Sample records for dna elements including

  1. DNA preservation in skeletal elements from the World Trade Center disaster: recommendations for mass fatality management.

    PubMed

    Mundorff, Amy Z; Bartelink, Eric J; Mar-Cash, Elaine

    2009-07-01

    The World Trade Center (WTC) victim identification effort highlights taphonomic influences on the degradation of DNA from victims of mass fatality incidents. This study uses a subset of the WTC-Human Remains Database to evaluate differential preservation of DNA by skeletal element. Recovery location, sex, and victim type (civilian, firefighter, or plane passenger) do not appear to influence DNA preservation. Results indicate that more intact elements, as well as elements encased in soft tissue, produced slightly higher identification rates than more fragmented remains. DNA identification rates by element type conform to previous findings, with higher rates generally found in denser, weight-bearing bones. However, smaller bones including patellae, metatarsals, and foot phalanges yielded rates comparable to both femora and tibiae. These elements can be easily sampled with a disposable scalpel, and thus reduce potential DNA contamination. These findings have implications for DNA sampling guidelines in future mass fatality incidents.

  2. The long (LINEs) and the short (SINEs) of it: altered methylation as a precursor to toxicity.

    PubMed

    Carnell, Ammie N; Goodman, Jay I

    2003-10-01

    Although once thought of as "junk" DNA, the importance of interspersed elements in the genome has become increasingly appreciated in recent years. In a broad sense these are collectively referred to as transposable elements, which encompass both transposons and retrotransposons. The latter include long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs). Expression of these elements leads to genetic instability. Therefore, it is important that they remain transcriptionally silenced, and DNA methylation plays a key role in this regard. A framework for understanding the possible interplay between altered DNA methylation, an epigenetic change, and mutational events is presented. A case is made as to how retrotransposable elements, specifically LINEs and SINEs, are likely to emerge as key players in furthering our understanding of mechanisms underlying a variety of toxicities, including carcinogenesis but not limited to this endpoint.

  3. In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome

    PubMed Central

    2013-01-01

    Background Only a few transposable elements are known to exhibit site-specific insertion patterns, including the well-studied R-element retrotransposons that insert into specific sites within the multigene rDNA. The only known rDNA-specific DNA transposon, Pokey (superfamily: piggyBac) is found in the freshwater microcrustacean, Daphnia pulex. Here, we present a genome-wide analysis of Pokey based on the recently completed whole genome sequencing project for D. pulex. Results Phylogenetic analysis of Pokey elements recovered from the genome sequence revealed the presence of four lineages corresponding to two divergent autonomous families and two related lineages of non-autonomous miniature inverted repeat transposable elements (MITEs). The MITEs are also found at the same 28S rRNA gene insertion site as the Pokey elements, and appear to have arisen as deletion derivatives of autonomous elements. Several copies of the full-length Pokey elements may be capable of producing an active transposase. Surprisingly, both families of Pokey possess a series of 200 bp repeats upstream of the transposase that is derived from the rDNA intergenic spacer (IGS). The IGS sequences within the Pokey elements appear to be evolving in concert with the rDNA units. Finally, analysis of the insertion sites of Pokey elements outside of rDNA showed a target preference for sites similar to the specific sequence that is targeted within rDNA. Conclusions Based on the target site preference of Pokey elements and the concerted evolution of a segment of the element with the rDNA unit, we propose an evolutionary path by which the ancestors of Pokey elements have invaded the rDNA niche. We discuss how specificity for the rDNA unit may have evolved and how this specificity has played a role in the long-term survival of these elements in the subgenus Daphnia. PMID:24059783

  4. Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development.

    PubMed

    Ikegami, Kohta; Ohgane, Jun; Tanaka, Satoshi; Yagi, Shintaro; Shiota, Kunio

    2009-01-01

    Genes constitute only a small proportion of the mammalian genome, the majority of which is composed of non-genic repetitive elements including interspersed repeats and satellites. A unique feature of the mammalian genome is that there are numerous tissue-dependent, differentially methylated regions (T-DMRs) in the non-repetitive sequences, which include genes and their regulatory elements. The epigenetic status of T-DMRs varies from that of repetitive elements and constitutes the DNA methylation profile genome-wide. Since the DNA methylation profile is specific to each cell and tissue type, much like a fingerprint, it can be used as a means of identification. The formation of DNA methylation profiles is the basis for cell differentiation and development in mammals. The epigenetic status of each T-DMR is regulated by the interplay between DNA methyltransferases, histone modification enzymes, histone subtypes, non-histone nuclear proteins and non-coding RNAs. In this review, we will discuss how these epigenetic factors cooperate to establish cell- and tissue-specific DNA methylation profiles.

  5. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China.

    PubMed

    Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang

    2016-05-01

    Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.

  6. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1987-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3575113

  7. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1990-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227

  8. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1988-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3368330

  9. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1989-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2654889

  10. A Surrogate Approach to Study the Evolution of Noncoding DNA Elements That Organize Eukaryotic Genomes

    PubMed Central

    Vermaak, Danielle; Bayes, Joshua J.

    2009-01-01

    Comparative genomics provides a facile way to address issues of evolutionary constraint acting on different elements of the genome. However, several important DNA elements have not reaped the benefits of this new approach. Some have proved intractable to current day sequencing technology. These include centromeric and heterochromatic DNA, which are essential for chromosome segregation as well as gene regulation, but the highly repetitive nature of the DNA sequences in these regions make them difficult to assemble into longer contigs. Other sequences, like dosage compensation X chromosomal sites, origins of DNA replication, or heterochromatic sequences that encode piwi-associated RNAs, have proved difficult to study because they do not have recognizable DNA features that allow them to be described functionally or computationally. We have employed an alternate approach to the direct study of these DNA elements. By using proteins that specifically bind these noncoding DNAs as surrogates, we can indirectly assay the evolutionary constraints acting on these important DNA elements. We review the impact that such “surrogate strategies” have had on our understanding of the evolutionary constraints shaping centromeres, origins of DNA replication, and dosage compensation X chromosomal sites. These have begun to reveal that in contrast to the view that such structural DNA elements are either highly constrained (under purifying selection) or free to drift (under neutral evolution), some of them may instead be shaped by adaptive evolution and genetic conflicts (these are not mutually exclusive). These insights also help to explain why the same elements (e.g., centromeres and replication origins), which are so complex in some eukaryotic genomes, can be simple and well defined in other where similar conflicts do not exist. PMID:19635763

  11. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin

    PubMed Central

    Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.

    2007-01-01

    DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217

  12. Photoinduced Regeneration of an Aptamer-Based Electrochemical Sensor for Sensitively Detecting Adenosine Triphosphate.

    PubMed

    Zhang, Xiaoyu; Song, Chunxia; Yang, Ke; Hong, Wenwen; Lu, Ying; Yu, Ping; Mao, Lanqun

    2018-04-17

    Electrochemical aptasensors generally include three elements, that is, recognition element, signal-transformation element, and regeneration element. In this study, a new adenosine triphosphate (ATP) aptasensor is developed by combining three elements into one DNA oligonucleotide chain. In the DNA oligonucleotide chain, DNA aptamer is used as the recognition element, ferrocene group attached at the 3'-end of the aptamer is used as the signal-transformation element, and azobenzene moiety embedded into the DNA chain is used as the regeneration element. In addition to the similar analytical properties with the traditional ones, the aptasensor developed here is easily regenerated with UV-light irradiation. The current response recorded on the aptasensor increases with increasing the concentration of ATP in the incubation solution and is linear with the logarithm of ATP concentration in the range from 1 nM to 100 μM. The limit of detection is 0.5 nM (S/N = 3). The basal level of ATP in the rat brain cortex microdialysate is determined to be 21.33 ± 4.1 nM ( n = 3). After being challenged with ATP, the aptasensor could be readily regenerated by UV-light irradiation for more than seven cycles. The regeneration of the aptasensor is proposed to be regulated by conversing azobenzene from its trans to cis form under UV irradiation.

  13. Genomic patterns associated with paternal/maternal distribution of transposable elements

    NASA Astrophysics Data System (ADS)

    Jurka, Jerzy

    2003-03-01

    Transposable elements (TEs) are specialized DNA or RNA fragments capable of surviving in intragenomic niches. They are commonly, perhaps unjustifiably referred to as "selfish" or "parasitic" elements. TEs can be divided in two major classes: retroelements and DNA transposons. The former include non-LTR retrotransposons and retrovirus-like elements, using reverse transriptase for their reproduction prior to integration into host DNA. The latter depend mostly on host DNA replication, with possible exception of rolling-circle transposons recently discovered by our team. I will review basic information on TEs, with emphasis on human Alu and L1 retroelements discussed in the context of genomic organization. TEs are non-randomly distributed in chromosomal DNA. In particular, human Alu elements tend to prefer GC-rich regions, whereas L1 accumulate in AT-rich regions. Current explanations of this phenomenon focus on the so called "target effects" and post-insertional selection. However, the proposed models appear to be unsatisfactory and alternative explanations invoking "channeling" to different chromosomal regions will be a major focus of my presentation. Transposable elements (TEs) can be expressed and integrated into host DNA in the male or female germlines, or both. Different models of expression and integration imply different proportions of TEs on sex chromosomes and autosomes. The density of recently retroposed human Alu elements is around three times higher on chromosome Y than on chromosome X, and over two times higher than the average density for all human autosomes. This implies Alu activity in paternal germlines. Analogous inter-chromosomal proportions for other repeat families should determine their compatibility with one of the three basic models describing the inheritance of TEs. Published evidence indicates that maternally and paternally imprinted genes roughly correspond to GC-rich and AT-rich DNA. This may explain the observed chromosomal distribution of Alu and L1 elements. Finally, paternal models of inheritance predict rapid accumulation of active TEs on chromosome Y. I will discuss potential implications of this phenomenon for evolution of chromosome Y and transposable elements.

  14. Tyrosine Recombinase Retrotransposons and Transposons.

    PubMed

    Poulter, Russell T M; Butler, Margi I

    2015-04-01

    Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes.

  15. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases.

    PubMed

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-10-04

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases.

  16. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases

    PubMed Central

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-01-01

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. This article was reviewed by Eugene Koonin and Mark Ragan. PMID:18834537

  17. Whole DNA methylome profiling in mice exposed to secondhand smoke.

    PubMed

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad

    2012-11-01

    Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease.

  18. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements)

    PubMed Central

    Giresi, Paul G.; Lieb, Jason D.

    2009-01-01

    The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization. PMID:19303047

  19. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses

    PubMed Central

    Koonin, Eugene V; Krupovic, Mart; Yutin, Natalya

    2015-01-01

    Diverse eukaryotes including animals and protists are hosts to a broad variety of viruses with double-stranded (ds) DNA genomes, from the largest known viruses, such as pandoraviruses and mimiviruses, to tiny polyomaviruses. Recent comparative genomic analyses have revealed many evolutionary connections between dsDNA viruses of eukaryotes, bacteriophages, transposable elements, and linear DNA plasmids. These findings provide an evolutionary scenario that derives several major groups of eukaryotic dsDNA viruses, including the proposed order “Megavirales,” adenoviruses, and virophages from a group of large virus-like transposons known as Polintons (Mavericks). The Polintons have been recently shown to encode two capsid proteins, suggesting that these elements lead a dual lifestyle with both a transposon and a viral phase and should perhaps more appropriately be named polintoviruses. Here, we describe the recently identified evolutionary relationships between bacteriophages of the family Tectiviridae, polintoviruses, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order “Megavirales,” and linear mitochondrial and cytoplasmic plasmids. We outline an evolutionary scenario under which the polintoviruses were the first group of eukaryotic dsDNA viruses that evolved from bacteriophages and became the ancestors of most large DNA viruses of eukaryotes and a variety of other selfish elements. Distinct lines of origin are detectable only for herpesviruses (from a different bacteriophage root) and polyoma/papillomaviruses (from single-stranded DNA viruses and ultimately from plasmids). Phylogenomic analysis of giant viruses provides compelling evidence of their independent origins from smaller members of the putative order “Megavirales,” refuting the speculations on the evolution of these viruses from an extinct fourth domain of cellular life. PMID:25727355

  20. Characterization of the repetitive DNA elements in the genome of fish lymphocystis disease viruses.

    PubMed

    Schnitzler, P; Darai, G

    1989-09-01

    The complete DNA nucleotide sequence of the repetitive DNA elements in the genome of fish lymphocystis disease virus (FLDV) isolated from two different species (flounder and dab) was determined. The size of these repetitive DNA elements was found to be 1413 bp which corresponds to the DNA sequences of the 5' terminus of the EcoRI DNA fragment B (0.034 to 0.052 m.u.) and to the EcoRI DNA fragment M (0.718 to 0.736 m.u.) of the FLDV genome causing lymphocystis disease in flounder and plaice. The degree of DNA nucleotide homology between both regions was found to be 99%. The repetitive DNA element in the genome of FLDV isolated from other fish species (dab) was identified and is located within the EcoRI DNA fragment B and J of the viral genome. The DNA nucleotide sequence of one duplicate of this repetition (EcoRI DNA fragment J) was determined (1410 bp) and compared to the DNA nucleotide sequences of the repetitive DNA elements of the genome of FLDV isolated from flounder. It was found that the repetitive DNA elements of the genome of FLDV derived from two different fish species are highly conserved and possess a degree of DNA sequence homology of 94%. The DNA sequences of each strand of the individual repetitive element possess one open reading frame.

  1. Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines

    NASA Astrophysics Data System (ADS)

    Elbaz, Johann; Cecconello, Alessandro; Fan, Zhiyuan; Govorov, Alexander O.; Willner, Itamar

    2013-06-01

    DNA nanotechnology is a rapidly developing research area in nanoscience. It includes the development of DNA machines, tailoring of DNA nanostructures, application of DNA nanostructures for computing, and more. Different DNA machines were reported in the past and DNA-guided assembly of nanoparticles represents an active research effort in DNA nanotechnology. Several DNA-dictated nanoparticle structures were reported, including a tetrahedron, a triangle or linear nanoengineered nanoparticle structures; however, the programmed, dynamic reversible switching of nanoparticle structures and, particularly, the dictated switchable functions emerging from the nanostructures, are missing elements in DNA nanotechnology. Here we introduce DNA catenane systems (interlocked DNA rings) as molecular DNA machines for the programmed, reversible and switchable arrangement of different-sized gold nanoparticles. We further demonstrate that the machine-powered gold nanoparticle structures reveal unique emerging switchable spectroscopic features, such as plasmonic coupling or surface-enhanced fluorescence.

  2. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses.

    PubMed

    Pritham, Ellen J; Putliwala, Tasneem; Feschotte, Cédric

    2007-04-01

    We previously identified a group of atypical mobile elements designated Mavericks from the nematodes Caenorhabditis elegans and C. briggsae and the zebrafish Danio rerio. Here we present the results of comprehensive database searches of the genome sequences available, which reveal that Mavericks are widespread in invertebrates and non-mammalian vertebrates but show a patchy distribution in non-animal species, being present in the fungi Glomus intraradices and Phakopsora pachyrhizi and in several single-celled eukaryotes such as the ciliate Tetrahymena thermophila, the stramenopile Phytophthora infestans and the trichomonad Trichomonas vaginalis, but not detectable in plants. This distribution, together with comparative and phylogenetic analyses of Maverick-encoded proteins, is suggestive of an ancient origin of these elements in eukaryotes followed by lineage-specific losses and/or recurrent episodes of horizontal transmission. In addition, we report that Maverick elements have amplified recently to high copy numbers in T. vaginalis where they now occupy as much as 30% of the genome. Sequence analysis confirms that most Mavericks encode a retroviral-like integrase, but lack other open reading frames typically found in retroelements. Nevertheless, the length and conservation of the target site duplication created upon Maverick insertion (5- or 6-bp) is consistent with a role of the integrase-like protein in the integration of a double-stranded DNA transposition intermediate. Mavericks also display long terminal-inverted repeats but do not contain ORFs similar to proteins encoded by DNA transposons. Instead, Mavericks encode a conserved set of 5 to 9 genes (in addition to the integrase) that are predicted to encode proteins with homology to replication and packaging proteins of some bacteriophages and diverse eukaryotic double-stranded DNA viruses, including a DNA polymerase B homolog and putative capsid proteins. Based on these and other structural similarities, we speculate that Mavericks represent an evolutionary missing link between seemingly disparate invasive DNA elements that include bacteriophages, adenoviruses and eukaryotic linear plasmids.

  3. Whole DNA methylome profiling in mice exposed to secondhand smoke

    PubMed Central

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad

    2012-01-01

    Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease. PMID:23051858

  4. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements.

    PubMed

    Guérin, Frédéric; Arnaiz, Olivier; Boggetto, Nicole; Denby Wilkes, Cyril; Meyer, Eric; Sperling, Linda; Duharcourt, Sandra

    2017-04-26

    DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61 germline transposable elements including the first Paramecium retrotransposons. This approach paves the way to sequence the germline genomes of P. aurelia sibling species for future comparative genomic studies.

  5. Structure of a bacterial RNA polymerase holoenzyme open promoter complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka

    2015-09-08

    Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Addition of an RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σA dissociation.« less

  6. Structure of a bacterial RNA polymerase holoenzyme open promoter complex

    DOE PAGES

    Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka; ...

    2015-09-08

    Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Additionally a RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σ A dissociation.« less

  7. A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    PubMed Central

    2011-01-01

    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome. PMID:21526222

  8. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, Sara; Miousse, Isabelle R.

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promotermore » type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.« less

  9. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus.

    PubMed

    Sun, Cheng; Feschotte, Cédric; Wu, Zhiqiang; Mueller, Rachel Lockridge

    2015-06-12

    Transposable elements are mobile DNA sequences that are widely distributed in prokaryotic and eukaryotic genomes, where they represent a major force in genome evolution. However, transposable elements have rarely been documented in viruses, and their contribution to viral genome evolution remains largely unexplored. Pandoraviruses are recently described DNA viruses with genome sizes that exceed those of some prokaryotes, rivaling parasitic eukaryotes. These large genomes appear to include substantial noncoding intergenic spaces, which provide potential locations for transposable element insertions. However, no mobile genetic elements have yet been reported in pandoravirus genomes. Here, we report a family of miniature inverted-repeat transposable elements (MITEs) in the Pandoravirus salinus genome, representing the first description of a virus populated with a canonical transposable element family that proliferated by transposition within the viral genome. The MITE family, which we name Submariner, includes 30 copies with all the hallmarks of MITEs: short length, terminal inverted repeats, TA target site duplication, and no coding capacity. Submariner elements show signs of transposition and are undetectable in the genome of Pandoravirus dulcis, the closest known relative Pandoravirus salinus. We identified a DNA transposon related to Submariner in the genome of Acanthamoeba castellanii, a species thought to host pandoraviruses, which contains remnants of coding sequence for a Tc1/mariner transposase. These observations suggest that the Submariner MITEs of P. salinus belong to the widespread Tc1/mariner superfamily and may have been mobilized by an amoebozoan host. Ten of the 30 MITEs in the P. salinus genome are located within coding regions of predicted genes, while others are close to genes, suggesting that these transposons may have contributed to viral genetic novelty. Our discovery highlights the remarkable ability of DNA transposons to colonize and shape genomes from all domains of life, as well as giant viruses. Our findings continue to blur the division between viral and cellular genomes, adhering to the emerging view that the content, dynamics, and evolution of the genomes of giant viruses do not substantially differ from those of cellular organisms.

  10. copia-like retrotransposons are ubiquitous among plants.

    PubMed Central

    Voytas, D F; Cummings, M P; Koniczny, A; Ausubel, F M; Rodermel, S R

    1992-01-01

    Transposable genetic elements are assumed to be a feature of all eukaryotic genomes. Their identification, however, has largely been haphazard, limited principally to organisms subjected to molecular or genetic scrutiny. We assessed the phylogenetic distribution of copia-like retrotransposons, a class of transposable element that proliferates by reverse transcription, using a polymerase chain reaction assay designed to detect copia-like element reverse transcriptase sequences. copia-like retrotransposons were identified in 64 plant species as well as the photosynthetic protist Volvox carteri. The plant species included representatives from 9 of 10 plant divisions, including bryophytes, lycopods, ferns, gymnosperms, and angiosperms. DNA sequence analysis of 29 cloned PCR products and of a maize retrotransposon cDNA confirmed the identity of these sequences as copia-like reverse transcriptase sequences, thereby demonstrating that this class of retrotransposons is a ubiquitous component of plant genomes. Images PMID:1379734

  11. Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin.

    PubMed Central

    Ananiev, E V; Phillips, R L; Rines, H W

    1998-01-01

    The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of specific regions, such as knobs, of individual maize chromosomes. A DNA hybridization blot panel of eight individual maize chromosome addition lines revealed that 180-bp repeats found in knobs are present in each of these maize chromosomes, but the copy number varies from approximately 100 to 25, 000. Cosmid clones with knob DNA segments were isolated from a genomic library of an oat-maize chromosome 9 addition line with the help of the 180-bp knob-associated repeated DNA sequence used as a probe. Cloned knob DNA segments revealed a complex organization in which blocks of tandemly arranged 180-bp repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. Sequence microheterogeneity including point mutations and duplications was found in copies of 180-bp repeats. The 180-bp repeats within an array all had the same polarity. Restriction maps constructed for 23 cloned knob DNA fragments revealed the positions of polymorphic sites and sites of integration of insertion elements. Discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes. PMID:9691055

  12. Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain

    PubMed Central

    Basil, P; Li, Q; Dempster, E L; Mill, J; Sham, P-C; Wong, C C Y; McAlonan, G M

    2014-01-01

    Epigenetic processes such as DNA methylation have been implicated in the pathophysiology of neurodevelopmental disorders including schizophrenia and autism. Epigenetic changes can be induced by environmental exposures such as inflammation. Here we tested the hypothesis that prenatal inflammation, a recognized risk factor for schizophrenia and related neurodevelopmental conditions, alters DNA methylation in key brain regions linked to schizophrenia, namely the dopamine rich striatum and endocrine regulatory centre, the hypothalamus. DNA methylation across highly repetitive elements (long interspersed element 1 (LINE1) and intracisternal A-particles (IAPs)) were used to proxy global DNA methylation. We also investigated the Mecp2 gene because it regulates transcription of LINE1 and has a known association with neurodevelopmental disorders. Brain tissue was harvested from 6 week old offspring of mice exposed to the viral analog PolyI:C or saline on gestation day 9. We used Sequenom EpiTYPER assay to quantitatively analyze differences in DNA methylation at IAPs, LINE1 elements and the promoter region of Mecp2. In the hypothalamus, prenatal exposure to PolyI:C caused significant global DNA hypomethylation (t=2.44, P=0.019, PolyI:C mean 69.67%, saline mean 70.19%), especially in females, and significant hypomethylation of the promoter region of Mecp2, (t=3.32, P=0.002; PolyI:C mean 26.57%, saline mean 34.63%). IAP methylation was unaltered. DNA methylation in the striatum was not significantly altered. This study provides the first experimental evidence that exposure to inflammation during prenatal life is associated with epigenetic changes, including Mecp2 promoter hypomethylation. This suggests that environmental and genetic risk factors associated with neurodevelopmental disorders may act upon similar pathways. This is important because epigenetic changes are potentially modifiable and their investigation may open new avenues for treatment. PMID:25180573

  13. Detection of DNA polymerase λ activity during seed germination and enhancement after salinity stress and dehydration in the plumules of indica rice (Oryza sativa L.

    PubMed

    Sihi, Sayantani; Bakshi, Sankar; Sengupta, Dibyendu Narayan

    2015-02-01

    DNA polymerase λ (DNA pol λ) is the only reported X-family DNA polymerases in plants and has been shown to play a significant role in dry quiescent seeds, growth, development and nuclear DNA repair. cDNA for DNA pol λ has been reported in Arabidopsis and japonica rice cultivar and has been characterized from E. coli expressed protein, but very little is known about its activity at protein level in plants. The enzymatic activity of DNA pol λ was studied in dry, imbibed and during different germination stages of indica rice IR-8 (salt sensitive) by in-gel activity assay to determine its physiological role in important stages of growth and development. The upstream sequence was also analyzed using plantCARE database and was found to contain several cis-acting elements, including light responsive elements, dehydration responsive elements, Myb binding sites, etc. Hence, 4-day-old germinating seedlings of IR29, a salt-sensitive, but high yielding indica rice cultivar and Nonabokra, a salt-tolerant, but low yielding cultivar were treated with water (control) or 250 mM NaCl or 20% polyethyleneglycol-6000 for 4 and 8 h. The protein was analyzed by in vitro DNA pol λ activity assay, in-gel activity assay and Western blot analysis. DNA pol λ was not detected in dry seeds, but enhanced after imbibition and detectable from low level to high level during subsequent germination steps. Both salinity and dehydration stress led to the enhancement of the activity and protein level of DNA pol λ, as compared to control tissues. This is the first evidence of the salinity or dehydration stress induced enhancement of DNA pol λ activity in the plumules of rice (Oryza sativa L.) cultivars.

  14. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements1

    PubMed Central

    Prior, Sara; Miousse, Isabelle R.; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R.; Allen, Antiño R.; Raber, Jacob; Tackett, Alan J.; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor

    2016-01-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. PMID:27419368

  15. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor.

    PubMed

    Kohany, Oleksiy; Gentles, Andrew J; Hankus, Lukasz; Jurka, Jerzy

    2006-10-25

    Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases. We describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s), repeat sequences found in the query, and alignments. Censor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at http://www.girinst.org/repbase/submission.html (RepbaseSubmitter) and http://www.girinst.org/censor/index.php (Censor).

  16. Mapping Fifteen Trace Elements in Human Seminal Plasma and Sperm DNA.

    PubMed

    Ali, Sazan; Chaspoul, Florence; Anderson, Loundou; Bergé-Lefranc, David; Achard, Vincent; Perrin, Jeanne; Gallice, Philippe; Guichaoua, Marie

    2017-02-01

    Studies suggest a relationship between semen quality and the concentration of trace elements in serum or seminal plasma. However, trace elements may be linked to DNA and capable of altering the gene expression patterns. Thus, trace element interactions with DNA may contribute to the mechanisms for a trans-generational reproductive effect. We developed an analytical method to determine the amount of trace elements bound to the sperm DNA, and to estimate their affinity for the sperm DNA by the ratio: R = Log [metal concentration in the sperm DNA/metal concentration in seminal plasma]. We then analyzed the concentrations of 15 trace elements (Al, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Ti, V, Zn, As, Sb, and Se) in the seminal plasma and the sperm DNA in 64 normal and 30 abnormal semen specimens with Inductively Coupled Plasma/Mass Spectrometry (ICP-MS). This study showed all trace elements were detected in the seminal plasma and only metals were detected in the sperm DNA. There was no correlation between the metals' concentrations in the seminal plasma and the sperm DNA. Al had the highest affinity for DNA followed by Pb and Cd. This strong affinity is consistent with the known mutagenic effects of these metals. The lowest affinity was observed for Zn and Ti. We observed a significant increase of Al linked to the sperm DNA of patients with oligozoospermia and teratozoospermia. Al's reproductive toxicity might be due to Al linked to DNA, by altering spermatogenesis and expression patterns of genes involved in the function of reproduction.

  17. DNA is structured as a linear "jigsaw puzzle" in the genomes of Arabidopsis, rice, and budding yeast.

    PubMed

    Liu, Yun-Hua; Zhang, Meiping; Wu, Chengcang; Huang, James J; Zhang, Hong-Bin

    2014-01-01

    Knowledge of how a genome is structured and organized from its constituent elements is crucial to understanding its biology and evolution. Here, we report the genome structuring and organization pattern as revealed by systems analysis of the sequences of three model species, Arabidopsis, rice and yeast, at the whole-genome and chromosome levels. We found that all fundamental function elements (FFE) constituting the genomes, including genes (GEN), DNA transposable elements (DTE), retrotransposable elements (RTE), simple sequence repeats (SSR), and (or) low complexity repeats (LCR), are structured in a nonrandom and correlative manner, thus leading to a hypothesis that the DNA of the species is structured as a linear "jigsaw puzzle". Furthermore, we showed that different FFE differ in their importance in the formation and evolution of the DNA jigsaw puzzle structure between species. DTE and RTE play more important roles than GEN, LCR, and SSR in Arabidopsis, whereas GEN and RTE play more important roles than LCR, SSR, and DTE in rice. The genes having multiple recognized functions play more important roles than those having single functions. These results provide useful knowledge necessary for better understanding genome biology and evolution of the species and for effective molecular breeding of rice.

  18. Development and validation of an integrated DNA walking strategy to detect GMO expressing cry genes.

    PubMed

    Fraiture, Marie-Alice; Vandamme, Julie; Herman, Philippe; Roosens, Nancy H C

    2018-06-27

    Recently, an integrated DNA walking strategy has been proposed to prove the presence of GMO via the characterisation of sequences of interest, including their transgene flanking regions and the unnatural associations of elements in their transgenic cassettes. To this end, the p35S, tNOS and t35S pCAMBIA elements have been selected as key targets, allowing the coverage of most of GMO, EU authorized or not. In the present study, a bidirectional DNA walking method anchored on the CryAb/c genes is proposed with the aim to cover additional GMO and additional sequences of interest. The performance of the proposed bidirectional DNA walking method anchored on the CryAb/c genes has been evaluated in a first time for its feasibility using several GM events possessing these CryAb/c genes. Afterwards, its sensitivity has been investigated through low concentrations of targets (as low as 20 HGE). In addition, to illustrate its applicability, the entire workflow has been tested on a sample mimicking food/feed matrices analysed in GMO routine analysis. Given the successful assessment of its performance, the present bidirectional DNA walking method anchored on the CryAb/c genes can easily be implemented in GMO routine analysis by the enforcement laboratories and allows completing the entire DNA walking strategy in targeting an additional transgenic element frequently found in GMO.

  19. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  20. Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways

    PubMed Central

    Yu, Weishi; McIntosh, Carl; Lister, Ryan; Zhu, Iris; Han, Yixing; Ren, Jianke; Landsman, David; Lee, Eunice; Briones, Victorino; Terashima, Minoru; Leighty, Robert; Ecker, Joseph R.

    2014-01-01

    Cytosine methylation is critical in mammalian development and plays a role in diverse biologic processes such as genomic imprinting, X chromosome inactivation, and silencing of repeat elements. Several factors regulate DNA methylation in early embryogenesis, but their precise role in the establishment of DNA methylation at a given site remains unclear. We have generated a comprehensive methylation map in fibroblasts derived from the murine DNA methylation mutant Hells−/− (helicase, lymphoid specific, also known as LSH). It has been previously shown that HELLS can influence de novo methylation of retroviral sequences and endogenous genes. Here, we describe that HELLS controls cytosine methylation in a nuclear compartment that is in part defined by lamin B1 attachment regions. Despite widespread loss of cytosine methylation at regulatory sequences, including promoter regions of protein-coding genes and noncoding RNA genes, overall relative transcript abundance levels in the absence of HELLS are similar to those in wild-type cells. A subset of promoter regions shows increases of the histone modification H3K27me3, suggesting redundancy of epigenetic silencing mechanisms. Furthermore, HELLS modulates CG methylation at all classes of repeat elements and is critical for repression of a subset of repeat elements. Overall, we provide a detailed analysis of gene expression changes in relation to DNA methylation alterations, which contributes to our understanding of the biological role of cytosine methylation. PMID:25170028

  1. [Genome-scale sequence data processing and epigenetic analysis of DNA methylation].

    PubMed

    Wang, Ting-Zhang; Shan, Gao; Xu, Jian-Hong; Xue, Qing-Zhong

    2013-06-01

    A new approach recently developed for detecting cytosine DNA methylation (mC) and analyzing the genome-scale DNA methylation profiling, is called BS-Seq which is based on bisulfite conversion of genomic DNA combined with next-generation sequencing. The method can not only provide an insight into the difference of genome-scale DNA methylation among different organisms, but also reveal the conservation of DNA methylation in all contexts and nucleotide preference for different genomic regions, including genes, exons, and repetitive DNA sequences. It will be helpful to under-stand the epigenetic impacts of cytosine DNA methylation on the regulation of gene expression and maintaining silence of repetitive sequences, such as transposable elements. In this paper, we introduce the preprocessing steps of DNA methylation data, by which cytosine (C) and guanine (G) in the reference sequence are transferred to thymine (T) and adenine (A), and cytosine in reads is transferred to thymine, respectively. We also comprehensively review the main content of the DNA methylation analysis on the genomic scale: (1) the cytosine methylation under the context of different sequences; (2) the distribution of genomic methylcytosine; (3) DNA methylation context and the preference for the nucleotides; (4) DNA- protein interaction sites of DNA methylation; (5) degree of methylation of cytosine in the different structural elements of genes. DNA methylation analysis technique provides a powerful tool for the epigenome study in human and other species, and genes and environment interaction, and founds the theoretical basis for further development of disease diagnostics and therapeutics in human.

  2. DNA transposon-based gene vehicles - scenes from an evolutionary drive

    PubMed Central

    2013-01-01

    DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation. PMID:24320156

  3. Analysis of Two Cosmid Clones from Chromosome 4 of Drosophila melanogaster Reveals Two New Genes Amid an Unusual Arrangement of Repeated Sequences

    PubMed Central

    Locke, John; Podemski, Lynn; Roy, Ken; Pilgrim, David; Hodgetts, Ross

    1999-01-01

    Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing ∼5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus (ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met–hepatocyte growth factor receptor. The other cosmid contains only the two short 5′-most exons from the zinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the β-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome. PMID:10022978

  4. Determination of the Optimal Chromosomal Location(s) for a DNA Element in Escherichia coli Using a Novel Transposon-mediated Approach.

