Jia, Zhaofeng; Liang, Yujie; Ma, Bin; Xu, Xiao; Xiong, Jianyi; Duan, Li; Wang, Daping
2017-05-17
The dedifferentiation of hyaline chondrocytes into fibroblastic chondrocytes often accompanies monolayer expansion of chondrocytes in vitro. The global DNA methylation level of chondrocytes is considered to be a suitable biomarker for the loss of the chondrocyte phenotype. However, results based on different experimental methods can be inconsistent. Therefore, it is important to establish a precise, simple, and rapid method to quantify global DNA methylation levels during chondrocyte dedifferentiation. Current genome-wide methylation analysis techniques largely rely on bisulfite genomic sequencing. Due to DNA degradation during bisulfite conversion, these methods typically require a large sample volume. Other methods used to quantify global DNA methylation levels include high-performance liquid chromatography (HPLC). However, HPLC requires complete digestion of genomic DNA. Additionally, the prohibitively high cost of HPLC instruments limits HPLC's wider application. In this study, genomic DNA (gDNA) was extracted from human chondrocytes cultured with varying number of passages. The gDNA methylation level was detected using a methylation-specific dot blot assay. In this dot blot approach, a gDNA mixture containing the methylated DNA to be detected was spotted directly onto an N + membrane as a dot inside a previously drawn circular template pattern. Compared with other gel electrophoresis-based blotting approaches and other complex blotting procedures, the dot blot method saves significant time. In addition, dot blots can detect overall DNA methylation level using a commercially available 5-mC antibody. We found that the DNA methylation level differed between the monolayer subcultures, and therefore could play a key role in chondrocyte dedifferentiation. The 5-mC dot blot is a reliable, simple, and rapid method to detect the general DNA methylation level to evaluate chondrocyte phenotype.
[Detection of stable expression of human interlukin-2 gene in transfected keratinocytes].
Liao, W; Liu, Y; Ye, L
1999-09-01
To investigate the stable expression and secretion of human interlukin-2 gene in transfected keratinocytes. Keratinocytes were transfected with lipofectamine and selected by G418. Then the samples were analyzed with the techniques of DNA dot blot, RNA dot blot, hybridization in situ, immunohistochemistry, Western blot and MTT. The positive signals were observed in transfected keratinocytes by DNA dot blot, RNA dot blot, hybridization in situ and immunohistochemistry. With Western blot analysis, a specific band exhibiting a molecular weight of 15,000 was detected in transfected keratinocytes, which was in acordance with that of IL-2. The expression of IL-2 can maintain for up to 1 month. The amounts of IL-2 in the supernatants of two and four passages transfected keratinocytes were 27.7 U/ml and 15.0 U/ml, respectively. Keratinocytes have the potential for stable gene expression and secretion of active transgene products. Thus, it is possible to use keratinocytes as a target cell for gene transfection, gene expression and even gene therapy.
Enzyme-linked immunosorbent assays for Z-DNA.
Thomas, M J; Strobl, J S
1988-10-01
Dot blot and transblot enzyme-linked immunosorbent assays (e.l.i.s.a.) are described which provide sensitive non-radioactive methods for screening Z-DNA-specific antisera and for detecting Z-DNA in polydeoxyribonucleotides and supercoiled plasmids. In the alkaline phosphatase dot blot e.l.i.s.a., Z-DNA, Br-poly(dG-dC).poly(dG-dC), or B-DNA, poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), Br-poly(dI-dC).poly(dI-dC), or salmon sperm DNA were spotted onto nitrocellulose discs and baked. The e.l.i.s.a. was conducted in 48-well culture dishes at 37 degrees C using a rabbit polyclonal antiserum developed against Br-poly(dG-dC).poly(dG-dC), an alkaline phosphatase-conjugated second antibody, and p-nitrophenol as the substrate. Under conditions where antibody concentrations were not limiting, alkaline phosphatase activity was linear for 2 h. Dot blot e.l.i.s.a. conditions are described which allow quantification of Z-DNA [Br-poly(dG-dC).poly(dG-dC)] within the range 5-250 ng. Dot blot and transblot horseradish peroxidase e.l.i.s.a. are described that detect Z-DNA within supercoiled plasmid DNAs immobilized on diazophenylthioether (DPT) paper. In the transblot e.l.i.s.a., plasmid pUC8 derivatives containing 16, 24, or 32 residues of Z-DNA were electrophoresed in agarose gels and electrophoretically transferred to DPT paper. Z-DNA-antibody complexes were detected by the horseradish peroxidase-catalysed conversion of 4-chloro-1-naphthol to a coloured product that was covalently bound to the DPT paper. Z-DNA antibody reactivity was specific for supercoiled Z-DNA containing plasmids after removal of the antibodies cross-reactive with B-DNA by absorption onto native DNA-cellulose. The transblot e.l.i.s.a. was sensitive enough to detect 16 base pairs of alternating G-C residues in 100 ng of pUC8 DNA.
Oglesbee, M; Jackwood, D; Perrine, K; Axthelm, M; Krakowka, S; Rice, J
1986-11-01
A cDNA library was prepared from canine distemper viral (CDV) messenger RNA (mRNA) derived from Vero cells lytically infected with the Onderstepoort strain (Ond) of CDV. A 300 base pair insert was identified which, by Northern blot analysis and Sanger sequence data, was shown to be specific to the nucleocapsid gene. The nucleocapsid (NC) clone was radiolabelled with 32P using nick translation and used to detect viral RNA in both dot-blot and in situ preparations of Vero cells lytically infected with Onderstepoort CDV (Ond-CDV) and immortalized mink lung cells persistently infected with racoon origin CDV (CCL64-RCDV). Dot-blot hybridization results paralleled immunofluorescent results in the lytically infected cells. In 18 persistently infected cell lines from the RCDV-CCL64 parental stock, 13 lines were positive and two were negative on both immunofluorescence and dot-blot hybridization analysis for CDV antigen and RNA, respectively. Viral nucleic acid was detected in these persistently infected cells, where as few as 1.9% of the members of a line were positive on immunofluorescence. A dot-blot autoradiographic signal was obtained in three lines which were negative for CDV antigen. CDV RNA was detected in both lytically and persistently infected cell lines by in situ hybridization, where decreasing probe length was important in increasing the sensitivity of this assay. Viral RNA was detected in over 90% of the lytically infected cells, where only 70% were positive for viral antigen by immunofluorescence.
Fritz, M L; Miller, J R; Bayoh, M N; Vulule, J M; Landgraf, J R; Walker, E D
2013-12-01
A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used to identify Anopheles gambiae s.s. and Anopheles arabiensis (Diptera: Culicidae) hosts. Of 299 blood-fed and semi-gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; of these, 69.5% were An. arabiensis and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable with those of conventional polymerase chain reaction (PCR) followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome b gene. Of the 174 amplicon-producing samples used to compare these two methods, 147 were identifiable by direct sequencing and 139 of these were identifiable by RDBA. Anopheles arabiensis bloodmeals were mostly (94.6%) bovine in origin, whereas An. gambiae s.s. fed upon humans more than 91.8% of the time. Tests by RDBA detected that two of 112 An. arabiensis contained blood from more than one host species, whereas PCR and direct sequencing did not. Recent use of insecticide-treated bednets in Kisian is likely to have caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. Reverse dot blot analysis provides an opportunity to study changes in host-feeding by members of the An. gambiae complex in response to the broadening distribution of vector control measures targeting host-selection behaviours. © 2013 The Royal Entomological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, D.P.; Welt, M.; Leung, F.C.
An efficient one-step injection technique for gene insertion into fertilized rainbow trout (Oncorhynchus mykiss) eggs is described, and basic parameters affecting egg survival are reported. Freshly fertilized rainbow trout eggs were injected in the perivitelline space with a recombinant mouse metallothionein-genomic bovine growth hormone (bGH) DNA construct using a 30-gauge hypodermic needle and a standard microinjection system. Relative to control, site of injection and DNA concentration did not affect the egg survival, but injections later than 3--4 hours post fertilization were detrimental. The injection technique permitted treatment of 100 eggs/hr with survivals up to 100%, resulting in a 4% DNAmore » uptake rate as indicated by DNA dot blot analysis. Positive dot blot results also indicated that the injected DNA is able to cross the vitelline membrane and persist for 50--60 days post hatching, obviating the need for direct injection into the germinal disk. Results are consistent with previous transgenic fish work, underscoring the usefulness of the technique for generating transgenic trout and salmonids. 24 refs., 6 figs., 3 tabs.« less
A Model of Risk Analysis in Analytical Methodology for Biopharmaceutical Quality Control.
Andrade, Cleyton Lage; Herrera, Miguel Angel De La O; Lemes, Elezer Monte Blanco
2018-01-01
One key quality control parameter for biopharmaceutical products is the analysis of residual cellular DNA. To determine small amounts of DNA (around 100 pg) that may be in a biologically derived drug substance, an analytical method should be sensitive, robust, reliable, and accurate. In principle, three techniques have the ability to measure residual cellular DNA: radioactive dot-blot, a type of hybridization; threshold analysis; and quantitative polymerase chain reaction. Quality risk management is a systematic process for evaluating, controlling, and reporting of risks that may affects method capabilities and supports a scientific and practical approach to decision making. This paper evaluates, by quality risk management, an alternative approach to assessing the performance risks associated with quality control methods used with biopharmaceuticals, using the tool hazard analysis and critical control points. This tool provides the possibility to find the steps in an analytical procedure with higher impact on method performance. By applying these principles to DNA analysis methods, we conclude that the radioactive dot-blot assay has the largest number of critical control points, followed by quantitative polymerase chain reaction, and threshold analysis. From the analysis of hazards (i.e., points of method failure) and the associated method procedure critical control points, we conclude that the analytical methodology with the lowest risk for performance failure for residual cellular DNA testing is quantitative polymerase chain reaction. LAY ABSTRACT: In order to mitigate the risk of adverse events by residual cellular DNA that is not completely cleared from downstream production processes, regulatory agencies have required the industry to guarantee a very low level of DNA in biologically derived pharmaceutical products. The technique historically used was radioactive blot hybridization. However, the technique is a challenging method to implement in a quality control laboratory: It is laborious, time consuming, semi-quantitative, and requires a radioisotope. Along with dot-blot hybridization, two alternatives techniques were evaluated: threshold analysis and quantitative polymerase chain reaction. Quality risk management tools were applied to compare the techniques, taking into account the uncertainties, the possibility of circumstances or future events, and their effects upon method performance. By illustrating the application of these tools with DNA methods, we provide an example of how they can be used to support a scientific and practical approach to decision making and can assess and manage method performance risk using such tools. This paper discusses, considering the principles of quality risk management, an additional approach to the development and selection of analytical quality control methods using the risk analysis tool hazard analysis and critical control points. This tool provides the possibility to find the method procedural steps with higher impact on method reliability (called critical control points). Our model concluded that the radioactive dot-blot assay has the larger number of critical control points, followed by quantitative polymerase chain reaction and threshold analysis. Quantitative polymerase chain reaction is shown to be the better alternative analytical methodology in residual cellular DNA analysis. © PDA, Inc. 2018.
Isolation of RNA for dot hybridization by heparin-DNase I treatment of whole cell lysate.
Krawczyk, Z; Wu, C
1987-08-15
We have developed a new procedure for the rapid preparation of undegraded total RNA from cultured cells for specific quantitation by dot blotting analysis. Pelleted cells are resuspended in hypotonic solution containing a ribonuclease inhibitor and heparin and disrupted by freeze-thaw. Heparin is employed as an agent for nuclear lysis, dissociation of chromosomal protein, and release of mRNA from rough endoplasmic reticulum. We eliminate chromosomal DNA by digestion with DNase I and denature the RNA in the lysate with formaldehyde. After centrifugation to remove debris, the supernatant is used directly for dot blotting. All manipulations are performed in the same microfuge tube and recovery of RNA is quantitative. The procedure is especially useful for processing large numbers of samples. We illustrate its versatility by analysis of specific RNAs in Drosophila, rat, and human cell lines. In reconstruction experiments, less than 80 molecules per cell of a small RNA (beta-globin) can be detected under highly stringent hybridization conditions, using only moderately labeled double-stranded plasmid DNA probes and short film exposures.
Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki
2011-03-01
The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
DNA Probe for Lactobacillus delbrueckii
Delley, Michèle; Mollet, Beat; Hottinger, Herbert
1990-01-01
From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233
Whole genomic DNA probe for detection of Porphyromonas endodontalis.
Nissan, R; Makkar, S R; Sela, M N; Stevens, R
2000-04-01
The purpose of the present study was to develop a DNA probe for Porphyromonas endodontalis. Pure cultures of P. endodontalis were grown in TYP medium, in an anaerobic chamber. DNA was extracted from the P. endodontalis and labeled using the Genius System by Boehringer Mannheim. The labeled P. endodontalis DNA was used in dot-blot hybridization reactions with homologous (P. endodontalis) and unrelated bacterial samples. To determine specificity, strains of 40 other oral bacterial species (e.g. Porphyromonas gingivalis, Porphyromonas asaccharolytica, and Prevotella intermedia) were spotted and reacted with the P. endodontalis DNA probe. None of the panel of 40 oral bacteria hybridized with the P. endodontalis probe, whereas the blot of the homologous organism showed a strong positive reaction. To determine the sensitivity of the probe, dilutions of a P. endodontalis suspension of known concentration were blotted onto a nylon membrane and reacted with the probe. The results of our investigation indicate that the DNA probe that we have prepared specifically detects only P. endodontalis and can detect at least 3 x 10(4) cells.
Dorraj, Ghamar Soltan; Rassaee, Mohammad Javad; Latifi, Ali Mohammad; Pishgoo, Bahram; Tavallaei, Mahmood
2015-08-20
Troponin T and I are ideal markers which are highly sensitive and specific for myocardial injury and have shown better efficacy than earlier markers. Since aptamers are ssDNA or RNA that bind to a wide variety of target molecules, the purpose of this research was to select an aptamer from a 79bp single-stranded DNA (ssDNA) random library that was used to bind the Human Cardiac Troponin I from a synthetic nucleic acids library by systematic evolution of ligands exponential enrichment (Selex) based on several selection and amplification steps. Human Cardiac Troponin I protein was coated onto the surface of streptavidin magnetic beads to extract specific aptamer from a large and diverse random ssDNA initial oligonucleotide library. As a result, several aptamers were selected and further examined for binding affinity and specificity. Finally TnIApt 23 showed beast affinity in nanomolar range (2.69nM) toward the target protein. A simple and rapid colorimetric detection assay for Human Cardiac Troponin I using the novel and specific aptamer-AuNPs conjugates based on dot blot assay was developed. The detection limit for this protein using aptamer-AuNPs-based assay was found to be 5ng/ml. Copyright © 2015 Elsevier B.V. All rights reserved.
2014-01-01
Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis. PMID:24894832
Bruno, John G; Sivils, Jeffrey C
2017-11-01
Previously reported DNA aptamers developed against surface proteins extracted from Campylobacter jejuni were further characterized by aptamer-based Western blotting and shown to bind epitopes on proteins weighing ~16 and 60 kD from reduced C. jejuni and Campylobacter coli lysates. Proteins of these approximate weights have also been identified in traditional antibody-based Western blots of Campylobacter spp. Specificity of the capture and reporter aptamers from the previous report was further validated by aptamer-based ELISA-like (ELASA) colorimetric microplate assay. Finally, the limit of detection of the previously reported plastic-adherent aptamer-magnetic bead and aptamer-quantum dot sandwich assay (PASA) was validated by an independent food safety testing laboratory to lie between 5 and 10 C. jejuni cells per milliliter in phosphate buffered saline and repeatedly frozen and thawed chicken rinsate. Such ultrasensitive and rapid (30 min) aptamer-based assays could provide alternative or additional screening tools to enhance food safety testing for Campylobacter and other foodborne pathogens.
DNA probe for lactobacillus delbrueckii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delley, M.; Mollet, B.; Hottinger, H.
1990-06-01
From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.
Fritz, Megan L; Miller, James R; Bayoh, M Nabie; Vulule, John M; Landgraf, Jeffrey R; Walker, Edward D
2012-01-01
A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used for identification of Anopheles gambiae s.s. and An. arabiensis hosts. Of 299 blood fed and half gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; 69.5% were An. arabiensis, and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable to conventional PCR followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome B gene. Of the 174 amplicon-producing samples used for comparison of these two methods, 147 were identifiable by direct sequencing, and 139 of these same by RDBA. An. arabiensis blood meals were mostly (>90%) bovine in origin, whereas An. gambiae s.s. fed upon humans > 90% of the time. RDBA detected that 2 of 112 An. arabiensis had blood from more than one host species, whereas PCR and direct sequencing did not. Recent insecticide-treated bednet (ITN) use in Kisian has likely caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. RDBA provides an opportunity to study changes in host-feeding by members of the An. gambiae complex as a response to the broadening distribution of vector control measures targeting host-selection behaviors. PMID:24188164
Brown, T
2001-05-01
Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support (the properties and advantages of the different types of membrane, transfer buffer, and transfer method are discussed in detail), resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This appendix describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, using a high-salt transfer buffer to promote binding of DNA to the membrane. With the high-salt buffer, the DNA becomes bound to the membrane during transfer but not permanently immobilized. Immobilization is achieved by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. The advantage of this combination is that no post-transfer immobilization step is required, as the positively charged membrane binds DNA irreversibly under alkaline transfer conditions. The method can also be used with neutral nylon membranes but less DNA will be retained. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane described in the first basic and alternate protocols has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in the second alternate protocol is therefore more rapid than the basic protocol and can result in more complete transfer. Although the ease and reliability of capillary transfer methods makes this far and away the most popular system for Southern blotting with agarose gels, it unfortunately does not work with polyacrylamide gels, whose smaller pore size impedes the transverse movement of the DNA molecules. The third alternate protocol describes an electroblotting procedure that is currently the most reliable method for transfer of DNA from a polyacrylamide gel. Dot and slot blotting are also described.
Kunakorn, M; Raksakai, K; Pracharktam, R; Sattaudom, C
1999-03-01
Our experiences from 1993 to 1997 in the development and use of IS6110 base PCR for the diagnosis of extrapulmonary tuberculosis in a routine clinical setting revealed that error-correcting processes can improve existing diagnostic methodology. The reamplification method initially used had a sensitivity of 90.91% and a specificity of 93.75%. The concern was focused on the false positive results of this method caused by product-carryover contamination. This method was changed to single round PCR with carryover prevention by uracil DNA glycosylase (UDG), resulting in a 100% specificity but only 63% sensitivity. Dot blot hybridization was added after the single round PCR, increasing the sensitivity to 87.50%. However, false positivity resulted from the nonspecific dot blot hybridization signal, reducing the specificity to 89.47%. The hybridization of PCR was changed to a Southern blot with a new oligonucleotide probe giving the sensitivity of 85.71% and raising the specificity to 99.52%. We conclude that the PCR protocol for routine clinical use should include UDG for carryover prevention and hybridization with specific probes to optimize diagnostic sensitivity and specificity in extrapulmonary tuberculosis testing.
The dynamics of DNA methylation and hydroxymethylation during amelogenesis.
Yoshioka, Hirotaka; Minamizaki, Tomoko; Yoshiko, Yuji
2015-11-01
Amelogenesis is a multistep process that relies on specific temporal and spatial signaling networks between the dental epithelium and mesenchymal tissues. Epigenetic modifications of key developmental genes in this process may be closely linked to a network of molecular events. However, the role of epigenetic regulation in amelogenesis remains unclear. Here, we have uncovered the spatial distributions of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) to determine epigenetic events in the mandibular incisors of mice. Immunohistochemistry and dot blotting showed that 5-hmC in ameloblasts increased from the secretory stage to the later maturation stage. We also demonstrated the distribution of 5-mC-positive ameloblasts with punctate nuclear labeling from sometime after the initiation of the secretory stage to the later maturation stage; however, dot blotting failed to detect this change. No obvious alteration of 5-mC/5-hmC staining in odontoblasts and dental pulp cells was observed. Concomitant with quantitative expression data, immunohistochemistry showed that maintenance DNA methyltransferase DNMT1 was highly expressed in immature dental epithelial cells and subsequently decreased at later stages of development. Meanwhile, de novo DNA methyltransferase Dnmt3a and Dnmt3b and DNA demethylase Tet family genes were universally expressed, except Tet1 that was highly expressed in immature dental epithelial cells. Thus, DNMT1 may sustain the undifferentiated status of dental epithelial cells through the maintenance of DNA methylation, while the hydroxylation of 5-mC may occur through the whole differentiation process by TET activity. Taken together, these data indicate that the dynamic changes of 5-mC and 5-hmC may be critical for the regulation of amelogenesis.
Wu, Yun H; Wu, Tsung M; Hong, Chwan Y; Wang, Yei S; Yen, Jui H
2014-01-01
Vinclozolin, a dicarboximide fungicide, is an endocrine disrupting chemical that competes with an androgenic endocrine disruptor compound. Most research has focused on the epigenetic effect of vinclozolin in humans. In terms of ecotoxicology, understanding the effect of vinclozolin on non-target organisms is important. The expression profile of a comprehensive set of genes in the amphipod Hyalella azteca exposed to vinclozolin was examined. The expressed sequence tags in low-dose vinclozolin-treated and -untreated amphipods were isolated and identified by suppression subtractive hybridization. DNA dot blotting was used to confirm the results and establish a subtracted cDNA library for comparing all differentially expressed sequences with and without vinclozolin treatment. In total, 494 differentially expressed genes, including hemocyanin, heatshock protein, cytochrome, cytochrome oxidase and NADH dehydrogenase were detected. Hemocyanin was the most abundant gene. DNA dot blotting revealed 55 genes with significant differential expression. These genes included larval serum protein 1 alpha, E3 ubiquitin-protein ligase, mitochondrial cytochrome c oxidase, mitochondrial protein, proteasome inhibitor, hemocyanin, zinc-finger-containing protein, mitochondrial NADH-ubiquinone oxidoreductase and epididymal sperm-binding protein. Vinclozolin appears to upregulate stress-related genes and hemocyanin, related to immunity. Moreover, vinclozolin downregulated NADH dehydrogenase, related to respiration. Thus, even a non-lethal concentration of vinclozolin still has an effect at the genetic level in H. azteca and presents a potential risk, especially as it would affect non-target organism hormone metabolism.
Guo, Qian; Yu, Yan; Zhu, Yan Ling; Zhao, Xiu Qin; Liu, Zhi Guang; Zhang, Yuan Yuan; Li, Gui Lian; Wei, Jian Hao; Wu, Yi Mou; Wan, Kang Lin
2015-01-01
A PCR-reverse dot blot hybridization (RDBH) assay was developed for rapid detection of rpoB gene mutations in 'hot mutation region' of Mycobacterium tuberculosis (M. tuberculosis). 12 oligonucleotide probes based on the wild-type and mutant genotype rpoB sequences of M. tuberculosis were designed to screen the most frequent wild-type and mutant genotypes for diagnosing RIF resistance. 300 M. tuberculosis clinical isolates were detected by RDBH, conventional drug-susceptibility testing (DST) and DNA sequencing to evaluate the RDBH assay. The sensitivity and specificity of the RDBH assay were 91.2% (165/181) and 98.3% (117/119), respectively, as compared to DST. When compared with DNA sequencing, the accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the RDBH assay were 97.7% (293/300), 98.2% (164/167), and 97.0% (129/133), respectively. Furthermore, the results indicated that the most common mutations were in codons 531 (48.6%), 526 (25.4%), 516 (8.8%), and 511 (6.6%), and the combinative mutation rate was 15 (8.3%). One and two strains of insertion and deletion were found among all strains, respectively. Our findings demonstrate that the RDBH assay is a rapid, simple and sensitive method for diagnosing RIF-resistant tuberculosis. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Nath, Joyobrato; Hussain, Gulzar; Singha, Baby; Paul, Jaishree; Ghosh, Sankar Kumar
2015-09-01
Intestinal diarrheagenic polyparasitic infections are among the major public health concerns in developing countries. Here we examined stool specimens by microscopy, DNA dot blot and polymerase chain reaction (PCR) to evaluate the co-infection of four principal protozoans among amoebic dysentery cases from Northeast Indian population. The multiplex PCR confirmed Entamoeba histolytica (8.1%), Entamoeba dispar (4.8%) and mixed infection of both the parasites (3.4%) in 68 of 356 stool specimens that were positive in microscopy and/or HMe probe based DNA dot blot screening. The prevailing parasite that co-exists with E. histolytica was Giardia duodenalis (34.1%), followed by Enterocytozoon bieneusi (22.0%), Cryptosporidium parvum (14.6%) and Cyclospora cayetanensis (7.3%, P = 0.017). Symptomatic participants (odds ratio (OR) = 4.07; 95% confidence interval (CI) = 1.06, 15.68; P = 0.041), monsoon season (OR = 7.47; 95% CI = 1.40, 39.84; P = 0.046) and participants with family history of parasitic infection (OR = 4.50; 95% CI = 1.16, 17.51; P = 0.030) have significant association with overall co-infection rate. According to molecular consensus, comprehensive microscopy yielded 3.4% (12/356) false-negative and 7.6% (27/356) false-positive outcome, suggesting an improved broad-spectrum PCR-based diagnostic is required to scale down the poor sensitivity and specificity as well as implementation of integrated control strategy.
Development of a biotinylated DNA probe for detection of infectious hematopoietic necrosis virus
Deering, R.E.; Arakawa, C.K.; Oshima, K.H.; O'Hara, P.J.; Landolt, M.L.; Winton, J.R.
1991-01-01
A nonrad~oact~ve DNA probe assay was developed to detect and ~dent~fy infect~ous hernatopoiet~c necrosls virus (IHNV) uslng a dot blot format The probe a synthet~c DNA oligonucleot~de labeled enzymatlcally w~th biotln hybnd~zed spec~f~cally w~th nucleocaps~d mRNA extracted from Infected cells early In the vlrus repl~cation cycle A rap~d guan~dln~um th~ocyanate based RNA extraction method uslng RNAzol B and rn~crocentrifuge tubes eff~c~ently pioduced h~gh qual~ty RNA from 3 commonly used f~sh cell llnes, CHSE-214, CHH-1, and EPC The probe reacted with 6 d~verse ~solates of IHNV, but d~d not react \
Hamm, Melissa; Ha, Sha; Rustandi, Richard R
2015-06-01
Simple Western is a new technology that allows for the separation, blotting, and detection of proteins similar to a traditional Western except in a capillary format. Traditionally, identity assays for biological products are performed using either an enzyme-linked immunosorbent assay (ELISA) or a manual dot blot Western. Both techniques are usually very tedious, labor-intensive, and complicated for multivalent vaccines, and they can be difficult to transfer to other laboratories. An advantage this capillary Western technique has over the traditional manual dot blot Western method is the speed and the automation of electrophoresis separation, blotting, and detection steps performed in 96 capillaries. This article describes details of the development of an automated identity assay for a 15-valent pneumococcal conjugate vaccine, PCV15-CRM197, using capillary Western technology. Copyright © 2015 Elsevier Inc. All rights reserved.
Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta.
Revill, Meredith J W; Stanley, Susan; Hibberd, Julian M
2005-09-01
The genus Cuscuta (dodder) is composed of parasitic plants, some species of which appear to be losing the ability to photosynthesize. A molecular phylogeny was constructed using 15 species of Cuscuta in order to assess whether changes in photosynthetic ability and alterations in structure of the plastid genome relate to phylogenetic position within the genus. The molecular phylogeny provides evidence for four major clades within Cuscuta. Although DNA blot analysis showed that Cuscuta species have smaller plastid genomes than tobacco, and that plastome size varied significantly even within one Cuscuta clade, dot blot analysis indicated that the dodders possess homologous sequence to 101 genes from the tobacco plastome. Evidence is provided for significant rates of DNA transfer from plastid to nucleus in Cuscuta. Size and structure of Cuscuta plastid genomes, as well as photosynthetic ability, appear to vary independently of position within the phylogeny, thus supporting the hypothesis that within Cuscuta photosynthetic ability and organization of the plastid genome are changing in an unco-ordinated manner.
NASA Astrophysics Data System (ADS)
Cişmileanu, Ana; Sima, Cornelia; Grigoriu, Constantin
2007-08-01
A quantum dot - immunoglobulin conjugate specific for pig IgG, was obtained by carbodiimide chemistry. We used a Western blot technique for detecting specific antibodies against Actinobacillus pleuropneumoniae (A. pp), which cause porcine pleuropneumonia. The antigen used in this technique was Apx haemolysin which is an important virulence factor of A. pp and it induces protective immunity in vaccined pigs. The detection on Western blot membrane was possible at 1/50 dilution of quantum dot conjugate at a dilution of pig serum till 1/6400. The results for pig serum demonstrated a higher sensitivity of QD-based Western blot technique for the presence of antibodies specific for Apx haemolysin in comparison with similar classical techniques (with coloured substrate for enzyme present in secondary antibody conjugate).
Friedman, R L; Paulaitis, S; McMillan, J W
1989-01-01
Monoclonal antibodies (MAb) were produced against the specific Bordetella pertussis antigen pertussis toxin (PT). In preliminary studies, one MAb (IB12) was selected and used in an enzyme-linked dot blot immunoassay to evaluate the ability of the method to detect known amounts of PT in control experiments and to test its potential for direct detection of PT in nasopharyngeal secretion (NP) specimens from patients with confirmed cases of whooping cough. The dot blot assay was able to detect PT at levels as low as 10 ng per dot in either buffer or control NP specimens. The assay demonstrated specificity, reacting only with dot blots of whole B. pertussis and not Bordetella bronchiseptica, Bordetella parapertussis, or other bacterial strains. In preliminary studies, NP aspirate, swab, and wash specimens were compared. The specimen of choice was found to be the NP aspirate, for which 100% positive results were found in the assay. These initial studies suggest that the dot blot immunoassay in which a MAb is used for direct detection of PT in NP specimens may be useful as a rapid diagnostic test for pertussis. Images PMID:2808670
Kamel, Hanan H.; Saad, Ghada A.
2013-01-01
The purpose of the present study was to evaluate the potential role of the 27-Kilodalton (KDa) antigen versus Fasciola gigantica adult worm regurge antigens in a DOT-Blot assay and to assess this assay as a practical tool for diagnosis fascioliasis in Egyptian patients. Fasciola gigantica antigen of an approximate molecular mass 27-(KDa) was obtained from adult worms by a simple elution SDS-PAGE. A Dot-Blot was developed comparatively to adult worm regurge antigens for the detection of specific antibodies from patients infected with F. gigantica in Egypt. Control sera were obtained from patients with other parasitic infections and healthy volunteers to assess the test and compare between the antigens. The sensitivity, specificity, positive and negative predictive values of Dot-Blot using the adult worm regurge were 80%, 90%, 94.1%, and 69.2% respectively, while those using 27-KDa were 100% which confirms the diagnostic potential of this antigen. All patients infected with Fasciola were positive, with cross reactivity reported with Schistosoma mansoni serum samples. This 27-KDa Dot-Blot assay showed to be a promising test which can be used for serodiagnosis of fascioliasis in Egyptian patients especially, those presenting with hepatic disease. It is specific, sensitive and easy to perform method for the rapid diagnosis particularly when more complex laboratory tests are unavailable. PMID:23710084
Kamel, Hanan H; Saad, Ghada A; Sarhan, Rania M
2013-04-01
The purpose of the present study was to evaluate the potential role of the 27-Kilodalton (KDa) antigen versus Fasciola gigantica adult worm regurge antigens in a DOT-Blot assay and to assess this assay as a practical tool for diagnosis fascioliasis in Egyptian patients. Fasciola gigantica antigen of an approximate molecular mass 27-(KDa) was obtained from adult worms by a simple elution SDS-PAGE. A Dot-Blot was developed comparatively to adult worm regurge antigens for the detection of specific antibodies from patients infected with F. gigantica in Egypt. Control sera were obtained from patients with other parasitic infections and healthy volunteers to assess the test and compare between the antigens. The sensitivity, specificity, positive and negative predictive values of Dot-Blot using the adult worm regurge were 80%, 90%, 94.1%, and 69.2% respectively, while those using 27-KDa were 100% which confirms the diagnostic potential of this antigen. All patients infected with Fasciola were positive, with cross reactivity reported with Schistosoma mansoni serum samples. This 27-KDa Dot-Blot assay showed to be a promising test which can be used for serodiagnosis of fascioliasis in Egyptian patients especially, those presenting with hepatic disease. It is specific, sensitive and easy to perform method for the rapid diagnosis particularly when more complex laboratory tests are unavailable.
Chen, Yiwen; Zhang, Lahong; Hong, Liquan; Luo, Xian; Chen, Juping; Tang, Leiming; Chen, Jiahuan; Liu, Xia; Chen, Zhaojun
2018-06-01
Making a correct and rapid diagnosis is essential for managing pulmonary tuberculosis (PTB), particularly multidrug-resistant tuberculosis. We aimed to evaluate the efficacy of the combination of simultaneous amplification testing (SAT) and reverse dot blot (RDB) for the rapid detection of Mycobacterium tuberculosis (MTB) and drug-resistant mutants in respiratory samples. 225 suspected PTB and 32 non-TB pulmonary disease samples were collected. All sputum samples were sent for acid-fast bacilli smear, SAT, culture and drug susceptibility testing (DST) by the BACTEC TM MGIT TM 960 system. 53 PTB samples were tested by both RDB and DNA sequencing to identify drug resistance genes and mutated sites. The SAT positive rate (64.9%) was higher than the culture positive rate (55.1%), with a coincidence rate of 83.7%. The sensitivity and specificity of SAT for diagnosing PTB were 66.7% and 100%, respectively, while those for culture were 53.9% and 84.2%, respectively. RDB has high sensitivity and specificity in identifying drug resistance genes and mutated sites. The results of RDB correlated well with those of DST and DNA sequencing, with coincidence rates of 92.5% and 98.1%, respectively. The combination of SAT and RDB is promising for rapidly detecting PTB and monitoring drug resistance in clinical laboratories. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Selection of a Clostridium perfringens type D epsilon toxin producer via dot-blot test.
Gonçalves, Luciana A; Lobato, Zélia I P; Silva, Rodrigo O S; Salvarani, Felipe M; Pires, Prhiscylla S; Assis, Ronnie A; Lobato, Francisco C F
2009-11-01
Clostridium perfringens type D produces enterotoxemia, an enteric disease in ruminants, also known as pulpy kidney disease. Caused by epsilon toxin, enterotoxemia is a major exotoxin produced by this microorganism. Epsilon toxin is also the main component of vaccines against this enteric disorder. In this study, a standardized dot-blot was used to choose strains of C. perfringens type D that are producers of epsilon toxin. Clones producing epsilon toxin were chosen by limiting dilution; after three passages, lethal minimum dose titers were determined by soroneutralization test in mice. These clones produced epsilon toxin 240 times more concentrated than the original strain. The presence of the epsilon toxin gene (etx) was verified by polymerase chain reaction. All clones were positive, including those determined to be negative by dot-blot tests, suggesting that mechanisms in addition to the presence of the etx gene can influence toxin production. The dot-blot test was efficient for the selection of toxigenic colonies of C. perfringens type D and demonstrated that homogeneous populations selected from toxigenic cultures produce higher titers of epsilon toxin.
Martel, Clothilde; Vignaud, Guillaume; Liozon, Eric; Magy, Laurent; Gallouedec, Gael; Ly, Kim; Bezanahary, Holly; Cypierre, Anne; Lapébie, François-Xavier; Palat, Sylvain; Gondran, Guillaume; Jauberteau, Marie-Odile; Fauchais, Anne-Laure
2016-01-01
Idiopathic inflammatory myopathies (IIM) are heterogeneous autoimmune diseases with wide clinical spectrum that may lead to delayed diagnosis. The aim of this study was to examine the impact of IIM-specific dot-blot assay on diagnostic process of patients presenting with muscular or systemic symptoms evocating of IIM. We collected all the prescriptions of an IIM specific dot-blot assay (8 autoantigens including Jo-1, PL-7, PL-12, SRP, Mi-2, Ku, PM/Scl and Scl-70) over a 38-month period. 316 myositis dot-blot assays (MSD) were performed in 274 patients (156 women, mean age 53±10.6 years) referring for muscular and/or systemic symptoms suggesting IIM. The timing of dot prescription through the diagnostic process was highly variable: without (35%), concomitantly (16%) or after electromyographic studies (35%). Fifty-nine patients (22%) had IIM according to Bohan and Peter's criteria. Among them, 29 (49%) had positive dot (8 Jo-1, 6 PM-Scl, 5 PL-12, 5 SRP, 2 Mi-2, 2 PL-7 and 1 Ku). Various other diagnoses were performed including 35 autoimmune disease or granulomatosis (12%), 19 inflammatory rheumatic disease (7%), 16 non inflammatory muscular disorders (6%), 10 drug-induced myalgia (4%), 11 infectious myositis (4%). Except 11 borderline SRP results and one transient PM-Scl, MSD was positive only in one case of IIM. Dot allowed clinicians to correct diagnosis in 4 cases and improved the diagnosis of IIM subtypes in 4 cases. This study reflects the interest of myositis dot in the rapid diagnosis process of patients with non-specific muscular symptoms leading to various diagnoses including IIM.
One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX
Nitsche, Andreas; Kurth, Andreas; Dunkhorst, Anna; Pänke, Oliver; Sielaff, Hendrik; Junge, Wolfgang; Muth, Doreen; Scheller, Frieder; Stöcklein, Walter; Dahmen, Claudia; Pauli, Georg; Kage, Andreas
2007-01-01
Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method. PMID:17697378
Upregulated Genes In Sporadic, Idiopathic Pulmonary Arterial Hypertension
Edgar, Alasdair J; Chacón, Matilde R; Bishop, Anne E; Yacoub, Magdi H; Polak, Julia M
2006-01-01
Background To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH). Methods Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test. Results We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase. Conclusion Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively. PMID:16390543
Toyota, M; Canzian, F; Ushijima, T; Hosoya, Y; Kuramoto, T; Serikawa, T; Imai, K; Sugimura, T; Nagao, M
1996-01-01
Representational difference analysis (RDA) was applied to isolate chromosomal markers in the rat. Four series of RDA [restriction enzymes, BamHI and HindIII; subtraction of ACI/N (ACI) amplicon from BUF/Nac (BUF) amplicon and vice versa] yielded 131 polymorphic markers; 125 of these markers were mapped to all chromosomes except for chromosome X. This was done by using a mapping panel of 105 ACI x BUF F2 rats. To complement the relative paucity of chromosomal markers in the rat, genetically directed RDA, which allows isolation of polymorphic markers in the specific chromosomal region, was performed. By changing the F2 driver-DNA allele frequency around the region, four markers were isolated from the D1Ncc1 locus. Twenty-five of 27 RDA markers were informative regarding the dot blot analysis of amplicons, hybridizing only with tester amplicons. Dot blot analysis at a high density per unit of area made it possible to process a large number of samples. Quantitative trait loci can now be mapped in the rat genome by processing a large number of samples with RDA markers and then by isolating markers close to the loci of interest by genetically directed RDA. Images Fig. 1 Fig. 3 Fig. 4 PMID:8632989
Immunoblotting assays for keratan sulfate.
Yoon, Jung Hae; Brooks, Randolph; Halper, Jaroslava
2002-07-15
The detection of microquantities of glycosaminoglycans (GAGs) in biological samples has been hampered by the lack of sensitive methods. In this paper we describe the modification and development of three sensitive assays capable of detecting nanogram quantities of GAGs in biological samples. The first assay detects total GAGs. It is a modified Alcian blue dye precipitation assay in which the dye binds to the negatively charged GAGs in CsCl-fractionated extracts from chicken tendons. This assay compares favorably with the widely used uronic acid assay in terms of its sensitivity and ability to detect all classes of GAGs, including keratan sulfate (KS). Two other assays, dot-blotting and immunoblotting, detect KS in complex mixtures and can be easily adapted for the detection of other GAGs. Both take advantage of binding of carboxyl and sulfate groups of GAGs to trivalent neodymium. In dot-blotting, samples were directly blotted onto nitrocellulose membrane soaked in Nd(2)(SO(4))(3) buffer, and KS was detected with the monoclonal anti-KS 5-D-4 antibody and an avidin-biotin complex detection system. In immunoblotting, the samples were first separated in 28% polyacrylamide gels, transferred onto a Nd(2)(SO(4))(3)-soaked nitrocellulose membrane using a phosphate buffer system, and stained and developed using the same protocol as in dot-blotting. Whereas dot-blotting allows the use of very low quantities of samples because of its high sensitivity (lower detection limit was 5 ng), immunoblotting provides more specificity.
Southern, Edwin
2015-01-01
The history of the development of DNA blotting is described in this chapter. DNA blotting, involving the transfer of electrophoretically separated DNA fragments to a membrane support through capillary action, is also known as Southern blotting. This procedure enables the detection of a specific DNA sequence by hybridization with probes. The term Southern blotting led to a "geographic" naming tradition, with RNA blotting bearing the name Northern blotting and protein transfer to membranes becoming known as Western blotting.
cDNA cloning and analysis of RNA 2 of a Prunus stem pitting isolate of tomato ringspot virus.
Hadidi, A; Powell, C A
1991-10-01
Recombinant plasmids containing sequences derived from the genome of a tomato ringspot virus (TomRSV) isolate associated with both stem pitting disease of stone fruits and apple union necrosis and decline were constructed. Selected inserts were subcloned into the polylinker region of the SP6 transcription vector pSP64. Using the SP6 promoter flanking this region, high specific activity 32P-labelled cRNA probes were generated by SP6 RNA polymerase. cRNA probes were specific for TomRSV RNA 2 present in purified virions or in extracts from woody and herbacous hosts. No sequence relatedness was detected between TomRSV RNA 2 and genomic RNA from tobacco ringspot, arabis mosaic, strawberry latent ringspot, or cucumber mosaic virus in Northern blot analysis using TomRSV cRNA probes. These probes detected TomRSV infection in woody and herbaceous hosts in dot-blot hybridization assays.
Schlötelburg, C; von Wintzingerode, F; Hauck, R; Hegemann, W; Göbel, U B
2000-07-01
A 16S-rDNA-based molecular study was performed to determine the bacterial diversity of an anaerobic, 1,2-dichloropropane-dechlorinating bioreactor consortium derived from sediment of the River Saale, Germany. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified using conserved primers. A clone library was constructed and analysed by sequencing the 16S rDNA inserts of randomly chosen clones followed by dot blot hybridization with labelled polynucleotide probes. The phylogenetic analysis revealed significant sequence similarities of several as yet uncultured bacterial species in the bioreactor to those found in other reductively dechlorinating freshwater consortia. In contrast, no close relationship was obtained with as yet uncultured bacteria found in reductively dechlorinating consortia derived from marine habitats. One rDNA clone showed >97% sequence similarity to Dehalobacter species, known for reductive dechlorination of tri- and tetrachloroethene. These results suggest that reductive dechlorination in microbial freshwater habitats depends upon a specific bacterial community structure.
Gao, Xue; Niu, Lu; Su, Xingguang
2012-01-01
This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.
Figueroa, J V; Alvarez, J A; Ramos, J A; Vega, C A; Buening, G M
1993-01-01
A study was conducted to test the applicability of a Polymerase Chain Reaction (PCR)-based approach for the simultaneous detection of the bovine hemoparasites Babesia bigemina, B. bovis and Anaplasma marginale. Bovine blood samples from cattle ranches of a previously determined enzootic zone in the Yucatan Peninsula of Mexico, were collected from peripheral blood and processed for PCR analysis. Blood samples were subjected to DNA amplification by placing an aliquot in a reaction tube containing oligonucleotide primers specific for DNA of each hemoparasite species. The PCR products were detected by Dot-Blot nucleic acid hybridization utilizing nonradioactive, species-specific, digoxigenin PCR-labeled DNA probes. Four hundred twenty one field samples analyzed by the multiplex PCR-DNA probe assay showed 66.7%, 60.1% and 59.6% prevalence rates for B. bigemina, B. bovis and A. marginale, respectively. The multiplex PCR analysis showed that animals with single, double or triple infection could be detected with the parasite specific DNA probes. The procedure is proposed as a valuable tool for the epidemiological analysis in regions where the hemoparasite species are concurrently infecting cattle.
Ho, Mei M; Kairo, Satnam K; Corbel, Michael J
2006-01-01
Tuberculin purified protein derivative (PPD) currently can only be standardised by delayed hypersensitivity skin reactions in sensitised guinea pigs. An in vitro dot blot immunoassay was developed for both identity and confirmation of potency estimation of PPD. Polyclonal antibodies (mainly IgG) were generated and immunoreacted with human, bovine and, to lesser extent, avian PPD preparations. Combining size exclusion chromatography (FPLC-SEC) and dot blot immunoassay, the results showed that PPD preparations were mixtures of very heterogeneous tuberculoproteins ranging in size from very large aggregates to very small degraded molecules. All individual fractions of PPD separated by size were immunoreactive, although those of the largest molecular sizes appeared the most immunoreactive in this in vitro dot blot immunoassay. This method is very sensitive and specific to tuberculoproteins and can be an in vitro alternative for the in vivo intradermal skin assay which uses guinea pigs for identity of PPD preparations. Although the capacity of PPD to elicit cell-mediated immune responses on intradermal testing has to be confirmed by in vivo assay, the dot blot immunoassay offers a rapid, sensitive and animal-free alternative to in vivo testing for confirming the identity of PPD preparations with appropriate potencies. This alternative assay would be particularly useful for national regulatory laboratories for confirming the data of manufacturers and thus reducing the use of animals.
Willison, L N; Tawde, P; Robotham, J M; Penney, R M; Teuber, S S; Sathe, S K; Roux, K H
2008-07-01
Patients allergic to cashew nuts often report allergy to pistachio, which could be a result of cross-reactivity between the two as both are members of the Anacardiaceae family. Because cashew 7S globulin (vicilin, Ana o 1) is a recognized major allergen, we cloned the pistachio homologue and assayed it for IgE reactivity and cross-reactivity with Ana o 1. Degenerate primers for 7S globulin were used in PCR to amplify DNA from a pistachio cDNA library. An isolate was sequenced, cloned and expressed in Escherichia coli. Reactivity to the allergen was screened by dot blot using 19 pistachio and/or cashew-allergic patients' sera. Cross-reactivity was investigated by inhibition dot- and Western immunoblot assays using pistachio/cashew-allergic patients' sera, and monoclonal antibodies (MAbs) raised against recombinant Ana o 1 (rAna o 1). An isolate was found that coded for a 7S vicilin-like protein, designated Pis v 3. IgE reactivity to Pis v 3 was found in the serum of seven of the 19 (37%) patients with histories of allergy to both pistachio and cashew or who were allergic to cashew but had never eaten pistachio. The seven patients with IgE that recognized rPis v 3 also recognized rAna o 1. Six of nine anti-rAna o 1 MAbs also showed reactivity to rPis v 3 on dot blots. Of the 37% of pistachio/cashew-allergic patients' sera that recognized the pistachio allergen, rPis v 3, all showed complete cross-reactivity with rAna o 1. The data does not identify the primary sensitizing agent but suggests that IgE reactivity to rPis v 3 and rAna o 1 is focused on the most conserved regions of the proteins. Clinical histories suggest that in some cases, cashew was the sensitizing agent. rPis v 3 is a likely contributor to the observed co-sensitivity to pistachio and cashew in some patients.
ERIC Educational Resources Information Center
Gerbig, Donald G., Jr.; Fenk, Christopher J.; Goodhart, Amy S.
2000-01-01
Uses two laboratory techniques, Enzyme Linked Immunosorbent Assay (ELISA) and Western Blot, to demonstrate antibody-antigen binding concepts. Includes a list of required materials and directions for the procedure, and makes suggestions for classroom applications. (Contains 13 references.) (YDS)
A rapid low-cost high-density DNA-based multi-detection test for routine inspection of meat species.
Lin, Chun Chi; Fung, Lai Ling; Chan, Po Kwok; Lee, Cheuk Man; Chow, Kwok Fai; Cheng, Shuk Han
2014-02-01
The increasing occurrence of food frauds suggests that species identification should be part of food authentication. Current molecular-based species identification methods have their own limitations or drawbacks, such as relatively time-consuming experimental steps, expensive equipment and, in particular, these methods cannot identify mixed species in a single experiment. This project proposes an improved method involving PCR amplification of the COI gene and detection of species-specific sequences by hybridisation. Major innovative breakthrough lies in the detection of multiple species, including pork, beef, lamb, horse, cat, dog and mouse, from a mixed sample within a single experiment. The probes used are species-specific either in sole or mixed species samples. As little as 5 pg of DNA template in the PCR is detectable in the proposed method. By designing species-specific probes and adopting reverse dot blot hybridisation and flow-through hybridisation, a low-cost high-density DNA-based multi-detection test suitable for routine inspection of meat species was developed. © 2013.
High Bacterial Diversity in Permanently Cold Marine Sediments
Ravenschlag, Katrin; Sahm, Kerstin; Pernthaler, Jakob; Amann, Rudolf
1999-01-01
A 16S ribosomal DNA (rDNA) clone library from permanently cold marine sediments was established. Screening 353 clones by dot blot hybridization with group-specific oligonucleotide probes suggested a predominance of sequences related to bacteria of the sulfur cycle (43.4% potential sulfate reducers). Within this fraction, the major cluster (19.0%) was affiliated with Desulfotalea sp. and other closely related psychrophilic sulfate reducers isolated from the same habitat. The cloned sequences showed between 93 and 100% similarity to these bacteria. Two additional groups were frequently encountered: 13% of the clones were related to Desulfuromonas palmitatis, and a second group was affiliated with Myxobacteria spp. and Bdellovibrio spp. Many clones (18.1%) belonged to the γ subclass of the class Proteobacteria and were closest to symbiotic or free-living sulfur oxidizers. Probe target groups were further characterized by amplified rDNA restriction analysis to determine diversity within the groups and within the clone library. Rarefaction analysis suggested that the total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones. PMID:10473405
Human papillomavirus type 16 DNA in periungual squamous cell carcinomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moy, R.L.; Eliezri, Y.D.; Bennett, R.G.
1989-05-12
Ten squamous cell carcinomas (in situ or invasive) of the fingernail region were analyzed for the presence of DNA sequences homologous to human papilloma-virus (HPV) by dot blot hybridization. In most patients, the lesions were verrucae of long-term duration that were refractory to conventional treatment methods. Eight of the lesions contained HPV DNA sequences, and in six of these the sequences were related to HPV 16 as deduced from low-stringency nucleic acid hybridization followed by low- and high-stringency washes. Furthermore, the restriction endonuclease digestion pattern of DNA isolated from four of these lesions was diagnostic of episomal HPV 16. Themore » high-frequency association of HPV 16 with periungual squamous cell carcinoma is similar to that reported for HPV 16 with squamous cell carcinomas on mucous membranes at other sites, notably the genital tract. The findings suggest that HPV 16 may play an important role in the development of squamous cell carcinomas of the finger, most notably those lesions that are chronic and located in the periungual area.« less
Bjourson, A J; Stone, C E; Cooper, J E
1992-01-01
A novel subtraction hybridization procedure, incorporating a combination of four separation strategies, was developed to isolate unique DNA sequences from a strain of Rhizobium leguminosarum bv. trifolii. Sau3A-digested DNA from this strain, i.e., the probe strain, was ligated to a linker and hybridized in solution with an excess of pooled subtracter DNA from seven other strains of the same biovar which had been restricted, ligated to a different, biotinylated, subtracter-specific linker, and amplified by polymerase chain reaction to incorporate dUTP. Subtracter DNA and subtracter-probe hybrids were removed by phenol-chloroform extraction of a streptavidin-biotin-DNA complex. NENSORB chromatography of the sequences remaining in the aqueous layer captured biotinylated subtracter DNA which may have escaped removal by phenol-chloroform treatment. Any traces of contaminating subtracter DNA were removed by digestion with uracil DNA glycosylase. Finally, remaining sequences were amplified by polymerase chain reaction with a probe strain-specific primer, labelled with 32P, and tested for specificity in dot blot hybridizations against total genomic target DNA from each strain in the subtracter pool. Two rounds of subtraction-amplification were sufficient to remove cross-hybridizing sequences and to give a probe which hybridized only with homologous target DNA. The method is applicable to the isolation of DNA and RNA sequences from both procaryotic and eucaryotic cells. Images PMID:1637166
Chemiluminescent DNA optical fibre sensor for Brettanomyces bruxellensis detection.
Cecchini, Francesca; Manzano, Marisa; Mandabi, Yohai; Perelman, Eddie; Marks, Robert S
2012-01-01
Food and beverage industries require rapid tests to limit economic losses and one way to do so is via molecular tests. In the present work, DNA capture and secondary probes, were designed to target the ITS (Internal Transcribed) sequences of Brettanomyces bruxellensis, a yeast responsible for the production of off flavours in both wine and beer. ITS1 and ITS2 were found to contain distinct regions with sufficient sequence divergence to make them suitable as specific identification target sites. The dot blot technique was used to determine the sensitivity and specificity of the capture probe. Both probes were, thereafter, adapted to construct an optical fibre genosensor, which produced neither false positives nor false negatives, and was both repeatable and faster with respect to traditional methods, the latter requiring at least one week to detect B. bruxellensis. Copyright © 2011 Elsevier B.V. All rights reserved.
Kornegay, J R; Shepard, A P; Hankins, C; Franco, E; Lapointe, N; Richardson, H; Coutleé, F
2001-10-01
We assessed the value of a new digoxigenin (DIG)-labeled generic probe mix in a PCR-enzyme-linked immunosorbent assay format to screen for the presence of human papillomavirus (HPV) DNA amplified from clinical specimens. After screening with this new generic assay is performed, HPV DNA-positive samples can be directly genotyped using a reverse blotting method with product from the same PCR amplification. DNA from 287 genital specimens was amplified via PCR using biotin-labeled consensus primers directed to the L1 gene. HPV amplicons were captured on a streptavidin-coated microwell plate (MWP) and detected with a DIG-labeled HPV generic probe mix consisting of nested L1 fragments from types 11, 16, 18, and 51. Coamplification and detection of human DNA with biotinylated beta-globin primers served as a control for both sample adequacy and PCR amplification. All specimens were genotyped using a reverse line blot assay (13). Results for the generic assay using MWPs and a DIG-labeled HPV generic probe mix (DIG-MWP generic probe assay) were compared with results from a previous analysis using dot blots with a radiolabeled nested generic probe mix and type-specific probes for genotyping. The DIG-MWP generic probe assay resulted in high intralaboratory concordance in genotyping results (88% versus 73% agreement using traditional methods). There were 207 HPV-positive results using the DIG-MWP method and 196 positives using the radiolabeled generic probe technique, suggesting slightly improved sensitivity. Only one sample failed to test positive with the DIG-MWP generic probe assay in spite of a positive genotyping result. Concordance between the two laboratories was nearly 87%. Approximately 6% of samples that were positive or borderline when tested with the DIG-MWP generic probe assay were not detected with the HPV type-specific panel, perhaps representing very rare or novel HPV types. This new method is easier to perform than traditional generic probe techniques and uses more objective interpretation criteria, making it useful in studies of HPV natural history.
Matsukuma, S; Nakatsuru, Y; Nakagawa, K; Utakoji, T; Sugano, H; Kataoka, H; Sekiguchi, M; Ishikawa, T
1989-11-01
The E. coli ada gene encodes O6-methylguanine DNA methyltransferase (O6MTase) which repairs the methylation of guanine at the O6 position in DNA. After recombination with a Chinese hamster metallothionein I gene promoter, the ada gene was microinjected into C3H/HeN mouse zygotes. Eventually, transgenic mice containing the ada fusion DNA were generated. The integrated ada DNA complex was transmitted to the progeny in a mode conforming to tandem integration at a single chromosome site, and homozygotes were also obtained from an inter-transgenic mouse cross. RNA transcripts of the chimeric ada gene were identified in the livers of these transgenic mice using dot and Northern blot analyses. O6MTase activity was increased in the liver of transgenic mice of line No. 708, and was more than 3 times the activity found in non-transgenic mice, especially in the transgenic homozygotes. The ada gene product was detected in the liver of a transgenic homozygote by immunoblot analysis. These transgenic mice have great potential for analysis of the role played by O6MTase in chemical carcinogenesis.
Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis.
Li, Caroline M; Miao, Yunan; Lingeman, Robert G; Hickey, Robert J; Malkas, Linda H
2016-01-01
We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE). In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40) origin of DNA replication and the viral large tumor antigen (T-antigen) protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA), DNA topoisomerase I (topo I), DNA polymerase δ (Pol δ), DNA polymerase ɛ (Pol ɛ), replication protein A (RPA) and replication factor C (RFC). Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.
Feliciello, Isidoro; Parazajder, Josip; Akrap, Ivana; Ugarković, Durđica
2013-05-01
DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.
Jaén, Karim E; Sigala, Juan-Carlos; Olivares-Hernández, Roberto; Niehaus, Karsten; Lara, Alvaro R
2017-07-04
Dissolved oxygen tension (DOT) is hardly constant and homogenously distributed in a bioreactor, which can have a negative impact in the metabolism and product synthesis. However, the effects of DOT on plasmid DNA (pDNA) production and quality have not been thoroughly investigated. In the present study, the effects of aerobic (DOT ≥30% air sat.), microaerobic (constant DOT = 3% air sat.) and oscillatory DOT (from 0 to 100% air sat.) conditions on pDNA production, quality and host performance were characterized. Microaerobic conditions had little effect on pDNA production, supercoiled fraction and sequence fidelity. By contrast, oscillatory DOT caused a 22% decrease in pDNA production compared with aerobic cultures. Although in aerobic cultures the pDNA supercoiled fraction was 98%, it decreased to 80% under heterogeneous DOT conditions. The different oxygen availabilities had no effect on the fidelity of the produced pDNA. The estimated metabolic fluxes indicated substantial differences at the level of the pentose phosphate pathway and TCA cycle under different conditions. Cyclic changes in fermentative pathway fluxes, as well as fast shifts in the fluxes through cytochromes, were also estimated. Model-based genetic modifications that can potentially improve the process performance are suggested. DOT heterogeneities strongly affected cell performance, pDNA production and topology. This should be considered when operating or scaling-up a bioreactor with deficient mixing. Constant microaerobic conditions affected the bacterial metabolism but not the amount or quality of pDNA. Therefore, pDNA production in microaerobic cultures may be an alternative for bioreactor operation at higher oxygen transfer rates.
Yasmin, Rubina; Barber, Cheryl A.; Castro, Talita; Malamud, Daniel; Kim, Beum Jun; Zhu, Hui; Montagna, Richard A.; Abrams, William R.
2018-01-01
In recent years, there have been increasing numbers of infectious disease outbreaks that spread rapidly to population centers resulting from global travel, population vulnerabilities, environmental factors, and ecological disasters such as floods and earthquakes. Some examples of the recent outbreaks are the Ebola epidemic in West Africa, Middle East respiratory syndrome coronavirus (MERS-Co) in the Middle East, and the Zika outbreak through the Americas. We have created a generic protocol for detection of pathogen RNA and/or DNA using loop-mediated isothermal amplification (LAMP) and reverse dot-blot for detection (RDB) and processed automatically in a microfluidic device. In particular, we describe how a microfluidic assay to detect HIV viral RNA was converted to detect Zika virus (ZIKV) RNA. We first optimized the RT-LAMP assay to detect ZIKV RNA using a benchtop isothermal amplification device. Then we implemented the assay in a microfluidic device that will allow analyzing 24 samples simultaneously and automatically from sample introduction to detection by RDB technique. Preliminary data using saliva samples spiked with ZIKV showed that our diagnostic system detects ZIKV RNA in saliva. These results will be validated in further experiments with well-characterized ZIKV human specimens of saliva. The described strategy and methodology to convert the HIV diagnostic assay and platform to a ZIKV RNA detection assay provides a model that can be readily utilized for detection of the next emerging or re-emerging infectious disease. PMID:29401479
Sabalza, Maite; Yasmin, Rubina; Barber, Cheryl A; Castro, Talita; Malamud, Daniel; Kim, Beum Jun; Zhu, Hui; Montagna, Richard A; Abrams, William R
2018-01-01
In recent years, there have been increasing numbers of infectious disease outbreaks that spread rapidly to population centers resulting from global travel, population vulnerabilities, environmental factors, and ecological disasters such as floods and earthquakes. Some examples of the recent outbreaks are the Ebola epidemic in West Africa, Middle East respiratory syndrome coronavirus (MERS-Co) in the Middle East, and the Zika outbreak through the Americas. We have created a generic protocol for detection of pathogen RNA and/or DNA using loop-mediated isothermal amplification (LAMP) and reverse dot-blot for detection (RDB) and processed automatically in a microfluidic device. In particular, we describe how a microfluidic assay to detect HIV viral RNA was converted to detect Zika virus (ZIKV) RNA. We first optimized the RT-LAMP assay to detect ZIKV RNA using a benchtop isothermal amplification device. Then we implemented the assay in a microfluidic device that will allow analyzing 24 samples simultaneously and automatically from sample introduction to detection by RDB technique. Preliminary data using saliva samples spiked with ZIKV showed that our diagnostic system detects ZIKV RNA in saliva. These results will be validated in further experiments with well-characterized ZIKV human specimens of saliva. The described strategy and methodology to convert the HIV diagnostic assay and platform to a ZIKV RNA detection assay provides a model that can be readily utilized for detection of the next emerging or re-emerging infectious disease.
Panda, Sasmita; Kar, Sarita; Choudhury, Ranginee; Sharma, Savitri; Singh, Durg V
2014-03-01
We developed a multiplex PCR to detect the presence of methicillin- (mecA), cadmium/zinc-(czrC) and antiseptic-resistant (qacA/B) staphylococci and to identify Panton-Valentine leukocidin (PVL)-positive and -negative Staphylococcus aureus and coagulase-negative staphylococci (CoNS) from infected and healthy eyes. The assay was validated on 177 staphylococci comprising of 55 each of S. aureus and CoNS isolated from infected eyes and five S. aureus and 62 CoNS isolated from healthy eyes and nine direct ocular samples. Nine direct ocular samples for in situ testing consisted of corneal scrapings (4), conjunctiva swabs (2) and others (3). Multiplex PCR result was correlated with genotype data obtained with single PCR and dot-blot assay. The control strains that were positive in multiplex PCR for 16S rRNA, nuc, mecA, pvl, czrC and qacA/B genes were also positive in the dot-blot assay. The specificity of amplified genes obtained with reference strains was further confirmed by DNA sequencing. The single step-hexaplex PCR method can be used for rapid detection of mecA, nuc, pvl, czrC and qacA/B genes in staphylococci with simultaneous identification of PVL-positive and -negative S. aureus and CoNS from a variety of ocular samples. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures’ refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times. PMID:28045442
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.
Crystal structure of MboIIA methyltransferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipiuk, J.; Walsh, M. A.; Joachimiak, A.
2003-09-15
DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules inmore » the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadano, S.; Ishida, Y.; Tomiyasu, H.
1994-09-01
To complete a transcription map of the 1 Mb region in human chromosome 4p16.3 containing the Huntington disease (HD) gene, the isolation of cDNA clones are being performed throughout. Our method relies on a direct screening of the cDNA libraries probed with single copy microclones from 3 YAC clones spanning 1 Mbp of the HD gene region. AC-DNAs were isolated by a preparative pulsed-field gel electrophoresis, amplified by both a single unique primer (SUP)-PCR and a linker ligation PCR, and 6 microclone-DNA libraries were generated. Then, 8,640 microclones from these libraries were independently amplified by PCR, and arrayed onto themore » membranes. 800-900 microclones that were not cross-hybridized with total human and yeast genomic DNA, TAC vector DNA, and ribosomal cDNA on a dot hybridization (putatively carrying single copy sequences) were pooled to make 9 probe pools. A total of {approximately}1.8x10{sup 7} plaques from the human brain cDNA libraries was screened with 9 pool-probes, and then 672 positive cDNA clones were obtained. So far, 597 cDNA clones were defined and arrayed onto a map of the 1 Mbp of the HD gene region by hybridization with HD region-specific cosmid contigs and YAC clones. Further characterization including a DNA sequencing and Northern blot analysis is currently underway.« less
DOT1L and H3K79 Methylation in Transcription and Genomic Stability.
Wood, Katherine; Tellier, Michael; Murphy, Shona
2018-02-27
The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.
Sørensen, M S; Duch, M; Paludan, K; Jørgensen, P; Pedersen, F S
1992-03-15
Hygromycin B (Hy) resistance, encoded by the prokaryotic gene hph, is commonly used as a dominant selectable marker for gene transfer experiments in mammalian cells. We describe a simple, quantitative dot-blot assay for measuring the activity in crude mammalian cell extracts of Hy phosphotransferase, the product of the hph gene. The assay shows no cross interference with substrates for neomycin phosphotransferase II, the product of the commonly used marker gene neo; hph and neo may thus be useful as a set of two non-interfering selectable marker and reporter genes for gene transfer experiments in mammalian cells.
