2011-01-01

    Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  14. Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms

    USGS Publications Warehouse

    Laramie, Matthew B.; Pilliod, David S.; Goldberg, Caren S.; Strickler, Katherine M.

    2015-09-29

    Environmental DNA (eDNA) analysis is an effective method of determining the presence of aquatic organisms such as fish, amphibians, and other taxa. This publication is meant to guide researchers and managers in the collection, concentration, and preservation of eDNA samples from lentic and lotic systems. A sampling workflow diagram and three sampling protocols are included as well as a list of suggested supplies. Protocols include filter and pump assembly using: (1) a hand-driven vacuum pump, ideal for sample collection in remote sampling locations where no electricity is available and when equipment weight is a primary concern; (2) a peristaltic pump powered by a rechargeable battery-operated driver/drill, suitable for remote sampling locations when weight consideration is less of a concern; (3) a 120-volt alternating current (AC) powered peristaltic pump suitable for any location where 120-volt AC power is accessible, or for roadside sampling locations. Images and detailed descriptions are provided for each step in the sampling and preservation process.

  15. DNA recovery from microhymenoptera using six non-destructive methodologies with considerations for subsequent preparation of museum slides.

    PubMed

    Guzmán-Larralde, Adriana J; Suaste-Dzul, Alba P; Gallou, Adrien; Peña-Carrillo, Kenzy I

    2017-01-01

    Because of the tiny size of microhymenoptera, successful morphological identification typically requires specific mounting protocols that require time, skills, and experience. Molecular taxonomic identification is an alternative, but many DNA extraction protocols call for maceration of the whole specimen, which is not compatible with preserving museum vouchers. Thus, non-destructive DNA isolation methods are attractive alternatives for obtaining DNA without damaging sample individuals. However, their performance needs to be assessed in microhymenopterans. We evaluated six non-destructive methods: (A) DNeasy® Blood & Tissue Kit; (B) DNeasy® Blood & Tissue Kit, modified; (C) Protocol with CaCl 2 buffer; (D) Protocol with CaCl 2 buffer, modified; (E) HotSHOT; and (F) Direct PCR. The performance of each DNA extraction method was tested across several microhymenopteran species by attempting to amplify the mitochondrial gene COI from insect specimens of varying ages: 1 day, 4 months, 3 years, 12 years, and 23 years. Methods B and D allowed COI amplification in all insects, while methods A, C, and E were successful in DNA amplification from insects up to 12 years old. Method F, the fastest, was useful in insects up to 4 months old. Finally, we adapted permanent slide preparation in Canada balsam for every technique. The results reported allow for combining morphological and molecular methodologies for taxonomic studies.

  16. Northern blots: capillary transfer of RNA from agarose gels and filter hybridization using standard stringency conditions.

    PubMed

    Rio, Donald C

    2015-03-02

    In this protocol, an RNA sample, fractionated by gel electrophoresis, is transferred from the gel onto a membrane by capillary transfer. Short-wave UV light is used to fix the transferred RNA to the membrane. The membrane is then pretreated to block nonspecific probe-binding sites, and hybridization of the immobilized RNA to a (32)P-labeled DNA or RNA probe specific for the mRNA of interest is performed. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. Because exposure to UV cross-links the RNA to the membrane, the membrane can be stripped and hybridized with other probes. The procedure is suitable for detecting poly(A)(+)-selected mRNA or mRNA in total cellular RNA if the target transcript is relatively abundant. Using DNA or RNA probes labeled to 1 × 10(8)-10 × 10(8) cpm/µg, it should be possible to detect ∼5 pg of a specific RNA. © 2015 Cold Spring Harbor Laboratory Press.

  17. Basic quantitative polymerase chain reaction using real-time fluorescence measurements.

    PubMed

    Ares, Manuel

    2014-10-01

    This protocol uses quantitative polymerase chain reaction (qPCR) to measure the number of DNA molecules containing a specific contiguous sequence in a sample of interest (e.g., genomic DNA or cDNA generated by reverse transcription). The sample is subjected to fluorescence-based PCR amplification and, theoretically, during each cycle, two new duplex DNA molecules are produced for each duplex DNA molecule present in the sample. The progress of the reaction during PCR is evaluated by measuring the fluorescence of dsDNA-dye complexes in real time. In the early cycles, DNA duplication is not detected because inadequate amounts of DNA are made. At a certain threshold cycle, DNA-dye complexes double each cycle for 8-10 cycles, until the DNA concentration becomes so high and the primer concentration so low that the reassociation of the product strands blocks efficient synthesis of new DNA and the reaction plateaus. There are two types of measurements: (1) the relative change of the target sequence compared to a reference sequence and (2) the determination of molecule number in the starting sample. The first requires a reference sequence, and the second requires a sample of the target sequence with known numbers of the molecules of sequence to generate a standard curve. By identifying the threshold cycle at which a sample first begins to accumulate DNA-dye complexes exponentially, an estimation of the numbers of starting molecules in the sample can be extrapolated. © 2014 Cold Spring Harbor Laboratory Press.

  18. Blood cell mRNAs and microRNAs: optimized protocols for extraction and preservation.

    PubMed

    Eikmans, Michael; Rekers, Niels V; Anholts, Jacqueline D H; Heidt, Sebastiaan; Claas, Frans H J

    2013-03-14

    Assessing messenger RNA (mRNA) and microRNA levels in peripheral blood cells may complement conventional parameters in clinical practice. Working with small, precious samples requires optimal RNA yields and minimal RNA degradation. Several procedures for RNA extraction and complementary DNA (cDNA) synthesis were compared for their efficiency. The effect on RNA quality of freeze-thawing peripheral blood cells and storage in preserving reagents was investigated. In terms of RNA yield and convenience, quality quantitative polymerase chain reaction signals per nanogram of total RNA and using NucleoSpin and mirVana columns is preferable. The SuperScript III protocol results in the highest cDNA yields. During conventional procedures of storing peripheral blood cells at -180°C and thawing them thereafter, RNA integrity is maintained. TRIzol preserves RNA in cells stored at -20°C. Detection of mRNA levels significantly decreases in degraded RNA samples, whereas microRNA molecules remain relatively stable. When standardized to reference targets, mRNA transcripts and microRNAs can be reliably quantified in moderately degraded (quality index 4-7) and severely degraded (quality index <4) RNA samples, respectively. We describe a strategy for obtaining high-quality and quantity RNA from fresh and stored cells from blood. The results serve as a guideline for sensitive mRNA and microRNA expression assessment in clinical material.

  19. Improving the recovery of qPCR-grade DNA from sludge and sediment.

    PubMed

    Bonot, Sébastien; Courtois, Sophie; Block, Jean-Claude; Merlin, Christophe

    2010-08-01

    DNA extraction is often considered as the limiting step of most molecular approaches in ecology and environmental microbiology. Ten existing DNA extraction protocols were compared for recovery of DNA from sludge and a modified version of the protocol described by Porteous et al. (Mol Ecol 6:787-791, 1997) was determined to be the best method for recovery of DNA suitable for PCR. In this respect, it appeared that the commonly used guanidine isothiocyanate could impair the quality of the extracted DNA unless its concentration is lowered. Second, conditioning the samples as liquors as opposed to pellets critically impacts the outcome of the extraction. The suitability of the modified Porteous protocol for quantitative PCR applications is demonstrated in a series of experiments showing the absence of interfering coextracted inhibitors and the linear correspondence between the concentrations of input target DNA and PCR product. Interestingly, it is also shown that the nature of the environmental matrices affects the recovery yield of both circular plasmids and chromosomal DNA, resulting in an apparent fluctuation of the plasmid copy number per cell. This means that quantitative data obtained by PCR remain comparable as long as they apply to an identical target sequence extracted from a similar environment and amplified under the same conditions.

  20. PR-PR: Cross-Platform Laboratory Automation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linshiz, G; Stawski, N; Goyal, G

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Goldenmore » Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.« less

  1. PR-PR: cross-platform laboratory automation system.

    PubMed

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  2. Synthesis and application of a triazene-ferrocene modifier for immobilization and characterization of oligonucleotides at electrodes.

    PubMed

    Hansen, Majken N; Farjami, Elaheh; Kristiansen, Martin; Clima, Lilia; Pedersen, Steen Uttrup; Daasbjerg, Kim; Ferapontova, Elena E; Gothelf, Kurt V

    2010-04-16

    A new DNA modifier containing triazene, ferrocene, and activated ester functionalities was synthesized and applied for electrochemical grafting and characterization of DNA at glassy carbon (GC) and gold electrodes. The modifier was synthesized from ferrocenecarboxylic acid by attaching a phenyltriazene derivative to one of the ferrocene Cp rings, while the other Cp ring containing the carboxylic acid was converted to an activated ester. The modifier was conjugated to an amine-modified DNA sequence. For immobilization of the conjugate at Au or GC electrodes, the triazene was activated by dimethyl sulfate for release of the diazonium salt. The salt was reductively converted to the aryl radical which was readily immobilized at the surface. DNA grafted onto electrodes exhibited remarkable hybridization properties, as detected through a reversible shift in the redox potential of the Fc redox label upon repeated hybridization/denaturation procedures with a complementary target DNA sequence. By using a methylene blue (MB) labeled target DNA sequence the hybridization could also be followed through the MB redox potential. Electrochemical studies demonstrated that grafting through the triazene modifier can successfully compete with existing protocols for DNA immobilization through the commonly used alkanethiol linkers and diazonium salts. Furthermore, the triazene modifier provides a practical one-step immobilization procedure.