    PubMed

    Frimodt-Møller, Jakob; Charbon, Godefroid; Krogfelt, Karen A; Løbner-Olesen, Anders

    2017-09-11

    The optimal chromosomal position(s) of a given DNA element was/were determined by transposon-mediated random insertion followed by fitness selection. In bacteria, the impact of the genetic context on the function of a genetic element can be difficult to assess. Several mechanisms, including topological effects, transcriptional interference from neighboring genes, and/or replication-associated gene dosage, may affect the function of a given genetic element. Here, we describe a method that permits the random integration of a DNA element into the chromosome of Escherichia coli and select the most favorable locations using a simple growth competition experiment. The method takes advantage of a well-described transposon-based system of random insertion, coupled with a selection of the fittest clone(s) by growth advantage, a procedure that is easily adjustable to experimental needs. The nature of the fittest clone(s) can be determined by whole-genome sequencing on a complex multi-clonal population or by easy gene walking for the rapid identification of selected clones. Here, the non-coding DNA region DARS2, which controls the initiation of chromosome replication in E. coli, was used as an example. The function of DARS2 is known to be affected by replication-associated gene dosage; the closer DARS2 gets to the origin of DNA replication, the more active it becomes. DARS2 was randomly inserted into the chromosome of a DARS2-deleted strain. The resultant clones containing individual insertions were pooled and competed against one another for hundreds of generations. Finally, the fittest clones were characterized and found to contain DARS2 inserted in close proximity to the original DARS2 location.

  5. An updated version of NPIDB includes new classifications of DNA–protein complexes and their families

    PubMed Central

    Zanegina, Olga; Kirsanov, Dmitriy; Baulin, Eugene; Karyagina, Anna; Alexeevski, Andrei; Spirin, Sergey

    2016-01-01

    The recent upgrade of nucleic acid–protein interaction database (NPIDB, http://npidb.belozersky.msu.ru/) includes a newly elaborated classification of complexes of protein domains with double-stranded DNA and a classification of families of related complexes. Our classifications are based on contacting structural elements of both DNA: the major groove, the minor groove and the backbone; and protein: helices, beta-strands and unstructured segments. We took into account both hydrogen bonds and hydrophobic interaction. The analyzed material contains 1942 structures of protein domains from 748 PDB entries. We have identified 97 interaction modes of individual protein domain–DNA complexes and 17 DNA–protein interaction classes of protein domain families. We analyzed the sources of diversity of DNA–protein interaction modes in different complexes of one protein domain family. The observed interaction mode is sometimes influenced by artifacts of crystallization or diversity in secondary structure assignment. The interaction classes of domain families are more stable and thus possess more biological sense than a classification of single complexes. Integration of the classification into NPIDB allows the user to browse the database according to the interacting structural elements of DNA and protein molecules. For each family, we present average DNA shape parameters in contact zones with domains of the family. PMID:26656949

  6. Photoabsorption Study of Bacillus megaterium, DNA and Related Biological Materials in the Phosphorus K-edge Region

    NASA Technical Reports Server (NTRS)

    Frigo, Sean P.; McNulty, Ian; Richmond, Robert C.; Ehret, Charles F.

    2002-01-01

    We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include elemental red phosphorus, hydrated sodium phosphate (Na3PO4.12H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Elemental red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position. Each spectrum for these substances is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for elemental red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B. megaterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition,the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.

  7. A programming language for composable DNA circuits

    PubMed Central

    Phillips, Andrew; Cardelli, Luca

    2009-01-01

    Recently, a range of information-processing circuits have been implemented in DNA by using strand displacement as their main computational mechanism. Examples include digital logic circuits and catalytic signal amplification circuits that function as efficient molecular detectors. As new paradigms for DNA computation emerge, the development of corresponding languages and tools for these paradigms will help to facilitate the design of DNA circuits and their automatic compilation to nucleotide sequences. We present a programming language for designing and simulating DNA circuits in which strand displacement is the main computational mechanism. The language includes basic elements of sequence domains, toeholds and branch migration, and assumes that strands do not possess any secondary structure. The language is used to model and simulate a variety of circuits, including an entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a scheme for implementing an arbitrary system of chemical reactions. The language is a first step towards the design of modelling and simulation tools for DNA strand displacement, which complements the emergence of novel implementation strategies for DNA computing. PMID:19535415

  8. A programming language for composable DNA circuits.

    PubMed

    Phillips, Andrew; Cardelli, Luca

    2009-08-06

    Recently, a range of information-processing circuits have been implemented in DNA by using strand displacement as their main computational mechanism. Examples include digital logic circuits and catalytic signal amplification circuits that function as efficient molecular detectors. As new paradigms for DNA computation emerge, the development of corresponding languages and tools for these paradigms will help to facilitate the design of DNA circuits and their automatic compilation to nucleotide sequences. We present a programming language for designing and simulating DNA circuits in which strand displacement is the main computational mechanism. The language includes basic elements of sequence domains, toeholds and branch migration, and assumes that strands do not possess any secondary structure. The language is used to model and simulate a variety of circuits, including an entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a scheme for implementing an arbitrary system of chemical reactions. The language is a first step towards the design of modelling and simulation tools for DNA strand displacement, which complements the emergence of novel implementation strategies for DNA computing.

  9. A novel non prophage(-like) gene-intervening element within gerE that is reconstituted during sporulation in Bacillus cereus ATCC10987.

    PubMed

    Abe, Kimihiro; Shimizu, Shin-Ya; Tsuda, Shuhei; Sato, Tsutomu

    2017-09-12

    Gene rearrangement is a widely-shared phenomenon in spore forming bacteria, in which prophage(-like) elements interrupting sporulation-specific genes are excised from the host genome to reconstitute the intact gene. Here, we report a novel class of gene-intervening elements, named gin, inserted in the 225 bp gerE-coding region of the B. cereus ATCC10987 genome, which generates a sporulation-specific rearrangement. gin has no phage-related genes and possesses three site-specific recombinase genes; girA, girB, and girC. We demonstrated that the gerE rearrangement occurs at the middle stage of sporulation, in which site-specific DNA recombination took place within the 9 bp consensus sequence flanking the disrupted gerE segments. Deletion analysis of gin uncovered that GirC and an additional factor, GirX, are responsible for gerE reconstitution. Involvement of GirC and GirX in DNA recombination was confirmed by an in vitro recombination assay. These results broaden the definition of the sporulation-specific gene rearrangement phenomenon: gene-intervening elements are not limited to phage DNA but may include non-viral genetic elements that carry a developmentally-regulated site-specific recombination system.

  10. Fragile X-related element 2 methylation analysis may provide a suitable option for inclusion of fragile X syndrome and/or sex chromosome aneuploidy into newborn screening: a technical validation study.

    PubMed

    Inaba, Yoshimi; Herlihy, Amy S; Schwartz, Charles E; Skinner, Cindy; Bui, Quang M; Cobb, Joanna; Shi, Elva Z; Francis, David; Arvaj, Alison; Amor, David J; Pope, Kate; Wotton, Tiffany; Cohen, Jonathan; Hewitt, Jacqueline K; Hagerman, Randi J; Metcalfe, Sylvia A; Hopper, John L; Loesch, Danuta Z; Slater, Howard R; Godler, David E

    2013-04-01

    We show that a novel fragile X-related epigenetic element 2 FMR1 methylation test can be used along with a test for sex-determining region Y (SRY) to provide the option of combined fragile X syndrome and sex chromosome aneuploidy newborn screening. Fragile X-related epigenetic element 2, SRY, and FMR1 CGG repeat analyses were performed on blood and saliva DNA, and in adult and newborn blood spots. The cohort consisted of 159 controls (CGG <40), 187 premutation (CGG 56-170), and 242 full-mutation (CGG ~200-2,000) males and females, 106 sex chromosome aneuploidy individuals, and 151 cytogenetically normal controls. At the 0.435 threshold, fragile X-related epigenetic element 2 analysis in males was robust on both blood DNA and newborn blood spots, with specificity and sensitivity of ~100% for full-mutation genotype. In females, the specificity was 99%, whereas half of full-mutation females were above the 0.435 threshold in both blood DNA and newborn blood spots. Furthermore, at this threshold, the test could not differentiate individuals with Klinefelter syndrome from female controls without using the SRY marker. When combined with SRY analysis, the test was consistent with most results for sex chromosome aneuploidies from karyotyping. Setting specific thresholds for fragile X-related epigenetic element 2 analysis and including the SRY marker provides the option to either include or exclude detection of sex chromosome aneuploidies as part of fragile X syndrome newborn screening.

  11. Modular structural elements in the replication origin region of Tetrahymena rDNA.

    PubMed Central

    Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L

    1995-01-01

    Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181

  12. Exploring the read-write genome: mobile DNA and mammalian adaptation.

    PubMed

    Shapiro, James A

    2017-02-01

    The read-write genome idea predicts that mobile DNA elements will act in evolution to generate adaptive changes in organismal DNA. This prediction was examined in the context of mammalian adaptations involving regulatory non-coding RNAs, viviparous reproduction, early embryonic and stem cell development, the nervous system, and innate immunity. The evidence shows that mobile elements have played specific and sometimes major roles in mammalian adaptive evolution by generating regulatory sites in the DNA and providing interaction motifs in non-coding RNA. Endogenous retroviruses and retrotransposons have been the predominant mobile elements in mammalian adaptive evolution, with the notable exception of bats, where DNA transposons are the major agents of RW genome inscriptions. A few examples of independent but convergent exaptation of mobile DNA elements for similar regulatory rewiring functions are noted.

  13. Effect of DNA type on response of DNA biosensor for carcinogens

    NASA Astrophysics Data System (ADS)

    Sani, Nor Diyana bt. Md.; Heng, Lee Yook; Surif, Salmijah; Lazim, Azwani Mat

    2013-11-01

    Carcinogens are cancer causing chemicals that can bind to DNA and cause damage to the DNA. These chemicals are available everywhere including in water, air, soil and food. Therefore, a sensor that can detect the presence of these chemicals will be a very useful tool. Since carcinogens bind to DNA, DNA can be used as the biological element in a biosensor. This study has utilized different types of DNA in a biosensor for carcinogen detection. The DNAs include double stranded calf thymus DNA, single stranded calf thymus DNA and guanine rich single stranded DNA. The modified SPE was exposed to a carcinogen followed by interaction with methylene blue which acts as the electroactive indicator. The SPE was then analysed using differential pulse voltammetry (DPV). Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, as well as effect of buffer concentration, buffer pH and ionic strength. The performance of the biosensor was tested on a group 1 carcinogen, formaldehyde. The results indicated that the usage of guanine rich single stranded DNA also gives higher response as carcinogens prefer to bind with guanine compared to other bases.

  14. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappamore » B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.« less

  15. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology

    PubMed Central

    Chappell, James; Jensen, Kirsten; Freemont, Paul S.

    2013-01-01

    A bottleneck in our capacity to rationally and predictably engineer biological systems is the limited number of well-characterized genetic elements from which to build. Current characterization methods are tied to measurements in living systems, the transformation and culturing of which are inherently time-consuming. To address this, we have validated a completely in vitro approach for the characterization of DNA regulatory elements using Escherichia coli extract cell-free systems. Importantly, we demonstrate that characterization in cell-free systems correlates and is reflective of performance in vivo for the most frequently used DNA regulatory elements. Moreover, we devise a rapid and completely in vitro method to generate DNA templates for cell-free systems, bypassing the need for DNA template generation and amplification from living cells. This in vitro approach is significantly quicker than current characterization methods and is amenable to high-throughput techniques, providing a valuable tool for rapidly prototyping libraries of DNA regulatory elements for synthetic biology. PMID:23371936

  16. DNA detection on ultrahigh-density optical fiber-based nanoarrays.

    PubMed

    Tam, Jenny M; Song, Linan; Walt, David R

    2009-04-15

    Nanoarrays for DNA detection were fabricated on etched nanofiber bundles based on recently developed techniques for microscale arrays. Two different-sized nanoarrays were created: one with 700 nm feature sizes and a 1 microm center-to-center pitch (approximately 1x10(6) array elements/mm(2)) and one with 300 nm feature sizes and a 500 nm center-to-center pitch (4.6x10(6) array elements/mm(2)). A random, multiplexed array composed of oligonucleotide-functionalized nanospheres was constructed and used for parallel detection and analysis of fluorescently labeled DNA targets. We have used these arrays to detect a variety of target sequences including Bacillus thuringiensis kurstaki and vaccina virus sequences, two potential biowarfare agents, as well as interleukin-2 sequences, an immune system modulator that has been used for the diagnosis of HIV.

  17. Identification of structural variation in mouse genomes.

    PubMed

    Keane, Thomas M; Wong, Kim; Adams, David J; Flint, Jonathan; Reymond, Alexandre; Yalcin, Binnaz

    2014-01-01

    Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation.

  18. GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology1[C][W][OA

    PubMed Central

    Sarrion-Perdigones, Alejandro; Vazquez-Vilar, Marta; Palací, Jorge; Castelijns, Bas; Forment, Javier; Ziarsolo, Peio; Blanca, José; Granell, Antonio; Orzaez, Diego

    2013-01-01

    Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an ever-growing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects. PMID:23669743

  19. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology.

    PubMed

    Sarrion-Perdigones, Alejandro; Vazquez-Vilar, Marta; Palací, Jorge; Castelijns, Bas; Forment, Javier; Ziarsolo, Peio; Blanca, José; Granell, Antonio; Orzaez, Diego

    2013-07-01

    Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an evergrowing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects.

  20. Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements

    PubMed Central

    Tharakaraman, Kannan; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L; Landsman, David; Spouge, John L

    2006-01-01

    Background Many DNA regulatory elements occur as multiple instances within a target promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be prohibitively slow in locating all instances of such an element in a sequence set. Results We describe an improvement to the A-GLAM computer program, which predicts regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM. First, it assigns an "individual score" to each subsequence of appropriate length within the input sequences using the initial PSSM. Second, it computes an E-value from each individual score, to assess the agreement between the corresponding subsequence and the PSSM. Third, it permits subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports predicted regulatory elements within each sequence in order of increasing E-values, so users have a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the scanning step can now rapidly locate further instances of the element in each sequence. Conclusion Datasets from experiments determining the binding sites of transcription factors were used to evaluate the improvement to A-GLAM. Typically, the datasets included several sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM permitted it to predict the multiple instances. PMID:16961919

  1. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme.

    PubMed Central

    Burke, W D; Calalang, C C; Eickbush, T H

    1987-01-01

    Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover. Images PMID:2439905

  2. Concerted formation of macromolecular Suppressor–mutator transposition complexes

    PubMed Central

    Raina, Ramesh; Schläppi, Michael; Karunanandaa, Balasulojini; Elhofy, Adam; Fedoroff, Nina

    1998-01-01

    Transposition of the maize Suppressor–mutator (Spm) transposon requires two element-encoded proteins, TnpA and TnpD. Although there are multiple TnpA binding sites near each element end, binding of TnpA to DNA is not cooperative, and the binding affinity is not markedly affected by the number of binding sites per DNA fragment. However, intermolecular complexes form cooperatively between DNA fragments with three or more TnpA binding sites. TnpD, itself not a sequence-specific DNA-binding protein, binds to TnpA and stabilizes the TnpA–DNA complex. The high redundancy of TnpA binding sites at both element ends and the protein–protein interactions between DNA-bound TnpA complexes and between these and TnpD imply a concerted transition of the element from a linear to a protein crosslinked transposition complex within a very narrow protein concentration range. PMID:9671711

  3. Useful DNA polymorphisms are identified by snapback, a midrepetitive element in Tribolium castaneum.

    PubMed

    Stuart, J J; De Gortari, M J; Hall, P S; Maxwell, M E; Mocelin, G; Brown, S J; Muir, W M

    1996-06-01

    The red flour bettle, Tribolium castaneum, is both a pest of stored grain products and an important experimental organism. To improve its facility as a genetic model, we are developing DNA fingerprinting methods for this insect. A Tribolium DNA fragment, snapback-1 (SBI), identified among sequences that reassociate before a Cot of 0.03 mol.s/L, was found to produce a banding pattern in restriction endonuclease digested genomic DNA that is characteristic of a midrepetitive element. DNA fingerprints of individual beetles demonstrated that unvarying inherited DNA polymorphism is revealed, and that polymorphism is inherited in a dominant Mendelian fashion. Linkage between bands was minimal. The sequence of SBI was determined, and hybridization experiments indicated that SBI is a fragment of a larger midrepetitive element. Fingerprinting individuals with known inbreeding coefficients indicated that SBI loci have relatively high mutation rates. The possibility that SBI is a fragment of a transposable element is discussed.

  4. The Dfam database of repetitive DNA families.

    PubMed

    Hubley, Robert; Finn, Robert D; Clements, Jody; Eddy, Sean R; Jones, Thomas A; Bao, Weidong; Smit, Arian F A; Wheeler, Travis J

    2016-01-04

    Repetitive DNA, especially that due to transposable elements (TEs), makes up a large fraction of many genomes. Dfam is an open access database of families of repetitive DNA elements, in which each family is represented by a multiple sequence alignment and a profile hidden Markov model (HMM). The initial release of Dfam, featured in the 2013 NAR Database Issue, contained 1143 families of repetitive elements found in humans, and was used to produce more than 100 Mb of additional annotation of TE-derived regions in the human genome, with improved speed. Here, we describe recent advances, most notably expansion to 4150 total families including a comprehensive set of known repeat families from four new organisms (mouse, zebrafish, fly and nematode). We describe improvements to coverage, and to our methods for identifying and reducing false annotation. We also describe updates to the website interface. The Dfam website has moved to http://dfam.org. Seed alignments, profile HMMs, hit lists and other underlying data are available for download. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Homing endonucleases from mobile group I introns: discovery to genome engineering

    PubMed Central

    2014-01-01

    Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity. PMID:24589358

  6. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    PubMed

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.

  7. BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response.

    PubMed

    da Costa e Silva, O; Klein, L; Schmelzer, E; Trezzini, G F; Hahlbrock, K

    1993-07-01

    The mechanisms by which plants restrict the growth of pathogens include transient activation of numerous defense-related genes. Box P is a putative cis-acting element of a distinct group of such genes, including those encoding the enzyme phenylalanine ammonialyase (PAL). A DNA-binding activity to Box P was identified in nuclear extracts from cultured parsley cells and a cDNA encoding the protein BPF-1 (Box P-binding Factor) partially characterized. BPF-1 binds to this element with specificity similar to that of the binding activity in nuclear extracts. BPF-1 mRNA accumulates rapidly in elicitor-treated parsley cells and around fungal infection sites on parsley leaves. This accumulation is, at least partly, due to a rapid and transient increase in the transcription rate of BPF-1. Moreover, tight correlation between the relative amounts of BPF-1 and PAL mRNAs was observed in different organs of a parsley plant. These results are consistent with the hypothesis that BPF-1 is involved in disease resistance by modulating plant defense gene expression.

  8. Mechanisms of radiation-induced gene responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloschak, G.E.; Paunesku, T.

    1996-10-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5` region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3` region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts;more » however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process.« less

  9. Altered Methylation in Tandem Repeat Element and Elemental Component Levels in Inhalable Air Particles

    PubMed Central

    Hou, Lifang; Zhang, Xiao; Zheng, Yinan; Wang, Sheng; Dou, Chang; Guo, Liqiong; Byun, Hyang-Min; Motta, Valeria; McCracken, John; Díaz, Anaité; Kang, Choong-Min; Koutrakis, Petros; Bertazzi, Pier Alberto; Li, Jingyun; Schwartz, Joel; Baccarelli, Andrea A.

    2014-01-01

    Exposure to particulate matter (PM) has been associated with lung cancer risk in epidemiology investigations. Elemental components of PM have been suggested to have critical roles in PM toxicity, but the molecular mechanisms underlying their association with cancer risks remain poorly understood. DNA methylation has emerged as a promising biomarker for environmental-related diseases, including lung cancer. In this study, we evaluated the effects of PM elemental components on methylation of three tandem repeats in a highly-exposed population in Beijing, China. The Beijing Truck Driver Air Pollution Study was conducted shortly before the 2008 Beijing Olympic Games (June 15-July 27, 2008) and included 60 truck drivers and 60 office workers. On two days separated by 1-2 weeks, we measured blood DNA methylation of SATα, NBL2, D4Z4, and personal exposure to eight elemental components in PM2.5, including aluminum (Al), silicon (Si), sulfur (S), potassium (K), calcium (Ca) titanium (Ti), iron (Fe), and zinc (Zn). We estimated the associations of individual elemental component with each tandem repeat methylation in generalized estimating equations (GEE) models adjusted for PM2.5 mass and other covariates. Out of the eight examined elements, NBL2 methylation was positively associated with concentrations of Si (0.121, 95%CI: 0.030; 0.212, FDR=0.047) and Ca (0.065, 95%CI: 0.014; 0.115, FDR=0.047) in truck drivers. In office workers, SATα methylation was positively associated with concentrations of S (0.115, 95%CI: 0.034; 0.196, FDR=0.042). PM-associated differences in blood tandem-repeat methylation may help detect biological effects of the exposure and identify individuals who may eventually experience higher lung cancer risk. PMID:24273195

  10. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants.

    PubMed

    Wicke, Susann; Costa, Andrea; Muñoz, Jesùs; Quandt, Dietmar

    2011-11-01

    Among eukaryotes two types of nuclear ribosomal DNA (nrDNA) organization have been observed. Either all components, i.e. the small ribosomal subunit, 5.8S, large ribosomal subunit, and 5S occur tandemly arranged or the 5S rDNA forms a separate cluster of its own. Generalizations based on data derived from just a few model organisms have led to a superimposition of structural and evolutionary traits to the entire plant kingdom asserting that plants generally possess separate arrays. This study reveals that plant nrDNA organization into separate arrays is not a distinctive feature, but rather assignable almost solely to seed plants. We show that early diverging land plants and presumably streptophyte algae share a co-localization of all rRNA genes within one repeat unit. This raises the possibility that the state of rDNA gene co-localization had occurred in their common ancestor. Separate rDNA arrays were identified for all basal seed plants and water ferns, implying at least two independent 5S rDNA transposition events during land plant evolution. Screening for 5S derived Cassandra transposable elements which might have played a role during the transposition events, indicated that this retrotransposon is absent in early diverging vascular plants including early fern lineages. Thus, Cassandra can be rejected as a primary mechanism for 5S rDNA transposition in water ferns. However, the evolution of Cassandra and other eukaryotic 5S derived elements might have been a side effect of the 5S rDNA cluster formation. Structural analysis of the intergenic spacers of the ribosomal clusters revealed that transposition events partially affect spacer regions and suggests a slightly different transcription regulation of 5S rDNA in early land plants. 5S rDNA upstream regulatory elements are highly divergent or absent from the LSU-5S spacers of most early divergent land plant lineages. Several putative scenarios and mechanisms involved in the concerted relocation of hundreds of 5S rRNA gene copies are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster.

    PubMed

    Slattery, Matthew; Ma, Lijia; Spokony, Rebecca F; Arthur, Robert K; Kheradpour, Pouya; Kundaje, Anshul; Nègre, Nicolas; Crofts, Alex; Ptashkin, Ryan; Zieba, Jennifer; Ostapenko, Alexander; Suchy, Sarah; Victorsen, Alec; Jameel, Nader; Grundstad, A Jason; Gao, Wenxuan; Moran, Jennifer R; Rehm, E Jay; Grossman, Robert L; Kellis, Manolis; White, Kevin P

    2014-07-01

    Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development. © 2014 Slattery et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Lefèvre, Loic; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H

    2015-08-14

    In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element. Food/feed matrices containing transgenic crops (Bt rice or MON863 maize) were analysed using the integrated DNA walking system. First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples. Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix.

  13. Accelerated Evolution in Distinctive Species Reveals Candidate Elements for Clinically Relevant Traits, Including Mutation and Cancer Resistance.

    PubMed

    Ferris, Elliott; Abegglen, Lisa M; Schiffman, Joshua D; Gregg, Christopher

    2018-03-06

    The identity of most functional elements in the mammalian genome and the phenotypes they impact are unclear. Here, we perform a genome-wide comparative analysis of patterns of accelerated evolution in species with highly distinctive traits to discover candidate functional elements for clinically important phenotypes. We identify accelerated regions (ARs) in the elephant, hibernating bat, orca, dolphin, naked mole rat, and thirteen-lined ground squirrel lineages in mammalian conserved regions, uncovering ∼33,000 elements that bind hundreds of different regulatory proteins in humans and mice. ARs in the elephant, the largest land mammal, are uniquely enriched near elephant DNA damage response genes. The genomic hotspot for elephant ARs is the E3 ligase subunit of the Fanconi anemia complex, a master regulator of DNA repair. Additionally, ARs in the six species are associated with specific human clinical phenotypes that have apparent concordance with overt traits in each species. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Rat L (long interspersed repeated DNA) elements contain guanine-rich homopurine sequences that induce unpairing of contiguous duplex DNA.

    PubMed Central

    Usdin, K; Furano, A V

    1988-01-01

    The L family (long interspersed repeated DNA) of mobile genetic elements is a persistent feature of the mammalian genome. In rats, this family contains approximately equal to 40,000 members and accounts for approximately equal to 10% of the haploid genome. We demonstrate here that the guanine-rich homopurine stretches located at the right end of L-DNA induce oligonucleotide uptake by contiguous duplex DNA. The uptake is dependent on negative supercoiling and the length of the homopurine stretch and occurs even when the L-DNA homopurine stretches are introduced into a different DNA environment. The bound oligomer primes DNA synthesis when DNA polymerase and deoxyribonucleoside triphosphates are added, resulting in a faithful copy of the template to which the oligonucleotide had bound. The implications of this property of the L-DNA guanine-rich homopurine stretches in the amplification, recombination, and dispersal of L elements is discussed. Images PMID:2837766

  15. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).

    PubMed

    Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Matsuda, Yoichi

    2004-03-01

    We isolated a new family of satellite DNA sequences from HaeIII- and EcoRI-digested genomic DNA of the Blakiston's fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.

  16. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    PubMed

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  17. Evolution of Genome Size and Complexity in Pinus

    PubMed Central

    Morse, Alison M.; Peterson, Daniel G.; Islam-Faridi, M. Nurul; Smith, Katherine E.; Magbanua, Zenaida; Garcia, Saul A.; Kubisiak, Thomas L.; Amerson, Henry V.; Carlson, John E.; Nelson, C. Dana; Davis, John M.

    2009-01-01

    Background Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. Methodology/Principal Findings Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. Conclusions/Significance Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes. PMID:19194510

  18. Bovine papilloma virus contains an activator of gene expression at the distal end of the early transcription unit.

    PubMed Central

    Lusky, M; Berg, L; Weiher, H; Botchan, M

    1983-01-01

    Bovine papilloma virus (BPV) contains a cis-acting DNA element which can enhance transcription of distal promoters. Utilizing both direct and indirect transient transfection assays, we showed that a 59-base-pair DNA sequence from the BPV genome could activate the simian virus 40 promoter from distances exceeding 2.5 kilobases and in an orientation-independent manner. In contrast to the promoter 5'-proximal localization of other known viral activators, this element was located immediately 3' to the early polyadenylation signal in the BPV genome. Deletion of these sequences from the BPV genome inactivated the transforming ability of BPV recombinant plasmids. Orientation-independent reinsertion of this 59-base-pair sequence, or alternatively of activator DNA sequences from simian virus 40 or polyoma virus, restored the transforming activity of the BPV recombinant plasmids. Furthermore, the stable transformation frequency of the herpes simplex virus type 1 thymidine kinase gene was enhanced when linked to restriction fragments of BPV DNA which included the defined activator element. This enhancement was orientation independent with respect to the thymidine kinase promoter. The enhancement also appeared to be unrelated to the establishment of the recombinant plasmids as episomes, since in transformed cells these sequences are found linked to high-molecular-weight DNA. We propose that the enhancement of stable transformation frequencies and the activation of transcription units are in this case alternate manifestations of the same biochemical events. Images PMID:6308425

  19. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

    PubMed Central

    Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2016-01-01

    The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297

  20. DNA nanotechnology for nanophotonic applications.

    PubMed

    Samanta, Anirban; Banerjee, Saswata; Liu, Yan

    2015-02-14

    DNA nanotechnology has touched the epitome of miniaturization by integrating various nanometer size particles with nanometer precision. This enticing bottom-up approach has employed small DNA tiles, large multi-dimensional polymeric structures or more recently DNA origami to organize nanoparticles of different inorganic materials, small organic molecules or macro-biomolecules like proteins, and RNAs into fascinating patterns that are difficult to achieve by other conventional methods. Here, we are especially interested in the self-assembly of nanomaterials that are potentially attractive elements in the burgeoning field of nanophotonics. These materials include plasmonic nanoparticles, quantum dots, fluorescent organic dyes, etc. DNA based self-assembly allows excellent control over distance, orientation and stoichiometry of these nano-elements that helps to engineer intelligent systems that can potentially pave the path for future technology. Many outstanding structures have been fabricated that are capable of fine tuning optical properties, such as fluorescence intensity and lifetime modulation, enhancement of Raman scattering and emergence of circular dichroism responses. Within the limited scope of this review we have tried to give a glimpse of the development of this still nascent but highly promising field to its current status as well as the existing challenges before us.

  1. Individual epigenetic variation: When, why, and so what?

    USDA-ARS?s Scientific Manuscript database

    Epigenetics provides a potential explanation for how environmental factors modify the risk for common diseases among individuals. Interindividual variation in DNA methylation and epigenetic regulation has been reported at specific genomic regions including transposable elements, genomically imprinte...

  2. Spy: a new group of eukaryotic DNA transposons without target site duplications.

    PubMed

    Han, Min-Jin; Xu, Hong-En; Zhang, Hua-Hao; Feschotte, Cédric; Zhang, Ze

    2014-06-24

    Class 2 or DNA transposons populate the genomes of most eukaryotes and like other mobile genetic elements have a profound impact on genome evolution. Most DNA transposons belong to the cut-and-paste types, which are relatively simple elements characterized by terminal-inverted repeats (TIRs) flanking a single gene encoding a transposase. All eukaryotic cut-and-paste transposons so far described are also characterized by target site duplications (TSDs) of host DNA generated upon chromosomal insertion. Here, we report a new group of evolutionarily related DNA transposons called Spy, which also include TIRs and DDE motif-containing transposase but surprisingly do not create TSDs upon insertion. Instead, Spy transposons appear to transpose precisely between 5'-AAA and TTT-3' host nucleotides, without duplication or modification of the AAATTT target sites. Spy transposons were identified in the genomes of diverse invertebrate species based on transposase homology searches and structure-based approaches. Phylogenetic analyses indicate that Spy transposases are distantly related to IS5, ISL2EU, and PIF/Harbinger transposases. However, Spy transposons are distinct from these and other DNA transposon superfamilies by their lack of TSD and their target site preference. Our findings expand the known diversity of DNA transposons and reveal a new group of eukaryotic DDE transposases with unusual catalytic properties. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. The Evolution of Tyrosine-Recombinase Elements in Nematoda

    PubMed Central

    Szitenberg, Amir; Koutsovoulos, Georgios; Blaxter, Mark L.; Lunt, David H.

    2014-01-01

    Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. We explored the diversity of YREs in Nematoda by sampling broadly across the phylum and including 34 genomes representing the three classes within Nematoda. We developed a method to isolate and classify YREs based on both feature organization and phylogenetic relationships in an open and reproducible workflow. We also ensured that our phylogenetic approach to YRE classification identified truncated and degenerate elements, informatively increasing the number of elements sampled. We identified Dirs1-like elements (thought to be absent from Nematoda) in the nematode classes Enoplia and Dorylaimia indicating that nematode model species do not adequately represent the diversity of transposable elements in the phylum. Nematode Pat1-like elements were found to be a derived form of another Pat1-like element that is present more widely in animals. Several sequence features used widely for the classification of YREs were found to be homoplasious, highlighting the need for a phylogenetically-based classification scheme. Nematode model species do not represent the diversity of transposable elements in the phylum. PMID:25197791

  4. The evolution of tyrosine-recombinase elements in Nematoda.

    PubMed

    Szitenberg, Amir; Koutsovoulos, Georgios; Blaxter, Mark L; Lunt, David H

    2014-01-01

    Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. We explored the diversity of YREs in Nematoda by sampling broadly across the phylum and including 34 genomes representing the three classes within Nematoda. We developed a method to isolate and classify YREs based on both feature organization and phylogenetic relationships in an open and reproducible workflow. We also ensured that our phylogenetic approach to YRE classification identified truncated and degenerate elements, informatively increasing the number of elements sampled. We identified Dirs1-like elements (thought to be absent from Nematoda) in the nematode classes Enoplia and Dorylaimia indicating that nematode model species do not adequately represent the diversity of transposable elements in the phylum. Nematode Pat1-like elements were found to be a derived form of another Pat1-like element that is present more widely in animals. Several sequence features used widely for the classification of YREs were found to be homoplasious, highlighting the need for a phylogenetically-based classification scheme. Nematode model species do not represent the diversity of transposable elements in the phylum.

  5. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  6. Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research

    Cancer.gov

    Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in the architecture of eukaryotic genomes and are the evolutionary origin of retroviruses, including human immunodeficiency virus (HIV).

  7. cDNA sequence and expression of a cold-responsive gene in Citrus unshiu.

    PubMed

    Hara, M; Wakasugi, Y; Ikoma, Y; Yano, M; Ogawa, K; Kuboi, T

    1999-02-01

    A cDNA clone encoding a protein (CuCOR19), the sequence of which is similar to Poncirus COR19, of the dehydrin family was isolated from the epicarp of Citrus unshiu. The molecular mass of the predicted protein was 18,980 daltons. CuCOR19 was highly hydrophilic and contained three repeating elements including Lys-rich motifs. The gene expression in leaves increased by cold stress.