Scherer, Luciene Cardoso; Sperhacke, Rosa Dea; Jarczewski, Carla; Cafrune, Patrícia I; Minghelli, Simone; Ribeiro, Marta Osório; Mello, Fernanda CQ; Ruffino-Netto, Antonio; Rossetti, Maria LR; Kritski, Afrânio L
2007-01-01
Background Smear-negative pulmonary tuberculosis (SNPTB) accounts for 30% of Pulmonary Tuberculosis (PTB) cases reported annually in developing nations. Polymerase chain reaction (PCR) may provide an alternative for the rapid detection of Mycobacterium tuberculosis (MTB); however little data are available regarding the clinical utility of PCR in SNPTB, in a setting with a high burden of TB/HIV co-infection. Methods To evaluate the performance of the PCR dot-blot in parallel with pretest probability (Clinical Suspicion) in patients suspected of having SNPTB, a prospective study of 213 individuals with clinical and radiological suspicion of SNPTB was carried out from May 2003 to May 2004, in a TB/HIV reference hospital. Respiratory specialists estimated the pretest probability of active disease into high, intermediate, low categories. Expectorated sputum was examined by direct microscopy (Ziehl-Neelsen staining), culture (Lowenstein Jensen) and PCR dot-blot. Gold standard was based on culture positivity combined with the clinical definition of PTB. Results In smear-negative and HIV subjects, active PTB was diagnosed in 28.4% (43/151) and 42.2% (19/45), respectively. In the high, intermediate and low pretest probability categories active PTB was diagnosed in 67.4% (31/46), 24% (6/25), 7.5% (6/80), respectively. PCR had sensitivity of 65% (CI 95%: 50%–78%) and specificity of 83% (CI 95%: 75%–89%). There was no difference in the sensitivity of PCR in relation to HIV status. PCR sensitivity and specificity among non-previously TB treated and those treated in the past were, respectively: 69%, 43%, 85% and 80%. The high pretest probability, when used as a diagnostic test, had sensitivity of 72% (CI 95%:57%–84%) and specificity of 86% (CI 95%:78%–92%). Using the PCR dot-blot in parallel with high pretest probability as a diagnostic test, sensitivity, specificity, positive and negative predictive values were: 90%, 71%, 75%, and 88%, respectively. Among non-previously TB treated and HIV subjects, this approach had sensitivity, specificity, positive and negative predictive values of 91%, 79%, 81%, 90%, and 90%, 65%, 72%, 88%, respectively. Conclusion PCR dot-blot associated with a high clinical suspicion may provide an important contribution to the diagnosis of SNPTB mainly in patients that have not been previously treated attended at a TB/HIV reference hospital. PMID:18096069
Teh, L-K; Lee, T-Y; Tan, J A M A; Lai, M-I; George, E
2015-02-01
In Malaysia, β-thalassaemia is a common inherited blood disorder in haemoglobin synthesis with a carrier rate of 4.5%. Currently, PCR-incorporating techniques such as amplification refractory mutation system (ARMS) or reverse dot blot hybridization (RDBH) are used in β-thalassaemia mutation detection. ARMS allows single-mutation identification using two reactions, one for wild type and another for mutant alleles. RDBH requires probe immobilization and optimization of hybridization and washing temperatures which is time consuming. The aim of our study was to investigate whether β-thalassaemia mutations can be identified in samples with low DNA concentrations. Genotype identification of common β-thalassaemia mutations in Malays was carried out using Taqman genotyping assays. Results show that the Taqman assays allow mutation detection with DNA template concentrations as low as 2-100 ng. In addition, consistent reproducibility was observed in the Taqman assays when repeated eight times and at different time intervals. The developed sensitive Taqman assays allow molecular characterization of β-thalassaemia mutations in samples with low DNA concentrations. The Taqman genotyping assays have potential as a diagnostic tool for foetal blood, chorionic villi or pre-implantation genetic diagnosis where DNA is limited and precious. © 2014 John Wiley & Sons Ltd.
DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.
Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui
2014-10-15
An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Lin; Yang, Deying; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou
2014-08-29
Cysticercosis, caused by the larvae of Taenia pisiformis, is a common disease in domestic breeds of the rabbit Oryctolagus cuniculus that results in economic losses. At present, there is no convenient and effective method for the rapid detection of T. pisiformis larvae. Here, we developed and tested the efficacy of a Dot-ELISA assay for the diagnosis of T. pisiformis larval infections in rabbits, based on the expression of the recombinant fusion protein (rTp1) from the Tp1 gene. Rapid amplification of cDNA ends (RACE) was used to amplify the 3' ends of the Tp1 gene, based on the unigene similar to Ts1 gene (EU009656.1) which comes from transcriptome sequencing of T. pisiformis. The Tp1 gene was successfully amplified, cloned and expressed in BL21 (DE3). Western blot analysis revealed that the recombinant Tp1 protein is specifically recognized by rabbit T. pisiformis cysticercosis antisera. This purified recombinant fusion protein, rTp1, was probed by Dot-ELISA with sera from rabbits infected with T. pisiformis larvae and with other parasitic infections. Results showed that this Dot-ELISA assay had both high sensitivity (92.9-97.6%) and specificity (95.2-98.4%) to detect T. pisiformis larval infections. We also found very low levels of cross-reaction with other parasitic infections. This study has revealed that our novel Dot-ELISA assay utilizing the recombinant fusion protein, rTp1, has a strong potential for the effective diagnosis of T. pisiformis infections in rabbits. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of ethylene on gene expression in carrot roots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, S.E.
1984-01-01
To investigate ethylene effects on expression of genetic information, cDNA clones corresponding to ethylene-induced carrot root mRNAs were constructed and isolated. RNA dot blot analysis showed that for the three clones studied peak cytosolic mRNA prevalence occurred at 21 hours of treatment followed thereafter by rapid messenger decay. DNA filter excess hybridization to in vitro synthesized nuclear RNA showed that the ethylene-induced mRNA increase is engendered by transcription of previously quiescent genes. The kinetics and magnitude of changes in mRNA prevalence parallel changes in transcriptional activity; therefore, the ethylene effect is primarily at the level of the transcription. In vivomore » pulse labelling with (/sup 35/S)-methionine showed that between 18 and 27 hours of ethylene treatment a 2.5 fold increase in translational efficiency occurred for one message studied. The resulting protein is the predominant protein synthesized in carrots treated with ethylene for 27 hours. Thus, ethylene exerts multiple regulatory controls on the expression of genetic information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosatelli, M.C.; Faa, V.; Sardu, R.
This study reports the molecular characterization of [beta]-thalassemia in the Sardinian population. Three thousand [beta]-thalassemia chromosomes from prospective parents presenting at the genetic service were initially analyzed by dot blot analysis with oligonucleotide probes complementary to the most common [beta]-thalassemia mutations in the Mediterranean at-risk populations. The mutation which remained uncharacterized by this approach were defined by denaturing gradient gel electrophoresis (DGGE) followed by direct sequence analysis on amplified DNA. The authors reconfirmed that the predominant mutation in the Sardinian population is the codon 39 nonsense mutation, which accounts for 95.7% of the [beta]-thalassemia chromosomes. The other two relatively commonmore » mutations are frameshifts at codon 6 (2.1%) and at codon 76 (0.7%), relatively uncommon in other Mediterranean-origin populations. In this study they have detected a novel [beta]-thalassemia mutation, i.e., a frameshift at codon 1, in three [beta]-thalassemia chromosomes. The DGGE procedure followed by direct sequencing on amplified DNA is a powerful approach for the characterization of unknown mutations in this genetic system.« less
Tawde, Pallavi; Venkatesh, Yeldur P; Wang, Fang; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H
2006-10-01
The identity of allergenic almond proteins is incomplete. Our objective was to characterize patient IgE reactivity to a recombinant and corresponding native almond allergen. An almond cDNA library was screened with sera from patients with allergy for IgE binding proteins. Two reactive clones were sequenced, and 1 was expressed. The expressed recombinant allergen and its native counterpart (purified from unprocessed almond flour) were assayed by 1-dimensional and 2-dimensional gel electrophoresis, dot blot, and ELISA, and screened for cross-reactivity with grass profilin. The 2 selected clones encoded profilin (designated Pru du 4) sequences that differed by 2 silent mutations. By dot-blot analyses, 6 of 18 patient sera (33%) reacted with the recombinant Pru du 4 protein, and 8 of 18 (44%) reacted with the native form. ELISA results were similar. Almond and ryegrass profilins were mutually inhibitable. Two-dimensional immunoblotting revealed the presence of more than 1 native almond profilin isoform. The strength of reactivity of some patients' serum IgE differed markedly between assays and between native and recombinant profilins. Almond nut profilin is an IgE-binding food protein that is cross-reactive with grass pollen profilin and is susceptible to denaturation, resulting in variable reactivity between assay types and between patients. Serum IgE of nearly half of the tested patients with almond allergy reacts with almond nut profilin. Because most patients also had pollinosis, the well-known cross-reactivity between pollen and food profilins could account for this pattern of reactivity.
Cloning and characterization of 2S albumin, Car i 1, a major allergen in pecan.
Sharma, Girdhari M; Irsigler, Andre; Dhanarajan, Pushparani; Ayuso, Rosalia; Bardina, Luda; Sampson, Hugh A; Roux, Kenneth H; Sathe, Shridhar K
2011-04-27
Although pecans are associated with IgE-mediated food allergies, the allergens responsible remain to be identified and characterized. The 2S albumin gene was amplified from the pecan cDNA library. Dot-blots were used to screen the recombinant protein with pecan allergic patients' serum. The affinity purified native protein was analyzed by Edman sequencing and mass spectrometry/mass spectrometry (MS/MS) analysis. Cross-reactivity with walnut was determined by inhibition enzyme-linked immunosorbent assay (ELISA). Sequential epitopes were determined by probing the overlapping peptides with three different patients' serum pool. The 3-dimensional homology model was generated, and the locations of the pecan epitopes were compared with those of known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot-blot, 22 (79%) bound to 2S albumin, designated as Car i 1. Edman sequencing and the MS/MS sequencing of native 2S albumin confirmed the identity of recombinant (r) Car i 1. Both pecan and walnut protein extracts inhibited the IgE-binding to rCar i 1. Sequential epitope mapping indicated weak, moderate, and strong reactivity against 12, 7, and 5 peptides, respectively. Of the 11 peptides recognized by all serum pools, 5 peptides were strongly reactive and located in 3 discrete regions of the Car i 1 (amino acids 43-57, 67-78, and 106-120). Three-dimensional modeling revealed IgE-reactive epitopes to be solvent accessible and share significant homology with other tree nuts providing a possible basis for previously observed cross-reactivity.
49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?
Code of Federal Regulations, 2010 CFR
2010-10-01
... drugs, and a laboratory is prohibited from making a DOT urine specimen available for a DNA test or other... a blood or urine specimen collected by the employee's physician or a DNA test result purporting to...
49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?
Code of Federal Regulations, 2011 CFR
2011-10-01
... drugs, and a laboratory is prohibited from making a DOT urine specimen available for a DNA test or other... a blood or urine specimen collected by the employee's physician or a DNA test result purporting to...
49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?
Code of Federal Regulations, 2012 CFR
2012-10-01
... drugs, and a laboratory is prohibited from making a DOT urine specimen available for a DNA test or other... a blood or urine specimen collected by the employee's physician or a DNA test result purporting to...
49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?
Code of Federal Regulations, 2014 CFR
2014-10-01
... drugs, and a laboratory is prohibited from making a DOT urine specimen available for a DNA test or other... a blood or urine specimen collected by the employee's physician or a DNA test result purporting to...
49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?
Code of Federal Regulations, 2013 CFR
2013-10-01
... drugs, and a laboratory is prohibited from making a DOT urine specimen available for a DNA test or other... a blood or urine specimen collected by the employee's physician or a DNA test result purporting to...
Quantitation of Protein Carbonylation by Dot Blot
Wehr, Nancy B.; Levine, Rodney L.
2012-01-01
Protein carbonylation is the most commonly used measure of oxidative modification of proteins. It is frequently measured spectrophotometrically or immunochemically by derivatizing proteins with the classical carbonyl reagent, 2,4-dinitrophenylhydrazine. We developed an immunochemical dot blot method for quantitation of protein carbonylation in homogenates or purified proteins. Dimethyl sulfoxide was employed as the solvent because it very efficiently extracts proteins from tissues and keeps them soluble. It also readily dissolves 2,4-dinitrophenylhydrazine and wets PVDF membranes. The detection limit is 0.19 ± 0.04 pmol carbonyl. Sixty ng protein is sufficient to measure protein carbonyl content. This level of sensitivity allowed measurement of protein carbonylation in individual Drosophila. PMID:22326366
Reimer, D L; Kong, S; Monck, M; Wyles, J; Tam, P; Wasan, E K; Bally, M B
1999-05-01
The transfer of plasmid expression vectors to cells is essential for transfection after administration of lipid-based DNA formulations (lipoplexes). A murine i.p. B16/BL6 tumor model was used to characterize DNA delivery, liposomal lipid delivery, and gene transfer after regional (i.p.) administration of free plasmid DNA and DNA lipoplexes. DNA lipoplexes were prepared using cationic dioleoyldimethylammonium chloride/dioleoylphosphatidylethanolamine (50:50 mol ratio) liposomes mixed with plasmid DNA (1 microgram DNA/10 nmol lipid). The plasmid used contained the chloramphenicol acetyltransferase gene and chloramphenicol acetyltransferase expression (mU/g tumor) was measured to estimate transfection efficiency. Tumor-associated DNA and liposomal lipid levels were measured to estimate the efficiency of lipid-mediated DNA delivery to tumors. Plasmid DNA delivery was estimated using [3H]-labeled plasmid as a tracer, dot blot analysis, and/or Southern analysis. Liposomal lipid delivery was estimated using [14C]-dioleoylphosphatidylethanolamine as a liposomal lipid marker. Gene expression in the B16/BL6 tumors was highly variable, with values ranging from greater than 2,000 mU/g tumor to less than 100 mU/g tumor. There was a tendency to observe enhanced transfection in small (<250 mg) tumors. Approximately 18% of the injected dose of DNA was associated with these small tumors 2 h after i.p. administration. Southern analysis of extracted tumor DNA indicated that plasmid DNA associated with tumors was intact 24 h after administration. DNA and associated liposomal lipid are efficiently bound to tumors after regional administration; however, it is unclear whether delivery is sufficient to abet internalization and appropriate subcellular localization of the expression vector.
ERIC Educational Resources Information Center
Millar, Thomas James; Knighton, Ronald; Chuck, Jo-Anne
2012-01-01
Immunological detection of proteins is an essential method to demonstrate to undergraduate biology students, however, is often difficult in resource and time poor student laboratory sessions. This method describes a failsafe method to rapidly and economically demonstrate this technique using biotinylated proteins or biotin itself as targets for…
Shiokai, Sachiko; Kitashiba, Hiroyasu; Nishio, Takeshi
2010-08-01
Although the dot-blot-SNP technique is a simple cost-saving technique suitable for genotyping of many plant individuals, optimization of hybridization and washing conditions for each SNP marker requires much time and labor. For prediction of the optimum hybridization conditions for each probe, we compared T (m) values estimated from nucleotide sequences using the DINAMelt web server, measured T (m) values, and hybridization conditions yielding allele-specific signals. The estimated T (m) values were comparable to the measured T (m) values with small differences of less than 3 degrees C for most of the probes. There were differences of approximately 14 degrees C between the specific signal detection conditions and estimated T (m) values. Change of one level of SSC concentrations of 0.1, 0.2, 0.5, and 1.0x SSC corresponded to a difference of approximately 5 degrees C in optimum signal detection temperature. Increasing the sensitivity of signal detection by shortening the exposure time to X-ray film changed the optimum hybridization condition for specific signal detection. Addition of competitive oligonucleotides to the hybridization mixture increased the suitable hybridization conditions by 1.8. Based on these results, optimum hybridization conditions for newly produced dot-blot-SNP markers will become predictable.
Thiruppathiraja, Chinnasamy; Kamatchiammal, Senthilkumar; Adaikkappan, Periyakaruppan; Alagar, Muthukaruppan
2011-07-15
The zoonotic protozoan parasite Cryptosporidium parvum poses a significant risk to public health. Due to the low infectious dose of C. parvum, remarkably sensitive detection methods are required for water and food industries analysis. However PCR affirmed sensing method of the causative nucleic acid has numerous advantages, still criterion demands for simple techniques and expertise understanding to extinguish its routine use. In contrast, protein based immuno detecting techniques are simpler to perform by a commoner, but lack of sensitivity due to inadequate signal amplification. In this paper, we focused on the development of a mere sensitive immuno detection method by coupling anti-cyst antibody and alkaline phosphatase on gold nanoparticle for C. parvum is described. Outcome of the sensitivity in an immuno-dot blot assay detection is enhanced by 500 fold (using conventional method) and visually be able to detect up to 10 oocysts/mL with minimal processing period. Techniques reported in this paper substantiate the convenience of immuno-dot blot assay for the routine screening of C. parvum in water/environmental examines and most importantly, demonstrates the potential of a prototype development of simple and inexpensive diagnostic technique. Copyright © 2011 Elsevier B.V. All rights reserved.
Study of light signal receptor of Stephanopyxis palmeriana during sexual reproduction
NASA Astrophysics Data System (ADS)
Hu, Ren; Lin, Junmin; Lin, Qiuqi; Han, Boping
2005-09-01
We collected centric diatom Stephanopyxis palmeriana samples in coastal waters of Xiamen for characteristic red light/far red light (R/FR) phytochrome reactions to identify its photoreceptor in the course of sexual reproduction. The result showed that pre-illumination of 2 3h red light before darkness could induce sexualization of S. palmeriana, while the follow-up illumination of far red light could reverse the effect of red light, which is a featured reaction of phytochrome. The Southern Dot Blot was carried out to identify the type of phytochrome that induces the sexualization. The result also showed high homogeneity of DNA fragment of S. palmeriana with phyB, but phyA. This means the photoreceptor in the process of sexual reproduction of S. palmeriana is phytochrome B (phyB).
NASA Astrophysics Data System (ADS)
Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo
2016-04-01
We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.
The biology of human cytomegalovirus infection after bone marrow transplantation.
Zaia, J A
1986-01-01
Human cytomegalovirus (HCMV) infection remains the most common infectious cause of morbidity after bone marrow transplantation (BMT). In a prospective study of 127 BMT recipients who received blood cultures for HCMV between days 28 to 105 after marrow grafting, HCMV viremia occurred in 68 patients (53.4%). Twenty patients (15.7%) had one or two positive cultures, and 48 (37.7%) had greater than or equal to three positive cultures. Fifty-nine patients (46.4%) had no viremia. HCMV-associated interstitial pneumonia (HCMV-IP) occurred in one-third of the viremic patients. Quantitative measurements of infectious HCMV or of HCMV DNA in lung tissue were made to determine whether HCMV replication correlated with clinical disease. Using DNA probes, viral DNA was measured by dot-blot hybridization, and this correlated with infectious HCMV. However, neither HCMV DNA nor HCMV viral titer correlated with time from the onset of pneumonia to death. The hypothesis is presented that HCMV-IP is caused by immunologic events induced after HCMV infection. In this model HCMV alterations in recipient cell surfaces induce donor alloreactivity to minor histocompatibility differences and lead to the subsequent pneumonitis which we term HCMV-IP. This model suggests that prevention of HCMV-IP will require early use of antiviral therapy or late use of immune response modification.
Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.
Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni
2017-03-22
We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.
Wang, Ting; Zheng, Zhenhua; Zhang, Xian-En; Wang, Hanzhong
2016-09-01
Ectromelia virus (ECTV) is an pathogen that can lead to a lethal, acute toxic disease known as mousepox in mice. Prevention and control of ECTV infection requires the establishment of a rapid and sensitive diagnostic system for detecting the virus. In the present study, we developed a method of quantum-dot-fluorescence based in situ hybridisation for detecting ECTV genome DNA. Using biotin-dUTP to replace dTTP, biotin was incorporated into a DNA probe during polymerase chain reaction. High sensitivity and specificity of ECTV DNA detection were displayed by fluorescent quantum dots based on biotin-streptavidin interactions. ECTV DNA was then detected by streptavidin-conjugated quantum dots that bound the biotin-labelled probe. Results indicated that the established method can visualise ECTV genomic DNA in both infected cells and mouse tissues. To our knowledge, this is the first study reporting quantum-dot-fluorescence based in situ hybridisation for the detection of viral nucleic acids, providing a reference for the identification and detection of other viruses. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gui, Rijun; Jin, Hui; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Yang, Min; Bi, Sai; Xia, Yanzhi
2015-04-01
Room-temperature phosphorescence (RTP) logic gates were developed using capture ssDNA (cDNA) modified carbon dots and graphene oxide (GO). The experimental results suggested the feasibility of these developed RTP-based ``OR'', ``INHIBIT'' and ``OR-INHIBIT'' logic gate operations, using Hg2+, target ssDNA (tDNA) and doxorubicin (DOX) as inputs.Room-temperature phosphorescence (RTP) logic gates were developed using capture ssDNA (cDNA) modified carbon dots and graphene oxide (GO). The experimental results suggested the feasibility of these developed RTP-based ``OR'', ``INHIBIT'' and ``OR-INHIBIT'' logic gate operations, using Hg2+, target ssDNA (tDNA) and doxorubicin (DOX) as inputs. Electronic supplementary information (ESI) available: All experimental details, Part S1-3, Fig. S1-6 and Table S1. See DOI: 10.1039/c4nr07620f
Quantitation of protein carbonylation by dot blot.
Wehr, Nancy B; Levine, Rodney L
2012-04-15
Protein carbonylation is the most commonly used measure of oxidative modification of proteins. It is frequently measured spectrophotometrically or immunochemically by derivatizing proteins with the classical carbonyl reagent, 2,4-dinitrophenylhydrazine. We developed an immunochemical dot blot method for quantitation of protein carbonylation in homogenates or purified proteins. Dimethyl sulfoxide was employed as the solvent because it very efficiently extracts proteins from tissues and keeps them soluble. It also readily dissolves 2,4-dinitrophenylhydrazine and wets polyvinylidene difluoride (PVDF) membranes. The detection limit is 0.19 ± 0.04 pmol of carbonyl, and 60 ng of protein is sufficient to measure protein carbonyl content. This level of sensitivity allowed measurement of protein carbonylation in individual Drosophila. Copyright © 2012 Elsevier Inc. All rights reserved.
Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li
2010-08-01
Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.
Srinivasan, K; Subramanian, K; Murugan, K; Dinakaran, K
2016-10-24
A rapid and sensitive fluorescent sensor based on the MoS 2 nanosheet/DNA/carbon dot nanoassembly has been developed towards the detection of mercury(ii) present in environmental samples. Bio-carbon dots (CDs) having strong fluorescence maxima at 451 nm were synthesized via one-step treatment with honey under low temperature carbonization. These CDs were nearly spherical with good size distribution and excellent monodispersity, and the average sizes of CD were around 2-4 nm as evidenced from transmission electron microscopy. The conjugation of DNA strands on the surface of the carbon dots provided an efficient fluorescent probe. The fluorescence of the MoS 2 nanosheet/DNA/carbon dot nanoassembly enhanced gradually with the increase in the concentration of Hg 2+ ions and the detection limit was found to be 1.02 nM. Furthermore, the fluorescence intensity was found to be linear with the concentration of Hg 2+ ions in the range from 0 to 10 nM and their respective coefficient of determination was found to be 0.93676 and 0.98178. The present MoS 2 nanosheet/DNA/carbon dot nanoassembly is highly selective toward Hg 2+ ions over a wide range of metal ions tested.
Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun
2018-01-01
A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.
Phosphorylation of human INO80 is involved in DNA damage tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Dai; Waki, Mayumi; Umezawa, Masaki
Highlights: Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced PCNA ubiquitination. Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. Black-Right-Pointing-Pointer Western blot analyses showed phosphorylated hINO80 C-terminus. Black-Right-Pointing-Pointer Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in themore » DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.« less
Association of HSP70 and genotoxic damage in lymphocytes of workers exposed to coke-oven emission
Xiao, Chengfeng; Chen, Sheng; Li, Jizhao; Hai, Tao; Lu, Qiaofa; Sun, Enling; Wang, Ruibo; Tanguay, Robert M.; Wu, Tangchun
2002-01-01
Heat shock proteins (Hsps) have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli. Whether they protect against deoxyribonucleic acid (DNA) damage in individuals exposed to environmental stresses and chemical carcinogens is unknown. In the study, we investigated the association between Hsp70 levels (the most abundant mammalian Hsp) and genotoxic damage in lymphocytes of workers exposed to coke-oven emission using Western dot blot and 2 DNA damage assays, the comet assay and the micronucleus test. The data show that there is a significant increase in Hsp70 levels, DNA damage score, and micronucleus rates in lymphocytes of workers exposed to coke-oven emission as compared with the control subjects. Furthermore, there was a significant negative correlation of Hsp70 levels with DNA damage scores in the comet assay (r = −0.663, P < 0.01) and with micronucleus rates (r = −0.461, P < 0.01) in the exposed group. In the control group, there was also a light negative correlation between Hsp70 with DNA damage and micronuclei rate (r = −0.236 and r = 0.242, respectively), but it did not reach a statistically significant level (P > 0.05). Our results show that individuals who had high Hsp70 levels generally showed lower genotoxic damage than others. These results suggest a role of Hsp70 in the protection of DNA from genotoxic damage induced by coke-oven emission. PMID:12653484
Orłowska, Marta; Kowalska, Teresa; Sajewicz, Mieczysław; Jesionek, Wioleta; Choma, Irena M; Majer-Dziedzic, Barbara; Szymczak, Grażyna; Waksmundzka-Hajnos, Monika
2015-01-01
Bioautography carried out with the aid of thin-layer chromatographic adsorbents can be used to assess antibacterial activity in samples of different origin. It can either be used as a simple and cost-effective detection method applied to a developed chromatogram, or to the dot blot test performed on a chromatographic plate, where total antibacterial activity of a sample is scrutinized. It was an aim of this study to compare antibacterial activity of 18 thyme (Thymus) specimens and species (originating from the same gardening plot and harvested in the same period of time) by means of a dot blot test with direct bioautography. A two-step extraction of herbal material was applied, and at step two the polar fraction of secondary metabolites was obtained under the earlier optimized extraction conditions [methanol-water (27+73, v/v), 130°C]. This fraction was then tested for its antibacterial activity against Bacillus subtilis bacteria. It was established that all investigated extracts exhibited antibacterial activity, yet distinct differences were perceived in the size of the bacterial growth inhibition zones among the compared thyme species. Based on the results obtained, T. citriodorus "golden dwarf" (sample No. 5) and T. marschallianus (sample No. 6) were selected as promising targets for further investigations and possible inclusion in a herbal pharmacopeia, which is an essential scientific novelty of this study.
Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karger, A.E.; Weiss, R.; Gesteland, R.F.
A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less
Huguet, S; Sghiri, R; Ballot, E; Johanet, C
2004-01-01
The Cyto-Dot 4 HM043 kit commercialised by BMD, has replaced the Cyto-Dot HM010 kit that allowed three auto-antibodies detection (anti-Jo-1, anti-M2 and anti-ribosomal protein). Detection of anti-LKM1 auto-antibody was added. These four auto-antibodies have in common only the intracytoplasmic localisation of their respective antigen. The aim of our study was to evaluate this new kit using 104 sera and to compare our results with reference techniques (indirect immunofluorescence IF for anti-M2, anti-ribosomal protein and anti-LKM1, double immunodiffusion ID for anti-Jo-1 and anti-LKM1, western blotting WB for anti-M2) and with Cyto-Dot HM010. The one hundred and four sera were divided into five groups: Group I (n = 12) with anti-Jo-1 detected by ID; Group II (n = 28) with 26 anti-M2 positive by IF and WB, 2 anti-M2 positive only by WB; Group III (n = 10) with anti-ribosomal protein detected by IF 5 of which precipitated by ID; Group IV (n = 32) with anti-LKM1 by IF and ID divided into 18 AIH2 and 14 HCV; Group V (n = 22) consisting of 14 healthy individuals and 8 patients with hypergammaglobulinemia. Results of this study are similar to those of Cyto-Dot HM010 for the three auto-antibodies already in use. Cyto-Dot 4 is a very good anti-LKM1 confirmation method as it is ID. Copyright John Libbey Eurotext 2003.
Khakbaz, Faeze; Mahani, Mohamad
2017-04-15
Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Yi; Zhao, Yuanyuan; Qiu, Xuehong; Han, Richou
2013-08-01
Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) termites are harmful social insects to wood constructions. The current control methods heavily depend on the chemical insecticides with increasing resistance. Analysis of the differentially expressed genes mediated by chemical insecticides will contribute to the understanding of the termite resistance to chemicals and to the establishment of alternative control measures. In the present article, a full-length cDNA library was constructed from the termites induced by a mixture of commonly used insecticides (0.01% sulfluramid and 0.01% triflumuron) for 24 h, by using the RNA ligase-mediated Rapid Amplification cDNA End method. Fifty-eight differentially expressed clones were obtained by polymerase chain reaction and confirmed by dot-blot hybridization. Forty-six known sequences were obtained, which clustered into 33 unique sequences grouped in 6 contigs and 27 singlets. Sixty-seven percent (22) of the sequences had counterpart genes from other organisms, whereas 33% (11) were undescribed. A Gene Ontology analysis classified 33 unique sequences into different functional categories. In general, most of the differential expression genes were involved in binding and catalytic activity.
Yáñez, R J; Boursnell, M; Nogal, M L; Yuste, L; Viñuela, E
1993-01-01
A random sequencing strategy applied to two large SalI restriction fragments (SB and SD) of the African swine fever virus (ASFV) genome revealed that they might encode proteins similar to the two largest RNA polymerase subunits of eukaryotes, poxviruses and Escherichia coli. After further mapping by dot-blot hybridization, two large open reading frames (ORFs) were completely sequenced. The first ORF (NP1450L) encodes a protein of 1450 amino acids with extensive similarity to the largest subunit of RNA polymerases. The second one (EP1242L) codes for a protein of 1242 amino acids similar to the second largest RNA polymerase subunit. Proteins NP1450L and EP1242L are more similar to the corresponding subunits of eukaryotic RNA polymerase II than to those of vaccinia virus, the prototype poxvirus, which shares many functional characteristics with ASFV. ORFs NP1450L and EP1242L are mainly expressed late in ASFV infection, after the onset of DNA replication. Images PMID:8506138
Yan, Xiaofei; Wu, Litao; DU, Xiaojuan; Li, Jing; Zhang, Fujun; Han, Yan; Lyu, Shemin; Li, Dongmin
2016-12-01
Objective To prepare monoclonal antibodies against DR region (897DVEDSYGQQWTYEQR911) of Na + -K + -ATPase α1 subunit and identify their properties. Methods BALB/c mice were immunized with DR-keyholelimpet hemocyanin (KLH). Splenocytes from the immunized mice were collected and subsequently fused with SP2/0 mouse myeloma cells. Positive hybridoma clones were obtained after cell fusion and selection. ELISA was used to detect DR antibody titer in the cell supernatants. DR region-specific monoclonal antibodies were analyzed by dot blotting, Western blotting and immunofluorescence assay. Na + -K + -ATPase activity was detected by SensoLyte R FDP Protein Phosphatase Assay Kit and the protective effect of the monoclonal antibody against high glucose-induced cell injury was assessed in H9c2 cells. Results Three hybridoma cell lines which secreted stable DR monoclonal antibody were obtained. The strongest positive cell line, named DRm217, was selected to prepare ascites. Dot blotting, Western blotting and immunofluorescence assay showed that DRm217 recognized specially DR region of Na + -K + -ATPase and bound on H9c2 cell membranes. DRm217 stimulated Na + -K + -ATPase activity and alleviated high glucose-induced H9c2 cells injury. Conclusion The monoclonal antibodies against DR region of Na + -K + -ATPase α1 subunit is prepared.
Albuquerque, Pedro; Ribeiro, Niza; Almeida, Alexandre; Panschin, Irena; Porfirio, Afonso; Vales, Marta; Diniz, Francisca; Madeira, Helena; Tavares, Fernando
2017-01-01
Streptococcus uberis is considered one of the most important pathogens associated with bovine mastitis. While traditionally acknowledged as an environmental pathogen, S. uberis has been shown to adopt a contagious epidemiological pattern in several dairy herds. Since different control strategies are employed depending on the mode of transmission, in-depth studies of S. uberis populations are essential to determine the best practices to control this pathogen. In this work, we optimized and validated a dot blot platform, combined with automatic image analysis, to rapidly assess the population structure of infective S. uberis, and evaluated its efficiency when compared to multilocus sequence analysis (MLSA) genotyping. Two dairy herds with prevalent S. uberis infections were followed in a 6 month period, in order to collect and characterize isolates from cows with persistent infections. These herds, located in Portugal (Barcelos and Maia regions), had similar management practices, with the herd from Barcelos being smaller and having a better milking parlor management, since infected cow segregation was immediate. A total of 54 S. uberis isolates were obtained from 24 different cows from the two herds. To overcome operator-dependent analysis of the dot blots and increase the technique's consistency and reliability, the hybridization signals were converted into probability values, with average probabilities higher than 0.5 being considered positive results. These data allowed to confirm the isolates' identity as S. uberis using taxa-specific markers and to determine the presence of virulence- and antibiotic resistance-related genes. In addition, MLSA allowed to disclose the most prevalent S. uberis clonal lineages in both herds. Seven different clusters were identified, with Barcelos showing a high clonal diversity and Maia a dominant lineage infecting most cows, suggesting distinct epidemiological patterns, with S. uberis displaying an environmental or contagious transmission pattern depending on the herd. Overall, this work showed the utility of dot blot and MLSA to characterize population structure and epidemiological patterns of mastitis-causing S. uberis. This approach allowed to disclose prevalent virulence patterns and clonal lineages of S. uberis in two distinct herds, and gain insights on the impact of herd management practices on pathogen population structure. PMID:28174566
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaid, Mudit; Prasad, Ram; Singh, Tripti
Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). Wemore » found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin cancer cells. ►Grape seed proanthocyanidins can prevent skin cancer through epigenetic modulation.« less
Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G
2016-03-01
In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.
Biosensors for plant pathogen detection.
Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben
2017-07-15
Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.
Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui
2014-12-01
Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, A M; Schindler, D; Desnick, R
1990-01-01
Schindler disease is a recently recognized infantile neuroaxonal dystrophy resulting from the deficient activity of the lysosomal hydrolase, alpha-N-acetylgalctosaminidase (alpha-GalNAc). The recent isolation and expression of the full-length cDNA encoding alpha-GalNAc facilitated the identification of the molecular lesions in the affected brothers from family D, the first cases described with this autosomal recessive disease. Southern and Northern hybridization analyses of DNA and RNA from the affected homozygotes revealed a grossly normal alpha-GalNAc gene structure and normal transcript sizes and amounts. Therefore, the alpha-GalNAc transcript from an affected homozygote was reverse-transcribed, amplified by the polymerase chain reaction (PCR), and sequenced. A single G to A transition at nucleotide 973 was detected in multiple subclones containing the PCR products. This point mutation resulted in a glutamic acid to lysine substitution in residue 325 (E325K) of the alpha-GalNAc polypeptide. The base substitution was confirmed by dot blot hybridization analyses of PCR-amplified genomic DNA from family members with allele-specific oligonucleotides. Furthermore, transient expression of an alpha-GalNAc construct containing the E325K mutation resulted in the expression of an immunoreactive polypeptide which had no detectable alpha-GalNAc activity. Images PMID:2243144
Long-range energy transfer in self-assembled quantum dot-DNA cascades
NASA Astrophysics Data System (ADS)
Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant
2015-11-01
The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04778a
Comparison of camelpox viruses isolated in Dubai.
Pfeffer, M; Meyer, H; Wernery, U; Kaaden, O R
1996-03-01
Between October 1993 and March 1994, outbreaks of pox-like exanthemas were observed in several camel raising farms in Dubai. Scabs from twenty camels with either local or generalized lesions were examined, seven of them had previously been vaccinated with a modified live camelpox virus vaccine. Inspection of scabs by electron microscopy confirmed an infection with orthopox viruses (OPV) in 10 animals and with parapox virus in one camel. Investigation of the scabs by polymerase chain reaction and dot blot assay revealed the presence of OPV in 15 or 13 samples, respectively. OPV could be isolated in cell culture in 14 cases. Restriction enzyme profiles characterized all isolates as camelpox virus. Their DNA patterns were virtually identical displaying only slight variations in the terminal fragments. In contrast, the vaccine strain showed a distinct restriction enzyme profile, indicating that it was not involved in the infections.
Effects of emodin on the demethylation of tumor-suppressor genes in pancreatic cancer PANC-1 cells.
Zhang, Hao; Chen, Liang; Bu, He-Qi; Yu, Qing-Jiang; Jiang, Dan-Dan; Pan, Feng-Ping; Wang, Yu; Liu, Dian-Lei; Lin, Sheng-Zhang
2015-06-01
Emodin, a natural anthraquinone derivative isolated from Rheum palmatum, has been reported to inhibit the growth of pancreatic cancer cells through different modes of action; yet, the detailed mechanism remains unclear. In the present study, we hypothesized that emodin exerts its antitumor effect by participating in the regulation of the DNA methylation level. Our research showed that emodin inhibited the growth of pancreatic cancer PANC-1 cells in a dose- and time-dependent manner. Dot-blot results showed that 40 µM emodin significantly inhibited genomic 5 mC expression in the PANC-1 cells, and mRNA-Seq showed that different concentrations of emodin could alter the gene expression profile in the PANC-1 cells. BSP confirmed that the methylation levels of P16, RASSF1A and ppENK were decreased, while concomitantly the unmethylated status was increased. RT-PCR and western blotting results confirmed that the low expression or absence of expression of mRNA and protein in the PANC-1 cells was re-expressed following treatment with emodin. In conclusion, our study for the first time suggests that emodin inhibits pancreatic cancer cell growth, which may be related to the demethylation of tumor-suppressor genes. The related mechanism may be through the inhibition of methyltransferase expression.
Chen, Rongchang; Shi, Jing; Cai, Kun; Tu, Wei; Hou, Xiaojun; Liu, Hao; Xiao, Le; Wang, Qin; Tang, Yunming; Wang, Hui
2010-05-01
Botulinum neurotoxin serotype A (BoNT/A) is an extremely potent bacterial protein toxin. The Hc fragment of BoNT/A (AHc) was shown to be non-toxic, antigenic, and capable of eliciting a protective immunity in animals challenged with homologous BoNT. In this study, we synthesized AHc gene by using T4 DNA ligase and PCR. The AHc was expressed at a high level in Escherichia coli successfully. Because of using the Trx co-expression strain, the expressed AHc is in a soluble and active form. The yield of the purified AHc was about 70mg/L, and its purity was up to 90% through one-step affinity chromatography. The AHc was positively identified by the antibodies raised against BoNT/A using immunological-dot-blot and Western blot assays. AHc was shown to bind with gangliosides and elicit immunity against BoNT/A, indicating that the expressed and purified AHc protein retains a functionally active conformation. Furthermore, the purified AHc has a strong immunogenicity and can be used as a potential subunit candidate vaccine for botulinum toxin serotype A. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Genes up-regulated during red coloration in UV-B irradiated lettuce leaves.
Park, Jong-Sug; Choung, Myoung-Gun; Kim, Jung-Bong; Hahn, Bum-Soo; Kim, Jong-Bum; Bae, Shin-Chul; Roh, Kyung-Hee; Kim, Yong-Hwan; Cheon, Choong-Ill; Sung, Mi-Kyung; Cho, Kang-Jin
2007-04-01
Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3',5'-hydroxylase (F3',5'H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.
Magnetic bead-quantum dot assay for detection of a biomarker for traumatic brain injury
NASA Astrophysics Data System (ADS)
Kim, Chloe; Searson, Peter C.
2015-10-01
Current diagnostic methods for traumatic brain injury (TBI), which accounts for 15% of all emergency room visits, are limited to neuroimaging modalities. The challenges of accurate diagnosis and monitoring of TBI have created the need for a simple and sensitive blood test to detect brain-specific biomarkers. Here we report on an assay for detection of S100B, a putative biomarker for TBI, using antibody-conjugated magnetic beads for capture of the protein, and antibody-conjugated quantum dots for optical detection. From Western Blot, we show efficient antigen capture and concentration by the magnetic beads. Using magnetic bead capture and quantum dot detection in serum samples, we show a wide detection range and detection limit below the clinical cut-off level.Current diagnostic methods for traumatic brain injury (TBI), which accounts for 15% of all emergency room visits, are limited to neuroimaging modalities. The challenges of accurate diagnosis and monitoring of TBI have created the need for a simple and sensitive blood test to detect brain-specific biomarkers. Here we report on an assay for detection of S100B, a putative biomarker for TBI, using antibody-conjugated magnetic beads for capture of the protein, and antibody-conjugated quantum dots for optical detection. From Western Blot, we show efficient antigen capture and concentration by the magnetic beads. Using magnetic bead capture and quantum dot detection in serum samples, we show a wide detection range and detection limit below the clinical cut-off level. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05608j
Fonseca, M E; Marcellino, L H; Gander, E
1996-04-05
A rapid and sensitive dot-blot hybridization assay using in vitro-transcribed digoxigenin-labelled RNA probes (riboprobes) was developed aiming at detection of citrus exocortis viroid (CEVd) in crude sap of infected Citrus medica plants. The protocol includes a very quick and simple preparation of RNA extracts from samples using a denaturation step with formaldehyde. From our results, the employment of this step is highly recommended because the hybridization signals in formaldehyde-denatured samples were significantly stronger when compared with that of extracts without formaldehyde treatment. The assay was found to be sensitive enough to detect 0.1 ng of purified CEVd RNA and was able to detect viroid in 0.2 mg of symptomatic Citrus medica leaves. The use of riboprobes also allowed hybridization under high temperature conditions, avoiding non-specific background.
Ivo-Dos-Santos, J; Mello, D L; Couto-Fernandez, J C; Passos, R M; Dias-Carneiro, L A; Castilho, E A; Galvão-Castro, B
1990-01-01
Sera from 472 Brazilian subjects, confirmed to be either positive or negative for HIV antibodies and comprising the total clinical spectrum of HIV infection, were utilized in the evaluation of six commercially available enzyme-linked immunosorbent assays (ELISA), as well as of four alternative assays, namely indirect immunofluorescence (IIF), passive hemagglutination (PHA), dot blot and Karpas AIDS cell test. The sensitivities ranged from 100% (Abbott and Roche ELISA) to 84.2% (PHA) and the specificities ranged from 99.3% (IIF) to 80.2% (PHA). The sensitivity and specificity of the PHA and the sensitivity of the Karpas cell test were significantly lower than those of the other tests. Although the IFF and dot blot had good sensitivities and specificities, the six ELISA were more attractive than those tests when other parameters such as ease of reading and duration of assay were considered.
Fahrimal, Y; Goff, W L; Jasmer, D P
1992-01-01
Carrier cattle infected with Babesia bovis are difficult to detect because of the low numbers of parasites that occur in peripheral blood. However, diagnosis of low-level infections with the parasite is important for evaluating the efficacies of vaccines and in transmission and epidemiological studies. We used the polymerase chain reaction (PCR) to amplify a portion of the apocytochrome b gene from the parasite and tested the ability of this method to detect carrier cattle. The target sequence is associated with a 7.4-kb DNA element in undigested B. bovis genomic DNA (as shown previously), and the amplified product was detected by Southern and dot blot hybridization. The assay was specific for B. bovis, since no amplification was detected with Babesia bigemina, Trypanosoma brucei, Anaplasma marginale, or leukocyte DNA. The target sequence was amplified in DNA from B. bovis Mexico, Texas, and Australia S and L strains, demonstrating the applicability of the method to strains from different geographic regions. The sensitivity of the method ranged from 1 to 10 infected erythrocytes extracted from 0.5 ml of blood. This sensitivity was about 1,000 times greater than that from the use of unamplified parasite DNA. By the PCR method, six B. bovis carrier cattle were detected 86% of the time (range, 66 to 100%) when they were tested 11 times, while with microscopic examination of thick blood smears, the same carrier cattle were detected only 36% of the time (range, 17 to 66%). The method provides a useful diagnostic tool for detecting B. bovis carrier cattle, and the sensitivity is significantly improved over that of current methods. The results also suggest that characteristics of the apocytchrome b gene may make this a valuable target DNA for PCR-based detection of other hemoparasites. Images PMID:1624551
Torchetti, Enza Maria; Navarro, Beatriz; Di Serio, Francesco
2012-12-01
The spread of viroids belonging to the genus Pospiviroid (family Pospiviroidae), recorded recently in ornamentals and vegetables in several European countries, calls for fast, efficient and sensitive detection methods. Based on bioinformatics analyses of sequence identity among all pospiviroids, a digoxigenin-labeled polyprobe (POSPIprobe) was developed that, when tested by dot-blot and Northern-blot hybridization, detected Potato spindle tuber viroid, Citrus exocortis viroid, Columnea latent viroid, Mexican papita viroid, Tomato planta macho viroid, Tomato apical stunt viroid, Pepper chat fruit viroid and Chrysanthemum stunt viroid. The end-point detection limits of the POSPIprobe ranged from 5(-2) to 5(-4), and from 5(-1) to 5(-3) for nucleic acid preparations obtained by phenol extraction and silica-capture, respectively, similar to those of single probes. Based on sequence identity, the POSPIprobe is expected to detect also the two pospiviroid species not tested in this study (Tomato chlorotic dwarf viroid and Iresine viroid-1). Dot-blot assays with the POSPIprobe were validated by testing 68 samples from tomato, chrysanthemum and argyranthemum infected by different pospiviroids as revealed by RT-PCR, thus confirming the potential of this polyprobe for quarantine, certification and survey programs. Copyright © 2012 Elsevier B.V. All rights reserved.
Luminescent Quantum Dots as Ultrasensitive Biological Labels
NASA Astrophysics Data System (ADS)
Nie, Shuming
2000-03-01
Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.
Otsubo, Ryota; Oikawa, Masahiro; Hirakawa, Hiroshi; Shibata, Kenichiro; Abe, Kuniko; Hayashi, Tomayoshi; Kinoshita, Naoe; Shigematsu, Kazuto; Hatachi, Toshiko; Yano, Hiroshi; Matsumoto, Megumi; Takagi, Katsunori; Tsuchiya, Tomoshi; Tomoshige, Koichi; Nakashima, Masahiro; Taniguchi, Hideki; Omagari, Takeyuki; Itoyanagi, Noriaki; Nagayasu, Takeshi
2014-02-15
We developed an easy, quick and cost-effective detection method for lymph node metastasis called the semi-dry dot-blot (SDB) method, which visualizes the presence of cancer cells with washing of sectioned lymph nodes by anti-pancytokeratin antibody, modifying dot-blot technology. We evaluated the validity and efficacy of the SDB method for the diagnosis of lymph node metastasis in a clinical setting (Trial 1). To evaluate the validity of the SDB method in clinical specimens, 180 dissected lymph nodes from 29 cases, including breast, gastric and colorectal cancer, were examined. Each lymph node was sliced at the maximum diameter and the sensitivity, specificity and accuracy of the SDB method were determined and compared with the final pathology report. Metastasis was detected in 32 lymph nodes (17.8%), and the sensitivity, specificity and accuracy of the SDB method were 100, 98.0 and 98.3%, respectively (Trial 2). To evaluate the efficacy of the SDB method in sentinel lymph node (SLN) biopsy, 174 SLNs from 100 cases of clinically node-negative breast cancer were analyzed. Each SLN was longitudinally sliced at 2-mm intervals and the sensitivity, specificity, accuracy and time required for the SDB method were determined and compared with the intraoperative pathology report. Metastasis was detected in 15 SLNs (8.6%), and the sensitivity, specificity, accuracy and mean required time of the SDB method were 93.3, 96.9, 96.6 and 43.3 min, respectively. The SDB method is a novel and reliable modality for the intraoperative diagnosis of SLN metastasis. © 2013 UICC.
In silico maturation of binding-specificity of DNA aptamers against Proteus mirabilis.
Savory, Nasa; Lednor, Danielle; Tsukakoshi, Kaori; Abe, Koichi; Yoshida, Wataru; Ferri, Stefano; Jones, Brian V; Ikebukuro, Kazunori
2013-10-01
Proteus mirabilis is a prominent cause of catheter-associated urinary tract infections (CAUTIs) among patients undergoing long-term bladder catheterization. There are currently no effective means of preventing P. mirabilis infections, and strategies for prophylaxis and rapid early diagnosis are urgently required. Aptamers offer significant potential for development of countermeasures against P. mirabilis CAUTI and are an ideal class of molecules for the development of diagnostics and therapeutics. Here we demonstrate the application of Cell-SELEX to identify DNA aptamers that show high affinity for P. mirabilis. While the aptamers identified displayed high affinity for P. mirabilis cells in dot blotting assays, they also bound to other uropathogenic bacteria. To improve aptamer specificity for P. mirabilis, an in silico maturation (ISM) approach was employed. Two cycles of ISM allowed the identification of an aptamer showing 36% higher specificity, evaluated as a ratio of binding signal for P. mirabilis to that for Escherichia coli (also a cause of CAUTI and the most common urinary tract pathogen). Aptamers that specifically recognize P. mirabilis would have diagnostic and therapeutic values and constitute useful tools for studying membrane-associated proteins in this organism. Copyright © 2013 Wiley Periodicals, Inc.
Automated design of genomic Southern blot probes
2010-01-01
Background Sothern blotting is a DNA analysis technique that has found widespread application in molecular biology. It has been used for gene discovery and mapping and has diagnostic and forensic applications, including mutation detection in patient samples and DNA fingerprinting in criminal investigations. Southern blotting has been employed as the definitive method for detecting transgene integration, and successful homologous recombination in gene targeting experiments. The technique employs a labeled DNA probe to detect a specific DNA sequence in a complex DNA sample that has been separated by restriction-digest and gel electrophoresis. Critically for the technique to succeed the probe must be unique to the target locus so as not to cross-hybridize to other endogenous DNA within the sample. Investigators routinely employ a manual approach to probe design. A genome browser is used to extract DNA sequence from the locus of interest, which is searched against the target genome using a BLAST-like tool. Ideally a single perfect match is obtained to the target, with little cross-reactivity caused by homologous DNA sequence present in the genome and/or repetitive and low-complexity elements in the candidate probe. This is a labor intensive process often requiring several attempts to find a suitable probe for laboratory testing. Results We have written an informatic pipeline to automatically design genomic Sothern blot probes that specifically attempts to optimize the resultant probe, employing a brute-force strategy of generating many candidate probes of acceptable length in the user-specified design window, searching all against the target genome, then scoring and ranking the candidates by uniqueness and repetitive DNA element content. Using these in silico measures we can automatically design probes that we predict to perform as well, or better, than our previous manual designs, while considerably reducing design time. We went on to experimentally validate a number of these automated designs by Southern blotting. The majority of probes we tested performed well confirming our in silico prediction methodology and the general usefulness of the software for automated genomic Southern probe design. Conclusions Software and supplementary information are freely available at: http://www.genes2cognition.org/software/southern_blot PMID:20113467
Abolhassani, Mohsen; Roux, Kenneth H
2009-06-01
Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, M.C.; Nogueira, C.P.; Bartels, C.F.
1989-02-01
A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for allmore » 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of {sup 32}P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. The authors conclude that the Asp-70 {yields} Gly mutation accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool.« less
Mutation Screening of Her-2, N-ras and Nf1 Genes in Brain Tumor Biopsies.
Yapijakis, Christos; Adamopoulou, Maria; Tasiouka, Konstantina; Voumvourakis, Costas; Stranjalis, George
2016-09-01
A deeper understanding of the complex molecular pathology of brain malignancies is needed in order to develop more effective and targeted therapies of these highly lethal disorders. In an effort to further enlighten the molecular pathology of brain oncogenesis involving the her-2 (erbB-2/neu/ngl)/N-ras/nf1 pathway, we screened the genotypes of specimens from various types of brain tumors. The studied specimens included 35 biopsies of four general categories: 13 neuroglial tumors (4 astrocytomas, 2 oligodendrogliomas, 7 glioblastomas multiforme), 14 meningiomas, 3 other nervous system tumors (2 schwannomas, 1 craniopharyngioma) and 5 metastatic tumors (such as lung carcinomas and chronic myelocytic leukemia). Screening for most common mutations in oncogenes her-2, N-ras and tumor suppressor gene nf1 was conducted with molecular hybridization techniques (Southern blotting, dot blot and single-strand conformational polymorphism (SSCP) analysis, respectively), and was confirmed by DNA sequencing. Gene amplification of her-2 was observed in only two cases (6%), namely in one glioblastoma and in one meningioma. Screening of 3 hot spot codons of the N-ras gene (12, 13 and 61) and subsequent DNA sequencing revealed mutations in 19 biopsies encompassing all categories (54%). Screening for mutations in exons of the nf1 gene by SSCP analysis detected a novel nonsense mutation in exon 31 in a unique case of a glioblastoma biopsy (3%) taken from a patient without neurofibromatosis type I. Activated N-ras appears to be a major oncogene in brain oncogenesis, exhibiting the most important role in the her-2/N-ras/nf1 pathway. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Brown, T
2001-05-01
Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support, resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This unit describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, and subsequent immobilization by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in the second alternate protocol is therefore more rapid and can result in more complete transfer.
Edvardsen, Bente; Dittami, Simon M; Groben, René; Brubak, Sissel; Escalera, Laura; Rodríguez, Francisco; Reguera, Beatriz; Chen, Jixin; Medlin, Linda K
2013-10-01
Dinophysis and Phalacroma species containing diarrheic shellfish toxins and pectenotoxins occur in coastal temperate waters all year round and prevent the harvesting of mussels during several months each year in regions in Europe, Chile, Japan, and New Zealand. Toxicity varies among morphologically similar species, and a precise identification is needed for early warning systems. Molecular techniques using ribosomal DNA sequences offer a means to identify and detect precisely the potentially toxic species. We designed molecular probes targeting the 18S rDNA at the family and genus levels for Dinophysis and Phalacroma and at the species level for Dinophysis acuminata, Dinophysis acuta, and Dinophysis norvegica, the most commonly occurring, potentially toxic species of these genera in Western European waters. Dot blot hybridizations with polymerase chain reaction (PCR)-amplified rDNA from 17 microalgae were used to demonstrate probe specificity. The probes were modified along with other published fluorescence in situ hybridization and PCR probes and tested for a microarray platform within the MIDTAL project ( http://www.midtal.com ). The microarray was applied to field samples from Norway and Spain and compared to microscopic cell counts. These probes may be useful for early warning systems and monitoring and can also be used in population dynamic studies to distinguish species and life cycle stages, such as cysts, and their distribution in time and space.
NASA Astrophysics Data System (ADS)
Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping
2015-12-01
We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d
Wang, Chun-Lei; Zhang, Zhi-Ping; Tonosaki, Kaoru; Kitashiba, Hiroyasu; Nishio, Takeshi
2013-04-01
We report a rapid and reliable method for S genotyping of Rosaceae fruit trees, which would to be useful for successful planting of cross-compatible cultivars in orchards. Japanese plum (Prunus salicina) and sweet cherry (Prunus avium), belonging to the family Rosaceae, possess gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, S-RNase and SFB (S-haplotype-specific F-box gene). For successful planting of cross-compatible cultivars of Rosaceae fruit trees in commercial orchards, it is necessary to obtain information on S genotypes of cultivars. Recently, a method of dot-blot analysis utilizing allele-specific oligonucleotides having sequences of SFB-HVa region has been developed for identification of S haplotypes in Japanese plum and sweet cherry. However, dot-blot hybridization requires considerable time and skill for analysis even of a small number of plant samples. Thus, a quick and efficient method for S genotyping was developed in this study. In this method, instead of a nylon membrane used for dot-blot hybridization, streptavidin-coated magnetic beads are used to immobilize PCR products, which are hybridized with allele-specific oligonucleotide probes. Our improved method allowed us to identify 10 S haplotypes (S-a, S-b, S-c, S-d, S-e, S-f, S-h, S-k, S-7 and S-10) of 13 Japanese plum cultivars and 10 S haplotypes (S-1, S-2, S-3, S-4, S-4', S-5, S-6, S-7, S-9 and S-16) of 13 sweet cherry cultivars utilizing SFB or S-RNase gene polymorphism. This method would be suitable for identification of S genotypes of a small number of plant samples.
Stoian, M; Repanovici, R; Corniţescu, F
1995-01-01
A number of 66 specimens from female cervical lesions were examined for infection with human papillomavirus (HPV) types 6, 11, 16, and 18 by nucleic acid hybridization in dot-blot techniques and 35 sera were tested by the immunodot-blot technique, in order to detect the presence of anti E4 and E7 HPV protein antibodies. The findings were compared with the histologic diagnosis. Fifty-six per cent of specimens contained HPV DNA sequences. In 47% of specimens from cervical carcinoma, HPV 11 was detected in 4 cases, HPV 16 in 21 cases, and HPV 18 in 7 cases. Serum antibodies against HPV 16 E4 and HPV 16 E7 occurred in all the cases of uterine carcinoma, in 4 of 10 cases of CIN I-II, and in 3 of 5 sera obtained from apparently healthy women. The analysis of risk factors disclosed the early onset of sexual activity, a relatively high number of births and abortions before the age of 22 years, the use of oral oestroprogestative contraceptive agents, the presence in anamnesis of genital infections with bacterial flora--Candida albicans, Trichomonas vaginalis, Chlamydia trachomatis, Mycoplasma, etc. Our results showed that HPV typing by nucleic acid hybridization was useful for differentiating low- from high-risk cervical lesions and also tried to elucidate the risk factors associated with HPV infections and progression to malignancy.
Morinaga, Osamu
2018-01-01
The scientific evaluation of crude drugs and kampo medicines (KMs) was demonstrated using the eastern blotting method with monoclonal antibodies (MAbs) against bioactive natural compounds. Scutellariae radix is one of the most important crude drugs used in KMs. Part of its pharmaceutical properties is due to the flavone glycoside baicalin (BI). A quantitative analysis method based on eastern blotting was developed for BI using an anti-BI MAb. A rapid, simple, sensitive, specific analytical system was subsequently established for BI with the eastern blotting technique using dot-blot and chemiluminescent methods. This system was useful as a high-throughput analytical method for the determination of BI in KMs as well as HPLC and enzyme-linked immunosorbent assay systems. Furthermore, an eastern blotting method was applied to the biological metabolic study of glycyrrhizic acid (GL), the major active constituent of licorice, for investigation of metabolites of GL such as 3-monoglucuronyl-glycyrrhetinic acid (3MGA) because licorice causes pseudoaldosteronism as a side effect. This approach may make it possible to determine the pathogenic agents of licorice-induced pseudoaldosteronism.
Problem-Solving Test: Southwestern Blotting
ERIC Educational Resources Information Center
Szeberényi, József
2014-01-01
Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA,…
Purification and immunolocalization of an annexin-like protein in pea seedlings
NASA Technical Reports Server (NTRS)
Clark, G. B.; Dauwalder, M.; Roux, S. J.
1992-01-01
As part of a study to identify potential targets of calcium action in plant cells, a 35-kDa, annexin-like protein was purified from pea (Pisum sativum L.) plumules by a method used to purify animal annexins. This protein, called p35, binds to a phosphatidylserine affinity column in a calcium-dependent manner and binds 45Ca2+ in a dot-blot assay. Preliminary sequence data confirm a relationship for p35 with the annexin family of proteins. Polyclonal antibodies have been raised which recognize p35 in Western and dot blots. Immunofluorescence and immunogold techniques were used to study the distribution and subcellular localization of p35 in pea plumules and roots. The highest levels of immunostain were found in young developing vascular cells producing wall thickenings and in peripheral root-cap cells releasing slime. This localization in cells which are actively involved in secretion is of interest because one function suggested for the animal annexins is involvement in the mediation of exocytosis.
Lu, L; Komada, M; Kitamura, N
1998-06-15
Hrs is a 115kDa zinc finger protein which is rapidly tyrosine phosphorylated in cells stimulated with various growth factors. We previously purified the protein from a mouse cell line and cloned its cDNA. In the present study, we cloned a human Hrs cDNA from a human placenta cDNA library by cross-hybridization, using the mouse cDNA as a probe, and determined its nucleotide sequence. The human Hrs cDNA encoded a 777-amino-acid protein whose sequence was 93% identical to that of mouse Hrs. Northern blot analysis showed that the Hrs mRNA was about 3.0kb long and was expressed in all the human adult and fetal tissues tested. In addition, we showed by genomic Southern blot analysis that the human Hrs gene was a single-copy gene with a size of about 20kb. Furthermore, the human Hrs gene was mapped to chromosome 17 by Southern blotting of genomic DNAs from human/rodent somatic cell hybrids. Copyright 1998 Elsevier Science B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Pilkuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.
2005-01-01
A novel, psychrotolerant, facultative anaerobe, strain FTRl, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0(raised dot)6-0(raised dot)7 x 0(raised dot)9-1(raised dot)5 microns. Growth occurred within the pH range 6(raised dot)5-9(raised dot)5 with optimum growth at pH 7(raised dot)3-7(raised dot)5. The temperature range for growth of the novel isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate does not require NaCl; growth was observed between 0 and 5% NaCl with optimum growth at 0(raised dot)5% (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16s rRNA gene sequence analysis showed 99(raised dot)8% similarity between strain FTR1 and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39 plus or minus 1(raised dot)5% relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTRl (= ATCC BAA-754T= JCM 12174T=CIP 108033) be assigned to the novel species Carnobacterium pleistocenium sp. nov.
Sotiropoulos, C; Coloe, P J; Smith, S C
1994-01-01
Chromosomal DNA restriction enzyme analysis and Southern blot hybridization were used to characterize Serpulina hyodysenteriae strains. When chromosomal DNAs from selected strains (reference serotypes) of S. hyodysenteriae were digested with the restriction endonuclease Sau3A and hybridized with a 1.1-kb S. hyodysenteriae-specific DNA probe, a common 3-kb band was always detected in S. hyodysenteriae strains but was absent from Serpulina innocens strains. When the chromosomal DNA was digested with the restriction endonuclease Asp 700 and hybridized with two S. hyodysenteriae-specific DNA probes (0.75 and 1.1 kb of DNA), distinct hybridization patterns for each S. hyodysenteriae reference strain and the Australian isolate S. hyodysenteriae 5380 were detected. Neither the 1.1-kb nor the 0.75-kb DNA probe hybridized with Asp 700- or Sau3A-digested S. innocens chromosomal DNA. The presence of the 3-kb Sau3A DNA fragment in S. hyodysenteriae reference strains from diverse geographical locations shows that this fragment is conserved among S. hyodysenteriae strains and can be used as a species-specific marker. Restriction endonuclease analysis and Southern blot hybridization with these well-defined DNA probes are reliable and accurate methods for species-specific and strain-specific identification of S. hyodysenteriae. Images PMID:7914209
McGuire, M C; Nogueira, C P; Bartels, C F; Lightstone, H; Hajra, A; Van der Spek, A F; Lockridge, O; La Du, B N
1989-01-01
A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. A polymorphic site near the C terminus of the coded region was detected, but neither allele at this locus segregated consistently with the atypical trait. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for all 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of 32P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. We conclude that the Asp-70----Gly mutation (acidic to neutral amino acid substitution) accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool. Images PMID:2915989
Andrighetto, C; De Dea, P; Lombardi, A; Neviani, E; Rossetti, L; Giraffa, G
1998-10-01
Twenty-five strains of thermophilic lactobacilli isolated from yoghurt and from semi-hard and hard cheeses (in parallel with nine type or reference strains) were identified and grouped according to their genetic relatedness. Strains were identified by sugar fermentation patterns using the "API 50 CHL" galleries, by species-specific DNA probes in dot-blot hybridization experiments, by amplification and restriction analysis of the 16S rRNA gene (ARDRA) and by polymerase chain reaction (PCR) using species-specific oligonucleotide primers. Strains were classified as Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus, L. helveticus, and L. acidophilus. Strains which were atypical by sugar fermentation patterns were also identified. Most of the strains could not be grouped using carbohydrate fermentation profiles. PCR fingerprinting was used to identify DNA profiles for the 25 lactobacilli. Experimentally obtained PCR profiles enabled discrimination of all strains, which were grouped according to the similarities in their combined patterns. In general, the clustering of the strains corresponded well with species delineation obtained by molecular identification. The dendrogram of genetic relatedness enabled the unambiguous identification of most of the strains which were shown to be atypical by the sugar fermentation profile, except for a discrepancy in one L. delbrueckii subsp. lactis strain and one atypical Lactobacillus sp. strain.