  3. "First generation" automated DNA sequencing technology.

    PubMed

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  4. Bringing DNA vaccines closer to commercial use.

    PubMed

    Carvalho, Joana A; Prazeres, Duarte M F; Monteiro, Gabriel A

    2009-10-01

    Progress in the application of DNA vaccines as an immunization protocol is evident from the increasing number of such vaccines under evaluation in clinical trials and by the recent approval of several DNA vaccine products for veterinary applications. DNA vaccine technology offers important therapeutic and commercial advantages compared with conventional approaches, including the opportunity to target pathogens characterized by significant genetic diversity using a safe immunization platform, and the ability to use a simple, rapid and well-characterized production method. However, further optimization of DNA vaccine technology through the use of improved constructs, delivery systems and immunization protocols is necessary to clinically achieve the promising results that have been demonstrated in preclinical models.

  5. An ameliorative protocol for the quantification of purine 5',8-cyclo-2'-deoxynucleosides in oxidized DNA

    NASA Astrophysics Data System (ADS)

    Terzidis, Michael; Chatgilialoglu, Chryssostomos

    2015-07-01

    5',8-Cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG) are lesions resulting from hydroxyl radical (HO•) attack on the 5'H of the nucleoside sugar moiety and exist in both 5'R and 5'S diastereomeric forms. Increased levels of cdA and cdG are linked to Nucleotide Excision Repair mechanism deficiency and mutagenesis. Discrepancies in the damage measurements reported over recent years indicated the weakness of the actual protocols, in particular for ensuring the quantitative release of these lesions from the DNA sample and the appropriate method for their analysis. Herein we report the detailed revision leading to a cost-effective and efficient protocol for the DNA damage measurement, consisting of the nuclease benzonase and nuclease P1 enzymatic combination for DNA digestion followed by liquid chromatography isotope dilution tandem mass spectrometry analysis.

  6. Purifying Nucleic Acids from Samples of Extremely Low Biomass

    NASA Technical Reports Server (NTRS)

    La Duc, Myron; Osman, Shariff; Venkateswaran, Kasthuri

    2008-01-01

    A new method is able to circumvent the bias to which one commercial DNA extraction method falls prey with regard to the lysing of certain types of microbial cells, resulting in a truncated spectrum of microbial diversity. By prefacing the protocol with glass-bead-beating agitation (mechanically lysing a much more encompassing array of cell types and spores), the resulting microbial diversity detection is greatly enhanced. In preliminary studies, a commercially available automated DNA extraction method is effective at delivering total DNA yield, but only the non-hardy members of the bacterial bisque were represented in clone libraries, suggesting that this method was ineffective at lysing the hardier cell types. To circumvent such a bias in cells, yet another extraction method was devised. In this technique, samples are first subjected to a stringent bead-beating step, and then are processed via standard protocols. Prior to being loaded into extraction vials, samples are placed in micro-centrifuge bead tubes containing 50 micro-L of commercially produced lysis solution. After inverting several times, tubes are agitated at maximum speed for two minutes. Following agitation, tubes are centrifuged at 10,000 x g for one minute. At this time, the aqueous volumes are removed from the bead tubes and are loaded into extraction vials to be further processed via extraction regime. The new method couples two independent methodologies in such as way as to yield the highest concentration of PCR-amplifiable DNA with consistent and reproducible results and with the most accurate and encompassing report of species richness.

  7. The use of comet assay to assess DNA integrity of boar spermatozoa following liquid preservation at 5 degrees C and 16 degrees C.

    PubMed

    Fraser, L; Strzezek, J

    2004-01-01

    The comet assay, under neutral conditions, allows the assessment of DNA integrity influenced by sperm ageing, which is manifested in DNA double-strand breaks. Here, we attempted to use a modified neutral comet assay test (single-cell gel electrophoresis), to our knowledge for the first time, to assess DNA integrity of boar spermatozoa during liquid storage for 96 h at 5 degrees C and 16 degrees C. In this comet assay protocol we used 2% beta-mercaptoethanol prior to the lysis procedure, to aid in removing nuclear proteins. Ejaculates from 3 boars (designated A, C and G) were diluted with a standard semen extender, Kortowo-3 (K-3), which was supplemented with lipoprotein fractions extracted from hen egg yolk (LPFh) or ostrich egg yolk (LPFo). Irrespective of the extender type, the percentage of comet-detected spermatozoa with damaged DNA increased gradually during prolonged storage at 5 degrees C and 16 degrees C. Spermatozoa stored in K-3 extender exhibited elevated levels of DNA damage at both storage temperatures. Significant differences in DNA damage among the boars were more pronounced during storage in LPF-based extenders at 5 degrees C: spermatozoa of boars A and G were less susceptible to DNA damage. The percent of tail DNA in comets was lower in LPF-based extenders, and there were individual variations among the boars. We observed that changes in DNA integrity were dependent on the extender type and storage temperature. A higher level of DNA instability was observed in K-3 extended semen compared with K-3/LPFh or K-3/LPFo extended semen during storage at 5 degrees C. No significant difference in the level of DNA damage between K-3/LPFh and K-3/LPFo was observed. It seems that a long-term storage can affect genomic integrity of boar spermatozoa. The modified neutral comet assay can be used to detect low levels of DNA damage in boar spermatozoa during liquid preservation. Therefore, screening for sperm DNA damage may be used as an additional test of sperm function that can have diagnostic value in practice.

  8. Extraction of genomic DNA from yeasts for PCR-based applications.

    PubMed

    Lõoke, Marko; Kristjuhan, Kersti; Kristjuhan, Arnold

    2011-05-01

    We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp.

  9. Performance of Identifiler Direct and PowerPlex 16 HS on the Applied Biosystems 3730 DNA Analyzer for processing biological samples archived on FTA cards.

    PubMed

    Laurin, Nancy; DeMoors, Anick; Frégeau, Chantal

    2012-09-01

    Direct amplification of STR loci from biological samples collected on FTA cards without prior DNA purification was evaluated using Identifiler Direct and PowerPlex 16 HS in conjunction with the use of a high throughput Applied Biosystems 3730 DNA Analyzer. In order to reduce the overall sample processing cost, reduced PCR volumes combined with various FTA disk sizes were tested. Optimized STR profiles were obtained using a 0.53 mm disk size in 10 μL PCR volume for both STR systems. These protocols proved effective in generating high quality profiles on the 3730 DNA Analyzer from both blood and buccal FTA samples. Reproducibility, concordance, robustness, sample stability and profile quality were assessed using a collection of blood and buccal samples on FTA cards from volunteer donors as well as from convicted offenders. The new developed protocols offer enhanced throughput capability and cost effectiveness without compromising the robustness and quality of the STR profiles obtained. These results support the use of these protocols for processing convicted offender samples submitted to the National DNA Data Bank of Canada. Similar protocols could be applied to the processing of casework reference samples or in paternity or family relationship testing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Qualitative and quantitative assessment of single fingerprints in forensic DNA analysis.

    PubMed

    Ostojic, Lana; Klempner, Stacey A; Patel, Rosni A; Mitchell, Adele A; Axler-DiPerte, Grace L; Wurmbach, Elisa

    2014-11-01

    Fingerprints and touched items are important sources of DNA for STR profiling, since this evidence can be recovered in a wide variety of criminal offenses. However, there are some fundamental difficulties in working with these samples, including variability in quantity and quality of extracted DNA. In this study, we collected and analyzed over 700 fingerprints. We compared a commercially available extraction protocol (Zygem) to two methods developed in our laboratory, a simple one-tube protocol and a high sensitivity protocol (HighSens) that includes additional steps to concentrate and purify the DNA. The amplification protocols tested were AmpFLSTR® Identifiler® using either 28 or 31 amplification cycles, and Identifiler® Plus using 32 amplification cycles. We found that the HighSens and Zygem extraction methods were significantly better in their DNA yields than the one-tube method. Identifiler® Plus increased the quality of the STR profiles for the one-tube extraction significantly. However, this effect could not be verified for the other extraction methods. Furthermore, microscopic analysis of single fingerprints revealed that some individuals tended to shed more material than others onto glass slides. However, a dense deposition of skin flakes did not strongly correlate with a high quality STR profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The use of FTA cards for preserving unfixed cytological material for high-throughput molecular analysis.