  8. DNA nanotechnology-enabled biosensors.

    PubMed

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice.

    PubMed

    Ma, Jianxin; Bennetzen, Jeffrey L

    2006-01-10

    Centromeres have many unusual biological properties, including kinetochore attachment and severe repression of local meiotic recombination. These properties are partly an outcome, partly a cause, of unusual DNA structure in the centromeric region. Although several plant and animal genomes have been sequenced, most centromere sequences have not been completed or analyzed in depth. To shed light on the unique organization, variability, and evolution of centromeric DNA, detailed analysis of a 1.97-Mb sequence that includes centromere 8 (CEN8) of japonica rice was undertaken. Thirty-three long-terminal repeat (LTR)-retrotransposon families (including 11 previously unknown) were identified in the CEN8 region, totaling 245 elements and fragments that account for 67% of the region. The ratio of solo LTRs to intact elements in the CEN8 region is approximately 0.9:1, compared with approximately 2.2:1 in noncentromeric regions of rice. However, the ratio of solo LTRs to intact elements in the core of the CEN8 region ( approximately 2.5:1) is higher than in any other region investigated in rice, suggesting a hotspot for unequal recombination. Comparison of the CEN8 region of japonica and its orthologous segments from indica rice indicated that approximately 15% of the intact retrotransposons and solo LTRs were inserted into CEN8 after the divergence of japonica and indica from a common ancestor, compared with approximately 50% for previously studied euchromatic regions. Frequent DNA rearrangements were observed in the CEN8 region, including a 212-kb subregion that was found to be composed of three rearranged tandem repeats. Phylogenetic analysis also revealed recent segmental duplication and extensive rearrangement and reshuffling of the CentO satellite repeats.

  10. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.

    PubMed

    Schreiber, T; Tissier, A

    2016-01-01

    The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits. © 2016 Elsevier Inc. All rights reserved.

  11. Presynaptic Filament Dynamics in Homologous Recombination and DNA Repair

    PubMed Central

    Liu, Jie; Ehmsen, Kirk T.; Heyer, Wolf-Dietrich; Morrical, Scott W.

    2014-01-01

    Homologous Recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA. Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we review the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments: some intrinsic such as recombinase ATP binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examine dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examine the biochemical properties of recombination proteins from four model systems (T4 phage, E. coli, S. cerevisiae, and H. sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We propose that the presynaptic filament has evolved to rely on multiple external factors for increased multi-level regulation of HR processes in genomes with greater structural and sequence complexity. PMID:21599536

  12. The Autographa californica Multiple Nucleopolyhedrovirus ac83 Gene Contains a cis-Acting Element That Is Essential for Nucleocapsid Assembly.

    PubMed

    Huang, Zhihong; Pan, Mengjia; Zhu, Silei; Zhang, Hao; Wu, Wenbi; Yuan, Meijin; Yang, Kai

    2017-03-01

    Baculoviridae is a family of insect-specific viruses that have a circular double-stranded DNA genome packaged within a rod-shaped capsid. The mechanism of baculovirus nucleocapsid assembly remains unclear. Previous studies have shown that deletion of the ac83 gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) blocks viral nucleocapsid assembly. Interestingly, the ac83 -encoded protein Ac83 is not a component of the nucleocapsid, implying a particular role for ac83 in nucleocapsid assembly that may be independent of its protein product. To examine this possibility, Ac83 synthesis was disrupted by insertion of a chloramphenicol resistance gene into its coding sequence or by deleting its promoter and translation start codon. Both mutants produced progeny viruses normally, indicating that the Ac83 protein is not required for nucleocapsid assembly. Subsequently, complementation assays showed that the production of progeny viruses required the presence of ac83 in the AcMNPV genome instead of its presence in trans Therefore, we reasoned that ac83 is involved in nucleocapsid assembly via an internal cis -acting element, which we named the nucleocapsid assembly-essential element (NAE). The NAE was identified to lie within nucleotides 1651 to 1850 of ac83 and had 8 conserved A/T-rich regions. Sequences homologous to the NAE were found only in alphabaculoviruses and have a conserved positional relationship with another essential cis -acting element that was recently identified. The identification of the NAE may help to connect the data of viral cis -acting elements and related proteins in the baculovirus nucleocapsid assembly, which is important for elucidating DNA-protein interaction events during this process. IMPORTANCE Virus nucleocapsid assembly usually requires specific cis -acting elements in the viral genome for various processes, such as the selection of the viral genome from the cellular nucleic acids, the cleavage of concatemeric viral genome replication intermediates, and the encapsidation of the viral genome into procapsids. In linear DNA viruses, such elements generally locate at the ends of the viral genome; however, most of these elements remain unidentified in circular DNA viruses (including baculovirus) due to their circular genomic conformation. Here, we identified a nucleocapsid assembly-essential element in the AcMNPV (the archetype of baculovirus) genome. This finding provides an important reference for studies of nucleocapsid assembly-related elements in baculoviruses and other circular DNA viruses. Moreover, as most of the previous studies of baculovirus nucleocapsid assembly have been focused on viral proteins, our study provides a novel entry point to investigate this mechanism via cis -acting elements in the viral genome. Copyright © 2017 American Society for Microbiology.

  13. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules.

    PubMed

    Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; Khairil Mokhtar, Nur Fadhilah; El Sheikha, Aly Farag

    2018-03-05

    The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared. A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA. The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. DNA-directed mutations. Leading and lagging strand specificity

    NASA Technical Reports Server (NTRS)

    Sinden, R. R.; Hashem, V. I.; Rosche, W. A.

    1999-01-01

    The fidelity of replication has evolved to reproduce B-form DNA accurately, while allowing a low frequency of mutation. The fidelity of replication can be compromised, however, by defined order sequence DNA (dosDNA) that can adopt unusual or non B-DNA conformations. These alternative DNA conformations, including hairpins, cruciforms, triplex DNAs, and slipped-strand structures, may affect enzyme-template interactions that potentially lead to mutations. To analyze the effect of dosDNA elements on spontaneous mutagenesis, various mutational inserts containing inverted repeats or direct repeats were cloned in a plasmid containing a unidirectional origin of replication and a selectable marker for the mutation. This system allows for analysis of mutational events that are specific for the leading or lagging strands during DNA replication in Escherichia coli. Deletions between direct repeats, involving misalignment stabilized by DNA secondary structure, occurred preferentially on the lagging strand. Intermolecular strand switch events, correcting quasipalindromes to perfect inverted repeats, occurred preferentially during replication of the leading strand.

  15. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex

    PubMed Central

    Ganaie, Safder S.; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve

    2017-01-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases. PMID:28459842

  16. Characterization of various promoter regions of the human DNA helicase-encoding genes and identification of duplicated ets (GGAA) motifs as an essential transcription regulatory element.

    PubMed

    Uchiumi, Fumiaki; Watanabe, Takeshi; Tanuma, Sei-ichi

    2010-05-15

    DNA helicases are important in the regulation of DNA transaction and thereby various cellular functions. In this study, we developed a cost-effective multiple DNA transfection assay with DEAE-dextran reagent and analyzed the promoter activities of the human DNA helicases. The 5'-flanking regions of the human DNA helicase-encoding genes were isolated and subcloned into luciferase (Luc) expression plasmids. They were coated onto 96-well plate and used for co-transfection with a renilla-Luc expression vector into various cells, and dual-Luc assays were performed. The profiles of promoter activities were dependent on cell lines used. Among these human DNA helicase genes, XPB, RecQL5, and RTEL promoters were activated during TPA-induced HL-60 cell differentiation. Interestingly, duplicated ets (GGAA) elements are commonly located around the transcription start sites of these genes. The duplicated GGAA motifs are also found in the promoters of DNA replication/repair synthesis factor genes including PARG, ATR, TERC, and Rb1. Mutation analyses suggested that the duplicated GGAA-motifs are necessary for the basal promoter activity in various cells and some of them positively respond to TPA in HL-60 cells. TPA-induced response of 44-bp in the RTEL promoter was attenuated by co-transfection of the PU.1 expression vector. These findings suggest that the duplicated ets motifs regulate DNA-repair associated gene expressions during macrophage-like differentiation of HL-60 cells. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Nucleosome core particles containing a poly(dA.dT) sequence element exhibit a locally distorted DNA structure.

    PubMed

    Bao, Yunhe; White, Cindy L; Luger, Karolin

    2006-08-25

    Poly(dA.dT) DNA sequence elements are thought to promote transcription by either excluding nucleosomes or by altering their structural or dynamic properties. Here, the stability and structure of a defined nucleosome core particle containing a 16 base-pair poly(dA.dT) element (A16 NCP) was investigated. The A16 NCP requires a significantly higher temperature for histone octamer sliding in vitro compared to comparable nucleosomes that do not contain a poly(dA.dT) element. Fluorescence resonance energy transfer showed that the interactions between the nucleosomal DNA ends and the histone octamer were destabilized in A16 NCP. The crystal structure of A16 NCP was determined to a resolution of 3.2 A. The overall structure was maintained except for local deviations in DNA conformation. These results are consistent with previous in vivo and in vitro observations that poly(dA.dT) elements cause only modest changes in DNA accessibility and modest increases in steady-state transcription levels.

  18. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  19. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE PAGES

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; ...

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  20. Foldback intercoil DNA and the mechanism of DNA transposition.

    PubMed

    Kim, Byung-Dong

    2014-09-01

    Foldback intercoil (FBI) DNA is formed by the folding back at one point of a non-helical parallel track of double-stranded DNA at as sharp as 180° and the intertwining of two double helixes within each other's major groove to form an intercoil with a diameter of 2.2 nm. FBI DNA has been suggested to mediate intra-molecular homologous recombination of a deletion and inversion. Inter-molecular homologous recombination, known as site-specific insertion, on the other hand, is mediated by the direct perpendicular approach of the FBI DNA tip, as the attP site, onto the target DNA, as the attB site. Transposition of DNA transposons involves the pairing of terminal inverted repeats and 5-7-bp tandem target duplication. FBI DNA configuration effectively explains simple as well as replicative transposition, along with the involvement of an enhancer element. The majority of diverse retrotransposable elements that employ a target site duplication mechanism is also suggested to follow the FBI DNA-mediated perpendicular insertion of the paired intercoil ends by non-homologous end-joining, together with gap filling. A genome-wide perspective of transposable elements in light of FBI DNA is discussed.

  1. Small RNA-Mediated trans-Nuclear and trans-Element Communications in Tetrahymena DNA Elimination.

    PubMed

    Noto, Tomoko; Mochizuki, Kazufumi

    2018-06-18

    Epigenetic inheritance of acquired traits is widespread among eukaryotes, but how and to what extent such information is transgenerationally inherited is still unclear. The patterns of programmed DNA elimination in ciliates are epigenetically and transgenerationally inherited, and it has been proposed that small RNAs, which shuttle between the germline and the soma, regulate this epigenetic inheritance. In this study, we test the existence and role of such small-RNA-mediated communication by epigenetically disturbing the pattern of DNA elimination in Tetrahymena. We show that the pattern of DNA elimination is, indeed, determined by the selective turnover of small RNAs, which is induced by the interaction between germline-derived small RNAs and the somatic genome. In addition, we show that DNA elimination of an element is regulated by small-RNA-mediated communication with other eliminated elements. By contrast, no evidence obtained thus far supports the notion that transfer of epigenetic information from the soma to the germline, if any, regulates DNA elimination. Our results indicate that small-RNA-mediated trans-nuclear and trans-element communication, in addition to unknown information in the germline genome, contributes to determining the pattern of DNA elimination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

    PubMed Central

    Puterova, Janka; Razumova, Olga; Martinek, Tomas; Alexandrov, Oleg; Divashuk, Mikhail; Kubat, Zdenek; Hobza, Roman; Karlov, Gennady

    2017-01-01

    Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes. PMID:28057732

  3. Cytosolic sensing of immuno-stimulatory DNA, the enemy within.

    PubMed

    Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia

    2018-02-01

    In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.

  4. Targeting of >1.5 Mb of Human DNA into the Mouse X Chromosome Reveals Presence of cis-Acting Regulators of Epigenetic Silencing

    PubMed Central

    Yang, Christine; McLeod, Andrea J.; Cotton, Allison M.; de Leeuw, Charles N.; Laprise, Stéphanie; Banks, Kathleen G.; Simpson, Elizabeth M.; Brown, Carolyn J.

    2012-01-01

    Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome. PMID:23023002

  5. Genome-wide colonization of gene regulatory elements by G4 DNA motifs

    PubMed Central

    Du, Zhuo; Zhao, Yiqiang; Li, Ning

    2009-01-01

    G-quadruplex (or G4 DNA), a stable four-stranded structure found in guanine-rich regions, is implicated in the transcriptional regulation of genes involved in growth and development. Previous studies on the role of G4 DNA in gene regulation mostly focused on genomic regions proximal to transcription start sites (TSSs). To gain a more comprehensive understanding of the regulatory role of G4 DNA, we examined the landscape of potential G4 DNA (PG4Ms) motifs in the human genome and found that G4 motifs, not restricted to those found in the TSS-proximal regions, are bias toward gene-associated regions. Significantly, analyses of G4 motifs in seven types of well-known gene regulatory elements revealed a constitutive enrichment pattern and the clusters of G4 motifs tend to be colocalized with regulatory elements. Considering our analysis from a genome evolutionary perspective, we found evidence that the occurrence and accumulation of certain progenitors and canonical G4 DNA motifs within regulatory regions were progressively favored by natural selection. Our results suggest that G4 DNA motifs are ‘colonized’ in regulatory regions, supporting a likely genome-wide role of G4 DNA in gene regulation. We hypothesize that G4 DNA is a regulatory apparatus situated in regulatory elements, acting as a molecular switch that can modulate the role of the host functional regions, by transition in DNA structure. PMID:19759215

  6. Sequence-Level Mechanisms of Human Epigenome Evolution

    PubMed Central

    Prendergast, James G.D.; Chambers, Emily V.; Semple, Colin A.M.

    2014-01-01

    DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage. PMID:24966180

  7. FARME DB: a functional antibiotic resistance element database

    PubMed Central

    Wallace, James C.; Port, Jesse A.; Smith, Marissa N.; Faustman, Elaine M.

    2017-01-01

    Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR sequences from clinical isolates using standard classification criteria. In addition, existing AR databases provide no information about flanking sequences containing regulatory or mobile genetic elements. To help address this issue, we created an annotated database of DNA and protein sequences derived exclusively from environmental metagenomic sequences showing AR in laboratory experiments. Our Functional Antibiotic Resistant Metagenomic Element (FARME) database is a compilation of publically available DNA sequences and predicted protein sequences conferring AR as well as regulatory elements, mobile genetic elements and predicted proteins flanking antibiotic resistant genes. FARME is the first database to focus on functional metagenomic AR gene elements and provides a resource to better understand AR in the 99% of bacteria which cannot be cultured and the relationship between environmental AR sequences and antibiotic resistant genes derived from cultured isolates. Database URL: http://staff.washington.edu/jwallace/farme PMID:28077567

  8. Regulation of the yeast RAD2 gene: DNA damage-dependent induction correlates with protein binding to regulatory sequences and their deletion influences survival.

    PubMed

    Siede, W; Friedberg, E C

    1992-03-01

    In the yeast Saccharomyces cerevisiae the RAD2 gene is absolutely required for damage-specific incision of DNA during nucleotide excision repair and is inducible by DNA-damaging agents. In the present study we correlated sensitivity to killing by DNA-damaging agents with the deletion of previously defined specific promoter elements. Deletion of the element DRE2 increased the UV sensitivity of cells in both the G1/early S and S/G2 phases of the cell cycle as well as in stationary phase. On the other hand, increased UV sensitivity associated with deletion of the sequence-related element DRE1 was restricted to cells irradiated in G1/S. Specific binding of protein(s) to the promoter elements DRE1 and DRE2 was observed under non-inducing conditions using gel retardation assays. Exposure of cells to DNA-damaging agents resulted in increased protein binding that was dependent on de novo protein synthesis.

  9. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors.

    PubMed

    Amatruda, James F; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh; Frazier, A Lindsay; Poynter, Jenny N

    2013-06-27

    Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy.

  10. FungalBraid: A GoldenBraid-based modular cloning platform for the assembly and exchange of DNA elements tailored to fungal synthetic biology.

    PubMed

    Hernanz-Koers, Miguel; Gandía, Mónica; Garrigues, Sandra; Manzanares, Paloma; Yenush, Lynne; Orzaez, Diego; Marcos, Jose F

    2018-07-01

    Current challenges in the study and biotechnological exploitation of filamentous fungi are the optimization of DNA cloning and fungal genetic transformation beyond model fungi, the open exchange of ready-to-use and standardized genetic elements among the research community, and the availability of universal synthetic biology tools and rules. The GoldenBraid (GB) cloning framework is a Golden Gate-based DNA cloning system developed for plant synthetic biology through Agrobacterium tumefaciens-mediated genetic transformation (ATMT). In this study, we develop reagents for the adaptation of GB version 3.0 from plants to filamentous fungi through: (i) the expansion of the GB toolbox with the domestication of fungal-specific genetic elements; (ii) the design of fungal-specific GB structures; and (iii) the ATMT and gene disruption of the plant pathogen Penicillium digitatum as a proof of concept. Genetic elements domesticated into the GB entry vector pUPD2 include promoters, positive and negative selection markers and terminators. Interestingly, some GB elements can be directly exchanged between plants and fungi, as demonstrated with the marker hph for Hyg R or the fluorescent protein reporter YFP. The iterative modular assembly of elements generates an endless number of diverse transcriptional units and other higher order combinations in the pDGB3α/pDGB3Ω destination vectors. Furthermore, the original plant GB syntax was adapted here to incorporate specific GB structures for gene disruption through homologous recombination and dual selection. We therefore have successfully adapted the GB technology for the ATMT of fungi. We propose the name of FungalBraid (FB) for this new branch of the GB technology that provides open, exchangeable and collaborative resources to the fungal research community. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Genomic organization of the Neurospora crassa gsn gene: possible involvement of the STRE and HSE elements in the modulation of transcription during heat shock.

    PubMed

    Freitas, F Zanolli; Bertolini, M C

    2004-12-01

    Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase ( gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30 degrees C to 45 degrees C). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans -acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.

  12. Spontaneous germline excision of Tol1, a DNA-based transposable element naturally occurring in the medaka fish genome.

    PubMed

    Watanabe, Kohei; Koga, Hajime; Nakamura, Kodai; Fujita, Akiko; Hattori, Akimasa; Matsuda, Masaru; Koga, Akihiko

    2014-04-01

    DNA-based transposable elements are ubiquitous constituents of eukaryotic genomes. Vertebrates are, however, exceptional in that most of their DNA-based elements appear to be inactivated. The Tol1 element of the medaka fish, Oryzias latipes, is one of the few elements for which copies containing an undamaged gene have been found. Spontaneous transposition of this element in somatic cells has previously been demonstrated, but there is only indirect evidence for its germline transposition. Here, we show direct evidence of spontaneous excision in the germline. Tyrosinase is the key enzyme in melanin biosynthesis. In an albino laboratory strain of medaka fish, which is homozygous for a mutant tyrosinase gene in which a Tol1 copy is inserted, we identified de novo reversion mutations related to melanin pigmentation. The gamete-based reversion rate was as high as 0.4%. The revertant fish carried the tyrosinase gene from which the Tol1 copy had been excised. We previously reported the germline transposition of Tol2, another DNA-based element that is thought to be a recent invader of the medaka fish genome. Tol1 is an ancient resident of the genome. Our results indicate that even an old element can contribute to genetic variation in the host genome as a natural mutator.

  13. Movable Genetic Elements: Detection of Changes in Maize DNA at the Shrunken Locus Due to the Intervention of Ds Elements

    DOE R&D Accomplishments Database

    Burr, B.; Burr, F.A.

    1980-05-28

    This report describes our initial attempts at the molecular characterization of a maize controlling element. We have prepared a cDNA probe and used it to detect changes at a locus where Ds elements are found. Evidence of their presence are indicated by changes in the restriction patterns, but there is as yet no information on the physical nature of the controlling elements nor on the kinds of rearrangements they cause.

  14. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes.

    PubMed

    Puterova, Janka; Razumova, Olga; Martinek, Tomas; Alexandrov, Oleg; Divashuk, Mikhail; Kubat, Zdenek; Hobza, Roman; Karlov, Gennady; Kejnovsky, Eduard

    2017-01-01

    Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize (Zea mays ssp. mays) Genome

    PubMed Central

    Diez, Concepcion M.; Meca, Esteban; Tenaillon, Maud I.; Gaut, Brandon S.

    2014-01-01

    Most angiosperm nuclear DNA is repetitive and derived from silenced transposable elements (TEs). TE silencing requires substantial resources from the plant host, including the production of small interfering RNAs (siRNAs). Thus, the interaction between TEs and siRNAs is a critical aspect of both the function and the evolution of plant genomes. Yet the co-evolutionary dynamics between these two entities remain poorly characterized. Here we studied the organization of TEs within the maize (Zea mays ssp mays) genome, documenting that TEs fall within three groups based on the class and copy numbers. These groups included DNA elements, low copy RNA elements and higher copy RNA elements. The three groups varied statistically in characteristics that included length, location, age, siRNA expression and 24∶22 nucleotide (nt) siRNA targeting ratios. In addition, the low copy retroelements encompassed a set of TEs that had previously been shown to decrease expression within a 24 nt siRNA biogenesis mutant (mop1). To investigate the evolutionary dynamics of the three groups, we estimated their abundance in two landraces, one with a genome similar in size to that of the maize reference and the other with a 30% larger genome. For all three accessions, we assessed TE abundance as well as 22 nt and 24 nt siRNA content within leaves. The high copy number retroelements are under targeted similarly by siRNAs among accessions, appear to be born of a rapid bust of activity, and may be currently transpositionally dead or limited. In contrast, the lower copy number group of retrolements are targeted more dynamically and have had a long and ongoing history of transposition in the maize genome. PMID:24743518

  16. RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site.

    PubMed

    Christensen, Shawn M; Ye, Junqiang; Eickbush, Thomas H

    2006-11-21

    Non-LTR retrotransposons insert into eukaryotic genomes by target-primed reverse transcription (TPRT), a process in which cleaved DNA targets are used to prime reverse transcription of the element's RNA transcript. Many of the steps in the integration pathway of these elements can be characterized in vitro for the R2 element because of the rigid sequence specificity of R2 for both its DNA target and its RNA template. R2 retrotransposition involves identical subunits of the R2 protein bound to different DNA sequences upstream and downstream of the insertion site. The key determinant regulating which DNA-binding conformation the protein adopts was found to be a 320-nt RNA sequence from near the 5' end of the R2 element. In the absence of this 5' RNA the R2 protein binds DNA sequences upstream of the insertion site, cleaves the first DNA strand, and conducts TPRT when RNA containing the 3' untranslated region of the R2 transcript is present. In the presence of the 320-nt 5' RNA, the R2 protein binds DNA sequences downstream of the insertion site. Cleavage of the second DNA strand by the downstream subunit does not appear to occur until after the 5' RNA is removed from this subunit. We postulate that the removal of the 5' RNA normally occurs during reverse transcription, and thus provides a critical temporal link to first- and second-strand DNA cleavage in the R2 retrotransposition reaction.

  17. Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination.

    PubMed

    Ignarski, Michael; Singh, Aditi; Swart, Estienne C; Arambasic, Miroslav; Sandoval, Pamela Y; Nowacki, Mariusz

    2014-10-29

    Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. WordCluster: detecting clusters of DNA words and genomic elements

    PubMed Central

    2011-01-01

    Background Many k-mers (or DNA words) and genomic elements are known to be spatially clustered in the genome. Well established examples are the genes, TFBSs, CpG dinucleotides, microRNA genes and ultra-conserved non-coding regions. Currently, no algorithm exists to find these clusters in a statistically comprehensible way. The detection of clustering often relies on densities and sliding-window approaches or arbitrarily chosen distance thresholds. Results We introduce here an algorithm to detect clusters of DNA words (k-mers), or any other genomic element, based on the distance between consecutive copies and an assigned statistical significance. We implemented the method into a web server connected to a MySQL backend, which also determines the co-localization with gene annotations. We demonstrate the usefulness of this approach by detecting the clusters of CAG/CTG (cytosine contexts that can be methylated in undifferentiated cells), showing that the degree of methylation vary drastically between inside and outside of the clusters. As another example, we used WordCluster to search for statistically significant clusters of olfactory receptor (OR) genes in the human genome. Conclusions WordCluster seems to predict biological meaningful clusters of DNA words (k-mers) and genomic entities. The implementation of the method into a web server is available at http://bioinfo2.ugr.es/wordCluster/wordCluster.php including additional features like the detection of co-localization with gene regions or the annotation enrichment tool for functional analysis of overlapped genes. PMID:21261981

  19. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers

    PubMed Central

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138

  20. Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores.

    PubMed

    Brewer, B J; Fangman, W L

    1980-09-01

    During meiosis and sporulation in the yeast Saccharomyces cerevisiae, extrachromosomal traits are efficiently transmitted to haploid spores. Although the pattern of inheritance of chromosomal traits reflects the mechanism of regular chromosomal segregation in meiosis, it is not known what processes are reflected by the efficient inheritance of extrachromosomal traits. Because extrachromosomal genetic elements in yeast are present in multiple copies, perpetuation of an extrachromosomal trait could occur by the passive envelopment of a subset of copies or by an active sequestering of all or a subset of copies within the four spores. We show that only subsets of the four extrachromosomal nucleic acids commonly found in yeast are transmitted through meiosis--55% of mitochondrial DNA copies, 82% of the 2-micron DNA plasmids, and about 70% of the L and M double-stranded RNAs. However, electron micrographs of serial sections through yeast asci indicate that the four spore enclose only 30% of the total ascus material. Thus these extrachromosomal elements are preferentially included within the spores, indicating that their inheritance is not a random process. Transmission of mitochondrial DNA can be accounted for by the observed enclosure of 52% of the mitochondrial volume within the spores. The high transmission frequencies of the double-stranded RNAs (which exist as virus-like particles in the cytoplasm) and 2-micron DNA must indicate that either these nucleic acids are actively recruited from the cytoplasm by some mechanism or they are associated in some way with the nucleus during meiosis.

  1. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation

    PubMed Central

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  2. Conserved Elements Vaccine for HIV | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) developed a DNA vaccine using conserved elements of HIV-1 Gag, administered in a prime-boost vaccination protocol. Two of the HIV Gag CE DNA vectors have been tested in a rhesus macaque model. Priming with the Gag CE vaccine and boosting with full length Gag DNA showed increased immune responses when compared to vaccination with Gag alone. Researchers seek licensing and/or co-development research collaborations for development this DNA vaccine.

  3. Interactions between the R2R3-MYB Transcription Factor, AtMYB61, and Target DNA Binding Sites

    PubMed Central

    Prouse, Michael B.; Campbell, Malcolm M.

    2013-01-01

    Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing). The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators. PMID:23741471

  4. [Molecular variability in the commom shrew Sorex araneus L. from European Russia and Siberia inferred from the length polymorphism of DNA regions flanked by short interspersed elements (Inter-SINE PCR) and the relationships between the Moscow and Seliger chromosome races].

    PubMed

    Bannikova, A A; Bulatova, N Sh; Kramerov, D A

    2006-06-01

    Genetic exchange among chromosomal races of the common shrew Sorex araneus and the problem of reproductive barriers have been extensively studied by means of such molecular markers as mtDNA, microsatellites, and allozymes. In the present study, the interpopulation and interracial polymorphism in the common shrew was derived, using fingerprints generated by amplified DNA regions flanked by short interspersed repeats (SINEs)-interSINE PCR (IS-PCR). We used primers, complementary to consensus sequences of two short retroposons: mammalian element MIR and the SOR element from the genome of Sorex araneus. Genetic differentiation among eleven populations of the common shrew from eight chromosome races was estimated. The NP and MJ analyses, as well as multidimensional scaling showed that all samples examined grouped into two main clusters, corresponding to European Russia and Siberia. The bootstrap support of the European Russia cluster in the NJ and MP analyses was respectively 76 and 61%. The bootstrap index for the Siberian cluster was 100% in both analyses; the Tomsk race, included into this cluster, was separated with the bootstrap support of NJ/MP 92/95%.

  5. Methylator phenotype of malignant germ cell tumours in children identifies strong candidates for chemotherapy resistance

    PubMed Central

    Jeyapalan, J N; Noor, D A Mohamed; Lee, S-H; Tan, C L; Appleby, V A; Kilday, J P; Palmer, R D; Schwalbe, E C; Clifford, S C; Walker, D A; Murray, M J; Coleman, N; Nicholson, J C; Scotting, P J

    2011-01-01

    Background: Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date, the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect to only a few genes. Methods: A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of regulatory elements using GoldenGate methylation arrays. Results: Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas, methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large proportion of the loci tested, showing a ‘methylator' phenotype, including silencing of genes associated with Caspase-8-dependent apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype. Conclusion: Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might explain the relative resistance of YSTs to conventional therapy. PMID:21712824

  6. Methylator phenotype of malignant germ cell tumours in children identifies strong candidates for chemotherapy resistance.

    PubMed

    Jeyapalan, J N; Noor, D A Mohamed; Lee, S-H; Tan, C L; Appleby, V A; Kilday, J P; Palmer, R D; Schwalbe, E C; Clifford, S C; Walker, D A; Murray, M J; Coleman, N; Nicholson, J C; Scotting, P J

    2011-08-09

    Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date, the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect to only a few genes. A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of regulatory elements using GoldenGate methylation arrays. Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas, methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large proportion of the loci tested, showing a 'methylator' phenotype, including silencing of genes associated with Caspase-8-dependent apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype. Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might explain the relative resistance of YSTs to conventional therapy.

  7. Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements

    PubMed Central

    Iyer, Lakshminarayan M.; Burroughs, A. Maxwell; Anand, Swadha; de Souza, Robson F.

    2017-01-01

    ABSTRACT Intense biological conflicts between prokaryotic genomes and their genomic parasites have resulted in an arms race in terms of the molecular “weaponry” deployed on both sides. Using a recursive computational approach, we uncovered a remarkable class of multidomain proteins with 2 to 15 domains in the same polypeptide deployed by viruses and plasmids in such conflicts. Domain architectures and genomic contexts indicate that they are part of a widespread conflict strategy involving proteins injected into the host cell along with parasite DNA during the earliest phase of infection. Their unique feature is the combination of domains with highly disparate biochemical activities in the same polypeptide; accordingly, we term them polyvalent proteins. Of the 131 domains in polyvalent proteins, a large fraction are enzymatic domains predicted to modify proteins, target nucleic acids, alter nucleotide signaling/metabolism, and attack peptidoglycan or cytoskeletal components. They further contain nucleic acid-binding domains, virion structural domains, and 40 novel uncharacterized domains. Analysis of their architectural network reveals both pervasive common themes and specialized strategies for conjugative elements and plasmids or (pro)phages. The themes include likely processing of multidomain polypeptides by zincin-like metallopeptidases and mechanisms to counter restriction or CRISPR/Cas systems and jump-start transcription or replication. DNA-binding domains acquired by eukaryotes from such systems have been reused in XPC/RAD4-dependent DNA repair and mitochondrial genome replication in kinetoplastids. Characterization of the novel domains discovered here, such as RNases and peptidases, are likely to aid in the development of new reagents and elucidation of the spread of antibiotic resistance. IMPORTANCE This is the first report of the widespread presence of large proteins, termed polyvalent proteins, predicted to be transmitted by genomic parasites such as conjugative elements, plasmids, and phages during the initial phase of infection along with their DNA. They are typified by the presence of multiple domains with disparate activities combined in the same protein. While some of these domains are predicted to assist the invasive element in replication, transcription, or protection of their DNA, several are likely to target various host defense systems or modify the host to favor the parasite's life cycle. Notably, DNA-binding domains from these systems have been transferred to eukaryotes, where they have been incorporated into DNA repair and mitochondrial genome replication systems. PMID:28559295

  8. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors

    PubMed Central

    Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-01-01

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma. PMID:25971279

  9. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors.

    PubMed

    Cai, Jinquan; Chen, Jing; Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-07-20

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma.