Zhang, Chuan-Xi; Hu, Cui; Wu, Xiang-Fu
1998-01-01
The coding region of BmvPK-1 gene of Bombyx mori NPV (Strain ZJ8) is 828 nt long and encodes a 276 aa polypeptide with predicted molecular mass of 32 kD. Dot blot analysis showed its mRNA to be gene is first detectable at 18 h p.i. and reaching the highest transcriptional level at 48 h p.i. The result suggested that BmvPK-1 gene is a late or very late gene. The most conserved 365 bp of the BmvPK-1 gene was deleted in a transfer vector (pUCPK-lac), and a report gene (lacZ) was inserted in the deleted position. Cotransfection of BmN cells with pUCPK-lac DNA and BmNPV DNA resulted in the recombinant virus which expressed detectable product of lacZ gene. But the virus with the deleted BmvPK-1 gene could not be isolated from the wild BmNPV by plaque purification method. The result showed that the BmvPK-1 gene deleted virus can multiply only with the help of the product of this gene from the wild type virus, and the gene is necessary for the virus to finish its life cycle in the cultured cells.
Quantitative characterization of nanoparticle agglomeration within biological media
NASA Astrophysics Data System (ADS)
Hondow, Nicole; Brydson, Rik; Wang, Peiyi; Holton, Mark D.; Brown, M. Rowan; Rees, Paul; Summers, Huw D.; Brown, Andy
2012-07-01
Quantitative analysis of nanoparticle dispersion state within biological media is essential to understanding cellular uptake and the roles of diffusion, sedimentation, and endocytosis in determining nanoparticle dose. The dispersion of polymer-coated CdTe/ZnS quantum dots in water and cell growth medium with and without fetal bovine serum was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Characterization by TEM of samples prepared by plunge freezing the blotted solutions into liquid ethane was sensitive to the dispersion state of the quantum dots and enabled measurement of agglomerate size distributions even in the presence of serum proteins where DLS failed. In addition, TEM showed a reduced packing fraction of quantum dots per agglomerate when dispersed in biological media and serum compared to just water, highlighting the effect of interactions between the media, serum proteins, and the quantum dots. The identification of a heterogeneous distribution of quantum dots and quantum dot agglomerates in cell growth medium and serum by TEM will enable correlation with the previously reported optical metrology of in vitro cellular uptake of this quantum dot dispersion. In this paper, we present a comparative study of TEM and DLS and show that plunge-freeze TEM provides a robust assessment of nanoparticle agglomeration state.
Liu, Dong; Liu, Shaojun; You, Cuiping; Chen, Lin; Liu, Zhen; Liu, Liangguo; Wang, Jing; Liu, Yun
2010-04-01
Diploid eggs of allotetraploid hybrids (red crucian carp female symbol x common carp male symbol), when activated by UV-irradiated sperm of scatter scale carp, can develop into diploid progenies without chromosome duplication treatment. Diploid progenies produce diploid eggs, which develop into diploid population by the same way. To understand the molecular mechanism underlying the production of diploid eggs by the diploid fish, we constructed a forward suppression subtractive hybridization complementary DNA (cDNA) library. The cDNAs from the ovary in proliferation phase were employed as the "tester," and those in growth phase were used as the "driver." Seventy-three cDNA clones that are specifically expressed in proliferation phase were detected by dot-blot hybridization. Sequencing analyses revealed that several of these cDNAs have high homologies to the known sequences in the NCBI database. Their encoded proteins include the protein preventing mitosis catastrophe (PMC), the signal recognition particle 9, the ATP-binding cassette transporter, the glucanase-xylanase fusion protein, and others. These genes were confirmed by reverse transcriptase-polymerase chain reaction. The expression profile of the PMC gene at different time points was analyzed by quantitative real-time polymerase chain reaction. The results indicated that the expression of this suppression subtractive hybridization-identified gene changed during the time course, corresponding with the cellular phenomenon in the ovary development. Our studies provide insights into the molecular mechanism underlying the ovary development of diploid gynogenetic fish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshuk, C.P.
Three studies were made on the extracellular cutinase of the phytopathogenic fungus Fusarium solani f. sp. pisi. I. The production of cutinase was found to be induced in spores of F. solani f. sp. pisi, strain T-8, by cutin and cutin hydrolysate. Fractionation and analysis of the cutin hydrolysate indicated that dihydroxy-C/sub 16/ acid and trihydroxy-C/sub 18/ acid were the cutin monomers most active for inducing cutinase. Measurement of cutinase-specific RNA levels by dot-blot hybridization with a (/sup 32/P)-labeled cutinase cDNA showed that the cutinase gene transcripts could be detected within 15 min after addition of the inducers. The resultsmore » indicated that the fungal spores have the capacity to recognize the unique monomer components of the plant cuticle and rapidly respond by the synthesis of cutinase. II. Analysis of the genomic DNA's of seven strains of F. solani f. sp. pisi indicated that both high and low cutinase-producing strains contain at least one copy of the cutinase structural gene and a homologous promoter region. The data suggest a different promoter sequence exists in these additional copies. III. Relatedness of five phytopathogenic Fusarium species to F. solani f. sp. pisi was determined by their cutinase antigenic properties and gene homologies of cutinase cDNA from F. solani f. sp. pisi. The results suggest that formae specialis of F. solani are phylogenetically identical and that F. solani is quite distinct from the other Fusarium species tested.« less
Chen, J J; Du, Q Y; Yue, Y Y; Dang, B J; Chang, Z J
2010-08-01
In this study, a sex subtractive genomic DNA library was constructed using suppression subtractive hybridization (SSH) between male and female Cyprinus carpio. Twenty-two clones with distinguishable hybridization signals were selected and sequenced. The specific primers were designed based on the sequence data. Those primers were then used to amplify the sex-specific fragments from the genomic DNA of male and female carp. The amplified fragments from two clones showed specificity to males but not to females, which were named as Ccmf2 [387 base pairs (bp)] and Ccmf3 (183 bp), respectively. The sex-specific pattern was analysed in a total of 40 individuals from three other different C. carpio. stocks and grass carp Ctenopharyngodon idella using Ccmf2 and Ccmf3 as dot-blotting probes. The results revealed that the molecular diversity exists on the Y chromosome of C. carpio. No hybridization signals, however, were detected from individuals of C. idella, suggesting that the two sequences are specific to C. carpio. No significant homologous sequences of Ccmf2 and Ccmf3 were found in GenBank. Therefore, it was interpreted that the results as that Ccmf2 and Ccmf3 are two novel male-specific sequences; and both fragments could be used as markers to rapidly and accurately identify the genetic sex of part of C. carpio. This may provide a very efficient selective tool for practically breeding monosex female populations in aquacultural production.
[Development of a hepatitis B virus carrier transgenic mice model].
Caner, Müge; Arat, Sezen; Bircan, Rifat
2008-01-01
The studies for the development of transgenic mice models which provide important profits for the studies concerning immunopathogenesis of hepatitis B virus (HBV) infections are in progress since 20 years. For this purpose different lineages bearing whole HBV genome or selected viral genes have been developed and their usage in clarifying the HBV replication and pathogenesis mechanisms have been emphasized. The aim of this study was to develop and breed a HBV carrier mice model. In the study the full HBV genome has been transferred to mouse embryos by microinjection procedure. Following transgenic manipulation, the HBV carriers among the daughter mice have been detected by molecular methods in which HBV-DNA replication and expression have been shown. The manipulations for transgene transfers have been performed in TUBITAK Marmara Research Center Transgene Laboratory, Gebze, Istanbul. The HBV-DNA carrier mice have been demonstrated by polymerase chain reaction (PCR) using the DNA samples obtained from tail tissues and also by dot-blot hybridization of the mice sera. Integrated HBV-DNA has been detected by applying in-situ hybridization to the liver tissue sections. HBV-DNA expression has been shown by reverse transcriptase PCR method with total RNA molecules that have been isolated from the liver tissues of the HBV-DNA carrier mice. HBsAg has been detected in the liver by immunohistochemical method, and HBsAg and HBeAg have additionally been demonstrated by ELISA. HBV genome, expression of the genome and the expression products have been determined in approximately 10% of the mice of which HBV-DNA have been transferred. By inbreeding heterozygote carrier mice, homozygote HBV transgenic mice line have been obtained. These HBV transgenic mice are the first lineages developed in our country. It is hopefully thought that this HBV carrier transgenic mouse model may contribute to the studies on the pathogenesis of HBV infections which are important health problems in the world as well as in Turkey.
Application of quantum-dots for analysis of nanosystems by either utilizing or preventing FRET
NASA Astrophysics Data System (ADS)
Kim, Joong H.; Chaudhary, Sumit; Stephens, Jared P.; Singh, Krishna V.; Ozkan, Mihrimah
2005-04-01
We have developed conjugates with quantum-dots (QDs) for the purpose of analysis of nanosystems that are organic or inorganic in nature such as DNA and carbon nanotubes. First, by employing Florescence Resonant Energy Transfer (FRET) principles, a hybrid molecular beacon conjugates are synthesized. For water- solubilization of QDs, we modified the surface of CdSe-ZnS core-shell QD by using mercaptoacetic acid ligand. This modification does not affect the size of QDs from that of unmodified QDs. After linking molecular beacons to the carboxyl groups of the modified QDs using 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, hybrid molecular beacons are prepared as a DNA probe. After hybridization with specific target DNA and non-specific target DNA, the hybrid conjugates show high specificity to the target DNA with 5-fold increase in the intensity of fluorescence. By developing atomic model of the conjugates, we calculated with 8 numbers of molecular beacons on a single quantum dots, we could increase the efficiency of FRET up to 90%. In other hands, for application of quantum dots to the carbon nanotubes, FRET is a barrier. Thus, after employing 1 % sodium-dodecyl-sulfonate (SDS), single-walled carbon nanotubes are decorated with QDs at their outer surface. This enables fluorescent microscopy imaging of single-walled carbon nanotubes which is a more common technique than electron microscopy. In summary, QDs can be used for analysis or detection of both organic and inorganic based nanosystems.
Protein blotting protocol for beginners.
Petrasovits, Lars A
2014-01-01
The transfer and immobilization of biological macromolecules onto solid nitrocellulose or nylon (polyvinylidene difluoride (PVDF)) membranes subsequently followed by specific detection is referred to as blotting. DNA blots are called Southerns after the inventor of the technique, Edwin Southern. By analogy, RNA blots are referred to as northerns and protein blots as westerns (Burnette, Anal Biochem 112:195-203, 1981). With few exceptions, western blotting involves five steps, namely, sample collection, preparation, separation, immobilization, and detection. In this chapter, protocols for the entire process from sample collection to detection are described.
Quantum Dot Nanobioelectronics and Selective Antimicrobial Redox Interventions
NASA Astrophysics Data System (ADS)
Goodman, Samuel Martin
The unique properties of nanomaterials have engendered a great deal of interest in applying them for applications ranging from solid state physics to bio-imaging. One class of nanomaterials, known collectively as quantum dots, are defined as semiconducting crystals which have a characteristic dimension smaller than the excitonic radius of the bulk material which leads to quantum confinement effects. In this size regime, excited charge carriers behave like prototypical particles in a box, with their energy levels defined by the dimensions of the constituent particle. This is the source of the tunable optical properties which have drawn a great deal of attention with regards to finding appropriate applications for these materials. This dissertation is divided into multiple sections grouped by the type of application explored. The first sectoin investigates the energetic interactions of physically-coupled quantum dots and DNA, with the goal of gaining insight into how self-assembled molecular wires can bridge the energetic states of physically separated nanocrystals. Chapter 1 begins with an introduction to the properties of quantum dots, the conductive properties of DNA, and the common characterization methods used to characterize materials on the nanoscale. In Chapter 2 scanning tunneling measurements of QD-DNA constructs on the single particle level are presented which show the tunable coupling between the two materials and their resulting hybrid electronic structure. This is expanded upon in Chapter 3 where the conduction of photogenerated charges in QD-DNA hybrid thin films are characterized, which exhibit different charge transfer pathways through the constituent nucleobases depending on the energy of the incident light and resulting electrons. Complementary investigations of energy transfer mediated through DNA are presented in Chapter 4, with confirmation of Dexter-like transfer being facilitated through the oligonucleotides. The second section quantifies the use of cadmium telluride quantum dots as light-activated therapeutics for treating multi-drug resistant bacterial infectoins. A review of the physiological effects of cadmium chalcogenide quantum dots is first presented in Chapter 5 which provides a foundation for understanding the inherent toxicity of these materials. The phototoxic effect induced by CdTe quantum dots is then introduced in Chapter 6 showing the reduction in growth of gram-negative bacteria. Additional insight is provided in Chapter 7 which discusses the therapeutic mechanism and the oxygen-centered radical species which are formed by the application of light in aqueous media. The section closes with Chapter 8 describing efforts to improve the stability and bio-compatibility of the dots using various surface treatments, and shows that stability can be improved by the passivation of the quantum dots' anionic facets, though at the cost of overall radical generation.
Yang, Deying; Chen, Lin; Wu, Xuhang; Zhou, Xuan; Li, Mei; Chen, Zuqin; Nong, Xiang; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou
2014-04-01
Cysticercosis, caused by the larvae of Taenia pisiformis, is a common disease in rabbits that results in economic losses. To date, there has been limited information available on the early detection of infection by this parasite. This study describes a dot-ELISA method based on an autologous antigen annexin B1 (Tpanxb1). Its potential for serodiagnosis of rabbit cysticercosis was also evaluated. Western blot analysis revealed that the recombinant Tpanxb1 (rTpanxb1) protein could be specifically recognized by rabbit anti-sera. In serum trials, the antibodies could be detected by dot-ELISA using rTpanxb1 at 14 days post-infection. The positive response was present for up to 49 days post-infection. Based on the necropsy results of 169 rabbit samples, the relative sensitivity and specificity of the dot-ELISA were 94.55% and 92.86%, respectively. This study provides a foundation for studying the immunological function of annexin and its application to control Taenia cestodes.
Quantification of protein carbonylation.
Wehr, Nancy B; Levine, Rodney L
2013-01-01
Protein carbonylation is the most commonly used measure of oxidative modification of proteins. It is most often measured spectrophotometrically or immunochemically by derivatizing proteins with the classical carbonyl reagent 2,4 dinitrophenylhydrazine (DNPH). We present protocols for the derivatization and quantification of protein carbonylation with these two methods, including a newly described dot blot with greatly increased sensitivity.
Physical mapping withing the tuberous sclerosis linkage group in region 9q32-q34
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, R.M.; Carter, N.P.; Griffiths, B.
1993-02-01
Pulsed-field gel electrophoresis and flow dot-blot analysis have been used to construct a physical map of the q32-q34 region of chromosome 9, where one of the loci responsible for tuberous sclerosis (TSC1) has been mapped by genetic linkage. Five linked groups of markers have been defined by pulsed-field gel electrophoresis. The orientation of these groups and the order of markers within them were determined by hybridization to flow-sorted dot blots derived from a panel of cell lines of chromosome 9 translocations to place probes proximal or distal to each breakpoint. The local map order 9q32-q34 derived by application of thismore » combination of techniques is as follows: centromere - ALAD-1.3 Mb-ORM/20 kb/D9S16-GSN-250 kb-C5-HXB-1.9 Mb-D9S21-AK1-1.4 Mb-SPTAN1-ASS-800-kb-ABL-2 Mb-D0S10/350 Kb/DBH-telomere. 48 refs., 6 figs., 4 figs.« less
Costa, Juan Gabriel; Vilariño, María Julia
2018-06-01
In this work we present a novel methodology to differentiate the phases of toxoplasmosis infection: the "semiquantitative Dot Blot". It is a simple technique that does not require expensive equipment, does not involve a long technique development, and can be used in a low-complexity laboratory. In this study, two recombinant sequences of Toxoplasma gondii GRA8 antigen were used, and specific IgG antibodies were detected in selected patient samples. This method makes it possible to obtain a score for each serum and define whether the patient is in the acute or chronic phase of the infection. The sensitivity and specificity results varied depending on the antigenic sequence used. With GRA8A, 62.1% and 72.7% were obtained, while with GRA8B, 82.8% and 72.1% were obtained, respectively. Although the sensitivity and specificity values were not close to 100%, they were similar to those reported with the same antigens in ELISA. Therefore, this quantitative technique would be a good alternative to ELISA. Copyright © 2018 Elsevier B.V. All rights reserved.
Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots
NASA Astrophysics Data System (ADS)
Jhonsi, Mariadoss Asha; Ananth, Devanesan Arul; Nambirajan, Gayathri; Sivasudha, Thilagar; Yamini, Rekha; Bera, Soumen; Kathiravan, Arunkumar
2018-05-01
In recent years, quantum dots (QDs) are one of the most promising nanomaterials in life sciences community due to their unexploited potential in biomedical applications; particularly in bio-labeling and sensing. In the advanced nanomaterials, carbon dots (CDs) have shown promise in next generation bioimaging and drug delivery studies. Therefore the knowledge of the exact nature of interaction with biomolecules is of great interest to designing better biosensors. In this study, the interaction between CDs derived from tamarind and calf thymus DNA (ct-DNA) has been studied by vital spectroscopic techniques, which revealed that the CDs could interact with DNA via intercalation. The apparent association constant has been deduced from the absorption spectral changes of ct-DNA-CDs using the Benesi-Hildebrand equation. From the DNA induced emission quenching experiments the apparent DNA binding constant of the CDs (Kapp) have also been evaluated. Furthermore, we have analyzed the antibacterial and antifungal activity of CDs using disc diffusion assay method which exhibited excellent activity against E. coli and C. albicans with inhibition zone in the range of 7-12 mm. The biocompatible nature of CDs was confirmed by an in vitro cytotoxicity test on L6 normal rat myoblast cells by using MTT assay. The cell viability is not affected till the high dosage of CDs (200 μg/mL) for >48 h. As a consequence of the work, future development of CDs for microbial control and DNA sensing among the various biomolecules is possible in view of emerging biofields.
Effects of the Maillard Reaction on the Immunoreactivity of Amandin in Food Matrices.
Chhabra, Guneet S; Liu, Changqi; Su, Mengna; Venkatachalam, Mahesh; Roux, Kenneth H; Sathe, Shridhar K
2017-10-01
Amandin is the major storage protein and allergen in almond seeds. Foods, containing almonds, subjected to thermal processing typically experience Maillard browning reaction. The resulting destruction of amino groups, protein glycation, and/or denaturation may alter amandin immunoreactivity. Amandin immunoreactivity of variously processed almond containing foods was therefore the focus of the current investigation. Commercial and laboratory prepared foods, including those likely to have been subjected to Maillard browning, were objectively assessed by determining Hunter L * , a * , b * values. The L * values for the tested samples were in the range of 31.75 to 85.28 consistent with Maillard browning. Three murine monoclonal antibodies, 4C10, 4F10, and 2A3, were used to determine the immunoreactivity of the targeted samples using immunoassays (ELISA, Western blot, dot blot). The tested foods did not exhibit cross-reactivity indicating that the immunoassays were amandin specific. For sandwich ELISAs, ratio (R) of sample immunoreactivity to reference immunoreactivity was calculated. The ranges of R values were 0.67 to 15.19 (4C10), 1.00 to 11.83 (4F10), and 0.77 to 23.30 (2A3). The results of dot blot and Western blot were consistent with those of ELISAs. Results of these investigations demonstrate that amandin is a stable marker protein for almond detection regardless of the degree of amandin denaturation and/or destruction as a consequence of Maillard reaction encountered under the tested processing conditions. Foods containing almond are often subjected to processing prior to consumption. Amandin, the major allergen in almond, may experience Maillard reaction. Understanding the change in amandin immunoreactivity as a result of Maillard reaction is important for amandin detection and production of hypoallergenic food products. © 2017 Institute of Food Technologists®.
Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolverton, C.K.; Leaman, D.W.; White, M.E.
1990-02-26
Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probedmore » with {sup 32}P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus.« less
Li, Jingyi; Liu, Qian; Alsamarri, Hussein; Lounsbury, Jenny A; Haversitick, Doris M; Landers, James P
2013-03-07
Reliable measurement of DNA concentration is essential for a broad range of applications in biology and molecular biology, and for many of these, quantifying the nucleic acid content is inextricably linked to obtaining optimal results. In its most simplistic form, quantitative analysis of nucleic acids can be accomplished by UV-Vis absorbance and, in more sophisticated format, by fluorimetry. A recently reported new concept, the 'pinwheel assay', involves a label-free approach for quantifying DNA through aggregation of paramagnetic beads in a rotating magnetic field. Here, we describe a simplified version of that assay adapted for execution using only a pipet and filter paper. The 'pipette, aggregate, and blot' (PAB) approach allows DNA to induce bead aggregation in a pipette tip through exposure to a magnetic field, followed by dispensing (blotting) onto filter paper. The filter paper immortalises the extent of aggregation, and digital images of the immortalized bead conformation, acquired with either a document scanner or a cell phone camera, allows for DNA quantification using a noncomplex algorithm. Human genomic DNA samples extracted from blood are quantified with the PAB approach and the results utilized to define the volume of sample used in a PCR reaction that is sensitive to input mass of template DNA. Integrating the PAB assay with paper-based DNA extraction and detection modalities has the potential to yield 'DNA quant-on-paper' devices that may be useful for point-of-care testing.
Problem-solving test: Southwestern blotting.
Szeberényi, József
2014-01-01
Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA, deletion mutants, expression plasmid, transfection, RNA polymerase II, promoter, Shine-Dalgarno sequence, polyadenylation element, affinity chromatography, Northern blotting, immunoprecipitation, sodium dodecylsulfate, autoradiography, tandem repeats. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.
Characterization of c-Ki-ras and N-ras oncogenes in aflatoxin B sub 1 -induced rat liver tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, G.; Davis, E.F.; Huber, L.J.
c-Ki-ras and N-ras oncogenes have been characterized in aflatoxin B{sub 1}-induced hepatocellular carcinomas. Detection of different protooncogene and oncogene sequences and estimation of their frequency distribution were accomplished by polymerase chain reaction, cloning, and plaque screening methods. Two c-Ki-ras oncogene sequences were identified in DNA from liver tumors that contained nucleotide changes absent in DNA from livers of untreated control rats. Sequence changes involving G{center dot}C to T{center dot}A or G{center dot}C to A{center dot}T nucleotide substitutions in codon 12 were scored in three of eight tumor-bearing animals. Distributions of c-Ki-ras sequences in tumors and normal liver DNA indicated thatmore » the observed nucleotide changes were consistent with those expected to result from direct mutagenesis of the germ-line protooncogene by aflatoxin B{sub 1}. N-ras oncogene sequences were identified in DNA from two of eight tumors. Three N-ras gene regions were identified, one of which was shown to be associated with an oncogene containing a putative activating amino acid residing at codon 13. All three N-ras sequences, including the region detected in N-ras oncogenes, were present at similar frequencies in DNA samples from control livers as well as liver tumors. The presence of a potential germ-line oncogene may be related to the sensitivity of the Fischer rat strain to liver carcinogenesis by aflatoxin B{sub 1} and other chemical carcinogens.« less
Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.
2011-01-01
Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736
Wang, Yang; Li, Yue; Yue, Minghui; Wang, Jun; Kumar, Sandeep; Wechsler-Reya, Robert J; Zhang, Zhaolei; Ogawa, Yuya; Kellis, Manolis; Duester, Gregg; Zhao, Jing Crystal
2018-06-07
In the version of this article initially published online, there were errors in URLs for www.southernbiotech.com, appearing in Methods sections "m6A dot-blot" and "Western blot analysis." The first two URLs should be https://www.southernbiotech.com/?catno=4030-05&type=Polyclonal#&panel1-1 and the third should be https://www.southernbiotech.com/?catno=6170-05&type=Polyclonal. In addition, some Methods URLs for bioz.com, www.abcam.com and www.sysy.com were printed correctly but not properly linked. The errors have been corrected in the PDF and HTML versions of this article.
Bhatia, Dhiraj; Arumugam, Senthil; Nasilowski, Michel; Joshi, Himanshu; Wunder, Christian; Chambon, Valérie; Prakash, Ved; Grazon, Chloé; Nadal, Brice; Maiti, Prabal K; Johannes, Ludger; Dubertret, Benoit; Krishnan, Yamuna
2016-12-01
Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands-folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.
Detection of Listeria monocytogenes by using the polymerase chain reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessesen, M.T.; Luo, Q.; Blaser, M.J.
1990-09-01
A method was developed for detection of Listeria monocytogens by polymerase chain reaction amplification followed by agarose gel electrophoresis or dot blot analysis with {sup 32}P-labeled internal probe. The technique identified 95 of 95 L. monocytogenes strains, 0 of 12 Listeria strains of other species, and 0 of 12 non-Listeria strains.
Analysis of Chromatin Organisation
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2011-01-01
Terms to be familiar with before you start to solve the test: chromatin, nucleases, sucrose density gradient centrifugation, melting point, gel electrophoresis, ethidium bromide, autoradiography, Southern blotting, Northern blotting, Sanger sequencing, restriction endonucleases, exonucleases, linker DNA, chloroform extraction, nucleosomes,…
Głowacka, Katarzyna; Kromdijk, Johannes; Leonelli, Lauriebeth; Niyogi, Krishna K.; Clemente, Tom E.
2016-01-01
Abstract Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL‐)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T‐DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL‐PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T‐DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T‐DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided. PMID:26670088
Knowledge-based image processing for on-off type DNA microarray
NASA Astrophysics Data System (ADS)
Kim, Jong D.; Kim, Seo K.; Cho, Jeong S.; Kim, Jongwon
2002-06-01
This paper addresses the image processing technique for discriminating whether the probes are hybrized with target DNA in the Human Papilloma Virus (HPV) DNA Chip designed for genotyping HPV. In addition to the probes, the HPV DNA chip has markers that always react with the sample DNA. The positions of probe-dots in the final scanned image are fixed relative to the marker-dot locations with a small variation according to the accuracy of the dotter and the scanner. The probes are duplicated 4 times for the diagnostic stability. The prior knowledges such as the maker relative distance and the duplication information of probes is integrated into the template matching technique with the normalized correlation measure. Results show that the employment of both of the prior knowledges is to simply average the template matching measures over the positions of the markers and probes. The eventual proposed scheme yields stable marker locating and probe classification.
Ebenstein, Yuval; Gassman, Natalie; Kim, Soohong; Weiss, Shimon
2011-01-01
Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA. PMID:19452448
The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60.
Gadkar, Vijay; Rillig, Matthias C
2006-10-01
Work on glomalin-related soil protein produced by arbuscular mycorrhizal (AM) fungi (AMF) has been limited because of the unknown identity of the protein. A protein band cross-reactive with the glomalin-specific antibody MAb32B11 from the AM fungus Glomus intraradices was partially sequenced using tandem liquid chromatography-mass spectrometry. A 17 amino acid sequence showing similarity to heat shock protein 60 (hsp 60) was obtained. Based on degenerate PCR, a full-length cDNA of 1773 bp length encoding the hsp 60 gene was isolated from a G. intraradices cDNA library. The ORF was predicted to encode a protein of 590 amino acids. The protein sequence had three N-terminal glycosylation sites and a string of GGM motifs at the C-terminal end. The GiHsp 60 ORF had three introns of 67, 76 and 131 bp length. The GiHsp 60 was expressed using an in vitro translation system, and the protein was purified using the 6xHis-tag system. A dot-blot assay on the purified protein showed that it was highly cross-reactive with the glomalin-specific antibody MAb32B11. The present work provides the first evidence for the identity of the glomalin protein in the model AMF G. intraradices, thus facilitating further characterization of this protein, which is of great interest in soil ecology.
Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin; Ansari, Mehdi
2017-01-01
Blood-brain barrier (BBB) separates the neural tissue from circulating blood because of its high selectivity. This study focused on the in vitro application of magnetic nanoparticles to deliver Tp53 as a gene of interest to glioblastoma (U87) cells across a simulated BBB model that comprised KB cells. After magnetic and non-magnetic nanoparticles were internalized by KB cells, their location in these cells was examined by transmission electron microscopy. Transfection efficiency of DNA to U87 cells was evaluated by fluorescence microscopy, real time PCR, flowcytometry, and Western immuno-blotting. When a magnetic field was applied, a large number of magnetic nanoparticles accumulated in KB cells, appearing as black dots scattered in the cytoplasm of cells. Fluorescence microscope examination showed that transfection of the DNA to U87 target cells was highest in cells treated with magnetic nanoparticles and exposed to a magnetic field. Also it was reflected in significantly increased mRNA level while the p53 protein level was decreased. It could be concluded that a significant increase in total apoptosis was induced in cells by magnetic nanoparticles, coupled with exposure to a magnetic force (p ≤0.01) as compared with cells that were not exposed to magnetism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yu, Ying; Wang, Dong; Sun, Dong-Xiao; Xu, Gui-Yun; Li, Jun-Ying; Zhang, Yuan
2011-07-01
Liver fatty acid-binding protein (L-FABP) is closely related to intracellular transportation and deposition of lipids. A positive differential displayed fragment was found in the liver tissue among Silkie (CC), CAU-brown chicken (CD), and their reciprocal hybrids (CD and DC) at 8 weeks-old using differential display RT-PCR techniques (DDRT-PCR). Through recycling, sequencing, and alignment analysis, the fragment was identified as chicken liver fatty acid-binding protein gene (L-FABP, GenBank accession number AY321365). Reverse Northern dot blot and semi-quantitative RT-PCR revealed that the avian L-FABP gene was over-expressed in the liver tissue of the reciprocal hybrids (CD and DC) compared to their parental lines (CC and DD), which was consistent with the fact that higher abdomen fat weight and wider inter-muscular fat width observed in the reciprocal hybrids. Considering the higher expression of L-FABP may contribute to the increased lipid deposition in the hybrid chickens, the functional study of avian L-FABP is warranted in future.
Piedra, Jose; Ontiveros, Maria; Miravet, Susana; Penalva, Cristina; Monfar, Mercè; Chillon, Miguel
2015-02-01
Recombinant adeno-associated viruses (rAAVs) are promising vectors in preclinical and clinical assays for the treatment of diseases with gene therapy strategies. Recent technological advances in amplification and purification have allowed the production of highly purified rAAV vector preparations. Although quantitative polymerase chain reaction (qPCR) is the current method of choice for titrating rAAV genomes, it shows high variability. In this work, we report a rapid and robust rAAV titration method based on the quantitation of encapsidated DNA with the fluorescent dye PicoGreen®. This method allows detection from 3×10(10) viral genome/ml up to 2.4×10(13) viral genome/ml in a linear range. Contrasted with dot blot or qPCR, the PicoGreen-based assay has less intra- and interassay variability. Moreover, quantitation is rapid, does not require specific primers or probes, and is independent of the rAAV pseudotype analyzed. In summary, development of this universal rAAV-titering method may have substantive implications in rAAV technology.
Electroconvulsive shock increases preproenkephalin messenger RNA abundance in rat hypothalamus.
Yoshikawa, K; Hong, J S; Sabol, S L
1985-01-01
Daily administration of electroconvulsive shock (ECS) to rats for 10 days increased the content of [Met5]enkephalin in the hypothalamus and the striatum by 64% and 45%, respectively. The effect of ECS on the relative abundance of mRNA coding for the enkephalin precursor preproenkephalin was investigated. Analysis by cell-free translation of polyadenylylated RNA and immunoprecipitation of preproenkephalin revealed ECS-elicited increases of 79% and 14% in preproenkephalin mRNA activity in the hypothalamus and striatum, respectively. ECS treatment did not affect the general translational activity of total polyadenylylated RNA from these brain regions. A 32P-labeled probe prepared from a rat preproenkephalin cDNA clone hybridized with an apparently single species of polyadenylylated RNA of approximately equal to 1450 nucleotides from both hypothalamus and striatum. Dot-blot hybridization of polyadenylylated RNA with the rat probe indicated that ECS elicits a 76% increase in the preproenkephalin mRNA abundance in the hypothalamus and no significant change in the striatum. These results suggest that ECS treatment leads to enhanced biosynthesis of the enkephalin precursor in hypothalamic neurons. Images PMID:2578669
Are the TTAGG and TTAGGG telomeric repeats phylogenetically conserved in aculeate Hymenoptera?
NASA Astrophysics Data System (ADS)
Menezes, Rodolpho S. T.; Bardella, Vanessa B.; Cabral-de-Mello, Diogo C.; Lucena, Daercio A. A.; Almeida, Eduardo A. B.
2017-10-01
Despite the (TTAGG)n telomeric repeat supposed being the ancestral DNA motif of telomeres in insects, it was repeatedly lost within some insect orders. Notably, parasitoid hymenopterans and the social wasp Metapolybia decorata (Gribodo) lack the (TTAGG)n sequence, but in other representatives of Hymenoptera, this motif was noticed, such as different ant species and the honeybee. These findings raise the question of whether the insect telomeric repeat is or not phylogenetically predominant in Hymenoptera. Thus, we evaluated the occurrence of both the (TTAGG)n sequence and the vertebrate telomere sequence (TTAGGG)n using dot-blotting hybridization in 25 aculeate species of Hymenoptera. Our results revealed the absence of (TTAGG)n sequence in all tested species, elevating the number of hymenopteran families lacking this telomeric sequence to 13 out of the 15 tested families so far. The (TTAGGG)n was not observed in any tested species. Based on our data and compiled information, we suggest that the (TTAGG)n sequence was putatively lost in the ancestor of Apocrita with at least two subsequent independent regains (in Formicidae and Apidae).
Techniques for characterization and eradication of potato cyst nematode: a review.
Bairwa, Aarti; Venkatasalam, E P; Sudha, R; Umamaheswari, R; Singh, B P
2017-09-01
Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida . Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.
NASA Astrophysics Data System (ADS)
Marin, Sergio; Merkoçi, Arben
2009-02-01
Electrochemical detection of a cadmium sulfide quantum dots (CdS QDs)-DNA complex connected to paramagnetic microbeads (MB) was performed without the need for chemical dissolving. The method is based on dropping 20 µl of CdS QD-DNA-MB suspension on the surface of a screen-printed electrode. It is followed by magnetic collection on the surface of the working electrode and electrochemical detection using square-wave voltammetry (SWV), giving a well-shaped and sensitive analytical signal. A cystic-fibrosis-related DNA sequence was sandwiched between the two DNA probes. One DNA probe is linked via biotin-streptavidin bonding with MB and the other one via thiol groups with the CdS QD used as tags. Nonspecific signals of DNA were minimized using a blocking agent and the results obtained were successfully employed in a model DNA sensor with an interest in future applications in the clinical field. The developed nanoparticle biosensing system may offer numerous opportunities in other fields where fast, low cost and efficient detection of small volume samples is required.
Bi, Lin; Yu, Yuan-Hua
2015-04-05
Mercaptopropionic acid-capped Mn-doped ZnS quantum dots/ethidium bromide (EB) nanohybrids were constructed for photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for DNA detection. EB could quench the RTP of Mn-doped ZnS QDs by PIET, thereby forming Mn-doped ZnS QDs/EB nanohybrids and storing RTP. Meanwhile, EB could be inserted into DNA and EB could be competitively desorbed from the surface of Mn-doped ZnS QDs by DNA, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this mechanism, a RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 0.045 mg L(-1), the relative standard deviation was 1.7%, and the method linear ranged from 0.2 to 20 mg L(-1). The proposed method was applied to biological fluids, in which satisfactory results were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantum dot-based microfluidic biosensor for cancer detection
NASA Astrophysics Data System (ADS)
Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar
2015-05-01
We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.
NASA Astrophysics Data System (ADS)
Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant
2015-02-01
Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.
Self-Assembled Combinatorial Nanoarrays for Multiplex Biosensing
2010-02-05
origami tiles containing two lines of apt-A (green dots) and two lines of apt-B thrombin (blue dots). The neighboring lines of apt-A and apt-B are...included helping to verify the positions of the lines in the AFM images, b, e, AFM height images of the DNA origami tiles (lOnM) with 60 nM thrombin... origami method we designed a rectangular- shaped DNA tile (Fig. 10a) that had a dimension of 60 x 90 nm. Stem-loops with apt-A and apt-B sequences were
Isolation of High-Molecular-Weight DNA from Mammalian Tissues Using Proteinase K and Phenol.
Green, Michael R; Sambrook, Joseph
2017-03-01
This procedure is the method of choice for purification of genomic DNA from mammalian tissues when large amounts of DNA are required, for example, for Southern blotting. © 2017 Cold Spring Harbor Laboratory Press.
An Immunological Assay for Detection and Enumeration of Thermophilic Biomining Microorganisms
Amaro, Ana M.; Hallberg, Kevin B.; Lindström, E. Börje; Jerez, Carlos A.
1994-01-01
A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes. Images PMID:16349398
An immunological assay for detection and enumeration of thermophilic biomining microorganisms.
Amaro, A M; Hallberg, K B; Lindström, E B; Jerez, C A
1994-09-01
A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes.
Healthcare Worker Seroconversion in SARS Outbreak
Ooi, Eng-Eong; Tan, Hiang-Khoon; Ong, Kong-Wee; Sil, Bijon Kumar; Teo, Melissa; Ng, Timothy; Soo, Khee-Chee
2004-01-01
Serum samples were obtained from healthcare workers 5 weeks after exposure to an outbreak of severe acute respiratory syndrome (SARS). A sensitive dot blot enzyme-linked immunosorbent assay, complemented by a specific neutralization test, shows that only persons in whom probable SARS was diagnosed had specific antibodies and suggests that subclinical SARS is not an important feature of the disease. PMID:15030691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuppens, H.; Marynen, P.; Cassiman, J.J.
1993-12-01
The authors have previously shown that about 85% of the mutations in 194 Belgian cystic fibrosis alleles could be detected by a reverse dot-blot assay. In the present study, 50 Belgian chromosomes were analyzed for mutations in the cystic fibrosis transmembrane conductance regulator gene by means of direct solid phase automatic sequencing of PCR products of individual exons. Twenty-six disease mutations and 14 polymorphisms were found. Twelve of these mutations and 3 polymorphisms were not described before. With the exception of one mutant allele carrying two mutations, these mutations were the only mutations found in the complete coding region andmore » their exon/intron boundaries. The total sensitivity of mutant CF alleles that could be identified was 98.5%. Given the heterogeneity of these mutations, most of them very rare, CFTR mutation screening still remains rather complex in the population, and population screening, whether desirable or not, does not appear to be technically feasible with the methods currently available. 24 refs., 1 fig., 2 tabs.« less
Li, Dayu; Liu, Yun; Yu, Chunbo; Liu, Xiping; Fan, Fang
2017-12-01
Objective To study the effect of the knock-down of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) on the cell cycle of the multidrug-resistant (MDR) Bel7402/5-Fu hepatocellular carcinoma cells and its MDR mechanism. Methods After cationic liposome-mediated siDNA-PKcs oligonucleotide transfection, the drug sensitivity of Bel7402/5-Fu cells to 5-fluorouracil (5-Fu) and adriamycin (ADM) was determined by MTT assay; the cell cycle were detected by flow cytometry; meanwhile, the protein expressions of cell cycle-related proteins P21, cell cycle protein B1 (cyclin B1), cell cycle division protein 2 (CDC2) were tested by Western blotting; the expressions of ataxia telangiectasia mutated (ATM) and p53 at both mRNA and protein levels were detected by real-time PCR and Western blot analysis. Results The MTT results showed siDNA-PKcs increased the chemotherapeutic sensitivity of Bel7402/5-Fu cells to 5-Fu and ADM. The flow cytometric analysis showed siDNA-PKcs decreased the percentage of S-phase cells but increased the percentage of G2/M phase cells. Western blotting showed siDNA-PKcs increased the protein expression of P21 but decreased cyclinB1 and CDC2 proteins. In addition, siDNA-PKcs also increased the expressions of ATM and p53. Conclusion DNA-PKcs silencing increases P21 while decreases cyclin B1 and CDC2 expressions, and finally induces G2/M phase arrest in Bel7402/5-Fu cells, which may be related to ATM-p53 signaling pathway.
Lu, W; Wainwright, G; Olohan, L A; Webster, S G; Rees, H H; Turner, P C
2001-10-31
Synthesis of ecdysteroids (molting hormones) by crustacean Y-organs is regulated by a neuropeptide, molt-inhibiting hormone (MIH), produced in eyestalk neural ganglia. We report here the molecular cloning of a cDNA encoding MIH of the edible crab, Cancer pagurus. Full-length MIH cDNA was obtained by using reverse transcription-polymerase chain reaction (RT-PCR) with degenerate oligonucleotides based upon the amino acid sequence of MIH, in conjunction with 5'- and 3'-RACE. Full-length clones of MIH cDNA were obtained that encoded a 35 amino acid putative signal peptide and the mature 78 amino acid peptide. Of various tissues examined by Northern blot analysis, the X-organ was the sole major site of expression of the MIH gene. However, a nested-PCR approach using non-degenerate MIH-specific primers indicated the presence of MIH transcripts in other tissues. Southern blot analysis indicated a simple gene arrangement with at least two copies of the MIH gene in the genome of C. pagurus. Additional Southern blotting experiments detected MIH-hybridizing bands in another Cancer species, Cancer antennarius and another crab species, Carcinus maenas.
2013-01-01
Background Nanoparticles appear to be promising devices for application in the agriculture and food industries, but information regarding the response of plants to contact with nano-devices is scarce. Toxic effects may be imposed depending on the type and concentration of nanoparticle as well as time of exposure. A number of mechanisms may underlie the ability of nanoparticles to cause genotoxicity, besides the activation of ROS scavenging mechanisms. In a previous study, we showed that plant cells accumulate 3-Mercaptopropanoic acid-CdSe/ZnS quantum dots (MPA-CdSe/ZnS QD) in their cytosol and nucleus and increased production of ROS in a dose dependent manner when exposed to QD and that a concentration of 10 nM should be cyto-compatible. Results When Medicago sativa cells were exposed to 10, 50 and 100 nM MPA-CdSe/ZnS QD a correspondent increase in the activity of Superoxide dismutase, Catalase and Glutathione reductase was registered. Different versions of the COMET assay were used to assess the genotoxicity of MPA-CdSe/ZnS QD. The number of DNA single and double strand breaks increased with increasing concentrations of MPA-CdSe/ZnS QD. At the highest concentrations, tested purine bases were more oxidized than the pyrimidine ones. The transcription of the DNA repair enzymes Formamidopyrimidine DNA glycosylase, Tyrosyl-DNA phosphodiesterase I and DNA Topoisomerase I was up-regulated in the presence of increasing concentrations of MPA-CdSe/ZnS QD. Conclusions Concentrations as low as 10 nM MPA-CdSe/ZnS Quantum Dots are cytotoxic and genotoxic to plant cells, although not lethal. This sets a limit for the concentrations to be used when practical applications using nanodevices of this type on plants are being considered. This work describes for the first time the genotoxic effect of Quantum Dots in plant cells and demonstrates that both the DNA repair genes (Tdp1β, Top1β and Fpg) and the ROS scavenging mechanisms are activated when MPA-CdSe/ZnS QD contact M. sativa cells. PMID:24359290
Palanki, Rohan; Arora, Sumit; Tyagi, Nikhil; Rusu, Lilia; Singh, Ajay P; Palanki, Srinivas; Carter, James E; Singh, Seema
2015-09-15
Ultraviolet (UV) radiation from sun, particularly its UVB component (290-320 nm), is considered the major etiological cause of skin cancer that impacts over 2 million lives in the United States alone. Recently, we reported that polydisperse colloidal suspension of silver nanoparticles (AgNPs) protected the human keratinocytes (HaCaT) against UVB-induced damage, thus indicating their potential for prevention of skin carcinogenesis. Here we sought out to investigate if size controlled the chemopreventive efficacy of AgNPs against UVB-induced DNA damage and apoptosis. Percent cell viability was examined by WST-1 assay after treating the cells with various doses (1-10 μg/mL) of AgNPs of different sizes (10, 20, 40, 60 and 100 nm) for 12 and 24 h. For protection studies, cells were treated with AgNPs of different sizes at a uniform concentration of 1 μg/mL. After 3 h, cells were irradiated with UVB (40 mJ/cm(2)) and dot-blot analysis was performed to detect cyclobutane pyrimidine dimers (CPDs) as an indication of DNA damage. Apoptosis was analyzed by flow cytometry after staining the cells with 7-Amino-Actinomycin (7-AAD) and PE Annexin V. Immunoblot analysis was accomplished by processing the cells for protein extraction and Western blotting using specific antibodies against various proteins. The data show that the pretreatment of HaCaT cells with AgNPs in the size range of 10-40 nm were effective in protecting the skin cells from UVB radiation-induced DNA damage as validated by reduced amounts of CPDs, whereas no protection was observed with AgNPs of larger sizes (60 and 100 nm). Similarly, only smaller size AgNPs (10-40 nm) were effective in protecting the skin cells from UV radiation-induced apoptosis. At the molecular level, UVB -irradiation of HaCaT cells led to marked increase in expression of pro-apoptotic protein (Bax) and decrease in anti-apoptotic proteins (Bcl-2 and Bcl-xL), while it remained largely unaffected in skin cells pretreated with smaller size AgNPs (10-40 nm). Altogether, these findings suggest that size is a critical determinant of the UVB-protective efficacy of AgNPs in human keratinocytes.
Filtration Isolation of Nucleic Acids: A Simple and Rapid DNA Extraction Method.
McFall, Sally M; Neto, Mário F; Reed, Jennifer L; Wagner, Robin L
2016-08-06
FINA, filtration isolation of nucleic acids, is a novel extraction method which utilizes vertical filtration via a separation membrane and absorbent pad to extract cellular DNA from whole blood in less than 2 min. The blood specimen is treated with detergent, mixed briefly and applied by pipet to the separation membrane. The lysate wicks into the blotting pad due to capillary action, capturing the genomic DNA on the surface of the separation membrane. The extracted DNA is retained on the membrane during a simple wash step wherein PCR inhibitors are wicked into the absorbent blotting pad. The membrane containing the entrapped DNA is then added to the PCR reaction without further purification. This simple method does not require laboratory equipment and can be easily implemented with inexpensive laboratory supplies. Here we describe a protocol for highly sensitive detection and quantitation of HIV-1 proviral DNA from 100 µl whole blood as a model for early infant diagnosis of HIV that could readily be adapted to other genetic targets.
Production and characterization of egg yolk antibody (IgY) against recombinant VP8-S2 antigen.
Nasiri, K; Nassiri, M R; Tahmoorespur, M; Haghparast, A; Zibaee, S
2016-01-01
Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. VP8 subunit of rotavirus is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. Studies showed that immunoglobulin of egg yolk (IgY) from immunized hens has been identified to be a convenient source for specific antibodies for using in immunotherapy and immunodiagnostic to limit the infections. In this study, chimeric VP8-S2 gene was designed using by computational techniques. The chimeric VP8-S2 gene was cloned and sub-cloned into pGH and pET32a (+) vectors. Then, recombinant pET32a-VP8-S2 vector was transferred into E. coli BL21 CodonPlus (DE3). The expressed protein was purified by Ni-NTA chromatography column. Hens were immunized with the purified VP8-S2 protein three times. IgY was purified from egg yolks using polyethylene glycol precipitation method. Activity and specificity of anti-VP8-S2 IgY were detected by dot-blotting, Western-blotting and indirect ELISA. We obtained anti-VP8-S2 IgY by immunizing hens with the recombinant VP8-S2 protein. The anti-VP8-S2 IgY was showed to bind specifically to the chimeric VP8-S2 protein by dot-blotting, Western-blotting analyses and indirect ELISA. The result of this study indicated that such construction can be useful to investigate as candidates for development of detection methods for simultaneous diagnosis of both infections. Specific IgY against the recombinant VP8-S2 could be recommended as a candidate for passive immunization against bovine rotavirus and bovine coronavirus.
Yuan, Jipei; Guo, Weiwei; Yang, Xiurong; Wang, Erkang
2009-01-01
A sensing system based on the photoinduced electron transfer of quantum dots (QDs) was designed to measure the interaction of anticancer drug and DNA, taking mitoxantrone (MTX) as a model drug. MTX adsorbed on the surface of QDs can quench the photoluminescence (PL) of QDs through the photoinduced electron-transfer process; and then the addition of DNA will bring the restoration of QDs PL intensity, as DNA can bind with MTX and remove it from QDs. Sensitive detection of MTX with the detection limit of 10 nmol L(-1) and a linear detection range from 10 nmol L(-1) to 4.5 micromol L(-1) was achieved. The dependence of PL intensity on DNA amount was successfully utilized to investigate the interactions between MTX and DNA. Both the binding constants and the sizes of binding site of MTX-DNA interactions were calculated based on the equations deduced for the PL recovery process. The binding constant obtained in our experiment was generally consistent with previous reports. The sensitive and speedy detection of MTX as well as the avoidance of modification or immobilization process made this system suitable and promising in the drug-DNA interaction studies.
Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers
Steenkeste, Nicolas; Incardona, Sandra; Chy, Sophy; Duval, Linda; Ekala, Marie-Thérèse; Lim, Pharath; Hewitt, Sean; Sochantha, Tho; Socheat, Doung; Rogier, Christophe; Mercereau-Puijalon, Odile; Fandeur, Thierry; Ariey, Frédéric
2009-01-01
Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the molecular methods. Dot18S and CYTB, the new methods reported herein are highly sensitive, allow parasite DNA extraction as well as genus- and species-specific diagnosis of several hundreds of samples, and are amenable to high-throughput scaling up for larger sample sizes. Such methods provide novel information on malaria prevalence and epidemiology and are suited for active malaria detection. The usefulness of such sensitive malaria diagnosis tools, especially in low endemic areas where eradication plans are now on-going, is discussed in this paper. PMID:19402894
Quantum-dot-based quantitative identification of pathogens in complex mixture
NASA Astrophysics Data System (ADS)
Lim, Sun Hee; Bestwater, Felix; Buchy, Philippe; Mardy, Sek; Yu, Alexey Dan Chin
2010-02-01
In the present study we describe sandwich design hybridization probes consisting of magnetic particles (MP) and quantum dots (QD) with target DNA, and their application in the detection of avian influenza virus (H5N1) sequences. Hybridization of 25-, 40-, and 100-mer target DNA with both probes was analyzed and quantified by flow cytometry and fluorescence microscopy on the scale of single particles. The following steps were used in the assay: (i) target selection by MP probes and (ii) target detection by QD probes. Hybridization efficiency between MP conjugated probes and target DNA hybrids was controlled by a fluorescent dye specific for nucleic acids. Fluorescence was detected by flow cytometry to distinguish differences in oligo sequences as short as 25-mer capturing in target DNA and by gel-electrophoresis in the case of QD probes. This report shows that effective manipulation and control of micro- and nanoparticles in hybridization assays is possible.
Stepwise Assembly and Characterization of DNA Linked Two-Color Quantum Dot Clusters.
Coopersmith, Kaitlin; Han, Hyunjoo; Maye, Mathew M
2015-07-14
The DNA-mediated self-assembly of multicolor quantum dot (QD) clusters via a stepwise approach is described. The CdSe/ZnS QDs were synthesized and functionalized with an amphiphilic copolymer, followed by ssDNA conjugation. At each functionalization step, the QDs were purified via gradient ultracentrifugation, which was found to remove excess polymer and QD aggregates, allowing for improved conjugation yields and assembly reactivity. The QDs were then assembled and disassembled in a stepwise manner at a ssDNA functionalized magnetic colloid, which provided a convenient way to remove unreacted QDs and ssDNA impurities. After assembly/disassembly, the clusters' optical characteristics were studied by fluorescence spectroscopy and the assembly morphology and stoichiometry was imaged via electron microscopy. The results indicate that a significant amount of QD-to-QD energy transfer occurred in the clusters, which was studied as a function of increasing acceptor-to-donor ratios, resulting in increased QD acceptor emission intensities compared to controls.
Chen, Qi; Yoo, Si-Youl; Chung, Yong-Ho; Lee, Ji-Young; Min, Junhong; Choi, Jeong-Woo
2016-10-01
Various bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure. DNA structure, in turn, was dependent on the components (organic materials) and the input signal (pH). Independent electrochemical signals from two different logic units containing QDs were merged into a single analog-type logic gate, which was controlled by two inputs. We applied this electrochemical biodevice to a simple logic system and achieved various logic functions from the controlled pH input sets. This could be further improved by choosing QDs, ionic conditions, or DNA sequences. This research provides a feasible method for fabricating an artificial intelligence system. Copyright © 2016 Elsevier B.V. All rights reserved.
A new source of cytoplasmic male sterility in pearl millet: RFLP analysis of mitochondrial DNA.
Sujata, V; Sivaramakrishnan, S; Rai, K N; Seetha, K
1994-06-01
A new source of cytoplasmic male sterility (cms) in pearl millet (Pennisetum glaucum (L.) R.Br.) derived from a half-sib progeny of the Early Gene Pool (EGP 261) and used in a male-sterile line, ICMA 90111, was compared with other known cms sources for RFLP of mitochondrial (mt) DNA. Southern blot hybridization of mtDNA from ICMA 90111 digested with several restriction enzymes and probed with homologous mtDNA clones from pearl millet and heterologous gene clones from maize and wheat revealed the RFLP patterns of ICMA 90111 distinct from others studied so far. The dendrogram of male-sterile lines constructed from the Southern blot hybridization patterns indicated that ICMA 90111 represents a separate group. Our results suggest that this source of cms is unique in several respects.
Ferraz, Aline S; Belo, Elza F T; Coutinho, Ligia M C C; Oliveira, Ana P; Carmo, Andréia M S; Franco, Daniele L; Ferreira, Tatiane; Yto, André Y; Machado, Marta S F; Scola, Monica C G; De Gaspari, Elizabeth
2008-03-06
A simple filter paper method was developed for, the transport and storage of monoclonal antibodies (Mabs) at room temperature or -20 degrees C after spotting on filter paper, for subsequent serotyping of outer membrane antigens of N.meningitidis by dot-blot ELISA. Monoclonal antibodies (Mabs) were spotted within a 0.5-1 cm diameter area of Whatman grade 903 paper, which were stored individually at room temperature or at -20 degrees C. These MAbs were stored and analyzed after periods of one week, 4 weeks, 12 months, or 13 years in the case of frozen Mab aliquots, or after 4 weeks at -20 degrees C or at room temperature (RT) in the case of Mabs dried on filter paper strips. Assays were performed in parallel using dot-blot ELISA. In addition to the MAbs specific for serotyping class 1, 2 or 3, we used a larger number of Mabs for polysaccharides, lipooligosaccharides (LOS), class 5 and cross-reactive antigens for native outer membrane of N.meningitidis. The Mabs dried on filter paper were eluted with phosphate-buffered saline (PBS) containing 0.2% gelatin. Mabs of the isotypes IgG and IgM dried on filter papers were not affected by duration of storage. The detection by serotyping Mabs was generally consistent for dried filter paper MAb samples stored frozen for over 1 year at -20 degrees C, and although decreased reactive antibody titers were found after storage, this did not interfere with the specificity of the Mabs used after 13 years as dry spots on filter paper. The use of filter paper is an inexpensive and convenient method for collecting, storing, and transporting Mab samples for serotyping studies. In addition, the samples occupy little space and can be readily transported without freezing. The efficiency of using immunoglobulin G (IgG) or M (IgM) eluted was found to be consistent with measurement of IgG or IgM titers in most corresponding, ascites Mabs stored frozen for over 1 year. The application of meningococcal typing methods and designations depend on the question being asked.
Katayama, S; Takeshita, N; Yano, T; Ubagai, T; Qiu, X J; Katagiri, Y; Kubo, H; Hirakawa, S
1993-06-01
We compared the efficacy of the multiplex PCR with that of the cDNA analysis for detection of deletions of the DMD gene in the Japanese patients. Thirty males with DMD from 27 Japanese families were studied by the multiplex PCR, and 24 of them were also investigated by Southern blot analysis. We used five dystrophin cDNA probes for deletion analysis. A total of 19 regions were amplified by the PCR to detect deletions, 9 regions by the method of Chamberlain et al. and another 10 regions by the method of Beggs et al. Deletions were detected in 14 (52%) out of 27 DMD families by the PCR. Southern blot analysis detected deletions in 14 (64%) out of 22 families. Thirteen (93%) of the 14 DMD families with deletions detected by Southern blotting were also confirmed by the multiplex PCR. Provided care is taken in cases where the deletion is limited to a single exon, the multiplex PCR appears to be an efficient and useful alternative to conventional Southern blot analysis for detecting deletions during the prenatal and postnatal diagnosis of DMD.
Huang, Qitong; Lin, Xiaofeng; Zhu, Jie-Ji; Tong, Qing-Xiao
2017-08-15
In this study, a green and fast method was developed to synthesize high-yield carbon dots (CDs) via one-pot microwave treatment of banana peels without using any other surface passivation agents. Then the as-prepared CDs was used as the reducing agent and stabilizer to synthesize a Pd-Au@CDs nanocomposite by a simple sequential reduction strategy. Finally, Pd-Au@CDs nanocomposite modified glassy carbon electrode (Pd-Au@CDs/GCE) was obtained as a biosensor for target DNA after being immobilized a single-stranded probe DNA by a carboxyl ammonia condensation reaction. Under the optimal conditions, the sensor could detect target DNA concentrations in the range from 5.0×10 -16 to 1.0×10 -1 °molL -1 . The detection limit (LD) was estimated to be 1.82×10 -17 molL -1 , which showed higher sensitivity than other electrochemical biosensors reported. In addition, the DNA sensor was also successfully applied to detect colitoxin DNA in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.
One-to-one quantum dot-labeled single long DNA probes.
He, Shibin; Huang, Bi-Hai; Tan, Junjun; Luo, Qing-Ying; Lin, Yi; Li, Jun; Hu, Yong; Zhang, Lu; Yan, Shihan; Zhang, Qi; Pang, Dai-Wen; Li, Lijia
2011-08-01
Quantum dots (QDs) have been received most attention due to their unique properties. Constructing QDs conjugated with certain number of biomolecules is considered as one of the most important research goals in nanobiotechnology. In this study, we report polymerase chain reaction (PCR) amplification of primer oligonucleotides bound to QDs, termed as QD-based PCR. Characterization of QD-based PCR products by gel electrophoresis and atomic force microscopy showed that QD-labeled long DNA strands were synthesized and only a single long DNA strand was conjugated with a QD. The QD-based PCR products still kept fluorescence properties. Moreover, the one-to-one QD-labeled long DNA conjugates as probes could detect a single-copy gene on maize chromosomes by fluorescence in situ hybridization. Labeling a single QD to a single long DNA will make detection of small single-copy DNA fragments, quantitative detection and single molecule imaging come true by nanotechnology, and it will promote medical diagnosis and basic biological research as well as nano-material fabrication. Copyright © 2011 Elsevier Ltd. All rights reserved.
Quantum dot-based microfluidic biosensor for cancer detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrera, Aditya Sharma; School of Engineering and Technology, ITM University, Gurgaon-122017; Pandey, Chandra Mouli
2015-05-11
We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system hasmore » been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.« less
Souza, Luiz Gustavo Rodrigues; Crosa, Orfeo; Speranza, Pablo; Guerra, Marcelo
2012-04-01
Nothoscordum gracile is an apomitic tetraploid widely distributed throughout the Americas and naturalized in many temperate regions of other continents. It has been suggested to form a species complex with sexual and apomictic N. nudicaule and N. macrostemon. Tetraploids of these species also share a structurally heterozygous chromosome complement 2n = 19 (13M + 6A). In this work, the origin of N. gracile and its relationships with its related species was investigated based on cytological and molecular data. Cytogenetic analyses were based on meiotic behaviour, CMA bands, localization of 5S and 45S rDNA sites, and genomic in situ hybridization (GISH). Nuclear ITS and plastidial trnL-trnF sequences were also obtained for most individuals. Proximal CMA bands were observed in the long arms of all acrocentrics of 2x and 4x N. macrostemon but not in diploid and some tetraploid cytotypes of N. nudicaule. Samples of N. gracile showed a variable number of CMA bands in the long arms of acrocentrics. Analysis of ITS sequences, dot-blot, GISH, and 5S and 45S rDNA sites, revealed no differentiation among the three species. The trnL-trnF cpDNA fragment showed variation with a trend to geographical structuring irrespective of morphospecies and fully congruent with karyotype variation. The 2n = 19 karyotype was probably formed by a centric fusion event occurring in N. nudicaule and later transmitted to tetraploid cytotypes of N. macrostemon. Diploids of N. nudicaule and N. macrostemon appeared as consistent recently diverged species, whereas tetraploid apomicts seem to constitute an assemblage of polyploid hybrids originating from multiple independent hybridization events between them, part of which are morphologically recognizable as N. gracile.
Peng, Qi; Li, Siping; Ma, Keze; Li, Wenrui; Ma, Qiang; He, Xiaoguang; He, Yuejing; He, Ting; Lu, Xiaomei
2015-01-01
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymatic disorder of the erythrocytes that affects 400 million people worldwide. We developed a PCR-reverse dot blot (RDB) assay to screen twenty genotypes of seventeen Chinese G6PD mutations and investigate the spectrum of G6PD deficiency mutations in Dongguan District, Guangdong Province, in southern China. The PCR-RDB assay consists of multiplex PCR amplification of seven fragments in the G6PD target sequence of wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes. A total of 16,464 individuals were analyzed by a combination of phenotypic screening and genotypic detection using the PCR-RDB assay and DNA sequence analysis. The PCR-RDB assay had a detection rate of 98.1%, which was validated by direct sequencing in a blind study with 100% concordance. The G6PD deficiency incidence rate in Dongguan District is 4.08%. Thirty-two genotypes from 469 individuals were found. The two most common variants were c.1376G>T and c.1388G>A, followed by c.95A>G, c.871G>A, c.392G>T, and c.1024 C>T. In addition, two rare mutations (c.703C>A and c.406C>T) were detected by DNA sequencing analysis. In our study, 65 cases harbored the C1311T/IVS polymorphism and 67 cases were homozygote. The PCR-RDB assay we established is a reliable and effective method for screening G6PD mutations in the Chinese population. Data on the spectrum of mutations in the Dongguan District is beneficial to the clinical diagnosis and prevention of G6PD deficiency.
Ma, Keze; Li, Wenrui; Ma, Qiang; He, Xiaoguang; He, Yuejing; He, Ting; Lu, Xiaomei
2015-01-01
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymatic disorder of the erythrocytes that affects 400 million people worldwide. We developed a PCR-reverse dot blot (RDB) assay to screen twenty genotypes of seventeen Chinese G6PD mutations and investigate the spectrum of G6PD deficiency mutations in Dongguan District, Guangdong Province, in southern China. Method The PCR-RDB assay consists of multiplex PCR amplification of seven fragments in the G6PD target sequence of wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes. A total of 16,464 individuals were analyzed by a combination of phenotypic screening and genotypic detection using the PCR-RDB assay and DNA sequence analysis. Results The PCR-RDB assay had a detection rate of 98.1%, which was validated by direct sequencing in a blind study with 100% concordance. The G6PD deficiency incidence rate in Dongguan District is 4.08%. Thirty-two genotypes from 469 individuals were found. The two most common variants were c.1376G>T and c.1388G>A, followed by c.95A>G, c.871G>A, c.392G>T, and c.1024 C>T. In addition, two rare mutations (c.703C>A and c.406C>T) were detected by DNA sequencing analysis. In our study, 65 cases harbored the C1311T/IVS polymorphism and 67 cases were homozygote. Conclusion The PCR-RDB assay we established is a reliable and effective method for screening G6PD mutations in the Chinese population. Data on the spectrum of mutations in the Dongguan District is beneficial to the clinical diagnosis and prevention of G6PD deficiency. PMID:25775246
Frequency and significance of parvovirus B19 infection in patients with rheumatoid arthritis.
Naciute, Milda; Mieliauskaite, Diana; Rugiene, Rita; Nikitenkiene, Rita; Jancoriene, Ligita; Mauricas, Mykolas; Nora-Krukle, Zaiga; Murovska, Modra; Girkontaite, Irute
2016-12-01
The present study aims to clarify the possible involvement of parvovirus B19 (B19V) infection in rheumatoid arthritis (RA) pathogenesis by investigating the presence of B19V infection markers (genomic sequences and virus-specific antibodies) in association with the level of cytokines and RA clinical activity and aggressiveness. A total of 118 RA patients and 49 age- and sex-matched healthy volunteers were enrolled in the study. Nested PCR was used to detect B19V sequences in whole blood and cell-free plasma DNA, ELISA to detect virus-specific antibodies and cytokine levels in plasma and recomLine dot blot assay for antibodies to separate B19V antigens. The detection frequency of B19V DNA was higher in patients with RA (25.4 %) in comparison with healthy persons (18.4 %). B19V DNA in cell-free plasma (B19+p) was detected significantly often in RA patients in comparison with healthy controls (13.6 vs 2 %; P=0.0002). RA B19+p patients had higher disease activity and aggressiveness, decreased haemoglobin and increased erythrocyte sedimentation rates. IL-6 plasma levels were significantly higher in RA patients than in controls. Within the RA patients' group the IL-6 level was significantly increased in B19+p patients with disease activity scores of DAS28>5.2, high C-reactive protein and low haemoglobin. Contrary to the healthy controls, the majority of RA B19+p patients did not have antibodies to VP-1S (VP1u) and VP-N (N-terminal half of structural proteins VP1 and VP2), which correspond to the epitopes of neutralizing antibodies. These results indicate that B19V infection at least in some patients is involved in RA pathogenesis.