    PubMed

    Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Liu, Ni; Tsao, Ming; Zhang, Tong; Kamel-Reid, Suzanne; da Cunha Santos, Gilda

    2012-06-25

    Novel high-throughput molecular technologies have made the collection and storage of cells and small tissue specimens a critical issue. The FTA card provides an alternative to cryopreservation for biobanking fresh unfixed cells. The current study compared the quality and integrity of the DNA obtained from 2 types of FTA cards (Classic and Elute) using 2 different extraction protocols ("Classic" and "Elute") and assessed the feasibility of performing multiplex mutational screening using fine-needle aspiration (FNA) biopsy samples. Residual material from 42 FNA biopsies was collected in the cards (21 Classic and 21 Elute cards). DNA was extracted using the Classic protocol for Classic cards and both protocols for Elute cards. Polymerase chain reaction for p53 (1.5 kilobase) and CARD11 (500 base pair) was performed to assess DNA integrity. Successful p53 amplification was achieved in 95.2% of the samples from the Classic cards and in 80.9% of the samples from the Elute cards using the Classic protocol and 28.5% using the Elute protocol (P = .001). All samples (both cards) could be amplified for CARD11. There was no significant difference in the DNA concentration or 260/280 purity ratio when the 2 types of cards were compared. Five samples were also successfully analyzed by multiplex MassARRAY spectrometry, with a mutation in KRAS found in 1 case. High molecular weight DNA was extracted from the cards in sufficient amounts and quality to perform high-throughput multiplex mutation assays. The results of the current study also suggest that FTA Classic cards preserve better DNA integrity for molecular applications compared with the FTA Elute cards. Copyright © 2012 American Cancer Society.

  12. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins.

    PubMed

    Liang, Zhen; Chen, Kunling; Zhang, Yi; Liu, Jinxing; Yin, Kangquan; Qiu, Jin-Long; Gao, Caixia

    2018-03-01

    This protocol is an extension to: Nat. Protoc. 9, 2395-2410 (2014); doi:10.1038/nprot.2014.157; published online 18 September 2014In recent years, CRISPR/Cas9 has emerged as a powerful tool for improving crop traits. Conventional plant genome editing mainly relies on plasmid-carrying cassettes delivered by Agrobacterium or particle bombardment. Here, we describe DNA-free editing of bread wheat by delivering in vitro transcripts (IVTs) or ribonucleoprotein complexes (RNPs) of CRISPR/Cas9 by particle bombardment. This protocol serves as an extension of our previously published protocol on genome editing in bread wheat using CRISPR/Cas9 plasmids delivered by particle bombardment. The methods we describe not only eliminate random integration of CRISPR/Cas9 into genomic DNA, but also reduce off-target effects. In this protocol extension article, we present detailed protocols for preparation of IVTs and RNPs; validation by PCR/restriction enzyme (RE) and next-generation sequencing; delivery by biolistics; and recovery of mutants and identification of mutants by pooling methods and Sanger sequencing. To use these protocols, researchers should have basic skills and experience in molecular biology and biolistic transformation. By using these protocols, plants edited without the use of any foreign DNA can be generated and identified within 9-11 weeks.

  13. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    PubMed

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A MBD-seq protocol for large-scale methylome-wide studies with (very) low amounts of DNA.

    PubMed

    Aberg, Karolina A; Chan, Robin F; Shabalin, Andrey A; Zhao, Min; Turecki, Gustavo; Staunstrup, Nicklas Heine; Starnawska, Anna; Mors, Ole; Xie, Lin Y; van den Oord, Edwin Jcg

    2017-09-01

    We recently showed that, after optimization, our methyl-CpG binding domain sequencing (MBD-seq) application approximates the methylome-wide coverage obtained with whole-genome bisulfite sequencing (WGB-seq), but at a cost that enables adequately powered large-scale association studies. A prior drawback of MBD-seq is the relatively large amount of genomic DNA (ideally >1 µg) required to obtain high-quality data. Biomaterials are typically expensive to collect, provide a finite amount of DNA, and may simply not yield sufficient starting material. The ability to use low amounts of DNA will increase the breadth and number of studies that can be conducted. Therefore, we further optimized the enrichment step. With this low starting material protocol, MBD-seq performed equally well, or better, than the protocol requiring ample starting material (>1 µg). Using only 15 ng of DNA as input, there is minimal loss in data quality, achieving 93% of the coverage of WGB-seq (with standard amounts of input DNA) at similar false/positive rates. Furthermore, across a large number of genomic features, the MBD-seq methylation profiles closely tracked those observed for WGB-seq with even slightly larger effect sizes. This suggests that MBD-seq provides similar information about the methylome and classifies methylation status somewhat more accurately. Performance decreases with <15 ng DNA as starting material but, even with as little as 5 ng, MBD-seq still achieves 90% of the coverage of WGB-seq with comparable genome-wide methylation profiles. Thus, the proposed protocol is an attractive option for adequately powered and cost-effective methylome-wide investigations using (very) low amounts of DNA.

  15. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping.

    PubMed

    Salamin, Olivier; Kuuranne, Tiia; Saugy, Martial; Leuenberger, Nicolas

    2017-11-01

    Innovation in medical research has been diverted at multiple occasions to enhance human performance. The predicted great progress in gene therapy has raised some concerns regarding its misuse in the world of sports (gene doping) for several years now. Even though there is no evidence that gene doping has ever been used in sports, the continuous improvement of gene therapy techniques increases the likelihood of abuse. Therefore, since 2004, efforts have been invested by the anti-doping community and WADA for the development of detection methods. Several nested PCR and qPCR-based strategies exploiting the absence of introns in the transgenic DNA have been proposed for the long-term detection of transgene in blood. Despite their great sensitivity, those protocols are hampered by limitations of the techniques that can be cumbersome and costly. The purpose of this perspective is to describe a new approach based on loop-mediated isothermal amplification (LAMP) for the detection of gene doping. This protocol enables a rapid and simple method to amplify nucleic acids with a high sensitivity and specificity and with a simple visual detection of the results. LAMP is already being used in clinical application for the detection of viruses or mutations. Therefore, this technique has the potential to be further developed for the detection of foreign genetic material in elite athletes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. High-resolution melting analysis for prenatal diagnosis of beta-thalassemia in northern Thailand.

    PubMed

    Charoenkwan, Pimlak; Sirichotiyakul, Supatra; Phusua, Arunee; Suanta, Sudjai; Fanhchaksai, Kanda; Sae-Tung, Rattika; Sanguansermsri, Torpong

    2017-12-01

    High-resolution melting (HRM) analysis is a rapid mutation analysis which assesses the pattern of reduction of fluorescence signal after subjecting the amplified PCR product with saturated fluorescence dye to an increasing temperature. We used HRM analysis for prenatal diagnosis of beta-thalassemia disease in northern Thailand. Five PCR-HRM protocols were used to detect point mutations in five different segments of the beta-globin gene, and one protocol to detect the 3.4 kb beta-globin deletion. We sought to characterize the mutations in carriers and to enable prenatal diagnosis in 126 couples at risk of having a fetus with beta-thalassemia disease. The protocols identified 18 common mutations causing beta-thalassemia, including the rare codon 132 (A-T) mutation. Each mutation showed a specific HRM pattern and all results were in concordance with those from direct DNA sequencing or gap-PCR methods. In cases of beta-thalassemia disease resulting from homozygosity for a mutation or compound heterozygosity for two mutations on the same amplified segment, the HRM patterns were different to those of a single mutation and were specific for each combination. HRM analysis is a simple and useful method for mutation identification in beta-thalassemia carriers and prenatal diagnosis of beta-thalassemia in northern Thailand.

  17. RAPD/SCAR Approaches for Identification of Adulterant Breeds' Milk in Dairy Products.

    PubMed

    Cunha, Joana T; Domingues, Lucília

    2017-01-01

    Food safety and quality are nowadays a major consumers' concern. In the dairy industry the fraudulent addition of cheaper/lower-quality milks from nonlegitimate species/breeds compromises the quality and value of the final product. Despite the already existing approaches for identification of the species origin of milk, there is little information regarding differentiation at an intra-species level. In this protocol we describe a low-cost, sensitive, fast, and reliable analytical technique-Random Amplified Polymorphic DNA/Sequence Characterized Amplified Region (RAPD/SCAR)-capable of an efficient detection of adulterant breeds in milk mixtures used for fraudulent manufacturing of dairy products and suitable for the detection of milk adulteration in processed dairy foods.

  18. Nucleic acid extraction from polluted estuarine water for detection of viruses and bacteria by PCR and RT-PCR analysis.