  10. Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5′-flanking region

    PubMed Central

    Fuso, Andrea; Ferraguti, Giampiero; Grandoni, Francesco; Ruggeri, Raffaella; Scarpa, Sigfrido; Strom, Roberto

    2010-01-01

    The dynamic changes and structural patterns of DNA methylation of genes without CpG islands are poorly characterized. The relevance of CpG to the non-CpG methylation equilibrium in transcriptional repression is unknown. In this work, we analyzed the DNA methylation pattern of the 5′-flanking of the myogenin gene, a positive regulator of muscle differentiation with no CpG island and low CpG density, in both C2C12 muscle satellite cells and embryonic muscle. Embryonic brain was studied as a non-expressing tissue. High levels of both CpG and non-CpG methylation were observed in non-expressing experimental conditions. Both CpG and non-CpG methylation rapidly dropped during muscle differentiation and myogenin transcriptional activation with active demethylation dynamics. Non-CpG demethylation occurred more rapidly than CpG demethylation. Demethylation spread from initially highly methylated short CpC-rich elements to a virtually unmethylated status. These short elements have a high CpC content and density, share some motifs and largely coincide with putative recognition sequences of some differentiation-related transcription factors. Our findings point to a dynamically controlled equilibrium between CpG and non-CpG active demethylation in the transcriptional control of tissue-specific genes. The short CpC-rich elements are new structural features of the methylation machinery, whose functions may include priming the complete demethylation of a transcriptionally crucial DNA region. PMID:20935518

  11. Extended HSR/CARD domain mediates AIRE binding to DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslovskaja, Julia, E-mail: julia.maslovskaja@ut.ee; Saare, Mario; Liiv, Ingrid

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved inmore » AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.« less

  12. A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage.

    PubMed

    Rapa, Rita A; Islam, Atiqul; Monahan, Leigh G; Mutreja, Ankur; Thomson, Nicholas; Charles, Ian G; Stokes, Harold W; Labbate, Maurizio

    2015-04-01

    Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V. cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V. cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V. cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Actuation method and apparatus, micropump, and PCR enhancement method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullakko, Kari; Mullner, Peter; Hampikian, Greg

    An actuation apparatus includes at least one magnetic shape memory (MSM) element containing a material configured to expand and/or contract in response to exposure to a magnetic field. Among other things, the MSM element may be configured to pump fluid through a micropump by expanding and/or contracting in response to the magnetic field. The magnetic field may rotate about an axis of rotation and exhibit a distribution having a component substantially perpendicular to the axis of rotation. Further, the magnetic field distribution may include at least two components substantially orthogonal to one another lying in one or more planes perpendicularmore » to the axis of rotation. The at least one MSM element may contain nickel, manganese, and gallium. A polymerase chain reaction (PCR) may be enhanced by contacting a PCR reagent and DNA material with the MSM element.« less

  14. Mutations at Several Loci Cause Increased Expression of Ribonucleotide Reductase in Escherichia coli

    PubMed Central

    Feeney, Morgan Anne; Ke, Na

    2012-01-01

    Production of deoxyribonucleotides for DNA synthesis is an essential and tightly regulated process. The class Ia ribonucleotide reductase (RNR), the product of the nrdAB genes, is required for aerobic growth of Escherichia coli. In catalyzing the reduction of ribonucleotides, two of the cysteines of RNR become oxidized, forming a disulfide bond. To regenerate active RNR, the cell uses thioredoxins and glutaredoxins to reduce the disulfide bond. Strains that lack thioredoxins 1 and 2 and glutaredoxin 1 do not grow because RNR remains in its oxidized, inactive form. However, suppressor mutations that lead to RNR overproduction allow glutaredoxin 3 to reduce sufficient RNR for growth of these mutant strains. We previously described suppressor mutations in the dnaA and dnaN genes that had such effects. Here we report the isolation of new mutations that lead to increased levels of RNR. These include mutations that were not known to influence production of RNR previously, such as a mutation in the hda gene and insertions in the nrdAB promoter region of insertion elements IS1 and IS5. Bioinformatic analysis raises the possibility that IS element insertion in this region represents an adaptive mechanism in nrdAB regulation in E. coli and closely related species. We also characterize mutations altering different amino acids in DnaA and DnaN from those isolated before. PMID:22247510

  15. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed

    PubMed Central

    Filloux, Denis; Murrell, Sasha; Koohapitagtam, Maneerat; Golden, Michael; Julian, Charlotte; Galzi, Serge; Uzest, Marilyne; Rodier-Goud, Marguerite; D’Hont, Angélique; Vernerey, Marie Stephanie; Wilkin, Paul; Peterschmitt, Michel; Winter, Stephan; Murrell, Ben; Martin, Darren P.; Roumagnac, Philippe

    2015-01-01

    Endogenous viral sequences are essentially ‘fossil records’ that can sometimes reveal the genomic features of long extinct virus species. Although numerous known instances exist of single-stranded DNA (ssDNA) genomes becoming stably integrated within the genomes of bacteria and animals, there remain very few examples of such integration events in plants. The best studied of these events are those which yielded the geminivirus-related DNA elements found within the nuclear genomes of various Nicotiana species. Although other ssDNA virus-like sequences are included within the draft genomes of various plant species, it is not entirely certain that these are not contaminants. The Nicotiana geminivirus-related DNA elements therefore remain the only definitively proven instances of endogenous plant ssDNA virus sequences. Here, we characterize two new classes of endogenous plant virus sequence that are also apparently derived from ancient geminiviruses in the genus Begomovirus. These two endogenous geminivirus-like elements (EGV1 and EGV2) are present in the Dioscorea spp. of the Enantiophyllum clade. We used fluorescence in situ hybridization to confirm that the EGV1 sequences are integrated in the D. alata genome and showed that one or two ancestral EGV sequences likely became integrated more than 1.4 million years ago during or before the diversification of the Asian and African Enantiophyllum Dioscorea spp. Unexpectedly, we found evidence of natural selection actively favouring the maintenance of EGV-expressed replication-associated protein (Rep) amino acid sequences, which clearly indicates that functional EGV Rep proteins were probably expressed for prolonged periods following endogenization. Further, the detection in D. alata of EGV gene transcripts, small 21–24 nt RNAs that are apparently derived from these transcripts, and expressed Rep proteins, provides evidence that some EGV genes are possibly still functionally expressed in at least some of the Enantiophyllum clade species. PMID:27774276

  16. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data

    PubMed Central

    Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S.

    2016-01-01

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region. PMID:26657508

  17. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data.

    PubMed

    Singhal, Sandeep K; Usmani, Nawaid; Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S; Kovalchuk, Olga; Parliament, Matthew

    2016-01-19

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.

  18. Detection of visible and latent fingerprints using micro-X-ray fluorescence elemental imaging.

    PubMed

    Worley, Christopher G; Wiltshire, Sara S; Miller, Thomasin C; Havrilla, George J; Majidi, Vahid

    2006-01-01

    Using micro-X-ray fluorescence (MXRF), a novel means of detecting fingerprints was examined in which the prints were imaged based on their elemental composition. MXRF is a nondestructive technique. Although this method requires a priori knowledge about the approximate location of a print, it offers a new and complementary means for detecting fingerprints that are also left pristine for further analysis (including potential DNA extraction) or archiving purposes. Sebaceous fingerprints and those made after perspiring were detected based on elements such as potassium and chlorine present in the print residue. Unique prints were also detected including those containing lotion, saliva, banana, or sunscreen. This proof-of-concept study demonstrates the potential for visualizing fingerprints by MXRF on surfaces that can be problematic using current methods.

  19. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia.

    PubMed

    Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2010-11-01

    Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  20. Conversion at large intergenic regions of mitochondrial DNA in Saccharomyces cerevisiae.

    PubMed

    Skelly, P J; Clark-Walker, G D

    1990-04-01

    Saccharomyces cerevisiae mitochondrial DNA deletion mutants have been used to examine whether base-biased intergenic regions of the genome influence mitochondrial biogenesis. One strain (delta 5.0) lacks a 5-kilobase (kb) segment extending from the proline tRNA gene to the small rRNA gene that includes ori1, while a second strain (delta 3.7) is missing a 3.7-kb region between the genes for ATPase subunit 6 and glutamic acid tRNA that encompasses ori7 plus ori2. Growth of these strains on both fermentable and nonfermentable substrates does not differ from growth of the wild-type strain, indicating that the deletable regions of the genome do not play a direct role in the expression of mitochondrial genes. Examination of whether the 5- or 3.7-kb regions influence mitochondrial DNA transmission was undertaken by crossing strains and examining mitochondrial genotypes in zygotic colonies. In a cross between strain delta 5.0, harboring three active ori elements (ori2, ori3, and ori5), and strain delta 3.7, containing only two active ori elements (ori3 and ori5), there is a preferential recovery of the genome containing two active ori elements (37% of progeny) over that containing three active elements (20%). This unexpected result, suggesting that active ori elements do not influence transmission of respiratory-competent genomes, is interpreted to reflect a preferential conversion of the delta 5.0 genome to the wild type (41% of progeny). Supporting evidence for conversion over biased transmission is shown by preferential recovery of a nonparental genome in the progeny of a heterozygous cross in which both parental molecules can be identified by size polymorphisms.

  1. Conversion at large intergenic regions of mitochondrial DNA in Saccharomyces cerevisiae.

    PubMed Central

    Skelly, P J; Clark-Walker, G D

    1990-01-01

    Saccharomyces cerevisiae mitochondrial DNA deletion mutants have been used to examine whether base-biased intergenic regions of the genome influence mitochondrial biogenesis. One strain (delta 5.0) lacks a 5-kilobase (kb) segment extending from the proline tRNA gene to the small rRNA gene that includes ori1, while a second strain (delta 3.7) is missing a 3.7-kb region between the genes for ATPase subunit 6 and glutamic acid tRNA that encompasses ori7 plus ori2. Growth of these strains on both fermentable and nonfermentable substrates does not differ from growth of the wild-type strain, indicating that the deletable regions of the genome do not play a direct role in the expression of mitochondrial genes. Examination of whether the 5- or 3.7-kb regions influence mitochondrial DNA transmission was undertaken by crossing strains and examining mitochondrial genotypes in zygotic colonies. In a cross between strain delta 5.0, harboring three active ori elements (ori2, ori3, and ori5), and strain delta 3.7, containing only two active ori elements (ori3 and ori5), there is a preferential recovery of the genome containing two active ori elements (37% of progeny) over that containing three active elements (20%). This unexpected result, suggesting that active ori elements do not influence transmission of respiratory-competent genomes, is interpreted to reflect a preferential conversion of the delta 5.0 genome to the wild type (41% of progeny). Supporting evidence for conversion over biased transmission is shown by preferential recovery of a nonparental genome in the progeny of a heterozygous cross in which both parental molecules can be identified by size polymorphisms. Images PMID:2181277

  2. Primary analysis of repeat elements of the Asian seabass (Lates calcarifer) transcriptome and genome

    PubMed Central

    Kuznetsova, Inna S.; Thevasagayam, Natascha M.; Sridatta, Prakki S. R.; Komissarov, Aleksey S.; Saju, Jolly M.; Ngoh, Si Y.; Jiang, Junhui; Shen, Xueyan; Orbán, László

    2014-01-01

    As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n = 24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8–14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionarily conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates. PMID:25120555

  3. The ATRX cDNA is prone to bacterial IS10 element insertions that alter its structure.

    PubMed

    Valle-García, David; Griffiths, Lyra M; Dyer, Michael A; Bernstein, Emily; Recillas-Targa, Félix

    2014-01-01

    The SWI/SNF-like chromatin-remodeling protein ATRX has emerged as a key factor in the regulation of α-globin gene expression, incorporation of histone variants into the chromatin template and, more recently, as a frequently mutated gene across a wide spectrum of cancers. Therefore, the availability of a functional ATRX cDNA for expression studies is a valuable tool for the scientific community. We have identified two independent transposon insertions of a bacterial IS10 element into exon 8 of ATRX isoform 2 coding sequence in two different plasmids derived from a single source. We demonstrate that these insertion events are common and there is an insertion hotspot within the ATRX cDNA. Such IS10 insertions produce a truncated form of ATRX, which significantly compromises its nuclear localization. In turn, we describe ways to prevent IS10 insertion during propagation and cloning of ATRX-containing vectors, including optimal growth conditions, bacterial strains, and suggested sequencing strategies. Finally, we have generated an insertion-free plasmid that is available to the community for expression studies of ATRX.

  4. Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe

    PubMed Central

    Cotobal, Cristina; Segurado, Mónica; Antequera, Francisco

    2010-01-01

    DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)-rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T-rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25–30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low-efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals. PMID:20094030

  5. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens

    PubMed Central

    2018-01-01

    Many implementations of pooled screens in mammalian cells rely on linking an element of interest to a barcode, with the latter subsequently quantitated by next generation sequencing. However, substantial uncoupling between these paired elements during lentiviral production has been reported, especially as the distance between elements increases. We detail that PCR amplification is another major source of uncoupling, and becomes more pronounced with increased amounts of DNA template molecules and PCR cycles. To lessen uncoupling in systems that use paired elements for detection, we recommend minimizing the distance between elements, using low and equal template DNA inputs for plasmid and genomic DNA during PCR, and minimizing the number of PCR cycles. We also present a vector design for conducting combinatorial CRISPR screens that enables accurate barcode-based detection with a single short sequencing read and minimal uncoupling. PMID:29799876

  6. High-Mobility Group Chromatin Proteins 1 and 2 Functionally Interact with Steroid Hormone Receptors To Enhance Their DNA Binding In Vitro and Transcriptional Activity in Mammalian Cells

    PubMed Central

    Boonyaratanakornkit, Viroj; Melvin, Vida; Prendergast, Paul; Altmann, Magda; Ronfani, Lorenza; Bianchi, Marco E.; Taraseviciene, Laima; Nordeen, Steven K.; Allegretto, Elizabeth A.; Edwards, Dean P.

    1998-01-01

    We previously reported that the chromatin high-mobility group protein 1 (HMG-1) enhances the sequence-specific DNA binding activity of progesterone receptor (PR) in vitro, thus providing the first evidence that HMG-1 may have a coregulatory role in steroid receptor-mediated gene transcription. Here we show that HMG-1 and the highly related HMG-2 stimulate DNA binding by other steroid receptors, including estrogen, androgen, and glucocorticoid receptors, but have no effect on DNA binding by several nonsteroid nuclear receptors, including retinoid acid receptor (RAR), retinoic X receptor (RXR), and vitamin D receptor (VDR). As highly purified recombinant full-length proteins, all steroid receptors tested exhibited weak binding affinity for their optimal palindromic hormone response elements (HREs), and the addition of purified HMG-1 or -2 substantially increased their affinity for HREs. Purified RAR, RXR, and VDR also exhibited little to no detectable binding to their cognate direct repeat HREs but, in contrast to results with steroid receptors, the addition of HMG-1 or HMG-2 had no stimulatory effect. Instead, the addition of purified RXR enhanced RAR and VDR DNA binding through a heterodimerization mechanism and HMG-1 or HMG-2 had no further effect on DNA binding by RXR-RAR or RXR-VDR heterodimers. HMG-1 and HMG-2 (HMG-1/-2) themselves do not bind to progesterone response elements, but in the presence of PR they were detected as part of an HMG-PR-DNA ternary complex. HMG-1/-2 can also interact transiently in vitro with PR in the absence of DNA; however, no direct protein interaction was detected with VDR. These results, taken together with the fact that PR can bend its target DNA and that HMG-1/-2 are non-sequence-specific DNA binding proteins that recognize DNA structure, suggest that HMG-1/-2 are recruited to the PR-DNA complex by the combined effect of transient protein interaction and DNA bending. In transient-transfection assays, coexpression of HMG-1 or HMG-2 increased PR-mediated transcription in mammalian cells by as much as 7- to 10-fold without altering the basal promoter activity of target reporter genes. This increase in PR-mediated gene activation by coexpression of HMG-1/-2 was observed in different cell types and with different target promoters, suggesting a generality to the functional interaction between HMG-1/-2 and PR in vivo. Cotransfection of HMG-1 also increased reporter gene activation mediated by other steroid receptors, including glucocorticoid and androgen receptors, but it had a minimal influence on VDR-dependent transcription in vivo. These results support the conclusion that HMG-1/-2 are coregulatory proteins that increase the DNA binding and transcriptional activity of the steroid hormone class of receptors but that do not functionally interact with certain nonsteroid classes of nuclear receptors. PMID:9671457

  7. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.

    PubMed

    Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar

    2016-12-14

    We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.

  8. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Adelman, Zachary N; Jasinskiene, Nijole; James, Anthony A

    2002-04-30

    Transgenesis technology has been developed for the yellow fever mosquito, Aedes aegypti. Successful integration of exogenous DNA into the germline of this mosquito has been achieved with the class II transposable elements, Hermes, mariner and piggyBac. A number of marker genes, including the cinnabar(+) gene of Drosophila melanogaster, and fluorescent protein genes, can be used to monitor the insertion of these elements. The availability of multiple elements and marker genes provides a powerful set of tools to investigate basic biological properties of this vector insect, as well as the materials for developing novel, genetics-based, control strategies for the transmission of disease.

  9. Characterizing the stress/defense transcriptome of Arabidopsis

    PubMed Central

    Mahalingam, Ramamurthy; Gomez-Buitrago, AnaMaria; Eckardt, Nancy; Shah, Nigam; Guevara-Garcia, Angel; Day, Philip; Raina, Ramesh; Fedoroff, Nina V

    2003-01-01

    Background To understand the gene networks that underlie plant stress and defense responses, it is necessary to identify and characterize the genes that respond both initially and as the physiological response to the stress or pathogen develops. We used PCR-based suppression subtractive hybridization to identify Arabidopsis genes that are differentially expressed in response to ozone, bacterial and oomycete pathogens and the signaling molecules salicylic acid (SA) and jasmonic acid. Results We identified a total of 1,058 differentially expressed genes from eight stress cDNA libraries. Digital northern analysis revealed that 55% of the stress-inducible genes are rarely transcribed in unstressed plants and 17% of them were not previously represented in Arabidopsis expressed sequence tag databases. More than two-thirds of the genes in the stress cDNA collection have not been identified in previous studies as stress/defense response genes. Several stress-responsive cis-elements showed a statistically significant over-representation in the promoters of the genes in the stress cDNA collection. These include W- and G-boxes, the SA-inducible element, the abscisic acid response element and the TGA motif. Conclusions The stress cDNA collection comprises a broad repertoire of stress-responsive genes encoding proteins that are involved in both the initial and subsequent stages of the physiological response to abiotic stress and pathogens. This set of stress-, pathogen- and hormone-modulated genes is an important resource for understanding the genetic interactions underlying stress signaling and responses and may contribute to the characterization of the stress transcriptome through the construction of standardized specialized arrays. PMID:12620105

  10. Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes.

    PubMed

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms.AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence,were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigated podiversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity.We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants.

  11. Mitochondrial Genome Rearrangements in Glomus Species Triggered by Homologous Recombination between Distinct mtDNA Haplotypes

    PubMed Central

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms. AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence, were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigate dpo diversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity. We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants. PMID:23925788

  12. Endogenous sex hormone exposure and repetitive element DNA methylation in healthy postmenopausal women.

    PubMed

    Boyne, Devon J; Friedenreich, Christine M; McIntyre, John B; Stanczyk, Frank Z; Courneya, Kerry S; King, Will D

    2017-12-01

    Epigenetic mechanisms may help to explain the complex and heterogeneous relation between sex hormones and cancer. Few studies have investigated the effects of sex hormones on epigenetic markers related to cancer risk such as levels of methylation within repetitive DNA elements. Our objective was to describe the association between endogenous sex hormone exposure and levels of LINE-1 and Alu methylation in healthy postmenopausal women. We nested a cross-sectional study within the Alberta Physical Activity and Breast Cancer Prevention Trial (2003-2006). Study participants consisted of healthy postmenopausal women who had never been diagnosed with cancer (n = 289). Sex hormone exposures included serum concentrations of estradiol, estrone, testosterone, androstenedione, and sex hormone-binding globulin. We estimated the participants' lifetime number of menstrual cycles (LNMC) as a proxy for cumulative exposure to ovarian sex hormones. Buffy coat samples were assessed for DNA methylation. Linear regression was used to model the associations of interest and to control for confounding. Both estradiol and estrone had a significant positive dose-response association with LINE-1 methylation. LNMC was associated with both LINE-1 and Alu methylation. Specifically, LNMC had a non-linear "U-shaped" association with LINE-1 methylation regardless of folate intake and a negative linear association with Alu methylation, but only amongst low folate consumers. Androgen exposure was not associated with either outcome. Current and cumulative estrogen exposure was associated with repetitive element DNA methylation in a group of healthy postmenopausal women. LINE-1 and Alu methylation may be epigenetic mechanisms through which estrogen exposure impacts cancer risk.

  13. Structure and conformational dynamics of scaffolded DNA origami nanoparticles

    DTIC Science & Technology

    2017-05-08

    all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conforma... finite element (FE) modeling approach CanDo is also routinely used to predict the 3D equilibrium conformation of programmed DNA assemblies based on a...model with both experimental cryo-electron microscopy (cryo-EM) data and all-atom modeling. MATERIALS AND METHODS Lattice-free finite element model

  14. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov; Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu; Krupovic, Mart, E-mail: krupovic@pasteur.fr

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangiblemore » clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes. - Highlights: • Eukaryotic virome dramatically differs from the viromes of bacteria and archaea. • Eukaryotic virome is dominated by RNA viruses and retroelements. • All classes of eukaryotic viruses evolved by gene module exchange. • Prokaryotic ancestry is traceable for core gene modules of most eukaryotic viruses. • Evolutionary histories of viruses and transposable elements are tightly linked.« less

  15. DEPPDB - DNA electrostatic potential properties database. Electrostatic properties of genome DNA elements.

    PubMed

    Osypov, Alexander A; Krutinin, Gleb G; Krutinina, Eugenia A; Kamzolova, Svetlana G

    2012-04-01

    Electrostatic properties of genome DNA are important to its interactions with different proteins, in particular, related to transcription. DEPPDB - DNA Electrostatic Potential (and other Physical) Properties Database - provides information on the electrostatic and other physical properties of genome DNA combined with its sequence and annotation of biological and structural properties of genomes and their elements. Genomes are organized on taxonomical basis, supporting comparative and evolutionary studies. Currently, DEPPDB contains all completely sequenced bacterial, viral, mitochondrial, and plastids genomes according to the NCBI RefSeq, and some model eukaryotic genomes. Data for promoters, regulation sites, binding proteins, etc., are incorporated from established DBs and literature. The database is complemented by analytical tools. User sequences calculations are available. Case studies discovered electrostatics complementing DNA bending in E.coli plasmid BNT2 promoter functioning, possibly affecting host-environment metabolic switch. Transcription factors binding sites gravitate to high potential regions, confirming the electrostatics universal importance in protein-DNA interactions beyond the classical promoter-RNA polymerase recognition and regulation. Other genome elements, such as terminators, also show electrostatic peculiarities. Most intriguing are gene starts, exhibiting taxonomic correlations. The necessity of the genome electrostatic properties studies is discussed.

  16. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements.

    PubMed

    Fisher, R P; Topper, J N; Clayton, D A

    1987-07-17

    Selective transcription of human mitochondrial DNA requires a transcription factor (mtTF) in addition to an essentially nonselective RNA polymerase. Partially purified mtTF is able to sequester promoter-containing DNA in preinitiation complexes in the absence of mitochondrial RNA polymerase, suggesting a DNA-binding mechanism for factor activity. Functional domains, required for positive transcriptional regulation by mtTF, are identified within both major promoters of human mtDNA through transcription of mutant promoter templates in a reconstituted in vitro system. These domains are essentially coextensive with DNA sequences protected from nuclease digestion by mtTF-binding. Comparison of the sequences of the two mtTF-responsive elements reveals significant homology only when one sequence is inverted; the binding sites are in opposite orientations with respect to the predominant direction of transcription. Thus mtTF may function bidirectionally, requiring additional protein-DNA interactions to dictate transcriptional polarity. The mtTF-responsive elements are arrayed as direct repeats, separated by approximately 80 bp within the displacement-loop region of human mitochondrial DNA; this arrangement may reflect duplication of an ancestral bidirectional promoter, giving rise to separate, unidirectional promoters for each strand.

  17. A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model.

    PubMed

    Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei

    2017-12-01

    As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.

  18. Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells

    PubMed Central

    Shimizu, Akira; Nakatani, Yoko; Nakamura, Takako; Jinno-Oue, Atsushi; Ishikawa, Osamu; Boeke, Jef D.; Takeuchi, Yasuhiro; Hoshino, Hiroo

    2014-01-01

    The synthesis and subsequent genomic integration of DNA that is complementary to the genomes of non-retroviral RNA viruses are rarely observed. However, upon infection of various human cell lines and primary fibroblasts with the vesicular stomatitis virus (VSV), we detected DNA complementary to the VSV RNA. The VSV DNA was detected in the cytoplasm as single-stranded DNA fully complementary to the viral mRNA from the poly(A) region to the 7-methyl guanosine cap. The formation of this DNA was cell-dependent. Experimentally, we found that the transduction of cells that do not produce VSV DNA with the long interspersed nuclear element 1 and their infection with VSV could lead to the formation of VSV DNA. Viral DNA complementary to other RNA viruses was also detected in the respective infected human cells. Thus, the genetic information of the non-retroviral RNA virus genome can flow into the DNA of mammalian cells expressing LINE-1-like elements. PMID:24875540

  19. Mycobacterium smegmatis strain for detection of Mycobacterium tuberculosis by PCR used as internal control for inhibition of amplification and for quantification of bacteria.

    PubMed Central

    Kolk, A H; Noordhoek, G T; de Leeuw, O; Kuijper, S; van Embden, J D

    1994-01-01

    For the detection of Mycobacterium tuberculosis by PCR, the IS6110 sequence was used. A modified target was constructed by insertion of 56 nucleotides in the IS6110 insertion element of Mycobacterium bovis BCG. This modified insertion sequence was integrated into the genome of Mycobacterium smegmatis, a mycobacterium species which does not contain the IS6110 element. When DNA from the modified M. smegmatis 1008 strain was amplified with IS6110-specific primers INS1 and INS2, a band of 301 bp was seen on agarose gel, whereas the PCR product of M. tuberculosis complex DNA was a 245-bp fragment with these primers. The addition of a small number of M. smegmatis 1008 cells to clinical samples before DNA purification enables the detection of problems which may be due to the loss of DNA in the isolation procedure or to the presence of inhibitors. The presence of inhibitors of the amplification reaction can be confirmed by the addition of M. smegmatis 1008 DNA after the DNA isolation procedure. Furthermore, competition between the different target DNAs of M. smegmatis 1008 DNA and M. tuberculosis complex DNA enables the estimation of the number of IS6110 elements in the clinical sample. Images PMID:8051267

  20. VEZF1 Elements Mediate Protection from DNA Methylation

    PubMed Central

    Strogantsev, Ruslan; Gaszner, Miklos; Hair, Alan; Felsenfeld, Gary; West, Adam G.

    2010-01-01

    There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin state. PMID:20062523

  1. AP1 Keeps Chromatin Poised for Action | Center for Cancer Research

    Cancer.gov

    The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins called chromatin that compacts the DNA in the nucleus, strongly restricting access to DNA sequences. As a result, regulatory factors only interact with a small subset of their potential binding elements in a given cell to regulate genes. How factors recognize and select sites in chromatin across the genome is not well understood -- but several discoveries in CCR’s Laboratory of Receptor Biology and Gene Expression (LRBGE) have shed light on the mechanisms that direct factors to DNA.

  2. Use of a Drosophila Genome-Wide Conserved Sequence Database to Identify Functionally Related cis-Regulatory Enhancers

    PubMed Central

    Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F

    2012-01-01

    Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086

  3. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    PubMed Central

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2018-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes. PMID:25771806

  4. The twilight zone of cis element alignments.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-02-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.

  5. The twilight zone of cis element alignments

    PubMed Central

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-01-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451

  6. Evolutionary dynamics of selfish DNA explains the abundance distribution of genomic subsequences

    PubMed Central

    Sheinman, Michael; Ramisch, Anna; Massip, Florian; Arndt, Peter F.

    2016-01-01

    Since the sequencing of large genomes, many statistical features of their sequences have been found. One intriguing feature is that certain subsequences are much more abundant than others. In fact, abundances of subsequences of a given length are distributed with a scale-free power-law tail, resembling properties of human texts, such as Zipf’s law. Despite recent efforts, the understanding of this phenomenon is still lacking. Here we find that selfish DNA elements, such as those belonging to the Alu family of repeats, dominate the power-law tail. Interestingly, for the Alu elements the power-law exponent increases with the length of the considered subsequences. Motivated by these observations, we develop a model of selfish DNA expansion. The predictions of this model qualitatively and quantitatively agree with the empirical observations. This allows us to estimate parameters for the process of selfish DNA spreading in a genome during its evolution. The obtained results shed light on how evolution of selfish DNA elements shapes non-trivial statistical properties of genomes. PMID:27488939

  7. A label-free DNA hairpin biosensor for colorimetric detection of target with suitable functional DNA partners.

    PubMed

    Nie, Ji; Zhang, De-Wen; Tie, Cai; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2013-11-15

    The combination of aptamer and peroxidase-mimicking DNAzyme within a hairpin structure can form a functional DNA probe. The activities of both aptamer (as biorecognition element) and DNAzyme (as signal amplification element) are blocked via base pairing in the hairpin structure. The presence of target triggers the opening of the hairpin to form target/aptamer complex and releases G-quadruplex sequence which can generate amplified colorimetric signals. In this work, we elaborated a universal and simple procedure to design an efficient and sensitive hairpin probe with suitable functional DNA partners. A fill-in-the-blank process was developed for sequence design, and two key points including the pretreatment of the hairpin probe and the selection of suitable signal transducer sequence were proved to enhance the detection sensitivity. Cocaine was chosen as a model target for a proof of concept. A series of hairpins with different numbers of base pairs in the stem region were prepared. Hairpin-C10 with ten base pairs was screened out and a lowest detectable cocaine concentration of 5 μM by colorimetry was obtained. The proposed functional DNA hairpin showed good selectivity and satisfactory analysis in spiked biologic fluid. The whole "mix-and-measure" detection based on DNA hairpin without the need of immobilization and labeling was indicated to be time and labor saving. The strategy has potential to be transplanted into more smart hairpins toward other targets for general application in bioanalytical chemistry. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases

    PubMed Central

    Arand, Julia; Spieler, David; Karius, Tommy; Branco, Miguel R.; Meilinger, Daniela; Meissner, Alexander; Jenuwein, Thomas; Xu, Guoliang; Leonhardt, Heinrich; Wolf, Verena; Walter, Jörn

    2012-01-01

    The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position–, cell type–, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs. PMID:22761581

  9. Genomic Heat Shock Element Sequences Drive Cooperative Human Heat Shock Factor 1 DNA Binding and Selectivity*

    PubMed Central

    Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.

    2014-01-01

    The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655

  10. DNA capture elements for rapid detection and identification of biological agents

    NASA Astrophysics Data System (ADS)

    Kiel, Johnathan L.; Parker, Jill E.; Holwitt, Eric A.; Vivekananda, Jeeva

    2004-08-01

    DNA capture elements (DCEs; aptamers) are artificial DNA sequences, from a random pool of sequences, selected for their specific binding to potential biological warfare agents. These sequences were selected by an affinity method using filters to which the target agent was attached and the DNA isolated and amplified by polymerase chain reaction (PCR) in an iterative, increasingly stringent, process. Reporter molecules were attached to the finished sequences. To date, we have made DCEs to Bacillus anthracis spores, Shiga toxin, Venezuelan Equine Encephalitis (VEE) virus, and Francisella tularensis. These DCEs have demonstrated specificity and sensitivity equal to or better than antibody.

  11. Structural integration in hypoxia-inducible factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dalei; Potluri, Nalini; Lu, Jingping

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinctmore » pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.« less

  12. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    PubMed Central

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  13. Intrinsic limits to gene regulation by global crosstalk

    PubMed Central

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  14. Characterization of the Fb-Nof Transposable Element of Drosophila Melanogaster

    PubMed Central

    Harden, N.; Ashburner, M.

    1990-01-01

    FB-NOF is a composite transposable element of Drosophila melanogaster. It is composed of foldback sequences, of variable length, which flank a 4-kb NOF sequence with 308-bp inverted repeat termini. The NOF sequence could potentially code for a 120-kD polypeptide. The FB-NOF element is responsible for unstable mutations of the white gene (w(c) and w(DZL)) and is associated with the large TEs of G. Ising. Although most strains of D. melanogaster have 20-30 sites of FB insertion, FB-NOF elements are usually rare, many strains lack this composite element or have only one copy of it. A few strains, including w(DZL) and Basc have many (8-21) copies of FB-NOF, and these show a tendency to insert at ``hot-spots.'' These strains also have an increased number of FB elements. The DNA sequence of the NOF region associated with TE146(Z) has been determined. PMID:2174013

  15. DNA methylation dynamics during early plant life.

    PubMed

    Bouyer, Daniel; Kramdi, Amira; Kassam, Mohamed; Heese, Maren; Schnittger, Arp; Roudier, François; Colot, Vincent

    2017-09-25

    Cytosine methylation is crucial for gene regulation and silencing of transposable elements in mammals and plants. While this epigenetic mark is extensively reprogrammed in the germline and early embryos of mammals, the extent to which DNA methylation is reset between generations in plants remains largely unknown. Using Arabidopsis as a model, we uncovered distinct DNA methylation dynamics over transposable element sequences during the early stages of plant development. Specifically, transposable elements and their relics show invariably high methylation at CG sites but increasing methylation at CHG and CHH sites. This non-CG methylation culminates in mature embryos, where it reaches saturation for a large fraction of methylated CHH sites, compared to the typical 10-20% methylation level observed in seedlings or adult plants. Moreover, the increase in CHH methylation during embryogenesis matches the hypomethylated state in the early endosperm. Finally, we show that interfering with the embryo-to-seedling transition results in the persistence of high CHH methylation levels after germination, specifically over sequences that are targeted by the RNA-directed DNA methylation (RdDM) machinery. Our findings indicate the absence of extensive resetting of DNA methylation patterns during early plant life and point instead to an important role of RdDM in reinforcing DNA methylation of transposable element sequences in every cell of the mature embryo. Furthermore, we provide evidence that this elevated RdDM activity is a specific property of embryogenesis.