Cloning and characterization of the human 5,10-methenyltetrahydrofolate synthetase-encoding cDNA.
Dayan, A; Bertrand, R; Beauchemin, M; Chahla, D; Mamo, A; Filion, M; Skup, D; Massie, B; Jolivet, J
1995-11-20
Methenyltetrahydrofolate synthetase (MTHFS) catalyses the obligatory initial metabolic step in the intracellular conversion of 5-formyltetrahydrofolate to other reduced folates. We have isolated and sequenced a human MTHFS cDNA which is 872-bp long and codes for a 203-amino-acid protein of 23,229 Da. Escherichia coli BL21(DE3), transfected with pET11c plasmids containing an open reading frame encoding MTHFS, showed a 100-fold increase in MTHFS activity in bacterial extracts after IPTG induction. Northern blot studies of human tissues determined that the MTHFS mRNA was expressed preferentially in the liver and Southern blot analysis of human genomic DNA suggested the presence of a single-copy gene.
Akperova, G A
2014-11-01
IThe purpose of this study was to evaluate of the efficiency of RDBH-method and Big DyeTM Terminator technology in an accurate diagnosis of β-thalassemia and the allelic polymorphism of β-globin cluster. It was done a complete hematology analysis (HB, MCH, MCV, MCHC, RBC, Hct, HbA2, HbF, Serum iron, Serum ferritin at four children (males, 6-10 years old) and their parents. Molecular analysis included Reverse Dot-Blot Hybridization StripAssay (RDBH) and DNA sequencing on ABI PRISM Big DyeTM Terminator. Hematologic and molecular parameters were contradictory. The homozygosity for β0-thalassemia (β0IVS2.1[G>A] and β0codon 8[-AA]) at three boys with the mild clinical manifestation and heterozygosity of their parents for mutations, and the absence of β-globin mutations at parents and a boy who holds monthly transfusion was established by RDBH-analysis. DNA sequencing by technology Big DyeTM Terminator showed polymorphism at positions -551 and -521 of Cap5'-region (-650-250) - (AT)7(T)7 and (AT)8(T)5. Application of the integrated clinical-molecular approach is an ideal method for an accurate diagnosis, identification of asymptomatic carriers and a reduce of the risk of complications from β-thalassemia, moreover screening of γG-gene and the level of fetal hemoglobin in early childhood will help manage of β-thalassemia clinic and prevent heavy consequences of the disease.
Olds, Cassandra L; Mason, Kathleen L; Scoles, Glen A
2018-03-02
East Coast fever (ECF) is a devastating disease of cattle and a significant constraint to improvement of livestock production in sub-Saharan Africa. The protozoan parasite causing ECF, Theileria parva, undergoes obligate sexual stage development in its tick vector Rhipicephalus appendiculatus. Tick-borne acquisition and transmission occurs transstadially; larval and nymphal ticks acquire infection while feeding and transmit to cattle when they feed after molting to the next stage. Much of the current knowledge relating to tick-borne acquisition and transmission of T. parva has been derived from studies performed during acute infections where parasitemia is high. In contrast, tick-borne transmission during the low-level persistent infections characteristic of endemic transmission cycles is rarely studied. Cattle were infected with one of two stocks of T. parva (Muguga or Marikebuni). Four months post-infection when parasites were no longer detectable in peripheral blood by PCR, 500 R. appendiculatus nymphs were fed to repletion on each of the cattle. After they molted to the adult stage, 20 or 200 ticks, respectively, were fed on two naïve cattle for each of the parasite stocks. After adult ticks fed to repletion, cattle were tested for T. parva infection by nested PCR and dot blot hybridization. Once they had molted to adults the ticks that had fed as nymphs on Muguga and Marikebuni infected cattle successfully transmitted Theileria parva to all naïve cattle, even though T. parva infection was not detectable by nested PCR on salivary gland genomic DNA of a sample of individual ticks. However, a salivary gland homogenate from a single Marikebuni infected tick was able to infect primary bovine lymphocytes. Infection was detected by nested p104 PCR in 3 of 4 calves and detected in all 4 calves by T. parva 18S nested PCR/dot blot hybridization. We show that R. appendiculatus ticks are able to acquire T. parva parasites from infected cattle even in the absence of detectable parasitemia. Although infection was undetectable in a sample of individual ticks, cumulatively as few as 20 ticks were able to transmit T. parva to naïve cattle. These results have important implications for our understanding of T. parva transmission by R. appendiculatus in ECF endemic regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouchakdjian, M.; Patel, D.J.; Bodepudi, V.
1991-02-05
Proton NMR studies are reported on the complementary d(C1-C2-A3-C4-T5-A6-oxo-G7-T8-C9-A10-C11-C12){center dot}d(G13-G14-T15-G16-A17-A18-T19-A20-G21-T22-G23-G24) dodecanucleotide duplex (designated 8-oxo-7H-dG{center dot}dA 12-mer), which contains a centrally located 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) residue, a group commonly found in DNA that has been exposed to ionizing radiation or oxidizing free radicals. From the NMR spectra it can be deduced that this moiety exists as two tautomers, or gives rise to two DNA conformations, that are in equilibrium and that exchange slowly. The present study focuses on the major component of the equilibrium that originates in the 6,8-dioxo tautomer of 8-oxo-7H-dG. The authors have assigned the exchangeable NH1, NH7, and NH{submore » 2}-2 base protons located on the Watson-Crick and Hoogsteen edges of 8-oxo-7H-dG7 in the 8-oxo-7H-dG{center dot}dA 12-mer duplex, using an analysis of one- and two-dimensional nuclear Overhauser enhancement (NOE) data in H{sub 2}O solution. They were able to detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(A6-oxo-G7-T8){center dot}d(A17-A18-T19) trinucleotide segment centered about the lesion site that establishes stacking of the oxo-dG7(syn){center dot}dA(anti) pair between stable Watson-Crick dA6{center dot}dT19 and dT8{center dot}A17 base pairs with minimal perturbation of the helix. The structural studies demonstrate that 8-oxo-7H-dG(syn){center dot}dA(anti) forms a stable pair in the interior of the helix, providing a basis for the observed incorporation of dA opposite 8-oxo-7H-dG when readthrough occurs past this oxidized nucleoside base.« less
Huang, Li-Chun; Hsiao, Lin-June; Pu, Szu-Yuan; Kuo, Ching-I; Huang, Bau-Lian; Tseng, Tsung-Che; Huang, Hao-Jen; Chen, Yu-Ting
2012-06-01
Epigenetic machinery regulates the expression of individual genes and plays a crucial role in globally shaping and maintaining developmental patterning. We studied the extent of DNA methylation in the nucleus, mitochondrion and chloroplast in cultured Sequoia sempervirens (coast redwood) adult, juvenile and rejuvenated shoots by measuring the ratio of methylcytosine to total cytosine using high-performance liquid chromatography (HPLC). We also analyzed nuclear DNA (nuDNA) polymorphisms of different shoot types by methylation-sensitive amplified fragment length polymorphism (MSAP) and Southern blot analysis. The extent of nuDNA methylation was greater in the adult vegetative than juvenile and rejuvenated shoots (8% vs 6.5-7.5%). In contrast, the proportion of methylcytosine was higher in mitochondrial DNA (mDNA) of juvenile and rejuvenated shoots than adult shoots (6.6% vs 7.8-8.2%). MSAP and Southern blot analyses identified three MSAP fragments which could be applied as phase-specific molecular markers. We also found nuclear genome and mtDNA rearrangement may be as important as DNA methylation status during the phase change. Our findings strongly suggest that DNA methylation and genome rearrangement may affect the dynamic tissue- and cell type-specific changes that determine the developmental phase of S. sempervirens shoots. Copyright © Physiologia Plantarum 2012.
Diagnosis of AIDS-Related Intestinal Parasites
1988-01-07
malnutrition or with certain concomitant illnesses such as measles or chicken pox , may be susceptible to more severe clinical manifestations with cure only...above) and Homero Martinez, M.D., Instituto National de la Nutricion, Mexico City. In this study, 53 children with at least one microscopic stool...outlined or using nitrocellulose "DOT-blot" technology. In addition, plans are underway to begin field testing the Entamoeba histolytica ELISA in Mexico
Rosette Assay: Highly Customizable Dot-Blot for SH2 Domain Screening.
Ng, Khong Y; Machida, Kazuya
2017-01-01
With a growing number of high-throughput studies, structural analyses, and availability of protein-protein interaction databases, it is now possible to apply web-based prediction tools to SH2 domain-interactions. However, in silico prediction is not always reliable and requires experimental validation. Rosette assay is a dot blot-based reverse-phase assay developed for the assessment of binding between SH2 domains and their ligands. It is conveniently customizable, allowing for low- to high-throughput analysis of interactions between various numbers of SH2 domains and their ligands, e.g., short peptides, purified proteins, and cell lysates. The binding assay is performed in a 96-well plate (MBA or MWA apparatus) in which a sample spotted membrane is incubated with up to 96 labeled SH2 domains. Bound domains are detected and quantified using a chemiluminescence or near-infrared fluorescence (IR) imaging system. In this chapter, we describe a practical protocol for rosette assay to assess interactions between synthesized tyrosine phosphorylated peptides and a library of GST-tagged SH2 domains. Since the methodology is not confined to assessment of SH2-pTyr interactions, rosette assay can be broadly utilized for ligand and drug screening using different protein interaction domains or antibodies.
Identification and characterization of jute LTR retrotransposons:
Ahmed, Salim; Shafiuddin, MD; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Ghosh, Ajit
2011-01-01
Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842
Genetic relatedness of orbiviruses by RNA-RNA blot hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodkin, D.K.
1985-01-01
RNA-RNA blot hybridization was developed in order to identify type-specific genes among double-stranded (ds) RNA viruses, to assess the genetic relatedness of dsRNA viruses and to classify new strains. Viral dsRNA segments were electrophoresed through 10% polyacrylamide gels, transferred to membranes, and hybridized to (5'/sup 32/P)-pCp labeled genomic RNA from a related strain. Hybridization was performed at 52/sup 0/C, 50% formamide, 5X SSC. Under these conditions heterologous RNA species must share greater than or equal to 74% sequence homology in order to form stable dsRNA hybrids. Cognate genes of nine members of the Palyam serogroup of orbiviruses were identified andmore » their sequence relatedness to the prototype. Palyam virus, was determined. Reciprocal blot hybridizations were performed using radiolabeled genomic RNA of all members of the Palyam serogroup. Unique and variant genes were identified by lack of cross-homology or by weak homology between segments. Since genes 2 and 6 exhibited the highest degree of sequence variability, response to the vertebrate immune system may be a major cause of sequence divergence among members of a single serogroup. Changuinola serogroup isolates were compared by dot-blot hybridization, while Colorado tick fever (CTF) serogroup isolates were compared by the RNA-RNA blot hybridization procedure described for reovirus and Palyam serogroup isolates. Preliminary blot hybridization data were also obtained on the relatedness of members of different Orbivirus serogroups.« less
NASA Astrophysics Data System (ADS)
Huang, Da; Freeley, Mark; Palma, Matteo
2017-03-01
We present a facile strategy of general applicability for the assembly of individual nanoscale moieties in array configurations with single-molecule control. Combining the programming ability of DNA as a scaffolding material with a one-step lithographic process, we demonstrate the patterning of single quantum dots (QDs) at predefined locations on silicon and transparent glass surfaces: as proof of concept, clusters of either one, two, or three QDs were assembled in highly uniform arrays with a 60 nm interdot spacing within each cluster. Notably, the platform developed is reusable after a simple cleaning process and can be designed to exhibit different geometrical arrangements.
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2011-01-01
The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.
Huang, Dawei; Niu, Chenggang; Ruan, Min; Wang, Xiaoyu; Zeng, Guangming; Deng, Canhui
2013-05-07
The authors herein described a time-gated fluorescence resonance energy transfer (TGFRET) sensing strategy employing water-soluble long lifetime fluorescence quantum dots and gold nanoparticles to detect trace Hg(2+) ions in aqueous solution. The water-soluble long lifetime fluorescence quantum dots and gold nanoparticles were functionalized by two complementary ssDNA, except for four deliberately designed T-T mismatches. The quantum dot acted as the energy-transfer donor, and the gold nanoparticle acted as the energy-transfer acceptor. When Hg(2+) ions were present in the aqueous solution, DNA hybridization will occur because of the formation of T-Hg(2+)-T complexes. As a result, the quantum dots and gold nanoparticles are brought into close proximity, which made the energy transfer occur from quantum dots to gold nanoparticles, leading to the fluorescence intensity of quantum dots to decrease obviously. The decrement fluorescence intensity is proportional to the concentration of Hg(2+) ions. Under the optimum conditions, the sensing system exhibits the same liner range from 1 × 10(-9) to 1 × 10(-8) M for Hg(2+) ions, with the detection limits of 0.49 nM in buffer and 0.87 nM in tap water samples. This sensor was also used to detect Hg(2+) ions from samples of tap water, river water, and lake water spiked with Hg(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. In comparison to some reported colorimetric and fluorescent sensors, the proposed method displays the advantage of higher sensitivity. The TGFRET sensor also exhibits excellent selectivity and can provide promising potential for Hg(2+) ion detection.
Pathogenic role of mtDNA duplications in mitochondrial diseases associated with mtDNA deletions.
Odoardi, Francesca; Rana, Michele; Broccolini, Aldobrando; Mirabella, Massimiliano; Modoni, Anna; D'Amico, Adele; Papacci, Manuela; Tonali, Pietro; Servidei, Serenella; Silvestri, Gabriella
2003-04-30
We estimated the frequency of multiple mtDNA rearrangements by Southern blot in 32 patients affected by mitochondrial disorders associated with single deletions in order to assess genotype-phenotype correlations and elucidate the pathogenic significance of mtDNA duplications. Muscle in situ hybridization studies were performed in patients showing mtDNA duplications at Southern blot. We found multiple rearrangements in 12/32 (37.5%) patients; in particular, mtDNA duplications were detected in 4/4 Kearns-Sayre syndrome (KSS), in 1 Pearson's syndrome, in 1/3 encephalomyopathies with progressive external ophthalmoplegia (PEO), and in 2/23 PEO. In situ studies documented an exclusive accumulation of deleted mtDNAs in cytochrome c oxidase negative fibers of patients with mtDNA duplications. The presence of mtDNA duplications significantly correlated with onset of symptoms before age 15 and occurrence of clinical multisystem involvement. Analysis of biochemical data documented a predominant reduction of complex III in patients without duplications compared to patients with mtDNA duplications. Our data indicate that multiple mtDNA rearrangements are detectable in a considerable proportion of patients with single deletions and that mtDNA duplications do not cause any oxidative impairment. They more likely play a pathogenic role in the determination of clinical expression of mitochondrial diseases associated with single mtDNA deletions, possibly generating deleted mtDNAs in embryonic tissues by homologous recombination. Copyright 2003 Wiley-Liss, Inc.
Aisa, M J; Castillejo, S; Gallego, M; Fisa, R; Riera, M C; de Colmenares, M; Torras, S; Roura, X; Sentis, J; Portus, M
1998-02-01
Serum samples collected from 237 dogs in Catalonia (northeastern Spain) were screened by Western blot analysis to detect the presence of antibodies specific to different Leishmania infantum polypeptide fractions. Leishmaniasis was confirmed in 72 of these dogs by direct examination and/or culture. Another 165 animals from the Priorat region were studied periodically for 2-8 years between 1987 and 1995, giving a total of 565 determinations. A control group of 93 dogs from nonendemic areas was also studied. Sera from dogs with leishmaniasis recognized antigens with molecular weights ranging from 12 to 85 kD. The most sensitive antigens were those of 70, 65, 46, 30, 28, 14, and 12 kD, which were recognized by 75%, 75%, 78%, 75%, 81%, 79%, and 75%, respectively, of the sera from dogs with positive parasitologic examination results. Antigens of 70 and 65 kD were also recognized by two dogs from nonendemic areas. Antigens of 14 and 12 kD were the first to be recognized by sera of asymptomatic dogs with titers less than the cut-off value of the dot-ELISA that increased during the longitudinal study, and the presence of antibodies specific for these fractions was observed for up to six years before seroconversion observed by dot-ELISA. These antibodies were also the first to disappear in dogs in which the disease was self-limited. The study corroborates the high sensitivity and specificity of Western blots in the diagnosis of canine leishmaniasis when the bands of low molecular weight (less than 46 kD) are considered, and indicates that fractions of 14 and 12 kD are useful in detecting early forms of the disease.
Zafari, Mandana; Gill, Pooria; Kowsaryan, Mehrnoush; Alipour, Abbass; Banihashemi, Ali
2016-10-01
The high-resolution melting (HRM) technique is fast, effective and successful method for mutation detection. The aim of this study was to determine the sensitivity and specificity of the HRM method for detection of a paternally inherited mutation in a fetus as a noninvasive prenatal diagnosis of β-thalassemia. Genomic DNAs were prepared from 50 β-thalassemia minor couples whose pregnancy was at risk for homozygous β-thalassemia. Ten milliliters of the maternal blood from each pregnant woman were collected and after separating plasma stored at -80 °C until analysis. The extracted DNAs were analyzed by HRM real-time PCR for detection of IVS-II-I (G-A) as a paternally inherited mutation. The gold standard was the result of a chorionic villus sampling by a standard reverse dot blotting test. The sensitivity and specificity of HRM real-time PCR were 92.6% and 82.6%, respectively. Also, the positive and negative predictive values were 86.2% and 90.47%, respectively. HRM real-time PCR was a sensitive and specific method for determining the paternally inherited mutation in the fetus at risk with thalassemia major.
Identification of immunodominant antigens for the laboratory diagnosis of toxocariasis.
Zhan, Bin; Ajmera, Ravi; Geiger, Stefan Michael; Gonçalves, Marco Túlio Porto; Liu, Zhuyun; Wei, Junfei; Wilkins, Patricia P; Fujiwara, Ricardo; Gazzinelli-Guimaraes, Pedro Henrique; Bottazzi, Maria Elena; Hotez, Peter
2015-12-01
To identify immunodominant antigens of Toxocara canis recognised by Toxocara-infected sera as recombinant reagents for immunodiagnosis of toxocariasis. Pooled sera from human cases of toxocariasis were used to identify immunodominant antigens by immunoscreening a T. canis larval expression cDNA library. The positive clones were sequenced to reveal the identity of the antigens. The recombinant proteins were expressed in E. coli and then used to confirm their immunoreaction with sera of humans with toxocariasis. Two chosen antigens were also used to differentiate Toxocara infection from other helminth infections in mice. Eleven antigens with immunodiagnostic potential were identified, including two C-type lectins (CTLs) that reacted strongly with the Toxocara-positive serum pool. The first CTL (Tc-CTL-1) is the same as TES-32, previously identified as a major immunodominant component of TES; the second CTL (Tc-CTL-2) is a novel C-type lectin sharing 83% amino acid sequence identity within the functional domain of Tc-CTL-1. The E. coli-expressed recombinant Tc-CTL-1 was strongly recognised by the Toxocara-positive serum pool or sera from animals experimentally infected with T. canis. Reactivity with recombinant Tc-CTL-1 was higher when the unreduced protein was used in an enzyme-linked immunosorbent assay (ELISA), dot-blot assay or Western blot test compared to the protein under reduced condition. Both recombinant Tc-CTL-1- and Tc-CTL-2-based ELISAs were able to differentiate T. canis infection from other helminth infections in experimentally infected mice. Both Tc-CTL-1 and Tc-CTL-2 were able to differentiate Toxocara infection from other helminth infections and could potentially be used as sensitive and specific immunodiagnostic antigens. © 2015 John Wiley & Sons Ltd.
Ma, Ying; Lin, Shun-Quan; Gao, Yi; Li, Mei; Luo, Wen-Xin; Zhang, Jun; Xia, Ning-Shao
2003-10-01
To transfer hepatitis E virus (HEV) ORF2 partial gene to tomato plants, to investigate its expression in transformants and the immunoactivity of expression products, and to explore the feasibility of developing a new type of plant-derived HEV oral vaccine. Plant binary expression vector p1301E2, carrying a fragment of HEV open reading frame-2 (named HEV-E2), was constructed by linking the fragment to a constitutive CaMV35s promoter and nos terminator, then directly introduced into Agrobacterium tumefaciens EHA105. With leaf-disc method, tomato plants medicated by EHA105 were transformed and hygromycin-resistant plantlets were obtained in selective medium containing hygromycin. The presence and integration of foreign DNA in transgenic tomato genome were confirmed by Gus gene expression, PCR amplification and Southern dot blotting. The immunoactivity of recombinant protein extracted from transformed plants was examined by enzyme-linked immunosorbant assay (ELISA) using a monoclonal antibody specifically against HEV. ELISA was also used to estimate the recombinant protein content in leaves and fruits of the transformants. Seven positive lines of HEV-E2-transgenic tomato plants confirmed by PCR and Southern blotting were obtained and the immunoactivity of recombinant protein could be detected in extracts of transformants. The expression levels of recombinant protein were 61.22 ng/g fresh weight in fruits and 6.37-47.9 ng/g fresh weight in leaves of the transformants. HEV-E2 gene was correctly expressed in transgenic tomatoes and the recombinant antigen derived from them has normal immunoactivity. Transgenic tomatoes may hold a good promise for producing a new type of low-cost oral vaccine for hepatitis E virus.
Morgon, Adriano M; Belisario-Ferrari, Matheus R; Trevisan-Silva, Dilza; Meissner, Gabriel O; Vuitika, Larissa; Marin, Brenda; Tashima, Alexandre K; Gremski, Luiza H; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Veiga, Silvio S; Chaim, Olga M
2016-01-01
Loxosceles spiders' venom comprises a complex mixture of biologically active toxins, mostly consisting of low molecular mass components (2-40 kDa). Amongst, isoforms of astacin-like metalloproteases were identified through transcriptome and proteome analyses. Only LALP1 (Loxosceles Astacin-Like protease 1) has been characterized. Herein, we characterized LALP3 as a novel recombinant astacin-like metalloprotease isoform from Loxosceles intermedia venom. LALP3 cDNA was cloned in pET-SUMO vector, and its soluble heterologous expression was performed using a SUMO tag added to LALP3 to achieve solubility in Escherichia coli SHuffle T7 Express LysY cells, which express the disulfide bond isomerase DsbC. Protein purification was conducted by Ni-NTA Agarose resin and assayed for purity by SDS-PAGE under reducing conditions. Immunoblotting analyses were performed with specific antibodies recognizing LALP1 and whole venom. Western blotting showed linear epitopes from recombinant LALP3 that cross-reacted with LALP1, and dot blotting revealed conformational epitopes with native venom astacins. Mass spectrometry analysis revealed that the recombinant expressed protein is an astacin-like metalloprotease from L. intermedia venom. Furthermore, molecular modeling of LALP3 revealed that this isoform contains the zinc binding and Met-turn motifs, forming the active site, as has been observed in astacins. These data confirmed that LALP3, which was successfully obtained by heterologous expression using a prokaryote system, is a new astacin-like metalloprotease isoform present in L. intermedia venom. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Ryan, Deborah A.; Narrow, Wade C.; Federoff, Howard J.; Bowers, William J.
2010-01-01
Soluble Aβ oligomers are recognized as playing a key role in Alzheimer’s disease (AD) pathophysiology. Despite their significance, many investigators encounter difficulty generating reliable preparations for in vitro and in vivo experiments. Solutions of Aβ are often unstable and soluble conformer profiles inconsistent. In this study we describe detailed methods for preparing Aβ oligomers that are stable for several weeks and are enriched for low and high molecular weight oligomeric forms, including the 56-kDa form, a conformer implicated in AD-related cognitive impairment. We characterize their structural and functional properties using Western blot, dot blot, atomic force microscopy, Thioflavine T fluorescence, and primary neuronal culture toxicity assays. These synthetic preparations should prove valuable to many studying Aβ-mediated mechanisms underlying AD. PMID:20452375
Long, Feng; Wu, Shuxu; He, Miao; Tong, Tiezheng; Shi, Hanchang
2011-01-15
Ultrasensitive DNA detection was achieved using a new biosensing platform based on quantum dots (QDs) and total internal reflection fluorescence, which featured an exceptional detection limit of 3.2 amol of bound target DNA. The reusable sensor surface was produced by covalently immobilizing streptavidin onto a self-assembled alkanethiol monolayer of fiber optic probe through a heterobifunctional reagent. Streptavidin served as a versatile binding element for biotinylated single-strand DNA (ssDNA). The ssDNA-coated fiber probe was evaluated as a nucleic acid biosensor through a DNA-DNA hybridization assay for a 30-mer ssDNA, which were the segments of the uidA gene of Escherichia coli and labeled by QDs using avidin-biotin interaction. Several negative control tests revealed the absence of significant non-specific binding. It also showed that bound target DNA could easily be eluted from the sensor surface using SDS solution (pH 1.9) without any significant loss of performance after more than 30 assay cycles. A quantitative measurement of DNA binding kinetics was achieved with high accuracy, indicating an association rate of 1.38×10(6) M(-1) s(-1) and a dissociation rate of 4.67×10(-3) s(-1). The proposed biosensing platform provides a simple, cheap, fast, and robust solution for many potential applications including clinical diagnosis, pathology, and genetics. Copyright © 2010 Elsevier B.V. All rights reserved.
Tan, Lu; Ge, Junjun; Jiao, Meng; Jie, Guifen; Niu, Shuyan
2018-06-01
In the present work, we designed a unique enzyme-aided multiple amplification strategy for sensitive electrochemiluminescence (ECL) detection of DNA by using the amplified gold nanoparticles (GNPS)-polyamidoamine (PAMAM)-CdSe quantum dots (QDs) signal probe. Firstly, the novel GNPS-PAMAM dendrimers nanostructure with good biocompatibility and electroconductibility contains many amino groups, which can load a large number of CdSe QDs to develop amplified ECL signal probe. Then, the presence of target DNA activated the enzyme-assisted polymerization strand-displacement cycling reaction, and a large number of the hairpin template was opened. Subsequently, the opened stem further interacted with the capture hairpin (HP) DNA on the electrode, and the GNPS-PAMAM-CdSe signal probe hybridized with the exposed stem of the HP to trigger the second new polymerization reaction. Meanwhile, the first cycle was generating abundant DNA triggers which could directly open the template. As a result of the cascade amplification technique, a large number of CdSe QDs signal probe could be assembled on the electrode, generating much amplified ECL signal for sensitive detection of target DNA. Thus, this novel QDs-based amplified ECL strategy holds great promise for DNA detection and can be further exploited for sensing applications in clinical diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.
Green, Michael R; Sambrook, Joseph
2017-07-05
This procedure is the method of choice for purification of mammalian genomic DNA from monolayer cultures when large amounts of DNA are required, for example, for Southern blotting. Approximately 200 µg of mammalian DNA, 100-150 kb in length, is obtained from 5 × 10 7 cultured aneuploid cells (e.g., HeLa cells). © 2017 Cold Spring Harbor Laboratory Press.
Isolation of CYP3A5P cDNA from human liver: a reflection of a novel cytochrome P-450 pseudogene.
Schuetz, J D; Guzelian, P S
1995-03-14
We have isolated, from a human liver cDNA library, a 1627 bp CYP3A5 cDNA variant (CYP3A5P) that contains several large insertions, deletions, and in-frame termination codons. By comparison with the genomic structure of other CYP3A genes, the major insertions in CYP3A5P cDNA demarcate the inferred sites of several CYP3A5 exons. The segments inserted in CYP3A5P have no homology with splice donor acceptor sites. It is unlikely that CYP3A5P cDNA represents an artifact of the cloning procedures since Southern blot analysis of human genomic DNA disclosed that CYP3A5P cDNA hybridized with a DNA fragment distinct from fragments that hybridized with either CYP3A5, CYP3A3 or CYP3A4. Moreover, analysis of adult human liver RNA on Northern blots hybridized with a CYP3A5P cDNA fragment revealed the presence of an mRNA with the predicted size of CYP3A5P. We conclude that CYP3A5P cDNA was derived from a separate gene, CYP3A5P, most likely a pseudogene evolved from CYP3A5.
Hsiao, K M; Lin, H M; Pan, H; Li, T C; Chen, S S; Jou, S B; Chiu, Y L; Wu, M F; Lin, C C; Li, S Y
1999-01-01
Myotonic dystrophy (DM) is caused by a CTG trinucleotide expansion mutation at exon 15 of the myotonic dystrophy protein kinase gene. The clinical severity of this disease correlates with the length of the CTG trinucleotide repeats. Determination of the CTG repeat length has been primarily relied on by Southern blot analysis of restriction enzyme-digested genomic DNA. The development of PCR-based Southern blotting methodology provides a much more sensitive and simpler protocol for DM diagnosis. However, the quality of the template and the high (G+C) ratio of the amplified region hamper the use of PCR on the diagnosis of DM. A modified PCR protocol to amplify different lengths of CTG repeat region using various concentrations of 7deaza-dGTP has been reported (1). Here we describe a procedure including sample collection, DNA purification, and PCR analysis of CTG repeat length without using 7-deaza-dGTP. This protocol is very sensitive and convenient because only a small number of nucleate cells are needed for detection of CTG expansion. Therefore, it could be very useful in clinical and prenatal diagnosis as well as in prevalence study of DM.
Isolation and characterization of cDNA clones for human erythrocyte beta-spectrin.
Prchal, J T; Morley, B J; Yoon, S H; Coetzer, T L; Palek, J; Conboy, J G; Kan, Y W
1987-01-01
Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical alpha (Mr 240,000) and beta (Mr 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. We report here the isolation and characterization of a human erythroid-specific beta-spectrin cDNA clone that encodes parts of the beta-9 through beta-12 repeat segments. This cDNA was used as a hybridization probe to assign the beta-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte beta-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the beta-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities. Images PMID:3478706
222 Aerobiological and Immunological Studies on Coconut Pollen Allergy
Saha, Bodhisattwa; Bhattacharya, Swati Gupta
2012-01-01
Background Pollen grains constitute a significant portion of the aerobiological flora. The plant Coccos nucifera (commonly known as coconut) is found in huge quantities in the tropical coastal areas of the world and is very common in Kolkata, India. A 2 years aerobiological survey was carried out using Burkard Volumetric Sampler to know the seasonal variation of Cocos nucifera pollen. The plant flower through out the year but maximum concentration was found in the month of August. Allergenicity of Cocos nucifera pollen has been reported from the Skin Prick Test, Lung function test, ELISA from a 400 susceptible patients in and around West Bengal in India. An immunobiological study was conducted to identify major allergens from Coccos nucifera pollen causing hay fever, skin allergy and allergic asthma in Kolkata population. Methods Proteins from pollen grains were obtained by initially defatting and then extracted with sodium phosphate buffer with 10 mM PMSF. Total protein was divided into 4 fractions by ammonium sulfate at 25%, 50 %, 75% and 100% respectively. SDS PAGE was done with the 25% fraction (result obtained from dot blotting) and subsequently western blotting was performed. Two dimensional gel electrophoresis and immunoblotting was also done from the crude protein. Results The total protein was separated on a SDS PAGE gel showed 21 prominent bands by Coomassie Blue staining. Dot -blotting the different fractions from ammonium sulfate cut, showed a positive result in the 25% fraction. Western blot with patient specific sera gave 3 bands out of which a major band was obtained at 60Kd. This result was obtained in more than 65% of the patients from whom Sera was isolated. 2D gel electrophoresis of the crude protein sample was performed which showed 120 protein spots in the PI range of 3 to 10 and molecular weight 14Kd to 97Kd. Immunoblotting the 2D gel with pooled patient specific sera showed 20 spots thus implying IgE reactivity. Conclusions It can thus be inferred that Coccos nucifera pollen grains are very common in the air and are important to cause allergy to susceptible persons. More over the 60 Kd protein is responsible for allergenicity.
Long, Tianyun; Lu, Rui
2017-01-01
Northern blot analysis has been widely used as a tool for detection and characterization of specific RNA molecules. When coupled with radioactive probe northern blot allows for robust detection and characterization of small RNA molecules of trace amount. Here, we describe the detection and size characterization of virus-derived small interfering RNAs (vsiRNAs) in C. elegans using nonradioactive DNA oligo probes in northern blotting. Our protocol allows for the detection and characterization of not only primary vsiRNAs but also secondary vsiRNAs, a class of single-stranded vsiRNAs that has distinct migration pattern, and can be easily adapted to the detection of vsiRNAs in other organisms.
Universal Immunoprobe for (Per)Chlorate-Reducing Bacteria
O'Connor, Susan M.; Coates, John D.
2002-01-01
Recent studies in our lab have demonstrated the ubiquity and diversity of microorganisms which couple growth to the reduction of chlorate or perchlorate [(per)chlorate] under anaerobic conditions. We identified two taxonomic groups, the Dechloromonas and the Dechlorosoma groups, which represent the dominant (per)chlorate-reducing bacteria (ClRB) in the environment. As part of these studies we demonstrated that chlorite dismutation is a central step in the reductive pathway of (per)chlorate that is common to all ClRB and which is mediated by the enzyme chlorite dismutase (CD). Initial studies on CD suggested that this enzyme is highly conserved among the ClRB, regardless of their phylogenetic affiliation. As such, this enzyme makes an ideal target for a probe specific for these organisms. Polyclonal antibodies were commercially raised against the purified CD from the ClRB Dechloromonas agitata strain CKB. The obtained antiserum was deproteinated by ammonium sulfate precipitation, and the antigen binding activity was assessed using dot blot analysis of a serial dilution of the antiserum. The titers obtained with purified CD indicated that the antiserum had a high affinity for the CD enzyme, and activity was observed in dilutions as low as 10−6 of the original antiserum. The antiserum was active against both cell lysates and whole cells of D. agitata, but only if the cells were grown anaerobically with (per)chlorate. No response was obtained with aerobically grown cultures. In addition to D. agitata, dot blot analysis employed with both whole-cell suspensions and cell lysates of several diverse ClRB representing the alpha, beta, and gamma subclasses of Proteobacteria tested positive regardless of phylogenetic affiliation. Interestingly, the dot blot response obtained for each of the ClRB cell lysates was different, suggesting that there may be some differences in the antigenic sites of the CD protein produced in these organisms. In general, no reactions were observed with cells or cell lysates of the organisms closely related to the ClRB which could not grow by (per)chlorate reduction. These studies have resulted in the development of a highly specific and sensitive immunoprobe based on the commonality of the CD enzyme in ClRB which can be used to assess dissimilatory (per)chlorate-reducing populations in environmental samples regardless of their phylogenetic affiliations. PMID:12039773
A novel sensitive pathogen detection system based on Microbead Quantum Dot System.
Wu, Tzong-Yuan; Su, Yi-Yu; Shu, Wei-Hsien; Mercado, Augustus T; Wang, Shi-Kwun; Hsu, Ling-Yi; Tsai, Yow-Fu; Chen, Chung-Yung
2016-04-15
A fast and accurate detection system for pathogens can provide immediate measurements for the identification of infectious agents. Therefore, the Microbead Quantum-dots Detection System (MQDS) was developed to identify and measure target DNAs of pathogenic microorganisms and eliminated the need of PCR amplifications. This nanomaterial-based technique can detect different microorganisms by flow cytometry measurements. In MQDS, pathogen specific DNA probes were designed to form a hairpin structure and conjugated on microbeads. In the presence of the complementary target DNA sequence, the probes will compete for binding with the reporter probes but will not interfere with the binding between the probe and internal control DNA. To monitor the binding process by flow cytometry, both the reporter probes and internal control probes were conjugated with Quantum dots that fluoresce at different emission wavelengths using the click reaction. When MQDS was used to detect the pathogens in environmental samples, a high correlation coefficient (R=0.994) for Legionella spp., with a detection limit of 0.1 ng of the extracted DNAs and 10 CFU/test, can be achieved. Thus, this newly developed technique can also be applied to detect other pathogens, particularly viruses and other genetic diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yazhen; Musser, Sarah K.; Saleh, Sam
1,N{sup 2}-Propanodeoxyguanosine (PdG) is a stable structural analogue for the 3-(2'-deoxy-{beta}-d-erythro-pentofuranosyl)pyrimido[1,2-?]purin-10(3H)-one (M{sub 1}dG) adduct derived from exposure of DNA to base propenals and to malondialdehyde. The structures of ternary polymerase-DNA-dNTP complexes for three template-primer DNA sequences were determined, with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4), at resolutions between 2.4 and 2.7 {angstrom}. Three template 18-mer-primer 13-mer sequences, 5'-d(TCACXAAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTT)-3' (template I), 5'-d(TCACXGAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTC)-3' (template II), and 5'-d(TCATXGAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTC)-3' (template III), where X is PdG, were analyzed. With templates I and II, diffracting ternary complexes including dGTP were obtained. The dGTP did not pair with PdG, but instead with the 5'-neighboring templatemore » dC, utilizing Watson-Crick geometry. Replication bypass experiments with the template-primer 5?-TCACXAAATCCTTACGAGCATCGCCCCC-3'{center_dot}5'-GGGGGCGATGCTCGTAAGGATTT-3', where X is PdG, which includes PdG in the 5'-CXA-3' template sequence as in template I, showed that the Dpo4 polymerase inserted dGTP and dATP when challenged by the PdG adduct. For template III, in which the template sequence was 5'-TXG-3', a diffracting ternary complex including dATP was obtained. The dATP did not pair with PdG, but instead with the 5'-neighboring T, utilizing Watson-Crick geometry. Thus, all three ternary complexes were of the 'type II' structure described for ternary complexes with native DNA [Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Cell 107, 91--102]. The PdG adduct remained in the anti conformation about the glycosyl bond in each of these threee ternary complexes. These results provide insight into how -1 frameshift mutations might be generated for the PdG adduct, a structural model for the exocylic M{sub 1}dG adduct formed by malondialdehyde.« less
Zhou, Jie; Deng, Wenwen; Wang, Yan; Cao, Xia; Chen, Jingjing; Wang, Qiang; Xu, Wenqian; Du, Pan; Yu, Qingtong; Chen, Jiaxin; Spector, Myron; Yu, Jiangnan; Xu, Ximing
2016-09-15
Carbon quantum dots (CQDs), unlike semiconductor quantum dots, possess fine biocompatibility, excellent upconversion properties, high photostability and low toxicity. Here, we report multifunctional CQDs which were developed using alginate, 3% hydrogen peroxide and double distilled water through a facile, eco-friendly and inexpensive one-step hydrothermal carbonization route. In this reaction, the alginate served as both the carbon source and the cationization agent. The resulting CQDs exhibited strong and stable fluorescence with water-dispersible and positively-charged properties which could serve as an excellent DNA condensation. As non-viral gene vector being used for the first time, the CQDs showed considerably high transfection efficiency (comparable to Lipofectamine2000 and significantly higher than PEI, p<0.05) and negligible toxicity. The photoluminescence properties of CQDs also permitted easy tracking of the cellular-uptake. The findings showed that both caveolae- and clathrin-mediated endocytosis pathways were involved in the internalization process of CQDs/pDNA complexes. Taken together, the alginate-derived photoluminescent CQDs hold great potential in biomedical applications due to their dual role as efficient non-viral gene vectors and bioimaging probes. This manuscript describes a facile and simple one-step hydrothermal carbonization route for preparing optically tunable photoluminescent carbon quantum dots (CQDs) from a novel raw material, alginate. These CQDs enjoy low cytotoxicity, positive zeta potential, excellent ability to condense macromolecular DNA, and most importantly, notably high transfection efficiency. The interesting finding is that the negatively-charged alginate can convert into positively charged CQDs without adding any cationic reagents. The significance of this study is that the cationic carbon quantum dots play dual roles as both non-viral gene vectors and bioimaging probes at the same time, which are most desirable in many fields of applications such as gene therapy, drug delivery, and bioimaging. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Rastawicki, Waldemar; Smietafiska, Karolina; Chrost, Anna; Wolkowicz, Tomasz; Rokosz-Chudziak, Natalia
Proper analysis of the human immune response is crucial in the laboratory diagnosis of many bacterial infections-The current serological diagnosis of yersiniosis often is carried out using ELISA with native antigens. However, recombinant proteins increase the specificity of the serological assays, particularly in patients with chronic, non- specific infections. The aim of the present study was to evaluate the usefulness of in-house obtained recombinant proteins Yop of Yersinia enterocolitica as highly specific antigens in ELISA and recom-dot performed in the serodiagnosis of yersiniosis. Recombinant YopD, YopB, YopE and V-Ag proteins of Y enterocolitica were expressing in E. coli BL21 (DE3) using the pET-30 Ek/LIC expression vector (Novagen). Purification was accomplished by immobilized metal (Ni2) affinity column chromatography (His-trap). The proteins were used as antigens in standard ELISA and recom-dot assay, which was performed on nitrocellulose strips. The study population, used for characterization of the humoral immune response to the recombinant proteins, consisted of 74 patients suspected for Y enterocolitica infection and 41 clinically healthy blood donors. Some of the results obtained by ELISA and recom-dot were compared with results obtained by commercial western-blot Yersinia (Virotech). In the group of patients suspected for yersiniosis in clinical investigation the most positive results were obtained in ELISA with the recombinant protein YopD (IgA respectively 25 (42.4%), IgG 41 (69.5%), IgM 24 (40.7%). The percentage ofpositive results in the group of blood donors did not exceed 10.0% in IgG and 5.0% in IgA/IgM classes of immunoglobulin. The results obtained in the recom-dot assay showed that among 74 tested serum samples obtained from individuals suspected of yersiniosis the most common IgA, IgG and IgM antibodies were found for recombinant protein YopD (respectively IgG in 60.8%, IgA in 37.8% and IgM in 33.8% of serum samples). IgG antibodies to the protein V-Ag were observed in 32.4%, protein YopB in 27.0% and for the protein YopE in 18.9% serum samples. Immunoglobulin A, and M for the recombinant proteins were found much less frequently than IgG antibodies (respectively 12.2% and 10.8% for V protein-Ag in 10.8% and 14.9% protein and_YopB 2,7% and 10.8% for the protein YopE). Further studies showed that results obtained in recom-dot assay with recombinant protein YopD were comparable with the results of commercial western-blot Yersinia. The study showed that in-house obtained recombinant proteins can be used as highly specific antigens in ELISA and recom-dot performed in the serodiagnosis of yersiniosis. The most useful was the protein YopD.
Lipid A binding proteins in macrophages detected by ligand blotting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.H.
1987-05-01
Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with /sup 32/P/sub i/ (10/sup 9/ dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with (/sup 32/P)-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessedmore » using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS.« less
Search for a Novel Allergen in Hen's Egg Allergy Using an IgE Immunoblotting Assay.
Sogawa, Kazuyuki; Takahashi, Yuria; Shibata, Yui; Satoh, Mamoru; Kodera, Yoshio; Nomura, Fumio; Tanaka, Toshio; Sato, Hironori; Yamaide, Fumiya; Nakano, Taiji; Iwahashi, Kazuhiko; Sugita-Konishi, Yoshiko; Shimada, Akinori; Shimojo, Naoki
2018-04-18
Food allergy is a serious health issue affecting roughly 4% of children, with a substantial effect on quality of life. Chicken egg allergy is frequently observed in infants. Therefore, some of them have to exclude hen's eggs from their daily diet to avoid allergenic symptoms. Hen's egg is composed of 2 soluble parts; one is egg white, which has been characterized as the major source of allergenicity, while the other is egg yolk, which is estimated as a miner source. Only 2 allergens from egg yolk, α-livetin (Gal d 5) and YGP42 (Gal d 6), have been described to date. Sera from 53 patients allergic to hen's eggs and 2 patients allergic to sesame were obtained from the Department of Pediatrics, Chiba University Hospital. The study was performed using SDS-PAGE, IgE immunoblotting, and dot blotting. Seven bands of egg yolk were detected by IgE immunoblotting. Out of these bands, a possible new allergen was further characterized by LC-MS/MS. The 33-kDa band was identified as yolk glycoprotein (YGP40) by LC-MS/MS. A total of 21 of the 53 patients (47%) had YGP40 detected by dot blotting. We identified YGP40 as a new hen's egg yolk allergen and detected 4 sites of YGP40 as linear epitopes. © 2018 S. Karger AG, Basel.
Zaide, Galia; Grosfeld, Haim; Ehrlich, Sharon; Zvi, Anat; Cohen, Ofer; Shafferman, Avigdor
2011-03-01
Two alternative promoter trap libraries, based on the green fluorescence protein (gfp) reporter and on the chloramphenicol acetyltransferase (cat) cassette, were constructed for isolation of potent Francisella tularensis promoters. Of the 26,000 F. tularensis strain LVS gfp library clones, only 3 exhibited visible fluorescence following UV illumination and all appeared to carry the bacterioferritin promoter (Pbfr). Out of a total of 2,000 chloramphenicol-resistant LVS clones isolated from the cat promoter library, we arbitrarily selected 40 for further analysis. Over 80% of these clones carry unique F. tularensis DNA sequences which appear to drive a wide range of protein expression, as determined by specific chloramphenicol acetyltransferase (CAT) Western dot blot and enzymatic assays. The DNA sequence information for the 33 unique and novel F. tularensis promoters reported here, along with the results of in silico and primer extension analyses, suggest that F. tularensis possesses classical Escherichia coli σ(70)-related promoter motifs. These motifs include the -10 (TATAAT) and -35 [TTGA(C/T)A] domains and an AT-rich region upstream from -35, reminiscent of but distinct from the E. coli upstream region that is termed the UP element. The most efficient promoter identified (Pbfr) appears to be about 10 times more potent than the F. tularensis groEL promoter and is probably among the strongest promoters in F. tularensis. The battery of promoters identified in this work will be useful, among other things, for genetic manipulation in the background of F. tularensis intended to gain better understanding of the mechanisms involved in pathogenesis and virulence, as well as for vaccine development studies.
Arakawa, C.K.; Deering, R.E.; Higman, K.H.; Oshima, K.H.; O'Hara, P.J.; Winton, J.R.
1990-01-01
The polymerase chain reaction [PCR) was used to amplify a portion of the nucleoprotein [NI gene of infectious hematopoietic necrosis virus (IHNV). Using a published sequence for the Round Butte isolate of IHNV, a pair of PCR pnmers was synthesized that spanned a 252 nucleotide region of the N gene from residue 319 to residue 570 of the open reading frame. This region included a 30 nucleotide target sequence for a synthetic oligonucleotide probe developed for detection of IHNV N gene messenger RNA. After 25 cycles of amplification of either messenger or genomic RNA, the PCR product (DNA) of the expected size was easily visible on agarose gels stained with ethidium bromide. The specificity of the amplified DNA was confirmed by Southern and dot-blot analysis using the biotinylated oligonucleotide probe. The PCR was able to amplify the N gene sequence of purified genomic RNA from isolates of IHNV representing 5 different electropherotypes. Using the IHNV primer set, no PCR product was obtained from viral hemorrhagic septicemia virus RNA, but 2 higher molecular weight products were synthesized from hirame rhabdovirus RNA that did not hybridize with the biotinylated probe. The PCR could be efficiently performed with all IHNV genomic RNA template concentrations tested (1 ng to 1 pg). The lowest level of sensitivity was not determined. The PCR was used to amplify RNA extracted from infected cell cultures and selected tissues of Infected rainbow trout. The combination of PCR and nucleic acid probe promises to provide a detection method for IHNV that is rapid, h~ghly specific, and sensitive.
Miao, Yanming; Zhang, Zhifeng; Gong, Yan; Yan, Guiqin
2014-09-15
MPA-capped Mn-doped ZnS QDs/DXR nanohybrids (MPA: 3-mercaptopropionic acid; QDs: quantum dots; DXR: cetyltrimethyl ammonium bromide) were constructed via photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for detection of DNA. DXR as a quencher will quench the RTP of Mn-doped ZnS QDs via PIET, thereby forming Mn-doped ZnS QDs/DXR nanohybrids and storing RTP. With the addition of DNA, it will be inserted into DXR and thus DXR will be competitively desorbed from the surface of Mn-doped ZnS QDs, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this, a new method for DNA detection was built. The sensor for DNA has a detection limit of 0.039 mg L(-1) and a linear range from 0.1 to 14 mg L(-1). The present QDs-based RTP method does not need deoxidants or other inducers as required by conventional RTP detection methods, and avoids interference from autofluorescence and the scattering light of the matrix that are encountered in spectrofluorometry. Therefore, this method can be used to detect the DNA content in body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.
Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA
Moulick, Amitava; Milosavljevic, Vedran; Vlachova, Jana; Podgajny, Robert; Hynek, David; Kopel, Pavel; Adam, Vojtech
2017-01-01
CdTe/ZnSe core/shell quantum dot (QD), one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine) in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation) of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3) and normal (PNT1A) cells (detection limit of 500 pM of DNA), which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments. PMID:28243089
Martínez-Castillo, Moisés; Cárdenas-Guerra, Rosa Elena; Arroyo, Rossana; Debnath, Anjan; Rodríguez, Mario Alberto; Sabanero, Myrna; Flores-Sánchez, Fernando; Navarro-Garcia, Fernando; Serrano-Luna, Jesús; Shibayama, Mineko
2017-07-01
The aim of this work was to identify, characterize and evaluate the pathogenic role of mucinolytic activity released by Naegleria fowleri. Zymograms, protease inhibitors, anion exchange chromatography, MALDI-TOF-MS, enzymatic assays, Western blot, and confocal microscopy were used to identify and characterize a secreted mucinase; inhibition assays using antibodies, dot-blots and mouse survival tests were used to evaluate the mucinase as a virulence factor. A 94-kDa protein with mucinolytic activity was inducible and abolished by p-hydroxymercuribenzoate. MALDI-TOF-MS identified a glycoside hydrolase. Specific antibodies against N. fowleri-glycoside hydrolase inhibit cellular damage and MUC5AC degradation, and delay mouse mortality. Our findings suggest that secretory products from N. fowleri play an important role in mucus degradation during the invasion process.
Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells.
Tang, Song; Cai, Qingsong; Chibli, Hicham; Allagadda, Vinay; Nadeau, Jay L; Mayer, Gregory D
2013-10-15
Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24h of CdSO4 or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO4 but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms. Copyright © 2013 Elsevier Inc. All rights reserved.
Semiconductor Quantum Dots for Biomedicial Applications
Shao, Lijia; Gao, Yanfang; Yan, Feng
2011-01-01
Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690
Shamsipur, Mojtaba; Nasirian, Vahid; Barati, Ali; Mansouri, Kamran; Vaisi-Raygani, Asad; Kashanian, Soheila
2017-05-08
In the present study, we developed a sensitive method based on fluorescence resonance energy transfer (FRET) for the determination of the BCR/ABL fusion gene, which is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). For this purpose, CdTe quantum dots (QDs) were conjugated to amino-modified 18-mer oligonucleotide ((N)DNA) to form the QDs-(N)DNA nanosensor. In the presence of methylene blue (MB) as an intercalator, the hybridization of QDs-(N)DNA with the target BCR/ABL fusion gene (complementary DNA), brings the MB (acceptor) at close proximity of the QDs (donor), leading to FRET upon photoexcitation of the QDs. The enhancement in the emission intensity of MB was used to follow up the hybridization, which was linearly proportional to concentration of the target complementary DNA in a range from 1.0 × 10 -9 to 1.25 × 10 -7 M. The detection limit of the proposed method was obtained to be 1.5 × 10 -10 M. Finally, the feasibility and selectivity of the proposed nanosensor was evaluated by the analysis of derived nucleotides from both mismatched sequences and clinical samples of patients with leukemia as real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong
2012-11-15
Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges weremore » obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.« less
Shoulkamy, Mahmoud I.; Nakano, Toshiaki; Ohshima, Makiko; Hirayama, Ryoichi; Uzawa, Akiko; Furusawa, Yoshiya; Ide, Hiroshi
2012-01-01
Proteins are covalently trapped on DNA to form DNA–protein crosslinks (DPCs) when cells are exposed to DNA-damaging agents. DPCs interfere with many aspects of DNA transactions. The current DPC detection methods indirectly measure crosslinked proteins (CLPs) through DNA tethered to proteins. However, a major drawback of such methods is the non-linear relationship between the amounts of DNA and CLPs, which makes quantitative data interpretation difficult. Here we developed novel methods of DPC detection based on direct CLP measurement, whereby CLPs in DNA isolated from cells are labeled with fluorescein isothiocyanate (FITC) and quantified by fluorometry or western blotting using anti-FITC antibodies. Both formats successfully monitored the induction and elimination of DPCs in cultured cells exposed to aldehydes and mouse tumors exposed to ionizing radiation (carbon-ion beams). The fluorometric and western blotting formats require 30 and 0.3 μg of DNA, respectively. Analyses of the isolated genomic DPCs revealed that both aldehydes and ionizing radiation produce two types of DPC with distinct stabilities. The stable components of aldehyde-induced DPCs have half-lives of up to days. Interestingly, that of radiation-induced DPCs has an infinite half-life, suggesting that the stable DPC component exerts a profound effect on DNA transactions over many cell cycles. PMID:22730301
1990-01-01
Titers 31 1. Collection of samples 31 2. Enzyme-linkedimmunosorbent assay 31 B. Development of Dot-Blot Assay 32 1. Selection of en2yme-sUbstrate system...ELISA results 39 2., Selection -of appropriate serum dilution 46 3. Selection -of appropriate antigen diltion 59 4. Selection of blockina concentration 64 5... Selection of incubation time for antibody-containing 65 fluid .6. Selection -of enn’me Conitumate reation. time . 6 7. Selection of svbstrate
Diversity, Replication, Pathogenicity and Cell Biology of Crimean Congo Hemorrhagic Fever Virus
2006-10-01
recombinant protein produced and purified in E . coli was able to bind to ssRNA in a dot blot filter binding assay. In order to identify domains in the N...Fig. 1. RNA binding domains of the N protein of CCHFV. The depicted GST-fusion proteins were expressed in E . coli and purified using a...detected and NSm protein produced after cleavage of the glycoprotein precursor in virus infected cells. The NSm is stable and transported to the Golgi
[Overexpression of liver kinase B1 inhibits the proliferation of lung cancer cells].
Li, Yang; Zhang, Libin; Wang, Ping
2017-01-01
Objective To explore the effect of overexpressed liver kinase B1(LKB1) on the proliferation of lung cancer cell lines. Methods The expression levels of LKB1 and PTEN in A549, NCI-H23, NCI-H157, XWLC-05, NCI-H446 lung cancer cells were detected by immunocytochemistry (ICC) and Western blotting. Plasmid pcDNA3.1 + -LKB1 and empty vector pcDNA3.1 + -null were separately transfected into the above five cell lines, and then the expression of LKB1 mRNA and protein were determined by quantitative real-time PCR and Western blotting, respectively. Finally, CCK-8 assay was used to analyze the proliferation ability of the transfected cells. Results LKB1 and PTEN were positive in NCI-H23 cells; LKB1 was negative while PTEN was positive in A549 and NCI-H446 cells; both LKB1 and PTEN were negative in NCI-H157 and XWLC-05 cells. Quantitative real-time PCR and Western blotting showed that the expression level of LKB1 significantly increased in the above cell lines transfected with plasmid pcDNA3.1 + -LKB1 compared with the ones with empty vector pcDNA3.1 + -null. Besides, CCK-8 assay showed that the overexpression of LKB1 in the lung cancer cells transfected with pcDNA3.1 + -LKB1 had an obvious inhibitory effect on cell proliferation. Conclusion The expression of LKB1 is down-regulated in most of the lung cell lines to different extent and the over-expression of LKB1 can remarkably inhibit the proliferation ability of lung cancer cell lines.
He, Yanlong; Tian, Jianniao; Hu, Kun; Zhang, Juanni; Chen, Sheng; Jiang, Yixuan; Zhao, Yanchun; Zhao, Shulin
2013-11-13
In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8×10(-12) M to 2.40×10(-4) M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Jacobson, D R; Gorevic, P D; Buxbaum, J N
1990-01-01
Senile systemic amyloidosis (SSA) is a late-onset disease characterized by deposition of amyloid fibrils containing transthyretin (TTR). Amino acid sequencing of protein isolated from the amyloid fibrils of a patient with SSA identified TTR containing a position - 122 isoleucine-for-valine substitution. This change led to the prediction of a genomic G-to-A transition, destroying an MaeIII restriction site. We confirmed the presence of the variant DNA fragment both by Southern blotting and by visualization of MaeIII digests of DNA amplified around codon 122, by using the polymerase chain reaction. The patient's DNA was entirely resistant to MaeIII cleavage; therefore, only the mutant sequence was present. DNA from none of either 24 controls or six other SSA patients contained the variant. Quantitative Southern blotting demonstrated that the patient's DNA contained two copies of the TTR gene per genome; the mutation was therefore homozygous rather than hemizygous. In the present case, the homozygous mutation TTR (122 Val----Ile) is associated with SSA, a finding which is consistent with autosomal recessive inheritance of this condition. Images Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:2349941
Varicella zoster virus DNA exists as two isomers.
Ecker, J R; Hyman, R W
1982-01-01
Fragments of varicella zoster virus DNA produced by EcoRI endonuclease cleavage were cloned in vector pACYC 184 and those produced by HindIII cleavage were cloned in pBR322. Restriction enzyme cleavage maps established by double digestion and blot hybridization showed that varicella zoster virus DNA has a Mr of 80 +/- 3 x 10(6) and exists as a population of two isomers. Images PMID:6275385
Molecular beacon anchored onto a graphene oxide substrate
NASA Astrophysics Data System (ADS)
Darbandi, Arash; Datta, Debopam; Patel, Krunal; Lin, Gary; Stroscio, Michael A.; Dutta, Mitra
2017-09-01
In this article, we report a graphene oxide-based nanosensor incorporating semiconductor quantum dots linked to DNA-aptamers that functions as a ‘turn-off’ fluorescent nanosensor for detection of low concentrations of analytes. A specific demonstration of this turn-off aptasensor is presented for the case of the detection of mercury (II) ions. In this system, ensembles of aptamer-based quantum-dot sensors are anchored onto graphene oxide (GO) flakes which provide a platform for analyte detection in the vicinity of GO. Herein, the operation of this ensemble-based nanosensor is demonstrated for mercury ions, which upon addition of mercury, quenching of the emission intensity from the quantum dots is observed due to resonance energy transfer between quantum dots and the gold nanoparticle connected via a mercury target aptamer. A key result is that the usually dominant effect of quenching of the quantum dot due to close proximity to the GO can be reduced to negligible levels by using a linker molecule in conjunctions with the aptamer-based nanosensor. The effect of ionic concentration of the background matrix on the emission intensity was also investigated. The sensor system is found to be highly selective towards mercury and exhibits a linear behavior (r 2 > 0.99) in the nanomolar concentration range. The detection limit of the sensor towards mercury with no GO present was found to be 16.5 nM. With GO attached to molecular beacon via 14 base, 35 base, and 51 base long linker DNA, the detection limit was found to be 38.4 nM, 9.45 nM, and 11.38 nM; respectively.
Song, Yunke; Zhang, Yi; Wang, Tza-Huei
2013-04-08
Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method.
Liu, Yixi; Liu, Le; He, Yonghong; Zhu, Liang; Ma, Hui
2015-05-19
We presented a decoding method of quantum dots encoded microbeads with its fluorescence spectra using line scan hyperspectral fluorescence imaging (HFI) method. A HFI method was developed to attain both the spectra of fluorescence signal and the spatial information of the encoded microbeads. A decoding scheme was adopted to decode the spectra of multicolor microbeads acquired by the HFI system. Comparison experiments between the HFI system and the flow cytometer were conducted. The results showed that the HFI system has higher spectrum resolution; thus, more channels in spectral dimension can be used. The HFI system detection and decoding experiment with the single-stranded DNA (ssDNA) immobilized multicolor beads was done, and the result showed the efficiency of the HFI system. Surface modification of the microbeads by use of the polydopamine was characterized by the scanning electron microscopy and ssDNA immobilization was characterized by the laser confocal microscope. These results indicate that the designed HFI system can be applied to practical biological and medical applications.
Quantum Dots for Live Cell and In Vivo Imaging
Walling, Maureen A; Novak, Jennifer A; Shepard, Jason R. E
2009-01-01
In the past few decades, technology has made immeasurable strides to enable visualization, identification, and quantitation in biological systems. Many of these technological advancements are occurring on the nanometer scale, where multiple scientific disciplines are combining to create new materials with enhanced properties. The integration of inorganic synthetic methods with a size reduction to the nano-scale has lead to the creation of a new class of optical reporters, called quantum dots. These semiconductor quantum dot nanocrystals have emerged as an alternative to organic dyes and fluorescent proteins, and are brighter and more stable against photobleaching than standard fluorescent indicators. Quantum dots have tunable optical properties that have proved useful in a wide range of applications from multiplexed analysis such as DNA detection and cell sorting and tracking, to most recently demonstrating promise for in vivo imaging and diagnostics. This review provides an in-depth discussion of past, present, and future trends in quantum dot use with an emphasis on in vivo imaging and its related applications. PMID:19333416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habercorn, Lasse; Merkl, Jan-Philip; Kloust, Hauke Christian
With the polymer encapsulation of quantum dots via seeded emulsion polymerization we present a powerful tool for the preparation of fluorescent nanoparticles with an extraordinary stability in aqueous solution. The method of the seeded emulsion polymerization allows a straightforward and simple in situ functionalization of the polymer shell under preserving the optical properties of the quantum dots. These requirements are inevitable for the application of semiconductor nanoparticles as markers for biomedical applications. Polymer encapsulated quantum dots have shown only a marginal loss of quantum yields when they were exposed to copper(II)-ions. Under normal conditions the quantum dots were totally quenchedmore » in presence of copper(II)-ions. Furthermore, a broad range of in situ functionalized polymer-coated quantum dots were obtained by addition of functional monomers or surfactants like fluorescent dye molecules, antibodies or specific DNA aptamers. Furthermore the emulsion polymerization can be used to prepare multifunctional hybrid systems, combining different nanoparticles within one construct without any adverse effect of the properties of the starting materials.{sup 1,2}.« less
Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome
ERIC Educational Resources Information Center
Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo
2006-01-01
We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…
Yoneyama, T; Akatsuka, T; Miyamura, T
1988-08-01
The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.
A meiotic DNA polymerase from a mushroom, Agaricus bisporus.
Takami, K; Matsuda, S; Sono, A; Sakaguchi, K
1994-01-01
A meiotic DNA polymerase [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7], which likely has a role in meiotic DNA repair, was isolated from a mushroom, Agaricus bisporus. The purified fraction displays three bands in SDS/PAGE, at molecular masses of 72 kDa, 65 kDa and 36 kDa. Optimal activity is at pH 7.0-8.0 in the presence of 5 mM Mg2+ and 50 mM KCl and at 28-30 degrees C, which is the temperature for meiosis. This enzyme is resistant to N-ethylmaleimide and sensitive to 2',3'-dideoxythymidine 5'-triphosphate, suggesting that it is a beta-like DNA polymerase. These characteristics are similar to those of Coprinus DNA polymerase beta [Sakaguchi and Lu (1982) Mol. Cell. Biol. 2, 752-757]. In Western-blot analysis, the antiserum against the Coprinus polymerase reacts only with the 65 kDa band, which coincides with the molecular mass of the Coprinus polymerase. Western-blot analysis also showed that the antiserum could react with crude extracts not only from the Agaricales family, to which Agaricus and Coprinus belong, but also from different mushroom families and Saccharomyces. The Agaricus polymerase activity can be found only in the meiotic-cell-rich fraction, but the enzyme is also present in the somatic cells in an inactive state. Images Figure 2 Figure 5 Figure 6 PMID:8172591
Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng
2008-01-01
To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.