    PubMed

    Petit, F; Craquelin, S; Guespin-Michel, J; Buffet-Janvresse, C

    1999-03-01

    We describe an extraction protocol for genomic DNA and RNA of both viruses and bacteria from polluted estuary water. This procedure was adapted to the molecular study of microflora of estuarine water where bacteria and viruses are found free, forming low-density biofilms, or intimately associated with organo-mineral particles. The sensitivity of the method was determined with seeded samples for RT-PCR and PCR analysis of viruses (10 virions/mL), and bacteria (1 colony-forming unit mL). We report an example of molecular detection of both poliovirus and Salmonella in the Seine estuary (France) and an approach to studying their association with organo-mineral particles.

  19. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay.

    PubMed

    Bausinger, Julia; Speit, Günter

    2016-09-01

    The comet assay is frequently used in human biomonitoring for the detection of exposure to genotoxic agents. Peripheral blood samples are most frequently used and tested either as whole blood or after isolation of lymphocytes (i.e. peripheral blood mononuclear cells, PBMC). To investigate a potential impact of lymphocyte isolation on induced DNA damage in human blood samples, we exposed blood ex vivo to mutagens with different modes of genotoxic action. The comet assay was performed either directly with whole blood at the end of the exposure period or with lymphocytes isolated directly after exposure. In addition to the recommended standard protocol for lymphocyte isolation, a shortened protocol was established to optimise the isolation procedure. The results indicate that the effects of induced DNA strand breaks and alkali-labile sites induced by ionising radiation and alkylants, respectively, are significantly reduced in isolated lymphocytes. In contrast, oxidative DNA base damage (induced by potassium bromate) and stable bulky adducts (induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide; BPDE) seem to be less affected. Our findings suggest that in vivo-induced DNA damage might also be reduced in isolated lymphocytes in comparison with the whole blood depending of the types of DNA damage induced. Because only small genotoxic effects can generally be expected in human biomonitoring studies with the comet assay after occupational and environmental exposure to genotoxic agents, any loss might be relevant and should be avoided. The possibility of such effects and their potential impact on variability of comet assay results in human biomonitoring should be considered when performing or evaluating such kind of studies. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The clinical diagnostic accuracy of rapid detection of healthcare-associated bloodstream infection in intensive care using multipathogen real-time PCR technology

    PubMed Central

    Dunn, Graham; Chadwick, Paul; Young, Duncan; Bentley, Andrew; Carlson, Gordon; Warhurst, Geoffrey

    2011-01-01

    Background There is growing interest in the potential utility of real-time PCR in diagnosing bloodstream infection by detecting pathogen DNA in blood samples within a few hours. SeptiFast is a multipathogen probe-based real-time PCR system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection and has European regulatory approval. The SeptiFast pathogen panel is suited to identifying healthcare-associated bloodstream infection acquired during complex healthcare, and the authors report here the protocol for the first detailed health-technology assessment of multiplex real-time PCR in this setting. Methods/design A Phase III multicentre double-blinded diagnostic study will determine the clinical validity of SeptiFast for the rapid detection of healthcare-associated bloodstream infection, against the current service standard of microbiological culture, in an adequately sized population of critically ill adult patients. Results from SeptiFast and standard microbiological culture procedures in each patient will be compared at study conclusion and the metrics of clinical diagnostic accuracy of SeptiFast determined in this population setting. In addition, this study aims to assess further the preliminary evidence that the detection of pathogen DNA in the bloodstream using SeptiFast may have value in identifying the presence of infection elsewhere in the body. Furthermore, differences in circulating immune-inflammatory markers in patient groups differentiated by the presence/absence of culturable pathogens and pathogen DNA will help elucidate further the patho-physiology of infection developing in the critically ill. Ethics and dissemination Ethical approval has been granted by the North West 6 Research Ethics Committee (09/H1003/109). Based on the results of this first non-commercial study, independent recommendations will be made to The Department of Health (open-access health technology assessment report) as to whether SeptiFast has sufficient clinical diagnostic accuracy to move forward to efficacy testing during the provision of routine clinical care. PMID:22021785

  1. Rapid detection of 21-hydroxylase deficiency mutations by allele-specific in vitro amplification and capillary zone electrophoresis.

    PubMed

    Carrera, P; Barbieri, A M; Ferrari, M; Righetti, P G; Perego, M; Gelfi, C

    1997-11-01

    A quick diagnosis of the classic form of 21-hydroxylase deficiency (simple virilizing and salt wasting) is of great importance, especially for prenatal diagnosis and treatment in pregnancies at risk. A method for simultaneous detection of common point mutations in the P450c21 B gene is here proposed by combining a nested PCR amplification refractory mutation system (ARMS) with capillary zone electrophoresis (CZE) in sieving liquid polymers. In the first PCR, B genes are selectively amplified. In the nested reaction, ARMS-detected wild-type and mutated alleles are separately pooled and resolved by CZE. CZE is performed in coated capillaries in the presence of 30 g/L hydroxyethyl cellulose in the background electrolyte for size separation of the DNA analytes. For high-sensitivity detection the electrophoresis buffer contains the fluorescent dye SYBR Green I. Laser-induced fluorescence detection is obtained by excitation at 488 nm and signal collection at 520 nm. Specificity and reproducibility of the protocols were established by using samples from 75 Italian families with 21-hydroxylase deficiency already genotyped by allele-specific oligonucleotide hybridization or direct sequencing. Whereas dot-blot is time consuming because of the high number of hybridizations with radioactive probes, this present protocol is more rapid, giving sufficient separation on CZE after PCR reactions without preconcentration or desalting of samples.

  2. DNA Extraction Techniques for Use in Education

    ERIC Educational Resources Information Center

    Hearn, R. P.; Arblaster, K. E.

    2010-01-01

    DNA extraction provides a hands-on introduction to DNA and enables students to gain real life experience and practical knowledge of DNA. Students gain a sense of ownership and are more enthusiastic when they use their own DNA. A cost effective, simple protocol for DNA extraction and visualization was devised. Buccal mucosal epithelia provide a…

  3. Production of transgenic chickens using an avian retroviral vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopchick, J.; Mills, E.; Rosenblum C.

    1987-05-01

    The authors efforts to insert genes into the chicken germ line are dependent upon the ability of exogenous avian retroviruses to infect chicken germ cells. They have used a transformation defective Schmidt Ruppin A strain of Rous Sarcoma Virus (RSV-SRA) in their initial experiments. The general protocol involved generating RSV-SRA viremic female chickens (Go), which shed exogenous virus via the oviduct. As the fertilized egg passes through the oviduct, embryonic cells are exposed to the virus. If the germ cell precursors are infected by the virus, offspring (G1) should be generated which are capable of passing the viral DNA tomore » the next generation (G2). Fifteen viremic G1 males were selected for breeding and progeny testing. Since male chickens do not congenitally pass retroviruses through semen, production of viremic G2 offspring indicates germ line DNA transmission. This is confirmed by DNA analysis of the experimental chickens. Using a specific probe for exogenous retrovirus, they have detected the presence of RSV-SRA DNA in viremic chickens. Southern DNA analysis revealed junction fragments for RSV-SRA DNA in viremic G2 chickens, but not in non-viremic siblings. Furthermore, DNA isolated from various tissues of a viremic G2 chicken showed an identical DNA junction fragment pattern, indicating all tissues were derived from the same embryonic cell which contained integrated provirus. To date they have generated 50 transgenic chickens.« less

  4. Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals.

    PubMed

    Direito, Susana O L; Marees, Andries; Röling, Wilfred F M

    2012-07-01

    The adsorption of nucleic acids to mineral matrixes can result in low extraction yields and negatively influences molecular microbial ecology studies, in particular for low-biomass environments on Earth and Mars. We determined the recovery of nucleic acids from a range of minerals relevant to Earth and Mars. Clay minerals, but also other silicates and nonsilicates, showed very low recovery (< 1%). Consequently, optimization of DNA extraction was directed towards clays. The high temperatures and acidic conditions used in some methods to dissolve mineral matrices proved to destruct DNA. The most efficient method comprised a high phosphate solution (P/EtOH; 1 M phosphate, 15% ethanol buffer at pH 8) introduced at the cell-lysing step in DNA extraction, to promote chemical competition with DNA for adsorption sites. This solution increased DNA yield from clay samples spiked with known quantities of cells up to nearly 100-fold. DNA recovery was also enhanced from several mineral samples retrieved from an aquifer, while maintaining reproducible DGGE profiles. DGGE profiles were obtained for a clay sample for which no profile could be generated with the standard DNA isolation protocol. Mineralogy influenced microbial community composition. The method also proved suitable for the recovery of low molecular weight DNA (< 1.5 kb). © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Telomere Dysfunction Induced Foci (TIF) Analysis.