  16. DNA methylation differences in exposed workers and nearby residents of the Ma Ta Phut industrial estate, Rayong, Thailand

    PubMed Central

    Peluso, Marco; Bollati, Valentina; Munnia, Armelle; Srivatanakul, Petcharin; Jedpiyawongse, Adisorn; Sangrajrang, Suleeporn; Piro, Sara; Ceppi, Marcello; Bertazzi, Pier Alberto; Boffetta, Paolo; Baccarelli, Andrea A

    2012-01-01

    Background Adverse biological effects from airborne pollutants are a primary environmental concern in highly industrialized areas. Recent studies linked air pollution exposures with altered blood Deoxyribo-nucleic acid (DNA) methylation, but effects from industrial sources and underlying biological mechanisms are still largely unexplored. Methods The Ma Ta Phut industrial estate (MIE) in Rayong, Thailand hosts one of the largest steel, oil refinery and petrochemical complexes in south-eastern Asia. We measured a panel of blood DNA methylation markers previously associated with air pollution exposures, including repeated elements [long interspersed nuclear element-1 (LINE-1) and Alu] and genes [p53, hypermethylated-in-cancer-1 (HIC1), p16 and interleukin-6 (IL-6)], in 67 MIE workers, 65 Ma Ta Phut residents and 45 rural controls. To evaluate the role of DNA damage and oxidation, we correlated DNA methylation measures with bulky DNA and 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) adducts. Results In covariate-adjusted models, MIE workers, compared with rural residents, showed lower LINE-1 (74.8% vs 78.0%; P < 0.001), p53 (8.0% vs 15.7%; P < 0.001) and IL-6 methylation (39.2% vs 45.0%; P = 0.027) and higher HIC1 methylation (22.2% vs 15.3%, P < 0.001). For all four markers, Ma Ta Phut residents exhibited methylation levels intermediate between MIE workers and rural controls (LINE-1, 75.7%, P < 0.001; p53, 9.0%, P < 0.001; IL-6, 39.8%, P = 0.041; HIC1, 17.8%, P = 0.05; all P-values vs rural controls). Bulky DNA adducts showed negative correlation with p53 methylation (P = 0.01). M1dG showed negative correlations with LINE-1 (P = 0.003) and IL-6 methylation (P = 0.05). Conclusions Our findings indicate that industrial exposures may induce alterations of DNA methylation patterns detectable in blood leucocyte DNA. Correlation of DNA adducts with DNA hypomethylation suggests potential mediation by DNA damage. PMID:23064502

  17. Scaling up digital circuit computation with DNA strand displacement cascades.

    PubMed

    Qian, Lulu; Winfree, Erik

    2011-06-03

    To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.

  18. Divergent genome evolution caused by regional variation in DNA gain and loss between human and mouse

    PubMed Central

    Kortschak, R. Daniel

    2018-01-01

    The forces driving the accumulation and removal of non-coding DNA and ultimately the evolution of genome size in complex organisms are intimately linked to genome structure and organisation. Our analysis provides a novel method for capturing the regional variation of lineage-specific DNA gain and loss events in their respective genomic contexts. To further understand this connection we used comparative genomics to identify genome-wide individual DNA gain and loss events in the human and mouse genomes. Focusing on the distribution of DNA gains and losses, relationships to important structural features and potential impact on biological processes, we found that in autosomes, DNA gains and losses both followed separate lineage-specific accumulation patterns. However, in both species chromosome X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon content required for X inactivation. We found that DNA loss was associated with gene-rich open chromatin regions and DNA gain events with gene-poor closed chromatin regions. Additionally, we found that DNA loss events tended to be smaller than DNA gain events suggesting that they were able to accumulate in gene-rich open chromatin regions due to their reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed that mouse loss hotspots were strongly enriched for terms related to developmental processes. However, these genes were also located in regions with a high density of conserved elements, suggesting that despite high levels of DNA loss, gene regulatory architecture remained conserved. This is consistent with a model in which DNA gain and loss results in turnover or “churning” in regulatory element dense regions of open chromatin, where interruption of regulatory elements is selected against. PMID:29677183

  19. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.

    PubMed

    Cooper, James; Ding, Yi; Song, Jiuzhou; Zhao, Keji

    2017-11-01

    Increased chromatin accessibility is a feature of cell-type-specific cis-regulatory elements; therefore, mapping of DNase I hypersensitive sites (DHSs) enables the detection of active regulatory elements of transcription, including promoters, enhancers, insulators and locus-control regions. Single-cell DNase sequencing (scDNase-seq) is a method of detecting genome-wide DHSs when starting with either single cells or <1,000 cells from primary cell sources. This technique enables genome-wide mapping of hypersensitive sites in a wide range of cell populations that cannot be analyzed using conventional DNase I sequencing because of the requirement for millions of starting cells. Fresh cells, formaldehyde-cross-linked cells or cells recovered from formalin-fixed paraffin-embedded (FFPE) tissue slides are suitable for scDNase-seq assays. To generate scDNase-seq libraries, cells are lysed and then digested with DNase I. Circular carrier plasmid DNA is included during subsequent DNA purification and library preparation steps to prevent loss of the small quantity of DHS DNA. Libraries are generated for high-throughput sequencing on the Illumina platform using standard methods. Preparation of scDNase-seq libraries requires only 2 d. The materials and molecular biology techniques described in this protocol should be accessible to any general molecular biology laboratory. Processing of high-throughput sequencing data requires basic bioinformatics skills and uses publicly available bioinformatics software.

  20. Zaba: a novel miniature transposable element present in genomes of legume plants.

    PubMed

    Macas, J; Neumann, P; Pozárková, D

    2003-08-01

    A novel family of miniature transposable elements, named Zaba, was identified in pea (Pisum sativum) and subsequently also in other legume species using computer analysis of their DNA sequences. Zaba elements are 141-190 bp long, generate 10-bp target site duplications, and their terminal inverted repeats make up most of the sequence. Zaba elements thus resemble class 3 foldback transposons. The elements are only moderately repetitive in pea (tens to hundreds copies per haploid genome), but they are present in up to thousands of copies in the genomes of several Medicago and Vicia species. More detailed analysis of the elements from pea, including isolation of new sequences from a genomic library, revealed that a fraction of these elements are truncated, and that their last transposition probably did not occur recently. A search for Zaba sequences in EST databases showed that at least some elements are transcribed, most probably due to their association with genic regions.

  1. The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus).

    PubMed

    Yuan, Zihao; Zhou, Tao; Bao, Lisui; Liu, Shikai; Shi, Huitong; Yang, Yujia; Gao, Dongya; Dunham, Rex; Waldbieser, Geoff; Liu, Zhanjiang

    2018-01-01

    Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a research model for comparative immunology, physiology, and toxicology among ectothermic vertebrates. It is also economically important for aquaculture. As such, its reference genome was generated and annotated with protein coding genes. However, the repetitive elements in the catfish genome are less well understood. In this study, over 417.8 Megabase (MB) of repetitive elements were identified and characterized in the channel catfish genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, making up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prevalence of repetitive elements, especially the mobile elements, may have provided a driving force for the evolution of the catfish genome. A number of catfish-specific repetitive elements were identified including the previously reported Xba elements whose divergence rate was relatively low, slower than that in untranslated regions of genes but faster than the protein coding sequences, suggesting its evolutionary restrictions.

  2. The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus)

    PubMed Central

    Yuan, Zihao; Zhou, Tao; Bao, Lisui; Liu, Shikai; Shi, Huitong; Yang, Yujia; Gao, Dongya; Dunham, Rex; Waldbieser, Geoff

    2018-01-01

    Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a research model for comparative immunology, physiology, and toxicology among ectothermic vertebrates. It is also economically important for aquaculture. As such, its reference genome was generated and annotated with protein coding genes. However, the repetitive elements in the catfish genome are less well understood. In this study, over 417.8 Megabase (MB) of repetitive elements were identified and characterized in the channel catfish genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, making up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prevalence of repetitive elements, especially the mobile elements, may have provided a driving force for the evolution of the catfish genome. A number of catfish-specific repetitive elements were identified including the previously reported Xba elements whose divergence rate was relatively low, slower than that in untranslated regions of genes but faster than the protein coding sequences, suggesting its evolutionary restrictions. PMID:29763462

  3. Turnover of R1 (Type I) and R2 (Type Ii) Retrotransposable Elements in the Ribosomal DNA of Drosophila Melanogaster

    PubMed Central

    Jakubczak, J. L.; Zenni, M. K.; Woodruff, R. C.; Eickbush, T. H.

    1992-01-01

    R1 and R2 are distantly related non-long terminal repeat retrotransposable elements each of which inserts into a specific site in the 28S rRNA genes of most insects. We have analyzed aspects of R1 and R2 abundance and sequence variation in 27 geographical isolates of Drosophila melanogaster. The fraction of 28S rRNA genes containing these elements varied greatly between strains, 17-67% for R1 elements and 2-28% for R2 elements. The total percentage of the rDNA repeats inserted ranged from 32 to 77%. The fraction of the rDNA repeats that contained both of these elements suggested that R1 and R2 exhibit neither an inhibition of nor preference for insertion into a 28S gene already containing the other type of element. Based on the conservation of restriction sites in the elements of all strains, and sequence analysis of individual elements from three strains, nucleotide divergence is very low for R1 and R2 elements within or between strains (<0.6%). This sequence uniformity is the expected result of the forces of concerted evolution (unequal crossovers and gene conversion) which act on the rRNA genes themselves. Evidence for the role of retrotransposition in the turnover of R1 and R2 was obtained by using naturally occurring 5' length polymorphisms of the elements as markers for independent transposition events. The pattern of these different length 5' truncations of R1 and R2 was found to be diverse and unique to most strains analyzed. Because recombination can only, with time, amplify or eliminate those length variants already present, the diversity found in each strain suggests that retrotransposition has played a critical role in maintaining these elements in the rDNA repeats of D. melanogaster. PMID:1317313

  4. Structure, replication efficiency and fragility of yeast ARS elements.

    PubMed

    Dhar, Manoj K; Sehgal, Shelly; Kaul, Sanjana

    2012-05-01

    DNA replication in eukaryotes initiates at specific sites known as origins of replication, or replicators. These replication origins occur throughout the genome, though the propensity of their occurrence depends on the type of organism. In eukaryotes, zones of initiation of replication spanning from about 100 to 50,000 base pairs have been reported. The characteristics of eukaryotic replication origins are best understood in the budding yeast Saccharomyces cerevisiae, where some autonomously replicating sequences, or ARS elements, confer origin activity. ARS elements are short DNA sequences of a few hundred base pairs, identified by their efficiency at initiating a replication event when cloned in a plasmid. ARS elements, although structurally diverse, maintain a basic structure composed of three domains, A, B and C. Domain A is comprised of a consensus sequence designated ACS (ARS consensus sequence), while the B domain has the DNA unwinding element and the C domain is important for DNA-protein interactions. Although there are ∼400 ARS elements in the yeast genome, not all of them are active origins of replication. Different groups within the genus Saccharomyces have ARS elements as components of replication origin. The present paper provides a comprehensive review of various aspects of ARSs, starting from their structural conservation to sequence thermodynamics. All significant and conserved functional sequence motifs within different types of ARS elements have been extensively described. Issues like silencing at ARSs, their inherent fragility and factors governing their replication efficiency have also been addressed. Progress in understanding crucial components associated with the replication machinery and timing at these ARS elements is discussed in the section entitled "The replicon revisited". Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Simulations of DNA stretching by flow field in microchannels with complex geometry.

    PubMed

    Huang, Chiou-De; Kang, Dun-Yen; Hsieh, Chih-Chen

    2014-01-01

    Recently, we have reported the experimental results of DNA stretching by flow field in three microchannels (C. H. Lee and C. C. Hsieh, Biomicrofluidics 7(1), 014109 (2013)) designed specifically for the purpose of preconditioning DNA conformation for easier stretching. The experimental results do not only demonstrate the superiority of the new devices but also provides detailed observation of DNA behavior in complex flow field that was not available before. In this study, we use Brownian dynamics-finite element method (BD-FEM) to simulate DNA behavior in these microchannels, and compare the results against the experiments. Although the hydrodynamic interaction (HI) between DNA segments and between DNA and the device boundaries was not included in the simulations, the simulation results are in fairly good agreement with the experimental data from either the aspect of the single molecule behavior or from the aspect of ensemble averaged properties. The discrepancy between the simulation and the experimental results can be explained by the neglect of HI effect in the simulations. Considering the huge savings on the computational cost from neglecting HI, we conclude that BD-FEM can be used as an efficient and economic designing tool for developing new microfluidic device for DNA manipulation.

  6. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements. PMID:17069639

  7. Transcriptional activation of short interspersed elements by DNA-damaging agents.

    PubMed

    Rudin, C M; Thompson, C B

    2001-01-01

    Short interspersed elements (SINEs), typified by the human Alu repeat, are RNA polymerase III (pol III)-transcribed sequences that replicate within the genome through an RNA intermediate. Replication of SINEs has been extensive in mammalian evolution: an estimated 5% of the human genome consists of Alu repeats. The mechanisms regulating transcription, reverse transcription, and reinsertion of SINE elements in genomic DNA are poorly understood. Here we report that expression of murine SINE transcripts of both the B1 and B2 classes is strongly upregulated after prolonged exposure to cisplatin, etoposide, or gamma radiation. A similar induction of Alu transcripts in human cells occurs under these conditions. This induction is not due to a general upregulation of pol III activity in either species. Genotoxic treatment of murine cells containing an exogenous human Alu element induced Alu transcription. Concomitant with the increased expression of SINEs, an increase in cellular reverse transcriptase was observed after exposure to these same DNA-damaging agents. These findings suggest that genomic damage may be an important activator of SINEs, and that SINE mobility may contribute to secondary malignancy after exposure to DNA-damaging chemotherapy.

  8. Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon.

    PubMed

    Mitra, Rupak; Li, Xianghong; Kapusta, Aurélie; Mayhew, David; Mitra, Robi D; Feschotte, Cédric; Craig, Nancy L

    2013-01-02

    A revelation of the genomic age has been the contributions of the mobile DNA segments called transposable elements to chromosome structure, function, and evolution in virtually all organisms. Substantial fractions of vertebrate genomes derive from transposable elements, being dominated by retroelements that move via RNA intermediates. Although many of these elements have been inactivated by mutation, several active retroelements remain. Vertebrate genomes also contain substantial quantities and a high diversity of cut-and-paste DNA transposons, but no active representative of this class has been identified in mammals. Here we show that a cut-and-paste element called piggyBat, which has recently invaded the genome of the little brown bat (Myotis lucifugus) and is a member of the piggyBac superfamily, is active in its native form in transposition assays in bat and human cultured cells, as well as in the yeast Saccharomyces cerevisiae. Our study suggests that some DNA transposons are still actively shaping some mammalian genomes and reveals an unprecedented opportunity to study the mechanism, regulation, and genomic impact of cut-and-paste transposition in a natural mammalian host.

  9. SBOL Visual: A Graphical Language for Genetic Designs.

    PubMed

    Quinn, Jacqueline Y; Cox, Robert Sidney; Adler, Aaron; Beal, Jacob; Bhatia, Swapnil; Cai, Yizhi; Chen, Joanna; Clancy, Kevin; Galdzicki, Michal; Hillson, Nathan J; Le Novère, Nicolas; Maheshwari, Akshay J; McLaughlin, James Alastair; Myers, Chris J; P, Umesh; Pocock, Matthew; Rodriguez, Cesar; Soldatova, Larisa; Stan, Guy-Bart V; Swainston, Neil; Wipat, Anil; Sauro, Herbert M

    2015-12-01

    Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.

  10. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera

    PubMed Central

    2013-01-01

    Background Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. Results We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. Conclusions Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group. PMID:24088337

  11. SINE sequences detect DNA fingerprints in salmonid fishes.

    PubMed

    Spruell, P; Thorgaard, G H

    1996-04-01

    DNA probes homologous to two previously described salmonid short interspersed nuclear elements (SINEs) detected DNA fingerprint patterns in 14 species of salmonid fishes. The probes showed more homology to some species than to others and little homology to three nonsalmonid fishes. The DNA fingerprint patterns derived from the SINE probes are individual-specific and inherited in a Mendelian manner. Probes derived from different regions of the same SINE detect only partially overlapping banding patterns, reflecting a more complex SINE structure than has been previously reported. Like the human Alu sequence, the SINEs found in salmonids could provide useful genetic markers and primer sites for PCR-based techniques. These elements may be more desirable for some applications than traditional DNA fingerprinting probes that detect tandemly repeated arrays.

  12. Evolutionary Dynamics of 5S rDNA and Recurrent Association of Transposable Elements in Electric Fish of the Family Gymnotidae (Gymnotiformes): The Case of Gymnotus mamiraua.

    PubMed

    da Silva, Maelin; Barbosa, Patricia; Artoni, Roberto F; Feldberg, Eliana

    2016-01-01

    Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome. © 2016 S. Karger AG, Basel.

  13. Luciferase assay to study the activity of a cloned promoter DNA fragment.

    PubMed

    Solberg, Nina; Krauss, Stefan

    2013-01-01

    Luciferase based assays have become an invaluable tool for the analysis of cloned promoter DNA fragments, both for verifying the ability of a potential promoter fragment to drive the expression of a luciferase reporter gene in various cellular contexts, and for dissecting binding elements in the promoter. Here, we describe the use of the Dual-Luciferase(®) Reporter Assay System created by Promega (Promega Corporation, Wisconsin, USA) to study the cloned 6.7 kilobases (kb) mouse (m) Tcf3 promoter DNA fragment in mouse embryonic derived neural stem cells (NSC). In this system, the expression of the firefly luciferase driven by the cloned mTcf3 promoter DNA fragment (including transcription initiation sites) is correlated with a co-transfected control reporter expressing Renilla luciferase from the herpes simplex virus (HSV) thymidine kinase promoter. Using an internal control reporter allows to normalize the activity of the experimental reporter to the internal control, which minimizes experimental variability.

  14. Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms

    PubMed Central

    Taylor, Gregory K.; Stoddard, Barry L.

    2012-01-01

    Homing endonucleases (HEs) are highly specific DNA-cleaving enzymes that are encoded by invasive DNA elements (usually mobile introns or inteins) within the genomes of phage, bacteria, archea, protista and eukaryotic organelles. Six unique structural HE families, that collectively span four distinct nuclease catalytic motifs, have been characterized to date. Members of each family display structural homology and functional relationships to a wide variety of proteins from various organisms. The biological functions of those proteins are highly disparate and include non-specific DNA-degradation enzymes, restriction endonucleases, DNA-repair enzymes, resolvases, intron splicing factors and transcription factors. These relationships suggest that modern day HEs share common ancestors with proteins involved in genome fidelity, maintenance and gene expression. This review summarizes the results of structural studies of HEs and corresponding proteins from host organisms that have illustrated the manner in which these factors are related. PMID:22406833

  15. Is junk DNA bunk? A critique of ENCODE.

    PubMed

    Doolittle, W Ford

    2013-04-02

    Do data from the Encyclopedia Of DNA Elements (ENCODE) project render the notion of junk DNA obsolete? Here, I review older arguments for junk grounded in the C-value paradox and propose a thought experiment to challenge ENCODE's ontology. Specifically, what would we expect for the number of functional elements (as ENCODE defines them) in genomes much larger than our own genome? If the number were to stay more or less constant, it would seem sensible to consider the rest of the DNA of larger genomes to be junk or, at least, assign it a different sort of role (structural rather than informational). If, however, the number of functional elements were to rise significantly with C-value then, (i) organisms with genomes larger than our genome are more complex phenotypically than we are, (ii) ENCODE's definition of functional element identifies many sites that would not be considered functional or phenotype-determining by standard uses in biology, or (iii) the same phenotypic functions are often determined in a more diffuse fashion in larger-genomed organisms. Good cases can be made for propositions ii and iii. A larger theoretical framework, embracing informational and structural roles for DNA, neutral as well as adaptive causes of complexity, and selection as a multilevel phenomenon, is needed.

  16. Is junk DNA bunk? A critique of ENCODE

    PubMed Central

    Doolittle, W. Ford

    2013-01-01

    Do data from the Encyclopedia Of DNA Elements (ENCODE) project render the notion of junk DNA obsolete? Here, I review older arguments for junk grounded in the C-value paradox and propose a thought experiment to challenge ENCODE’s ontology. Specifically, what would we expect for the number of functional elements (as ENCODE defines them) in genomes much larger than our own genome? If the number were to stay more or less constant, it would seem sensible to consider the rest of the DNA of larger genomes to be junk or, at least, assign it a different sort of role (structural rather than informational). If, however, the number of functional elements were to rise significantly with C-value then, (i) organisms with genomes larger than our genome are more complex phenotypically than we are, (ii) ENCODE’s definition of functional element identifies many sites that would not be considered functional or phenotype-determining by standard uses in biology, or (iii) the same phenotypic functions are often determined in a more diffuse fashion in larger-genomed organisms. Good cases can be made for propositions ii and iii. A larger theoretical framework, embracing informational and structural roles for DNA, neutral as well as adaptive causes of complexity, and selection as a multilevel phenomenon, is needed. PMID:23479647

  17. Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress

    PubMed Central

    Feliciello, Isidoro; Akrap, Ivana; Ugarković, Đurđica

    2015-01-01

    Non-coding repetitive DNAs have been proposed to perform a gene regulatory role, however for tandemly repeated satellite DNA no such role was defined until now. Here we provide the first evidence for a role of satellite DNA in the modulation of gene expression under specific environmental conditions. The major satellite DNA TCAST1 in the beetle Tribolium castaneum is preferentially located within pericentromeric heterochromatin but is also dispersed as single repeats or short arrays in the vicinity of protein-coding genes within euchromatin. Our results show enhanced suppression of activity of TCAST1-associated genes and slower recovery of their activity after long-term heat stress relative to the same genes without associated TCAST1 satellite DNA elements. The level of gene suppression is not influenced by the distance of TCAST1 elements from the associated genes up to 40 kb from the genes’ transcription start sites, but it does depend on the copy number of TCAST1 repeats within an element, being stronger for the higher number of copies. The enhanced gene suppression correlates with the enrichment of the repressive histone marks H3K9me2/3 at dispersed TCAST1 elements and their flanking regions as well as with increased expression of TCAST1 satellite DNA. The results reveal transient, RNAi based heterochromatin formation at dispersed TCAST1 repeats and their proximal regions as a mechanism responsible for enhanced silencing of TCAST1-associated genes. Differences in the pattern of distribution of TCAST1 elements contribute to gene expression diversity among T. castaneum strains after long-term heat stress and might have an impact on adaptation to different environmental conditions. PMID:26275223

  18. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers.

    PubMed

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-05-02

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2016. This work is written by US Government employees and is in the public domain in the US.

  19. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications

    PubMed Central

    Hong, Ka Lok

    2015-01-01

    Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed. PMID:26199940

  20. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus

    PubMed Central

    Niewold, Timothy B; Kelly, Jennifer A; Kariuki, Silvia N; Franek, Beverly S; Kumar, Akaash A; Kaufman, Kenneth M; Thomas, Kenaz; Walker, Daniel; Kamp, Stan; Frost, Jacqueline M; Wong, Andrew K; Merrill, Joan T; Alarcón-Riquelme, Marta E; Tikly, Mohammed; Ramsey-Goldman, Rosalind; Reveille, John D; Petri, Michelle A; Edberg, Jeffrey C; Kimberly, Robert P; Alarcón, Graciela S; Kamen, Diane L; Gilkeson, Gary S; Vyse, Timothy J; James, Judith A; Gaffney, Patrick M; Moser, Kathy L; Crow, Mary K; Harley, John B

    2012-01-01

    Objective High serum interferon α (IFNα) activity is a heritable risk factor for systemic lupus erythematosus (SLE). Auto-antibodies found in SLE form immune complexes which can stimulate IFNα production by activating endosomal Toll-like receptors and interferon regulatory factors (IRFs), including IRF5. Genetic variation in IRF5 is associated with SLE susceptibility; however, it is unclear how IRF5 functional genetic elements contribute to human disease. Methods 1034 patients with SLE and 989 controls of European ancestry, 555 patients with SLE and 679 controls of African–American ancestry, and 73 patients with SLE of South African ancestry were genotyped at IRF5 polymorphisms, which define major haplotypes. Serum IFNα activity was measured using a functional assay. Results In European ancestry subjects, anti-double-stranded DNA (dsDNA) and anti-Ro antibodies were each associated with different haplotypes characterised by a different combination of functional genetic elements (OR > 2.56, p >003C; 1.9×10−14 for both). These IRF5 haplotype-auto-antibody associations strongly predicted higher serum IFNα in patients with SLE and explained > 70% of the genetic risk of SLE due to IRF5. In African–American patients with SLE a similar relationship between serology and IFNα was observed, although the previously described European ancestry-risk haplotype was present at admixture proportions in African–American subjects and absent in African patients with SLE. Conclusions The authors define a novel risk haplotype of IRF5 that is associated with anti-dsDNA antibodies and show that risk of SLE due to IRF5 genotype is largely dependent upon particular auto-antibodies. This suggests that auto-antibodies are directly pathogenic in human SLE, resulting in increased IFNα in cooperation with particular combinations of IRF5 functional genetic elements. SLE is a systemic autoimmune disorder affecting multiple organ systems including the skin, musculoskeletal, renal and haematopoietic systems. Humoral autoimmunity is a hallmark of SLE, and patients frequently have circulating auto-antibodies directed against dsDNA, as well as RNA binding proteins (RBP). Anti-RBP autoantibodies include antibodies which recognize Ro, La, Smith (anti-Sm), and ribonucleoprotein (anti-nRNP), collectively referred to as anti-retinol-binding protein). Anti-retinol-binding protein and anti-dsDNA auto-antibodies are rare in the healthy population.1 These auto-antibodies can be present in sera for years preceding the onset of clinical SLE illness2 and are likely pathogenic in SLE.34 PMID:22088620

  1. Sunflower centromeres consist of a centromere-specific LINE and a chromosome-specific tandem repeat.

    PubMed

    Nagaki, Kiyotaka; Tanaka, Keisuke; Yamaji, Naoki; Kobayashi, Hisato; Murata, Minoru

    2015-01-01

    The kinetochore is a protein complex including kinetochore-specific proteins that plays a role in chromatid segregation during mitosis and meiosis. The complex associates with centromeric DNA sequences that are usually species-specific. In plant species, tandem repeats including satellite DNA sequences and retrotransposons have been reported as centromeric DNA sequences. In this study on sunflowers, a cDNA-encoding centromere-specific histone H3 (CENH3) was isolated from a cDNA pool from a seedling, and an antibody was raised against a peptide synthesized from the deduced cDNA. The antibody specifically recognized the sunflower CENH3 (HaCENH3) and showed centromeric signals by immunostaining and immunohistochemical staining analysis. The antibody was also applied in chromatin immunoprecipitation (ChIP)-Seq to isolate centromeric DNA sequences and two different types of repetitive DNA sequences were identified. One was a long interspersed nuclear element (LINE)-like sequence, which showed centromere-specific signals on almost all chromosomes in sunflowers. This is the first report of a centromeric LINE sequence, suggesting possible centromere targeting ability. Another type of identified repetitive DNA was a tandem repeat sequence with a 187-bp unit that was found only on a pair of chromosomes. The HaCENH3 content of the tandem repeats was estimated to be much higher than that of the LINE, which implies centromere evolution from LINE-based centromeres to more stable tandem-repeat-based centromeres. In addition, the epigenetic status of the sunflower centromeres was investigated by immunohistochemical staining and ChIP, and it was found that centromeres were heterochromatic.

  2. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    PubMed Central

    2009-01-01

    Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996

  3. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades.

    PubMed

    Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas

    2009-10-12

    Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.

  4. On-Chip Synthesis of Protein Microarrays from DNA Microarrays Via Coupled In Vitro Transcription and Translation for Surface Plasmon Resonance Imaging Biosensor Applications

    PubMed Central

    Seefeld, Ting H.; Halpern, Aaron R.; Corn, Robert M.

    2012-01-01

    Protein microarrays are fabricated from double-stranded DNA (dsDNA) microarrays by a one-step, multiplexed enzymatic synthesis in an on-chip microfluidic format and then employed for antibody biosensing measurements with surface plasmon resonance imaging (SPRI). A microarray of dsDNA elements (denoted as generator elements) that encode either a His-tagged green fluorescent protein (GFP) or a His-tagged luciferase protein is utilized to create multiple copies of messenger RNA (mRNA) in a surface RNA polymerase reaction; the mRNA transcripts are then translated into proteins by cell-free protein synthesis in a microfluidic format. The His-tagged proteins diffuse to adjacent Cu(II)-NTA microarray elements (denoted as detector elements) and are specifically adsorbed. The net result is the on-chip, cell-free synthesis of a protein microarray that can be used immediately for SPRI protein biosensing. The dual element format greatly reduces any interference from the nonspecific adsorption of enzyme or proteins. SPRI measurements for the detection of the antibodies anti-GFP and anti-luciferase were used to verify the formation of the protein microarray. This convenient on-chip protein microarray fabrication method can be implemented for multiplexed SPRI biosensing measurements in both clinical and research applications. PMID:22793370

  5. Characteristics and oxidative stress on rats and traffic policemen of ambient fine particulate matter from Shenyang.

    PubMed

    Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling

    2015-09-01

    Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of Ionizing Radiation on DNA Methylation: From Experimental Biology to Clinical Applications

    PubMed Central

    Miousse, Isabelle R.; Kutanzi, Kristy R.; Koturbash, Igor

    2017-01-01

    Purpose Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of LET radiation in medicine. Conclusions In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization. PMID:28134023

  7. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications.

    PubMed

    Miousse, Isabelle R; Kutanzi, Kristy R; Koturbash, Igor

    2017-05-01

    Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.

  8. Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria

    PubMed Central

    Hilton, Jason A.; Meeks, John C.; Zehr, Jonathan P.

    2016-01-01

    Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria. PMID:27206019

  9. Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria.

    PubMed

    Hilton, Jason A; Meeks, John C; Zehr, Jonathan P

    2016-01-01

    Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria.

  10. ATXR5 and ATXR6 are novel H3K27 monomethyltransferases required for chromatin structure and gene silencing

    PubMed Central

    Jacob, Yannick; Feng, Suhua; LeBlanc, Chantal A.; Bernatavichute, Yana V.; Stroud, Hume; Cokus, Shawn; Johnson, Lianna M.; Pellegrini, Matteo; Jacobsen, Steven E.; Michaels, Scott D.

    2009-01-01

    Constitutive heterochromatin in Arabidopsis thaliana is marked by repressive chromatin modifications including DNA methylation, histone H3 dimethylation at lysine 9 (H3K9me2), and monomethylation at lysine 27 (H3K27me1). The enzymes catalyzing DNA methylation and H3K9me2 have been identified and mutations in these proteins lead to the reactivation of silenced heterochromatic elements. The enzymes responsible for heterochromatic H3K27me1, in contrast, remain unknown. Here we show that the divergent SET-domain proteins ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6 exhibit H3K27 monomethyltransferase activity and double mutants have reduced H3K27me1 in vivo and show partial heterochromatin decondensation. Mutations in atxr5 and atxr6 also lead to transcriptional activation of repressed heterochromatic elements. Interestingly, H3K9me2 and DNA methylation are unaffected in the double mutant. These results indicate that ATXR5 and ATXR6 form a novel class of H3K27 methyltransferases and that H3K27me1 represents a new pathway required for transcriptional repression in Arabidopsis. PMID:19503079

  11. Junk DNA and the long non-coding RNA twist in cancer genetics

    PubMed Central

    Ling, Hui; Vincent, Kimberly; Pichler, Martin; Fodde, Riccardo; Berindan-Neagoe, Ioana; Slack, Frank J.; Calin, George A

    2015-01-01

    The central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs (lncRNAs) have attracted much attention due to their large number and biological significance. Many lncRNAs have been identified as mapping to regulatory elements including gene promoters and enhancers, ultraconserved regions, and intergenic regions of protein-coding genes. Yet, the biological function and molecular mechanisms of lncRNA in human diseases in general and cancer in particular remain largely unknown. Data from the literature suggest that lncRNA, often via interaction with proteins, functions in specific genomic loci or use their own transcription loci for regulatory activity. In this review, we summarize recent findings supporting the importance of DNA loci in lncRNA function, and the underlying molecular mechanisms via cis or trans regulation, and discuss their implications in cancer. In addition, we use the 8q24 genomic locus, a region containing interactive SNPs, DNA regulatory elements and lncRNAs, as an example to illustrate how single nucleotide polymorphism (SNP) located within lncRNAs may be functionally associated with the individual’s susceptibility to cancer. PMID:25619839

  12. Nanoparticle-labeled DNA capture elements for detection and identification of biological agents

    NASA Astrophysics Data System (ADS)

    Kiel, Johnathan L.; Holwitt, Eric A.; Parker, Jill E.; Vivekananda, Jeevalatha; Franz, Veronica

    2004-12-01

    Aptamers, synthetic DNA capture elements (DCEs), can be made chemically or in genetically engineered bacteria. DNA capture elements are artificial DNA sequences, from a random pool of sequences, selected for their specific binding to potential biological warfare or terrorism agents. These sequences were selected by an affinity method using filters to which the target agent was attached and the DNA isolated and amplified by polymerase chain reaction (PCR) in an iterative, increasingly stringent, process. The probes can then be conjugated to Quantum Dots and super paramagnetic nanoparticles. The former provide intense, bleach-resistant fluorescent detection of bioagent and the latter provide a means to collect the bioagents with a magnet. The fluorescence can be detected in a flow cytometer, in a fluorescence plate reader, or with a fluorescence microscope. To date, we have made DCEs to Bacillus anthracis spores, Shiga toxin, Venezuelan Equine Encephalitis (VEE) virus, and Francisella tularensis. DCEs can easily distinguish Bacillus anthracis from its nearest relatives, Bacillus cereus and Bacillus thuringiensis. Development of a high through-put process is currently being investigated.