1987-06-01
To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. Inmore » RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.« less
Wu, Chuanjing; Yang, Rongjiang; Zhou, Ji; Bao, Shing; Zou, Li; Zhang, Pinggan; Mao, Yongrong; Wu, Jianping; He, Qimin
2003-06-01
Egg yolk is a good source of highly specific antibodies against mammalian antigens because of the phylogenetic distance between birds and mammals. Chicken egg yolk immunoglobulins (IgY) were generated to a synthetic 31-amino acid peptide from the C-terminal of human HeLa thymidine kinase 1 (TK1) enzyme. The anti-TK1 IgY antibody was purified using affinity chromatography against the 31-amino acid peptide. The purified antibody inhibited the catalytic activity of the TK1 enzyme in the CEM TK1(+) cells and recognized the 25-kDa subunit and tetrameric form of TK1, which has a pI value of 8.3. No immunoreaction was observed in CEM TK1(-) cells. Western blot of the serum TK1 (S-TK1) also showed that only a single band was found in the serum of patients with malignancies. No band was seen in healthy serum. Furthermore, dot blots and enhanced chemiluminescence (ECL) detection of S-TK1 performed on sera of preoperative patients with gastric cancer (GC) (n=31) and healthy controls (n=62) showed that the levels of S-TK1 in the sera of cancer patients were significantly different (P<0.01). Using ECL dot blots, 0.1 pg of TK1 in 3 microl sera could be detected. Immunohistostaining of tissues in the 11 advanced-stage cancer patients (four breast carcinomas, three hepatocarcinomas and four thyroid carcinomas) indicated that a strong staining of TK1 enzyme was found in the cytoplasm of malignant cells. No staining or weak staining was seen in normal tissues. We suggest that screening for TK1 using anti-TK1 IgY may be potentially useful for serological and immunohistochemical detection of TK1 as an early prognosis and for monitoring patients undergoing treatment.
Khan, M A Hannan; Ullah, Rizwan; Rehman, Abdur; Rehman, Lubna; P A, Ahammed Shareef; Abidi, S M A
2017-01-01
The digenetic trematode Fasciola gigantica is a parasite of great agricultural and economic importance. Along with Fasciola hepatica, F. gigantica incurs huge economic losses to the agricultural sector. Because of unavailability of an effective and commercial vaccine, the earliest diagnosis of the disease is the only way to control the disease. The conventional coprological techniques are able to detect the disease only after the parasites get matured and starts releasing their eggs with the faeces of host, therefore prepatent infection remain undiagnosed. The alternative method is by serological tests that uses circulatory antigens. Despite high sensitivity, their reliability is quite low because of the common antigens shared between different helminth parasites. To overcome this, investigation was shifted to identify the copro-antigens which could be more sensitive and reliable. In the present study, we tried to identify some of the immunodominant proteins from the Excretory Secretory (ES) product of F. gigantica which can be further characterized and used for early detection of infection and also as drug and vaccine candidates. The ES products of F. gigantica were collected and used for raising the polyclonal antibody in rabbit. The polypeptide profile was generated as well as immunogenic polypeptides were identified. The Source of ES antigen was immunolocalized using confocal microscopy and dot blot assay was performed to diagnose field infection. The polypeptide profile of ES products revealed a total of 24 polypeptides out of which 12 immunogenic polypeptides were identified by western blotting. Confocal micrographs showed the immunolocalization of antigens in the intestinal caecae, vitalline glands, gonads as well as in the tegument of the worm. The dot blot assay confirmed the utility of ES products for the detection of field infection. Subsequently, cross reactivity was found negative with Gigantocotyle explanatum; an amphitome parasite of same habitat. However, the cross reactivity with other helminths needs to be worked out.
Ullah, Rizwan; Rehman, Abdur; Rehman, Lubna; P. A., Ahammed Shareef; Abidi, S. M. A.
2017-01-01
The digenetic trematode Fasciola gigantica is a parasite of great agricultural and economic importance. Along with Fasciola hepatica, F. gigantica incurs huge economic losses to the agricultural sector. Because of unavailability of an effective and commercial vaccine, the earliest diagnosis of the disease is the only way to control the disease. The conventional coprological techniques are able to detect the disease only after the parasites get matured and starts releasing their eggs with the faeces of host, therefore prepatent infection remain undiagnosed. The alternative method is by serological tests that uses circulatory antigens. Despite high sensitivity, their reliability is quite low because of the common antigens shared between different helminth parasites. To overcome this, investigation was shifted to identify the copro-antigens which could be more sensitive and reliable. In the present study, we tried to identify some of the immunodominant proteins from the Excretory Secretory (ES) product of F. gigantica which can be further characterized and used for early detection of infection and also as drug and vaccine candidates. The ES products of F. gigantica were collected and used for raising the polyclonal antibody in rabbit. The polypeptide profile was generated as well as immunogenic polypeptides were identified. The Source of ES antigen was immunolocalized using confocal microscopy and dot blot assay was performed to diagnose field infection. The polypeptide profile of ES products revealed a total of 24 polypeptides out of which 12 immunogenic polypeptides were identified by western blotting. Confocal micrographs showed the immunolocalization of antigens in the intestinal caecae, vitalline glands, gonads as well as in the tegument of the worm. The dot blot assay confirmed the utility of ES products for the detection of field infection. Subsequently, cross reactivity was found negative with Gigantocotyle explanatum; an amphitome parasite of same habitat. However, the cross reactivity with other helminths needs to be worked out. PMID:28973017
Frequency and significance of parvovirus B19 infection in patients with rheumatoid arthritis
Naciute, Milda; Mieliauskaite, Diana; Rugiene, Rita; Nikitenkiene, Rita; Jancoriene, Ligita; Mauricas, Mykolas; Nora-Krukle, Zaiga; Murovska, Modra
2016-01-01
The present study aims to clarify the possible involvement of parvovirus B19 (B19V) infection in rheumatoid arthritis (RA) pathogenesis by investigating the presence of B19V infection markers (genomic sequences and virus-specific antibodies) in association with the level of cytokines and RA clinical activity and aggressiveness. A total of 118 RA patients and 49 age- and sex-matched healthy volunteers were enrolled in the study. Nested PCR was used to detect B19V sequences in whole blood and cell-free plasma DNA, ELISA to detect virus-specific antibodies and cytokine levels in plasma and recomLine dot blot assay for antibodies to separate B19V antigens. The detection frequency of B19V DNA was higher in patients with RA (25.4 %) in comparison with healthy persons (18.4 %). B19V DNA in cell-free plasma (B19+p) was detected significantly often in RA patients in comparison with healthy controls (13.6 vs 2 %; P=0.0002). RA B19+p patients had higher disease activity and aggressiveness, decreased haemoglobin and increased erythrocyte sedimentation rates. IL-6 plasma levels were significantly higher in RA patients than in controls. Within the RA patients’ group the IL-6 level was significantly increased in B19+p patients with disease activity scores of DAS28>5.2, high C-reactive protein and low haemoglobin. Contrary to the healthy controls, the majority of RA B19+p patients did not have antibodies to VP-1S (VP1u) and VP-N (N-terminal half of structural proteins VP1 and VP2), which correspond to the epitopes of neutralizing antibodies. These results indicate that B19V infection at least in some patients is involved in RA pathogenesis. PMID:27902343
Sarkar, F H; Sakr, W A; Li, Y W; Sreepathi, P; Crissman, J D
1993-01-01
Human papillomavirus (HPV) infections are strongly linked to the pathogenesis of uterine cervical neoplasms, and have been implicated in other cancers of the female genital tract. In contrast, the association of HPV with the cancers of the male urogenital tract is less evident, except in anal and penile cancers. However, recent studies reporting the prevalence of HPV infections in human prostate cancers (60-100% HPV 16 positive vs. no infection of HPV) have raised controversies regarding the prevalence of HPV in benign and neoplastic human prostate. We investigated the prevalence of HPV infections in prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinomas in 23 surgically resected prostates. Polymerase chain reaction (PCR) was used to amplify HPV 6b/11, 16, and 18 specific DNA sequences, using type specific HPV primers selected from the transforming gene E6-E7. The areas of PIN and cancer in 6 microns H&E stained tissue sections were identified, and respective areas of PIN and cancer were isolated from the adjacent serial sections and used for DNA amplification and HPV detection (Fig. 1). Our results demonstrated the presence of HPV 16 in three carcinomas (13%), using type specific primers in PCR amplified samples. We were not able to demonstrate the presence of other HPV types (HPV 6b/11 or HPV 18) in any of the samples using specific primers. Two of these prostates showed relatively strong positive signals by dot blot analysis, when hybridized with a 32P-labeled HPV 16 type specific oligonucleotide probe. One more sample showed weak positivity, when hybridized with a 32P-labeled HPV 16 type specific oligonucleotide probe. Subsequently, we have confirmed these results by Southern hybridization of the samples transferred to nylon membrane after agarose gel electrophoresis and detected by HPV 16 type specific oligonucleotide probe, using chemiluminescent assay. We, therefore, conclude that HPV infections of the prostate in general are not as common as has been previously claimed by other investigators.
Sypabekova, Marzhan; Bekmurzayeva, Aliya; Wang, Ronghui; Li, Yanbin; Nogues, Claude; Kanayeva, Damira
2017-05-01
Rapid detection of Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), is important for global control of this disease. Aptamers have emerged as a potential rival for antibodies in therapeutics, diagnostics and biosensing due to their inherent characteristics. The aim of the current study was to select and characterize single-stranded DNA aptamers against MPT64 protein, one of the predominant secreted proteins of Mtb pathogen. Aptamers specific to MPT64 protein were selected in vitro using systematic evolution of ligands through exponential enrichment (SELEX) method. The selection was started with a pool of ssDNA library with randomized 40-nucleotide region. A total of 10 cycles were performed and seventeen aptamers with unique sequences were identified by sequencing. Dot Blot analysis was performed to monitor the SELEX process and to conduct the preliminary tests on the affinity and specificity of aptamers. Enzyme linked oligonucleotide assay (ELONA) showed that most of the aptamers were specific to the MPT64 protein with a linear correlation of R 2 = 0.94 for the most selective. Using Surface Plasmon Resonance (SPR), dissociation equilibrium constant K D of 8.92 nM was obtained. Bioinformatics analysis of the most specific aptamers revealed the existence of a conserved as well as distinct sequences and possible binding site on MPT64. The specificity was determined by testing non-target ESAT-6 and CFP-10. Negligible cross-reactivity confirmed the high specificity of the selected aptamer. The selected aptamer was further tested on clinical sputum samples using ELONA and had sensitivity and specificity of 91.3% and 90%, respectively. Microscopy, culture positivity and nucleotide amplification methods were used as reference standards. The aptamers studied could be further used for the development of medical diagnostic tools and detection assays for Mtb. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ma, Biao; Fang, Jiehong; Wang, Ye; He, Haizhen; Dai, Mingyan; Lin, Wei; Su, Wei; Zhang, Mingzhou
2017-01-01
Cervical cancer is a common gynecologic malignant tumor and has a great impact on women's health. Human papillomavirus (HPV) is implicated in cervical cancer and precancerous lesions and the two are possibly two stages of disease progression. With the technological development of molecular biology and epidemiology, detection and treatment of HPV has become an important means to prevent cervical cancer. Here we present a novel, rapid, sensitive and specific isothermal method of recombinase polymerase amplification (RPA), which is established to detect the two most common high-risk human papillomavirus type 16 and type 18 DNA. In this study, we evaluate the efficacy of the RPA assay, incubating clinical specimens of HPV16 and HPV18 using plasmids standard. It operates at constant low temperature without the thermal instrumentation for incubation. The products can be detected via agarose gel electrophoresis assay, reverse dot blot assay, and quantitative real-time assay with SYBR Green I. We assess the diagnostic performance of the RPA assay for detecting of HPV16 and HPV18 in 335 clinical samples from patients suspected of cervical cancer. The results revealed no cross-reaction with other HPV genotypes and the RPA assay achieve a sensitivity of 100 copies. Compared with TaqMan qPCR, the RPA technique achieves exponential amplification with no need for pretreatment of sample DNA at 37°C for 20 minutes, which reveals more satisfactory performance. The agreement between the RPA and qPCR assays was 97.6% (κ = 0.89) for HPV16 positivity and 98.5% (κ = 0.81) for HPV18 positivity, indicating very good correlation between both tests. Importantly, the RPA assay was demonstrated to be a useful and powerful method for detection of HPV virus, which therefore may serve as a valuable tool for rapid diagnosis of HPV infection in both commercial and clinical applications.
Sarabhai, Swati; Indrani, D; Vijaykrishnaraj, M; Milind; Arun Kumar, V; Prabhasankar, P
2015-06-01
The effect of 5, 7.5 and 10 % protein concentrates namely soya protein isolate (SPI), whey protein concentrate (WPC) and addition of 0.5 % emulsifiers such as glycerol monostearate (GMS), sodium stearoyl- 2- lactylate (SSL) and lecithin (LEC) on the rheological, sensory and textural characteristics of cookies with rice flour and its immunochemical validation was studied. The results showed that the use of 7.5 % SPI/WPC along with GMS significantly improved the quality characteristics of cookies with rice flour. Dot-Blot and Western-blot studies of cookies with 7.5 % of SPI or WPC confirmed that the anti-gliadin did not recognize these proteins. Carry- through process using ELISA kit confirmed that gluten was within the permissible limit in all the stages of processing and hence these cookies can be consumed by people suffering from celiac disease.
Hailemariam, Zerihun; Ahmed, Jabbar Sabir; Clausen, Peter-Henning; Nijhof, Ard Menzo
2017-01-01
An essential step in the molecular detection of tick-borne pathogens (TBPs) in blood is the extraction of DNA. When cooled storage of blood under field conditions prior to DNA extraction in a dedicated laboratory is not possible, the storage of blood on filter paper forms a promising alternative. We evaluated six DNA extraction methods from blood spotted on FTA Classic ® cards (FTA cards), to determine the optimal protocol for the subsequent molecular detection of TBPs by PCR and the Reverse Line Blot hybridization assay (RLB). Ten-fold serial dilutions of bovine blood infected with Babesia bovis, Theileria mutans, Anaplasma marginale or Ehrlichia ruminantium were made by dilution with uninfected blood and spotted on FTA cards. Subsequently, DNA was extracted from FTA cards using six different DNA extraction protocols. DNA was also isolated from whole blood dilutions using a commercial kit. PCR/RLB results showed that washing of 3mm discs punched from FTA cards with FTA purification reagent followed by DNA extraction using Chelex ® resin was the most sensitive procedure. The detection limit could be improved when more discs were used as starting material for the DNA extraction, whereby the use of sixteen 3mm discs proved to be most practical. The presented best practice method for the extraction of DNA from blood spotted on FTA cards will facilitate epidemiological studies on TBPs. It may be particularly useful for field studies where a cold chain is absent. Copyright © 2016 Elsevier GmbH. All rights reserved.
Melov, S; Hinerfeld, D; Esposito, L; Wallace, D C
1997-01-01
Mitochondrial DNA (mtDNA) rearrangements have been shown to accumulate with age in the post-mitotic tissues of a variety of animals and have been hypothesized to result in the age-related decline of mitochondrial bioenergetics leading to tissue and organ failure. Caloric restriction in rodents has been shown to extend life span supporting an association between bioenergetics and senescence. In the present study, we use full length mtDNA amplification by long-extension polymerase chain reaction (LX-PCR) to demonstrate that mice accumulate a wide variety of mtDNA rearrangements with age in post mitotic tissues. Similarly, using an alternative PCR strategy, we have found that 2-4 kb minicircles containing the origin of heavy-strand replication accumulate with age in heart but not brain. Analysis of mtDNA structure and conformation by Southern blots of unrestricted DNA resolved by field inversion gel electrophoresis have revealed that the brain mtDNAs of young animals contain the traditional linear, nicked, and supercoiled mtDNAs while old animals accumulate substantial levels of a slower migrating species we designate age-specific mtDNAs. In old caloric restricted animals, a wide variety of rearranged mtDNAs can be detected by LX-PCR in post mitotic tissues, but Southern blots of unrestricted DNA reveals a marked reduction in the levels of the age- specific mtDNA species. These observations confirm that mtDNA mutations accumulate with age in mice and suggest that caloric restriction impedes this progress. PMID:9023106
Zhang, Hongyan; Lv, Jie; Jia, Zhenhong
2017-05-10
A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluorescence quencher. Results showed that the photoluminescence (PL) intensity of PS photonic crystal was drastically increased when the QDs-conjugated probe DNA was adhered to the PS layer by surface modification using a standard cross-link chemistry method. The PL intensity of QDs was decreased when the addition of AuNPs-conjugated complementary 16S rRNA was dropped onto QDs-conjugated PS. Based on the analysis of different target DNA concentration, it was found that the decrease of the PL intensity showed a good linear relationship with complementary DNA concentration in a range from 0.25 to 10 μM, and the detection limit was 328.7 nM. Such an optical FRET biosensor functions on PS-based photonic crystal for DNA detection that differs from the traditional FRET, which is used only in liquid. This method will benefit the development of a new optical FRET label-free biosensor on Si substrate and has great potential in biochips based on integrated optical devices.
Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR).
Sang, Fuming; Zhang, Zhizhou; Yuan, Lin; Liu, Deli
2018-02-26
Multi-round PCR is an important technique for obtaining enough target DNA from rare DNA resources, and is commonly used in many fields including forensic science, ancient DNA analysis and cancer research. However, multi-round PCR is often aborted, largely due to the accumulation of non-specific amplification during repeated amplifications. Here, we developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs). Different PCR assays, DNA polymerases (Pfu and Taq), DNA sizes and GC amounts were compared in this study. In the presence of QDs, PCR specificity could be retained even in the ninth-round amplification. Moreover, the longer and more complex the targets were, the earlier the abortion happened in multi-round PCR. However, no obvious enhancement of specificity was found in multi-round PCR using Taq DNA polymerase. Significantly, the fidelity of Pfu polymerase based multi-round PCR was not sacrificed in the presence of QDs. Besides, pre-incubation at 50 °C for an hour had no impact on multi-round PCR performance, which further authenticated the hot start effect of QDs modulated in multi-round PCR. The findings of this study demonstrated that a cost-effective and promising multi-round PCR technique for large-scale and high-throughput sample analysis could be established with high specificity, sensibility and accuracy.
An alternative method for processing northern blots after capillary transfer.
Nilsen, Timothy W
2015-03-02
Different laboratories use different methods for the prehybridization, hybridization, and washing steps of the northern blotting procedure. In this protocol, a northern blot is pretreated with Church and Gilbert hybridization buffer to block nonspecific probe-binding sites. The immobilized RNA is then hybridized to a DNA probe specific for the RNA of interest. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. The solutions and conditions described here may be ideal for those who prefer to use fewer ingredients in their solutions. This protocol is designed to achieve the same goals as other northern blotting approaches. It minimizes background (nonspecific adherence of probe to membrane and nonspecific hybridization) and maximizes specific hybridization to RNAs immobilized on a membrane. © 2015 Cold Spring Harbor Laboratory Press.
Freeman, Ronit; Liu, Xiaoqing; Willner, Itamar
2011-08-03
Nucleic acid subunits consisting of fragments of the horseradish peroxidase (HRP)-mimicking DNAzyme and aptamer domains against ATP or sequences recognizing Hg(2+) ions self-assemble, in the presence of ATP or Hg(2+), into the active hemin-G-quadruplex DNAzyme structure. The DNAzyme-generated chemiluminescence provides the optical readout for the sensing events. In addition, the DNAzyme-stimulated chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs) is implemented to develop aptamer or DNA sensing platforms. The self-assembly of the ATP-aptamer subunits/hemin-G-quadruplex DNAzyme, where one of the aptamer subunits is functionalized with CdSe/ZnS QDs, leads to the CRET signal. Also, the functionalization of QDs with a hairpin nucleic acid that includes the G-quadruplex sequence in a ''caged'' configuration is used to analyze DNA. The opening of the hairpin structure by the target DNA assembles the hemin-G-quadruplex DNAzyme that stimulates the CRET signal. By the application of three different sized QDs functionalized with different hairpins, the multiplexed analysis of three different DNA targets is demonstrated by the generation of three different CRET luminescence signals.
Huang, Jing-Yi; Zhao, Lang; Lei, Wan; Wen, Wei; Wang, Yi-Jia; Bao, Ting; Xiong, Hua-Yu; Zhang, Xiu-Hua; Wang, Sheng-Fu
2018-01-15
In this work, we have developed an electrochemical aptasensor for high-sensitivity determination of carcinoembryonic antigen (CEA) based on lead ion (Pb 2+ )-dependent DNAzyme-assisted signal amplification and graphene quantum dot-ionic liquid-nafion (GQDs-IL-NF) composite film. We designed hairpin DNA containing CEA-specific aptamers and DNAzyme chains. In the presence of CEA, hairpin DNA recognized the target and performed a DNAzyme-assisted signal amplification reaction to yield a large number of single-stranded DNA. The GQDs-IL-NF composite film was immobilized on the glassy carbon electrode for the interaction with single-stranded DNA through noncovalent π-π stacking interaction. Therefore, the methylene blue-labeled substrate DNA (MB-substrate) was fixed on the electrode and exhibited an initial electrochemical signal. Under optimal conditions, the response current change was proportional to the concentration of CEA, demonstrating a wide linear range from 0.5fgmL -1 to 0.5ngmL -1 , with a low detection limit of 0.34fgmL -1 . Furthermore, the proposed aptasensor was successfully applied in determining CEA in serum samples, showing its superior prospects in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Mathur, Ashish; Gupta, Rathin; Kondal, Sidharth; Wadhwa, Shikha; Pudake, Ramesh N; Shivani; Kansal, Ruby; Pundir, C S; Narang, Jagriti
2018-06-01
Staphylococcus aureus (S. aureus) is a pathogenic bacteria which causes infectious diseases and food poisoning. Current diagnostic methods for infectious disease require sophisticated instruments, long analysis time and expensive reagents which restrict their application in resource-limited settings. Electrochemical paper based analytical device (EPAD) was developed by integrating graphene nano dots (GNDs) and zeolite (Zeo) using specific DNA probe. The ssDNA/GNDs-Zeo modified paper based analytical device (PAD) was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The genosensor was optimized at pH7.4 and incubation temperature of 30°C. A linear current response with respect to target DNA concentrations was obtained. The limit of detection (LOD) of the proposed sensor was found out to be 0.1nM. The specificity was confirmed by introducing non-complimentary target DNA to ssDNA/GNDs-Zeo modified PAD. The suitability of the proposed EPAD genosensor was demonstrated with fruit juice samples mixed with S. aureus. The proposed EPAD genosensor is a low cost, highly specific, easy to fabricate diagnostic device for detection of S. aureus bacteria which requires very low sample volume and minimum analysis time of 10s. Copyright © 2018 Elsevier B.V. All rights reserved.
Asai, Emiko; Yamamoto, Masaya; Ueda, Kazuki; Waguri, Satoshi
2018-01-01
Abstract To investigate the possible implications of autophagy, one of the degradation pathways induced by metabolic stress, in the dynamic reconstructive process of wound healing, the appearance and changes of punctate structures for microtubule-associated protein 1 light chain 3 (LC3), an autophagosome marker, were examined in a rat skin wound healing model. Although the ratio of LC3-II/LC3-I in Western blotting was not evidently changed during the wound healing process, LC3-positive dots were clearly observed in fibroblasts and myofibroblasts, and occasionally in macrophages, by immunohistofluorescence microscopy. Some of the LC3-positive dots were colocalized with Atg16L signal, an isolation membrane marker, and electron microscopy revealed the presence of typical autophagosomes in fibroblasts near the margin of the wound. The number of LC3-positive dots per fibroblast increased during the later period of the proliferation phase, and interestingly, it was higher in the margin than the center of the wound. It was also high in the periwound skin area. These results suggest that drastic functional changes in fibroblasts during wound healing process are accompanied by the alteration of the autophagy-lysosomal degradation system. PMID:29343655
Asai, Emiko; Yamamoto, Masaya; Ueda, Kazuki; Waguri, Satoshi
2018-04-17
To investigate the possible implications of autophagy, one of the degradation pathways induced by metabolic stress, in the dynamic reconstructive process of wound healing, the appearance and changes of punctate structures for microtubule-associated protein 1 light chain 3 (LC3), an autophagosome marker, were examined in a rat skin wound healing model. Although the ratio of LC3-II/LC3-I in Western blotting was not evidently changed during the wound healing process, LC3-positive dots were clearly observed in fibroblasts and myofibroblasts, and occasionally in macrophages, by immunohistofluorescence microscopy. Some of the LC3-positive dots were colocalized with Atg16L signal, an isolation membrane marker, and electron microscopy revealed the presence of typical autophagosomes in fibroblasts near the margin of the wound. The number of LC3-positive dots per fibroblast increased during the later period of the proliferation phase, and interestingly, it was higher in the margin than the center of the wound. It was also high in the periwound skin area. These results suggest that drastic functional changes in fibroblasts during wound healing process are accompanied by the alteration of the autophagy-lysosomal degradation system.
NASA Astrophysics Data System (ADS)
Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui
2014-10-01
Convenient and simultaneous detection of multiple biomarkers such as DNA and proteins with biocompatible materials and good analytical performance still remains a challenge. Herein, we report the respective and simultaneous detection of DNA and bovine α-thrombin (thrombin) entirely based on biocompatible carbon materials through a specially designed fluorescence on-off-on process. Colorful fluorescence, high emission efficiency, good photostability and excellent compatibility enables graphene quantum dots (GQDs) as the best choice for fluorophores in bioprobes, and thus two-colored GQDs as labeling fluorophores were chemically bonded with specific oligonucleotide sequence and aptamer to prepare two probes targeting the DNA and thrombin, respectively. Each probe can be assembled on the graphene oxide (GO) platform spontaneously by π-π stacking and electrostatic attraction; as a result, fast electron transfer in the assembly efficiently quenches the fluorescence of probe. The presence of DNA or thrombin can trigger the self-recognition between capturing a nucleotide sequence and its target DNA or between thrombin and its aptamer due to their specific hybridization and duplex DNA structures or the formation of apatamer-substrate complex, which is taken advantage of in order to achieve a separate quantitative analysis of DNA and thrombin. A dual-functional biosensor for simultaneous detection of DNA and thrombin was also constructed by self-assembly of two probes with distinct colors and GO platform, and was further evaluated with the presence of various concentrations of DNA and thrombin. Both biosensors serving as a general detection model for multiple species exhibit outstanding analytical performance, and are expected to be applied in vivo because of the excellent biocompatibility of their used materials.
Kawa, Diane E; Stephens, Richard S
2002-05-15
The outer membrane protein PorB is a conserved chlamydial protein that functions as a porin and is capable of eliciting neutralizing Abs. A topological antigenic map was developed using overlapping synthetic peptides representing the Chlamydia trachomatis PorB sequence and polyclonal immune sera. To identify which antigenic determinants were surface accessible, monospecific antisera were raised to the PorB peptides and were used in dot-blot and ELISA-based absorption studies with viable chlamydial elementary bodies (EBs). The ability of the surface-accessible antigenic determinants to direct neutralizing Ab responses was investigated using standardized in vitro neutralization assays. Four major antigenic clusters corresponding to Phe(34)-Leu(59) (B1-2 and B1-3), Asp(112) -Glu(145) (B2-3 and B2-4), Gly(179)-Ala(225) (B3-2 to B3-4), and Val(261)-Asn(305) (B4-4 to B5-2) were identified. Collectively, the EB absorption and dot-blot assays established that the immunoreactive PorB Ags were exposed on the surface of chlamydial EBs. Peptide-specific antisera raised to the surface-accessible Ags neutralized chlamydial infectivity and demonstrated cross-reactivity to synthetic peptides representing analogous C. pneumoniae PorB sequences. Furthermore, neutralization of chlamydial infectivity by C. trachomatis PorB antisera was inhibited by synthetic peptides representing the surface-exposed PorB antigenic determinants. These findings demonstrate that PorB Ags may be useful for development of chlamydial vaccines.
Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients
NASA Astrophysics Data System (ADS)
Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier
2016-05-01
We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f
Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert
2016-03-01
It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.
Mariz, F C; Coimbra, E C; Jesus, A L S; Nascimento, L M; Torres, F A G; Freitas, A C
2015-01-01
The human papillomavirus (HPV) L1 major capsid protein, which forms the basis of the currently available vaccines against cervical cancer, self-assembles into virus-like particles (VLPs) when expressed heterologously. We report the development of a biotechnology platform for HPV16 L1 protein expression based on the constitutive PGK1 promoter (PPGK1) from the methylotrophic yeast Pichia pastoris. The L1 gene was cloned under regulation of PPGK1 into pPGKΔ3 expression vector to achieve intracellular expression. In parallel, secretion of the L1 protein was obtained through the use of an alternative vector called pPGKΔ3α, in which a codon optimized α-factor signal sequence was inserted. We devised a work-flow based on the detection of the L1 protein by dot blot, colony blot, and western blot to classify the positive clones. Finally, intracellular HPV VLPs assembly was demonstrated for the first time in yeast cells. This study opens up perspectives for the establishment of an innovative platform for the production of HPV VLPs or other viral antigens for vaccination purposes, based on constitutive expression in P. pastoris.
Distribution of cholecystokinin mRNA and peptides in the human brain.
Lindefors, N; Brené, S; Kopp, J; Lindén, A; Brodin, E; Sedvall, G; Persson, H
1991-01-01
Expression of preprocholecystokinin mRNA was studied in regions of post mortem human brain using RNA blot analysis (Northern blot) and in situ hybridization. Northern blot analysis using a cDNA probe showed high levels of an approximately 0.8 kb preprocholecystokinin mRNA in all regions of neocortex examined. Lower levels of preprocholecystokinin mRNA were detected in amygdaloid body and thalamus. In situ hybridization analysis using the same cDNA probe revealed numerous weakly labelled neurons in different areas of human neocortex and less numerous neurons in hippocampus and amygdaloid body. High-performance liquid-chromatography and gel-chromatography combined with radioimmunoassay of cholecystokinin-like immunoreactivity from human cerebral cortex and caudate nucleus revealed two major forms, one coeluting with sulphated cholecystokinin-8 and the other coeluting with sulphated cholecystokinin-58. Two minor components coeluting with cholecystokinin-4 and cholecystokinin-5 were also detected. The finding of cholecystokinin-like immunoreactivity corresponding to cholecystokinin-8 and cholecystokinin-58 in caudate nucleus where no preprocholecystokinin mRNA was found, indicates the presence of these peptides in afferent nerve terminals.
NASA Astrophysics Data System (ADS)
Bayramov, F. B.; Poloskin, E. D.; Chernev, A. L.; Toporov, V. V.; Dubina, M. V.; Sprung, C.; Lipsanen, H. K.; Bairamov, B. Kh.
2018-01-01
Results of studying nanocrystalline nc-Si/SiO2 quantum dots (QDs) functionalized by short oligonucleotides show that complexes of isolated crystalline semiconductor QDs are unique objects for detecting the manifestation of new quantum confinement phenomena. It is established that narrow lines observed in high-resolution spectra of inelastic light scattering can be used for determining the characteristic time scale of vibrational excitations of separate nucleotide molecules and for studying structural-dynamic properties of fast oscillatory processes in biomacromolecules.
Zhang, Juanni; Tian, Jianniao; He, Yanlong; Chen, Sheng; Jiang, Yixuan; Zhao, Yanchun; Zhao, Shulin
2013-09-07
We report a fluorescence polarization platform for H1N1 detection based on the construction of a DNA functional QD fluorescence polarization probe and a bi-functional protein binding aptamer (Apt-DNA). The assay has a linear range from 10 nM to 100 nM with a detection limit of 3.45 nM and is selective over the mismatched bases.
Noro, Taichi; Oishi, Eiji; Kaneshige, Takahiro; Yaguchi, Kazuhiko; Amimoto, Katsuhiko; Shimizu, Mitsugu
2008-10-15
The objectives of this study were to identify haemagglutinin (HA) epitopes of Avibacterium paragallinarum serovar C that are capable of eliciting haemagglutination inhibition (HI) antibody, and to investigate their immunogenic role. Three conformational epitopes were detected on HA by blocking ELISA and immuno-dot blot analysis using a panel of five monoclonal antibodies (MAbs) with HI activity, designated 8C1C, 4G8B, 24E4D, 11E11B, and 10D1A. The minimum DNA regions coding these three epitopes were 3195, 2862, and 807bp in size, and mapped within a gene with 6117bp. Nine DNA fragments of various lengths were prepared, and their recombinant proteins were generated in E. coli. One recombinant protein, designated HPC5.5, was recognized by MAb 8C1C, and had strong ability to adsorb HI antibody to Av. paragallinarum serovar C. Other recombinant proteins designated HPC5.1, HPC4.8, and HPC2.5 did not react with MAb 8C1C and only slightly adsorbed HI antibody. All chickens immunized once with HPC5.5 did not show any typical clinical signs such as nasal discharge or facial edema against challenge inoculation with Av. paragallinarum serovar C. However, HPC5.1, which was recognized by four MAbs (not including MAb 8C1C), showed only partial protective immunity in five of eight immunized chickens. The results suggest that the HA epitope recognized by MAb 8C1C is the major epitope responsible for eliciting HI antibody, and HPC5.5 is a practical candidate protein to develop a new vaccine against avian infectious coryza caused by Av. paragallinarum serovar C.
Application of PCR to a clinical and environmental investigation of a case of equine botulism.
Szabo, E A; Pemberton, J M; Gibson, A M; Thomas, R J; Pascoe, R R; Desmarchelier, P M
1994-08-01
PCR for the detection of botulinum neurotoxin gene types A to E was used in the investigation of a case of equine botulism. Samples from a foal diagnosed with toxicoinfectious botulism in 1985 were reanalyzed by PCR and the mouse bioassay in conjunction with an environmental survey. Neurotoxin B was detected by mouse bioassay in culture enrichments of serum, spleen, feces, and intestinal contents. PCR results compared well with mouse bioassay results, detecting type B neurotoxin genes in these samples and also in a liver sample. Other neurotoxin types were not detected by either test. Clostridium botulinum type B was shown to be prevalent in soils collected from the area in which the foal was raised. Four methods were used to test for the presence of botulinum neurotoxin-producing organisms in 66 soil samples taken within a 5-km radius: PCR and agarose gel electrophoresis (types A to E), PCR and an enzyme-linked assay (type B), hybridization of crude alkaline cell lysates with a type B-specific probe, and the mouse bioassay (all types). Fewer soil samples were positive for C. botulinum type B by the mouse bioassay (15%) than by any of the DNA-based detection systems. Hybridization of a type B-specific probe to DNA dot blots (26% of the samples were positive) and PCR-enzyme-linked assay (77% of the samples were positive) were used for the rapid analysis of large numbers of samples, with sensitivity limits of 3 x 10(6) and 3,000 cells, respectively. Conventional detection of PCR products by gel electrophoresis was the most sensitive method (300-cell limit), and in the present environmental survey, neurotoxin B genes only were detected in 94% of the samples.
Application of PCR to a clinical and environmental investigation of a case of equine botulism.
Szabo, E A; Pemberton, J M; Gibson, A M; Thomas, R J; Pascoe, R R; Desmarchelier, P M
1994-01-01
PCR for the detection of botulinum neurotoxin gene types A to E was used in the investigation of a case of equine botulism. Samples from a foal diagnosed with toxicoinfectious botulism in 1985 were reanalyzed by PCR and the mouse bioassay in conjunction with an environmental survey. Neurotoxin B was detected by mouse bioassay in culture enrichments of serum, spleen, feces, and intestinal contents. PCR results compared well with mouse bioassay results, detecting type B neurotoxin genes in these samples and also in a liver sample. Other neurotoxin types were not detected by either test. Clostridium botulinum type B was shown to be prevalent in soils collected from the area in which the foal was raised. Four methods were used to test for the presence of botulinum neurotoxin-producing organisms in 66 soil samples taken within a 5-km radius: PCR and agarose gel electrophoresis (types A to E), PCR and an enzyme-linked assay (type B), hybridization of crude alkaline cell lysates with a type B-specific probe, and the mouse bioassay (all types). Fewer soil samples were positive for C. botulinum type B by the mouse bioassay (15%) than by any of the DNA-based detection systems. Hybridization of a type B-specific probe to DNA dot blots (26% of the samples were positive) and PCR-enzyme-linked assay (77% of the samples were positive) were used for the rapid analysis of large numbers of samples, with sensitivity limits of 3 x 10(6) and 3,000 cells, respectively. Conventional detection of PCR products by gel electrophoresis was the most sensitive method (300-cell limit), and in the present environmental survey, neurotoxin B genes only were detected in 94% of the samples. Images PMID:7989554
Tonon, S A; Picconi, M A; Zinovich, J B; Liotta, D J; Bos, P D; Galuppo, J A; Alonio, L V; Ferreras, J A; Teyssié, A R
1999-01-01
OBJECTIVE: To assess the prevalence and potential risk factors associated with human papillomavirus (HPV) cervical infection among women residing in a region of northeastern Argentina with a high incidence of cervical cancer. METHODS: A case-control study of 330 women participating in a cervical cytological screening program conducted in Posadas city, Misiones, Argentina, from February 1997 to November 1998 was carried out. Standardized questionnaires were administered, and clinical examination including colposcopy was performed. Fresh endocervical specimens for HPV DNA detection by generic polymerase chain reaction were collected and the products typed by dot-blot hybridization. RESULTS: Human papillomavirus DNA was found in 61% of samples analyzed (185/301). Samples with normal cytology had a 43% infection rate (85/199), while those classified as low-grade squamous intraepithelial lesion, high-grade squamous intraepithelial lesion, and invasive cervical carcinoma had an infection rate of 96% (53/55), 100% (29/29), and 100% (18/18), respectively. Human papillomavirus typing showed a 64% (118/185) prevalence of type 16 among all the infected population analyzed; type 16 was detected among 49% (42/85) of infected samples with normal cytology and in an average of 74% (74/100) with abnormal cytology. Sexual behavior, residence in southern Paraguay, and history of a previous sexually transmitted diseases were the main risk factors associated with high-grade cervical lesions. CONCLUSIONS: An elevated prevalence of HPV infection was detected in this population, which also has a high incidence of cervical cancer. The broad distribution of high-risk HPV type 16 in women with normal cytology and colposcopy suggests that viral infection is an important determinant of regional cancer incidence. PMID:10524669
Wambua, Lillian; Schneider, Bernd; Okwaro, Allan; Wanga, Joseph Odhiambo; Imali, Olive; Wambua, Peninah Nduku; Agutu, Lavender; Olds, Cassandra; Jones, Chris Stephen; Masiga, Daniel; Midega, Charles; Khan, Zeyaur; Jores, Joerg; Fischer, Anne
2017-10-01
Napier grass Stunt Disease (NSD) is a severe disease of Napier grass (Pennisetum purpureum) in Eastern Africa, caused by the leafhopper-transmitted bacterium Candidatus Phytoplasma oryzae. The pathogen severely impairs the growth of Napier grass, the major fodder for dairy cattle in Eastern Africa. NSD is associated with biomass losses of up to 70% of infected plants. Diagnosis of NSD is done by nested PCR targeting the phytoplasma DNA, which is difficult to perform in developing countries with little infrastructure. We report the development of an easy to use, rapid, sensitive and specific molecular assay for field diagnosis of NSD. The procedure is based on recombinase polymerase amplification and targets the imp gene encoding a pathogen-specific immunodominant membrane protein. Therefore we followed a two-step process. First we developed an isothermal DNA amplification method for real time fluorescence application and then transferred this assay to a lateral flow format. The limit of detection for both procedures was estimated to be 10 organisms. We simplified the template preparation procedure by using freshly squeezed phloem sap from Napier grass. Additionally, we developed a laboratory serological assay with the potential to be converted to a lateral flow assay. Two murine monoclonal antibodies with high affinity and specificity to the immunodominant membrane protein IMP of Candidatus Phytoplasma oryzae were generated. Both antibodies specifically reacted with the denatured or native 17 kDa IMP protein. In dot blot experiments of extracts from infected plant, phytoplasmas were detected in as little as 12,5 μg of fresh plant material. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
A universal DNA-based protein detection system.
Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan
2013-09-25
Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.
A Universal DNA-Based Protein Detection System
Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan
2014-01-01
Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265
Yu, Zhiyuan; Kong, Qun; Kone, Bruce C
2010-03-01
Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.
Zhao, Yang; Tan, Lu; Gao, Xiaoshan; Jie, Guifen; Huang, Tingyu
2018-07-01
Herein, we successfully devised a novel photoelectrochemical (PEC) platform for ultrasensitive detection of adenosine by target-triggering cascade multiple cycle amplification based on the silver nanoparticles-assisted ion-exchange reaction with CdTe quantum dots (QDs). In the presence of target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1), which could initiate the cycling cleavage process under the reaction of nicking endonuclease. Then the product (DNA b) of cycle I could act as the "DNA trigger" of cycle II to further generate a large number of DNA s1, which again go back to cycle I, thus a cascade multiple DNA cycle amplification was carried out to produce abundant DNA c. These DNA c fragments with the cytosine (C)-rich loop were captured by magnetic beads, and numerous silver nanoclusters (Ag NCs) were synthesized by AgNO 3 and sodium borohydride. The dissolved AgNCs released numerous silver ions which could induce ion exchange reaction with the CdTe QDs, thus resulting in greatly amplified change of photocurrent for target detection. The detection linear range for adenosine was 1.0 fM ~10 nM with the detection limit of 0.5 fM. The present PEC strategy combining cascade multiple DNA cycle amplification and AgNCs-induced ion-exchange reaction with QDs provides new insight into rapid, and ultrasensitive PEC detection of different biomolecules, which showed great potential for detecting trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.
Molecular cloning of a gene encoding translation initiation factor (TIF) from Candida albicans.
Mirbod, F; Nakashima, S; Kitajima, Y; Ghannoum, M A; Cannon, R D; Nozawa, Y
1996-01-01
The differential display technique was applied to compare mRNAs from two clinical isolates of Candida albicans with different virulence; high (potent strain, 16240) and low (weak strain, 18084) extracellular phospholipase activities. Complementary DNA fragments corresponding to several apparently differentially expressed mRNAs were recovered and sequenced. A complementary DNA fragment seen distinctly in the potent phospholipase producing strain was highly homologous to the yeast translation initiation factor (TIF). The selected DNA fragment was then used as a probe to isolate its corresponding complementary DNA clone from a library of C. albicans genomic DNA. The sequence of isolated gene revealed an open reading frame of 1194 nucleotides with the potential to encode a protein of 397 amino acids with a predicted molecular weight of 43 kDa. Over its entire length, the amino acid sequence showed strong homology (78-89%) to Saccharomyces cerevisiae TIF and (63-80%) to mouse eIF-4A proteins. Therefore, our C. albicans gene was identified to be TIF (Ca TIF). Northern blot analysis in the two strains of C. albicans revealed that Ca TIF expression is 1.5-fold higher in the potent phospholipase producing strain. The restriction endonuclease digestion of genomic DNA from this potent strain revealed at least two hybridized bands in Southern blot analysis, suggesting two or more closely related sequences in the C. albicans genome.
DNA-Based Applications in Nanobiotechnology
Abu-Salah, Khalid M.; Ansari, Anees A.; Alrokayan, Salman A.
2010-01-01
Biological molecules such as deoxyribonucleic acid (DNA) have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated. PMID:20652049
DNA-based applications in nanobiotechnology.
Abu-Salah, Khalid M; Ansari, Anees A; Alrokayan, Salman A
2010-01-01
Biological molecules such as deoxyribonucleic acid (DNA) have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated.
Wagner, Waldemar; Ciszewski, Wojciech M; Kania, Katarzyna D
2015-07-25
The consideration of lactate as an active metabolite is a newly emerging and attractive concept. Recently, lactate has been reported to regulate gene transcription via the inhibition of histone deacetylases (HDACs) and survival of cancer cells via hydroxycarboxylic acid receptor 1 (HCAR1). This study examined the role of L- and D-lactate in the DNA damage response in cervical cancer cells. Three cervical cancer cell lines were examined: HeLa, Ca Ski and C33A. The inhibitory activity of lactate on HDACs was analysed using Western blot and biochemical methods. The lactate-mediated stimulation of DNA repair and cellular resistance to neocarzinostatin, doxorubicin and cisplatin were studied using γ-H2AX, comet and clonogenic assays. HCAR1 and DNA repair gene expression was quantified by real-time PCR. DNA-PKcs activity and HCAR1 protein expression were evaluated via immunocytochemistry and Western blot, respectively. HCAR1 activation was investigated by measuring intracellular cAMP accumulation and Erk phosphorylation. HCAR1 expression was silenced using shRNA. L- and D-lactate inhibited HDACs, induced histone H3 and H4 hyperacetylation, and decreased chromatin compactness in HeLa cells. Treating cells with lactate increased LIG4, NBS1, and APTX expression by nearly 2-fold and enhanced DNA-PKcs activity. Based on γ-H2AX and comet assays, incubation of cells in lactate-containing medium increased the DNA repair rate. Furthermore, clonogenic assays demonstrated that lactate mediates cellular resistance to clinically used chemotherapeutics. Western blot and immunocytochemistry showed that all studied cell lines express HCAR1 on the cellular surface. Inhibiting HCAR1 function via pertussis toxin pretreatment partially abolished the effects of lactate on DNA repair. Down-regulating HCAR1 decreased the efficiency of DNA repair, abolished the cellular response to L-lactate and decreased the effect of D-lactate. Moreover, HCAR1 shRNA-expressing cells produced significantly lower mRNA levels of monocarboxylate transporter 4. Finally, the enhancement of DNA repair and cell survival by lactate was suppressed by pharmacologically inhibiting monocarboxylate transporters using the inhibitor α-cyano-4-hydroxycinnamic acid (α-CHCA). Our data indicate that L- and D-lactate present in the uterine cervix may participate in the modulation of cellular DNA damage repair processes and in the resistance of cervical carcinoma cells to anticancer therapy.
DNA-programmed dynamic assembly of quantum dots for molecular computation.
He, Xuewen; Li, Zhi; Chen, Muzi; Ma, Nan
2014-12-22
Despite the widespread use of quantum dots (QDs) for biosensing and bioimaging, QD-based bio-interfaceable and reconfigurable molecular computing systems have not yet been realized. DNA-programmed dynamic assembly of multi-color QDs is presented for the construction of a new class of fluorescence resonance energy transfer (FRET)-based QD computing systems. A complete set of seven elementary logic gates (OR, AND, NOR, NAND, INH, XOR, XNOR) are realized using a series of binary and ternary QD complexes operated by strand displacement reactions. The integration of different logic gates into a half-adder circuit for molecular computation is also demonstrated. This strategy is quite versatile and straightforward for logical operations and would pave the way for QD-biocomputing-based intelligent molecular diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bruno, John G.
2014-01-01
Preliminary studies aimed at improving the sensitivity of foodborne pathogen detection via lateral flow (LF) test strips by use of high affinity DNA aptamers for capture and reporter functions when coupled to red-emitting quantum dots (Qdot 655) are reported. A variety of DNA aptamers developed against Escherichia coli, Listeria monocytogenes, and Salmonella enterica were paired in capture and reporter combinations to determine which yielded the strongest detection of their cognate bacteria using a colloidal gold screening system. Several promising sandwich combinations were identified for each of the three bacterial LF strip systems. The best E. coli aptamer-LF system was further studied and yielded a visible limit of detection (LOD) of ~3,000 E. coli 8739 and ~6,000 E. coli O157:H7 in buffer. These LODs were reduced to ~300–600 bacterial cells per test respectively by switching to a Qdot 655 aptamer-LF system. Novel aspects of these assays such as the use of high levels of detergents to avoid quantum dot agglutination and enhance migration in analytical membranes, identification of optimal analytical membrane types, UV-immobilization of capture aptamers, and novel dual biotin/digoxigenin-end labeled aptamer streptavidin-colloidal gold or -Qdot 655 conjugates plus anti-digoxigenin antibody control lines are also discussed. In general, this work provides proof-of-principle for highly sensitive aptamer-Qdot LF strip assays for rapid foodborne pathogen detection. PMID:25437803
Results of total DNA measurement in koi tissue by Koi Herpes Virus real-time PCR.
Eide, Kathleen; Miller-Morgan, Tim; Heidel, Jerry; Bildfell, Rob; Jin, Ling
2011-03-01
Koi Herpes Virus (KHV) has been classified recently as a member of the Alloherpesviridae within the Herpesvirales order (Waltzek et al., 2005). Although one of the unique features of Herpesviridae, the sister family of Herpesvirales, is latent infection, it has not been demonstrated consistently that KHV of Alloherpesviridae can cause latent infection and be reactivated from latency. To investigate if KHV genomic DNA is present in koi exposed to KHV infection, 10 healthy fish were investigated from a koi population with a history of a KHV outbreak. No gross lesions or microscopic changes were observed at necropsy or by histological examination. No infectious virus was isolated from either the blood plasma or tissues. However, KHV DNA was detected in the white blood cells of nine of the ten fish by real-time PCR and PCR-Southern blot. KHV DNA was also detected in the brain, eye, spleen, gills hematopoietic kidney, trunk kidney, and intestine of nine of the ten fish by PCR-Southern blot. Interestingly, KHV DNA was also detected in the intestinal contents from seven of ten koi. Portions of major capsid gene DNA, amplified from two of the ten koi WBCs, were found to be identical to KHV-U. This study demonstrated that KHV genomic DNA can be detected in normal koi exposed previously to KHV and suggests that KHV becomes latent in fish. Copyright © 2010 Elsevier B.V. All rights reserved.
Prody, C A; Zevin-Sonkin, D; Gnatt, A; Goldberg, O; Soreq, H
1987-01-01
To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase (BtChoEase; EC 3.1.1.8) and Torpedo electric organ "true" acetylcholinesterase (AcChoEase; EC 3.1.1.7). Using these probes, we isolated several cDNA clones from lambda gt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A)+ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These findings demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species. Images PMID:3035536
[Cloning of human CD45 gene and its expression in Hela cells].
Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang
2015-11-01
To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.
Xie, Yan; Jiao, Xiaoyang; Zhou, Xueping; Liu, Huan; Ni, Yuequn; Wu, Jianxiang
2013-05-06
Tomato yellow leaf curl virus (TYLCV) is a member of the genus Begomovirus in the family Geminiviridae, which causes severe losses in tomato production in tropic and subtropic regions. The purified TYLCV virions were used as the immunogen to produce monoclonal antibodies (MAbs) using the hybridoma technology. MAb-based dot enzyme-linked immunosorbent assay (dot-ELISA) and direct tissue blot immunoassay (DTBIA) were developed for sensitive, simple, and rapid detection of TYLCV in field tomato and whitefly (Bemisia tabaci) samples collected from TYLCV prevalent provinces in China. Using the hybridoma technology, six murine MAbs (1C4, 8D10, 6E3, 2F2, 3F4 and 4G3) against TYLCV were prepared. Using the MAb 1C4, dot-ELISA and DTBIA were then established for detecting TYLCV in field tomato and whitefly samples collected from TYLCV prevalent provinces in China. The dot-ELISA could detect TYLCV in infected tissue crude extract diluted at 1:5,120 (w/v, g mL-1), and in viruliferous whitefly homogenate diluted at 1:128 (individual whitefly/μL), respectively. Field tomato samples (n=487) and whitefly samples (n=110) from TYLCV prevalent districts in China were screened for the presence of TYLCV using the two developed methods, and the results were further confirmed by PCR and nucleotide sequencing. The survey revealed that TYLCV is widespread on tomato plants in Zhejiang, Shandong and Henan provinces in China. The developed dot-ELISA is very suitable for the routine detection of TYLCV in field tomato and whitefly samples, and the DTBIA is more suitable for the routine detection of TYLCV in large-scale tomato plant samples collected from TYLCV prevalent areas.
Preechakasedkit, Pattarachaya; Pinwattana, Kulwadee; Dungchai, Wijitar; Siangproh, Weena; Chaicumpa, Wanpen; Tongtawe, Pongsri; Chailapakul, Orawon
2012-01-15
An immunochromatographic strip test using gold nanoparticles was developed for the rapid detection of Salmonella typhi (S. typhi) in human serum. The strip test based on the principle of sandwich immunoassay by the specific binding of antigens from S. typhi O901 and antibody of S. typhi O901 on a nitrocellulose membrane. Antibody-gold nanoparticle conjugate was used as the label and was coated onto a glass fiber membrane, which was used as a conjugate pad. To create a test and control zone, antibody of S. typhi O901 and an anti-IgG were dotted on the nitrocellulose membrane, respectively. Positive samples were displayed as red dots at the test and control zones of the nitrocellulose membrane, while negative samples resulted in a red dot only in the control zone. The limit of detection (LOD) was found to be 1.14×10(5) cfu mL(-1), which could be visually detected by the naked eye within 15 min. This strip test provided a lower detection limit and analysis time than a dot blot immunoassay (8.88×10(6) cfu mL(-1) for LOD and 110 min for reaction time). In addition, our immunochromatographic strip test was employed to detect S. typhi in human serum effectively, with high accuracy. This strip test offers great promise for a rapid, simple and low-cost analysis of S. typhi. Copyright © 2011 Elsevier B.V. All rights reserved.
Paller, Vachel Gay V; Besana, Cyrelle M; Valdez, Isabel Kristine M
2017-12-01
Toxocariasis is a zoonotic disease usually caused by dog and cat roundworms, Toxocara canis and T. cati. Detection and diagnosis is difficult in paratenic and accidental hosts, including humans, as they cannot be detected through conventional methods such as fecal examination. Diagnosis therefore relies on immunological methods and molecular methods such as enzyme-linked immunosorbent assay (ELISA) and Western Blot, which are both time-consuming and requires sophisticated equipment. In the Philippines, only a few studies are available on Toxocara seroprevalence. Therefore, there is a need to adapt methods for serodiagnosis of Toxocara infection in humans for the Philippine setting. A dot enzyme linked immunosorbent assay (dot-ELISA) was standardized using T. canis excretory-secretory antigens. Test sera were collected from laboratory rats (Sprague-Dawley strain) experimentally infected with embryonated eggs of T. canis and Ascaris suum as well as rice field rats naturally infected with Taenia taeniaeformis and Nippostrongylus sp. Optimum conditions used were 20 µg/ml antigen concentration and 1:10 serum dilution. The sensitivity, specificity, positive, and negative predictive values were 90% (95% CI 55.5-99.7%), 100% (95% CI 69.2-100.0%), 100% (95% CI 66.4-100%), and 90.9% (95% CI 58.7-99.8%), respectively. Dot-ELISA has the potential to be developed as a cheaper, simpler, and more practical method for detection of anti- Toxocara antibodies on accidental hosts. This is a preliminary study conducted on experimental animals before optimization and standardization for human serum samples.
Taniyama, S; Kitahashi, T; Ando, H; Ban, M; Ueda, H; Urano, A
1999-10-01
Changes in the levels of pituitary mRNAs encoding GH, prolactin (PRL) and somatolactin (SL) were determined in pre-spawning chum salmon (Oncorhynchus keta) caught at a few key points along their homing pathway in 1994 and 1995. Furthermore, we analyzed relationships between expression of pituitary-specific POU homeodomain transcription factor (Pit-1/GHF-1) and GH/PRL/SL family genes. In 1994, seawater (SW) fish and matured fresh-water (FW) fish were sequentially captured at two points along their homing pathway, the coast and the hatchery. In addition to these two points, maturing FW fish were captured at the intermediate of the two points in 1995. The levels of hormonal mRNAs were determined by a quantitative dot blot analysis using single-stranded sense DNA as the standard. Relative levels of Pit-1/GHF-1 mRNAs were estimated by Northern blot analysis. In 1994, the levels of GH/PRL/SL family mRNAs except for PRL mRNA in the male FW fish were 1.8-4 times higher than those in the SW fish. In 1995, the level of PRL mRNA was somewhat sharply elevated in the maturing FW fish soon after entry into the FW environment, while that of SL mRNA was gradually increased during upstream migration from the coast to the hatchery. The levels of 3 kb Pit-1/GHF-1 mRNA in the FW fish were higher than those in the SW fish in both 1994 and 1995. The present results indicate that expression of genes for the GH/PRL/SL family and Pit-1/GHF-1 is coincidentally enhanced in homing chum salmon. Moreover, the present study suggests that expression of the SL gene is elevated with sexual maturation, whereas that of PRL gene is elevated with osmotic change during the final stages of spawning migration.
Johnson, K
1995-02-15
To develop recommendations for practising physicians on the advisability of screening for human papillomavirus (HPV) infection in asymptomatic women. Visual inspection, Papanicolaou testing, colposcopy or cervicography, use of HPV group-specific antigen, DNA hybridization, dot blot technique, Southern blot technique or polymerase chain reaction followed by physical or chemical therapeutic intervention. Evidence for a link between HPV infection and cervical cancer, sensitivity and specificity of HPV screening techniques, effectiveness of treatments for HPV infection, and the social and economic costs incurred by screening. MEDLINE was searched for articles published between January 1966 to June 1993 with the use of the key words "papillomavirus," "cervix neoplasms," "mass screening," "prospective studies," "prevalence," "sensitivity," "specificity," "human" and "female." Proven cost-effective screening techniques that could lead to decreased morbidity or mortality were given a high value. The evidence-based methods and values of the Canadian Task Force on the Periodic Health Examination were used. Potential benefits are to prevent cervical cancer and eliminate HPV infection. Potential harmful effects include the creation of an unnecessary burden on the health care system and the labelling of otherwise healthy people as patients with a sexually transmitted disease for which therapy is generally ineffective. Potential costs would include expense of testing, increased use of colposcopy and treatment. There is fair evidence to exclude HPV screening (beyond Papanicolaou testing for cervical cancer) in asymptomatic women (grade D recommendation). The report was reviewed by members of the task force and three external reviewers who were selected to represent different areas of expertise. These guidelines were developed and endorsed by the task force, which is funded by Health Canada and the National Health Research and Development Program. The principal author (K.J.) was supported in part by the National Health Research and Development Program through a National Health Fellowship (AIDS).
Aqp5 Is a New Transcriptional Target of Dot1a and a Regulator of Aqp2
Zhang, Xi; Zhou, Qiaoling; Li, Ju-Mei; Berger, Stefan; Borok, Zea; Zhou, Beiyun; Xiao, Zhou; Yin, Hongling; Liu, Mingyao; Wang, Ying; Jin, Jianping; Blackburn, Michael R.; Xia, Yang; Zhang, Wenzheng
2013-01-01
Dot1l encodes histone H3 K79 methyltransferase Dot1a. Mice with Dot1l deficiency in renal Aqp2-expressing cells (Dot1lAC) develop polyuria by unknown mechanisms. Here, we report that Aqp5 links Dot1l deletion to polyuria through Aqp2. cDNA array analysis revealed and real-time RT-qPCR validated Aqp5 as the most upregulated gene in Dot1lAC vs. control mice. Aqp5 protein is barely detectable in controls, but robustly expressed in the Dot1lAC kidneys, where it colocalizes with Aqp2. The upregulation of Aqp5 is coupled with reduced association of Dot1a and H3 dimethyl K79 with specific subregions in Aqp5 5′ flanking region in Dot1lAC vs. control mice. In vitro studies in IMCD3, MLE-15 and 293Tcells using multiple approaches including real-time RT-qPCR, luciferase reporter assay, cell surface biotinylation assay, colocalization, and co-immunoprecipitation uncovered that Dot1a represses Aqp5. Human AQP5 interacts with AQP2 and impairs its cell surface localization. The AQP5/AQP2 complex partially resides in the ER/Golgi. Consistently, AQP5 is expressed in none of 15 normal controls, but in all of 17 kidney biopsies from patients with diabetic nephropathy. In the patients with diabetic nephropathy, AQP5 colocalizes with AQP2 in the perinuclear region and AQP5 expression is associated with impaired cellular H3 dimethyl K79. Taken together, these data for the first time identify Aqp5 as a Dot1a potential transcriptional target, and an Aqp2 binding partner and regulator, and suggest that the upregulated Aqp5 may contribute to polyuria, possibly by impairing Aqp2 membrane localization, in Dot1lAC mice and in patients with diabetic nephropathy. PMID:23326416
Zhang, Hongyan; Lv, Jie; Jia, Zhenhong
2017-01-01
A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluorescence quencher. Results showed that the photoluminescence (PL) intensity of PS photonic crystal was drastically increased when the QDs-conjugated probe DNA was adhered to the PS layer by surface modification using a standard cross-link chemistry method. The PL intensity of QDs was decreased when the addition of AuNPs-conjugated complementary 16S rRNA was dropped onto QDs-conjugated PS. Based on the analysis of different target DNA concentration, it was found that the decrease of the PL intensity showed a good linear relationship with complementary DNA concentration in a range from 0.25 to 10 μM, and the detection limit was 328.7 nM. Such an optical FRET biosensor functions on PS-based photonic crystal for DNA detection that differs from the traditional FRET, which is used only in liquid. This method will benefit the development of a new optical FRET label-free biosensor on Si substrate and has great potential in biochips based on integrated optical devices. PMID:28489033
Methods for Integrated Air Sampling and DNA Analysis for Detection of Airborne Fungal Spores
Williams, Roger H.; Ward, Elaine; McCartney, H. Alastair
2001-01-01
Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting. PMID:11375150
Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi
2012-01-01
TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.
[Cloning and characterization of a novel rat gene RSD-7 differentially expressed in testis].
Zhang, Xiao-dong; Gou, Da-wei; Miao, Shi-ying; Zhang, Jian-chao; Zong, Shu-dong; Wang, Lin-fang
2003-06-01
To isolate and identify the differentially expressed genes in spermatogenesis for the understanding molecular mechanism of spermatogenesis. Screening of the cDNA library, Northern blot, expression and purification in E. coli with GST expression system, immunocytochemical staining of testis sections were used. (1) A cDNA fragment designated as RSD-7 was isolated from rat testis cDNA library. It was 1,238 bp in length, coding a protein of 232 amino acids with the GenBank accession number AF315467. The encoding protein of RSD-7 cDNA had a Ubiquitin-like domain. (2) Northern blot indicated that RSD-7 was uniquely expressed in rat testis, and in the testis RSD-7 emerged on the 30th postnatal day and expressed until 120th postnatal day. (3) Expression and purification of RSD-7 protein in E. coli with GST expression system and were used to obtain anti-RSD-7 antibody. (4) Immunolocalization of RSD-7 in rat testis revealed that it is expressed only in Sertoli cells. Transcription pattern of RSD-7 and localization of RSD-7 protein in testis have been made, which established the base for the functional study of RSD-7.
Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition.
Diltemiz, Sibel Emir; Say, Ridvan; Büyüktiryaki, Sibel; Hür, Deniz; Denizli, Adil; Ersöz, Arzu
2008-05-30
Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoparticles have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to CdS quantum dots (QDs), reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for DNA recognition. In this method, methacryloylamidohistidine-platinium (MAH-Pt(II)) is used as a new metal-chelating monomer via metal coordination-chelation interactions and guanosine templates of DNA. Nanoshell sensors with guanosine templates give a cavity that is selective for guanosine and its analogues. The guanosine can simultaneously chelate to Pt(II) metal ion and fit into the shape-selective cavity. Thus, the interaction between Pt(II) ion and free coordination spheres has an effect on the binding ability of the CdS QD nanosensor. The binding affinity of the guanosine imprinted nanocrystals has investigated by using the Langmuir and Scatchard methods, and experiments have shown the shape-selective cavity formation with O6 and N7 of a guanosine nucleotide (K(a) = 4.841x10(6) mol L(-1)) and a free guanine base (K(a) = 0.894x10(6) mol L(-1)). Additionally, the guanosine template of the nanocrystals is more favored for single stranded DNA compared to double stranded DNA.
Zhang, Ling; Sun, Yue; Liang, Yan-Yu; He, Jian-Ping; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2016-11-15
Herein the influence of ultrasmall Ag nanoclusters (Ag NCs) against CdS quantum dots (QDs) in a photoelectrochemical (PEC) nanosystem was exploited for the first time, based on which a novel PEC bioanalysis was successfully developed via the efficient quenching effect of Ag NCs against the CdS QDs. In a model system, DNA assay was achieved by using molecular beacon (MB) probes anchored on a CdS QDs modified electrode, and the MB probes contain two segments that can hybridize with both target DNA sequence and the label of DNA encapsulated Ag NCs. After the MB probe was unfolded by the target DNA sequence, the labels of oligonucleotide encapsulated Ag NCs would be brought in close proximity to the CdS QDs electrode surface, and efficient photocurrent quenching of QDs could be resulted from an energy transfer process that originated from NCs. Thus, by monitoring the attenuation in the photocurrent signal, an elegant and sensitive PEC DNA bioanalysis could be accomplished. The developed biosensor displayed a linear range from 1.0pM to 10nM and the detection limit was experimentally found to be of 0.3pM. This work presents a feasible signaling principle that could act as a common basis for general PEC bioanalysis development. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Haiyan; Feng, Guoqiang; Guo, Yuan; Zhou, Dejian
2013-10-01
We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate.We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate. Electronic supplementary information (ESI) available: Details on the synthesis, purification and characterisation of the DHLA-PEG600-N3, cyclooctyne-DNA, and QD-TBA20 conjugates as well as all supporting figures and tables. See DOI: 10.1039/c3nr02897f
Evidence for a Pneumocystis carinii Flo8-like transcription factor: insights into organism adhesion.