    PubMed

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    Telomerase maintains telomeric DNA in eukaryotes during early developments, ~90% of cancer cells and some proliferative stem like cells. Telomeric repeats at the end of chromosomes are associated with the shelterin complex. This complex consists of TRF1, TRF2, Rap1, TIN2, TPP1, POT1 which protect DNA from being recognized as DNA double-stranded breaks. Critically short telomeres or impaired shelterin proteins can cause telomere dysfunction, which eventually induces DNA damage responses at the telomeres. DNA damage responses can be identified by antibodies to 53BP1, gammaH2AX, Rad17, ATM, and Mre11. DNA damage foci at uncapped telomeres are referred to as Telomere dysfunction-Induced Foci (TIFs) (de Lange, 2005; Takai et al. , 2003). The TIF assay is based on the co-localization detection of DNA damage by an antibody against DNA damage markers, such as gamma-H2AX, and telomeres using an antibody against one of the shelterin proteins such as TRF2 (Takai et al. , 2003; de Lange, 2002; Karlseder et al. , 1999). The method we describe here can be used in normal human and cancer cells. Other commonly used methods-Telomere Restriction Fragment (TRF) Analysis (Mender and Shay, 2015b) and Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015a)- in telomere biology can be found by clicking on the indicated links.

  6. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers.

    PubMed

    Rathore, Mangal S; Jha, Bhavanath

    2016-03-01

    The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.

  7. Mutation detection using automated fluorescence-based sequencing.

    PubMed

    Montgomery, Kate T; Iartchouck, Oleg; Li, Li; Perera, Anoja; Yassin, Yosuf; Tamburino, Alex; Loomis, Stephanie; Kucherlapati, Raju

    2008-04-01

    The development of high-throughput DNA sequencing techniques has made direct DNA sequencing of PCR-amplified genomic DNA a rapid and economical approach to the identification of polymorphisms that may play a role in disease. Point mutations as well as small insertions or deletions are readily identified by DNA sequencing. The mutations may be heterozygous (occurring in one allele while the other allele retains the normal sequence) or homozygous (occurring in both alleles). Sequencing alone cannot discriminate between true homozygosity and apparent homozygosity due to the loss of one allele due to a large deletion. In this unit, strategies are presented for using PCR amplification and automated fluorescence-based sequencing to identify sequence variation. The size of the project and laboratory preference and experience will dictate how the data is managed and which software tools are used for analysis. A high-throughput protocol is given that has been used to search for mutations in over 200 different genes at the Harvard Medical School - Partners Center for Genetics and Genomics (HPCGG, http://www.hpcgg.org/). Copyright 2008 by John Wiley & Sons, Inc.

  8. Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles.

    PubMed

    Norregaard, Kamilla; Andersson, Magnus; Nielsen, Peter Eigil; Brown, Stanley; Oddershede, Lene B

    2014-09-01

    This protocol describes how to monitor individual naturally supercoiled circular DNA plasmids bound via peptide nucleic acid (PNA) handles between a bead and a surface. The protocol was developed for single-molecule investigation of the dynamics of supercoiled DNA, and it allows the investigation of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti-digoxigenin-coated glass cover slide, and one conjugated with biotin for attachment to a submicron-sized streptavidin-coated polystyrene bead. Plasmids are constructed, purified and incubated with the PNA handles. The dynamics of the construct is analyzed by tracking the tethered bead using video microscopy: less supercoiling results in more movement, and more supercoiling results in less movement. In contrast to other single-molecule methodologies, the current methodology allows for studying DNA in its naturally supercoiled state with constant linking number and constant writhe. The protocol has potential for use in studying the influence of supercoils on the dynamics of DNA and its associated proteins, e.g., topoisomerase. The procedure takes ~4 weeks.

  9. DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse.

    PubMed

    Pavselj, N; Préat, V

    2005-09-02

    Electroporation is an effective alternative to viral methods to significantly improve DNA transfection after intradermal and topical delivery. The aim of the study was to check whether a combination of a short high-voltage pulse (HV) to permeabilize the skin cells and a long low-voltage pulse (LV) to transfer DNA by electrophoresis was more efficient to enhance DNA expression than conventional repeated HV or LV pulses alone after intradermal injection of DNA plasmid. GFP and luciferase expressions in the skin were enhanced by HV+LV protocol as compared to HV or LV pulses alone. The expression lasted for up to 10 days. Consistently, HV+LV protocol induced a higher Th2 immune response against ovalbumin than HV or LV pulses. Standard methods were used to assess the effect of electric pulses on skin: the application of a combination of HV and LV pulses on rat skin fold delivered by plate electrodes was well tolerated. These data demonstrate that a combination of one HV (700 to 1000 V/cm; 100 micros) followed by one LV (140 to 200 V/cm; 400 ms) is an efficient electroporation protocol to enhance DNA expression in the skin.

  10. A streamlined method for analysing genome-wide DNA methylation patterns from low amounts of FFPE DNA.

    PubMed

    Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha

    2017-08-31

    Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.

  11. High-quality mtDNA control region sequences from 680 individuals sampled across the Netherlands to establish a national forensic mtDNA reference database.

    PubMed

    Chaitanya, Lakshmi; van Oven, Mannis; Brauer, Silke; Zimmermann, Bettina; Huber, Gabriela; Xavier, Catarina; Parson, Walther; de Knijff, Peter; Kayser, Manfred

    2016-03-01

    The use of mitochondrial DNA (mtDNA) for maternal lineage identification often marks the last resort when investigating forensic and missing-person cases involving highly degraded biological materials. As with all comparative DNA testing, a match between evidence and reference sample requires a statistical interpretation, for which high-quality mtDNA population frequency data are crucial. Here, we determined, under high quality standards, the complete mtDNA control-region sequences of 680 individuals from across the Netherlands sampled at 54 sites, covering the entire country with 10 geographic sub-regions. The complete mtDNA control region (nucleotide positions 16,024-16,569 and 1-576) was amplified with two PCR primers and sequenced with ten different sequencing primers using the EMPOP protocol. Haplotype diversity of the entire sample set was very high at 99.63% and, accordingly, the random-match probability was 0.37%. No population substructure within the Netherlands was detected with our dataset. Phylogenetic analyses were performed to determine mtDNA haplogroups. Inclusion of these high-quality data in the EMPOP database (accession number: EMP00666) will improve its overall data content and geographic coverage in the interest of all EMPOP users worldwide. Moreover, this dataset will serve as (the start of) a national reference database for mtDNA applications in forensic and missing person casework in the Netherlands. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases

    PubMed Central

    Su, Yan; Guengerich, F. Peter

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785

  13. Biolistic Transformation of Wheat.

    PubMed

    Tassy, Caroline; Barret, Pierre

    2017-01-01

    The wheat genome encodes some 100,000 genes. To understand how the expression of these genes is regulated it will be necessary to carry out many genetic transformation experiments. Robust protocols that allow scientists to transform a wide range of wheat genotypes are therefore required. In this chapter, we describe a protocol for biolistic transformation of wheat that uses immature embryos and small quantities of DNA cassettes. An original method for DNA cassette purification is also described. This protocol can be used to transform a wide range of wheat genotypes and other related species.

  14. An optimised protocol for molecular identification of Eimeria from chickens☆

    PubMed Central

    Kumar, Saroj; Garg, Rajat; Moftah, Abdalgader; Clark, Emily L.; Macdonald, Sarah E.; Chaudhry, Abdul S.; Sparagano, Olivier; Banerjee, Partha S.; Kundu, Krishnendu; Tomley, Fiona M.; Blake, Damer P.

    2014-01-01

    Molecular approaches supporting identification of Eimeria parasites infecting chickens have been available for more than 20 years, although they have largely failed to replace traditional measures such as microscopy and pathology. Limitations of microscopy-led diagnostics, including a requirement for specialist parasitological expertise and low sample throughput, are yet to be outweighed by the difficulties associated with accessing genomic DNA from environmental Eimeria samples. A key step towards the use of Eimeria species-specific PCR as a sensitive and reproducible discriminatory tool for use in the field is the production of a standardised protocol that includes sample collection and DNA template preparation, as well as primer selection from the numerous PCR assays now published. Such a protocol will facilitate development of valuable epidemiological datasets which may be easily compared between studies and laboratories. The outcome of an optimisation process undertaken in laboratories in India and the UK is described here, identifying four steps. First, samples were collected into a 2% (w/v) potassium dichromate solution. Second, oocysts were enriched by flotation in saturated saline. Third, genomic DNA was extracted using a QIAamp DNA Stool mini kit protocol including a mechanical homogenisation step. Finally, nested PCR was carried out using previously published primers targeting the internal transcribed spacer region 1 (ITS-1). Alternative methods tested included sample processing in the presence of faecal material, DNA extraction using a traditional phenol/chloroform protocol, the use of SCAR multiplex PCR (one tube and two tube versions) and speciation using the morphometric tool COCCIMORPH for the first time with field samples. PMID:24138724

  15. Evaluation of a new single-tube multiprobe real-time PCR for diagnosis of Entamoeba histolytica and Entamoeba dispar.