  13. New insights into replication origin characteristics in metazoans

    PubMed Central

    Puy, Aurore; Rialle, Stéphanie; Kaplan, Noam; Segal, Eran

    2012-01-01

    We recently reported the identification and characterization of DNA replication origins (Oris) in metazoan cell lines. Here, we describe additional bioinformatic analyses showing that the previously identified GC-rich sequence elements form origin G-rich repeated elements (OGREs) that are present in 67% to 90% of the DNA replication origins from Drosophila to human cells, respectively. Our analyses also show that initiation of DNA synthesis takes place precisely at 160 bp (Drosophila) and 280 bp (mouse) from the OGRE. We also found that in most CpG islands, an OGRE is positioned in opposite orientation on each of the two DNA strands and detected two sites of initiation of DNA synthesis upstream or downstream of each OGRE. Conversely, Oris not associated with CpG islands have a single initiation site. OGRE density along chromosomes correlated with previously published replication timing data. Ori sequences centered on the OGRE are also predicted to have high intrinsic nucleosome occupancy. Finally, OGREs predict G-quadruplex structures at Oris that might be structural elements controlling the choice or activation of replication origins. PMID:22373526

  14. The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements.

    PubMed

    Daulny, Anne; Mejía-Ramírez, Eva; Reina, Oscar; Rosado-Lugo, Jesus; Aguilar-Arnal, Lorena; Auer, Herbert; Zaratiegui, Mikel; Azorin, Fernando

    2016-10-01

    It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.

    PubMed Central

    Yang, V W; Marks, J A; Davis, B P; Jeffries, T W

    1994-01-01

    This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus. Images PMID:7811063

  16. Role of UME6 in transcriptional regulation of a DNA repair gene in Saccharomyces cerevisiae.

    PubMed

    Sweet, D H; Jang, Y K; Sancar, G B

    1997-11-01

    In Saccharomyces cerevisiae UV radiation and a variety of chemical DNA-damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of these genes is PHR1, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHR1 require an upstream activation sequence, UAS(PHR1), which has homology with DRC elements found upstream of at least 19 other DNA repair and DNA metabolism genes in yeast. Here we report the identification of the UME6 gene of S. cerevisiae as a regulator of UAS(PHR1) activity. Multiple copies of UME6 stimulate expression from UAS(PHR1) and the intact PHR1 gene. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHR1 is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UME6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHR1 mRNA, and increases the UV sensitivity of a rad2 mutant. Despite the fact that UAS(PHR1) does not contain the URS1 sequence, which has been previously implicated in UME6-mediated transcriptional regulation, we find that Ume6p binds to UAS(PHR1) with an affinity and a specificity similar to those seen for a URS1 site. Similar binding is also seen for DRC elements from RAD2, RAD7, and RAD53, suggesting that UME6 contributes to the regulated expression of a subset of damage-responsive genes in yeast.

  17. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  18. Amplification of a specific repetitive DNA sequence for Trypanosoma rangeli identification and its potential application in epidemiological investigations.

    PubMed

    Vargas, N; Souto, R P; Carranza, J C; Vallejo, G A; Zingales, B

    2000-11-01

    Trypanosoma rangeli can infect humans as well as the same domestic and wild animals and triatomine vectors infected by Trypanosoma cruzi in Central and South America. This overlapping distribution complicates the epidemiology of American trypanosomiasis due to the cross-reactivity between T. rangeli and T. cruzi antigens and the presence of conserved DNA sequences in these parasites. We have isolated a T. rangeli-specific DNA repetitive element which is represented in approximately 103 copies per parasite genome and is distributed in several chromosomal bands. The 542-bp nucleotide sequence of this element, named P542, was determined and a PCR assay was standardized for its amplification. The sensitivity of the assay is high, allowing the detection of one tenth of the DNA content of a single parasite. The presence of the P542 element was confirmed in 11 T. rangeli isolates from mammalian hosts and insect vectors originating from several countries in Latin America. Negative amplification was observed with different T. cruzi strains and other trypanosomatids. The potential field application of the P542 PCR assay was investigated in simulated samples containing T. rangeli and/or T. cruzi and intestinal tract and feces of Rhodnius prolixus. Epidemiological studies were conducted in DNA preparations obtained from the digestive tracts of 12 Rhodnius colombiensis insects collected in a sylvatic area in Colombia. Positive amplification of the P542 element was obtained in 9/12 insects. We have also compared in the same samples the diagnostic performance of two PCR assays for the amplification of the variable domain of minicircle kinetoplast DNA (kDNA) and of the large subunit (LSU) of the ribosomal RNA gene of T. cruzi and T. rangeli. Data indicate that the kDNA PCR assay does not allow diagnosis of mixed infections in most insects. On the other hand, the PCR assay of the LSU RNA gene showed lower sensitivity in the detection of T. rangeli than the PCR assay of the P542 element. It is predicted that the use of sensitive detection techniques will indicate that the actual distribution of T. rangeli in America is wider than presumed. Copyright 2000 Academic Press.

  19. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment.

    PubMed

    Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet

    2017-01-01

    DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The contribution of alu elements to mutagenic DNA double-strand break repair.

    PubMed

    Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L

    2015-03-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.

  1. Electrophoretic mobility shift scanning using an automated infrared DNA sequencer.

    PubMed

    Sano, M; Ohyama, A; Takase, K; Yamamoto, M; Machida, M

    2001-11-01

    Electrophoretic mobility shift assay (EMSA) is widely used in the study of sequence-specific DNA-binding proteins, including transcription factors and mismatch binding proteins. We have established a non-radioisotope-based protocol for EMSA that features an automated DNA sequencer with an infrared fluorescent dye (IRDye) detection unit. Our modification of the elec- trophoresis unit, which includes cooling the gel plates with a reduced well-to-read length, has made it possible to detect shifted bands within 1 h. Further, we have developed a rapid ligation-based method for generating IRDye-labeled probes with an approximately 60% cost reduction. This method has the advantages of real-time scanning, stability of labeled probes, and better safety associated with nonradioactive methods of detection. Analysis of a promoter from an industrially important filamentous fungus, Aspergillus oryzae, in a prototype experiment revealed that the method we describe has potential for use in systematic scanning and identification of the functionally important elements to which cellular factors bind in a sequence-specific manner.

  2. LINE-1 Elements in Structural Variation and Disease

    PubMed Central

    Beck, Christine R.; Garcia-Perez, José Luis; Badge, Richard M.; Moran, John V.

    2014-01-01

    The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes. PMID:21801021

  3. The effect of inflammation-related lifestyle exposures and interactions with gene variants on long interspersed nuclear element-1 DNA methylation.

    PubMed

    Gogna, Priyanka; O'Sullivan, Dylan E; King, Will D

    2018-06-11

    To examine the relationship between inflammation-related lifestyle factors and long interspersed nuclear element-1 (LINE-1) DNA methylation, and test for interaction by gene variants involved in one-carbon metabolism. The study population consisted of 280 individuals undergoing colonoscopy screening. Multivariable linear regression was employed to examine associations of physical activity, BMI and NSAID use with LINE-1 DNA methylation and interactions with MTR and MTHFR gene variants. The highest quartile of physical activity compared with the lowest was associated with higher LINE-1 DNA methylation (p = 0.005). Long-term NSAID use and a normal BMI were associated with increased LINE-1 DNA methylation among individuals with the variant MTR allele (p = 0.02; p = 0.03). This study provides evidence that inflammation-related exposures may influence LINE-1 DNA methylation.

  4. Sequence of retrovirus provirus resembles that of bacterial transposable elements

    NASA Astrophysics Data System (ADS)

    Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.

    1980-06-01

    The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.

  5. The DNA of ciliated protozoa.

    PubMed Central

    Prescott, D M

    1994-01-01

    Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons. Images PMID:8078435

  6. Multivalent DNA-binding properties of the HMG-1 proteins.

    PubMed Central

    Maher, J F; Nathans, D

    1996-01-01

    HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884

  7. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana.

    PubMed

    Park, Jin-Sup; Frost, Jennifer M; Park, Kyunghyuk; Ohr, Hyonhwa; Park, Guen Tae; Kim, Seohyun; Eom, Hyunjoo; Lee, Ilha; Brooks, Janie S; Fischer, Robert L; Choi, Yeonhee

    2017-02-21

    The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation.

  8. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    PubMed

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  9. Evidence of Pervasive Biologically Functional Secondary Structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses

    PubMed Central

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y. F.; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie

    2014-01-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here. PMID:24284329

  10. Hsmar1 Transposition Is Sensitive to the Topology of the Transposon Donor and the Target

    PubMed Central

    Claeys Bouuaert, Corentin; Chalmers, Ronald

    2013-01-01

    Hsmar1 is a member of the Tc1-mariner superfamily of DNA transposons. These elements mobilize within the genome of their host by a cut-and-paste mechanism. We have exploited the in vitro reaction provided by Hsmar1 to investigate the effect of DNA supercoiling on transposon integration. We found that the topology of both the transposon and the target affect integration. Relaxed transposons have an integration defect that can be partially restored in the presence of elevated levels of negatively supercoiled target DNA. Negatively supercoiled DNA is a better target than nicked or positively supercoiled DNA, suggesting that underwinding of the DNA helix promotes target interactions. Like other Tc1-mariner elements, Hsmar1 integrates into 5′-TA dinucleotides. The direct vicinity of the target TA provides little sequence specificity for target interactions. However, transposition within a plasmid substrate was not random and some TA dinucleotides were targeted preferentially. The distribution of intramolecular target sites was not affected by DNA topology. PMID:23341977

  11. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes.

    PubMed Central

    German, M S; Moss, L G; Wang, J; Rutter, W J

    1992-01-01

    The pancreatic beta cell makes several unique gene products, including insulin, islet amyloid polypeptide (IAPP), and beta-cell-specific glucokinase (beta GK). The functions of isolated portions of the insulin, IAPP, and beta GK promoters were studied by using transient expression and DNA binding assays. A short portion (-247 to -197 bp) of the rat insulin I gene, the FF minienhancer, contains three interacting transcriptional regulatory elements. The FF minienhancer binds at least two nuclear complexes with limited tissue distribution. Sequences similar to that of the FF minienhancer are present in the 5' flanking DNA of the human IAPP and rat beta GK genes and also the rat insulin II and mouse insulin I and II genes. Similar minienhancer constructs from the insulin and IAPP genes function as cell-specific transcriptional regulatory elements and compete for binding of the same nuclear factors, while the beta GK construct competes for protein binding but functions poorly as a minienhancer. These observations suggest that the patterns of expression of the beta-cell-specific genes result in part from sharing the same transcriptional regulators. Images PMID:1549125

  12. Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion.

    PubMed

    Bieber, Frederick R; Buckleton, John S; Budowle, Bruce; Butler, John M; Coble, Michael D

    2016-08-31

    The evaluation and interpretation of forensic DNA mixture evidence faces greater interpretational challenges due to increasingly complex mixture evidence. Such challenges include: casework involving low quantity or degraded evidence leading to allele and locus dropout; allele sharing of contributors leading to allele stacking; and differentiation of PCR stutter artifacts from true alleles. There is variation in statistical approaches used to evaluate the strength of the evidence when inclusion of a specific known individual(s) is determined, and the approaches used must be supportable. There are concerns that methods utilized for interpretation of complex forensic DNA mixtures may not be implemented properly in some casework. Similar questions are being raised in a number of U.S. jurisdictions, leading to some confusion about mixture interpretation for current and previous casework. Key elements necessary for the interpretation and statistical evaluation of forensic DNA mixtures are described. Given the most common method for statistical evaluation of DNA mixtures in many parts of the world, including the USA, is the Combined Probability of Inclusion/Exclusion (CPI/CPE). Exposition and elucidation of this method and a protocol for use is the focus of this article. Formulae and other supporting materials are provided. Guidance and details of a DNA mixture interpretation protocol is provided for application of the CPI/CPE method in the analysis of more complex forensic DNA mixtures. This description, in turn, should help reduce the variability of interpretation with application of this methodology and thereby improve the quality of DNA mixture interpretation throughout the forensic community.

  13. ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar

    2012-01-01

    Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. Copyright © 2013 S. Karger AG, Basel.

  14. Cut-and-Paste Transposons in Fungi with Diverse Lifestyles

    PubMed Central

    Steczkiewicz, Kamil; Ginalski, Krzysztof

    2017-01-01

    Abstract Transposable elements (TEs) shape genomes via recombination and transposition, lead to chromosomal rearrangements, create new gene neighborhoods, and alter gene expression. They play key roles in adaptation either to symbiosis in Amanita genus or to pathogenicity in Pyrenophora tritici-repentis. Despite growing evidence of their importance, the abundance and distribution of mobile elements replicating in a “cut-and-paste” fashion is barely described so far. In order to improve our knowledge on this old and ubiquitous class of transposable elements, 1,730 fungal genomes were scanned using both de novo and homology-based approaches. DNA TEs have been identified across the whole data set and display uneven distribution from both DNA TE classification and fungal taxonomy perspectives. DNA TE content correlates with genome size, which confirms that many transposon families proliferate simultaneously. In contrast, it is independent from intron density, average gene distance and GC content. TE count is associated with species’ lifestyle and tends to be elevated in plant symbionts and decreased in animal parasites. Lastly, we found that fungi with both RIP and RNAi systems have more total DNA TE sequences but less elements retaining a functional transposase, what reflects stringent control over transposition. PMID:29228286

  15. Investigating the transcriptional control of cardiovascular development

    PubMed Central

    Kathiriya, Irfan S.; Nora, Elphege P.; Bruneau, Benoit G.

    2015-01-01

    Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors (TFs) choreograph gene expression at each stage of differentiation by interacting with co-factors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac TFs, cis-regulatory elements and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program. PMID:25677518

  16. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    PubMed

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-07

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.

  17. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements.

    PubMed

    Redrejo-Rodríguez, Modesto; Ordóñez, Carlos D; Berjón-Otero, Mónica; Moreno-González, Juan; Aparicio-Maldonado, Cristian; Forterre, Patrick; Salas, Margarita; Krupovic, Mart

    2017-11-07

    Family B DNA polymerases (PolBs) play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB), that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Rapid Microarray Detection of DNA and Proteins in Microliter Volumes with SPR Imaging Measurements

    PubMed Central

    Seefeld, Ting Hu; Zhou, Wen-Juan; Corn, Robert M.

    2011-01-01

    A four chamber microfluidic biochip is fabricated for the rapid detection of multiple proteins and nucleic acids from microliter volume samples with the technique of surface plasmon resonance imaging (SPRI). The 18 mm × 18 mm biochip consists of four 3 μL microfluidic chambers attached to an SF10 glass substrate, each of which contains three individually addressable SPRI gold thin film microarray elements. The twelve element (4 × 3) SPRI microarray consists of gold thin film spots (1 mm2 area; 45 nm thickness) each in individually addressable 0.5 μL volume microchannels. Microarrays of single-stranded DNA and RNA (ssDNA and ssRNA respectively) are fabricated by either chemical and/or enzymatic attachment reactions in these microchannels; the SPRI microarrays are then used to detect femtomole amounts (nanomolar concentrations) of DNA and proteins (single stranded DNA binding protein and thrombin via aptamer-protein bioaffinity interactions). Microarrays of ssRNA microarray elements were also used for the ultrasensitive detection of zeptomole amounts (femtomolar concentrations) of DNA via the technique of RNase H-amplified SPRI. Enzymatic removal of ssRNA from the surface due to the hybridization adsorption of target ssDNA is detected as a reflectivity decrease in the SPR imaging measurements. The observed reflectivity loss was proportional to the log of the target ssDNA concentration with a detection limit of 10 fM or 30 zeptomoles (18,000 molecules). This enzymatic amplified ssDNA detection method is not limited by diffusion of ssDNA to the interface, and thus is extremely fast, requiring only 200 seconds in the microliter volume format. PMID:21488682

  19. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines.

    PubMed

    Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J

    2015-12-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.

  20. Analysis of LexA binding sites and transcriptomics in response to genotoxic stress in Leptospira interrogans.

    PubMed

    Schons-Fonseca, Luciane; da Silva, Josefa B; Milanez, Juliana S; Domingos, Renan H; Smith, Janet L; Nakaya, Helder I; Grossman, Alan D; Ho, Paulo L; da Costa, Renata M A

    2016-02-18

    We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element against the Pesticide Fipronil and Sensitive Detection in River Water

    PubMed Central

    Sooter, Letha J.

    2017-01-01

    Fipronil is a commonly used insecticide that has been shown to have environmental and human health risks. The current standard methods of detection for fipronil and its metabolites, such as GC-MS, are time consuming and labor intensive. In this study, a variant of systematic evolution of ligands by exponential enrichment (SELEX), was utilized to identify the first single-stranded DNA (ssDNA) molecular recognition element (MRE) that binds to fipronil with high affinity (Kd = 48 ± 8 nM). The selected MRE displayed low cross binding activity on various environmentally relevant, structurally unrelated herbicides and pesticides, in addition to broad-spectrum binding activity on major metabolites of fipronil and a structurally similar pesticide in prepared river samples. Additionally, a proof-of-principle fluorescent detection assay was developed by using the selected ssDNA MRE as a signal-reporting element, with a limit of detection of 105 nM in a prepared river water sample. PMID:29283416

  2. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    PubMed

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.

  3. New modulated design and synthesis of chiral CuII/SnIV bimetallic potential anticancer drug entity: In vitro DNA binding and pBR322 DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh

    2012-05-01

    A new chiral ligand scaffold L derived from (R)-2-amino-2-phenyl ethanol and diethyl oxalate was isolated and thoroughly characterized by various spectroscopic methods. The ligand L was allowed to react with CuCl2·2H2O and NiCl2·6H2O to achieve monometallic complexes 1 and 2, respectively. Subsequently modulation of 1 and 2 was carried out in the presence of SnCl4·5H2O to obtain heterobimetallic potential drug candidates 3 and 4 possessing (CuII/SnIV and NiII/SnIV) metallic cores, respectively and characterized by elemental analysis and spectroscopic data including 1H, 13C and 119Sn NMR in case of 3 and 4. In vitro DNA binding studies revealed that complex 3 avidly binds to DNA as quantified by Kb and Ksv values. Complex 3 exhibits a remarkable DNA cleavage activity (concentration dependent) with pBR322 DNA and the cleavage activity of 3 was significantly enhanced in the presence of activators and follows the order H2O2 > Asc > MPA > GSH. Complex 3 cleave pBR322 DNA via hydrolytic pathway and accessible to major groove of DNA.

  4. SBOL Visual: A Graphical Language for Genetic Designs

    DOE PAGES

    Quinn, Jacqueline Y.; Cox, Robert Sidney; Adler, Aaron; ...

    2015-12-03

    Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. We report that it consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.

  5. SBOL Visual: A Graphical Language for Genetic Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Jacqueline Y.; Cox, Robert Sidney; Adler, Aaron

    Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. We report that it consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.

  6. SBOL Visual: A Graphical Language for Genetic Designs

    PubMed Central

    Adler, Aaron; Beal, Jacob; Bhatia, Swapnil; Cai, Yizhi; Chen, Joanna; Clancy, Kevin; Galdzicki, Michal; Hillson, Nathan J.; Le Novère, Nicolas; Maheshwari, Akshay J.; McLaughlin, James Alastair; Myers, Chris J.; P, Umesh; Pocock, Matthew; Rodriguez, Cesar; Soldatova, Larisa; Stan, Guy-Bart V.; Swainston, Neil; Wipat, Anil; Sauro, Herbert M.

    2015-01-01

    Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual. PMID:26633141

  7. Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing

    PubMed Central

    Will, Katrin; Warnecke, Gabriele; Wiesmüller, Lisa; Deppert, Wolfgang

    1998-01-01

    Mutant, but not wild-type p53 binds with high affinity to a variety of MAR-DNA elements (MARs), suggesting that MAR-binding of mutant p53 relates to the dominant-oncogenic activities proposed for mutant p53. MARs recognized by mutant p53 share AT richness and contain variations of an AATATATTT “DNA-unwinding motif,” which enhances the structural dynamics of chromatin and promotes regional DNA base-unpairing. Mutant p53 specifically interacted with MAR-derived oligonucleotides carrying such unwinding motifs, catalyzing DNA strand separation when this motif was located within a structurally labile sequence environment. Addition of GC-clamps to the respective MAR-oligonucleotides or introducing mutations into the unwinding motif strongly reduced DNA strand separation, but supported the formation of tight complexes between mutant p53 and such oligonucleotides. We conclude that the specific interaction of mutant p53 with regions of MAR-DNA with a high potential for base-unpairing provides the basis for the high-affinity binding of mutant p53 to MAR-DNA. PMID:9811860

  8. Select Prenatal Environmental Exposures and Subsequent Alterations of Gene-Specific and Repetitive Element DNA Methylation in Fetal Tissues.

    PubMed

    Green, Benjamin B; Marsit, Carmen J

    2015-06-01

    Strong evidence implicates maternal environmental exposures in contributing to adverse outcomes during pregnancy and later in life through the developmental origins of health and disease hypothesis. Recent research suggests these effects are mediated through the improper regulation of DNA methylation in offspring tissues, specifically placental tissue, which plays a critical role in fetal development. This article reviews the relevant literature relating DNA methylation in multiple tissues at or near delivery to several prenatal environmental toxicants and stressors, including cigarette smoke, endocrine disruptors, heavy metals, as well as maternal diet. These human studies expand upon previously reported outcomes in animal model interventions and include effects on both imprinted and non-imprinted genes. We have also noted some of the strengths and limitations in the approaches used, and consider the appropriate interpretation of these findings in terms of their effect size and their relationship to differential gene expression and potential health outcomes. The studies suggest an important role of DNA methylation in mediating the effects of the intrauterine environment on children's health and a need for additional research to better clarify the role of this epigenetic mechanism as well as others.

  9. Genetic therapy for the nervous system.

    PubMed

    Bowers, William J; Breakefield, Xandra O; Sena-Esteves, Miguel

    2011-04-15

    Genetic therapy is undergoing a renaissance with expansion of viral and synthetic vectors, use of oligonucleotides (RNA and DNA) and sequence-targeted regulatory molecules, as well as genetically modified cells, including induced pluripotent stem cells from the patients themselves. Several clinical trials for neurologic syndromes appear quite promising. This review covers genetic strategies to ameliorate neurologic syndromes of different etiologies, including lysosomal storage diseases, Alzheimer's disease and other amyloidopathies, Parkinson's disease, spinal muscular atrophy, amyotrophic lateral sclerosis and brain tumors. This field has been propelled by genetic technologies, including identifying disease genes and disruptive mutations, design of genomic interacting elements to regulate transcription and splicing of specific precursor mRNAs and use of novel non-coding regulatory RNAs. These versatile new tools for manipulation of genetic elements provide the ability to tailor the mode of genetic intervention to specific aspects of a disease state.

  10. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Transcriptional regulation of hepatic lipogenesis.

    PubMed

    Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook

    2015-11-01

    Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.

  12. [Construction of a general AAV vector regulated by minimal and artificial hypoxic-responsive element].

    PubMed

    Nie, Xiao-wei; Sun, Li-jun; Hao, Yue-wen; Yang, Guang-xiao; Wang, Quan-ying

    2011-03-01

    To synthesize the minimal and artificial HRE, and to insert it into the anterior extremity of CMV promoter of a AAV plasmid, and then to construct the AAV regulated by hypoxic-responsive element which was introduced into 293 cell by method of Ca3(PO4)2 using three plasmids. Thus obtaining the adenoassociated virus vector regulated by hypoxic-responsive element was possibly used for gene therapy in ischemia angiocardiopathy and cerebrovascular disease. Artificially synthesize the 36 bp nucleotide sequences of four connection in series HIF-binding sites A/GCGTG(4×HBS)and a 35 bp nucleotide sequences spacing inserted into anterior extremity of CMV promoter TATA Box, then amplified by PCR. The cDNA fragment was confirmed to be right by DNA sequencing. Molecular biology routine method was used to construct a AAV vector regulated by minimal hypoxic-responsive element after the normal CMV promoter in AAV vector was replaced by the CMV promoter included minimal hypoxic-responsive element. Then, NT4-6His-PR39 fusogenic peptide was inserted into MCS of the plasmid, the recombinant AAV vector was obtained by three plasmid co-transfection in 293 cells, in which we can also investigate the expression of 6×His using immunochemistry in hypoxia environment. Artificial HRE was inserted into anterior extremity of CMV promoter and there was a correct spacing between the HRE and the TATA-box. The DNA sequencing and restriction enzyme digestion results indicated that the AAV regulated by hypoxic-responsive element was successfully constructed. Compared to the control group, the expressions of 6×His was significantly increased in the experimental groups in hypoxia environment, which confirmed that the AAV effectually regulated by the minimal HRE was inserted into anterior extremity of CMV promoter. The HRE is inserted into anterior extremity of CMV promoter to lack incision enzyme recognition site by PCR. And eukaryotic expression vector regulated by hypoxic-responsive is constructed. The AAV effectually regulated by the minimal HRE inserted into anterior extremity of CMV promoter. The vector is successfully constructed and it has important theoretical and practical value in the synteresis and therapy of ischemia angiocardiopathy and cerebrovascular disease.

  13. Automated design of genomic Southern blot probes

    PubMed Central

    2010-01-01

    Background Sothern blotting is a DNA analysis technique that has found widespread application in molecular biology. It has been used for gene discovery and mapping and has diagnostic and forensic applications, including mutation detection in patient samples and DNA fingerprinting in criminal investigations. Southern blotting has been employed as the definitive method for detecting transgene integration, and successful homologous recombination in gene targeting experiments. The technique employs a labeled DNA probe to detect a specific DNA sequence in a complex DNA sample that has been separated by restriction-digest and gel electrophoresis. Critically for the technique to succeed the probe must be unique to the target locus so as not to cross-hybridize to other endogenous DNA within the sample. Investigators routinely employ a manual approach to probe design. A genome browser is used to extract DNA sequence from the locus of interest, which is searched against the target genome using a BLAST-like tool. Ideally a single perfect match is obtained to the target, with little cross-reactivity caused by homologous DNA sequence present in the genome and/or repetitive and low-complexity elements in the candidate probe. This is a labor intensive process often requiring several attempts to find a suitable probe for laboratory testing. Results We have written an informatic pipeline to automatically design genomic Sothern blot probes that specifically attempts to optimize the resultant probe, employing a brute-force strategy of generating many candidate probes of acceptable length in the user-specified design window, searching all against the target genome, then scoring and ranking the candidates by uniqueness and repetitive DNA element content. Using these in silico measures we can automatically design probes that we predict to perform as well, or better, than our previous manual designs, while considerably reducing design time. We went on to experimentally validate a number of these automated designs by Southern blotting. The majority of probes we tested performed well confirming our in silico prediction methodology and the general usefulness of the software for automated genomic Southern probe design. Conclusions Software and supplementary information are freely available at: http://www.genes2cognition.org/software/southern_blot PMID:20113467

  14. Analysis of Genome Plasticity in Pathogenic and Commensal Escherichia coli Isolates by Use of DNA Arrays

    PubMed Central

    Dobrindt, Ulrich; Agerer, Franziska; Michaelis, Kai; Janka, Andreas; Buchrieser, Carmen; Samuelson, Martin; Svanborg, Catharina; Gottschalk, Gerhard; Karch, Helge; Hacker, Jörg

    2003-01-01

    Genomes of prokaryotes differ significantly in size and DNA composition. Escherichia coli is considered a model organism to analyze the processes involved in bacterial genome evolution, as the species comprises numerous pathogenic and commensal variants. Pathogenic and nonpathogenic E. coli strains differ in the presence and absence of additional DNA elements contributing to specific virulence traits and also in the presence and absence of additional genetic information. To analyze the genetic diversity of pathogenic and commensal E. coli isolates, a whole-genome approach was applied. Using DNA arrays, the presence of all translatable open reading frames (ORFs) of nonpathogenic E. coli K-12 strain MG1655 was investigated in 26 E. coli isolates, including various extraintestinal and intestinal pathogenic E. coli isolates, 3 pathogenicity island deletion mutants, and commensal and laboratory strains. Additionally, the presence of virulence-associated genes of E. coli was determined using a DNA “pathoarray” developed in our laboratory. The frequency and distributional pattern of genomic variations vary widely in different E. coli strains. Up to 10% of the E. coli K-12-specific ORFs were not detectable in the genomes of the different strains. DNA sequences described for extraintestinal or intestinal pathogenic E. coli are more frequently detectable in isolates of the same origin than in other pathotypes. Several genes coding for virulence or fitness factors are also present in commensal E. coli isolates. Based on these results, the conserved E. coli core genome is estimated to consist of at least 3,100 translatable ORFs. The absence of K-12-specific ORFs was detectable in all chromosomal regions. These data demonstrate the great genome heterogeneity and genetic diversity among E. coli strains and underline the fact that both the acquisition and deletion of DNA elements are important processes involved in the evolution of prokaryotes. PMID:12618447

  15. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements.

    PubMed

    Li, Xiaobin; Xie, Yingzhou; Liu, Meng; Tai, Cui; Sun, Jingyong; Deng, Zixin; Ou, Hong-Yu

    2018-05-04

    oriTfinder is a web server that facilitates the rapid identification of the origin of transfer site (oriT) of a conjugative plasmid or chromosome-borne integrative and conjugative element. The utilized back-end database oriTDB was built upon more than one thousand known oriT regions of bacterial mobile genetic elements (MGEs) as well as the known MGE-encoding relaxases and type IV coupling proteins (T4CP). With a combination of similarity searches for the oriTDB-archived oriT nucleotide sequences and the co-localization of the flanking relaxase homologous genes, the oriTfinder can predict the oriT region with high accuracy in the DNA sequence of a bacterial plasmid or chromosome in minutes. The server also detects the other transfer-related modules, including the potential relaxase gene, T4CP gene and the type IV secretion system gene cluster, and the putative genes coding for virulence factors and acquired antibiotic resistance determinants. oriTfinder may contribute to meeting the increasing demands of re-annotations for bacterial conjugative, mobilizable or non-transferable elements and aid in the rapid risk accession of disease-relevant trait dissemination in pathogenic bacteria of interest. oriTfinder is freely available to all users without any login requirement at http://bioinfo-mml.sjtu.edu.cn/oriTfinder.

  16. Studies on the mechanism of functional cooperativity between progesterone and estrogen receptors.

    PubMed

    Bradshaw, M S; Tsai, S Y; Leng, X H; Dobson, A D; Conneely, O M; O'Malley, B W; Tsai, M J

    1991-09-05

    Steroid response elements (SREs) cooperate with many different cis-acting elements including NF-1 sites, CACCC boxes, and other SREs to induce target gene expression (Schule, R., Muller, M., Otsuka-Murakami, H., and Renkawitz, R. (1988) Nature 332, 87-90; Strahle, U., Schmid, W., and Schutz, G. (1988) EMBO J. 7, 3389-3395). Induction of gene expression can be additive or synergistic with respect to the level of activation by either transactivators. Two mechanisms have been proposed for how synergism occurs: 1) cooperative binding of transcriptional activators to DNA or 2) simultaneous interaction of individually bound activators with a common target protein. We have shown previously that cooperative binding of receptors is important for synergism between two progesterone response elements (PREs). Here we showed that an estrogen response element (ERE) and a PRE can also functionally cooperate and this synergism between an ERE and a PRE is not contributed by cooperative DNA binding. Furthermore, we have demonstrated that the activation domains of the progesterone receptor (PR) (C1Act) are required for synergism between two PREs and sufficient for confirming cooperative binding. However these two activation domains of PR are not sufficient for synergism between an ERE and a PRE. Additional regions within the NH2-terminal and COOH-terminal domains are also required for synergistic interaction between two heterologous SREs.

  17. Characterization of human glucocorticoid receptor complexes formed with DNA fragments containing or lacking glucocorticoid response elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tully, D.B.; Cidlowski, J.A.

    1989-03-07

    Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, ({sup 3}H)TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins priormore » to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. Activated ({sup 3}H)TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA. Stability of the complexes formed between GR and these three DNA fragments was strongly affected by even moderate alterations in either the salt concentration or the pH of the gradient buffer. Under all conditions tested, the complex formed with the MMTV LTR DNA fragment was more stable than the complexes formed with either of the pBR322 DNA fragments. Together these observations indicate that the formation of stable complexes between activated GR and isolated DNA fragments requires the presence of GRE consensus sequences in the DNA.« less

  18. Integrated in silico and biological validation of the blocking effect of Cot-1 DNA on Microarray-CGH.

    PubMed

    Kang, Seung-Hui; Park, Chan Hee; Jeung, Hei Cheul; Kim, Ki-Yeol; Rha, Sun Young; Chung, Hyun Cheol

    2007-06-01

    In array-CGH, various factors may act as variables influencing the result of experiments. Among them, Cot-1 DNA, which has been used as a repetitive sequence-blocking agent, may become an artifact-inducing factor in BAC array-CGH. To identify the effect of Cot-1 DNA on Microarray-CGH experiments, Cot-1 DNA was labeled directly and Microarray-CGH experiments were performed. The results confirmed that probes which hybridized more completely with Cot-1 DNA had a higher sequence similarity to the Alu element. Further, in the sex-mismatched Microarray-CGH experiments, the variation and intensity in the fluorescent signal were reduced in the high intensity probe group in which probes were better hybridized with Cot-1 DNA. Otherwise, those of the low intensity probe group showed no alterations regardless of Cot-1 DNA. These results confirmed by in silico methods that Cot-1 DNA could block repetitive sequences in gDNA and probes. In addition, it was confirmed biologically that the blocking effect of Cot-1 DNA could be presented via its repetitive sequences, especially Alu elements. Thus, in contrast to BAC-array CGH, the use of Cot-1 DNA is advantageous in controlling experimental variation in Microarray-CGH.

  19. Identification of a DNA Segment Exhibiting Rearrangement Modifying Effects upon Transgenic δ-deleting Elements

    PubMed Central

    Janowski, Karen M.; Ledbetter, Stephanie; Mayo, Matthew S.; Hockett, Richard D.