Kottom, Theodore J; Limper, Andrew H
2016-02-01
Pneumocystis carinii (Pc) adhesion to alveolar epithelial cells is well established and is thought to be a prerequisite for the initiation of Pneumocystis pneumonia. Pc binding events occur in part through the major Pc surface glycoprotein Msg, as well as an integrin-like molecule termed PcInt1. Recent data from the Pc sequencing project also demonstrate DNA sequences homologous to other genes important in Candida spp. binding to mammalian host cells, as well as organism binding to polystyrene surfaces and in biofilm formation. One of these genes, flo8, a transcription factor needed for downstream cAMP/PKA-pathway-mediated activation of the major adhesion/flocculin Flo11 in yeast, was cloned from a Pc cDNA library utilizing a partial sequence available in the Pc genome database. A CHEF blot of Pc genomic DNA yielded a single band providing evidence this gene is present in the organism. BLASTP analysis of the predicted protein demonstrated 41 % homology to the Saccharomyces cerevisiae Flo8. Northern blotting demonstrated greatest expression at pH 6.0-8.0, pH comparable to reported fungal biofilm milieu. Western blot and immunoprecipitation assays of PcFlo8 protein in isolated cyst and tropic life forms confirmed the presence of the cognate protein in these Pc life forms. Heterologous expression of Pcflo8 cDNA in flo8Δ-deficient yeast strains demonstrated that the Pcflo8 was able to restore yeast binding to polystyrene and invasive growth of yeast flo8Δ cells. Furthermore, Pcflo8 promoted yeast binding to HEK293 human epithelial cells, strengthening its functional classification as a Flo8 transcription factor. Taken together, these data suggest that PcFlo8 is expressed by Pc and may exert activity in organism adhesion and biofilm formation.
Evidence for a Pneumocystis carinii Flo8-like Transcription Factor: Insights into Organism Adhesion
Kottom, Theodore J.; Limper, Andrew H.
2015-01-01
Pneumocystis carinii (Pc) adhesion to alveolar epithelial cells is well established and is thought to be a prerequisite for initiation of Pneumocystis pneumonia. Pc binding events occur in part through the major Pc surface glycoprotein Msg, as well as an integrin-like molecule termed PcInt1. Recent data from the Pc sequencing project also demonstrate DNA sequences homologous to other genes important in Candida spp. binding to mammalian host cells, as well as organism binding to polystyrene surfaces and in biofilm formation. One of these genes, flo8, a transcription factor needed for downstream cAMP/PKA-pathway-mediated activation of the major adhesin/flocculin Flo11 in yeast, was cloned from a Pc cDNA library utilizing a partial sequence available in the Pc genome database. A CHEF blot of Pc genomic DNA yielded a single band providing evidence this gene is present in the organism. BLASTP analysis of the predicted protein demonstrated 41% homology to the Saccharomyces cerevisiae Flo8. Northern blotting demonstrated greatest expression at pH 6.0–8.0, pH comparable to reported fungal biofilm milieu. Western blot and immunoprecipitation assays of PcFlo8 protein in isolated cyst and tropic life forms confirmed the presence of the cognate protein in these Pc life forms. Heterologous expression of Pcflo8 cDNA in flo8Δ (deficient) yeast strains demonstrated the Pcflo8 was able to restore yeast binding to polystyrene and invasive growth of yeast flo8Δ cells. Furthermore, Pcflo8 promoted yeast binding to HEK293 human epithelial cells, strengthening its functional classification as a Flo8 transcription factor. Taken together these data suggests that PcFlo8 is expressed by Pc and may exert activity in organism adhesion and biofilm formation. PMID:26215665
Discovery of potent DOT1L inhibitors by AlphaLISA based High Throughput Screening assay.
Song, Yakai; Li, Linjuan; Chen, Yantao; Liu, Jingqiu; Xiao, Senhao; Lian, Fulin; Zhang, Naixia; Ding, Hong; Zhang, Yuanyuan; Chen, Kaixian; Jiang, Hualiang; Zhang, Chenhua; Liu, Yu-Chih; Chen, Shijie; Luo, Cheng
2018-05-01
DOT1L (the disruptor of telomeric silencing 1-like), through its methyltransferase activity of H3K79, plays essential roles in transcriptional regulation, cell cycle regulation, and DNA damage response. In addition, DOT1L is believed to be involved in the development of MLL-rearranged leukemia driven by the MLL (mixed-lineage leukemia) fusion proteins, which thus to be a crucial target for leukemia therapy. Hence, discovering of novel DOT1L inhibitors has been in a great demand. In this study, we initiated the discovering process from setting up the AlphaLISA based High Throughput Screening (HTS) assay of DOT1L. Combining with radioactive inhibition assay and Surface Plasmon Resonance (SPR) binding assay, we identified compound 3 and its active analogues as novel DOT1L inhibitors with IC 50 values range from 7 μM to 20 μM in vitro. Together with the analysis of structure activity relationships (SAR) and binding modes of these compounds, we provided clues to assist in the future development of more potent DOT1L inhibitors. Moreover, compounds 3 and 9 effectively inhibited the proliferation of MLL-rearranged leukemia cells MV4-11, which could induce cell cycle arrest and apoptosis. In conclusion, we developed a HTS platform based on AlphaLISA method for screening and discovery of DOT1L novel inhibitor, through which we discovered compound 3 and its analogues as potent DOT1L inhibitors with promising MLL-rearranged leukemia therapeutic application. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spiroplasma species share common DNA sequences among their viruses, plasmids and genomes.
Ranhand, J M; Nur, I; Rose, D L; Tully, J G
1987-01-01
Alkaline-Southern-blot analyses showed that a spiroplasma plasmid, pRA1, obtained from Spiroplasma citri (Maroc-R8A2), contained DNA sequences that were homologous to spiroplasma type 3 viruses (SV3) obtained from S. citri (Maroc-R8A2), S. citri (608) and S. mirum (SMCA). In addition, pRA1 and SV3(608) DNA shared common, but not necessarily related, sequences with extrachromosomal DNA derived from 11 Spiroplasma species or strains. Furthermore, SV3(608) had DNA homology with the chromosome from 6 distinct spiroplasmas but not with chromosomal DNA from eight other Spiroplasma species or strains. The biological function of these common sequences is unknown.
Coherent spin-exchange via a quantum mediator.
Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad
2017-01-01
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
Role of Human DNA Polymerase and its Accessory Proteins in Breast Cancer.
1999-09-01
by W estern blotting. Total mRNA was isolated from the Ac.in mRNA cells using RNA-STAT 60 (Tel- Test .t .... Inc) and subjected to Northern blotting...p53 expression on the activity of the POLDI promoter were tested using the 1.8 kb-luciferase POLD1 promoter construct in SAOS-2 cells which do not...activity. In preliminary studies using gel mobility shift assays we tested ds oligonucleotides corresponding to all five sites (P1-P5). The results
[18S-25S rDNA variation in tissue culture of some Gentiana L. species].
Mel'nyk, V M; Andrieiev, I O; Spiridonova, K V; Strashniuk, N M; Kunakh, V A
2007-01-01
18S-25S rDNA of intact plants and tissue cultures of G. acaulis, G. punctata and G. lutea have been investigated by using blot-hybridization. The decrease of rDNA amount was found in the callus cultures as compared with the plants. In contrast to other species, G. lutea showed intragenome heterogeneity of rRNA genes as well as qualitative rDNA changes in tissue culture, in particular appearance of altered repeats. The relationship between the peculiarities of rRNA gene structure and their rearrangements in in vitro culture was suggested.
NASA Technical Reports Server (NTRS)
1978-01-01
In public and private archives throughout the world there are many historically important documents that have become illegible with the passage of time. They have faded, been erased, acquired mold, water and dirt stain, suffered blotting or lost readability in other ways. While ultraviolet and infrared photography are widely used to enhance deteriorated legibility, these methods are more limited in their effectiveness than the space-derived image enhancement technique. The aim of the JPL effort with Caltech and others is to better define the requirements for a system to restore illegible information for study at a low page-cost with simple operating procedures. The investigators' principle tools are a vidicon camera and an image processing computer program, the same equipment used to produce sharp space pictures. The camera is the same type as those on NASA's Mariner spacecraft which returned to Earth thousands of images of Mars, Venus and Mercury. Space imagery works something like television. The vidicon camera does not take a photograph in the ordinary sense; rather it "scans" a scene, recording different light and shade values which are reproduced as a pattern of dots, hundreds of dots to a line, hundreds of lines in the total picture. The dots are transmitted to an Earth receiver, where they are assembled line by line to form a picture like that on the home TV screen.
Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.
Killingsworth, Murray C; Bobryshev, Yuri V
2016-08-07
A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.
Regulation of an H-ras-related transcript by parathyroid hormone in rat osteosarcoma cells
NASA Technical Reports Server (NTRS)
Scott, D. K.; Weaver, W. R.; Clohisy, J. C.; Brakenhoff, K. D.; Kahn, A. J.; Partridge, N. C.
1992-01-01
The rat osteosarcoma cell line UMR 106-01 is a commonly used model system for the study of osteoblast function. However, it also expresses a phenotype characteristic of transformed cells. To test whether the latter could be accounted for by aberrant oncogene expression, we probed Northern blots of UMR and other osteoblastic cells with a panel of oncogene probes. These blots, when probed with a cDNA specific for v-H-ras, revealed a 7.0-kilobase (kb) H-ras-related transcript (designated HRRT) in UMR 106-01 cells that was not expressed in other osteoblastic cells. Osteoblast-enriched calvarial cells expressed the typical 1.1-kb H-ras mRNA, which was absent in UMR cells. Additionally, Western blots of lysates of UMR cells documented the presence of three proteins immunologically related to H-rasp21. To determine whether HRRT represented a recombinant retrovirus product, Northern blots were probed with a cDNA specific for the highly conserved gag-pol region of Moloney murine leukemia virus. These blots showed parallel cross-reactivity with an apparently identical transcript of 7.0 kb. The 7.0-kb transcripts detected by both v-H-ras and gag-pol probes declined to the same extent after treatment with concentrations of PTH known to inhibit proliferation of these cells. PTH regulated the abundance of HRRT in a time- and dose-dependent manner, with greatest repression of the transcript after 8 h of treatment with 10(-8) M PTH. The decrease in HRRT could not be completely accounted for by changes in transcriptional activity, as determined by nuclear run-on assays.(ABSTRACT TRUNCATED AT 250 WORDS).
Spatial distribution of osteoblast activating peptide in the rat stomach.
Noreldin, Ahmed E; Sogabe, Maina; Yamano, Yoshiaki; Uehara, Masato; Mahdy, Mohamed A A; Elnasharty, Mohamed A; Sayed-Ahmed, Ahmed; Warita, Katsuhiko; Hosaka, Yoshinao Z
2016-03-01
Osteoblast activating peptide (OBAP) was previously reported to be expressed in the rat stomach and to have a vital role in osteogenesis, but its distribution in rat stomach has not been determined. Thus, the aim of the present study was to identify the cell types expressing OBAP in the rat stomach. The stomachs of twelve 10-to-11-week-old male Jc1:SD rats were used. Samples were collected for immunohistochemistry, immunoelectron microscopy and dot blot assay. Immunohistochemical investigation revealed that OBAP was distributed mainly in parietal cells without any expression in chief cells, X/A-like cells or enterochromaffin-like cells. Moreover, OBAP-immunopositive cells were observed mainly in the upper and lower parts of the gastric gland. Significantly high optical density of immunopositive cells was observed in the upper and lower gastric gland regions. The dot blot assay confirmed that OBAP is secreted by parietal cells and that it is present in the gastric gland lumen. Immunoelectron microscopy demonstrated that OBAP was confined to the mitochondrial inner membrane within parietal cells and that the number of mitochondria in the upper and lower parts of the gastric epithelium was significantly larger than the number in the middle part of the gastric epithelium. Based on the results, it was concluded that OBAP is mainly produced by mitochondria of parietal cells in the upper and lower parts of the gastric epithelium. Moreover, the presence of OBAP in the gastric gland lumen suggests an exocrine mechanism of release. Copyright © 2015 Elsevier GmbH. All rights reserved.
Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species
Conceição, Fabricio Rochedo; Hust, Michael; Mendonça, Karla Sequeira; Moreira, Ângela Nunes; França, Rodrigo Correa; da Silva, Wladimir Padilha; Aleixo, José Antonio G.
2016-01-01
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus. PMID:27489951
Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species.
Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Conceição, Fabricio Rochedo; Hust, Michael; Mendonça, Karla Sequeira; Moreira, Ângela Nunes; França, Rodrigo Correa; da Silva, Wladimir Padilha; Bhunia, Arun K; Aleixo, José Antonio G
2016-01-01
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.
Biosafety of parenteral Brucella abortus RB51 vaccine in bison calves
Roffe, T.J.; Olsen, S.C.; Gidlewski, T.; Jensen, A.E.; Palmer, M.V.; Huber, R.
1999-01-01
Vaccination is considered among the primary management tools for reducing brucellosis prevalence in Greater Yellowstone Area (GYA) ungulates. Before their use, however, vaccine safety and efficacy must be demonstrated. Twenty-seven female bison (Bison bison) calves (approx 5 months old) were vaccinated with Brucella abortus Strain RB51 (1.5 x 1010 colony forming units [CFU], subcutaneously) as part of routine management. We assessed the persistence, pathology, shedding, and transmission associated with RB51 by serial necropsy, bacteriology, histopathology, and serology of 20 of these 27 vaccinated calves, and RB51 serology of 10 nonvaccinated, commingling adult females. With the exception of 1 calf, RB51 dot-blot titers at necropsy were <1:80. Strain RB51 was cultured from lymph nodes in 4 of 4 calves at 14 weeks postvaccination (PV), 4 of 4 calves at 18 weeks PV, 1 of 4 calves at 22 weeks PV, 3 of 4 at 26 weeks PV, and 0 of 4 calves at 30 weeks PV. No gross lesions were observed. Mild histologic changes occurred only in a few draining lymph nodes early in sampling. Adverse clinical effects were not observed in vaccinates. Swabs from nasopharynx, conjunctiva, rectum, and vagina were uniformly culture negative for RB51. Strain RB51 dot-blot assays of bison cows were negative at a 1:20 dilution at 26 weeks PV. Our results suggest that RB51 persists longer in bison calves than in domestic cattle and is systemically distributed within lymphatic tissues. However, bison apparently clear the RB51 vaccine strain without shedding, transmission, or significant adverse reactions.
Near-Infrared Ag2S Quantum Dots-Based DNA Logic Gate Platform for miRNA Diagnostics.
Miao, Peng; Tang, Yuguo; Wang, Bidou; Meng, Fanyu
2016-08-02
Dysregulation of miRNA expression is correlated with the development and progression of many diseases. These miRNAs are regarded as promising biomarkers. However, it is challenging to measure these low abundant molecules without employing time-consuming radioactive labeling or complex amplification strategies. Here, we present a DNA logic gate platform for miRNA diagnostics with fluorescence outputs from near-infrared (NIR) Ag2S quantum dots (QDs). Carefully designed toehold exchange-mediated strand displacements with different miRNA inputs occur on a solid-state interface, which control QDs release from solid-state interface to solution, responding to multiplex information on initial miRNAs. Excellent fluorescence emission properties of NIR Ag2S QDs certify the great prospect for amplification-free and sensitive miRNA assay. We demonstrate the potential of this platform by achieving femtomolar level miRNA analysis and the versatility of a series of logic circuits computation.
Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation.
Wei, Zhi-Qiang; Zhang, Yong-Hong; Ke, Chang-Zheng; Chen, Hong-Xia; Ren, Pan; He, Yu-Lin; Hu, Pei; Ma, De-Qiang; Luo, Jie; Meng, Zhong-Ji
2017-09-14
To investigate the potential effect of curcumin on hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the underlying mechanism. A HepG2.2.15 cell line stably transfected with HBV was treated with curcumin, and HBV surface antigen (HBsAg) and e antigen (HBeAg) expression levels were assessed by ELISA. Intracellular HBV DNA replication intermediates and cccDNA were detected by Southern blot and real-time PCR, respectively. The acetylation levels of histones H3 and H4 were measured by Western blot. H3/H4-bound cccDNA was detected by chromatin immunoprecipitation (ChIP) assays. The deacetylase inhibitors trichostatin A and sodium butyrate were used to study the mechanism of action for curcumin. Additionally, short interfering RNAs (siRNAs) targeting HBV were tested along with curcumin. Curcumin treatment led to time- and dose-dependent reductions in HBsAg and HBeAg expression and significant reductions in intracellular HBV DNA replication intermediates and HBV cccDNA. After treatment with 20 μmol/L curcumin for 2 d, HBsAg and cccDNA levels in HepG2.2.15 cells were reduced by up to 57.7% ( P < 0.01) and 75.5% ( P < 0.01), respectively, compared with levels in non-treated cells. Meanwhile, time- and dose-dependent reductions in the histone H3 acetylation levels were also detected upon treatment with curcumin, accompanied by reductions in H3- and H4-bound cccDNA. Furthermore, the deacetylase inhibitors trichostatin A and sodium butyrate could block the effects of curcumin. Additionally, transfection of siRNAs targeting HBV enhanced the inhibitory effects of curcumin. Curcumin inhibits HBV gene replication via down-regulation of cccDNA-bound histone acetylation and has the potential to be developed as a cccDNA-targeting antiviral agent for hepatitis B.
Luis F. Larrondo; Marcela Avila; Loreto Salas; Dan Cullen; Rafael Vicuna
2003-01-01
Analysis of genomic clones encoding a putative laccase in homokaryon strains of Ceriporiopsis subvermispora led to the identification of an allelic variant of the previously described lcs-1 gene. A cDNA clone corresponding to this gene was expressed in Aspergillus nidulans and in Aspergillus niger. Enzyme assays and Western blots showed that both hosts secreted active...
Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method
NASA Astrophysics Data System (ADS)
Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju
2015-10-01
DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers. Electronic supplementary information (ESI) available: Synthesis of CdSe/CdS/ZnS core/shell/shell QDs. Sequences of primers used for amplifying the promoter regions in bisulfate-modified DNA. Comparison of detected methylation levels in different gene promoters using the QD-based FRET method versus bisulfite pyrosequencing. Methylation levels of the RASSF1A gene in one pair of NT and cancer samples as indicated by pyrosequencing. Theoretical calculation of the Förster distance R0. See DOI: 10.1039/c5nr04956c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, A.J.; Bailey, E.; Woodward, J.G.
1986-03-05
Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a /sup 32/P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphismmore » was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family.« less
Detection of the HTLV-I gene on cytologic smear slides.
Kashima, Kenji; Nagahama, Junji; Sato, Keiji; Tanamachi, Hiroyuki; Gamachi, Ayako; Daa, Tsutomu; Nakayama, Iwao; Yokoyama, Shigeo
2002-01-01
To apply the polymerase chain reaction (PCR) for detection of the HTLV-I gene from cytologic smear slides. Samples were from seven cases of serum anti-ATL antibody (ATLA)-positive T-cell lymphoma and three from ATLA-negative T-cell lymphoma. Six of the seven ATLA-positive cases were confirmed to be ATLL by Southern blotting. From the seventh case a fresh sample for blotting could not obtained. DNA was extracted from the cytologic smear slides of all 10 cases; they had been stained with Papanicolaou or May-Giemsa stain, digested with proteinase K and precipitated with phenol and ethanol. The target sequence in the pX region of the HTLV-I gene was amplified by PCR. All seven ATLA-positive cases, including one that had not yet been confirmed by Southern blotting, showed a single band, as predicted, while the three ATLA-negative cases showed no band. If cytologic smear slides are available but a fresh sample is not, the PCR method should provide evidence that the virus is present since in our study sufficient DNA templates were successfully extracted from the stained cytologic smear slides for detection of the virus.
de Medeiros Fernandes, Thales Allyrio Araújo; de Vasconcellos Meissner, Rosely; Bezerra, Laelson Freire; de Azevedo, Paulo Roberto Medeiros; Fernandes, José Veríssimo
2008-01-01
We analyzed cervical specimens of 202 women, aged 15 to 64 years, attended at Luis Antonio Hospital, Natal, Brazil, to determine the prevalence of HPV and identify the more frequent genotypes and risk factors for HPV infection in women attended at a cervical cancer screening service. Two specimens were collected from each patient: one for cytological examination and the other to detect HPV DNA by PCR, and typing by dot blot hybridization. A total of 54.5% of the sample had normal cytology and 45.5% had cytological alterations. HPV was detected in 24.5% of the cytologically normal women and in 59.8% of those with altered cytology. Both single and double HPV infection increased the likelihood of cytological alterations. Thirteen types of HPV were identified, most of which were high risk. HPV 16 was the most prevalent single-type infection, followed by HPV 58. The most frequent double infection was the association between HPV 56 and 57. The prevalence of HPV in cytologically normal women was greater than that reported for countries on all the continents except Africa. The inverse was observed in women with cytological alterations. The distribution of HPV types was similar to that described for the Americas, with some differences. Multiple sexual partners was the only risk factor showing an association with the presence of HPV infection. PMID:24031268
Molecular basis of beta-thalassemia in the Maldives.
Furuumi, H; Firdous, N; Inoue, T; Ohta, H; Winichagoon, P; Fucharoen, S; Fukumaki, Y
1998-03-01
We have systematically analyzed beta-thalassemia genes using polymerase chain reaction-related techniques, dot-blot hybridization with oligonucleotide probes, allele specific-polymerase chain reaction, and sequencing of amplified DNA fragments from 41 unrelated patients, including 37 beta-thalassemia homozygotes, three with beta-thalassemia/Hb E, and one with beta-thalassemia/Hb S. Four different beta-thalassemia mutations were detected in 78 alleles. These are the IVS-I-5 (G-->C), codon 30 (AGG-->ACG) [also indicated as IVS-I (-1)], IVS-I-1 (G-->A), and codons 41/42 (-TTCT) mutations. The distribution of the beta-thalassemia mutations in the Maldives is 58 alleles (74.3%) with the IVS-I-5 (G-->C) mutation, 12 (15.4%) with the codon 30 (AGG-->ACG) mutation, seven (9%) with the IVS-I-1 (G-->A) mutation, and one with the codons 41/42 (-TTCT) mutation. The first three mutations account for 98.7% of the total number of beta-thalassemia chromosomes studied. These mutations are clustered in the region spanning 6 bp around the junction of exon 1 and the first intervening sequence of the beta-globin gene. These observations have significant implications for setting up a thalassemia prevention and control program in the Maldives. Analysis of haplotypes and frameworks of chromosomes bearing each beta-thalassemia mutation suggested that the origin and spread of these mutations were reflected by the historical record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutirangura, A.; Jayakumar, A.; Sutcliffe, J.S.
1993-12-01
Since a previous report of a partial YAC contig of the Prader-Willi/Angelman chromosome region (15q11-q13), a complete contig spanning approximately 3.5 Mb has been developed. YACs were isolated from two human genomic libraries by PCR and hybridization screening methods. Twenty-three sequence-tagged sites (STSs) were mapped within the contig, a density of [approximately]1 per 200 kb. Overlaps between YAC clones were identified by Alu-PCR dot-blot analysis and confirmed by STS mapping or hybridization with ends of YAC inserts. The gene encoding small nuclear ribonucleoprotein-associated peptide N (SNRPN), recently identified as a candidate gene for Prader-Willi syndrome, was localized within this contigmore » between markers PW71 and TD3-21. Loci mapped within and immediately flanking the Prader-Willi/Angelman chromosome region contig are ordered as follows: cen-IR39-ML34-IR4-3R-TD189-1-PW71-SNRPN-TD3-21-LS6-1-GABRB3,D15S97-GABRA5-IR10-1-CMW1-tel. This YAC contig will be a useful resource for more detailed physical mapping of the region, for generation of new DNA markers, and for mapping or cloning candidate genes for the Prader-Willi and Angelman syndromes. 36 refs., 2 figs., 2 tabs.« less
Carrera, P; Barbieri, A M; Ferrari, M; Righetti, P G; Perego, M; Gelfi, C
1997-11-01
A quick diagnosis of the classic form of 21-hydroxylase deficiency (simple virilizing and salt wasting) is of great importance, especially for prenatal diagnosis and treatment in pregnancies at risk. A method for simultaneous detection of common point mutations in the P450c21 B gene is here proposed by combining a nested PCR amplification refractory mutation system (ARMS) with capillary zone electrophoresis (CZE) in sieving liquid polymers. In the first PCR, B genes are selectively amplified. In the nested reaction, ARMS-detected wild-type and mutated alleles are separately pooled and resolved by CZE. CZE is performed in coated capillaries in the presence of 30 g/L hydroxyethyl cellulose in the background electrolyte for size separation of the DNA analytes. For high-sensitivity detection the electrophoresis buffer contains the fluorescent dye SYBR Green I. Laser-induced fluorescence detection is obtained by excitation at 488 nm and signal collection at 520 nm. Specificity and reproducibility of the protocols were established by using samples from 75 Italian families with 21-hydroxylase deficiency already genotyped by allele-specific oligonucleotide hybridization or direct sequencing. Whereas dot-blot is time consuming because of the high number of hybridizations with radioactive probes, this present protocol is more rapid, giving sufficient separation on CZE after PCR reactions without preconcentration or desalting of samples.
Growth of Trametes versicolor on phenol.
Yemendzhiev, H; Gerginova, M; Krastanov, A; Stoilova, I; Alexieva, Z
2008-11-01
Trametes versicolor 1 was shown to grow on phenol as its sole carbon and energy source. The culture growth and degradation ability dependence on culture medium pH value was observed. The optimal pH value of a liquid Czapek salt medium was 6.5. The investigated strain utilized completely 0.5 g/l phenol in 6 days. The dynamics of the phenol degradation process was investigated. The process was characterized by specific growth rate micromax 0.33 h(-1), metabolic coefficient k=4.4, yield coefficient Yx/s=0.23 and rate of degradation Q=0.506 h(-1). The intracellular activities of phenol hydroxylase (0.333 U/mg protein) and cis,cis-muconate lactonizing enzyme (0.41 U/mg protein) were demonstrated for the first time in this fungus. In an attempt to estimate the occurrence of gene sequences in T. versicolor 1 related to phenol degradation pathway a dot blot analysis with total DNA isolated from this strain was performed. Two synthetic oligonucleotides were used as hybridizing probes. One of the probes was homologous to the 5'end of phyA gene coding for phenol hydroxylase in Trichosporon cutaneum ATCC 46490. The other probe was created on the basis of cis,cis-muconate lactonizing enzyme coding gene in T. cutaneum ATCC 58094. The results of these investigations showed that T. versicolor 1 may carry genes similar to those of Trichosporon cutaneum capable to degrade phenol.
Iwanaga, Masashi; Kurihara, Masaaki; Kobayashi, Masahiko; Kang, WonKyung
2002-05-25
All lepidopteran baculovirus genomes sequenced to date encode a homolog of the Bombyx mori nucleopolyhedrovirus (BmNPV) orf68 gene, suggesting that it performs an important role in the virus life cycle. In this article we describe the characterization of BmNPV orf68 gene. Northern and Western analyses demonstrated that orf68 gene was expressed as a late gene and encoded a structural protein of budded virus (BV). Immunohistochemical analysis by confocal microscopy showed that ORF68 protein was localized mainly in the nucleus of infected cells. To examine the function of orf68 gene, we constructed orf68 deletion mutant (BmD68) and characterized it in BmN cells and larvae of B. mori. BV production was delayed in BmD68-infected cells. The larval bioassays also demonstrated that deletion of orf68 did not reduce the infectivity, but mutant virus took 70 h longer to kill the host than wild-type BmNPV. In addition, dot-blot analysis showed viral DNA accumulated more slowly in mutant infected cells. Further examination suggested that BmD68 was less efficient in entry and budding from cells, although it seemed to possess normal attachment ability. These results suggest that ORF68 is a BV-associated protein involved in secondary infection from cell-to-cell. (c) 2002 Elsevier Science (USA).
Detection of two fungal biocontrol agents against root-knot nematodes by RAPD markers.
Zhu, Ming Liang; Mo, Ming He; Xia, Zhen Yuan; Li, Yun Hua; Yang, Shu Jun; Li, Tian Fei; Zhang, Ke Qin
2006-05-01
The strain ZK7 of Pochonia chlamydosporia var. chlamydosporia and IPC of Paecilomyces lilacinus are highly effective in the biological control against root-knot nematodes infecting tobacco. When applied, they require a specific monitoring method to evaluate the colonization and dispersal in soil. In this work, the randomly amplified polymorphic DNA (RAPD) technique was used to differentiate between the two individual strains and 95 other isolates, including isolates of the same species and common soil fungi. This approach allowed the selection of specific fragments of 1.2 kb (Vc1200) and 2.0 kb (Vc2000) specific for ZK7, 1.4 kb (P1400) and 0.85 kb (P850) specific for IPC, using the random Primers OPL-02, OPD-05, OPD-05 and OPC-11, respectively. These fragments were cloned, sequenced, and used to design sequence-characterized amplification region (SCAR) primers specific for the two strains. In classical polymerase chain reaction (PCR), with serial dilution of ZK7 and IPC pure culture DNAs template, the detection limits of these oligonucleotide SCAR-PCR primers were found to be 10, 1000, 500, 100 pg, respectively. In the dot blotting, digoxigenin (DIG)-labeled amplicons from these four primers specifically recognized the corresponding fragments in the DNAs template of these two strains. The detection limit of these amplicons were 0.2, 0.2, 0.5, 0.5 mug, respectively.
Jean, Julie; Blais, Burton; Darveau, André; Fliss, Ismaïl
2001-01-01
A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 × 102 PFU/ml) was obtained with NASBA, compared to 50 PFU (1 × 104 PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples. PMID:11722911
Jean, J; Blais, B; Darveau, A; Fliss, I
2001-12-01
A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 x 10(2) PFU/ml) was obtained with NASBA, compared to 50 PFU (1 x 10(4) PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples.
Transient expression of CCL21as recombinant protein in tomato.
Beihaghi, Maria; Marashi, Hasan; Bagheri, Abdolreza; Sankian, Mojtaba
2018-03-01
The main goal of this study was to investigate the possibility of expressing recombinant protein of C-C chemokine ligand 21 (CCL21) in Solanum lycopersicum via agroinfiltration. CCL21 is a chemokine can be used for anti-metastatic of cancer cell lines. To examine the expression of CCL21 protein in S. lycopersicum , the construct of ccl21 was synthesized. This construct was cloned into pBI121 and the resulting CCL21 plasmid was agro-infiltrated into S. lycopersicum leaves. Within three days after infiltration, Expression of the foreign gene was confirmed by quantitative Real-time PCR. A recombinant CCL21 protein was immunogenically detected by western blot, dot blot and ELISA assay. And results showed that the foreign gene was expressed in the transformed leaves in high level. Also scratch assay was used to investigate the role of this protein in anti-metastatic function. The results demonstrated anti-metastatic of cancer cells in the presence of this protein.
Clinical features in 27 patients with Angelman syndrome resulting from DNA deletion.
Smith, A; Wiles, C; Haan, E; McGill, J; Wallace, G; Dixon, J; Selby, R; Colley, A; Marks, R; Trent, R J
1996-01-01
We report the clinical features in 27 Australasian patients with Angelman syndrome (AS), all with a DNA deletion involving chromosome 15(q11-13), spanning markers from D15S9 to D15S12, about 3 center dot 5 Mb of DNA. There were nine males and 18 females. All cases were sporadic. The mean age at last review (end of 1994) was 11 center dot 2 years (range 3 to 34 years). All patients were ataxic, severely retarded, and lacking recognisable speech. In all patients, head circumference (HC) at birth was normal but skewed in distribution, with 62 center dot 5% at the 10th centile. At last review HC was around the 50th centile in three patients (12 center dot 5%) while 15 had poor postnatal head growth. Short stature was not invariable, 5/26 (19%) were on or above the 50th centile. Hypotonia at birth was recorded in 15/24 (63%) and neonatal feeding difficulties were recorded in 20/26 (77%). Epilepsy was present in 26/27 (96%) with onset by the third year of life in 20 patients (83%). Improvement in epilepsy was reported in 11/16 patients (69%) with age. An abnormal EEG was reported in 25/25 patients. Hypopigmentation was present in 19/26 (73%). One patient had oculocutaneous albinism. Five patients could not walk independently. Of the remaining 22 who could walk, age of onset of walking ranged from 2 to 8 years. Disrupted sleep patterns were present in 18/21 patients (86%), with improvement in 9/12 patients (75%) over 10 years of age. The clinical features in this group of deletional AS patients were similar to previous reports, but these have not separated patients into subgroups based on DNA studies. In our group of deletional cases, 100% showed severe mental retardation, ataxic movements, absent language, abnormal EEG, happy disposition (noted in infancy in 95%), normal birth weight and head circumference at birth, and a large, wide mouth. These features occurred with a higher frequency than in AS patients as a whole. Our study also provided information on the evolution of the phenotype. The data can act as a benchmark for comparisons of AS resulting from other genetic mechanisms. PMID:8929945
Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei
2018-03-01
Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.
Tang, Tingting; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu
2016-01-01
Based on the highly sensitivity and stable-fluorescence of water-soluble CdTe/CdS core-shell quantum dots (QDs) with broad-specificity DNA aptamers, a novel ratiometric detection strategy was proposed for the sensitive detection of organophosphorus pesticides by capillary electrophoresis with laser-induced fluorescence (CE-LIF). The as-prepared QDs were first conjugated with the amino-modified oligonucleotide (AMO) by amidation reaction, which is partial complementary to the DNA aptamer of organophosphorus pesticides. Then QD-labeled AMO (QD-AMO) was incubated with the DNA aptamer to form QD-AMO-aptamer duplex. When the target organophosphorus pesticides were added, they could specifically bind the DNA aptamer, leading to the cleavage of QD-AMO-aptamer duplex, accompany with the release of QD-AMO. As a result, the ratio of peak height between QD-AMO and QD-AMO-aptamer duplex changed in the detection process of CE-LIF. This strategy was subsequently applied for the detection of phorate, profenofos, isocarbophos, and omethoate with the detection limits of 0.20, 0.10, 0.17, and 0.23μM, respectively. This is the first report about using QDs as the signal indicators for organophosphorus pesticides detection based on broad-specificity DNA aptamers by CE-LIF, thus contributing to extend the scope of application of QDs in different fields. The proposed method has great potential to be a universal strategy for rapid detection of aptamer-specific small molecule targets by simply changing the types of aptamer sequences. Copyright © 2015 Elsevier B.V. All rights reserved.
Bass, Chris; Nikou, Dimitra; Donnelly, Martin J; Williamson, Martin S; Ranson, Hilary; Ball, Amanda; Vontas, John; Field, Linda M
2007-01-01
Background Knockdown resistance (kdr) is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques. Methods Fluorescence-based assays based on 1) TaqMan probes and 2) high resolution melt (HRM) analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR), Heated Oligonucleotide Ligation Assay (HOLA), Sequence Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA) and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost), and safety (requirement for hazardous chemicals). Results The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions) and the most specific (with the lowest number of incorrect scores). Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS-PCR, SSOP-ELISA, PCR Dot Blot and HOLA was fairly similar with a small number of failures and incorrect scores. Conclusion The results of blind genotyping trials of each assay indicate that where maximum sensitivity and specificity are required the TaqMan real-time assay is the preferred method. However, the cost of this assay, particularly in terms of initial capital outlay, is higher than that of some of the other methods. TaqMan assays using a PCR machine and fluorimeter are nearly as sensitive as real-time assays and provide a cost saving in capital expenditure. If price is a primary factor in assay choice then the AS-PCR, SSOP-ELISA, and HOLA are all reasonable alternatives with the SSOP-ELISA approach having the highest throughput. PMID:17697325
Ryvolova, Marketa; Smerkova, Kristyna; Chomoucka, Jana; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene
2013-03-01
Cisplatin, carboplatin, and oxaliplatin represent three generations of platinum based drugs applied successfully for cancer treatment. As a consequence of the employment of platinum based cytostatics in the cancer treatment, it became necessary to study the mechanism of their action. Current accepted opinion is the formation of Pt-DNA adducts, but the mechanism of their formation is still unclear. Nanomaterials, as a progressively developing branch, can offer a tool for studying the interactions of these drugs with DNA. In this study, fluorescent CdTe quantum dots (QDs, λem = 525 nm) were employed to investigate the interactions of platinum cytostatics (cisplatin, carboplatin, and oxaliplatin) with DNA fragment (500 bp, c = 25 μg/mL). Primarily, the fluorescent behavior of QDs in the presence of platinum cytostatics was monitored and major differences in the interaction of QDs with tested drugs were observed. It was found that the presence of carboplatin (c = 0.25 mg/mL) had no significant influence on QDs fluorescence; however cisplatin and oxaliplatin quenched the fluorescence significantly (average decrease of 20%) at the same concentration. Subsequently, the amount of platinum incorporated in DNA was determined by QDs fluorescence quenching. Best results were reached using oxaliplatin (9.4% quenching). Linear trend (R(2) = 0.9811) was observed for DNA platinated by three different concentrations of oxaliplatin (0.250, 0.125, and 0.063 mg/mL). Correlation with differential pulse voltammetric measurements provided linear trend (R(2) = 0.9511). As a conclusion, especially in the case of oxaliplatin-DNA adducts, the quenching was the most significant compared to cisplatin and nonquenching carboplatin. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel DNA nanosensor based on CdSe/ZnS quantum dots and synthesized Fe3O4 magnetic nanoparticles.
Hushiarian, Roozbeh; Yusof, Nor Azah; Abdullah, Abdul Halim; Ahmad, Shahrul Ainliah Alang; Dutse, Sabo Wada
2014-04-09
Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4) nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.
Poon, Betty P.K
2011-01-01
Interactions between genetic regions located across the genome maintain its three-dimensional organization and function. Recent studies point to key roles for a set of coiled-coil domain-containing complexes (cohibin, cohesin, condensin and monopolin) and related factors in the regulation of DNA-DNA connections across the genome. These connections are critical to replication, recombination, gene expression as well as chromosome segregation. PMID:21822055
Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming
2012-06-01
With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods would supplement each other for genetically modified detection from nucleic acid and protein levels. Accordingly, qPCR and western blot could be used in CP4-EPSPS detection in a wide variety of soy-related foodstuffs. © 2012 Institute of Food Technologists®
Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl
Neale, David B.; Marshall, Kimberly A.; Sederoff, Ronald R.
1989-01-01
Restriction fragment length polymorphisms in controlled crosses were used to infer the mode of inheritance of chloroplast DNA and mitochondrial DNA in coast redwood (Sequoia sempervirens D. Don Endl.). Chloroplast DNA was paternally inherited, as is true for all other conifers studied thus far. Surprisingly, a restriction fragment length polymorphism detected by a mitochondrial probe was paternally inherited as well. This polymorphism could not be detected in hybridizations with chloroplast probes covering the entire chloroplast genome, thus providing evidence that the mitochondrial probe had not hybridized to chloroplast DNA on the blot. We conclude that mitochondrial DNA is paternally inherited in coast redwood. To our knowledge, paternal inheritance of mitochondrial DNA in sexual crosses of a multicellular eukaryotic organism has not been previously reported. Images PMID:16594091
Distribution of HLA-DQA1 alleles in Arab and Pakistani individuals from Dubai, United Arab Emirates.
Tahir, M A; al Khayat, A Q; al Shamali, F; Budowle, B; Novick, G E
1997-03-14
PCR-based typing of the HLA-DQA1 locus, using allele specific oligonucleotide (ASO) probes and reverse dot blot methodology was used to determine allelic distributions and construct a database for Arab and Pakistani individuals living in Dubai. Genotype and allelic frequencies were calculated, and the data were tested for departures from Hardy-Weinberg (HWE) equilibrium. The most frequent HLA-DQA1 alleles among Dubaian Arabs are DQA1 4 and 1.2. Among Pakistanis, the most frequent allele is also DQA1 4. No significant deviations from HWE were detected.
Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.
Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O
1994-09-01
Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.
Correction to: Generation and characterization of tissue-type plasminogen activator transgenic rats.
Ito, Yusuke; Noguchi, Kengo; Morishima, Yoshiyuki; Yamaguchi, Kyoji
2018-01-01
In the original publication of the article, the sentence in "Result" section have been incorrectly published as: "Three lines of tPA Tg rats were generated and analyzed by Southern blotting to confirm the presence of the transgene in genomic DNA. When rat DNA was digested with EcoRI and hybridized to the tPA probe described in "Materials and methods", a 1.0 kb band was detected (Fig. 1a, b). One founder line was selected because of its high copy number (about ten copies) of tPA gene and itansgene) and 4.4 kb (endogenous gene) reding appearance, body weight, hematology, and systematization." The corrected sentence should read as: "Three lines of tPA Tg rats were generated and analyzed by Southern blotting to confirm the presence of the transgene in genomic DNA. When rat DNA was digested with EcoRI and hybridized to the tPA probe described in "Materials and methods", a 1.0 kb band was detected (Fig. 1a, b). One founder line was selected because of its high copy number (about ten copies) of tPA gene and its lack of detectable abnormal findings, including appearance, body weight, hematology, and systematization." The original article has been corrected.
DNA Motion Capture Reveals the Mechanical Properties of DNA at the Mesoscale
Price, Allen C.; Pilkiewicz, Kevin R.; Graham, Thomas G.W.; Song, Dan; Eaves, Joel D.; Loparo, Joseph J.
2015-01-01
Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length. PMID:25992731
Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.
Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong
2011-10-15
NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.
Nano-bio assemblies for artificial light harvesting systems
NASA Astrophysics Data System (ADS)
Bain, Dipankar; Maity, Subarna; Patra, Amitava
2018-02-01
Ultrasmall fluorescent gold nanoclusters (Au NCs) have drawn considerable research interest owing to their molecular like properties such as d-sp and sp-sp transitions, and intense fluorescence. Fluorescent Au NCs have especial attraction in biological system owing to their biocompatibility and high photostability. Recently, several strategies have been adapted to design an artificial light-harvesting system using Au NCs for potential applications. Here, we have designed Au nanoclusters based dsDNA (double stranded deoxyribonucleic acid) nano assemblies where the Au nanocluster is covalently attached with Alexa Fluor 488 (A488) dye tagged dsDNA. Investigation reveals that the incorporation of Ag+ into dsDNA enhances the rate of energy transfer from A488 to Au NCs. In addition cadmium telluride quantum dot (CdTe QDs) based Au NCs hybrid material shows the significant enhancement of energy transfer 35% to 83% with changing the capping ligand of Au NCs from glutathione (GSH) to bovine serum albumin (BSA) protein. Another hybrid system is developed using carbon dots and dye encapsulated BSA-protein capped Au NCs for efficient light harvesting system with 83% energy transfer efficiency. Thus, Au NCs base nano bio assemblies may open up new possibilities for the construction of artificial light harvesting system.
NASA Astrophysics Data System (ADS)
He, Lu; Yang, Lin; Zhu, Hao; Dong, Wenkui; Ding, Yujie; Zhu, Jun-Jie
2017-06-01
A novel luminescence ‘Turn-On’ nanoplatform for the sensitive sensing of Ag+ was fabricated based on luminescence resonance energy transfer technique between sodium citrate functionalized upconversion nanoparticles (Cit-UCNPs, energy donor) and graphene quantum dots (GQDs, energy acceptor). Amino-labeled single-stranded DNA (NH2-ssDNA) containing a number of cytosine (C) was conjugated on the surface of the Cit-UCNPs to capture Ag+ ions. Due to the π-π stacking interaction between NH2-ssDNA and GQDs, the upconversion luminescence can be quenched. However, upon the addition of Ag+, the π-π stacking interaction weakens due to the formation of the hairpin structure of C-Ag+-C on the UCNPs. As a result, GQDs will leave the surface of the UCNPs and the upconversion luminescence can be enhanced (Turn-On). Based on this fact, the sensor was developed for the detection of Ag+ with a linear concentration range from 2 × 10-4 to 1 μM and a detection limit as low as 60 pM. The assay method is fairly simple with high selectivity and sensitivity, which can be used for the determination of Ag+ in environmental water samples.
RNA-primed complementary-sense DNA synthesis of the geminivirus African cassava mosaic virus.
Saunders, K; Lucy, A; Stanley, J
1992-01-01
The plant DNA virus African cassava mosaic virus (ACMV) is believed to replicate by a rolling circle mechanism. To investigate complementary-sense DNA (lagging strand) synthesis, we have analysed the heterogenous form of complementary-sense DNA (H3 DNA) from infected Nicotiana benthamiana by two-dimensional agarose gel electrophoresis and blot hybridisation. The presence of an RNA moeity is demonstrated by comparison of results for nucleic acids resolved on neutral/alkaline and neutral/formamide gels, suggesting that complementary-sense DNA synthesis on the virus-sense single-stranded DNA template is preceded by the synthesis of an RNA primer. Hybridisation with probes to specific parts of ACMV DNA A genome indicates that synthesis of the putative RNA primer initiates between nucleotides 2581-221, a region that includes intergenic sequences that have been implicated in geminivirus DNA replication and the control of gene expression. Images PMID:1475192
Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.
Han, M; Gao, X; Su, J Z; Nie, S
2001-07-01
Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide-capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Feng; Li, Feng; Ganguly, Manjori
2008-11-14
Site-specific insertion of t-(3-aminopropyl)-2'-deoxyuridine (Z3dU) and 7-deaza-dG into the Dickerson-Drew dodecamers 5'-d(C{sup 1}G{sup 2}C{sup 3}G{sup 4}A{sup 5}A{sup 6}T{sup 7}T{sup 8}C{sup 9}{und Z}{sup 10}C{sup 11}G{sup 12})-3'{center_dot}5'-d (C{sup 13}G{sup 14}C{sup 15}G{sup 16}A{sup 17}A{sup 18}T{sup 19}T{sup 20}C{sup 21}{und Z}{sup 22}C{sup 23}G{sup 24})-3' (named DDD{sup Z10}) and 5'-d(C{sup 1}G{sup 2}C{sup 3}G{sup 4}A{sup 5}A{sup 6}T{sup 7}{und X}{sup 20}C{sup 21}{und Z}{sup 22}C{sup 23}G{sup 24})-3' (named DDD{sup 2+Z10}) (X = 73dU; Z = 7-deaza-dG) suggests a mechanism underlying the formation of interstrand N+2 DNA cross-links by nitrogen mustards, e.g., melphalan and mechlorethamine. Analysis of the DDD{sup 2+Z10} duplex reveals that the tethered cations at base pairs A{supmore » 5}{center_dot}X{sup 20} and X{sup 8}{center_dot}A{sup 17} extend within the major groove in the 3'-direction, toward conserved Mg{sup 2+} binding sites located adjacent to N+2 base pairs C{sup 3}{center_dot}Z{sup 22} and Z{sup 10}{center_dot}C{sup 15}. Bridging waters located between the tethered amines and either Z{sup 10} or Z{sup 22} O{sup 6} stabilize the tethered cations and allow interactions with the N + 2 base pairs without DNA bending. Incorporation of 7-deaza-dG into the DDD{sup 2+Z10} duplex weakens but does not eliminate electrostatic interactions between tethered amines and Z{sup 10} O{sup 6} and Z{sup 22} O{sup 6}. The results suggest a mechanism by which tethered N7-dG aziridinium ions, the active species involved in formation of interstrand 5'-GNC-3' cross-links by nitrogen mustards, modify the electrostatics of the major groove and position the aziridinium ions proximate to the major groove edge of the N+2 C{center_dot}G base pair, facilitating interstrand cross-linking.« less
Li, Zhuo; Ni, Yongnian; Kokot, Serge
2015-12-15
A simple, environmentally friendly hydrothermal method was used to prepare strongly luminescent, nitrogen-doped carbon dots (NCDs) with the use of Chinese yams as a source of carbon and nitrogen. Such NCDs have an average size of 2.7±1.4 nm; they emit blue light at 420 nm and have a quantum yield of up to 9.3%. Thus, carboxyfluorescein (FAM)-DNA macro-molecules were assembled on the surfaces of the NCDs, and stabilised by strong π-π stacking; the so formed hybrid nano-sensors were found to have an ultra-sensitive response to 6-mercaptopurine (6-MP). A strong emission and enhancement of yellow radiation was observed from FAM. Furthermore, due to the specific interactions between DNA and Hg(2+), which resulted in the formation of the T-Hg(2+)-T (T: thymine base) complex - a large, conjugated system, which formed between NCDs, DNA and 6-MP, was broken up. Thus, the fluorescence from FAM was quenched. The detection limits for 6-MP and Hg(2+) were 0.67 and 1.26 nM, respectively. The proposed method was applied for the determination of 6-MP in human serum and Hg(2+) in water samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
Peng, Jinbiao; Han, Hongxiao; Hong, Yang; Wang, Yan; Guo, Fanji; Shi, Yaojun; Fu, Zhiqiang; Liu, Jinming; Cheng, Guofeng; Lin, Jiaojiao
2010-03-01
The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.
Huh, T L; Ryu, J H; Huh, J W; Sung, H C; Oh, I U; Song, B J; Veech, R L
1993-01-01
Mitochondrial NADP(+)-specific isocitrate dehydrogenase (IDP) was co-purified with the pyruvate dehydrogenase complex from bovine kidney mitochondria. The determination of its N-terminal 16-amino-acid sequence revealed that it is highly similar to the IDP from yeast. A cDNA clone (1.8 kb long) encoding this protein was isolated from a bovine kidney lambda gt11 cDNA library using a synthetic oligodeoxynucleotide. The deduced protein sequence of this cDNA clone rendered a precursor protein of 452 amino-acid residues (50,830 Da) and a mature protein of 413 amino-acid residues (46,519 Da). It is 100% identical to the internal tryptic peptide sequences of the autologous form from pig heart and 62% similar to that from yeast. However, it shares little similarity with the mitochondrial NAD(+)-specific isoenzyme from yeast. Structural analyses of the deduced proteins of IDP isoenzymes from different species indicated that similarity exists in certain regions, which may represent the common domains for the active sites or coenzyme-binding sites. In Northern-blot analysis, one species of mRNA (about 2.2 kb for both bovine and human) was hybridized with a 32P-labelled cDNA probe. Southern-blot analysis of genomic DNAs verified simple patterns of hybridization with this cDNA. These results strongly indicate that the mitochondrial IDP may be derived from a single gene family which does not appear to be closely related to that of the NAD(+)-specific isoenzyme. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8318002
Nambiar, Bindu; Cornell Sookdeo, Cathleen; Berthelette, Patricia; Jackson, Robert; Piraino, Susan; Burnham, Brenda; Nass, Shelley; Souza, David; O'Riordan, Catherine R; Vincent, Karen A; Cheng, Seng H; Armentano, Donna; Kyostio-Moore, Sirkka
2017-02-01
Several ongoing clinical studies are evaluating recombinant adeno-associated virus (rAAV) vectors as gene delivery vehicles for a variety of diseases. However, the production of vectors with genomes >4.7 kb is challenging, with vector preparations frequently containing truncated genomes. To determine whether the generation of oversized rAAVs can be improved using a producer cell-line (PCL) process, HeLaS3-cell lines harboring either a 5.1 or 5.4 kb rAAV vector genome encoding codon-optimized cDNA for human B-domain deleted Factor VIII (FVIII) were isolated. High-producing "masterwells" (MWs), defined as producing >50,000 vg/cell, were identified for each oversized vector. These MWs provided stable vector production for >20 passages. The quality and potency of the AAVrh8R/FVIII-5.1 and AAVrh8R/FVIII-5.4 vectors generated by the PCL method were then compared to those prepared via transient transfection (TXN). Southern and dot blot analyses demonstrated that both production methods resulted in packaging of heterogeneously sized genomes. However, the PCL-derived rAAV vector preparations contained some genomes >4.7 kb, whereas the majority of genomes generated by the TXN method were ≤4.7 kb. The PCL process reduced packaging of non-vector DNA for both the AAVrh8R/FVIII-5.1 and the AAVrh8R/FVIII-5.4 kb vector preparations. Furthermore, more DNA-containing viral particles were obtained for the AAVrh8R/FVIII-5.1 vector. In a mouse model of hemophilia A, animals administered a PCL-derived rAAV vector exhibited twofold higher plasma FVIII activity and increased levels of vector genomes in the liver than mice treated with vector produced via TXN did. Hence, the quality of oversized vectors prepared using the PCL method is greater than that of vectors generated using the TXN process, and importantly this improvement translates to enhanced performance in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalakrishnan, S.; Harris, T.M.; Stone, M.P.
8,9-Dihydro-8-(N7-guanyl-(d(ATCGAT)))-9-hydroxyaflatoxin B{sub 1}{center dot}d(ATCGAT) and 8,9-dihydro-8-(N7-guanyl-(d(ATGCAT)))-9-hydroxyafltoxin B{sub 1}{center dot}8,9-dihydro-8-(N7-guanyl-(d(ATGCAT)))-9-hydroxyaflatoxin B{sub 1} were prepared by direct addition of aflatoxin B{sub 1} 8,9-expoxide to d(ATCGAT){sub 2} and d(ATGCAT){sub 2}, respectively. {sup 1}H NOE experiments, nonselective {sup 1}H T{sub 1} relaxation measurements, and {sup 1}H chemical shift perturbations demonstrate that in both modified oligodeoxynucleotides the aflatoxin moiety is intercalated above the 5{prime}-face of the modified guanine. The oligodeoxynucleotides remain right-handed, and perturbation of the B-DNA structure is localized adjacent to the adducted guanine. Aflatoxin-oligodeoxynucleotide {sup 1}H NOEs are observed between aflatoxin and the 5{prime}-neighbor base pair and include both the major groove andmore » the minor groove. The protons at C8 and C9 of the aflatoxin terminal furan ring exhibit slower spin-lattice relaxation as compared to other oligodeoxynucleotide protons, which supports the conclusion that they face into the major groove. Increased shielding is observed for aflatoxin protons. The difference in reaction stoichiometry is consistent with an intercalated transition-state complex between aflatoxin B{sub 1} 8,9-epoxide and B-DNA. Intercalation provides excellent positioning for nucleophilic attack by guanine N7 on aflatoxin B{sub 1} 8,9-epoxide, which probably accounts for the observed efficiency of adduct formation despite the relatively low DNA binding affinity observed for aflatoxin B{sub 1}.« less
Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis.
Cestari, Silvia Emanoele; Ludovico, Marilucia Santos; Martins, Fernando Henrique; da Rocha, Sérgio Paulo Dejato; Elias, Waldir Pereira; Pelayo, Jacinta Sanchez
2013-12-01
Urinary tract infection (UTI) is one of the bacterial infections frequently documented in humans. Proteus mirabilis is associated with UTI mainly in individuals with urinary tract abnormality or related with vesicular catheterism and it can be difficult to treat because of the formation of stones in the bladder and kidneys. These stones are formed due to the presence of urease synthesized by the bacteria. Another important factor is that P. mirabilis produces hemolysin HpmA, used by the bacteria to damage the kidney tissues. Proteus spp. samples can also express HlyA hemolysin, similar to that found in Escherichia coli. A total of 211 uropathogenic P. mirabilis isolates were analyzed to detect the presence of the hpmA and hpmB genes by the techniques of polymerase chain reaction (PCR) and dot blot and hlyA by PCR. The hpmA and hpmB genes were expressed by the RT-PCR technique and two P. mirabilis isolates were sequenced for the hpmA and hpmB genes. The presence of the hpmA and hpmB genes was confirmed by PCR in 205 (97.15 %) of the 211 isolates. The dot blot confirmed the presence of the hpmA and hpmB genes in the isolates that did not amplify in the PCR. None of the isolates studied presented the hlyA gene. The hpmA and hpmB genes that were sequenced presented 98 % identity with the same genes of the HI4320 P. mirabilis sample. This study showed that the PCR technique has good sensitivity for detecting the hpmA and hpmB genes of P. mirabilis.
Benachour, H; Leroy-Dudal, J; Agniel, R; Wilson, J; Briand, M; Carreiras, F; Gallet, O
2018-05-01
Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one-third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA-I, PHA-E, PHA-L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest. Copyright © 2017 John Wiley & Sons, Ltd.
Yeo, Seon-Ju; Huong, Dinh Thi; Hong, Nguyen Ngoc; Li, Chun-Ying; Choi, Kyunghan; Yu, Kyoungsik; Choi, Du-Young; Chong, Chom-Kyu; Choi, Hak Soo; Mallik, Shyam Kumar; Kim, Hak Sung; Sung, Haan Woo; Park, Hyun
2014-01-01
Great efforts have been made to develop robust signal-generating fluorescence materials which will help in improving the rapid diagnostic test (RDT) in terms of sensitivity and quantification. In this study, we developed coumarin-derived dendrimer-based fluorescent immunochromatographic strip test (FICT) assay with enhanced sensitivity as a quantitative diagnostic tool in typical RDT environments. The accuracy of the proposed FICT was compared with that of dot blot immunoassay techniques and conventional RDTs. Through conjugation of coumarin-derived dendrimers with latex beads, fluorescent emission covering broad output spectral ranges was obtained which provided a distinct advantage of easy discrimination of the fluorescent emission of the latex beads with a simple insertion of a long-pass optical filter away from the excitation wavelength. The newly developed FICT assay was able to detect 100 ng/10 μL of influenza A nucleoprotein (NP) antigen within 5 minutes, which corresponded to 2.5-fold higher sensitivity than that of the dot blot immunoassay or conventional RDTs. Moreover, the FICT assay was confirmed to detect at least four avian influenza A subtypes (H5N3, H7N1, H7N7, and H9N2). On applying the FICT to the clinical swab samples infected with respiratory viruses, our FICT assay was confirmed to differentiate influenza H1N1 infection from other respiratory viral diseases. These data demonstrate that the proposed FICT assay is able to detect zoonotic influenza A viruses with a high sensitivity, and it enables the quantitation of the infection intensity by providing the numerical diagnostic values; thus demonstrating enhanced detectability of influenza A viruses.
Vanithamani, Shanmugam; Shanmughapriya, Santhanam; Narayanan, Ramasamy; Raja, Veerapandian; Kanagavel, Murugesan; Sivasankari, Karikalacholan; Natarajaseenivasan, Kalimuthusamy
2015-01-01
Background Leptospirosis is a re-emerging infectious disease that is under-recognized due to low-sensitivity and cumbersome serological tests. MAT is the gold standard test and it is the only serogroup specific test used till date. Rapid reliable alternative serogroup specific tests are needed for surveillance studies to identify locally circulating serogroups in the study area. Methods/Principal Findings In the present investigation the serological specificity of leptospiral lipopolysaccharides (LPS) was evaluated by enzyme linked immunosorbent assay (ELISA), dot blot assay and rapid immunochromatography based lateral flow assay (ICG-LFA). Sera samples from 120 MAT positive cases, 174 cases with febrile illness other than leptospirosis, and 121 seronegative healthy controls were evaluated for the diagnostic sensitivity and specificity of the developed assays. LPS was extracted from five locally predominant circulating serogroups including: Australis (27.5%), Autumnalis (11.7%), Ballum (25.8%), Grippotyphosa (12.5%), Pomona (10%) and were used as antigens in the diagnostics to detect IgM antibodies in patients’ sera. The sensitivity observed by IgM ELISA and dot blot assay using various leptospiral LPS was >90% for homologous sera. Except for Ballum LPS, no other LPS showed cross-reactivity to heterologous sera. An attempt was made to develop LPS based ICG-LFA for rapid and sensitive serogroup specific diagnostics of leptospirosis. The developed ICG-LFA showed sensitivity in the range between 93 and 100% for homologous sera. The Wilcoxon analysis showed LPS based ICG-LFA did not differ significantly from the gold standard MAT (P>0.05). Conclusion The application of single array of LPS for serogroup specific diagnosis is first of its kind. The developed assay could potentially be evaluated and employed for as MAT alternative. PMID:26340095
Lipid-Based Passivation in Nanofluidics
2012-01-01
Stretching DNA in nanochannels is a useful tool for direct, visual studies of genomic DNA at the single molecule level. To facilitate the study of the interaction of linear DNA with proteins in nanochannels, we have implemented a highly effective passivation scheme based on lipid bilayers. We demonstrate virtually complete long-term passivation of nanochannel surfaces to a range of relevant reagents, including streptavidin-coated quantum dots, RecA proteins, and RecA–DNA complexes. We show that the performance of the lipid bilayer is significantly better than that of standard bovine serum albumin-based passivation. Finally, we show how the passivated devices allow us to monitor single DNA cleavage events during enzymatic degradation by DNase I. We expect that our approach will open up for detailed, systematic studies of a wide range of protein–DNA interactions with high spatial and temporal resolution. PMID:22432814
Isolation of stress responsive Psb A gene from rice (Oryza sativa l.) using differential display.
Tyagi, Aruna; Chandra, Arti
2006-08-01
Differential display (DD) experiments were performed on drought-tolerant rice (Oryza sativa L.) genotype N22 to identify both upregulated and downregulated partial cDNAs with respect to moisture stress. DNA polymorphism was detected between drought-stressed and control leaf tissues on the DD gels. A partial cDNA showing differential expression, with respect to moisture stress was isolated from the gel. Northern blotting analysis was performed using this cDNA as a probe and it was observed that mRNA corresponding to this transcript was accumulated to high level in rice leaves under water deficit stress. At the DNA sequence level, the partial cDNA showed homology with psb A gene encoding for Dl protein.
Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J
1993-01-01
A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prody, C.A.; Dreyfus, P.; Soreq, H.
1989-01-01
A 100-fold DNA amplification in the CHE gene, coding for serum butyrylcholinesterase (BtChoEase), was found in a farmer expressing silent CHE phenotype. Individuals homozygous for this gene display a defective serum BtChoEase and are particularly vulnerable to poisoning by agricultural organophosphorus insecticides, to which all members of this family had long been exposed. DNA blot hybridization with regional BtChoEase cDNA probes suggested that the amplification was most intense in regions encoding central sequences within BtChoEase cDNA, whereas distal sequences were amplified to a much lower extent. This is in agreement with the onion skin model, based on amplification of genesmore » in cultured cells and primary tumors. The amplification was absent in the grandparents but present at the same extent in one of their sons and in a grandson, with similar DNA blot hybridization patterns. In situ hybridization experiments localized the amplified sequences to the long arm of chromosome 3, close to the site where the authors previously mapped the CHE gene. Altogether, these observations suggest that the initial amplification event occurred early in embryogenesis, spermatogenesis, or oogenesis, where the CHE gene is intensely active and where cholinergic functioning was indicated to be physiologically necessary. These findings demonstrate a de novo amplification in apparently healthy individuals within an autosomal gene producing a target protein to an inhibitor.« less
Toward the in vivo study of captopril-conjugated quantum dots
NASA Astrophysics Data System (ADS)
Manabe, Noriyoshi; Hoshino, Akiyoshi; Liang, Yi-qiang; Goto, Tomomasa; Kato, Norihiro; Yamamoto, Kenji
2005-04-01
Photo-luminescent semiconductor quantum dots are nanometer-size probes that have the potential to be applied to the fields of the bio-imaging and the study of the cell mobility inside the body. At the same time, on the other hand, quantum dots are expected to carry some kind of molecules to the local organ inside of the animal body, which leads to the expectation that they can be used as a medicine-carrier. For this purpose, we conjugate (2S)-1-[(2s)-2-Methyl-3-sulfanylpropionyl]pyrrolidine-2-carboxylic acid (cap) with the quantum dot. Cap has the effect as an anti-hypertension drug, which inhibits angiotensin 1 converting enzyme. We conjugated the quantum dot with cap by the exchange reaction avoiding the regions which holds medicinal effect. Quantum dot conjugated with cap (QD-cap) were 3-times brighter than thioglycerol-coated quantum dots (QD-OH). The particle size of cap was 1.1nm and that of QD-cap was 12nm. QD-cap was permeated into the HeLa cells, while QD-MUA were taken into the HeLa cells by endocytosis. In addition, no apoptosis was detected against the cells that permeated QD-cap, because there was no damage to DNA. These results indicated that QD-conjugated medicines (QD-medicine) could be safe in the experiment on the level of the cell. More over, when QD-cap was intravenously injected into Stroke-prone Spontaneously Hypertensive Rats (SHRSP), they reduced blood pressure at systole. Therefore, the anti-hypertension effect of cap remained after conjugated with the quantum dot. These results suggested that QD-medicine were effective on the animal level.
DNA Conjugation and DNA Directed Self-Assembly of Quantum Dots for Nanophotonic Applications
NASA Astrophysics Data System (ADS)
Samanta, Anirban
Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2--20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize QDs with hydrophilic biomolecules so that they may maintain their stability and functionality in physiological conditions. DNA, a molecule that encodes genetic information, is arguably the smartest molecule that nature has ever produced and one of the most explored bio-macromolecules. QDs that are functionalized with DNA can potentially be organized with nanometer precision by DNA directed self-assembly, and the resulting arrangements may facilitate the display of novel optical properties. The goal of this dissertation was to achieve a robust reliable yet simple strategy to link DNA to QDs so that they can be used for DNA directed self assembly by which we can engineer their optical properties. Presented here is a series of studies to achieve this goal. First we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. We next employed this shell synthesis strategy to conjugate PS-PO chimeric DNA to QDs at the time of shell synthesis. We synthesized a library of DNA linked QDs emitting from UV to near IR that are very stable in high salt concentrations. These DNA functionalized QDs were further site-specifically organized on DNA origami in desired patterns directed by DNA self-assembly. We further extended our capability to functionalize DNA to real IR emitting CdxPb 1-xTe alloyed QDs, and demonstrated their stability by self-assembling them on DNA origami. The photo-physical properties of the QDs were further engineered by attaching a QD and a gold nanoparticle in controlled distances on the same DNA origami, which revealed a much longer range quenching effect than usual Forster Resonance Energy Transfer. We are currently engaged in enhancing the photoluminescence intensity of the QDs by bringing them in the plasmonic hot spots generated by a cluster of larger plasmonic nanoparticles.