    PubMed

    Liang, Shih-Yu; Hsia, Kan-Tai; Chan, Yun-Hsien; Fan, Chia-Kwung; Jiang, Donald Dah-Shyong; Landt, Olfert; Ji, Dar-Der

    2010-08-01

    A single-tube multiprobe real-time PCR assay for simultaneous detection of Entamoeba histolytica and Entamoeba dispar was developed. One primer pair with 2 species-specific probes was designed based on new SSU RNA regions of the ribosomal DNA-containing episome. The sensitivity is 1 parasite per milliliter of feces and thus superior to the conventional nested PCR and comparable to other published real-time PCR protocols. The applicability for clinical diagnosis was validated with 218 stool specimens from patients. A total of 51 E. histolytica and 39 E. dispar positive samples was detected by the multiprobe real-time PCR compared to 39 and 22 by routine nested PCR diagnosis. The detection rate of Entamoeba species for the multiprobe real-time PCR assays was significantly higher than the nested PCR (40.8% vs. 28.0%, P < 0.01). The test did not show cross reactivity with DNA from Entamoeba moshkovskii, Giardia lamblia , Cryptosporidium sp., Escherichia coli , or other nonpathogenic enteric parasites. The multiprobe real-time PCR assay is simple and rapid and has high specificity and sensitivity. The assay could streamline the laboratory diagnosis procedure and facilitate epidemiological investigation.

  16. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements)

    PubMed Central

    Giresi, Paul G.; Lieb, Jason D.

    2009-01-01

    The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization. PMID:19303047

  17. Factors influencing Recombinase Polymerase Amplification (RPA) assay outcomes at point of care

    PubMed Central

    Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Matthew; Piepenburg, Olaf; Lehman, Dara A.; Boyle, David S.

    2016-01-01

    Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 minutes without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer’s protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3–6 minutes of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at −20°C, and 25°C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45°C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45°C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. PMID:26854117

  18. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care.

    PubMed

    Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Lehman, Dara A; Boyle, David S

    2016-04-01

    Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 min without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer's protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3-6 min of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at -20 °C, and 25 °C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45 °C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45 °C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes.

    PubMed

    Haegi, Anita; Catalano, Valentina; Luongo, Laura; Vitale, Salvatore; Scotton, Michele; Ficcadenti, Nadia; Belisario, Alessandra

    2013-08-01

    A reliable and species-specific real-time quantitative polymerase chain reaction (qPCR) assay was developed for detection of the complex soilborne anamorphic fungus Fusarium oxysporum. The new primer pair, designed on the translation elongation factor 1-α gene with an amplicon of 142 bp, was highly specific to F. oxysporum without cross reactions with other Fusarium spp. The protocol was applied to grafted melon plants for the detection and quantification of F. oxysporum f. sp. melonis, a devastating pathogen of this cucurbit. Grafting technologies are widely used in melon to confer resistance against new virulent races of F. oxysporum f. sp. melonis, while maintaining the properties of valuable commercial varieties. However, the effects on the vascular pathogen colonization have not been fully investigated. Analyses were performed on 'Charentais-T' (susceptible) and 'Nad-1' (resistant) melon cultivars, both used either as rootstock and scion, and inoculated with F. oxysporum f. sp. melonis race 1 and race 1,2. Pathogen development was compared using qPCR and isolations from stem tissues. Early asymptomatic melon infections were detected with a quantification limit of 1 pg of fungal DNA. The qPCR protocol clearly showed that fungal development was highly affected by host-pathogen interaction (compatible or incompatible) and time (days postinoculation). The principal significant effect (P ≤ 0.01) on fungal development was due to the melon genotype used as rootstock, and this effect had a significant interaction with time and F. oxysporum f. sp. melonis race. In particular, the amount of race 1,2 DNA was significantly higher compared with that estimated for race 1 in the incompatible interaction at 18 days postinoculation. The two fungal races were always present in both the rootstock and scion of grafted plants in either the compatible or incompatible interaction.

  20. Biosafety evaluation of the DNA extraction protocol for Mycobacterium tuberculosis complex species, as implemented at the Instituto Nacional de Salud, Colombia.

    PubMed

    Castro, Claudia; González, Liliana; Rozo, Juan Carlos; Puerto, Gloria; Ribón, Wellman

    2009-12-01

    Manipulating Mycobacterium tuberculosis clinical specimens and cultures represents a risk factor for laboratory personnel. One of the processes that requires high concentrations of microorganisms is DNA extraction for molecular procedures. Pulmonary tuberculosis cases have occurred among professionals in charge of molecular procedures that require manipulation of massive quantities of microorganisms. This has prompted research studies on biosafety aspects of extraction protocols; however, as yet, no consensus has been reached regarding risks associated with the process. The biosafety was evaluated for the DNA extraction protocol of van Soolingen, et al. 2002 by determining M. tuberculosis viability at each process stage. Eight hundred eighty cultures were grown from 220 M. tuberculosis clinical isolates that had been processed through the first three DNA extraction stages. Molecular identifications of positive cultures used a PCR isolation of a fragment of the heat shock protein PRA-hsp65 and examination of its restriction enzyme profile (spoligotyping). Growth was seen in one culture with one of the procedures used. The molecular characterization did not correspond to the initially analyzed isolate, and therefore was deduced to be the product of a cross-contamination. The DNA extraction protocol, as described by van Soolingen, et al. 2002 and as implemented at the Instituto Nacional de Salud, was established to be safe for laboratory personnel as well as for the environment.

  1. Targeting Conserved Genes in Fusarium Species.

    PubMed

    Gil-Serna, Jéssica; Patiño, Belén; Jurado, Miguel; Mirete, Salvador; Vázquez, Covadonga; González-Jaén, M Teresa

    2017-01-01

    Fumonisins are important mycotoxins contaminating foods and feeds which are mainly produced by F. verticillioides and F. proliferatum. Additionally, both are pathogens of maize and other cereals. We describe two highly sensitive, rapid, and species-specific PCR protocols which enable detection and discrimination of these closely related species in cereal flour or grain samples. The specific primer pairs of these assays were based on the intergenic spacer region of the multicopy rDNA unit which highly improves the sensitivity of the PCR assay in comparison with single-copy target regions.

  2. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    DOE PAGES

    Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun; ...

    2014-07-14

    Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na 2SO 4 and NH 4H 2PO 4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25more » g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.« less

  3. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun

    Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na 2SO 4 and NH 4H 2PO 4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25more » g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.« less

  4. One-pot preparation of mRNA/cDNA display by a novel and versatile puromycin-linker DNA.

    PubMed

    Mochizuki, Yuki; Biyani, Manish; Tsuji-Ueno, Sachika; Suzuki, Miho; Nishigaki, Koichi; Husimi, Yuzuru; Nemoto, Naoto

    2011-09-12

    A rapid, easy, and robust preparation method for mRNA/cDNA display using a newly designed puromycin-linker DNA is presented. The new linker is structurally simple, easy to synthesize, and cost-effective for use in "in vitro peptide and protein selection". An introduction of RNase T1 nuclease site to the new linker facilitates the easy recovery of mRNA/cDNA displayed protein by an improvement of the efficiency of ligating the linker to mRNAs and efficient release of mRNA/cDNA displayed protein from the solid-phase (magnetic bead). For application demonstration, affinity selections were successfully performed. Furthermore, we introduced a "one-pot" preparation protocol to perform mRNA display easy. Unlike conventional approaches that require tedious and downstream multistep process including purification, this protocol will make the mRNA/cDNA display methods more practical and convenient and also facilitate the development of next-generation, high-throughput mRNA/cDNA display systems amenable to automation.

  5. Detection of functional protein domains by unbiased genome-wide forward genetic screening.

    PubMed

    Herzog, Mareike; Puddu, Fabio; Coates, Julia; Geisler, Nicola; Forment, Josep V; Jackson, Stephen P

    2018-04-18

    Establishing genetic and chemo-genetic interactions has played key roles in elucidating mechanisms by which certain chemicals perturb cellular functions. In contrast to gene disruption/depletion strategies to identify mechanisms of drug resistance, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations has been limited. Here, by demonstrating its utility in identifying chemical-genetic suppressors of sensitivity to the DNA topoisomerase I poison camptothecin or the poly(ADP-ribose) polymerase inhibitor olaparib, we detail an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast or haploid mammalian cells in a short timeframe, and with potential applications in other haploid systems. In addition to applications in molecular biology research, this protocol can be used to identify drug targets and predict drug-resistance mechanisms. Mapping suppressor mutations on the primary or tertiary structures of protein suppressor hits provides insights into functionally relevant protein domains. Importantly, we show that olaparib resistance is linked to missense mutations in the DNA binding regions of PARP1, but not in its catalytic domain. This provides experimental support to the concept of PARP1 trapping on DNA as the prime source of toxicity to PARP inhibitors, and points to a novel olaparib resistance mechanism with potential therapeutic implications.

  6. Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies.