    1997-01-01

    Control of the rearrangement and expression of the T cell receptor α and δ chains is critical for determining T cell type. The process of δ deletion is a candidate mechanism for maintaining separation of the α and δ loci. Mice harboring a transgenic reporter δ deletion construct show α/β T cell lineage–specific use of the transgenic elements. A 48-basepair segment of DNA, termed HPS1A, when deleted from this reporter construct, loses tight lineage-specific rearrangement control of transgenic elements, with abundant rearrangements of transgenic δ-deleting elements now in γ/δ T cells. Furthermore, HPS1A augments recombination frequency of extrachromosomal substrates in an in vitro recombination assay. DNA binding proteins recognizing HPS1A have been identified and are restricted to early B and T cells, during the time of active rearrangement of endogenous TCR and immunoglobulin loci. These data are consistent with δ deletion playing an important role in maintaining separate TCR α and δ loci. PMID:9207011

  20. Response of transposable elements to environmental stressors.

    PubMed

    Miousse, Isabelle R; Chalbot, Marie-Cecile G; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for therapeutic modalities for disease treatment and prevention. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Transposable elements in response to environmental stressors&

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cecile G.; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G.; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as “junk DNA,” TEs are now well-accepted driving forces of evolution and critical regulators the of expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for therapeutic modalities for disease treatment and prevention. PMID:26281766

  2. Selfish Little Circles: Transmission Bias and Evolution of Large Deletion-Bearing Mitochondrial DNA in Caenorhabditis briggsae Nematodes

    PubMed Central

    Clark, Katie A.; Howe, Dana K.; Gafner, Kristin; Kusuma, Danika; Ping, Sita; Estes, Suzanne; Denver, Dee R.

    2012-01-01

    Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans. PMID:22859984

  3. Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals

    PubMed Central

    Fedoriw, Andrew M.; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2012-01-01

    Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals. PMID:22275877

  4. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana

    PubMed Central

    Park, Jin-Sup; Frost, Jennifer M.; Park, Kyunghyuk; Ohr, Hyonhwa; Park, Guen Tae; Kim, Seohyun; Eom, Hyunjoo; Lee, Ilha; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee

    2017-01-01

    The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana. DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation. PMID:28130550

  5. A methodology to annotate systems biology markup language models with the synthetic biology open language.

    PubMed

    Roehner, Nicholas; Myers, Chris J

    2014-02-21

    Recently, we have begun to witness the potential of synthetic biology, noted here in the form of bacteria and yeast that have been genetically engineered to produce biofuels, manufacture drug precursors, and even invade tumor cells. The success of these projects, however, has often failed in translation and application to new projects, a problem exacerbated by a lack of engineering standards that combine descriptions of the structure and function of DNA. To address this need, this paper describes a methodology to connect the systems biology markup language (SBML) to the synthetic biology open language (SBOL), existing standards that describe biochemical models and DNA components, respectively. Our methodology involves first annotating SBML model elements such as species and reactions with SBOL DNA components. A graph is then constructed from the model, with vertices corresponding to elements within the model and edges corresponding to the cause-and-effect relationships between these elements. Lastly, the graph is traversed to assemble the annotating DNA components into a composite DNA component, which is used to annotate the model itself and can be referenced by other composite models and DNA components. In this way, our methodology can be used to build up a hierarchical library of models annotated with DNA components. Such a library is a useful input to any future genetic technology mapping algorithm that would automate the process of composing DNA components to satisfy a behavioral specification. Our methodology for SBML-to-SBOL annotation is implemented in the latest version of our genetic design automation (GDA) software tool, iBioSim.

  6. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  7. Maternal DNA hypomethylation and congenital heart defects

    PubMed Central

    Chowdhury, Shimul; Cleves, Mario A.; MacLeod, Stewart L.; James, S. Jill; Zhao, Weizhi; Hobbs, Charlotte A.

    2011-01-01

    Background Congenital heart defects (CHDs) are among the most prevalent and serious of birth defects. Multiple maternal factors are thought to contribute to CHD development including folate intake. Maternal DNA methylation, which is dependent on folate metabolism, may impact the risk of CHDs. Objective Our study was designed to determine whether maternal long interspersed nucleotide elements-1 (LINE-1) DNA hypomethylation is associated with increased occurrence of non-syndromic CHDs and whether maternal folate-dependent metabolites are correlated with DNA methylation status. Design Using a case-control study design, we measured global DNA methylation status among mothers whose pregnancies were affected by non-syndromic CHDs (n=180) and mothers of unaffected pregnancies (n=187). Methylation of LINE-1 was used as a surrogate marker of global DNA methylation status. The association between DNA methylation and CHD risk was determined while adjusting for selected lifestyle factors. Results LINE-1 DNA methylation was significantly lower in cases compared with controls (p=0.049). After covariate adjustments, a significant difference between cases and controls remained (p=0.010). Among women with LINE-1 methylation in the lowest decile of DNA methylation, the estimated risk of having a CHD-affected pregnancy was almost twice that of women in all other deciles (OR=1.91; 95% CI: 1.03, 3.58). Conclusions Our findings indicate that maternal LINE-1 DNA hypomethylation is associated with an increased risk of CHDs. Future studies investigating the association between maternal DNA methylation patterns and CHDs should be pursued. PMID:21254366

  8. Ultrasensitive quantum dots-based DNA detection and hybridization kinetics analysis with evanescent wave biosensing platform.

    PubMed

    Long, Feng; Wu, Shuxu; He, Miao; Tong, Tiezheng; Shi, Hanchang

    2011-01-15

    Ultrasensitive DNA detection was achieved using a new biosensing platform based on quantum dots (QDs) and total internal reflection fluorescence, which featured an exceptional detection limit of 3.2 amol of bound target DNA. The reusable sensor surface was produced by covalently immobilizing streptavidin onto a self-assembled alkanethiol monolayer of fiber optic probe through a heterobifunctional reagent. Streptavidin served as a versatile binding element for biotinylated single-strand DNA (ssDNA). The ssDNA-coated fiber probe was evaluated as a nucleic acid biosensor through a DNA-DNA hybridization assay for a 30-mer ssDNA, which were the segments of the uidA gene of Escherichia coli and labeled by QDs using avidin-biotin interaction. Several negative control tests revealed the absence of significant non-specific binding. It also showed that bound target DNA could easily be eluted from the sensor surface using SDS solution (pH 1.9) without any significant loss of performance after more than 30 assay cycles. A quantitative measurement of DNA binding kinetics was achieved with high accuracy, indicating an association rate of 1.38×10(6) M(-1) s(-1) and a dissociation rate of 4.67×10(-3) s(-1). The proposed biosensing platform provides a simple, cheap, fast, and robust solution for many potential applications including clinical diagnosis, pathology, and genetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Autoclave method for rapid preparation of bacterial PCR-template DNA.

    PubMed

    Simmon, Keith E; Steadman, Dewey D; Durkin, Sarah; Baldwin, Amy; Jeffrey, Wade H; Sheridan, Peter; Horton, Rene; Shields, Malcolm S

    2004-02-01

    An autoclave method for preparing bacterial DNA for PCR template is presented, it eliminates the use of detergents, organic solvents, and mechanical cellular disruption approaches, thereby significantly reducing processing time and costs while increasing reproducibility. Bacteria are lysed by rapid heating and depressurization in an autoclave. The lysate, cleared by microcentrifugation, was either used directly in the PCR reaction, or concentrated by ultrafiltration. This approach was compared with seven established methods of DNA template preparation from four bacterial sources which included boiling Triton X-100 and SDS, bead beating, lysozyme/proteinase K, and CTAB lysis method components. Bacteria examined were Enterococcus and Escherichia coli, a natural marine bacterial community and an Antarctic cyanobacterial-mat. DNAs were tested for their suitability as PCR templates by repetitive element random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE) analysis. The autoclave method produced PCR amplifiable template comparable or superior to the other methods, with greater reproducibility, much shorter processing time, and at a significantly lower cost.

  10. Cytoplasmic DNA synthesis in Amoeba proteus. I. On the particulate nature of the DNA-containing elements.

    PubMed

    RABINOVITCH, M; PLAUT, W

    1962-12-01

    The incorporation of tritiated thymidine in Amoeba proteus was reinvestigated in order to see if it could be associated with microscopically detectable structures. Staining experiments with basic dyes, including the fluorochrome acridine orange, revealed the presence of large numbers of 0.3 to 0.5 micro particles in the cytoplasm of all cells studied. The effect of nuclease digestion on the dye affinity of the particles suggests that they contain DNA as well as RNA. Centrifugation of living cells at 10,000 g leads to the sedimentation of the particles in the centrifugal third of the ameba near the nucleus. Analysis of centrifuged cells which had been incubated with H(3)-thymidine showed a very high degree of correlation between the location of the nucleic acid-containing granules and that of acid-insoluble, deoxyribonuclease-sensitive labeled molecules and leads to the conclusion that cytoplasmic DNA synthesis in Amoeba proteus occurs in association with these particles.

  11. Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Pur alpha, Pur beta, and MSY1.

    PubMed

    Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J

    2002-03-08

    An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.

  12. In vivo and in vitro characterization of σ70 constitutive promoters by real-time PCR and fluorescent measurements.

    PubMed

    Chappell, James; Freemont, Paul

    2013-01-01

    The characterization of DNA regulatory elements such as ribosome binding sites and transcriptional promoters is a fundamental aim of synthetic biology. Characterization of such DNA regulatory elements by monitoring the synthesis of fluorescent proteins is a commonly used technique to resolve the relative or absolute strengths. These measurements can be used in combination with mathematical models and computer simulation to rapidly assess performance of DNA regulatory elements both in isolation and in combination, to assist predictable and efficient engineering of complex novel biological devices and systems. Here we describe the construction and relative characterization of Escherichia coli (E. coli) σ(70) transcriptional promoters by monitoring the synthesis of green fluorescent protein (GFP) both in vivo in E. coli and in vitro in a E. coli cell-free transcription and translation reaction.

  13. Repeated administration of CGP 46381, a gamma-aminobutyric acidB antagonist, and ethosuximide suppresses seizure-associated cyclic adenosine 3'5' monophosphate response element- and activator protein-1 DNA-binding activities in lethargic (lh/lh) mice.

    PubMed

    Ishige, K; Endo, H; Saito, H; Ito, Y

    2001-01-19

    To characterize seizure-associated increases in cerebral cortical and thalamic cyclic AMP responsive element (CRE)- and activator protein 1 (AP-1) DNA-binding activities in lethargic (lh/lh) mice, a genetic model of absence seizures, we examined the effects of ethosuximide and CGP 46381 on these DNA-binding activities. Repeated administration (twice a day for 5 days) of ethosuximide (200 mg/kg) or CGP 46381 (60 mg/kg) attenuated both seizure behavior and the increased DNA-binding activities, and was more effective than a single administration of these drugs. These treatments did not affect either normal behavior or basal DNA-binding activities in non-epileptic control (+/+) mice. Gel supershift assays revealed that the increased CRE-binding activity was attributable to activation of the binding activity of CREB, and that the c-Fos-c-Jun complex was a component of the increased AP-1 DNA-binding activity.

  14. Continuous in vitro evolution of bacteriophage RNA polymerase promoters

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Banerji, A.; Joyce, G. F.

    1994-01-01

    Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.

  15. What triggers differential DNA methylation of genes and TEs: contribution of body methylation?

    PubMed

    Inagaki, S; Kakutani, T

    2012-01-01

    Transposable elements (TEs) are epigenetically silenced with extensive DNA methylation. The silent epigenetic marks should, however, be excluded from active genes. By genetic approaches, we study mechanisms to remove the heterochromatin marks from transcribed genes. Based on our observations on control of TE transcription, we propose a possible trigger for the TE-specific accumulation of DNA methylation. A critical difference between TEs and genes could be their responses to the DNA methylation in the internal part of transcribed regions. When their internal region is methylated, genes are still transcribed, but TEs could be silenced, which may reflect the obligatory position of every critical cis-acting element within the TE itself. This initial difference of TEs and genes will be amplified by positive feedback loops to stabilize active or silent states. Thus, the mechanisms to accumulate heterochromatin marks within transcribed regions could provide a trigger to induce differential DNA methylation between genes and TEs.

  16. pH-Driven Reversible Self-Assembly of Micron-Scale DNA Scaffolds.

    PubMed

    Green, Leopold N; Amodio, Alessia; Subramanian, Hari K K; Ricci, Francesco; Franco, Elisa

    2017-12-13

    Inspired by cytoskeletal scaffolds that sense and respond dynamically to environmental changes and chemical inputs with a unique capacity for reconfiguration, we propose a strategy that allows the dynamic and reversible control of the growth and breakage of micron-scale synthetic DNA structures upon pH changes. We do so by rationally designing a pH-responsive system composed of synthetic DNA strands that act as pH sensors, regulators, and structural elements. Sensor strands can dynamically respond to pH changes and route regulatory strands to direct the self-assembly of structural elements into tubular structures. This example represents the first demonstration of the reversible assembly and disassembly of micron-scale DNA scaffolds using an external chemical input other than DNA. The capacity to reversibly modulate nanostructure size may promote the development of smart devices for catalysis or drug-delivery applications.

  17. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    PubMed

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  18. Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation.

    PubMed

    Inoue, Azusa; Matoba, Shogo; Zhang, Yi

    2012-12-01

    The methylation state of the paternal genome is rapidly reprogrammed shortly after fertilization. Recent studies have revealed that loss of 5-methylcytosine (5mC) in zygotes correlates with appearance of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). This process is mediated by Tet3 and the 5mC oxidation products generated in zygotes are gradually lost during preimplantation development through a replication-dependent dilution process. Despite these findings, the biological significance of Tet3-mediated oxidation of 5mC to 5hmC/5fC/5caC in zygotes is unknown. DNA methylation plays an important role in silencing gene expression including the repression of transposable elements (TEs). Given that the activation of TEs during preimplantation development correlates with loss of DNA methylation, it is believed that paternal DNA demethylation may have an important role in TE activation. Here we examined this hypothesis and found that Tet3-mediated 5mC oxidation does not have a significant contribution to TE activation. We show that the expression of LINE-1 (long interspersed nucleotide element 1) and ERVL (endogenous retroviruses class III) are activated from both paternal and maternal genomes in zygotes. Inhibition of 5mC oxidation by siRNA-mediated depletion of Tet3 affected neither TE activation, nor global transcription in zygotes. Thus, our study provides the first evidence demonstrating that activation of both TEs and global transcription in zygotes are independent of Tet3-mediated 5mC oxidation.

  19. In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, Tax.

    PubMed

    Paca-Uccaralertkun, S; Zhao, L J; Adya, N; Cross, J V; Cullen, B R; Boros, I M; Giam, C Z

    1994-01-01

    The human T-cell lymphotropic virus type I (HTLV-I) transactivator, Tax, the ubiquitous transcriptional factor cyclic AMP (cAMP) response element-binding protein (CREB protein), and the 21-bp repeats in the HTLV-I transcriptional enhancer form a ternary nucleoprotein complex (L. J. Zhao and C. Z. Giam, Proc. Natl. Acad. Sci. USA 89:7070-7074, 1992). Using an antibody directed against the COOH-terminal region of Tax along with purified Tax and CREB proteins, we selected DNA elements bound specifically by the Tax-CREB complex in vitro. Two distinct but related groups of sequences containing the cAMP response element (CRE) flanked by long runs of G and C residues in the 5' and 3' regions, respectively, were preferentially recognized by Tax-CREB. In contrast, CREB alone binds only to CRE motifs (GNTGACG[T/C]) without neighboring G- or C-rich sequences. The Tax-CREB-selected sequences bear a striking resemblance to the 5' or 3' two-thirds of the HTLV-I 21-bp repeats and are highly inducible by Tax. Gel electrophoretic mobility shift assays, DNA transfection, and DNase I footprinting analyses indicated that the G- and C-rich sequences flanking the CRE motif are crucial for Tax-CREB-DNA ternary complex assembly and Tax transactivation but are not in direct contact with the Tax-CREB complex. These data show that Tax recruits CREB to form a multiprotein complex that specifically recognizes the viral 21-bp repeats. The expanded DNA binding specificity of Tax-CREB and the obligatory role the ternary Tax-CREB-DNA complex plays in transactivation reveal a novel mechanism for regulating the transcriptional activity of leucine zipper proteins like CREB.

  20. DNA topoisomerase 1α promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis.

    PubMed

    Dinh, Thanh Theresa; Gao, Lei; Liu, Xigang; Li, Dongming; Li, Shengben; Zhao, Yuanyuan; O'Leary, Michael; Le, Brandon; Schmitz, Robert J; Manavella, Pablo A; Manavella, Pablo; Li, Shaofang; Weigel, Detlef; Pontes, Olga; Ecker, Joseph R; Chen, Xuemei

    2014-07-01

    RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1α (TOP1α) was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.

  1. Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex.

    PubMed

    Guo, Tai Wei; Bartesaghi, Alberto; Yang, Hui; Falconieri, Veronica; Rao, Prashant; Merk, Alan; Eng, Edward T; Raczkowski, Ashleigh M; Fox, Tara; Earl, Lesley A; Patel, Dinshaw J; Subramaniam, Sriram

    2017-10-05

    Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition. Published by Elsevier Inc.

  2. Dead Element Replicating: Degenerate R2 Element Replication and rDNA Genomic Turnover in the Bacillus rossius Stick Insect (Insecta: Phasmida)

    PubMed Central

    Martoni, Francesco; Eickbush, Danna G.; Scavariello, Claudia; Luchetti, Andrea; Mantovani, Barbara

    2015-01-01

    R2 is an extensively investigated non-LTR retrotransposon that specifically inserts into the 28S rRNA gene sequences of a wide range of metazoans, disrupting its functionality. During R2 integration, first strand synthesis can be incomplete so that 5’ end deleted copies are occasionally inserted. While active R2 copies repopulate the locus by retrotransposing, the non-functional truncated elements should frequently be eliminated by molecular drive processes leading to the concerted evolution of the rDNA array(s). Although, multiple R2 lineages have been discovered in the genome of many animals, the rDNA of the stick insect Bacillus rossius exhibits a peculiar situation: it harbors both a canonical, functional R2 element (R2Brfun) as well as a full-length but degenerate element (R2Brdeg). An intensive sequencing survey in the present study reveals that all truncated variants in stick insects are present in multiple copies suggesting they were duplicated by unequal recombination. Sequencing results also demonstrate that all R2Brdeg copies are full-length, i. e. they have no associated 5' end deletions, and functional assays indicate they have lost the active ribozyme necessary for R2 RNA maturation. Although it cannot be completely ruled out, it seems unlikely that the degenerate elements replicate via reverse transcription, exploiting the R2Brfun element enzymatic machinery, but rather via genomic amplification of inserted 28S by unequal recombination. That inactive copies (both R2Brdeg or 5'-truncated elements) are not eliminated in a short term in stick insects contrasts with findings for the Drosophila R2, suggesting a widely different management of rDNA loci and a lower efficiency of the molecular drive while achieving the concerted evolution. PMID:25799008

  3. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping

    PubMed Central

    Normanno, Davide; Vanzi, Francesco; Pavone, Francesco Saverio

    2008-01-01

    Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In this work, we employ single-molecule manipulation to experimentally address the role of DNA supercoiling in the dynamics and stability of LacI-mediated DNA looping. We performed measurements over a range of degrees of supercoiling between −0.026 and +0.026, in the absence of axial stretching forces. A supercoiling-dependent modulation of the lifetimes of both the looped and unlooped states was observed. Our experiments also provide evidence for multiple structural conformations of the LacI–DNA complex, depending on torsional constraints. The supercoiling-dependent modulation demonstrated here adds an important element to the model of the lac operon. In fact, the complex network of proteins acting on the DNA in a living cell constantly modifies its topological and mechanical properties: our observations demonstrate the possibility of establishing a signaling pathway from factors affecting DNA supercoiling to transcription factors responsible for the regulation of specific sets of genes. PMID:18310101

  4. Sequence-dependent modelling of local DNA bending phenomena: curvature prediction and vibrational analysis.

    PubMed

    Vlahovicek, K; Munteanu, M G; Pongor, S

    1999-01-01

    Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only distorted but not extensively modified. Bending can be predicted by simple static geometry models as well as by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of the bending vibrations quite sensitively depends on the sequence, for example the spectrum of a curved sequence is characteristically different from the spectrum of straight sequence motifs of identical basepair composition. Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and regulatory regions, respectively, that is, sites of extreme curvature and/or bendability are less frequent in protein-coding regions. A WWW server is set up for the prediction of curvature and generation of 3D models from DNA sequences (http:@www.icgeb.trieste.it/dna).

  5. The evolutionary history of Saccharomyces species inferred from completed mitochondrial genomes and revision in the ‘yeast mitochondrial genetic code’

    PubMed Central

    Szabóová, Dana; Bielik, Peter; Poláková, Silvia; Šoltys, Katarína; Jatzová, Katarína; Szemes, Tomáš

    2017-01-01

    Abstract The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species. PMID:28992063

  6. A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G

    PubMed Central

    Shindo, Keisuke; Li, Ming; Gross, Phillip J.; Brown, William L.; Harjes, Elena; Lu, Yongjian; Matsuo, Hiroshi; Harris, Reuben S.

    2012-01-01

    APOBEC3G is the best known of several DNA cytosine deaminases that function to inhibit the replication of parasitic genetic elements including the lentivirus HIV. Several high-resolution structures of the APOBEC3G catalytic domain have been generated, but none reveal how this enzyme binds to substrate single-stranded DNA. Here, we constructed a panel of APOBEC3G amino acid substitution mutants and performed a series of biochemical, genetic, and structural assays to distinguish between “Brim” and “Kink” models for single-strand DNA binding. Each model predicts distinct sets of interactions between surface arginines and negatively charged phosphates in the DNA backbone. Concordant with both models, changing the conserved arginine at position 313 to glutamate abolished both catalytic and restriction activities. In support of the Brim model, arginine to glutamate substitutions at positions 213, 215, and 320 also compromised these APOBEC3G activities. Arginine to glutamate substitutions at Kink model residues 374 and 376 had smaller effects. These observations were supported by A3G catalytic domain-ssDNA chemical shift perturbation experiments. The overall data set is most consistent with the Brim model for single-stranded DNA binding by APOBEC3G. PMID:24832226

  7. Ectopic recombination between Ty elements in Saccharomyces cerevisiae is not induced by DNA damage.

    PubMed

    Parket, A; Kupiec, M

    1992-10-01

    Mitotic recombination is increased when cells are treated with a variety of physical and chemical agents that cause damage to their DNA. We show here, using Saccharomyces cerevisiae strains that carry marked Ty elements, that recombination between members of this family of retrotransposons is not increased by UV irradiation or by treatment with the radiomimetic drug methyl methanesulfonate. Both ectopic recombination and mutation events were elevated by these agents for non-Ty sequences in the same strain. We discuss possible mechanisms that can prevent the induction of recombination between Ty elements.

  8. Geospatial analysis of residential proximity to open-pit coal mining areas in relation to micronuclei frequency, particulate matter concentration, and elemental enrichment factors.

    PubMed

    Espitia-Pérez, Lyda; Arteaga-Pertuz, Marcia; Soto, José Salvador; Espitia-Pérez, Pedro; Salcedo-Arteaga, Shirley; Pastor-Sierra, Karina; Galeano-Páez, Claudia; Brango, Hugo; da Silva, Juliana; Henriques, João A P

    2018-09-01

    During coal surface mining, several activities such as drilling, blasting, loading, and transport produce large quantities of particulate matter (PM) that is directly emitted into the atmosphere. Occupational exposure to this PM has been associated with an increase of DNA damage, but there is a scarcity of data examining the impact of these industrial operations in cytogenetic endpoints frequency and cancer risk of potentially exposed surrounding populations. In this study, we used a Geographic Information Systems (GIS) approach and Inverse Distance Weighting (IDW) methods to perform a spatial and statistical analysis to explore whether exposure to PM 2.5 and PM 10 pollution, and additional factors, including the enrichment of the PM with inorganic elements, contribute to cytogenetic damage in residents living in proximity to an open-pit coal mining area. Results showed a spatial relationship between exposure to elevated concentrations of PM 2.5, PM 10 and micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells. Active pits, disposal, and storage areas could be identified as the possible emission sources of combustion elements. Mining activities were also correlated with increased concentrations of highly enriched elements like S, Cu and Cr in the atmosphere, corroborating its role in the inorganic elements pollution around coal mines. Elements enriched in the PM 2.5 fraction contributed to increasing of MNBN but seems to be more related to increased MNMONO frequencies and DNA damage accumulated in vivo. The combined use of GIS and IDW methods could represent an important tool for monitoring potential cancer risk associated to dynamically distributed variables like the PM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. LINE1 CpG-DNA Hypomethylation in Granulosa Cells and Blood Leukocytes Is Associated With PCOS and Related Traits.

    PubMed

    Sagvekar, Pooja; Mangoli, Vijay; Desai, Sadhana; Patil, Anushree; Mukherjee, Srabani

    2017-04-01

    Altered global DNA methylation is indicative of epigenomic instability concerning chronic diseases. Investigating its incidence and association with polycystic ovary syndrome (PCOS) is essential to understand the etiopathogenesis of this disorder. We assessed global DNA methylation differences in peripheral blood leukocytes (PBLs) and cumulus granulosa cells (CGCs) of controls and women with PCOS; and their association with PCOS and its traits. This study included a total of 102 controls and women with PCOS. Forty-one women undergoing controlled ovarian hyperstimulation (COH) and 61 women not undergoing COH were recruited from in vitro fertilization (IVF) and infertility clinics. DNA methylation was measured by ELISA for 5'-methyl-cytosine content and bisulfite sequencing of 5'-untranslated region (5'-UTR) of long interspersed nucleotide element-1 (LINE1/L1). Total 5'-methyl-cytosine and L1 methylation levels in PBLs and CGCs were similar between controls and women with PCOS. Methylation assessed at CpG sites of L1 5'-UTR revealed a single CpG-site (CpG-4) to be consistently hypomethylated in PBLs of both PCOS groups and CGCs of stimulated PCOS group. In unstimulated women, hypomethylation at CpG-4 was strongly associated with PCOS susceptibility, whereas in stimulated group it showed strong associations with PCOS and its hormonal traits. Furthermore, CGCs demonstrated consistent global and CpG-DNA hypomethylation relative to PBLs, irrespective of normal or disease states. Our study revealed strong association of single hypomethylated CpG-site with PCOS. Identification and characterization of more such methyl-CpG signatures in repetitive elements in larger study populations would provide valuable epigenetic insights into PCOS. Copyright © 2017 by the Endocrine Society

  10. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons.

    PubMed Central

    Xiong, Y; Eickbush, T H

    1988-01-01

    Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. We present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. We have therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons. Images PMID:2447482

  11. Flavonoids and DNA Repair in Prostate Cancer

    DTIC Science & Technology

    2005-12-01

    1-0114 TITLE: Flavonoids and DNA Repair in Prostate Cancer...SUBTITLE Flavonoids and DNA Repair in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-04-1-0114 5c. PROGRAM ELEMENT NUMBER...test the hypothesis that natural products such as flavonoids are able to stimulate the repair of oxidative DNA damage. For this purpose LNCaP

  12. AP1 Keeps Chromatin Poised for Action | Center for Cancer Research

    Cancer.gov

    The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins

  13. Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome.

    PubMed

    Robicheau, Brent M; Susko, Edward; Harrigan, Amye M; Snyder, Marlene

    2017-02-01

    Approximately 35% of the human genome can be identified as sequence devoid of a selected-effect function, and not derived from transposable elements or repeated sequences. We provide evidence supporting a known origin for a fraction of this sequence. We show that: 1) highly degraded, but near full length, ribosomal DNA (rDNA) units, including both 45S and Intergenic Spacer (IGS), can be found at multiple sites in the human genome on chromosomes without rDNA arrays, 2) that these rDNA sequences have a propensity for being centromere proximal, and 3) that sequence at all human functional rDNA array ends is divergent from canonical rDNA to the point that it is pseudogenic. We also show that small sequence strings of rDNA (from 45S + IGS) can be found distributed throughout the genome and are identifiable as an "rDNA-like signal", representing 0.26% of the q-arm of HSA21 and ∼2% of the total sequence of other regions tested. The size of sequence strings found in the rDNA-like signal intergrade into the size of sequence strings that make up the full-length degrading rDNA units found scattered throughout the genome. We conclude that the displaced and degrading rDNA sequences are likely of a similar origin but represent different stages in their evolution towards random sequence. Collectively, our data suggests that over vast evolutionary time, rDNA arrays contribute to the production of junk DNA. The concept that the production of rDNA pseudogenes is a by-product of concerted evolution represents a previously under-appreciated process; we demonstrate here its importance. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene.

    PubMed Central

    Walker, M D; Park, C W; Rosen, A; Aronheim, A

    1990-01-01

    Cell specific expression of the insulin gene is achieved through transcriptional mechanisms operating on multiple DNA sequence elements located in the 5' flanking region of the gene. Of particular importance in the rat insulin I gene are two closely similar 9 bp sequences (IEB1 and IEB2): mutation of either of these leads to 5-10 fold reduction in transcriptional activity. We have screened an expression cDNA library derived from mouse pancreatic endocrine beta cells with a radioactive DNA probe containing multiple copies of the IEB1 sequence. A cDNA clone (A1) isolated by this procedure encodes a protein which shows efficient binding to the IEB1 probe, but much weaker binding to either an unrelated DNA probe or to a probe bearing a single base pair insertion within the recognition sequence. DNA sequence analysis indicates a protein belonging to the helix-loop-helix family of DNA-binding proteins. The ability of the protein encoded by clone A1 to recognize a number of wild type and mutant DNA sequences correlates closely with the ability of each sequence element to support transcription in vivo in the context of the insulin 5' flanking DNA. We conclude that the isolated cDNA may encode a transcription factor that participates in control of insulin gene expression. Images PMID:2181401

  15. DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).

    PubMed

    Zakrzewski, Falk; Schmidt, Martin; Van Lijsebettens, Mieke; Schmidt, Thomas

    2017-06-01

    The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome-wide cytosine methylation in the sugar beet genome was studied in leaves and leaf-derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome-wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. Genetic therapy for the nervous system

    PubMed Central

    Bowers, William J.; Breakefield, Xandra O.; Sena-Esteves, Miguel

    2011-01-01

    Genetic therapy is undergoing a renaissance with expansion of viral and synthetic vectors, use of oligonucleotides (RNA and DNA) and sequence-targeted regulatory molecules, as well as genetically modified cells, including induced pluripotent stem cells from the patients themselves. Several clinical trials for neurologic syndromes appear quite promising. This review covers genetic strategies to ameliorate neurologic syndromes of different etiologies, including lysosomal storage diseases, Alzheimer's disease and other amyloidopathies, Parkinson's disease, spinal muscular atrophy, amyotrophic lateral sclerosis and brain tumors. This field has been propelled by genetic technologies, including identifying disease genes and disruptive mutations, design of genomic interacting elements to regulate transcription and splicing of specific precursor mRNAs and use of novel non-coding regulatory RNAs. These versatile new tools for manipulation of genetic elements provide the ability to tailor the mode of genetic intervention to specific aspects of a disease state. PMID:21429918

  17. Characterization of noncoding regulatory DNA in the human genome.

    PubMed

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  18. The Human L1 Element Causes DNA Double-Strand Breaks in Breast Cancer

    DTIC Science & Technology

    2006-08-01

    cancer is complex. However, defects in DNA repair genes in the double-strand break repair pathway are cancer predisposing. My lab has characterized...a new potentially important source of double-strand breaks (DSBs) in human cells and are interested in characterizing which DNA repair genes act on...this particular source of DNA damage. Selfish DNA accounts for 45% of the human genome. We have recently demonstrated that one particular selfish

  19. Review on iron and its importance for human health

    PubMed Central

    Abbaspour, Nazanin; Hurrell, Richard; Kelishadi, Roya

    2014-01-01

    It is well-known that deficiency or over exposure to various elements has noticeable effects on human health. The effect of an element is determined by several characteristics, including absorption, metabolism, and degree of interaction with physiological processes. Iron is an essential element for almost all living organisms as it participates in a wide variety of metabolic processes, including oxygen transport, deoxyribonucleic acid (DNA) synthesis, and electron transport. However, as iron can form free radicals, its concentration in body tissues must be tightly regulated because in excessive amounts, it can lead to tissue damage. Disorders of iron metabolism are among the most common diseases of humans and encompass a broad spectrum of diseases with diverse clinical manifestations, ranging from anemia to iron overload, and possibly to neurodegenerative diseases. In this review, we discuss the latest progress in studies of iron metabolism and bioavailability, and our current understanding of human iron requirement and consequences and causes of iron deficiency. Finally, we discuss strategies for prevention of iron deficiency. PMID:24778671

  20. Structure and Genetic Content of the Megaplasmids of Neurotoxigenic Clostridium butyricum Type E Strains from Italy

    PubMed Central

    Iacobino, Angelo; Scalfaro, Concetta; Franciosa, Giovanna

    2013-01-01

    We determined the genetic maps of the megaplasmids of six neutoroxigenic Clostridium butyricum type E strains from Italy using molecular and bioinformatics techniques. The megaplasmids are circular, not linear as we had previously proposed. The differently-sized megaplasmids share a genetic region that includes structural, metabolic and regulatory genes. In addition, we found that a 168 kb genetic region is present only in the larger megaplasmids of two tested strains, whereas it is absent from the smaller megaplasmids of the four remaining strains. The genetic region unique to the larger megaplasmids contains, among other features, a locus for clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated (cas) genes, i.e. a bacterial adaptive immune system providing sequence-specific protection from invading genetic elements. Some CRISPR spacer sequences of the neurotoxigenic C. butyricum type E strains showed homology to prophage, phage and plasmid sequences from closely related clostridia species or from distant species, all sharing the intestinal habitat, suggesting that the CRISPR locus might be involved in the microorganism adaptation to the human or animal intestinal environment. Besides, we report here that each of four distinct CRISPR spacers partially matched DNA sequences of different prophages and phages, at identical nucleotide locations. This suggests that, at least in neurotoxigenic C. butyricum type E, the CRISPR locus is potentially able to recognize the same conserved DNA sequence of different invading genetic elements, besides targeting sequences unique to previously encountered invading DNA, as currently predicted for a CRISPR locus. Thus, the results of this study introduce the possibility that CRISPR loci can provide resistance to a wider range of invading DNA elements than previously appreciated. Whether it is more advantageous for the peculiar neurotoxigenic C. butyricum type E strains to maintain or to lose the CRISPR-cas system remains an open question. PMID:23967192

  1. [Molecular-genetic analysis of wheat (T. aestivum L.) genome with introgression of Ae. cylindrica Host genetic elements].