Efficient and heritable transformation of Phalaenopsis orchids.
Hsing, Hong-Xian; Lin, Yi-Jyun; Tong, Chii-Gong; Li, Min-Jeng; Chen, Yun-Jin; Ko, Swee-Suak
2016-12-01
Phalaenopsis orchid (Phal. orchid) is visually attractive and it is important economic floriculture species. Phal. orchids have many unique biological features. However, investigation of these features and validation on their biological functions are limited due to the lack of an efficient transformation method. We developed a heritable and efficient Agrobacterium- mediated transformation using protocorms derived from tetraploid or diploid Phal. orchids. A T-DNA vector construct containing eGFP driven by ubiquitin promoter was subjected to transformation. An approximate 1.2-5.2 % transformation rate was achieved. Genomic PCR confirmed that hygromycin selection marker, HptII gene and target gene eGFP were integrated into the orchid genome. Southern blotting indicated a low T-DNA insertion number in the orchid genome of the transformants. Western blot confirmed the expression of eGFP protein in the transgenic orchids. Furthermore, the GFP signal was detected in the transgenic orchids under microscopy. After backcrossing the pollinia of the transgenic plants to four different Phal. orchid varieties, the BC1 progenies showed hygromycin resistance and all surviving BC1 seedlings were HptII positive in PCR and expressed GFP protein as shown by western blot. This study demonstrated a stable transformation system was generated for Phal. orchids. This useful transformation protocol enables functional genomics studies and molecular breeding.
Della Valle, G; Fenton, R G; Basilico, C
1981-01-01
To study the mechanism of deoxyribonucleic acid (DNA)-mediated gene transfer, normal rat cells were transfected with total cellular DNA extracted from polyoma virus-transformed cells. This resulted in the appearance of the transformed phenotype in 1 X 10(-6) to 3 X 10(-6) of the transfected cells. Transformation was invariably associated with the acquisition of integrated viral DNA sequences characteristic of the donor DNA. This was caused not by the integration of free DNA molecules, but by the transfer of large DNA fragments (10 to 20 kilobases) containing linked cellular and viral sequences. Although Southern blot analysis showed that integration did not appear to occur in a homologous region of the recipient chromosome, the frequency of transformation was rather high when compared with that of purified polyoma DNA, perhaps due to "position" effects or to the high efficiency of recombination of large DNA fragments. Images PMID:6100965
Li, Yaqi; Sun, Li; Qian, Jing; Long, Lingliang; Li, Henan; Liu, Qian; Cai, Jianrong; Wang, Kun
2017-06-15
With the increasing concern of potential health and environmental risk, it is essential to develop reliable methods for transgenic soybean detection. Herein, a simple, sensitive and selective assay was constructed based on homogeneous fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) and multiwalled carbon nanotubes@graphene oxide nanoribbons (MWCNTs@GONRs) to form the fluorescent "on-off-on" switching for simultaneous monitoring dual target DNAs of promoter cauliflower mosaic virus 35s (P35s) and terminator nopaline synthase (TNOS) from transgenic soybean. The capture DNAs were immobilized with corresponding QDs to obtain strong fluorescent signals (turning on). The strong π-π stacking interaction between single-stranded DNA (ssDNA) probes and MWCNTs@GONRs led to minimal background fluorescence due to the FRET process (turning off). The targets of P35s and TNOS were recognized by dual fluorescent probes to form double-stranded DNA (dsDNA) through the specific hybridization between target DNAs and ssDNA probes. And the dsDNA were released from the surface of MWCNTs@GONRs, which leaded the dual fluorescent probes to generate the strong fluorescent emissions (turning on). Therefore, this proposed homogeneous assay can be achieved to detect P35s and TNOS simultaneously by monitoring the relevant fluorescent emissions. Moreover, this assay can distinguish complementary and mismatched nucleic acid sequences with high sensitivity. The constructed approach has the potential to be a tool for daily detection of genetically modified organism with the merits of feasibility and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu
7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6more » (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.« less
NASA Astrophysics Data System (ADS)
Wang, Chong; Wu, Congyu; Zhou, Xuejiao; Han, Ting; Xin, Xiaozhen; Wu, Jiaying; Zhang, Jingyan; Guo, Shouwu
2013-10-01
Graphene quantum dots (GQDs) maintain the intrinsic layered structural motif of graphene but with smaller lateral size and abundant periphery carboxylic groups, and are more compatible with biological system, thus are promising nanomaterials for therapeutic applications. Here we show that GQDs have a superb ability in drug delivery and anti-cancer activity boost without any pre-modification due to their unique structural properties. They could efficiently deliver doxorubicin (DOX) to the nucleus through DOX/GQD conjugates, because the conjugates assume different cellular and nuclear internalization pathways comparing to free DOX. Also, the conjugates could enhance DNA cleavage activity of DOX markedly. This enhancement combining with efficient nuclear delivery improved cytotoxicity of DOX dramatically. Furthermore, the DOX/GQD conjugates could also increase the nuclear uptake and cytotoxicity of DOX to drug-resistant cancer cells indicating that the conjugates may be capable to increase chemotherapy efficacy of anti-cancer drugs that are suboptimal due to the drug resistance.
1997-07-01
minimum region of allelic loss on chromosome 17p 13.3, between polymorphic markers D17S5 and D17S28, in genomic DNA from breast and ovarian tumors (Figure 1...encode proteins of 443 and 227 amino acids, with no known functional motifs. Comparison of genomic and cDNA sequences showed that the genes overlap...is tissue specific (Figure 4). When zoo blots comprised of EcoRI fragments of genomic DNA from various species were probed with the unique exon 1 of
Sugase, Motoyasu; Moriyama, Shin‐ichi; Hata, Satoru; Matsukura, Toshihiko
1989-01-01
The warty disordered lesions of the vulva in three female patients were diagnosed as Bowenoid papulosis on the basis of clinical and histopathological findings. In all three vulvar lesions, human Papillomavirus type 16 (HPV 16) DNA was identified hy Southern blot hybridization and Papillomavirus genus‐specific (PGS) antigen was detected in one case immunohistochemically. Furthermore, colposcopic examination revealed the presence of abnormal uterine cervical lesions in two cases. They were found to be intraepithelial neoplasia which harbored HPV 16 DNA and were positive for PGS antigen. PMID:2540130
Matsuo, S; Sugiyama, T; Okuyama, T; Yoshikawa, K; Honda, K; Takahashi, R; Maeda, S
1999-05-01
Conditions of preserving DNA, RNA and protein in pathological specimens are of great importance as degradation of such macromolecules would critically affect results of molecular biological analysis. The feasibility of freeze-drying as a means of preserving pathological tissue samples for molecular analysis has previously been shown. In the present study, further tests on long-term storage conditions and analyses of freeze-dried samples by polymerase chain reaction (PCR), reverse transcriptase (RT)-PCR, western blotting and immunohistochemistry are reported. Rat chromosomal DNA of freeze-dried samples stored for 4 years showed slight degradation while RNA degradation was more prominently seen at an earlier stage of storage. However, these 4 year DNA and RNA samples were still able to serve as a template for some PCR and RT-PCR analyses, respectively. Overexpression of c-erbB-2 and p53 protein was demonstrated by western blotting and immunohistochemical staining using freeze-dried human breast cancer tissues. Although macromolecules in freeze-dried samples degrade to some extent during the preservation period, they should still be of value for certain molecular biological analyses and morphological examination; hence, providing more convenient and inexpensive ways of pathological tissue storage.
Lopez-Jimena, B; Cherif, N; Garcia-Rosado, E; Infante, C; Cano, I; Castro, D; Hammami, S; Borrego, J J; Alonso, M C
2010-10-01
To detect the possible coexistence of striped jack nervous necrosis virus (SJNNV) and red-spotted grouper nervous necrosis virus (RGNNV) genotypes in a single fish, a methodology based on the combination of PCR amplification and blot hybridization has been developed and applied in this study. The degenerate primers designed for the PCR procedure target the T4 region within the capsid gene, resulting in the amplification of both genotypes. The subsequent hybridization of these amplification products with two different specific digoxigenin-labelled probes resulted in the identification of both genotypes separately. The application of the RT-PCR protocol to analyse blood samples from asymptomatic wild meagre (Argyrosomus regius) specimens has shown a 46.87% of viral nervous necrosis virus carriers. The combination of RT-PCR and blot hybridization increases the detection rate up to 90.62%, and, in addition, it has shown the coexistence of both genotypes in 18 out of the 32 specimens analysed (56.25%). This study reports the coexistence of betanodaviruses belonging to two different genotypes (SJNNV and RGNNV) in wild fish specimens. This is the first report demonstrating the presence of SJNNV and RGNNV genotypes in the same specimen. This study also demonstrates a carrier state in this fish species for the first time. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.
Li, Guiying; Xu, Xinping; Xing, Hengtai; Zhu, Huachen; Fan, Qin
2005-04-01
Molecular genetic analysis and insect bioassay of transgenic indica rice 'Zhuxian B' plants carrying snowdrop lectin gene (gna) and soybean trypsin inhibitor gene (sbti) were investigated in detail. PCR, 'dot' blot and PCR-Southern blot analysis showed that both transgenes had been incorporated into the rice genome and transmitted up to R3 progeny in most lines tested. Some transgenic lines exhibited Mendelian segregation, but the other showed either 1:1 (positive: negative for the transgenes) or other aberrant segregation patterns. The segregation patterns of gna gene crossed between R2 and R3 progeny. In half of transgenic R3 lines, gna and sbti transgenes co-segregated. Two independent homozygous lines expressing double transgenes were identified in R3 progeny. Southern blot analysis demonstrated that the copy numbers of integrated gna and sbti transgenes varied from one to ten in different lines. Insect bioassay data showed that most transgenic plants had better resistance to both Nilaparvata lugens (Stahl) and Cnaphalocrocis medinalis (Guenee) than wild-type plants. The insect resistance of transgenic lines increased with the increase in transgene positive ratio in most of the transgenic lines. In all, we obtained nine lines of R3 transgenic plants, including one pure line, which had better resistance to both N lugens and C medinalis than wild-type plants. Copyright 2005 Society of Chemical Industry.
Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert
2013-01-01
The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924
Kumar, Niranjan; Varghese, Anju; Solanki, J. B.
2017-01-01
Aim: The objective of the present study was to know the seroprevalence status of Fasciola gigantica infection in cattle and buffaloes using cysteine proteinase (CP) antigen in dot enzyme-linked immunosorbent assay (ELISA) format under field conditions. Materials and Methods: As per the standard protocol, the sera were collected from the blood of 112 cattle and 38 buffaloes of coastal areas of Navsari district, South Gujarat, India. The indirect ELISA was performed on the strip of nitrocellulose paper blotted with 1 µl of CP antigen, to detect F. gigantica seropositive animals. Results: The native CP of F. gigantica revealed a single visible band on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was no any noted cross-reaction between the selected antigen and sera of Gastrothylax crumenifer-infected animals in ELISA. Out of 150 screened bovines, the sera of 47 (31.33%) were found to be reactive in dot-ELISA, with a prevalence rate of 31.25% and 31.58% in cattle and buffaloes, respectively. The seropositive bovines with heavy, moderate, and light level of infection were 44.68%, 34.04%, and 21.28%, respectively (p<0.05 between heavy and light; p>0.05 between moderate and heavy or light). The share of F. gigantica seropositive and negative animals was 31% and 69%, respectively. The optical density at 450 nm of pooled sera of seropositive bovines with heavy, moderate, and light reactivity in plate-ELISA was significantly higher with field or reference negative sera. Conclusion: The CP-based dot-ELISA can be useful for field veterinarians for quick and timely isolation of the animals requiring urgent flukicide therapy. PMID:29184364
Random-breakage mapping method applied to human DNA sequences
NASA Technical Reports Server (NTRS)
Lobrich, M.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)
1996-01-01
The random-breakage mapping method [Game et al. (1990) Nucleic Acids Res., 18, 4453-4461] was applied to DNA sequences in human fibroblasts. The methodology involves NotI restriction endonuclease digestion of DNA from irradiated calls, followed by pulsed-field gel electrophoresis, Southern blotting and hybridization with DNA probes recognizing the single copy sequences of interest. The Southern blots show a band for the unbroken restriction fragments and a smear below this band due to radiation induced random breaks. This smear pattern contains two discontinuities in intensity at positions that correspond to the distance of the hybridization site to each end of the restriction fragment. By analyzing the positions of those discontinuities we confirmed the previously mapped position of the probe DXS1327 within a NotI fragment on the X chromosome, thus demonstrating the validity of the technique. We were also able to position the probes D21S1 and D21S15 with respect to the ends of their corresponding NotI fragments on chromosome 21. A third chromosome 21 probe, D21S11, has previously been reported to be close to D21S1, although an uncertainty about a second possible location existed. Since both probes D21S1 and D21S11 hybridized to a single NotI fragment and yielded a similar smear pattern, this uncertainty is removed by the random-breakage mapping method.
NASA Technical Reports Server (NTRS)
Wu, Liu-Lai; Song, Il; Karuppiah, Nadarajah; Kaufman, Peter B.
1993-01-01
An asymmetric (top vs. bottom halves of pulvini) induction of invertase mRNA by gravistimulation was analyzed in oat shoot pulvini. Total RNA and poly(A)(+) RNA, isolated from oat pulvini, and two oli-gonucleotide primers, corresponding to two conserved amino acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the polymerase chain reaction (PCR). A partial length cDNA (550 bp) was obtained and characterized. A 62% nucleotide sequence homology and 58% deduced amino acid sequence homology, as compared to beta-fructosidase of carrot cell wall, was found. Northern blot analysis showed that there was an obviously transient induction of invertase mRNA by gravistimulation in the oat pulvinus system. The mRNA was rapidly induced to a maximum level at 1 hour after gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher than that in the top half of the pulvinus tissue. The kinetic induction of invertase mRNA was consistent with the transient accumulation of invertase activity during the graviresponse of the pulvinus. This indicates that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional level. Southern blot analysis showed that there were two to three genomic DNA fragments which hybridized with the partial-length invertase cDNA.
Greenberg, Jay R.; Perry, Robert P.
1971-01-01
The relationship of the DNA sequences from which polyribosomal messenger RNA (mRNA) and heterogeneous nuclear RNA (NRNA) of mouse L cells are transcribed was investigated by means of hybridization kinetics and thermal denaturation of the hybrids. Hybridization was performed in formamide solutions at DNA excess. Under these conditions most of the hybridizing mRNA and NRNA react at values of Dot (DNA concentration multiplied by time) expected for RNA transcribed from the nonrepeated or rarely repeated fraction of the genome. However, a fraction of both mRNA and NRNA hybridize at values of Dot about 10,000 times lower, and therefore must be transcribed from highly redundant DNA sequences. The fraction of NRNA hybridizing to highly repeated sequences is about 1.7 times greater than the corresponding fraction of mRNA. The hybrids formed by the rapidly reacting fractions of both NRNA and mRNA melt over a narrow temperature range with a midpoint about 11°C below that of native L cell DNA. This indicates that these hybrids consist of partially complementary sequences with approximately 11% mismatching of bases. Hybrids formed by the slowly reacting fraction of NRNA melt within 4°–6°C of native DNA, indicating very little, if any, mismatching of bases. Hybrids of the slowly reacting components of mRNA, formed under conditions of sufficiently low RNA input, have a high thermal stability, similar to that observed for hybrids of the slowly reacting NRNA component. However, when higher inputs of mRNA are used, hybrids are formed which have a strikingly lower thermal stability. This observation can be explained by assuming that there is sufficient similarity among the relatively rare DNA sequences coding for mRNA so that under hybridization conditions, in which these DNA sequences are not truly in excess, reversible hybrids exhibiting a considerable amount of mispairing are formed. The fact that a comparable phenomenon has not been observed for NRNA may mean that there is less similarity among the relatively rare DNA sequences coding for NRNA than there is among the rare sequences coding for mRNA. PMID:4999767
Zhou, Yi; Wang, Ruju; Chen, Bing; Sun, Dan; Hu, Yong; Xu, Peipei
2016-01-01
To minimize the side effects and the multidrug resistance (MDR) arising from daunorubicin (DNR) treatment of malignant lymphoma, a chemotherapy formulation of cysteamine-modified cadmium tellurium (Cys-CdTe) quantum dots coloaded with DNR and gambogic acid (GA) nanoparticles (DNR-GA-Cys-CdTe NPs) was developed. The physical property, drug-loading efficiency and drug release behavior of these DNR-GA-Cys-CdTe NPs were evaluated, and their cytotoxicity was explored by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide assay. These DNR-GA-Cys-CdTe NPs possessed a pH-responsive behavior, and displayed a dose-dependent antiproliferative activity on multidrug-resistant lymphoma Raji/DNR cells. The accumulation of DNR inside the cells, revealed by flow cytometry assay, and the down-regulated expression of P-glycoprotein inside the Raji/DNR cells measured by Western blotting assay indicated that these DNR-GA-Cys-CdTe NPs could minimize the MDR of Raji/DNR cells. This multidrug delivery system would be a promising strategy for minimizing MDR against the lymphoma. PMID:27799767
Quantum dots–DNA bioconjugates: synthesis to applications
2016-01-01
Semiconductor nanoparticles particularly quantum dots (QDs) are interesting alternatives to organic fluorophores for a range of applications such as biosensing, imaging and therapeutics. Addition of a programmable scaffold such as DNA to QDs further expands the scope and applicability of these hybrid nanomaterials in biology. In this review, the most important stages of preparation of QD–DNA conjugates for specific applications in biology are discussed. Special emphasis is laid on (i) the most successful strategies to disperse QDs in aqueous media, (ii) the range of different conjugation with detailed discussion about specific merits and demerits in each case, and (iii) typical applications of these conjugates in the context of biology. PMID:27920898
Forensic aspects of DNA-based human identity testing.
Roper, Stephen M; Tatum, Owatha L
2008-01-01
The forensic applications of DNA-based human identity laboratory testing are often underappreciated. Molecular biology has seen an exponential improvement in the accuracy and statistical power provided by identity testing in the past decade. This technology, dependent upon an individual's unique DNA sequence, has cemented the use of DNA technology in the forensic laboratory. This paper will discuss the state of modern DNA-based identity testing, describe the technology used to perform this testing, and describe its use as it relates to forensic applications. We will also compare individual technologies, including polymerase chain reaction (PCR) and Southern Blotting, that are used to detect the molecular differences that make all individuals unique. An increasing reliance on DNA-based identity testing dictates that healthcare providers develop an understanding of the background, techniques, and guiding principles of this important forensic tool.
Short, interspersed, and repetitive DNA sequences in Spiroplasma species.
Nur, I; LeBlanc, D J; Tully, J G
1987-03-01
Small fragments of DNA from an 8-kbp plasmid, pRA1, from a plant pathogenic strain of Spiroplasma citri were shown previously to be present in the chromosomal DNA of at least two species of Spiroplasma. We describe here the shot-gun cloning of chromosomal DNA from S. citri Maroc and the identification of two distinct sequences exhibiting homology to pRA1. Further subcloning experiments provided specific molecular probes for the identification of these two sequences in chromosomal DNA from three distinct plant pathogenic species of Spiroplasma. The results of Southern blot hybridization indicated that each of the pRA1-associated sequences is present as multiple copies in short, dispersed, and repetitive sequences in the chromosomes of these three strains. None of the sequences was detectable in chromosomal DNA from an additional nine Spiroplasma strains examined.
Wang, Yongming; Lin, Xiuyun; Dong, Bo; Wang, Yingdian; Liu, Bao
2004-01-01
RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeat) fingerprinting on HpaII/MspI-digested genomic DNA of nine elite japonica rice cultivars implies inter-cultivar DNA methylation polymorphism. Using both DNA fragments isolated from RAPD or ISSR gels and selected low-copy sequences as probes, methylation-sensitive Southern blot analysis confirms the existence of extensive DNA methylation polymorphism in both genes and DNA repeats among the rice cultivars. The cultivar-specific methylation patterns are stably maintained, and can be used as reliable molecular markers. Transcriptional analysis of four selected sequences (RdRP, AC9, HSP90 and MMR) on leaves and roots from normal and 5-azacytidine-treated seedlings of three representative cultivars shows an association between the transcriptional activity of one of the genes, the mismatch repair (MMR) gene, and its CG methylation patterns.
Quantum Dots: Proteomics characterization of the impact on biological systems
NASA Astrophysics Data System (ADS)
Pozzi-Mucelli, Stefano; Boschi, F.; Calderan, L.; Sbarbati, A.; Osculati, F.
2009-05-01
Over the past few years, Quantum Dots have been tested in most biotechnological applications that use fluorescence, including DNA array technology, immunofluorescence assays, cell and animal biology. Quantum Dots tend to be brighter than conventional dyes, because of the compounded effects of extinction coefficients that are an order of magnitude larger than those of most dyes. Their main advantage resides in their resistance to bleaching over long periods of time (minutes to hours), allowing the acquisition of images that are crisp and well contrasted. This increased photostability is especially useful for three-dimensional (3D) optical sectioning, where a major issue is bleaching of fluorophores during acquisition of successive z-sections, which compromises the correct reconstruction of 3D structures. The long-term stability and brightness of Quantum Dots make them ideal candidates also for live animal targeting and imaging. The vast majority of the papers published to date have shown no relevant effects on cells viability at the concentration used for imaging applications; higher concentrations, however, caused some issues on embryonic development. Adverse effects are due to be caused by the release of cadmium, as surface PEGylation of the Quantum Dots reduces these issues. A recently published paper shows evidences of an epigenetic effect of Quantum Dots treatment, with general histones hypoacetylation, and a translocation to the nucleus of p53. In this study, mice treated with Quantum Dots for imaging purposes were analyzed to investigate the impact on protein expression and networking. Differential mono-and bidimensional electrophoresis assays were performed, with the individuation of differentially expressed proteins after intravenous injection and imaging analysis; further, as several authors indicate an increase in reactive oxygen species as a possible mean of damage due to the Quantum Dots treatment, we investigated the signalling pathway of APE1/Ref1, a protein involved in the response to oxidative stress. Our results, although preliminary, suggest several interesting point of discussion on Quantum Dots imaging for in vivo diagnostic application, but also for a new therapeutic approach.
Zhu, Shufen; Guo, Wenlong; Sheng, Pengcheng; Wang, Zunmin; Zhao, Changliang; Zhao, Qingyou; Zhu, Ruiliang
2012-01-01
Contaminated vaccine is one unexpected and potential origin of virus infection. In order to investigate the most likely cause of disease in a broiler breeder company of Shandong Province, all 17 batches of live-virus vaccines used in the affected flocks and 478 tissue samples were tested by dot-blot hybridization, nested PCR, and IFA. The results suggested the outbreak of disease was most probably due to the vaccination of REV-contaminated MD-CVI988/Rispens vaccines and ND-LaSota+IB-H120 vaccines. Furthermore, the REV was probably transmitted to the commercial chickens through congenital transmission. PMID:22912872
DNA motion capture reveals the mechanical properties of DNA at the mesoscale.
Price, Allen C; Pilkiewicz, Kevin R; Graham, Thomas G W; Song, Dan; Eaves, Joel D; Loparo, Joseph J
2015-05-19
Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The nuclear-factor kappaB pathway is activated in pterygium.
Siak, Jay Jyh Kuen; Ng, See Liang; Seet, Li-Fong; Beuerman, Roger W; Tong, Louis
2011-01-05
Pterygium is a prevalent ocular surface disease with unknown pathogenesis. The authors investigated the role of nuclear factor kappa B (NF-κB) transcription factors in pterygium. Surgically excised primary pterygia were studied compared with uninvolved conjunctiva tissues. NF-κB activation was evaluated using Western blot analysis, ELISA, and DNA-binding assays. Primary pterygium fibroblasts were treated with TNF-α (20 ng/mL), and NF-κB activation was evaluated using immunocytochemistry, Western blot analysis, phospho-IκBα ELISA, and DNA-binding assays. TNF-α stimulation of NF-κB target genes RelB, NFKB2, RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 in pterygium fibroblasts was compared with that in primary tenon fibroblasts by real-time PCR. Phosphorylation of IκBα (Ser32) was increased in pterygia tissues compared with uninvolved conjunctiva tissues, as determined by Western blot analysis and ELISA. IκBα expression was decreased, whereas nuclear RelA and p50 DNA-binding capacities were increased. Within 30 minutes of treatment with TNF-α, pterygium fibroblasts showed increased IκBα phosphorylation and nuclear translocation of RelA and p50. Treatment with TNF-α beyond 12 hours resulted in increased nuclear expression of RelB, p100, and p52. Furthermore, the upregulation of RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 expression was more pronounced in TNF-α-treated pterygium fibroblasts than in tenon fibroblasts. The NF-κB pathway is shown for the first time to be activated in pterygia tissues compared with normal conjunctiva tissues. Stimulation by the inflammatory cytokine TNF-α can activate both canonical and noncanonical NF-κB pathways in pterygium fibroblasts with concomitant upregulation of NF-κB target genes.
Alves-Júnior, Miguel; Menezes Marraccini, Fernanda; Melo Filho, Péricles de Albuquerque; Nepomuceno Dusi, André; Pio-Ribeiro, Gilvan; Morais Ribeiro, Bergmann
2008-01-01
Garlic cultivars in Brazil are infected by a complex of viruses and for some virus species, such as the allexivirus, purification of the virions is sometimes cumbersume. To overcome this problem, recombinant expression of viral proteins in heterologous systems is an alternative method for producing antibodies. The capsid gene from Garlic virus C (GarV-C), an Allexivirus, was inserted into the genome of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) generating the recombinant virus vSynGarV-C. The recombinant protein expression was confirmed by SDS-PAGE and western-blot of extracts from recombinant virus infected insect cells, where a protein band of approximately 32KDa was observed only in extracts from recombinant infected cells. This protein corresponded to the predicted size of the capsid protein of the GarV-C. A rabbit polyclonal antibody was raised against this protein, shown to be specific for the GarV-C protein in western-blot and dot-Elisa, however with a low titer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshuk, C.P.; Kolattukudy, P.E.
Spores of the phytopathogenic fungus Fusarium solani f. sp. pisi were shown to produce the extracellular enzyme, cutinase, only when cutin or cutin hydrolysate was added to the spore suspension. Dihydroxy-C/sub 16/ acid and trihydroxy-C/sub 18/ acid, which are unique cutin monomers, showed the greatest cutinase-inducing activity. Experiments with several compounds structurally related to these fatty acids suggested that both a omega-hydroxyl and a midchain hydroxyl are required for cutinase-inducing activity. Cutinase appeared in the medium 30-45 min after the addition of the inducers to the spore suspension, and the activity level increased for 6 hr. Addition of cycloheximide (5more » ..mu..g/ml) completely inhibited cutinase production, suggesting that protein synthesis was involved in the increase of cutinase activity. Immunoblot analysis with rabbit antibodies prepared against cutinase showed that cutinase protein increased in parallel with the increase in enzyme activity. Measurement of cutinase-specific RNA levels by dot-blot hybridization with /sup 32/P-labeled cutinase cDNA showed that the cutinase gene transcripts could be detected within 15 min after addition of the inducers. Addition of exogenous cutinase greatly enhanced the level of cutinase gene transcripts induced by cutin. These results strongly suggest that the fungal spore senses that it is in contact with the plant by the production of small amounts of cutin monomers catalyzed by the low level of cutinase carried by the spore and that these monomers induce the synthesis of cutinase needed for penetration of the fungus into the plant.« less
Italia, Khushnooma; Sawant, Pratibha; Surve, Reema; Wadia, Marukh; Nadkarni, Anita; Ghosh, Kanjaksha; Colah, Roshan
2012-08-01
To study the varied clinical and haematological profile of β-thalassaemia homozygotes, compound heterozygotes and heterozygotes with the Poly A (T→C) mutation and its implication in prenatal diagnosis. Forty individuals were included in the study. Peripheral smear examination, complete blood count and haemoglobin analysis were carried out. β-thalassaemia mutation analysis was carried out by reverse-dot-blot hybridization, amplification refractory mutation system and DNA sequencing of the β-globin gene. Five of the six β-thalassaemia homozygotes with the Poly A (T→C) mutation and five individuals who were compound heterozygous for the Poly A (T→C) mutation along with another common Indian β-thalassaemia mutation showed a severe β-thalassaemia major phenotype, while one individual presented as a thalassaemia intermedia. Majority of the 28 heterozygous individuals with this mutation showed borderline HbA₂ (mean HbA₂ = 3.7 ± 0.4%) levels as compared to individuals with common β-thalassaemia mutations (mean HbA₂ = 5.2 ± 1.4%). The Mean Corpuscular Volume (MCV) levels in individuals heterozygous for the Poly A (T→C) mutation (mean MCV 70.0 ± 5.2 fl) were significantly higher than in individuals with other common β-thalassaemia mutations (mean MCV 60.7 ± 7.7 fl) (P < 0.001). It is important to identify these often silent carriers of β-thalassaemia for prenatal diagnosis as homozygotes have a severe disease. © 2012 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, M.S.
1988-01-01
Preimplantation bovine embryos were exposed in vitro to H. somnus to determine if the bacteria would adhere to zona pellucida-intact (ZP-I) embryos or adhere to or infect ZP-free embryos. The effect of H. somnus on embryonic development in vitro was also investigated. Electrophoretic comparisons of outer membrane proteins of H. somnus revealed 2 major protein bands common to 10 H. somnus isolates. A monoclonal antibody produced against the outer membrane proteins reacted to one of the major protein bands. The sensitivity of a nucleic acid probe for detection of vesicular stomatitis virus (VSV) was validated in cells in culture andmore » used to determine if the synthetic double-stranded complex of polyriboinosinic and polyribocytidylic acids (poly I:C) would induce viral resistance in cultured bovine embryos. Two {sup 32}P-nick translated probes of high specific activity prepared from plasmids containing nucleic acid sequences of VSV virus were employed for viral mRNA detection in the tissue culture cells using a DNA-hybridization dot-blot technique. Using one of the probes, the technique was applied to detect differences in viral replication between four groups of bovine embryos (nonexposed, exposed to VSV virus, poly I:C-treated, and poly I:C-treated and exposed to VSV). The nucleic acid probe was sufficiently sensitive to detect differences in quantities of VSV mRNA among embryo treatment groups, resulting in the demonstration that resistance to viral infection was induced in day 9 bovine embryos.« less
Albumin Overload and PINK1/Parkin Signaling-Related Mitophagy in Renal Tubular Epithelial Cells.
Tan, Jin; Xie, Qi; Song, Shuling; Miao, Yuyang; Zhang, Qiang
2018-03-01
BACKGROUND Albumin, as a major urinary protein component, is a risk factor for chronic kidney disease progression. Mitochondrial dysfunction is one of the main causes of albumin-induced proximal tubule cells injury. Mitophagy is considered as a pivotal protective mechanism for the elimination of dysfunctional mitochondria. The objective of this research was to determine whether albumin overload-induced mitochondrial dysfunction can activate PINK1/Parkin-mediated mitophagy in renal tubular epithelial cells (TECs). MATERIAL AND METHODS Immunofluorescence assay and Western blot assay were used to detect the effects of albumin overload on autophagy marker protein LC3. Transmission electron microscopy and Western blot assay were used to investigate the role of albumin in mitochondrial injury. Western blot assay and co-localization of acidic lysosomes and mitochondria assay were employed to detect the activation of mitophagy induced by albumin. Finally, we explored the role of PINK1/Parkin signaling in albumin-induced mitophagy by inhibiting mitophagy by knockdown of PARK2 (Parkin) level. RESULTS Immunofluorescence and Western blot results showed that the expression level of LC3-II increased, and the maximum increase point was observed after 8 h of albumin treatment. Transmission electron microscopy results demonstrated that albumin overload-induced mitochondrial injury and quantity of autophagosomes increased. Additionally, expression of PINK1 and cytosolic cytochrome C increased and mitochondria cytochrome C decreased in the albumin group. The co-localization of acidic lysosomes and mitochondria demonstrated that the number of albumin overload-induced mitophagy-positive dots increased. The transient transfection of PARK2 siRNA result showed knockdown of the expression level of PARK2 can inhibit mitophagy induced by albumin. CONCLUSIONS In conclusion, our study suggests that mitochondrial dysfunction activates the PINK1/Parkin signaling and mitophagy in renal tubular epithelial cells under albumin overload condition.
Kroczynska, Barbara; Evangelista, Christina M; Samant, Shalaka S; Elguindi, Ebrahim C; Blond, Sylvie Y
2004-03-19
The murine tumor cell DnaJ-like protein 1 or MTJ1/ERdj1 is a membrane J-domain protein enriched in microsomal and nuclear fractions. We previously showed that its lumenal J-domain stimulates the ATPase activity of the molecular chaperone BiP/GRP78 (Chevalier, M., Rhee, H., Elguindi, E. C., and Blond, S. Y. (2000) J. Biol. Chem. 275, 19620-19627). MTJ1/ERdj1 also contains a large carboxyl-terminal cytosolic extension composed of two tryptophan-mediated repeats or SANT domains for which the function(s) is unknown. Here we describe the cloning of the human homologue HTJ1 and its interaction with alpha(1)-antichymotrypsin (ACT), a member of the serine proteinase inhibitor (serpin) family. The interaction was initially identified in a two-hybrid screening and further confirmed in vitro by dot blots, native electrophoresis, and fluorescence studies. The second SANT domain of HTJ1 (SANT2) was found to be sufficient for binding to ACT, both in yeast and in vitro. Single tryptophan-alanine substitutions at two strictly conserved residues significantly (Trp-497) or totally (Trp-520) abolished the interaction with ACT. SANT2 binds to human ACT with an intrinsic affinity equal to 0.5 nm. Preincubation of ACT with nearly stoichiometric concentrations of SANT2 wild-type but not SANT2: W520A results in an apparent loss of ACT inhibitory activity toward chymotrypsin. Kinetic analysis indicates that the formation of the covalent inhibitory complex ACT-chymotrypsin is significantly delayed in the presence of SANT2 with no change on the catalytic efficiency of the enzyme. This work demonstrates for the first time that the SANT2 domain of MTJ1/HTJ1/ERdj1 mediates stable and high affinity protein-protein interactions.
77 FR 39682 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
... oxides, metal chalcogenides, DNA, quantum dots, and carbon nanomaterials to determine their size, shape... Number: 12-031. Applicant: Penn State College of Medicine, 500 University Dr., Hershey, PA 17033... to further advance the body of research of the College of Medicine and the greater scientific...
Practical Molecular Biology for Students: An Integrated Approach to Teaching Basic Techniques.
ERIC Educational Resources Information Center
Hames, B. David; And Others
1990-01-01
An activity that introduces students to the correct handling of bacterial recombinants, antibiotic sensitivity testing, insertional inactivation, plasmid DNA isolation, restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, hybridization, and autoradiography is presented. A list of needed materials, procedures, safety…
Ventura, Marco; Kenny, John G; Zhang, Ziding; Fitzgerald, Gerald F; van Sinderen, Douwe
2005-09-01
The so-called clp genes, which encode components of the Clp proteolytic complex, are widespread among bacteria. The Bifidobacterium breve UCC 2003 genome contains a clpB gene with significant homology to predicted clpB genes from other members of the Actinobacteridae group. The heat- and osmotic-inducibility of the B. breve UCC 2003 clpB homologue was verified by slot-blot analysis, while Northern blot and primer extension analyses showed that the clpB gene is transcribed as a monocistronic unit with a single promoter. The role of a hspR homologue, known to control the regulation of clpB and dnaK gene expression in other high G+C content bacteria was investigated by gel mobility shift assays. Moreover the predicted 3D structure of HspR provides further insight into the binding mode of this protein to the clpB promoter region, and highlights the key amino acid residues believed to be involved in the protein-DNA interaction.
Identification of a Naegleria fowleri Membrane Protein Reactive with Anti-Human CD59 Antibody
Fritzinger, Angela E.; Toney, Denise M.; MacLean, Rebecca C.; Marciano-Cabral, Francine
2006-01-01
Naegleria fowleri, the causative agent of primary amebic meningoencephalitis, is resistant to complement lysis. The presence of a complement regulatory protein on the surface of N. fowleri was investigated. Southern blot and Northern blot analyses demonstrated hybridization of a radiolabeled cDNA probe for CD59 to genomic DNA and RNA, respectively, from pathogenic N. fowleri. An 18-kDa immunoreactive protein was detected on the membrane of N. fowleri by Western immunoblot and immunofluorescence analyses with monoclonal antibodies for human CD59. Complement component C9 immunoprecipitated with the N. fowleri “CD59-like” protein from amebae incubated with normal human serum. In contrast, a gene or protein similar to CD59 was not detected in nonpathogenic, complement-sensitive N. gruberi amebae. Collectively, our studies suggest that a protein reactive with antibodies to human CD59 is present on the surface of N. fowleri amebae and may play a role in resistance to lysis by cytolytic proteins. PMID:16428768
Preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1.
Ma, Min; Zhou, Qiong-Jie; Xiong, Yu; Li, Bin; Li, Xiao-Tian
2018-01-01
Previous studies have demonstrated a dynamic epigenetic regulation of genes expression in placenta trophoblasts and a dynamic imbalance of DNA methylation and hydroxymethylation. Reduced IGF-1 has been observed in preeclampsia. This study was to investigate the interactive roles between IGF-1 and the global DNA methylation/hydroxymethylation, and the status of DNA methylation/hydroxymethylation and associated enzymes such as DNMTs and TETs in peeeclamptic placentas and hypoxic trophoblasts. It was found that IGF-1 was decreased in preeclamptic placentas and hypoxic trophoblasts when compared to the control group using immunohistochemisty, western blot, qRT-PCR and ELISA. Pyrophosphate sequencing showed IGF-1 promoter was significantly hypermethylated in preeclamptic placentas, which was responsible for reduced IGF-1 expression. Preeclamptic placentas and hypoxic trophoblasts were hypermethylated and hypohydroxymethylated accompanied by remarkably higher 5mC, DNMT1 and DNMT3b, and lower DNMT3a, 5hmC, TET1, TET2 and TET3 detected by immunohistochemisty, western blot, qRT-PCR and ELISA. Pearson's correlation confirmed a statistically significant negative correlation between IGF-1 and DNMT1. Furthermore, both treatment with 5-Aza-dc and DNMT1-siRNA significantly increased the expression of IGF-1 in HTR8 cells, indicating the potential mechanism of DNMT1-mediated DNA methylation in IGF-1 regulation. However, IGF-1 didn't change DNA methylation or hydroxymethylation. These findings suggest that preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1 and provide new insights into the diagnosis and treatment of preeclampsia.
Preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1
Ma, Min; Zhou, Qiong-Jie; Xiong, Yu; Li, Bin; Li, Xiao-Tian
2018-01-01
Previous studies have demonstrated a dynamic epigenetic regulation of genes expression in placenta trophoblasts and a dynamic imbalance of DNA methylation and hydroxymethylation. Reduced IGF-1 has been observed in preeclampsia. This study was to investigate the interactive roles between IGF-1 and the global DNA methylation/hydroxymethylation, and the status of DNA methylation/hydroxymethylation and associated enzymes such as DNMTs and TETs in peeeclamptic placentas and hypoxic trophoblasts. It was found that IGF-1 was decreased in preeclamptic placentas and hypoxic trophoblasts when compared to the control group using immunohistochemisty, western blot, qRT-PCR and ELISA. Pyrophosphate sequencing showed IGF-1 promoter was significantly hypermethylated in preeclamptic placentas, which was responsible for reduced IGF-1 expression. Preeclamptic placentas and hypoxic trophoblasts were hypermethylated and hypohydroxymethylated accompanied by remarkably higher 5mC, DNMT1 and DNMT3b, and lower DNMT3a, 5hmC, TET1, TET2 and TET3 detected by immunohistochemisty, western blot, qRT-PCR and ELISA. Pearson’s correlation confirmed a statistically significant negative correlation between IGF-1 and DNMT1. Furthermore, both treatment with 5-Aza-dc and DNMT1-siRNA significantly increased the expression of IGF-1 in HTR8 cells, indicating the potential mechanism of DNMT1-mediated DNA methylation in IGF-1 regulation. However, IGF-1 didn’t change DNA methylation or hydroxymethylation. These findings suggest that preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1 and provide new insights into the diagnosis and treatment of preeclampsia. PMID:29422991
Milk phospholipid's protective effects against UV damage in skin equivalent models
NASA Astrophysics Data System (ADS)
Dargitz, Carl; Russell, Ashley; Bingham, Michael; Achay, Zyra; Jimenez-Flores, Rafael; Laiho, Lily H.
2012-03-01
Exposure of skin tissue to UV radiation has been shown to cause DNA photodamage. If this damaged DNA is allowed to replicate, carcinogenesis may occur. DNA damage is prevented from being passed on to daughter cells by upregulation of the protein p21. p21 halts the cells cycle allowing the cell to undergo apoptosis, or repair its DNA before replication. Previous work suggested that milk phospholipids may possess protective properties against UV damage. In this study, we observed cell morphology, cell apoptosis, and p21 expression in tissue engineered epidermis through the use of Hematoxylin and Eosin staining, confocal microscopy, and western blot respectively. Tissues were divided into four treatment groups including: a control group with no UV and no milk phospholipid treatment, a group exposed to UV alone, a group incubated with milk phospholipids alone, and a group treated with milk phospholipids and UV. All groups were incubated for twenty-four hours after treatment. Tissues were then fixed, processed, and embedded in paraffin. Performing western blots resulted in visible p21 bands for the UV group only, implying that in every other group, p21 expression was lesser. Numbers of apoptotic cells were determined by observing the tissues treated with Hoechst dye under a confocal microscope, and counting the number of apoptotic and total cells to obtain a percentage of apoptotic cells. We found a decrease in apoptotic cells in tissues treated with milk phospholipids and UV compared to tissues exposed to UV alone. Collectively, these results suggest that milk phospholipids protect cell DNA from damage incurred from UV light.
Chen, J D; Denton, M J; Morgan, G; Pearn, J H; Mackinlay, A G
1988-01-01
Deletion is a common cause of Duchenne muscular dystrophy (DMD). Field-inversion gel electrophoresis, in conjunction with Southern blot hybridization, was used to detect large SfiI DNA fragments in the DMD locus. Two unrelated boys with DMD were found to have abnormal sized DNA fragments resulting from deletions. Some of the female relatives of these patients were also shown by this method to have deletions in the DMD locus. Images Figure 1 PMID:3358426
Comparison of the canine and human acid {beta}-galactosidase gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahern-Rindell, A.J.; Kretz, K.A.; O`Brien, J.S.
Several canine cDNA libraries were screened with human {beta}-galactosidase cDNA as probe. Seven positive clones were isolated and sequenced yielding a partial (2060 bp) canine {beta}-galactosidase cDNA with 86% identity to the human {beta}-galactosidase cDNA. Preliminary analysis of a canine genomic library indicated conservation of exon number and size. Analysis by Northern blotting disclosed a single mRNA of 2.4 kb in fibroblasts and liver from normal dogs and dogs affected with GM1 gangliosidosis. Although incomplete, these results indicate canine GM1 gangliosidosis is a suitable animal model of the human disease and should further efforts to devise a gene therapy strategymore » for its treatment. 20 refs., 2 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rorsman, F.; Bywater, M.; Knott, T.J.
The human platelet-derived growth factor (PDGF) A-chain locus was characterized by restriction endonuclease analysis, and the nucleotide sequence of its exons was determined. Seven exons were identified, spanning approximately 22 kilobase pairs of genomic DNA. Alternative exon usage, identified by cDNA cloning, occurs in a human glioblastoma cell line and may give rise to two types of A-chain precursors with different C termini. The exon-intron arrangement was similar to that of the PDGF B-chain/sis locus and seemed to divide the precursor proteins into functional domains. Southern blot analysis of genomic DNA showed that a single PDGF A-chain gene was presentmore » in the human genome.« less
Khanna, Rahul; Rao, G R K; Tiwary, S K; Rai, Ashish; Khanna, Seema; Khanna, A K
2009-04-01
The etiopathological role of human papilloma virus (HPV) in the causation of oral cancer is till a subject of speculation. We used the technique of Southern blot hybridization to detect the presence of HPV types 16 & 18 in biopsy specimens from oral cancer and leukoplakia patients as well as normal oral mucosal biopsies. The prevalence of either HPV type 16 or 18 was found in 64.5% (29/45) of oral cancer, 40%(12/30) of leukoplakia and 20%(9/45) of normal oral mucosal biopsies. No association could be demonstrated between tobacco usage habits or a history of genital warts with HPV prevalence. A significant finding was that none of the oral cancer patients were negative for both: a history of tobacco usage as well as presence of HPV infection, on Southern blot hybridization.
Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome.
Ponce, M R; Quesada, V; Micol, J L
1998-05-01
An improvement to previous methods for recovering Arabidopsis thaliana genomic DNA flanking T-DNA insertions is presented that allows for the avoidance of some of the cloning difficulties caused by the concatameric nature of T-DNA inserts. The principle of the procedure is to categorize by size restriction fragments of mutant DNA, produced in separate digestions with NdeI and Bst1107I. Given that the sites for these two enzymes are contiguous within the pGV3850:1003 T-DNA construct, the restriction fragments obtained fall into two categories: those showing identical size in both digestions, which correspond to sequences internal to T-DNA concatamers; and those of different sizes, that contain the junctions between plant DNA and the T-DNA insert. Such a criterion makes it possible to easily distinguish the digestion products corresponding to internal T-DNA parts, which do not deserve further attention, and those which presumably include a segment of the locus of interest. Discrimination between restriction fragments of genomic mutant DNA can be made on rescued plasmids, inverse PCR amplification products or bands in a genomic blot.
Detection of Z DNA binding proteins in tissue culture cells.
Leith, I R; Hay, R T; Russell, W C
1988-01-01
A gel electrophoresis DNA binding assay to detect Z DNA binding proteins has been developed utilising [32P] labelled poly [d(G-C)] which was converted to the Z form by incubation in 100 microM Co(NH3)6Cl3. The parameters of the assay were established using a Z DNA antibody as a model system and then applied to extracts of Hela and BHK21 cells. Using an anti-Z DNA antibody conditions were established which allowed resolution of antibody-DNA complexes and free DNA in the presence of 100 microM Co(NH3)6Cl3. The inclusion of unlabelled complementary homopolymers eliminated non-specific binding to the labelled Z-DNA probe. Competition experiments demonstrated that the assay was highly specific for double stranded non-B DNA. Application of the technique to extracts of mammalian cells demonstrated that human and hamster cells contain Z-DNA binding proteins; further characterisation by a blotting technique indicated that a 56,000 molecular weight cell protein preferentially binds Z-DNA. Images PMID:3419919
DNA Tetrahedron Delivery Enhances Doxorubicin-Induced Apoptosis of HT-29 Colon Cancer Cells
NASA Astrophysics Data System (ADS)
Zhang, Guiyu; Zhang, Zhiyong; Yang, Junen
2017-08-01
As a nano-sized drug carrier with the advantage of modifiability and proper biocompatibility, DNA tetrahedron (DNA tetra) delivery is hopeful to enhance the inhibitory efficiency of nontargeted anticancer drugs. In this investigation, doxorubicin (Dox) was assembled to a folic acid-modified DNA tetra via click chemistry to prepare a targeted antitumor agent. Cellular uptake efficiency was measured via fluorescent imaging. Cytotoxicity, inhibition efficiency, and corresponding mechanism on colon cancer cell line HT-29 were evaluated by MTT assay, cell proliferation curve, western blot, and flow cytometry. No cytotoxicity was induced by DNA tetra, but the cellular uptake ratio increased obviously resulting from the DNA tetra-facilitated penetration through cellular membrane. Accordingly, folic acid-DNA tetra-Dox markedly increased the antitumor efficiency with increased apoptosis levels. In details, 100 μM was the effective concentration and a 6-h incubation period was needed for apoptosis induction. In conclusion, nano-sized DNA tetrahedron was a safe and effective delivery system for Dox and correspondingly enhanced the anticancer efficiency.
NASA Astrophysics Data System (ADS)
Brenneman, Kimber L.
The utilization of DNA aptamers and semiconductor quantum dots (QDs) for the detection of ions and biomolecules was investigated. In recent years, there have been many studies based on the use of DNA and RNA aptamers, which are single stranded oligonucleotides capable of binding to biomolecules, other molecules, and ions. In many of these cases, the conformational changes of these DNA and RNA aptamers are suitable to use fluorescence resonant energy transfer (FRET) or nanometal surface energy transfer (NSET) techniques to detect such analytes. Coupled with this growth in such uses of aptamers, there has been an expanded use of semiconductor quantum dots as brighter, longer-lasting alternatives to fluorescent dyes in labeling and detection techniques of interest in biomedicine and environmental monitoring. Thrombin binding aptamer (TBA) and a zinc aptamer were used to detect mercury, lead, zinc, and cadmium. These probes were tested in a liquid assay as well as on a filter paper coupon. Biomolecules were also studied and detected using surface-enhanced Raman spectroscopy (SERS), including DNA aptamers and C-reactive protein (CRP). Raman spectroscopy is a useful tool for sensor development, label-free detection, and has the potential for remote sensing. Raman spectra provide information on the vibrational modes or phonons, between and within molecules. Therefore, unique spectral fingerprints for single molecules can be obtained. SERS is accomplished through the use of substrates with nanometer scale geometries made of metals with many free electrons, such as silver, gold, or copper. In this research silver SERS substrates were used to study the SERS signature of biomolecules that typically produce very weak Raman signals.
SA1 and TRF1 synergistically bind to telomeric DNA and promote DNA-DNA pairing
NASA Astrophysics Data System (ADS)
Wang, Hong; Lin, Jiangguo; Countryman, Preston; Pan, Hai; Parminder Kaur Team; Robert Riehn Team; Patricia Opresko Team; Jane Tao Team; Susan Smith Team
Impaired telomere cohesion leads to increased aneuploidy and early onset of tumorigenesis. Cohesion is thought to occur through the entrapment of two DNA strands within tripartite cohesin ring(s), along with a fourth subunit (SA1/SA2). Surprisingly, cohesion rings are not essential for telomere cohesion, which instead requires SA1 and shelterin proteins including TRF1. However, neither this unique cohesion mechanism at telomeres or DNA-binding properties of SA1 is understood. Here, using single-molecule fluorescence imaging of quantum dot-labeled proteins on DNA we discover that while SA1 diffuses across multiple telomeric and non-telomeric regions, the diffusion mediated through its N-terminal domain is slower at telomeric regions. However, addition of TRF1 traps SA1 within telomeric regions, which form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy. Together, these experimental results and coarse-grained molecular dynamics simulations suggest that TRF1 and SA1 synergistically interact with DNA to support telomere cohesion without cohesin rings.
Zinchenko, Anatoly A; Maeda, Noriko; Pu, Shengyan; Murata, Shizuaki
2013-05-07
We report a protocol for entrapping of various water-dispersed nanomaterials: fullerenes, multiwall carbon nanotubes, quantum dots (semiconductor nanoparticles), and gold nanorods, into a DNA-chitosan complex. In contrast to small-size nanomaterial particles, the bulky DNA-chitosan interpolyelectrolyte complex incorporating the dispersed nanomaterials can be easily separated from aqueous media by centrifugation, filtration, or decantation. While the removal of nanoparticles by centrifugation is equally efficient for every type of nanoparticles and reaches 100%, the higher efficiency of the nanomaterials removal by other two methods is favored by larger size of nanoparticles. The application of this entrapping protocol for removal of nanomaterials from water is discussed.
[Electroporation of sperm to introduce foreign DNA into the genome of Pinctada maxima (Jameson)].
Hu, W; Yu, D H; Wang, Y P; Wu, K C; Zhu, Z Y
2000-03-01
Gene transfer was investigated in marine molluscs via electroporated sperm. Sperm of P. maxima (J.) was incubated with linear "all-fish" growth hormone gene (pCAgcGH and pCAgcGHc) for 30 min. Then, mature eggs were in-vitro fertilized with the sperm cells treated with electroporation at 10 kV and 2(7) pulses of six cycles. DNA was extracted from spat and analyzed by PCR and southern blot. The results indicated that the foreign DNA had been transferred into the genome of experimental molluscs. The transgenetic ration was 5.6%, 20% and 50% when 2 micrograms/mL, 6 micrograms/mL and 18 micrograms/mL of foreign DNA was used, respectively. It is suggested that the transferred efficiency is correlated with the amount of the foreign DNA.
Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying
2009-04-01
This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.
Hsieh, S L; Liu, R W; Wu, C H; Cheng, W T; Kuo, Ching-Ming
2003-12-01
A cDNA sequence of stearoyl-CoA desaturase (SCD) was determined from zebrafish (Danio rerio) and compared to the corresponding genes in several teleosts. Zebrafish SCD cDNA has a size of 1,061 bp, encodes a polypeptide of 325 amino acids, and shares 88, 85, 84, and 83% similarities with tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idella), common carp (Cyprinus carpio), and milkfish (Chanos chanos), respectively. This 1,061 bp sequence specifies a protein that, in common with other fatty acid desaturases, contains three histidine boxes, believed to be involved in catalysis. These observations suggested that SCD genes are highly conserved. In addition, an oligonucleotide probe complementary to zebrafish SCD mRNA was hybridized to mRNA of approximately 396 bases with Northern blot analysis. The Northern blot and RT-PCR analyses showed that the SCD mRNA was expressed predominantly in the liver, intestine, gill, and muscle, while a lower level was found in the brain. Furthermore, we utilized whole-mount in situ hybridization and real-time quantitative RT-PCR to identify expression of the zebrafish SCD gene at five different stages of development. This revealed that very high levels of transcripts were found in zebrafish at all stages during embryogenesis and early development. Copyright 2003 Wiley-Liss, Inc.
Reddy, E P; Mettus, R V; DeFreitas, E; Wroblewska, Z; Cisco, M; Koprowski, H
1988-01-01
Human T-cell lymphotropic virus type 1 (HTLV-I), the etiologic agent of human T-cell leukemia, has recently been shown to be associated with neurologic disorders such as tropical spastic paraparesis, HTLV-associated myelopathy, and possibly with multiple sclerosis. In this communication, we have examined one specific case of neurologic disorder that can be classified as multiple sclerosis or tropical spastic paraparesis. The patient suffering from chronic neurologic disorder was found to contain antibodies to HTLV-I envelope and gag proteins in his serum and cerebrospinal fluid. Lymphocytes from peripheral blood and cerebrospinal fluid of the patient were shown to express viral RNA sequences by in situ hybridization. Southern blot analysis of the patient lymphocyte DNA revealed the presence of HTLV-I-related sequences. Blot-hybridization analysis of the RNA from fresh peripheral lymphocytes stimulated with interleukin 2 revealed the presence of abundant amounts of genomic viral RNA with little or no subgenomic RNA. We have cloned the proviral genome from the DNA of the peripheral lymphocytes and determined its restriction map. This analysis shows that this proviral genome is very similar if not identical to that of the prototype HTLV-I genome. Images PMID:2897123
Abnormal expression and mutation of p53 in cervical cancer--a study at protein, RNA and DNA levels.
Ngan, H Y; Tsao, S W; Liu, S S; Stanley, M
1997-02-01
The objectives of this study are to document the status of p53 expression and mutation in cervical cancer at protein, RNA and DNA levels and to relate this to the presence of HPV. Biopsy specimens from one hundred and three squamous cell carcinoma of the cervix and histologically normal ectocervix were analysed. Fresh tissues were extracted for protein, RNA and DNA and flash frozen tissue cryostat sectioned for immunohistochemical staining. HPV DNA status was determined by PCR using L1 consensus primers and typed for HPV 16 and 18 with E6 specific primers. p53 expression was determined at the protein level by Western blotting on protein extracts and at RNA level by Northern blotting. There was no p53 overexpression or mutation detectable in the protein extracts. Three of 65 (4.6%) of the carcinomas were positive for p53 by immunostaining with the polyclonal antibody CM1. Overexpression at the RNA level was detected in 2 of 32 (6.3%) carcinomas. p53 mutation was screened for by PCR/SSCP (single strand conformation polymorphism) followed by sequencing to define the site of mutation. Two of the cervical cancers (2.0%) showed mutation in p53 in exons 7 or 8. The mutation rate in HPV positive tumours was 1.2% (1/81) and in HPV negative tumours was 5.2% (1/19). p53 overexpression or mutation does not seem to play a significant role in cervical carcinomas.
Xiong, Ruo-Hong; Wen, Shi-Lei; Wang, Qiang; Zhou, Hong-Ying; Feng, Shi
2018-01-01
Female athletes may experience difficulties in achieving pregnancy due to athletic amenorrhea (AA); however, the underlying mechanisms of AA remain unknown. The present study focuses on the mitochondrial alteration and its function in detecting the possible mechanism of AA. An AA rat model was established by excessive swimming. Hematoxylin and eosin staining, and transmission electron microscopic methods were performed to evaluate the morphological changes of the ovary, immunohistochemical examinations and radioimmunoassays were used to detect the reproductive hormones and corresponding receptors. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to test the mtDNA copy number. PCR and western blot analysis were used to test the expression of ND2. The change of morphological features of the rat ovaries revealed evident abnormalities. Particularly, the features of the mitochondria were markedly altered. In addition, reproductive hormones in the serum and tissues of AA rats were also detected to evaluate the function of the ovaries, and the levels of these hormones were significantly decreased. Furthermore, the mitochondrial DNA copy number (mtDNA) and expression of NADH dehydrogenase subunit 2 (ND2) were quantitated by qPCR or western blot analysis. Accordingly, the mtDNA copy number and expression of ND2 expression were markedly reduced in the AA rats. In conclusion, mitochondrial dysfunction in AA may affect the cellular energy supply and, therefore, result in dysfunction of the ovary. Thus, mitochondrial dysfunction may be considered as a possible underlying mechanism for the occurrence of AA.
Grasso, Marina; Boon, Elles M.J.; Filipovic-Sadic, Stela; van Bunderen, Patrick A.; Gennaro, Elena; Cao, Ru; Latham, Gary J.; Hadd, Andrew G.; Coviello, Domenico A.
2015-01-01
Fragile X syndrome and associated disorders are characterized by the number of CGG repeats and methylation status of the FMR1 gene for which Southern blot (SB) historically has been required for analysis. This study describes a simple PCR-only workflow (mPCR) to replace SB analysis, that incorporates novel procedural controls, treatment of the DNA in separate control and methylation-sensitive restriction endonuclease reactions, amplification with labeled primers, and two-color amplicon sizing by capillary electrophoresis. mPCR was evaluated in two independent laboratories with 76 residual clinical samples that represented typical and challenging fragile X alleles in both males and females. mPCR enabled superior size resolution and analytical sensitivity for size and methylation mosaicism compared to SB. Full mutation mosaicism was detected down to 1% in a background of 99% normal allele with 50- to 100-fold less DNA than required for SB. A low level of full mutation mosaicism in one sample was detected using mPCR but not observed using SB. Overall, the sensitivity for detection of full mutation alleles was 100% (95% CI: 89%–100%) with an accuracy of 99% (95% CI: 93%–100%). mPCR analysis of DNA from individuals with Klinefelter and Turner syndromes, and DNA from sperm and blood, were consistent with SB. As such, mPCR enables accurate, sensitive, and standardized methods of FMR1 analysis that can harmonize results across different laboratories. PMID:24177047
Blancher, C; Omri, B; Bidou, L; Pessac, B; Crisanti, P
1996-10-18
We report the isolation and characterization of a novel cDNA from quail neuroretina encoding a putative protein named nectinepsin. The nectinepsin cDNA identifies a major 2.2-kilobase mRNA that is detected from ED 5 in neuroretina and is increasingly abundant during embryonic development. A nectinepsin mRNA is also found in quail liver, brain, and intestine and in mouse retina. The deduced nectinepsin amino acid sequence contains the RGD cell binding motif of integrin ligands. Furthermore, nectinepsin shares substantial homologies with vitronectin and structural protein similarities with most of the matricial metalloproteases. However, the presence of a specific sequence and the lack of heparin and collagen binding domains of the vitronectin indicate that nectinepsin is a new extracellular matrix protein. Furthermore, genomic Southern blot studies suggest that nectinepsin and vitronectin are encoded by different genes. Western blot analysis with an anti-human vitronectin antiserum revealed, in addition to the 65- and 70-kDa vitronectin bands, an immunoreactive protein of about 54 kDa in all tissues containing nectinepsin mRNA. It seems likely that the form of vitronectin found in chick egg yolk plasma by Nagano et al. ((1992) J. Biol. Chem. 267, 24863-24870) is the protein that corresponds to the nectinepsin cDNA. This new protein could be an important molecule involved in the early steps of the development.
Marmiroli, M; Pagano, L; Pasquali, F; Zappettini, A; Tosato, V; Bruschi, C V; Marmiroli, N
2016-01-01
The use of cadmium sulphide quantum dots (CdS QDs) is increasing, particularly in the electronics industry. Their size (1-10 nm in diameter) is, however, such that they can be taken up by living cells. Here, a bakers' yeast (Saccharomyces cerevisiae) deletion mutant collection has been exploited to provide a high-throughput means of revealing the genetic basis for tolerance/susceptibility to CdS QD exposure. The deletion of 112 genes, some associated with the abiotic stress response, some with various metabolic processes, some with mitochondrial organization, some with transport and some with DNA repair, reduced the level of tolerance to CdS QDs. A gene ontology analysis highlighted the role of oxidative stress in determining the cellular response. The transformation of sensitive mutants with centromeric plasmids harbouring DNA from a wild type strain restored the wild type growth phenotype when the complemented genes encoded either HSC82, DSK2 or ALD3. The use of these simple eukaryote knock-out mutants for functional toxicogenomic analysis will inform studies focusing on higher organisms.
Vlaming, Hanneke; Molenaar, Thom M; van Welsem, Tibor; Poramba-Liyanage, Deepani W; Smith, Desiree E; Velds, Arno; Hoekman, Liesbeth; Korthout, Tessy; Hendriks, Sjoerd; Altelaar, A F Maarten; van Leeuwen, Fred
2016-12-06
Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features.
Vlaming, Hanneke; Molenaar, Thom M; van Welsem, Tibor; Poramba-Liyanage, Deepani W; Smith, Desiree E; Velds, Arno; Hoekman, Liesbeth; Korthout, Tessy; Hendriks, Sjoerd; Maarten Altelaar, AF; van Leeuwen, Fred
2016-01-01
Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features. DOI: http://dx.doi.org/10.7554/eLife.18919.001 PMID:27922451
Multiplex autoantibody detection for autoimmune liver diseases and autoimmune gastritis.
Vanderlocht, Joris; van der Cruys, Mart; Stals, Frans; Bakker-Jonges, Liesbeth; Damoiseaux, Jan
2017-09-01
Autoantibody detection for autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and autoimmune gastritis (AIG) is traditionally performed by IIF on a combination of tissues. Multiplex line/dot blots (LIA/DIA) offer multiple advantages, i.e. automation, objective reading, no interfering reactivities, no coincidental findings. In the current study we evaluated automated DIA (D-Tek) for detecting autoantibodies related to autoimmune diseases of the gastrointestinal tract. We tested samples of the Dutch EQC program and compared the results with the consensus of the participating labs. For the autoimmune liver diseases and AIG, respectively, 64 and 36 samples were tested. For anti-mitochondrial and anti-smooth muscle antibodies a concordance rate of 97% and 88% was observed, respectively. The concordance rate for anti-parietal cell antibodies was 92% when samples without EQC consensus (n=15) were excluded. For antibodies against intrinsic factor a concordance of 96% was observed. For all these antibodies discrepancies were identified that relate to the different test characteristics and the preponderance of IIF utilizing labs in the EQC program. In conclusion, we observed good agreement of the tested DIA blots with the consensus results of the Dutch EQC program. Taken together with the logistic advantages these blots are a good alternative for autoantibody detection in the respective diseases. A large prospective multicenter study is warranted to position these novel tests further in the whole spectrum of assays for the detection of these antibodies in a routine autoimmune laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Orihuela, C. J.; Mills, J.; Robb, C. W.; Wilson, C. J.; Watson, D. A.; Niesel, D. W.