    PubMed

    Panek, Marina; Čipčić Paljetak, Hana; Barešić, Anja; Perić, Mihaela; Matijašić, Mario; Lojkić, Ivana; Vranešić Bender, Darija; Krznarić, Željko; Verbanac, Donatella

    2018-03-23

    The information on microbiota composition in the human gastrointestinal tract predominantly originates from the analyses of human faeces by application of next generation sequencing (NGS). However, the detected composition of the faecal bacterial community can be affected by various factors including experimental design and procedures. This study evaluated the performance of different protocols for collection and storage of faecal samples (native and OMNIgene.GUT system) and bacterial DNA extraction (MP Biomedicals, QIAGEN and MO BIO kits), using two NGS platforms for 16S rRNA gene sequencing (Ilumina MiSeq and Ion Torrent PGM). OMNIgene.GUT proved as a reliable and convenient system for collection and storage of faecal samples although favouring Sutterella genus. MP provided superior DNA yield and quality, MO BIO depleted Gram positive organisms while using QIAGEN with OMNIgene.GUT resulted in greatest variability compared to other two kits. MiSeq and IT platforms in their supplier recommended setups provided comparable reproducibility of donor faecal microbiota. The differences included higher diversity observed with MiSeq and increased capacity of MiSeq to detect Akkermansia muciniphila, [Odoribacteraceae], Erysipelotrichaceae and Ruminococcaceae (primarily Faecalibacterium prausnitzii). The results of our study could assist the investigators using NGS technologies to make informed decisions on appropriate tools for their experimental pipelines.

  7. Shuffle Optimizer: A Program to Optimize DNA Shuffling for Protein Engineering.

    PubMed

    Milligan, John N; Garry, Daniel J

    2017-01-01

    DNA shuffling is a powerful tool to develop libraries of variants for protein engineering. Here, we present a protocol to use our freely available and easy-to-use computer program, Shuffle Optimizer. Shuffle Optimizer is written in the Python computer language and increases the nucleotide homology between two pieces of DNA desired to be shuffled together without changing the amino acid sequence. In addition we also include sections on optimal primer design for DNA shuffling and library construction, a small-volume ultrasonicator method to create sheared DNA, and finally a method to reassemble the sheared fragments and recover and clone the library. The Shuffle Optimizer program and these protocols will be useful to anyone desiring to perform any of the nucleotide homology-dependent shuffling methods.

  8. A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation.

    PubMed

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2018-01-01

    Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an "alien" impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types.

  9. Motivations for Undertaking DNA Sequencing-Based Non-Invasive Prenatal Testing for Fetal Aneuploidy: A Qualitative Study with Early Adopter Patients in Hong Kong

    PubMed Central

    Yi, Huso; Hallowell, Nina; Griffiths, Sian; Yeung Leung, Tak

    2013-01-01

    Background A newly introduced cell-free fetal DNA sequencing based non-invasive prenatal testing (DNA-NIPT) detects Down syndrome with sensitivity of 99% at early gestational stage without risk of miscarriage. Attention has been given to its public health implications; little is known from consumer perspectives. This qualitative study aimed to explore women’s motivations for using, and perceptions of, DNA-NIPT in Hong Kong. Methods and Findings In-depth interviews were conducted with 45 women who had undertaken DNA-NIPT recruited by purposive sampling based on socio-demographic and clinical characteristics. The sample included 31 women identified as high-risk from serum and ultrasound based Down syndrome screening (SU-DSS). Thematic narrative analysis examined informed-decision making of the test and identified the benefits and needs. Women outlined a number of reasons for accessing DNA-NIPT: reducing the uncertainty associated with risk probability-based results from SU-DSS, undertaking DNA-NIPT as a comprehensive measure to counteract risk from childbearing especially at advanced age, perceived predictive accuracy and absence of risk of harm to fetus. Accounts of women deemed high-risk or not high-risk are distinctive in a number of respects. High-risk women accessed DNA-NIPT to get a clearer idea of their risk. This group perceived SU-DSS as an unnecessary and confusing procedure because of its varying, protocol-dependent detection rates. Those women not deemed high-risk, in contrast, undertook DNA-NIPT for psychological assurance and to reduce anxiety even after receiving the negative result from SU-DSS. Conclusions DNA-NIPT was regarded positively by women who chose this method of screening over the routine, less expensive testing options. Given its perceived utility, health providers need to consider whether DNA-NIPT should be offered as part of universal routine care to women at high-risk for fetal aneuploidy. If this is the case, then further development of guidelines and quality assurance will be needed to provide a service suited to patients’ needs. PMID:24312358

  10. An enzyme-free flow cytometric bead assay for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification.

    PubMed

    Qi, Yan; Qiu, Liying; Fan, Wenjiao; Liu, Chenghui; Li, Zhengping

    2017-08-07

    A versatile flow cytometric bead assay (FCBA) coupled with a completely enzyme-free signal amplification mechanism is developed for the sensitive detection of microRNAs (miRNAs). This new strategy integrates click chemistry-mediated ligation chain reaction (CLCR) with hybridization chain reaction (HCR) for enzyme-free signal amplification on magnetic beads (MBs), and a flow cytometer for the robust fluorescence readout of the MBs. Firstly, target miRNA can initiate CLCR on the surface of MBs based on the click chemical ligation between dibenzocyclooctyne (DBCO)- and azide-modified single-stranded DNA (ssDNA) probes, and the amount of ligated ssDNA sequences on the MBs will be proportional to the dosage of target miRNA. Afterward, each of the ligated ssDNA products can trigger a cascade chain reaction of hybridization events between two alternating fluorophore-tagged hairpin probes, resulting in another signal amplification pathway with an amplified accumulation of fluorophores on the MBs. Finally, the fluorophore-anchored MBs are directly and rapidly analyzed by using a flow cytometer without any separation or elution processes. Herein, the click nucleic acid ligation only occurs on the surface of MBs, so the nonspecific ligations are greatly inhibited compared with that of ligation reaction performed in homogeneous solution. Furthermore, the signal amplification by CLCR-HCR is highly efficient but totally enzyme-free, which may overcome the potential drawbacks of conventional enzyme-catalyzed signal amplification protocols and lead to a high sensitivity. The CLCR-HCR-based FCBA has pushed the detection limit of let-7a miRNA down to the femtomolar (fM) level, showing great potential in miRNA-related biological studies and disease diagnosis.

  11. Combinational chromosomal aneuploidies and HPV status for prediction of head and neck squamous cell carcinoma prognosis in biopsies and cytological preparations.

    PubMed

    Wemmert, Silke; Linxweiler, Maximilian; Lerner, Cornelia; Bochen, Florian; Kulas, Philipp; Linxweiler, Johannes; Smola, Sigrun; Urbschat, Steffi; Wagenpfeil, Stefan; Schick, Bernhard

    2018-06-01

    Head and neck squamous cell carcinoma (HNSCC) is one of the most common human cancer types with a very poor prognosis despite improvements in therapeutic modalities. The major known risk factors are tobacco use and alcohol consumption or infection with high-risk human papilloma viruses (HPV), especially in oropharyngeal tumors. The current management based on the assessment of a variety of clinical and pathological parameters does not sufficiently predict outcome. Chromosomal alterations detected in HNSCCs were characterized by metaphase comparative genomic hybridization (CGH) and correlated with clinical parameters as well as survival time. Candidate regions were validated by quantitative polymerase chain reaction, fluorescence-in situ-hybridization (FISH) on dapped tumor tissue and liquid-based cytological smear preparations. In addition, HPV status was determined by polymerase chain reaction and simultaneous immunocytochemical p16 INK4a -Ki67 staining. The most frequent DNA copy number gains were observed on chromosome arms 3q, 8q, 5p, 7q, 12p, and 12q. DNA copy number decreases occurred most frequently at 3p, 17p, 4q, and 5q. FISH analysis verified in part the observed alterations by CGH on dapped tissues and was especially able to detect the most frequent DNA copy changes in cytological specimens. The combination of HPV status and prognostic copy number alteration detected by FISH in biopsies or cytological specimens may be an applicable protocol for screening head and neck cancer patients prior to therapy.

  12. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma.

    PubMed

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E

    2017-10-17

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients.

  13. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma

    PubMed Central

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N.; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E.

    2017-01-01

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients. PMID:29156716

  14. Easy preparation of a large-size random gene mutagenesis library in Escherichia coli.

    PubMed

    You, Chun; Percival Zhang, Y-H

    2012-09-01

    A simple and fast protocol for the preparation of a large-size mutant library for directed evolution in Escherichia coli was developed based on the DNA multimers generated by prolonged overlap extension polymerase chain reaction (POE-PCR). This protocol comprised the following: (i) a linear DNA mutant library was generated by error-prone PCR or shuffling, and a linear vector backbone was prepared by regular PCR; (ii) the DNA multimers were generated based on these two DNA templates by POE-PCR; and (iii) the one restriction enzyme-digested DNA multimers were ligated to circular plasmids, followed by transformation to E. coli. Because the ligation efficiency of one DNA fragment was several orders of magnitude higher than that of two DNA fragments for typical mutant library construction, it was very easy to generate a mutant library with a size of more than 10(7) protein mutants per 50 μl of the POE-PCR product. Via this method, four new fluorescent protein mutants were obtained based on monomeric cherry fluorescent protein. This new protocol was simple and fast because it did not require labor-intensive optimizations in restriction enzyme digestion and ligation, did not involve special plasmid design, and enabled constructing a large-size mutant library for directed enzyme evolution within 1 day. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Whole-genome multiple displacement amplification from single cells.