2001-01-01
Differential display-PCR (DDPCR) was used to identify a Streptococcus pneumoniae gene with enhanced transcription during growth in the murine peritoneal cavity. Northern dot blot analysis and comparative densitometry confirmed a 1.8-fold increase in expression of the encoded sequence following murine peritoneal culture (MPC) versus laboratory culture or control culture (CC). Sequencing and basic local alignment search tool analysis identified the DDPCR fragment as pstS, the phosphate-binding protein of a high-affinity phosphate uptake system. PCR amplification of the complete pstS gene followed by restriction analysis and sequencing suggests a high level of conservation between strains and serotypes. Quantitative immunodot blotting using antiserum to recombinant PstS (rPstS) demonstrated an approximately twofold increase in PstS production during MPC from that during CCs, a finding consistent with the low levels of phosphate observed in the peritoneum. Moreover, immunodot blot and Northern analysis demonstrated phosphate-dependent production of PstS in six of seven strains examined. These results identify pstS expression as responsive to the MPC environment and extracellular phosphate concentrations. Presently, it remains unclear if phosphate concentrations in vivo contribute to the regulation of pstS. Finally, polyclonal antiserum to rPstS did not inhibit growth of the pneumococcus in vitro, suggesting that antibodies do not block phosphate uptake; moreover, vaccination of mice with rPstS did not protect against intraperitoneal challenge as assessed by the 50% lethal dose.
High sensitivity 5-hydroxymethylcytosine detection in Balb/C brain tissue.
Davis, Theodore; Vaisvila, Romualdas
2011-02-01
DNA hydroxymethylation is a long known modification of DNA, but has recently become a focus in epigenetic research. Mammalian DNA is enzymatically modified at the 5(th) carbon position of cytosine (C) residues to 5-mC, predominately in the context of CpG dinucleotides. 5-mC is amenable to enzymatic oxidation to 5-hmC by the Tet family of enzymes, which are believed to be involved in development and disease. Currently, the biological role of 5-hmC is not fully understood, but is generating a lot of interest due to its potential as a biomarker. This is due to several groundbreaking studies identifying 5-hydroxymethylcytosine in mouse embryonic stem (ES) and neuronal cells. Research techniques, including bisulfite sequencing methods, are unable to easily distinguish between 5-mC and 5-hmC . A few protocols exist that can measure global amounts of 5-hydroxymethylcytosine in the genome, including liquid chromatography coupled with mass spectrometry analysis or thin layer chromatography of single nucleosides digested from genomic DNA. Antibodies that target 5-hydroxymethylcytosine also exist, which can be used for dot blot analysis, immunofluorescence, or precipitation of hydroxymethylated DNA, but these antibodies do not have single base resolution.In addition, resolution depends on the size of the immunoprecipitated DNA and for microarray experiments, depends on probe design. Since it is unknown exactly where 5-hydroxymethylcytosine exists in the genome or its role in epigenetic regulation, new techniques are required that can identify locus specific hydroxymethylation. The EpiMark 5-hmC and 5-mC Analysis Kit provides a solution for distinguishing between these two modifications at specific loci. The EpiMark 5-hmC and 5-mC Analysis Kit is a simple and robust method for the identification and quantitation of 5-methylcytosine and 5-hydroxymethylcytosine within a specific DNA locus. This enzymatic approach utilizes the differential methylation sensitivity of the isoschizomers MspI and HpaII in a simple 3-step protocol. Genomic DNA of interest is treated with T4-BGT, adding a glucose moeity to 5-hydroxymethylcytosine. This reaction is sequence-independent, therefore all 5-hmC will be glucosylated; unmodified or 5-mC containing DNA will not be affected. This glucosylation is then followed by restriction endonuclease digestion. MspI and HpaII recognize the same sequence (CCGG) but are sensitive to different methylation states. HpaII cleaves only a completely unmodified site: any modification (5-mC, 5-hmC or 5-ghmC) at either cytosine blocks cleavage. MspI recognizes and cleaves 5-mC and 5-hmC, but not 5-ghmC. The third part of the protocol is interrogation of the locus by PCR. As little as 20 ng of input DNA can be used. Amplification of the experimental (glucosylated and digested) and control (mock glucosylated and digested) target DNA with primers flanking a CCGG site of interest (100-200 bp) is performed. If the CpG site contains 5-hydroxymethylcytosine, a band is detected after glucosylation and digestion, but not in the non-glucosylated control reaction. Real time PCR will give an approximation of how much hydroxymethylcytosine is in this particular site. In this experiment, we will analyze the 5-hydroxymethylcytosine amount in a mouse Babl/C brain sample by end point PCR.
Dibenedetto, S P; Lo Nigro, L; Mayer, S P; Rovera, G; Schilirò, G
1997-08-01
The aims of this study were twofold: (1) to assess the marrow of patients with T-lineage acute lymphoblastic leukemia (T-ALL) for the presence of molecular residual disease (MRD) at different times after diagnosis and determine its value as a prognostic indicator; and (2) to compare the sensitivity, rapidity, and reliability of two methods for routine clinical detection of rearranged T-cell receptor (TCR). Marrow aspirates from 23 patients with T-ALL diagnosed consecutively from 1982 to 1994 at the Division of Pediatric Hematology and Oncology, University of Catania, Italy, were obtained at diagnosis, at the end of induction therapy (6 to 7 weeks after diagnosis), at consolidation and/or reinforced reinduction (12 to 15 weeks after diagnosis), at the beginning of maintenance therapy (34 to 40 weeks after diagnosis), and at the end of therapy (96 to 104 weeks after diagnosis). DNA from the patients' marrow was screened using the polymerase chain reaction (PCR) for the four most common TCR delta rearrangements in T-ALL (Vdelta1 Jdelta1, Vdelta2 Jdelta1, Vdelta3 Jdelta1, and Ddelta2 Jdelta1) and, when negative, further tested for the presence of other possible TCR delta and TCR gamma rearrangements. After identification of junctional rearrangements involving V, D, and J segments by DNA sequencing, clone-specific oligonucleotide probes 5' end-labeled either with fluorescein or with [gamma-32P]ATP were used for heminested PCR or dot hybridization of PCR products of marrows from patients in clinical remission. For 17 patients with samples that were informative at the molecular level, the estimated relapse-free survival (RFS) at 5 years was 48.6% (+/-12%). The sensitivity and specificity for detection of MRD relating to the outcome were 100% and 88.9% for the heminested fluorescence PCR and 71.4% and 88.9% for Southern/dot blot hybridization, respectively. Predictive negative and positive values were 100% and 90.7% for heminested fluorescence PCR, respectively. The probability of RFS based on evidence of MRD as detected by heminested fluorescence PCR at the time of initiation of maintenance therapy was 100% and 0% for MRD-negative and MRD-positive patients, respectively. Thus, the presence of MRD at the beginning of maintenance therapy is a strong predictor of poor outcome, and the molecular detection of MRD at that time might represent the basis for a therapeutic decision about such patients. By contrast, the absence of MRD at any time after initiation of treatment strongly correlates with a favorable outcome. The heminested fluorescence PCR appears to be more accurate and more rapid than other previously used methods for the detection of residual leukemia.
NASA Technical Reports Server (NTRS)
Fattaey, A.; Lenz, L.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)
1992-01-01
Eleven hybridoma cell lines producing monoclonal antibodies (MAbs) against intact budgerigar fledgling disease (BFD) virions were produced and characterized. These antibodies were selected for their ability to react with BFD virions in an enzyme-linked immunosorbent assay. Each of these antibodies was reactive in the immunofluorescent detection of BFD virus-infected cells. These antibodies immunoprecipitated intact virions and specifically recognized the major capsid protein, VP1, of the dissociated virion. The MAbs were found to preferentially recognize native BFD virus capsid protein when compared with denatured virus protein. These MAbs were capable of detecting BFD virus protein in chicken embryonated cell-culture lysates by dot-blot analysis.
Avian pathogenic Escherichia coli bind fibronectin and laminin.
Ramírez, Rosa María; Almanza, Yolanda; González, Rafael; García, Santos; Heredia, Norma
2009-04-01
Avian colisepticemia frequently occurs after respiratory tract damage, the primary site for infection allows bacteria to encounter an exposed basement membrane, where laminin and fibronectin are important components. We investigated the ability of an isolate of avian pathogenic Escherichia coli to bind fibronectin and laminin. Using Far-western dot blot analysis, we demonstrated the ability of this microorganism to bind basement membrane proteins fibronectin and laminin. Results from an ELISA-based approach indicate that the binding to these membrane proteins was bacterial-dose dependent. Furthermore, two specific E. coli polypeptides, of 32 kDa and 130 kDa, reacted with laminin and fibronectin, respectively. Further evaluation of these potential bacterial adhesins may provide insights into the pathogenesis of colibacillosis.
Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans.
Andrianopoulos, A; Hynes, M J
1988-01-01
The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of four unlinked structural genes involved in acetamide (amdS), omega amino acid (gatA and gabA), and lactam (lamA) catabolism. By the use of DNA-mediated transformation of A. nidulans, the amdR regulatory gene was cloned from a genomic cosmid library. Southern blot analysis of DNA from various loss-of-function amdR mutants revealed the presence of four detectable DNA rearrangements, including a deletion, an insertion, and a translocation. No detectable DNA rearrangements were found in several constitutive amdRc mutants. Analysis of the fate of amdR-bearing plasmids in transformants showed that 10 to 20% of the transformation events were homologous integrations or gene conversions, and this phenomenon was exploited in developing a strategy by which amdRc and amdR- alleles can be readily cloned and analyzed. Examination of the transcription of amdR by Northern blot (RNA blot) analysis revealed the presence of two mRNAs (2.7 and 1.8 kilobases) which were constitutively synthesized at a very low level. In addition, amdR transcription did not appear to depend on the presence of a functional amdR product nor was it altered in amdRc mutants. The dosage effects of multiple copies of amdR in transformants were examined, and it was shown that such transformants exhibited stronger growth than did the wild type on acetamide and pyrrolidinone media, indicating increased expression of the amdS and lamA genes, respectively. These results were used to formulate a model for amdR-mediated regulation of gene expression in which the low constitutive level of amdR product sets the upper limits of basal and induced transcription of the structural genes. Multiple copies of 5' sequences from the amdS gene can result in reduced growth on substrates whose utilization is dependent on amdR-controlled genes. This has been attributed to titration of limiting amdR gene product. Strong support for this proposal was obtained by showing that multiple copies of the amdR gene can reverse this phenomenon (antititration). Images PMID:3062382
Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Vora, Gary J.; Delehanty, James B.; Susumu, Kimihiro; Mei, Bing C.; Dawson, Philip E.; Medintz, Igor L.
2015-01-01
One of the principle hurdles to wider incorporation of semiconductor quantum dots (QDs) in biology is the lack of facile linkage chemistries to create different types of functional QD-bioconjugates. A two-step modular strategy for the presentation of biomolecules on CdSe/ZnS core/shell QDs is described here which utilizes a chemoselective, aniline-catalyzed hydrazone coupling chemistry to append hexahistidine sequences onto peptides and DNA. This specifically provides them the ability to ratiometrically self-assemble to hydrophilic QDs. The versatility of this labeling approach was highlighted by ligating proteolytic substrate peptides, an oligoarginine cell-penetrating peptide, or a DNA-probe to cognate hexahistidine peptidyl sequences. The modularity allowed subsequently self-assembled QD constructs to engage in different types of targeted bioassays. The self-assembly and photophysical properties of individual QD conjugates were first confirmed by gel electrophoresis and Förster resonance energy transfer analysis. QD-dye-labeled peptide conjugates were then used as biosensors to quantitatively monitor the proteolytic activity of caspase-3 or elastase enzymes from different species. These sensors allowed the determination of the corresponding kinetic parameters, including the Michaelis constant (KM) and the maximum proteolytic activity (Vmax). QDs decorated with cell-penetrating peptides were shown to be successfully internalized by HEK 293T/17 cells, while nanocrystals displaying peptide-DNA conjugates were utilized as fluorescent probes in hybridization microarray assays. This modular approach for displaying peptides or DNA on QDs may be extended to other more complex biomolecules such as proteins or utilized with different types of nanoparticle materials. PMID:20099912
Chen, Xueqian; Gui, Wenying; Ma, Qiang
2018-06-07
In our work, a novel DNA electrochemiluminescence (ECL) sensor based on CuZnInS quantum dots (QDs) and gold-nanoparticles (Au NPs) is developed for highly sensitive detection of epidermal growth factor receptor (EGFR) Gene, which has a close relation with the lung cancer. The CuZnInS QDs work as a novel kind of ECL luminophore, whose defect state emission is suitable for ECL sensing. To enhance the sensitivity of the sensing system, Au NPs are utilized creatively to strengthen the ECL intensity of CuZnInS QD S according to the surface plasmon resonance (SPR) effect. An ultrasensitive and universal detecting platform is built based on the SPR effect between Au NPs and CuZnInS QD S . The effect of the capped stabilizer on the ECL signal of QDs is firstly investigated. Three different stabilizers are used to cap the CuZnInS QDs, including mercaptopropionic acid (MPA), l-glutathione (GSH) and cysteamine (CA). MPA capped CuZnInS QDs possess the strongest ECL intensity among the three kinds of the CuZnInS QDs. Under the optimum conditions, a good linear relationship between ECL intensity and the concentration of target DNA is obtained in the range from 0.05 nmol L -1 to 1 nmol L -1 . The detection limit is 0.0043 nmol L -1 . The proposed DNA sensor has been employed for the determination of target DNA EGFR in human serum samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alic, M.; Kornegay, J.R.; Pribnow, D.
1989-02-01
Swollen basiodiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per {mu}g of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basiodiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and othermore » auxotrophic strains yielded Ade{sup {minus}} progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene.« less
Alic, Margaret; Kornegay, Janet R.; Pribnow, David; Gold, Michael H.
1989-01-01
Swollen basidiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per μg of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basidiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and other auxotrophic strains yielded Ade− progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene. Images PMID:16347848
Adjakly, Mawussi; Bosviel, Rémy; Rabiau, Nadège; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique
2011-12-01
DNA hypermethylation is an epigenetic mechanism which induces silencing of tumor-suppressor genes in prostate cancer. Many studies have reported that specific components of food plants like soy phytoestrogens may have protective effects against prostate carcinogenesis or progression. Genistein and daidzein, the major phytoestrogens, have been reported to have the ability to reverse DNA hypermethylation in cancer cell lines. The aim of this study was to investigate the potential demethylating effects of these two soy compounds on BRCA1, GSTP1, EPHB2 and BRCA2 promoter genes. Prostate cell lines DU-145 and PC-3 were treated with genistein 40 µM, daidzein 110 µM, budesonide (methylating agent) 2 µM and 5-azacytidine (demethylating agent) 2 µM. In these two human prostate cancer cell lines we performed methylation quantification by using Methyl Profiler DNA methylation analysis. This technique is based on a methylation-specific digestion followed by quantitative PCR. We analyzed the corresponding protein expression by western blotting. Soy phytoestrogens induced a demethylation of all promoter regions studied except for BRCA2, which is not methylated in control cell lines. An increase in their protein expression was also demonstrated by western blot analysis and corroborated the potential demethylating effect of soy phytoestrogens. This study showed that the soy phytoestrogens, genistein and daidzein, induce a decrease of methylation of BRCA1, GSTP1 and EPHB2 promoters. Therefore, soy phytoestrogens may have a protective effect on prostate cancer. However, more studies are needed in order to understand the mechanism by which genistein and daidzein have an inhibiting action on DNA methylation.
Xiao, W; Li, C Q; Xiao, X P; Lin, F Z
2013-12-16
Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.
Isolation of the human chromosomal band Xq28 within somatic cell hybrids by fragile X site breakage.
Warren, S T; Knight, S J; Peters, J F; Stayton, C L; Consalez, G G; Zhang, F P
1990-01-01
The chromosomal fragile-site mapping to Xq27.3 is associated with a frequent form of mental retardation and is prone to breakage after induced deoxyribonucleotide pool perturbation. The human hypoxanthine phosphoribosyltransferase (HPRT) and glucose-6-phosphate dehydrogenase (G6PD) genes flank the fragile X chromosome site and can be used to monitor integrity of the site in human-hamster somatic cell hybrids deficient in the rodent forms of these activities. After induction of the fragile X site, negative selection for HPRT and positive enrichment for G6PD resulted in 31 independent colonies of HPRT-,G6PD+ phenotype. Southern blot analysis demonstrated the loss of all tested markers proximal to the fragile X site with retention of all tested human Xq28 loci in a majority of the hybrids. In situ hybridization with a human-specific probe demonstrated the translocation of a small amount of human DNA to rodent chromosomes in these hybrids, suggesting chromosome breakage at the fragile X site and the subsequent translocation of Xq28. Southern blot hybridization of hybrid-cell DNA, resolved by pulsed-field gel electrophoresis, for human-specific repetitive sequences revealed abundant CpG-islands within Xq28, consistent with its known gene density. The electrophoretic banding patterns of human DNA among the hybrids were remarkably consistent, suggesting that fragile X site breakage is limited to a relatively small region in Xq27-28. These somatic cell hybrids, containing Xq27.3-qter as the sole human DNA, will aid the search for DNA associated with the fragile X site and will augment the high resolution genomic analysis of Xq28, including the identification of candidate genes for genetic-disease loci mapping to this region. Images PMID:2339126
Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing
2010-01-01
A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain.
Travis, G H; Sutcliffe, J G
1988-01-01
To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033
Wolters, A M; Koornneef, M; Gilissen, L J
1993-09-01
This paper describes the analysis of chloroplast (cp) DNA and mitochondrial (mt) DNA in 21 somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia by means of Southern-blot hybridization. Each of these calli contained only one type of cpDNA; 14 had the N. plumbaginifolia (Np) type and seven the S. tuberosum (St) type. N. plumbaginifolia cpDNA was present in hybrids previously shown to contain predominantly N. plumbaginifolia chromosomes whereas hybrids in which S. tuberosum chromosomes predominated possessed cpDNA from potato. We have analyzed the mtDNA of these 21 somatic hybrid calli using four restriction enzyme/probe combinations. Most fusion products had only, or mostly, mtDNA fragments from the parent that predominated in the nucleus. The hybrids containing mtDNA fragments from only one parent (and new fragments) also possessed chloroplasts from the same species. The results suggest the existence of a strong nucleo-cytoplasmic incongruity which affects the genome composition of somatic hybrids between distantly related species.
Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing
2018-05-15
Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.
Amplification and chromosomal dispersion of human endogenous retroviral sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, P.E.; Martin, M.A.; Rabson, A.B.
1986-09-01
Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification andmore » dispersion events may be linked.« less
Cellular Consequences of Telomere Shortening in Histologically Normal Breast Tissues
2010-09-01
quantitative PCR (10) or with a chemiluminescent-based slot blot assay that measures telomere DNA content, a proxy of telomere length (9, 11, 12). These...Subhawong AP, Subhawong T, Nassar H, et al. Most basal-like breast carcinomas demonstrate the same Rb-/p16+ immunophenotype as the HPV -related poorly
Yokozaki, H; Tahara, H; Oue, N; Tahara, E
2000-01-01
A new transcription variant of hepatocyte growth factor/scatter factor (HGF/SF) was cloned from human gastric cancer cell line HSC-39. Northern blot analysis of eight human gastric cancer cell lines (TMK-1, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, KATO-III and HSC-39) demonstrated that HSC-39 cells expressed a 1.3 kb abnormal HGF/SF transcript. Screening of 1 x 10(6) colonies of cDNA library from HSC-39 constructed in pAP3neo mammalian expression vector selected four positive clones containing HGF/SF transcript. Among them, two contained a 1.3 kbp insert detecting the identical transcript to that obtained with HGF/SF probe by Northern blotting. Deoxynucleotide sequencing of the 1.3 kbp insert revealed that it was composed of a part of HGF/SF cDNA from exon 14 to exon 18, corresponding to the whole sequence of HGF/SF light chain, with 5' 75 nucleotides unrelated to any sequence involved in HGF/SF.
Traversa, Donato; Iorio, Raffaella; Klei, Thomas R.; Kharchenko, Vitaliy A.; Gawor, Jakub; Otranto, Domenico; Sparagano, Olivier A. E.
2007-01-01
The ability of a reverse line blot (RLB) assay to identify 13 common species of equine small strongyles (cyathostomins) and to discriminate them from three Strongylus spp. (large strongyles) was demonstrated. The assay relied on the specific hybridization of PCR-amplified intergenic spacer DNA fragments of the nuclear ribosomal DNA to membrane-bound species-specific probes. All cyathostomins examined were unequivocally identified and simultaneously discriminated from each other and from three large strongyles (Strongylus edentatus, Strongylus equinus, and Strongylus vulgaris). This assay will enable the accurate and rapid identification of equine cyathostomins irrespective of their life cycle stage, opening important avenues for a better understanding of their biology and epidemiology and of the pathogenesis of cyathostomin-associated disease. In particular, this RLB method promises to be a powerful diagnostic tool to determine the roles of individual species in the pathogenesis of mixed infections and to elucidate some aspects of cyathostominosis. Also, it could represent a basic step toward the development of a rapid and simple molecular test for the early detection of drug-resistant genotypes of horse strongyle species. PMID:17626168
Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.
Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P
2016-01-01
Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.
Guo, Chunguang; Zhang, Xiaodong; Fink, Stephen P; Platzer, Petra; Wilson, Keith; Willson, James K. V.; Wang, Zhenghe; Markowitz, Sanford D
2008-01-01
Expression microarrays identified a novel transcript, designated as Ugene, whose expression is absent in normal colon and colon adenomas, but that is commonly induced in malignant colon cancers. These findings were validated by real-time PCR and Northern blot analysis in an independent panel of colon cancer cases. In addition, Ugene expression was found to be elevated in many other common cancer types, including, breast, lung, uterus, and ovary. Immunofluorescence of V5-tagged Ugene revealed it to have a nuclear localization. In a pull-down assay, uracil DNA-glycosylase 2 (UNG2), an important enzyme in the base excision repair pathway, was identified as a partner protein that binds to Ugene. Co-immunoprecipitation and Western blot analysis confirmed the binding between the endogenous Ugene and UNG2 proteins. Using deletion constructs, we find that Ugene binds to the first 25 amino acids of the UNG2 NH2-terminus. We suggest Ugene induction in cancer may contribute to the cancer phenotype by interacting with the base excision repair pathway. PMID:18676834
Ye, Weijie; Zhang, Jinghui; Shu, Zhaoche; Yin, Yibing; Zhang, Xuemei; Wu, Kaifeng
2018-01-01
The LytR-Cps-Psr family proteins are commonly present in Gram-positive bacteria, which have been shown to implicate in anchoring cell wall-related glycopolymers to the peptidoglycan. Here, we report the cellular function of SPD_1741 (LytR) in Streptococcus pneumoniae and its role in virulence of pneumococci. Pneumococcal Δ lytR mutants have been successfully constructed by replacing the lytR gene with erm cassette. The role of LytR in pneumococcal growth was determined by growth experiments, and surface accessibility of the LytR protein was analyzed using flow cytometry. Transmission electron microscopy (TEM) and immunoblotting were used to reveal the changes in capsular polysaccharide (CPS). Dot blot and ELISA were used to quantify the amount of teichoic acids (TAs). The contribution of LytR on bacterial virulence was assessed using in vitro phagocytosis assays and infection experiments. Compared to the wild-type strain, the Δ lytR mutant showed a defect in growth which merely grew to a maximal OD 620 of 0.2 in the liquid medium. The growth of the Δ lytR mutant could be restored by addition of recombinant ΔTM-LytR protein in culture medium in a dose-dependent manner. TEM results showed that the D39Δ lytR mutant was impaired in the surface attachment of CPS. Deletion of lytR gene also impaired the retention of TAs on the surface of pneumococci. The reduction of CPS and TAs on the pneumocccal cells were confirmed using Dot blot and ELISA assays. Compared to wild-type D39, the Δ lytR mutant was more susceptible to the phagocytosis. Animal studies showed that the ability to colonize the nasophaynx and virulence of pneumococci were affected by impairment of the lytR gene. Collectively, these results suggest that pneumococcal LytR is involved in anchoring both the CPS and TAs to cell wall, which is important for virulence of pneumococci.
Moran, Gabriel; Carcamo, Carolina; Concha, Margarita; Folch, Hugo
2015-01-01
Serum amyloid A (SAA) is an acute phase protein that is elevated in blood during inflammation. The role of this protein in allergic diseases of airways remains unclear. The objective of this study was to evaluate the SAA in blood, lung and bronchial cells in a murine model of bronchial hypersensitivity to Aspergillus fumigatus. To achieve this purpose, different groups of 5-month-old mice were housed in cages containing hay bedding that was contaminated with A. fumigatus and were kept in an isolation room for 16 days to allow for the induction of allergic airway inflammation. Subsequently, the mice were then exposed once again to Aspergillus spores at 0, 2, 8, 24 and 72 h, and they were bled to acquire serum and sacrificed to obtain bronchoalveolar lavage fluid (BALF) or lung tissues for analysis. SAA levels were measured in lung, serum and BALF by dot blot assay and RT-PCR (reverse transcription polymerase chain reaction). The results indicated that SAA protein levels increased in both serum and lung within 2-24h after mice were exposed to Aspergillus spores. Moreover, the SAA mRNA expression levels in the lungs and BALF cells demonstrated the same trend that was observed for the protein levels through the dot blot assay; in particular, SAA mRNA levels increased within the first hour after mice were exposed to A. fumigatus. In this allergic airway model, we conclude that A. fumigatus can induce an acute inflammatory response in the airways through the stimulation of the SAA protein, increasing its levels in serum, lung tissue and BALF samples during the early hours of exposure of mice that have been sensitised for this fungus. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Yan, Weiwei; Saleem, Muhammad Hassan; McDonough, Patrick; McDonough, Sean P.; Divers, Thomas J.
2013-01-01
Leptospira immunoglobulin (Ig)-like (Lig) proteins are a novel family of surface-associated proteins in which the N-terminal 630 amino acids are conserved. In this study, we truncated the LigA conserved region into 7 fragments comprising the 1st to 3rd (LigACon1-3), 4th to 7.5th (LigACon4-7.5), 4th (LigACon4), 4.5th to 5.5th (LigACon4.5–5.5), 5.5th to 6.5th (LigACon5.5–6.5), 4th to 5th (LigACon4-5), and 6th to 7.5th (LigACon6-7.5) repeat domains. All 7 recombinant Lig proteins were screened using a slot-shaped dot blot assay for the diagnosis of equine leptospirosis. Our results showed that LigACon4-7.5 is the best candidate diagnostic antigen in a slot-shaped dot blot assay. LigACon4-7.5 was further evaluated as an indirect enzyme-linked immunosorbent assay (ELISA) antigen for the detection of Leptospira antibodies in equine sera. This assay was evaluated with equine sera (n = 60) that were microscopic agglutination test (MAT) negative and sera (n = 220) that were MAT positive to the 5 serovars that most commonly cause equine leptospirosis. The indirect ELISA results showed that at a single serum dilution of 1:250, the sensitivity and specificity of ELISA were 80.0% and 87.2%, respectively, compared to those of MAT. In conclusion, an indirect ELISA was developed utilizing a recombinant LigA fragment comprising the 4th to 7.5th repeat domain (LigACon4-7.5) as a diagnostic antigen for equine leptospirosis. This ELISA was found to be sensitive and specific, and it yielded results that concurred with those of the standard MAT. PMID:23720368
Zeitoun, H; Bahey-El-Din, M; Kassem, M A; Aboushleib, H M
2017-12-01
Mycobacterium tuberculosis infection constitutes a global threat that results in significant morbidity and mortality worldwide. Efficient and early diagnosis of tuberculosis (TB) is of paramount importance for successful treatment. The aim of the current study is to investigate the mycobacterial mycothiol acetyltransferase Rv0819 as a potential novel biomarker for the diagnosis of active TB infection. The gene encoding Rv0819 was cloned and successfully expressed in Escherichia coli. The recombinant Rv0819 was purified using metal affinity chromatography and was used to raise murine polyclonal antibodies against Rv0819. The raised antibodies were employed for direct detection of Rv0819 in patient serum samples using dot blot assay and competitive enzyme-linked immunosorbent assay (ELISA). Serum samples were obtained from 68 confirmed new TB patients and 35 healthy volunteers as negative controls. The dot blot assay showed sensitivity of 64·7% and specificity of 100%, whereas the competitive ELISA assay showed lower sensitivity (54·4%) and specificity (88·57%). The overall sensitivity of the combined results of the two tests was found to be 89·7%. Overall, the mycobacterial Rv0819 is a potential TB serum biomarker that can be exploited, in combination with other TB biomarkers, for efficient and reliable diagnosis of active TB infection. The early and accurate diagnosis of tuberculosis infection is of paramount importance for initiating treatment and avoiding clinical complications. Most current diagnostic tests have poor sensitivity and/or specificity and in many cases they are too expensive for routine diagnostic testing in resource-limited settings. In the current study, we examined a novel mycobacterial serum biomarker, namely mycothiol acetyltransferase Rv0819. The antigen was detectable in serum specimens of a significant number of tuberculosis patients. This article proves the importance of Rv0819 and paves the way towards its future use as a useful diagnostic marker for tuberculosis infection. © 2017 The Society for Applied Microbiology.
Alam, Jawed; Maiti, Sankar; Ghosh, Prachetash; De, Ronita; Chowdhury, Abhijit; Das, Suryasnata; Macaden, Ragini; Devarbhavi, Harshad; Ramamurthy, T; Mukhopadhyay, Asish K
2012-09-01
A novel virulence factor, duodenal ulcer-promoting gene A (dupA), in Helicobacter pylori has been found to be associated with disease in certain populations but not in others. This study analysed a South-east Indian population as part of the debate about the relevance of dupA for the prediction of clinical outcomes. A total of 140 H. pylori strains isolated from duodenal ulcer (DU) (n = 83) and non-ulcer dyspepsia (NUD) patients (n = 57) were screened by PCR and dot-blot hybridization to determine the presence of the ORFs jhp0917 and jhp0918. Part of jhp0917-jhp0918 was sequenced to search for the C/T insertion that characterizes dupA and the levels of dupA transcripts were also assessed. The PCR and dot-blot results indicated the presence of jhp0917 and jhp0918 in 37.3 % (31/83) and 12.2 % (7/57) of H. pylori strains isolated from DU and NUD patients, respectively. Sequencing analysis showed insertion of a C at nt 1386 in the 3' region of jhp0917, forming the dupA gene in 35 strains. RT-PCR analysis detected the dupA transcript in 28 of these 35 strains. The expression level of the dupA transcript varied from strain to strain, as shown by real-time PCR. The results demonstrated that analysis based on PCR only for dupA may produce an erroneous interpretation. The prevalence of dupA was significantly greater among strains isolated from patients with DU than from patients with NUD in this population (P = 0.001, odds ratio = 4.26, confidence interval = 1.60-11.74). Based on these findings, dupA can be considered a biomarker for DU patients in India. The reported discrepancies for this putative virulence marker in different populations may be due to the genome plasticity of H. pylori.
Ding, Chuanqing; Huang, Jianyan; MacVeigh-Aloni, Michelle; Lu, Michael
2013-01-01
Aims To test the hypotheses that some epithelial cells in the rabbit lacrimal gland (LG) are mucin-secreting cells that are also particularly rich in aquaporin 5 (AQP5) and sodium potassium ATPase β1 subunit (NKAβ1), LG-secreted mucins contribute to the total mucin pool in tear film, and that the rabbit LG is a heterogenic gland where proteins secreted in response to different agonists are varied. Materials and methods LGs were obtained from adult female rabbits and processed for paraffin sections for hematoxylin and eosin (HE) staining, periodic acid-Schiff (PAS), mucicarmine, and Alcian blue (pH 0.4, 1.0, and 2.5) for the detection of mucins. Serial sections were used for immunohistochemistry (IHC) and PAS. LG lysates and fluids were assayed by dot blot for detection of mucins, and by SDS-PAGE to detect differences in protein profiles of LG fluids stimulated by different agonists. Results HE staining demonstrated that the LG is a heterogeneous gland where most epithelial cells are serous, while all duct cells are mucous cells. Some acini and individual acinar cells within serous acini are also mucous or seromucous cells and these cells are particularly rich in AQP5 and NKAβ1. Dot blot assay showed the presence of mucins in the LG fluids. The protein profiles of LG fluids from pilocarpine, phenylephrine, and isoproterenol varied significantly, particularly in the mid range. Conclusions Our data indicated that the rabbit LG is a heterogeneous gland that is composed of both serous and mucin-secreting cells, and mucins produced by the LG contribute to the mucin pool in the tear film. The heterogeneity of the rabbit LG supports the notion of differential secretion, i.e. the volume and composition of the LG fluids vary depending on various circumstances in the ocular surface and the body’s needs. PMID:21999223
Anti-myeloperoxidase autoantibodies react with native but not denatured myeloperoxidase.
Falk, R J; Becker, M; Terrell, R; Jennette, J C
1992-01-01
We wondered whether anti-myeloperoxidase (MPO) autoantibodies (MPO-ANCA) found in patients with systemic vasculitis react with a conformational epitope or epitopes on the MPO molecule. Sera from 15 human MPO-ANCA, and a polyclonal and a monoclonal anti-MPO antibodies were reacted with MPO in native and denatured states. Human MPO-ANCA and mouse monoclonal anti-MPO reacted with native MPO, and a 120-kD band representing the MPO hologenzyme, but not with denatured MPO fragments; however, MPO-ANCA and mouse anti-MPO did not demonstrate competitive inhibition of binding to MPO. Polyclonal rabbit anti-MPO reacted with both native and denatured MPO. All MPO-ANCA tested showed the same patterns of reactivity with native and denatured MPO in dot blot and Western blot analyses. Both polyclonal and monoclonal anti-MPO antibodies inhibited MPO's protein iodination by over 90%, whereas MPO-ANCA IgGs, normal IgGs and disease control IgGs did not. These data suggest that (i) MPO-ANCA interact with a conformational epitope on the MPO molecule; and (ii) MPO-ANCA from different patients have similar reactivity with native versus denatured MPO. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1379133
Choudhary, Shazia; Murad, Sheeba; Hayat, Muhammad Qasim; Shakoor, Zahid; Arshad, Muhammad
2017-01-01
Cannabis sativa (C.sativa) is well-known for its medicinal, industrial and recreational use. However, allergies in relation to Cannabis sativa (C.sativa) are rarely reported. C. sativa is one of the common weeds found in Pakistan and its pollen grains are common in spring and fall season. Although categorized as an aeroallergen, there are limited number of reports regarding allergenic potential in C. sativa. Therefore, the current study is aimed at exploring the IgE- binding potential among the C. sativa pollen in local pollen allergic patients. Initial screening of C. sativa sensitized individuals was carried out by dot blot from the sera of pollen allergic patients. Proteins from the pollen grains were extracted and resolved on 10% gel. Eight bands were visible on gel however only one protein fragment i.e. of 14KDa size was found to bind to IgE as analyzed through protein gel blot analysis. Strong IgE affinity of a 14 kDa protein fragment from C. sativa pollen extract suggests its allergenic potential. Further study is required to find the exact nature of this protein fragment.
Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F; Bahieldin, Ahmed
2015-07-22
Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. Transgenic wheat plants had improved resistance to Sitophilus granarius.
2014-01-01
Background Torque Teno Virus (TTV) is a DNA virus with high rate of prevalence globally. Since its discovery in 1997, several studies have questioned the role of this virus in causing disease. However, it still remains an enigma. Although methods are available for detection of TTV infection, there is still a need for simple, rapid and reliable method for screening of this virus in human population. Present investigation describes the cloning and expression of N22 region of TTV-genome and the use of expressed peptide in development of immunoassay to detect anti-TTV antibodies in serum. Since TTV genotype-1 is more common in India, the serum positive for genotype-1 was used as source of N22 for expression purpose. Methods Full length N22 region of ORF1 from TTV genotype-1 was amplified and cloned in pGEM®-T Easy vector. After cloning, the amplicon was transformed and expressed as a fusion protein containing hexa-histidine tag in pET-28a(+) vector using BL21 E. coli cells as host. Expression was conducted both in LB medium as well as ZYP-5052 auto-induction medium. The expressed peptide was purified using metal-chelate affinity chromatography and used as antigen in developing a blot immunoassay. Results Analysis of translated product by SDS-PAGE and western blotting demonstrated the presence of 25 kDa polypeptide produced after expression. Solubility studies showed the polypeptide to be associated with insoluble fraction. The use of this peptide as antigen in blot assay produced prominent spot on membrane treated with sera from TTV-infected patients. Analysis of sera from 75 patients with liver and renal diseases demonstrated a successful implication of N22 polypeptide based immunoassay in screening sera for anti-TTV antibodies. Comparison of the immunoassay developed using expressed N22 peptide with established PCR method for TTV-DNA detection showed good coherence between TTV-DNA and presence of anti-TTV antibodies in the sera analysed. Conclusions This concludes that TTV N22 region may be expressed and safely used as antigen for blot assay to detect anti-TTV antibodies in sera. PMID:24884576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlatterer, Joerg C., E-mail: joerg.schlatterer@einstein.yu.edu; Wieder, Matthew S.; Jones, Christopher D.
2012-08-24
Highlights: Black-Right-Pointing-Pointer RNA structure is mapped by pyrite mediated {sup {center_dot}}OH footprinting. Black-Right-Pointing-Pointer Repetitive experiments can be done in a powdered pyrite filled cartridge. Black-Right-Pointing-Pointer High {sup {center_dot}}OH reactivity of nucleotides imply dynamic role in Diels-Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ({sup {center_dot}}OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS{sub 2}) can produce sufficient {sup {center_dot}}OH tomore » footprint DNA. The 49-nt Diels-Alder RNA enzyme catalyzes the C-C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme's active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels-Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to {sup {center_dot}}OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop's flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated {sup {center_dot}}OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.« less
Two sides of the same coin: TFIIH complexes in transcription and DNA repair.
Zhovmer, Alexander; Oksenych, Valentyn; Coin, Frédéric
2010-04-13
TFIIH is organized into a seven-subunit core associated with a three-subunit Cdk-activating kinase (CAK) module. TFIIH has roles in both transcription initiation and DNA repair. During the last 15 years, several studies have been conducted to identify the composition of the TFIIH complex involved in DNA repair. Recently, a new technique combining chromatin immunoprecipitation and western blotting resolved the hidden nature of the TFIIH complex participating in DNA repair. Following the recruitment of TFIIH to the damaged site, the CAK module is released from the core TFIIH, and the core subsequently associates with DNA repair factors. The release of the CAK is specifically driven by the recruitment of the DNA repair factor XPA and is required to promote the incision/excision of the damaged DNA. Once the DNA lesions have been repaired, the CAK module returns to the core TFIIH on the chromatin, together with the release of the repair factors. These data highlight the dynamic composition of a fundamental cellular factor that adapts its subunit composition to the cell needs.
The cDNA-derived amino acid sequence of hemoglobin II from Lucina pectinata.
Torres-Mercado, Elineth; Renta, Jessicca Y; Rodríguez, Yolanda; López-Garriga, Juan; Cadilla, Carmen L
2003-11-01
Hemoglobin II from the clam Lucina pectinata is an oxygen-reactive protein with a unique structural organization in the heme pocket involving residues Gln65 (E7), Tyr30 (B10), Phe44 (CD1), and Phe69 (E11). We employed the reverse transcriptase-polymerase chain reaction (RT-PCR) and methods to synthesize various cDNA(HbII). An initial 300-bp cDNA clone was amplified from total RNA by RT-PCR using degenerate oligonucleotides. Gene-specific primers derived from the HbII-partial cDNA sequence were used to obtain the 5' and 3' ends of the cDNA by RACE. The length of the HbII cDNA, estimated from overlapping clones, was approximately 2114 bases. Northern blot analysis revealed that the mRNA size of HbII agrees with the estimated size using cDNA data. The coding region of the full-length HbII cDNA codes for 151 amino acids. The calculated molecular weight of HbII, including the heme group and acetylated N-terminal residue, is 17,654.07 Da.
A specific DNA probe which identifies Babesia bovis in whole blood.
Petchpoo, W; Tan-ariya, P; Boonsaeng, V; Brockelman, C R; Wilairat, P; Panyim, S
1992-05-01
A genomic library of Babesia bovis DNA from the Mexican strain M was constructed in plasmid pUN121 and cloned in Escherichia coli. Several recombinants which hybridized strongly to radioactively labeled B. bovis genomic DNA in an in situ screening were selected and further analyzed for those which specifically hybridized to B. bovis DNA. It was found that pMU-B1 had the highest sensitivity, detecting 25 pg of purified B. bovis DNA, and 300 parasites in 10 microliters of whole infected blood, or 0.00025% parasitemia. pMU-B1 contained a 6.0 kb B. bovis DNA insert which did not cross-hybridize to Babesia bigemina, Trypanosoma evansi, Plasmodium falciparum, Anaplasma marginale, Boophilus microplus and cow DNA. In the Southern blot analysis of genomic DNA, pMU-B1 could differentiate between two B. bovis geographic isolates, Mexican strain M and Thai isolate TS4. Thus, the pMU-B1 probe will be useful in the diagnosis of Babesia infection in cattle and ticks, and in the differentiation of B. bovis strains.
Bakhori, Noremylia Mohd; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir
2013-12-12
An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10-9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.
Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir
2013-12-01
An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.
Enhanced photoelectrochemical DNA sensor based on TiO2/Au hybrid structure.
Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang
2018-05-23
A novel enhanced photoelectrochemical DNA sensor, based on a TiO 2 /Au hybrid electrode structure, was developed to detect target DNA. The sensor was developed by successively modifying fluorine-tin oxide (FTO) electrodes with TiO 2 nanoparticles, gold (Au) nanoparticles, hairpin DNA (DNA1), and CdSe-COOH quantum dots (QDs), which acted as signal amplification factors. In the absence of target DNA, the incubated DNA1 hairpin and the CdSe-COOH QDs were in close contact with the TiO 2 /Au electrode surface, leading to an enhanced photocurrent intensity due to the sensitization effect. After incubation of the modified electrode with the target DNA, the hairpin DNA changed into a double helix structure, and the CdSe QDs moved away from the TiO 2 /Au electrode surface, leading to a decreased sensitization effect and photoelectrochemical signal intensity. This novel DNA sensor exhibited stable, sensitive and reproducible detection of DNA from 0.1 μM to 10 fM, with a lower detection limit of 3 fM. It provided good specificity, reproducibility, stability and is a promising strategy for the detection of a variety of other DNA targets, for early clinical diagnosis of various diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Cloning and characterization of an 11S legumin, Car i 4, a major allergen in pecan.
Sharma, Girdhari M; Irsigler, Andre; Dhanarajan, Pushparani; Ayuso, Rosalia; Bardina, Luda; Sampson, Hugh A; Roux, Kenneth H; Sathe, Shridhar K
2011-09-14
Among tree nut allergens, pecan allergens remain to be identified and characterized. The objective was to demonstrate the IgE-binding ability of pecan 11S legumin and characterize its sequential IgE-binding epitopes. The 11S legumin gene was amplified from a pecan cDNA library and expressed as a fusion protein in Escherichia coli. The native 11S legumin in pecan extract was identified by mass spectrometry/mass spectrometry (MS/MS). Sequential epitopes were determined by probing the overlapping peptides with three serum pools prepared from different patients' sera. A three-dimensional model was generated using almond legumin as a template and compared with known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot blot, 16 (57%) bound to 11S legumin, designated Car i 4. MS/MS sequencing of native 11S legumin identified 33 kDa acidic and 20-22 kDa basic subunits. Both pecan and walnut seed protein extracts inhibited IgE binding to recombinant Car i 4, suggesting cross-reactivity with Jug r 4. Sequential epitope mapping results of Car i 4 revealed weak, moderate, and strong reactivity of serum pools against 10, 5, and 4 peptides, respectively. Seven peptides were recognized by all three serum pools, of which two were strongly reactive. The strongly reactive peptides were located in three discrete regions of the Car i 4 acidic subunit sequence (residues 118-132, 208-219, and 238-249). Homology modeling of Car i 4 revealed significant overlapping regions shared in common with other tree nut legumins.
Chang, S E; Foster, S; Betts, D; Marnock, W E
1992-12-02
There are many reports of cell lines being established from human oral squamous-cell carcinomas but apparently none of cell lines from dysplastic or "pre-malignant" oral mucosa. We describe here the isolation and characterization of a cell line, DOK (dysplastic oral keratinocyte), from a piece of dorsal tongue showing epithelial dysplasia. The tissue was obtained from a 57-year-old man who was a heavy smoker prior to the appearance of a white patch on his tongue. Eleven years later a squamous-cell carcinoma developed at the site and was excised. Subsequently the remaining dysplasia was removed, and it was from a piece of this that the primary cell cultures which eventually gave rise to DOK were initiated. The DOK line has been single-cell cloned and is apparently immortal. It grows in the absence of 3T3 feeder cells, is anchorage-dependent for growth and is non-tumorigenic in nude mice. The keratin profile of the cells shows a striking similarity to that of the original tongue dysplasia. The karyotype of DOK is aneuploid and complex. By PCR and oligonucleotide hybridization on dot blots, codons 12, 13 and 61 of Ha-ras, Ki-ras and N-ras in DNA extracted from DOK cells were shown to be normal. Immunohistochemistry showed no abnormal, i.e., elevated expression of the onco-suppressor protein p53. Because of its origin and partially transformed phenotype, DOK presents an opportunity to study whether specific carcinogens associated with tobacco and areca nut can cause malignant transformation of oral keratinocytes in vitro.
Kurt, Hasan; Yüce, Meral; Hussain, Babar; Budak, Hikmet
2016-07-15
In this report, a dual-excitation sensing method was developed using aptamer-functionalized quantum dots and upconverting nanoparticles, exhibiting Stokes and anti-Stokes type excitation profiles, respectively. Conjugation of the aptamer-functionalized luminescent nanoparticles with the magnetic beads, comprising short DNA sequences that were partially complementary to the aptamer sequences, enabled facile separation of the analyte-free conjugates for fluorescent measurement. UV-Visible spectroscopy, Circular Dichroism spectroscopy, Dynamic Light Scattering and Polyacrylamide Gel Electrophoresis techniques were used to characterize the aptamer probes developed. The target-specific luminescent conjugates were applied for multiplex detection of model food pathogens, Salmonella typhimurium, and Staphylococcus aureus, in which the fluorescent emission spectra were obtained under UV excitation at 325nm for quantum dots and NIR excitation at 980nm for upconverting nanoparticles, respectively. The dual-excitation strategy was aimed to minimize cross-talk between the luminescent signals for multiplexed detection, and yielded limit of detection values of 16 and 28cfumL(-1) for Staphylococcus aureus, and Salmonella typhimurium, respectively. By employing a greater number of quantum dots and upconverting nanoparticles with non-overlapping fluorescent emissions, the proposed methodology might be exploited further to detect several analytes, simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.
Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation.
Zhou, Jingwen; Liu, Liming; Chen, Jian
2010-05-01
Genetic manipulation of mitochondrial DNA (mtDNA) is the most direct method for investigating mtDNA, but until now, this has been achieved only in the diploid yeast Saccharomyces cerevisiae. In this study, the ATP6 gene on mtDNA of the haploid yeast Candida glabrata (Torulopsis glabrata) was deleted by biolistic transformation of DNA fragments with a recoded ARG8(m) mitochondrial genetic marker, flanked by homologous arms to the ATP6 gene. Transformants were identified by arginine prototrophy. However, in the transformants, the original mtDNA was not lost spontaneously, even under arginine selective pressure. Moreover, the mtDNA transformants selectively lost the transformed mtDNA under aerobic conditions. The mtDNA heteroplasmy in the transformants was characterized by PCR, quantitative PCR, and Southern blotting, showing that the heteroplasmy was relatively stable in the absence of arginine. Aerobic conditions facilitated the loss of the original mtDNA, and anaerobic conditions favored loss of the transformed mtDNA. Moreover, detailed investigations showed that increases in reactive oxygen species in mitochondria lacking ATP6, along with their equal cell division, played important roles in determining the dynamics of heteroplasmy. Based on our analysis of mtDNA heteroplasmy in C. glabrata, we were able to generate homoplasmic Deltaatp6 mtDNA strains.
Rasheed, P Abdul; Sandhyarani, N
2017-11-15
Development of a sensitive, specific and cost-effective DNA detection method is motivated by increasing demand for the early stage diagnosis of genetic diseases. Recent developments in the design and fabrication of efficient sensor platforms based on nanostructures make the highly sensitive sensors which could indicate very low detection limit to the level of few molecules, a realistic possibility. Electrochemical detection methods are widely used in DNA diagnostics as it provide simple, accurate and inexpensive platform for DNA detection. In addition, the electrochemical DNA sensors provide direct electronic signal without the use of expensive signal transduction equipment and facilitates the immobilization of single stranded DNA (ssDNA) probe sequences on a wide variety of electrode substrates. It has been found that a range of nanomaterials such as metal nanoparticles (MNPs), carbon based nanomaterials, quantum dots (QDs), magnetic nanoparticles and polymeric NPs have been introduced in the sensor design to enhance the sensing performance of electrochemical DNA sensor. In this review, we discuss recent progress in the design and fabrication of efficient electrochemical genosensors based on carbon nanostructures such as carbon nanotubes, graphene, graphene oxide and nanodiamonds. Copyright © 2017 Elsevier B.V. All rights reserved.
The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes
NASA Astrophysics Data System (ADS)
Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin
2008-03-01
Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.
Li, Chen-Chen; Yu, Ji-Yun; Jiang, Min; Tu, Yi-Xian; Ma, Xiao-Lin; Zhang, Fu-Chun
2011-09-01
To enhance the immunocontraceptive effect of Lagurus lagurus zona pellucida 3 DNA vaccine, and to achieve the prospect of application through the pVAX1-sig-LTB-lZP3-C3d3 different immunity pathway. Two adjuvant molecules were constructed into the recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 as DNA vaccine which contains Escherichia coli heat-labile enterotoxin B subunit and the molecular adjuvant 3 copies of C3d. The results of RT-PCR and western blot showed that the DNA vaccine was expressed in mRNA and protein level. The female C57BL/6 mice were immunized by three ways: intramuscular injection, intranasal or oral route.Antibody levels and types were detected by ELISA. ELISA results showed that recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 immunization induced specific IgG, IgA levels were significantly different comparing with control (P<0.01). Antifertility experiment showed that the experimental group reduced the average fertility significantly different compared with the control group (P<0.01). Restriction analysis, RT-PCR and Western blot showed that the recombinant plasmid constructed correctly and can be the expression of mRNA and protein levels.It resulted that the recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 can induce the specific immune response efficiently and enhance the immunocontraceptive effects.
[Essential oil from Artemisia lavandulaefolia induces apoptosis and necrosis of HeLa cells].
Zhang, Lu-min; Lv, Xue-wei; Shao, Lin-xiang; Ma, Yan-fang; Cheng, Wen-zhao; Gao, Hai-tao
2013-12-01
To investigate the effects of Artemisia lavandulaefolia essential oil on apoptosis and necrosis of HeLa cells. Cell viability was assayed using MTT method. The morphological and structure alterations in HeLa cells were observed by microscopy. Furthermore, cell apoptosis was measured by DNA Ladder and flow cytometry. DNA damage was measured by comet assay, and the protein expression was examined by Western blot analysis. MTT assay displayed essential oil from Artemisia lavandulaefolia could inhibit the proliferation of HeLa cells in a dose-dependent manner. After treated with essential oil of Artemisia lavadulaefolia for 24 h, HeLa cells in 100 and 200 microg/mL experiment groups exhibited the typical morphology changes of undergoing apoptosis, such as cell shrinkage and nucleus chromatin condensed. However, the cells in the 400 microg/mL group showed the necrotic morphology changes including cytomembrane rupture and cytoplasm spillover. In addition, DNA Ladder could be demonstrated by DNA electrophoresis in each experiment group. Apoptosis peak was also evident in flow cytometry in each experiment group. After treating the HeLa cells with essential oil of Artemisia lavadulaefolia for 6 h, comet tail was detected by comet assay. Moreover, western blotting analysis showed that caspase-3 was activated and the cleavage of PARP was inactivated. Essential oil from Artemisia lavadulaefolia can inhibit the proliferation of HeLa cells in vitro. Low concentration of essential oil from Artemisia lavadulaefolia can induce apoptosis, whereas high concentration of the compounds result in necrosis of HeLa cells. And,the mechanism may be related to the caspase-3-mediated-PARP apoptotic signal pathway.
S-phase arrest after vincristine treatment may promote hepatitis B virus replication
Xu, Lei; Tu, Zeng; Xu, Ge; Hu, Jie-Li; Cai, Xue-Fei; Zhan, Xing-Xing; Wang, Yu-Wei; Huang, Yuan; Chen, Juan; Huang, Ai-Long
2015-01-01
AIM: To observe the effect of vincristine on hepatitis B virus (HBV) replication in vitro and to study its possible mechanisms. METHODS: Vincristine was added to the cultures of two cell lines stably expressing HBV. Then, the levels of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and hepatitis B core antigen (HBcAg) in the supernatants or cytoplasm were examined using by enzyme-linked immunosorbent assay and Western blot. The HBV pregenome RNA (pgRNA) was detected using reverse transcription-PCR and real-time fluorescent quantitative PCR (RT-qPCR), and viral DNA was detected using Southern blot and RT-qPCR. Cell proliferation after drug treatment was detected using the BrdU incorporation test and the trypan blue exclusion assay. Cell cycle and cell apoptosis were examined using flow cytometry and Western blot. RESULTS: Vincristine up-regulated HBV replication directly in vitro in a dose-dependent manner, and 24-h exposure to 0.1 μmol/L vincristine induced more than 4-fold and 3-fold increases in intracellular HBV DNA and the secretion of viral DNA, respectively. The expression of HBV pgRNA, intracellular HBsAg and HBcAg, and the secretion of HBeAg were also increased significantly after drug treatment. Most importantly, vincristine promoted the cell excretion of HBV nucleocapsids instead of HBV Dane particles, and the nucleocapsids are closely related to the HBV pathogenesis. Furthermore, vincristine inhibited the proliferation of cells stably expressing HBV. The higher the concentration of the drug, the more significant the inhibition of the cell proliferation and the stronger the HBV replication ability in cells. Flow cytometry indicated that cell cycle arrest at S-phase was responsible for the cell proliferation inhibition. CONCLUSION: Vincristine has a strong stimulatory effect on HBV replication and induces cell cycle arrest, and cell proliferation inhibition may be conducive to viral replication. PMID:25663769
Wang, Lin; Fei, Chang; Huang, Zheng-Lan; Li, Hui; Liu, Zhang-Lin; Feng, Wen-Li
2015-08-01
To investigate the effect of SH2-Caspase 8 fusion protein expressed by recombinant adenovirus AdE-SH2-Caspase8-HA-GFP (SC) on the apoptosis of K562/G01 cell line, which is a BCR/ABL positive chronic myeloid leukemia cell line and resistant to imatinib. The K562/G01 cell line was infected with AdE-SH2-Caspase 8-HA-GFP adenovirus (SC), then the cells were divided into 3 groups: AdE-SH2m-Caspase 8-HA-GFP (SmC) group, AdE-GFP (CMV) group and PBS group as control. The infection efficiency was observed under fluorescent microscopy and by flow cytometry. The expression of fusion protein SH2-Caspase 8-HA was measured by Western blot. The morphology of the cells detected by Wright's staining. The apoptosis of the cells were detected by flow cytometry and DNA ladder. The expression of Caspase 3 and PARP were detected by Western blot. The infection efficiency of SC on K562/G01 cells was high which was confirmed by fluorescent microscopy and FCM. SH2-Caspase 8-HA fusion protein were expressed correctly in K562/G01 cells. After treatment with SC the apoptosis of K562/G01 cells could be observed by microscopy. The result of FCM showed that early apoptosis of K562/G01 cells increased significantly as compared with control groups (P < 0.05). DNA ladder showed that the classic DNA ladders appeared in K562/G01 cells after treatment with SC. The wester blot detection showed that the expression level of apoptosis-related protein Caspase 3 and PARP increased. The recombinant adenovirus SC expressing SH2-Caspase 8 fusion protein can induces the apoptosis of K562/G01 cells.
Heterologous mitochondrial DNA recombination in human cells.
D'Aurelio, Marilena; Gajewski, Carl D; Lin, Michael T; Mauck, William M; Shao, Leon Z; Lenaz, Giorgio; Moraes, Carlos T; Manfredi, Giovanni
2004-12-15
Inter-molecular heterologous mitochondrial DNA (mtDNA) recombination is known to occur in yeast and plants. Nevertheless, its occurrence in human cells is still controversial. To address this issue we have fused two human cytoplasmic hybrid cell lines, each containing a distinct pathogenic mtDNA mutation and specific sets of genetic markers. In this hybrid model, we found direct evidence of recombination between these two mtDNA haplotypes. Recombinant mtDNA molecules in the hybrid cells were identified using three independent experimental approaches. First, recombinant molecules containing genetic markers from both parental alleles were demonstrated with restriction fragment length polymorphism of polymerase chain reaction products, by measuring the relative frequencies of each marker. Second, fragments of recombinant mtDNA were cloned and sequenced to identify the regions involved in the recombination events. Finally, recombinant molecules were demonstrated directly by Southern blot using appropriate combinations of polymorphic restriction sites and probes. This combined approach confirmed the existence of heterogeneous species of recombinant mtDNA molecules in the hybrid cells. These findings have important implications for mtDNA-related diseases, the interpretation of human evolution and population genetics and forensic analyses based on mtDNA genotyping.
Apparatus for improved DNA sequencing
Douthart, R.J.; Crowell, S.L.
1996-05-07
This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection. 18 figs.
Apparatus for improved DNA sequencing
Douthart, Richard J.; Crowell, Shannon L.
1996-01-01
This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection.
Separation of 1-23-kb complementary DNA strands by urea-agarose gel electrophoresis.
Hegedüs, Eva; Kókai, Endre; Kotlyar, Alexander; Dombrádi, Viktor; Szabó, Gábor
2009-09-01
Double-stranded (ds), as well as denatured, single-stranded (ss) DNA samples can be analyzed on urea-agarose gels. Here we report that after denaturation by heat in the presence of 8 M urea, the two strands of the same ds DNA fragment of approximately 1-20-kb size migrate differently in 1 M urea containing agarose gels. The two strands are readily distinguished on Southern blots by ss-specific probes. The different migration of the two strands could be attributed to their different, base composition-dependent conformation impinging on the electrophoretic mobility of the ss molecules. This phenomenon can be exploited for the efficient preparation of strand-specific probes and for the separation of the complementary DNA strands for subsequent analysis, offering a new tool for various cell biological research areas.
CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA.
Kawa-Ha, K; Ishihara, S; Ninomiya, T; Yumura-Yagi, K; Hara, J; Murayama, F; Tawa, A; Hirai, K
1989-07-01
Lymphoproliferative disease of granular lymphocytes (LDGL) is a heterogeneous disorder and the pathogenesis is likely to be complex. Some patients with chronic active EBV (CAEBV) infection also have LDGL. To investigate the relationship between EBV infection and the pathogenesis of LDGL, we conducted a survey for EBV DNA sequences by Southern blot analysis of DNA obtained from the peripheral blood of seven patients with LDGL, including one with CAEBV infection. Interestingly, EBV DNA was detected in the sample from the patient with CAEBV infection, and in the samples from four other patients with CD3-LDGL. Moreover, a single band for the joined termini of the EBV genome was demonstrated in two samples, suggesting a clonal disorder of those LDGL. These findings strongly suggest that EBV may play a pathogenic role in some cases of LDGL.
HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma
2010-01-01
Background In our previous study, it was well defined that IGFBP7 was an important tumor suppressor gene in colorectal cancer (CRC). We aimed to uncover the downstream molecules responsible for IGFBP7's behaviour in this study. Methods Differentially expressed protein profiles between PcDNA3.1(IGFBP7)-transfected RKO cells and the empty vector transfected controls were generated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) identification. The selected differentially expressed protein induced by IGFBP7 was confirmed by western blot and ELISA. The biological behaviour of the protein was explored by cell growth assay and colony formation assay. Results Six unique proteins were found differentially expressed in PcDNA3.1(IGFBP7)-transfected RKO cells, including albumin (ALB), 60 kDa heat shock protein(HSP60), Actin cytoplasmic 1 or 2, pyruvate kinase muscle 2(PKM2), beta subunit of phenylalanyl-tRNA synthetase(FARSB) and hypothetical protein. The downregulation of HSP60 by IGFBP7 was confirmed by western blot and ELISA. Recombinant human HSP60 protein could increase the proliferation rate and the colony formation ability of PcDNA3.1(IGFBP7)-RKO cells. Conclusion HSP60 was an important downstream molecule of IGFBP7. The downregulation of HSP60 induced by IGFBP7 may be, at least in part, responsible for IGFBP7's tumor suppressive biological behaviour in CRC. PMID:20433702
Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors.
Beckmann, M P; Cerretti, D P; Baum, P; Vanden Bos, T; James, L; Farrah, T; Kozlosky, C; Hollingsworth, T; Shilling, H; Maraskovsky, E
1994-01-01
A family of tyrosine kinase receptors related to the product of the eph gene has been described recently. One of these receptors, elk, has been shown to be expressed only in brain and testes. Using a direct expression cloning technique, a ligand for the elk receptor has been isolated by screening a human placenta cDNA library with a fusion protein containing the extracellular domain of the receptor. This isolated cDNA encodes a transmembrane protein. While the sequence of the ligand cDNA is unique, it is related to a previously described sequence known as B61. Northern blot analysis of human tissue mRNA showed that the elk ligand's mRNA is 3.5 kb long and is found in placenta, heart, lung, liver, skeletal muscle, kidney and pancreas. Southern blot analysis showed that the gene is highly conserved in a wide variety of species. Both elk ligand and B61 mRNAs are inducible by tumour necrosis factor in human umbilical vein endothelial cells. In addition, both proteins show promiscuity in binding to the elk and the related hek receptors. Since these two ligand sequences are similar, and since elk and hek are members of a larger family of eph-related receptor molecules, we refer to these ligands as LERKs (ligands for eph-related kinases). Images PMID:8070404
Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer
Thiem, S.M.; Krumme, M.L.; Smith, R.L.; Tiedje, J.M.
1994-01-01
A PCR primer set and an internal probe that are specific for Pseudomonas sp. strain B13, a 3-chlorobenzoate-metabolizing strain, were developed. Using this primer set and probe, we were able to detect Pseudomonas sp. strain B13 DNA sequences in DNA extracted from aquifer samples 14.5 months after Pseudomonas sp. strain B13 had been injected into a sand and gravel aquifer. This primer set and probe were also used to analyze isolates from 3-chlorobenzoate enrichments of the aquifer samples by Southern blot analysis. Hybridization of Southern blots with the Pseudomonas sp. strain B13-specific probe and a catabolic probe in conjunction with restriction fragment length polymorphism (RFLP) analysis of ribosome genes was used to determine that viable Pseudomonas sp. strain B13 persisted in this environment. We isolated a new 3-chlorobenzoate-degrading strain from one of these enrichment cultures. The B13-specific probe does not hybridize to DNA from this isolate. The new strain could be the result of gene exchange between Pseudomonas sp. strain B13 and an indigenous bacterium. This speculation is based on an RFLP pattern of ribosome genes that differs from that of Pseudomonas sp. strain B13, the fact that identically sized restriction fragments hybridized to the catabolic gene probe, and the absence of any enrichable 3-chlorobenzoate-degrading strains in the aquifer prior to inoculation.
[Construction and expression of recombinant human serum albumin-EPO fusion protein].
Huang, Ying-Chun; Gou, Xing-Hua; Han, Lei; Li, De-Hua; Zhao, Lan-Ying; Wu, Qia-Qing
2011-05-01
OBJECTIVE To construct the recombinant plasmid pCI-HLE encoding human serum album-EPO (HSA-EPO) fusion protein and to express it in CHO cell. The cDNA encoding human serum album and EPO were amplified by PCR, and then spliced with the synsitic DNA fragment encoding GS (GGGGS), by overlap PCR extension to form LEPO. After BamH I digestion, the HSA and LEPO was ligated to generate the fusion HSA-EPO gene and was then cloned into the expression vector pCI-neo to generate the recombinant plasmid pCI-HLE. The plasmid pCI-HLE was transfected into CHO cell by liposome protocol. Then, the recombinant cells were screened by G418 and identified by PCR and Western blot. Expression of fusion protein was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Restrictive enzymes digestion and DNA sequencing revealed that HSA-EPO fusion gene was cloned into expression vector pCI-neo successfully. PCR and Western blot analysis confirmed that the fusion gene was integrated in the genome of CHO cells and expressed successfully. The HSA-EPO production varied from 86 Iu/(mL x 10(6) x 72 h) to 637 IU/(mLx 10(6) x 72 h). The results confirmed that HSA-EPO fusion gene can be expressed in the CHO cells, with EPO immunogenicity, which could serve as foundation for the development of long-lasting recombinant HSA-EPO protein.