    PubMed

    Spits, Claudia; Le Caignec, Cédric; De Rycke, Martine; Van Haute, Lindsey; Van Steirteghem, André; Liebaers, Inge; Sermon, Karen

    2006-01-01

    Multiple displacement amplification (MDA) is a recently described method of whole-genome amplification (WGA) that has proven efficient in the amplification of small amounts of DNA, including DNA from single cells. Compared with PCR-based WGA methods, MDA generates DNA with a higher molecular weight and shows better genome coverage. This protocol was developed for preimplantation genetic diagnosis, and details a method for performing single-cell MDA using the phi29 DNA polymerase. It can also be useful for the amplification of other minute quantities of DNA, such as from forensic material or microdissected tissue. The protocol includes the collection and lysis of single cells, and all materials and steps involved in the MDA reaction. The whole procedure takes 3 h and generates 1-2 microg of DNA from a single cell, which is suitable for multiple downstream applications, such as sequencing, short tandem repeat analysis or array comparative genomic hybridization.

  16. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers

    PubMed Central

    Lv, Yifan; Hu, Rong; Zhu, Guizhi; Zhang, Xiaobing; Mei, Lei; Liu, Qiaoling; Qiu, Liping; Wu, Cuichen; Tan, Weihong

    2016-01-01

    We describe a comprehensive protocol for the preparation of multifunctional DNA nanostructures termed nanoflowers (NFs), which are self-assembled from long DNA building blocks generated via rolling-circle replication (RCR) of a designed template. NF assembly is driven by liquid crystallization and dense packaging of building blocks, which eliminates the need for conventional Watson-Crick base pairing. As a result of dense DNA packaging, NFs are resistant to nuclease degradation, denaturation or dissociation at extremely low concentrations. By manually changing the template sequence, many different functional moieties including aptamers, bioimaging agents and drug-loading sites could be easily integrated into NF particles, making NFs ideal candidates for a variety of applications in biomedicine. In this protocol, the preparation of multifunctional DNA NFs with highly tunable sizes is described for applications in cell targeting, intracellular imaging and drug delivery. Preparation and characterization of functional DNA NFs takes ~5 d; the following biomedical applications take ~10 d. PMID:26357007

  17. An optimised protocol for molecular identification of Eimeria from chickens.

    PubMed

    Kumar, Saroj; Garg, Rajat; Moftah, Abdalgader; Clark, Emily L; Macdonald, Sarah E; Chaudhry, Abdul S; Sparagano, Olivier; Banerjee, Partha S; Kundu, Krishnendu; Tomley, Fiona M; Blake, Damer P

    2014-01-17

    Molecular approaches supporting identification of Eimeria parasites infecting chickens have been available for more than 20 years, although they have largely failed to replace traditional measures such as microscopy and pathology. Limitations of microscopy-led diagnostics, including a requirement for specialist parasitological expertise and low sample throughput, are yet to be outweighed by the difficulties associated with accessing genomic DNA from environmental Eimeria samples. A key step towards the use of Eimeria species-specific PCR as a sensitive and reproducible discriminatory tool for use in the field is the production of a standardised protocol that includes sample collection and DNA template preparation, as well as primer selection from the numerous PCR assays now published. Such a protocol will facilitate development of valuable epidemiological datasets which may be easily compared between studies and laboratories. The outcome of an optimisation process undertaken in laboratories in India and the UK is described here, identifying four steps. First, samples were collected into a 2% (w/v) potassium dichromate solution. Second, oocysts were enriched by flotation in saturated saline. Third, genomic DNA was extracted using a QIAamp DNA Stool mini kit protocol including a mechanical homogenisation step. Finally, nested PCR was carried out using previously published primers targeting the internal transcribed spacer region 1 (ITS-1). Alternative methods tested included sample processing in the presence of faecal material, DNA extraction using a traditional phenol/chloroform protocol, the use of SCAR multiplex PCR (one tube and two tube versions) and speciation using the morphometric tool COCCIMORPH for the first time with field samples. Copyright © 2013 Dirk Vulpius The Authors. Published by Elsevier B.V. All rights reserved.

  18. Evaluation of PCR methods for detection of Brucella strains from culture and tissues.

    PubMed

    Çiftci, Alper; İça, Tuba; Savaşan, Serap; Sareyyüpoğlu, Barış; Akan, Mehmet; Diker, Kadir Serdar

    2017-04-01

    The genus Brucella causes significant economic losses due to infertility, abortion, stillbirth or weak calves, and neonatal mortality in livestock. Brucellosis is still a zoonosis of public health importance worldwide. The study was aimed to optimize and evaluate PCR assays used for the diagnosis of Brucella infections. For this aim, several primers and PCR protocols were performed and compared with Brucella cultures and biological material inoculated with Brucella. In PCR assays, genus- or species-specific oligonucleotide primers derived from 16S rRNA sequences (F4/R2, Ba148/928, IS711, BruP6-P7) and OMPs (JPF/JPR, 31ter/sd) of Brucella were used. All primers except for BruP6-P7 detected the DNA from reference Brucella strains and field isolates. In spiked blood, milk, and semen samples, F4-R2 primer-oriented PCR assays detected minimal numbers of Brucella. In spiked serum and fetal stomach content, Ba148/928 primer-oriented PCR assays detected minimal numbers of Brucella. Field samples collected from sheep and cattle were examined by bacteriological methods and optimized PCR assays. Overall, sensitivity of PCR assays was found superior to conventional bacteriological isolation. Brucella DNA was detected in 35.1, 1.1, 24.8, 5.0, and 8.0% of aborted fetus, blood, milk, semen, and serum samples by PCR assays, respectively. In conclusion, PCR assay in optimized conditions was found to be valuable in sensitive and specific detection of Brucella infections of animals.

  19. Simultaneous purification of DNA and RNA from microbiota in a single colonic mucosal biopsy.

    PubMed

    Moen, Aina E F; Tannæs, Tone M; Vatn, Simen; Ricanek, Petr; Vatn, Morten Harald; Jahnsen, Jørgen

    2016-06-28

    Nucleic acid purification methods are of importance when performing microbiota studies and especially when analysing the intestinal microbiota as we here find a wide range of different microbes. Various considerations must be taken to lyse the microbial cell wall of each microbe. In the present article, we compare several tissue lysis steps and commercial purification kits, to achieve a joint RNA and DNA purification protocol for the purpose of investigating the microbiota and the microbiota-host interactions in a single colonic mucosal tissue sample. A further optimised tissue homogenisation and lysis protocol comprising mechanical bead beating, lysis buffer replacement and enzymatic treatment, in combination with the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) resulted in efficient and simultaneous purification of microbial and human RNA and DNA from a single mucosal colonic tissue sample. The present work provides a unique possibility to study RNA and DNA from the same mucosal biopsy sample, making a direct comparison between metabolically active microbes and total microbial DNA. The protocol also offers an opportunity to investigate other members of a microbiota such as viruses, fungi and micro-eukaryotes, and moreover the possibility to extract data on microbiota and host interactions from one single mucosal biopsy.

  20. Isolation of high quality and polysaccharide-free DNA from leaves of Dimorphandra mollis (Leguminosae), a tree from the Brazilian Cerrado.

    PubMed

    Souza, H A V; Muller, L A C; Brandão, R L; Lovato, M B

    2012-03-22

    Dimorphandra mollis (Leguminosae), known as faveiro and fava d'anta, is a tree that is widely distributed throughout the Brazilian Cerrado (a savanna-like biome). This species is economically valuable and has been extensively exploited because its fruits contain the flavonoid rutin, which is used to produce medications for human circulatory diseases. Knowledge about its genetic diversity is needed to guide decisions about the conservation and rational use of this species in order to maintain its diversity. DNA extraction is an essential step for obtaining good results in a molecular analysis. However, DNA isolation from plants is usually compromised by excessive contamination by secondary metabolites. DNA extraction of D. mollis, mainly from mature leaves, results in a highly viscous mass that is difficult to handle and use in techniques that require pure DNA. We tested four protocols for plant DNA extraction that can be used to minimize problems such as contamination by polysaccharides, which is more pronounced in material from mature leaves. The protocol that produced the best DNA quality initially utilizes a sorbitol buffer to remove mucilaginous polysaccharides. The macerated leaf material is washed with this buffer until there is no visible mucilage in the sample. This protocol is adequate for DNA extraction both from young and mature leaves, and could be useful not only for D. mollis but also for other species that have high levels of polysaccharide contamination during the extraction process.

Top