    PubMed

    Galaev, A V; Sivolap, Iu M

    2005-01-01

    Wheat-aegilops hybrid plants Triticum aestivum L. (2n = 42) x Aegilops cylindrica Host (2n = 28) were investigated with using microsatellite markers. In two BC1F9 lines some genome modifications connected with losing DNA fragments of initial variety or appearing of Aegilops genome elements were detected. In some investigated hybrids new amplicons lacking in parental plants were found. Substitution of wheat chromosomes for aegilops chromosomes was not revealed. Analysis of microsatellite loci in BC2F5 plants showed stable introgression of aegilops genetic elements into wheat; elimination of some transferred aegilops DNA fragments in the course of backcrossing; decreasing size of introgressive elements after backcrossing. Introgressive lines were classified according to genome changes.

  2. The expanding universe of transposon technologies for gene and cell engineering.

    PubMed

    Ivics, Zoltán; Izsvák, Zsuzsanna

    2010-12-07

    Transposable elements can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of class II transposable elements (DNA transposons) can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest (be it a fluorescent marker, a small hairpin (sh)RNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be used for stable genomic insertion in a regulated and highly efficient manner. This methodological paradigm opened up a number of avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture, the production of germline transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species, and therapy of genetic disorders in humans. Sleeping Beauty (SB) was the first transposon shown to be capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering including transgenesis, insertional mutagenesis, and therapeutic somatic gene transfer both ex vivo and in vivo. The first clinical application of the SB system will help to validate both the safety and efficacy of this approach. In this review, we describe the major transposon systems currently available (with special emphasis on SB), discuss the various parameters and considerations pertinent to their experimental use, and highlight the state of the art in transposon technology in diverse genetic applications.

  3. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation.

    PubMed

    Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting

    2017-09-12

    Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.

  4. Human genome project: revolutionizing biology through leveraging technology

    NASA Astrophysics Data System (ADS)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  5. Altruistic functions for selfish DNA.

    PubMed

    Faulkner, Geoffrey J; Carninci, Piero

    2009-09-15

    Mammalian genomes are comprised of 30-50% transposed elements (TEs). The vast majority of these TEs are truncated and mutated fragments of retrotransposons that are no longer capable of transposition. Although initially regarded as important factors in the evolution of gene regulatory networks, TEs are now commonly perceived as neutrally evolving and non-functional genomic elements. In a major development, recent works have strongly contradicted this "selfish DNA" or "junk DNA" dogma by demonstrating that TEs use a host of novel promoters to generate RNA on a massive scale across most eukaryotic cells. This transcription frequently functions to control the expression of protein-coding genes via alternative promoters, cis regulatory non protein-coding RNAs and the formation of double stranded short RNAs. If considered in sum, these findings challenge the designation of TEs as selfish and neutrally evolving genomic elements. Here, we will expand upon these themes and discuss challenges in establishing novel TE functions in vivo.

  6. Specificity determinants for the abscisic acid response element.

    PubMed

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.

  7. The MluI cell cycle box (MCB) motifs, but not damage-responsive elements (DREs), are responsible for the transcriptional induction of the rhp51+ gene in response to DNA replication stress.

    PubMed

    Sartagul, Wugangerile; Zhou, Xin; Yamada, Yuki; Ma, Ning; Tanaka, Katsunori; Furuyashiki, Tomoyuki; Ma, Yan

    2014-01-01

    DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase reporter assays, we examined the role of these elements in rhp51+ transcription. The full-length rhp51+ promoter and a promoter fragment containing MCB motifs only, but not a fragment containing DREs, mediated transcriptional activation upon DNA replication stress. Removal of the MCB motifs from the rhp51+ promoter abolished the induction of rhp51+ transcription by DNA replication stress. Consistent with a role for MCB motifs in rhp51+ transcription activation, deletion of the MBF (MCB-binding factor) co-repressors Nrm1 and Yox1 precluded rhp51+ transcriptional induction in response to DNA replication stress. Using cells deficient in checkpoint signaling molecules, we found that the Rad3-Cds1/Chk1 pathway partially mediated rhp51+ transcription in response to DNA replication stress, suggesting the involvement of unidentified checkpoint signaling pathways. Because MBF is critical for G1/S transcription, we examined how the cell cycle affected rhp51+ transcription. The transcription of rhp51+ and cdc18+, an MBF-dependent G1/S gene, peaked simultaneously in synchronized cdc25-22 cells. Furthermore, DNA replication stress maintained transcription of rhp51+ similarly to cdc18+. Collectively, these results suggest that MBF and its regulators mediate rhp51+ transcription in response to DNA replication stress, and underlie rhp51+ transcription at the G1/S transition.

  8. Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

    PubMed Central

    Tarantini, Letizia; Bonzini, Matteo; Apostoli, Pietro; Pegoraro, Valeria; Bollati, Valentina; Marinelli, Barbara; Cantone, Laura; Rizzo, Giovanna; Hou, Lifang; Schwartz, Joel; Bertazzi, Pier Alberto; Baccarelli, Andrea

    2009-01-01

    Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM. PMID:19270791

  9. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in

    The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitablemore » statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4–DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3–DNA complex.« less

  10. Transposon-like properties of the major, long repetitive sequence family in the genome of Physarum polycephalum

    PubMed Central

    Pearston, Douglas H.; Gordon, Mairi; Hardman, Norman

    1985-01-01

    A family of long, highly-repetitive sequences, referred to previously as `HpaII-repeats', dominates the genome of the eukaryotic slime mould Physarum polycephalum. These sequences are found exclusively in scrambled clusters. They account for about one-half of the total complement of repetitive DNA in Physarum, and represent the major sequence component found in hypermethylated, 20-50 kb segments of Physarum genomic DNA that fail to be cleaved using the restriction endonuclease HpaII. The structure of this abundant repetitive element was investigated by analysing cloned segments derived from the hypermethylated genomic DNA compartment. We show that the `HpaII-repeat' forms part of a larger repetitive DNA structure, ∼8.6 kb in length, with several structural features in common with recognised eukaryotic transposable genetic elements. Scrambled clusters of the sequence probably arise as a result of transposition-like events, during which the element preferentially recombines in either orientation with target sites located in other copies of the same repeated sequence. The target sites for transposition/recombination are not related in sequence but in all cases studied they are potentially capable of promoting the formation of small `cruciforms' or `Z-DNA' structures which might be recognised during the recombination process. ImagesFig. 3.Fig. 4. PMID:16453652

  11. A model for genesis of transcription systems.

    PubMed

    Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H

    2016-01-01

    Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.

  12. The 'dark matter' in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin.

    PubMed

    Jiang, Jiming

    2015-04-01

    Sequencing of complete plant genomes has become increasingly more routine since the advent of the next-generation sequencing technology. Identification and annotation of large amounts of noncoding but functional DNA sequences, including cis-regulatory DNA elements (CREs), have become a new frontier in plant genome research. Genomic regions containing active CREs bound to regulatory proteins are hypersensitive to DNase I digestion and are called DNase I hypersensitive sites (DHSs). Several recent DHS studies in plants illustrate that DHS datasets produced by DNase I digestion followed by next-generation sequencing (DNase-seq) are highly valuable for the identification and characterization of CREs associated with plant development and responses to environmental cues. DHS-based genomic profiling has opened a door to identify and annotate the 'dark matter' in sequenced plant genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones.

    PubMed

    Kulstein, Galina; Hadrys, Thorsten; Wiegand, Peter

    2018-01-01

    Short tandem repeat (STR) typing from skeletal remains can be a difficult task. Dependent on the environmental conditions of the provenance of the bones, DNA can be degraded and STR typing inhibited. Generally, dense and compact bones are known to preserve DNA better. Several studies already proved that femora and teeth have high DNA typing success rates. Unfortunately, these elements are not present in all cases involving skeletal remains. Processing partial or singular skeletal elements, it is favorable to select bone areas where DNA preservation is comparably higher. Especially, cranial bones are often accidentally discovered during criminal investigations. The cranial bone is composed of multiple parts. In this examination, we evaluated the potential of the petrous bone for human identification of skeletal remains in forensic case work. Material from different sections of eight unknown cranial bones and-where available-additionally other skeletal elements, collected at the DNA department of the Institute of Legal Medicine in Ulm, Germany, from 2010 to 2017, were processed with an optimized DNA extraction and STR typing strategy. The results highlight that STR typing from the petrous bones leads to reportable profiles in all individuals, even in cases where the analysis of the parietal bone failed. Moreover, the comparison of capillary electrophorese (CE) typing to massively parallel sequencing (MPS) analysis shows that MPS has the potential to analyze degraded human remains and is even capable to provide additional information about phenotype and ancestry of unknown individuals.

  14. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation.

    PubMed

    Willett-Brozick, J E; Savul, S A; Richey, L E; Baysal, B E

    2001-08-01

    Constitutional chromosomal translocations are relatively common causes of human morbidity, yet the DNA double-strand break (DSB) repair mechanisms that generate them are incompletely understood. We cloned, sequenced and analyzed the breakpoint junctions of a familial constitutional reciprocal translocation t(9;11)(p24;q23). Within the 10-kb region flanking the breakpoints, chromosome 11 had 25% repeat elements, whereas chromosome 9 had 98% repeats, 95% of which were L1-type LINE elements. The breakpoints occurred within an L1-type repeat element at 9p24 and at the 3'-end of an Alu sequence at 11q23. At the breakpoint junction of derivative chromosome 9, we discovered an unusually large 41-bp insertion, which showed 100% identity to 12S mitochondrial DNA (mtDNA) between nucleotides 896 and 936 of the mtDNA sequence. Analysis of the human genome failed to show the preexistence of the inserted sequence at normal chromosomes 9 and 11 breakpoint junctions or elsewhere in the genome, strongly suggesting that the insertion was derived from human mtDNA and captured into the junction during the DSB repair process. To our knowledge, these findings represent the first observation of spontaneous germ line insertion of modern human mtDNA sequences and suggest that DSB repair may play a role in inter-organellar gene transfer in vivo. Our findings also provide evidence for a previously unrecognized insertional mechanism in human, by which non-mobile extra-chromosomal fragments can be inserted into the genome at DSB repair junctions.

  15. Differential DNA methylation at conserved non-genic elements and evidence for transgenerational inheritance following developmental exposure to mono(2-ethylhexyl) phthalate and 5-azacytidine in zebrafish.

    PubMed

    Kamstra, Jorke H; Sales, Liana Bastos; Aleström, Peter; Legler, Juliette

    2017-01-01

    Exposure to environmental stressors during development may lead to latent and transgenerational adverse health effects. To understand the role of DNA methylation in these effects, we used zebrafish as a vertebrate model to investigate heritable changes in DNA methylation following chemical-induced stress during early development. We exposed zebrafish embryos to non-embryotoxic concentrations of the biologically active phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP, 30 µM) and the DNA methyltransferase 1 inhibitor 5-azacytidine (5AC, 10 µM). Direct, latent and transgenerational effects on DNA methylation were assessed using global, genome-wide and locus-specific DNA methylation analyses. Following direct exposure in zebrafish embryos from 0 to 6 days post-fertilization, genome-wide analysis revealed a multitude of differentially methylated regions, strongly enriched at conserved non-genic elements for both compounds. Pathways involved in adipogenesis were enriched with the putative obesogenic compound MEHP. Exposure to 5AC resulted in enrichment of pathways involved in embryonic development and transgenerational effects on larval body length. Locus-specific methylation analysis of 10 differentially methylated sites revealed six of these loci differentially methylated in sperm sampled from adult zebrafish exposed during development to 5AC, and in first and second generation larvae. With MEHP, consistent changes were found at 2 specific loci in first and second generation larvae. Our results suggest a functional role for DNA methylation on cis-regulatory conserved elements following developmental exposure to compounds. Effects on these regions are potentially transferred to subsequent generations.

  16. Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace.

    PubMed

    Ghosh, Manosij; Öner, Deniz; Poels, Katrien; Tabish, Ali M; Vlaanderen, Jelle; Pronk, Anjoeka; Kuijpers, Eelco; Lan, Qing; Vermeulen, Roel; Bekaert, Bram; Hoet, Peter Hm; Godderis, Lode

    This study was designed to assess the epigenetic alterations in blood cells, induced by occupational exposure to multi-wall carbon nanotubes (MWCNT). The study population comprised of MWCNT-exposed workers (n=24) and unexposed controls (n=43) from the same workplace. We measured global DNA methylation/hydroxymethylation levels on the 5th cytosine residues using a validated liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. Sequence-specific methylation of LINE1 retrotransposable element 1 (L1RE1) elements, and promoter regions of functionally important genes associated with epigenetic regulation [DNA methyltransferase-1 (DNMT1) and histone deacetylase 4 (HDAC4)], DNA damage/repair and cell cycle pathways [nuclear protein, coactivator of histone transcription/ATM serine/threonine kinase (NPAT/ATM)], and a potential transforming growth factor beta (TGF-β) repressor [SKI proto-oncogene (SKI)] were studied using bisulfite pyrosequencing. Analysis of global DNA methylation levels and hydroxymethylation did not reveal significant difference between the MWCNT-exposed and control groups. No significant changes in Cytosine-phosphate-Guanine (CpG) site methylation were observed for the LINE1 (L1RE1) elements. Further analysis of gene-specific DNA methylation showed a significant change in methylation for DNMT1, ATM, SKI, and HDAC4 promoter CpGs in MWCNT-exposed workers. Since DNA methylation plays an important role in silencing/regulation of the genes, and many of these genes have been associated with occupational and smoking-induced diseases and cancer (risk), aberrant methylation of these genes might have a potential effect in MWCNT-exposed workers.

  17. Interaction of the alpha-subunit of Escherichia coli RNA polymerase with DNA: rigid body nature of the protein-DNA contact.

    PubMed

    Heyduk, E; Baichoo, N; Heyduk, T

    2001-11-30

    The alpha-subunit of Escherichia coli RNA polymerase plays an important role in the activity of many promoters by providing a direct protein-DNA contact with a specific sequence (UP element) located upstream of the core promoter sequence. To obtain insight into the nature of thermodynamic forces involved in the formation of this protein-DNA contact, the binding of the alpha-subunit of E. coli RNA polymerase to a fluorochrome-labeled DNA fragment containing the rrnB P1 promoter UP element sequence was quantitatively studied using fluorescence polarization. The alpha dimer and DNA formed a 1:1 complex in solution. Complex formation at 25 degrees C was enthalpy-driven, the binding was accompanied by a net release of 1-2 ions, and no significant specific ion effects were observed. The van't Hoff plot of temperature dependence of binding was linear suggesting that the heat capacity change (Deltac(p)) was close to zero. Protein footprinting with hydroxyradicals showed that the protein did not change its conformation upon protein-DNA contact formation. No conformational changes in the DNA molecule were detected by CD spectroscopy upon protein-DNA complex formation. The thermodynamic characteristics of the binding together with the lack of significant conformational changes in the protein and in the DNA suggested that the alpha-subunit formed a rigid body-like contact with the DNA in which a tight complementary recognition interface between alpha-subunit and DNA was not formed.

  18. Intercalation of XR5944 with the estrogen response element is modulated by the tri-nucleotide spacer sequence between half-sites

    PubMed Central

    Sidell, Neil; Mathad, Raveendra I.; Shu, Feng-jue; Zhang, Zhenjiang; Kallen, Caleb B.; Yang, Danzhou

    2011-01-01

    DNA-intercalating molecules can impair DNA replication, DNA repair, and gene transcription. We previously demonstrated that XR5944, a DNA bis-intercalator, specifically blocks binding of estrogen receptor-α (ERα) to the consensus estrogen response element (ERE). The consensus ERE sequence is AGGTCAnnnTGACCT, where nnn is known as the tri-nucleotide spacer. Recent work has shown that the tri-nucleotide spacer can modulate ERα-ERE binding affinity and ligand-mediated transcriptional responses. To further understand the mechanism by which XR5944 inhibits ERα-ERE binding, we tested its ability to interact with consensus EREs with variable tri-nucleotide spacer sequences and with natural but non-consensus ERE sequences using one dimensional nuclear magnetic resonance (1D 1H NMR) titration studies. We found that the tri-nucleotide spacer sequence significantly modulates the binding of XR5944 to EREs. Of the sequences that were tested, EREs with CGG and AGG spacers showed the best binding specificity with XR5944, while those spaced with TTT demonstrated the least specific binding. The binding stoichiometry of XR5944 with EREs was 2:1, which can explain why the spacer influences the drug-DNA interaction; each XR5944 spans four nucleotides (including portions of the spacer) when intercalating with DNA. To validate our NMR results, we conducted functional studies using reporter constructs containing consensus EREs with tri-nucleotide spacers CGG, CTG, and TTT. Results of reporter assays in MCF-7 cells indicated that XR5944 was significantly more potent in inhibiting the activity of CGG- than TTT-spaced EREs, consistent with our NMR results. Taken together, these findings predict that the anti-estrogenic effects of XR5944 will depend not only on ERE half-site composition but also on the tri-nucleotide spacer sequence of EREs located in the promoters of estrogen-responsive genes. PMID:21333738

  19. Ethanol deregulates Mecp2/MeCP2 in differentiating neural stem cells via interplay between 5-methylcytosine and 5-hydroxymethylcytosine at the Mecp2 regulatory elements

    PubMed Central

    Liyanage, Vichithra Rasangi Batuwita; Zachariah, Robby Mathew; Davie, James Ronald; Rastegar, Mojgan

    2017-01-01

    Methyl CpG Binding Protein 2 (MeCP2) is an important epigenetic factor in the brain. MeCP2 expression is affected by different environmental insults including alcohol exposure. Accumulating evidence supports the role of aberrant MeCP2 expression in ethanol exposure-induced neurological symptoms. However, the underlying molecular mechanisms of ethanol-induced MeCP2 deregulation remain elusive. To study the effect of ethanol on Mecp2/MeCP2 expression during neurodifferentiation, we established an in vitro model of ethanol exposure, using differentiating embryonic brain-derived neural stem cells (NSC). Previously, we demonstrated the impact of DNA methylation at the Mecp2 regulatory elements (REs) on Mecp2/MeCP2 expression in vitro and in vivo. Here, we studied whether altered DNA methylation at these REs is associated with the Mecp2/MeCP2 misexpression induced by ethanol. Binge-like and continuous ethanol exposure upregulated Mecp2/MeCP2, while ethanol withdrawal downregulated its expression. DNA methylation analysis by methylated DNA immunoprecipitation indicated that increased 5-hydroxymethylcytosine (5hmC) and decreased 5-methylcytosine (5mC) enrichment at specific REs were associated with upregulated Mecp2/MeCP2 following continuous ethanol exposure. The reduced Mecp2/MeCP2 expression upon ethanol withdrawal was associated with reduced 5hmC and increased 5mC enrichment at these REs. Moreover, ethanol altered global DNA methylation (5mC and 5hmC). Under the tested conditions, ethanol had minimal effects on NSC cell fate commitment, but caused changes in neuronal morphology and glial cell size. Taken together, our data represent an epigenetic mechanism for ethanol-mediated misexpression of Mecp2/MeCP2 in differentiating embryonic brain cells. We also show the potential role of DNA methylation and MeCP2 in alcohol-related neurological disorders, specifically Fetal Alcohol Spectrum Disorders. PMID:25620416

  20. Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding.

    PubMed

    Shkolnik, Doron; Bar-Zvi, Dudy

    2008-05-01

    The manipulation of transacting factors is commonly used to achieve a wide change in the expression of a large number of genes in transgenic plants as a result of a change in the expression of a single gene product. This is mostly achieved by the overexpression of transactivator or repressor proteins. In this study, it is demonstrated that the overexpression of an exogenous DNA-binding protein can be used to compete with the expression of an endogenous transcription factor sharing the same DNA-binding sequence. Arabidopsis was transformed with cDNA encoding tomato abscisic acid stress ripening 1 (ASR1), a sequence-specific DNA protein that has no orthologues in the Arabidopsis genome. ASR1-overexpressing (ASR1-OE) plants display an abscisic acid-insensitive 4 (abi4) phenotype: seed germination is not sensitive to inhibition by abscisic acid (ABA), glucose, NaCl and paclobutrazol. ASR1 binds coupling element 1 (CE1), a cis-acting element bound by the ABI4 transcription factor, located in the ABI4-regulated promoters, including that of the ABI4 gene. Chromatin immunoprecipitation demonstrates that ASR1 is bound in vivo to the promoter of the ABI4 gene in ASR1-OE plants, but not to promoters of genes known to be regulated by the transcription factors ABI3 or ABI5. Real-time polymerase chain reaction (PCR) analysis confirmed that the expression of ABI4 and ABI4-regulated genes is markedly reduced in ASR1-OE plants. Therefore, it is concluded that the abi4 phenotype of ASR1-OE plants is the result of competition between the foreign ASR1 and the endogenous ABI4 on specific promoter DNA sequences. The biotechnological advantage of using this approach in crop plants from the Brassicaceae family to reduce the transactivation activity of ABI4 is discussed.

  1. Biorecognition Element Design and Characterization for Human Performance Biomarkers Sensing

    DTIC Science & Technology

    2015-07-16

    immobilize aptamers and peptides on the AuNP surface. The parameters optimized in this work included reaction times, ligand ratio (PEG-OH vs PEG- COOH...instructions for performing peptides and aptamers surface immobilization were provided to collaborators in order to create nanoprobes that were integrated...with sequences made of less than 20 amino acids) and DNA aptamers (via on-off structural switching properties) are appealing BREs for new sensors

  2. A novel species-specific tandem repeat DNA family from Sinapis arvensis: detection of telomere-like sequences.

    PubMed

    Kapila, R; Das, S; Srivastava, P S; Lakshmikumaran, M

    1996-08-01

    DNA sequences representing a tandemly repeated DNA family of the Sinapis arvensis genome were cloned and characterized. The 700-bp tandem repeat family is represented by two clones, pSA35 and pSA52, which are 697 and 709 bp in length, respectively. Dot matrix analysis of the sequences indicates the presence of repeated elements within each monomeric unit. Sequence analysis of the repetitive region of clones pSA35 and pSA52 shows that there are several copies of a 7-bp repeat element organized in tandem. The consensus sequence of this repeat element is 5'-TTTAGGG-3'. These elements are highly mutated and the difference in length between the two clones is due to different copy numbers of these elements. The repetitive region of clone pSA35 has 26 copies of the element TTTAGGG, whereas clone pSA52 has 28 copies. The repetitive region in both clones is flanked on either side by inverted repeats that may be footprints of a transposition event. Sequence comparison indicates that the element TTTAGGG is identical to telomeric repeats present in Arabidopsis, maize, tomato, and other plants. However, Bal31 digestion kinetics indicates non-telomeric localization of the 700-bp tandem repeats. The clones represent a novel repeat family as (i) they contain telomere-like motifs as subrepeats within each unit; and (ii) they do not hybridize to related crucifers and are species-specific in nature.

  3. Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA.

    PubMed

    Dionne, Isabelle; Larose, Stéphanie; Dandjinou, Alain T; Abou Elela, Sherif; Wellinger, Raymund J

    2013-07-01

    Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.

  4. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging themore » ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.« less

  5. Evolutionary diversity and potential recombinogenic role of integration targets of non-LTR retrotransposons

    PubMed Central

    Gentles, Andrew J.; Kohany, Oleksiy; Jurka, Jerzy

    2005-01-01

    Short interspersed elements (SINEs) make up a significant fraction of total DNA in mammalian genomes, providing a rich substrate for chromosomal rearrangements by SINE-SINE recombinations. Proliferation of mammalian SINEs is mediated primarily by LINE1 (L1) non-LTR retrotransposons that preferentially integrate at DNA sequence targets with average length ~15 bp and containing conserved endonucleolytic nicking signals at both ends. We report that sequence variations in the first of the two nicking signals, represented by a 5′TT-AAAA consensus sequence, affect the position of the second signal thus leading to target site duplications (TSDs) of different lengths. The length distribution of TSDs appears to be affected also by L1-encoded enzyme variants, since targets with the same 5′ nicking site can be of different average length in different mammalian species. Taking this into account, we re-analyzed the second nicking site and found that it is larger and includes more conserved sites than previously appreciated, with a consensus of 5′ANTNTN-AA. We also studied potential involvement of the nicking sites in stimulating recombinations between SINE elements. We determined that SINE elements retaining TSDs with perfect 5′TT-AAAA nicking sites appear to be lost relatively rapidly from the human and rat genomes, and less rapidly from dog. We speculate that the introduction of single-strand DNA breaks induced by recurring endonucleolytic attacks at these sites, combined with the ubiquitousness of SINEs, may significantly promote recombination between repetitive elements, leading to the observed losses. At the same time new L1 subfamilies may be selected for “incompatibility” with pre-existing targets. This provides a possible driving force for the continual emergence of new L1 subfamilies which, in turn, may affect selection of L1-dependent SINE subfamilies. PMID:15944437

  6. Discovering functional DNA elements using population genomic information: a proof of concept using human mtDNA.

    PubMed

    Schrider, Daniel R; Kern, Andrew D

    2014-06-09

    Identifying the complete set of functional elements within the human genome would be a windfall for multiple areas of biological research including medicine, molecular biology, and evolution. Complete knowledge of function would aid in the prioritization of loci when searching for the genetic bases of disease or adaptive phenotypes. Because mutations that disrupt function are disfavored by natural selection, purifying selection leaves a detectable signature within functional elements; accordingly, this signal has been exploited for over a decade through the use of genomic comparisons of distantly related species. While this is so, the functional complement of the genome changes extensively across time and between lineages; therefore, evidence of the current action of purifying selection in humans is essential. Because the removal of deleterious mutations by natural selection also reduces within-species genetic diversity within functional loci, dense population genetic data have the potential to reveal genomic elements that are currently functional. Here, we assess the potential of this approach by examining an ultradeep sample of human mitochondrial genomes (n = 16,411). We show that the high density of polymorphism in this data set precisely delineates regions experiencing purifying selection. Furthermore, we show that the number of segregating alleles at a site is strongly correlated with its divergence across species after accounting for known mutational biases in human mitochondrial DNA (ρ = 0.51; P < 2.2 × 10(-16)). These two measures track one another at a remarkably fine scale across many loci-a correlation that is purely the result of natural selection. Our results demonstrate that genetic variation has the potential to reveal with surprising precision which regions in the genome are currently performing important functions and likely to have deleterious fitness effects when mutated. As more complete human genomes are sequenced, similar power to reveal purifying selection may be achievable in the human nuclear genome. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs).

    PubMed

    Szuplewska, Magdalena; Ludwiczak, Marta; Lyzwa, Katarzyna; Czarnecki, Jakub; Bartosik, Dariusz

    2014-01-01

    Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons--Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element "captured" with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements.

  8. A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells.

    PubMed

    Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo

    2016-05-01

    Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Interplay between CedA, rpoB and double stranded DNA: A step towards understanding CedA mediated cell division in E. coli.

    PubMed

    Sharma, Pankaj; Tomar, Anil Kumar; Kundu, Bishwajit

    2018-02-01

    Cell division is compromised in DnaAcos mutant E. coli cells due to chromosome over-replication. In these cells, CedA acts as a regulatory protein and initiates cell division by a hitherto unknown mechanism. CedA, a double stranded DNA binding protein, interacts with various subunits of RNA polymerase complex, including rpoB. To reveal how this concert between CedA, rpoB and DNA brings about cell division in E. coli, we performed biophysical and in silico analysis and obtained mechanistic insights. Interaction between CedA and rpoB was shown by circular dichroism spectrometry and in silico docking experiments. Further, CedA and rpoB were allowed to interact individually to a selected DNA and their binding was monitored by fluorescence spectroscopy. The binding constants of these interactions as determined by BioLayer Interferometry clearly show that rpoB binds to DNA with higher affinity (K D2 =<1.0E-12M) as compared to CedA (K D2 =9.58E-09M). These findings were supported by docking analysis where 12 intermolecular H-bonds were formed in rpoB-DNA complex as compared to 4 in CedA-DNA complex. Based on our data we propose that in E. coli cells chromosome over-replication signals CedA to recruit rpoB to specific DNA site(s), which initiates transcription of cell division regulatory elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Self-entanglement of long linear DNA vectors using transient non-B-DNA attachment points: a new concept for improvement of non-viral therapeutic gene delivery.

    PubMed

    Tolmachov, Oleg E

    2012-05-01

    The cell-specific and long-term expression of therapeutic transgenes often requires a full array of native gene control elements including distal enhancers, regulatory introns and chromatin organisation sequences. The delivery of such extended gene expression modules to human cells can be accomplished with non-viral high-molecular-weight DNA vectors, in particular with several classes of linear DNA vectors. All high-molecular-weight DNA vectors are susceptible to damage by shear stress, and while for some of the vectors the harmful impact of shear stress can be minimised through the transformation of the vectors to compact topological configurations by supercoiling and/or knotting, linear DNA vectors with terminal loops or covalently attached terminal proteins cannot be self-compacted in this way. In this case, the only available self-compacting option is self-entangling, which can be defined as the folding of single DNA molecules into a configuration with mutual restriction of molecular motion by the individual segments of bent DNA. A negatively charged phosphate backbone makes DNA self-repulsive, so it is reasonable to assume that a certain number of 'sticky points' dispersed within DNA could facilitate the entangling by bringing DNA segments into proximity and by interfering with the DNA slipping away from the entanglement. I propose that the spontaneous entanglement of vector DNA can be enhanced by the interlacing of the DNA with sites capable of mutual transient attachment through the formation of non-B-DNA forms, such as interacting cruciform structures, inter-segment triplexes, slipped-strand DNA, left-handed duplexes (Z-forms) or G-quadruplexes. It is expected that the non-B-DNA based entanglement of the linear DNA vectors would consist of the initial transient and co-operative non-B-DNA mediated binding events followed by tight self-ensnarement of the vector DNA. Once in the nucleoplasm of the target human cells, the DNA can be disentangled by type II topoisomerases. The technology for such self-entanglement can be an avenue for the improvement of gene delivery with high-molecular-weight naked DNA using therapeutically important methods associated with considerable shear stress. Priority applications include in vivo muscle electroporation and sonoporation for Duchenne muscular dystrophy patients, aerosol inhalation to reach the target lung cells of cystic fibrosis patients and bio-ballistic delivery to skin melanomas with the vector DNA adsorbed on gold or tungsten projectiles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Investigating population continuity with ancient DNA under a spatially explicit simulation framework.

    PubMed

    Silva, Nuno Miguel; Rio, Jeremy; Currat, Mathias

    2017-12-15

    Recent advances in sequencing technologies have allowed for the retrieval of ancient DNA data (aDNA) from skeletal remains, providing direct genetic snapshots from diverse periods of human prehistory. Comparing samples taken in the same region but at different times, hereafter called "serial samples", may indicate whether there is continuity in the peopling history of that area or whether an immigration of a genetically different population has occurred between the two sampling times. However, the exploration of genetic relationships between serial samples generally ignores their geographical locations and the spatiotemporal dynamics of populations. Here, we present a new coalescent-based, spatially explicit modelling approach to investigate population continuity using aDNA, which includes two fundamental elements neglected in previous methods: population structure and migration. The approach also considers the extensive temporal and geographical variance that is commonly found in aDNA population samples. We first showed that our spatially explicit approach is more conservative than the previous (panmictic) approach and should be preferred to test for population continuity, especially when small and isolated populations are considered. We then applied our method to two mitochondrial datasets from Germany and France, both including modern and ancient lineages dating from the early Neolithic. The results clearly reject population continuity for the maternal line over the last 7500 years for the German dataset but not for the French dataset, suggesting regional heterogeneity in post-Neolithic migratory processes. Here, we demonstrate the benefits of using a spatially explicit method when investigating population continuity with aDNA. It constitutes an improvement over panmictic methods by considering the spatiotemporal dynamics of genetic lineages and the precise location of ancient samples. The method can be used to investigate population continuity between any pair of serial samples (ancient-ancient or ancient-modern) and to investigate more complex evolutionary scenarios. Although we based our study on mitochondrial DNA sequences, diploid molecular markers of different types (DNA, SNP, STR) can also be simulated with our approach. It thus constitutes a promising tool for the analysis of the numerous aDNA datasets being produced, including genome wide data, in humans but also in many other species.

  12. Unit-length line-1 transcripts in human teratocarcinoma cells.

    PubMed Central

    Skowronski, J; Fanning, T G; Singer, M F

    1988-01-01

    We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons. Images PMID:2454389

  13. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae).

    PubMed

    Vierna, J; Jensen, K T; Martínez-Lage, A; González-Tizón, A M

    2011-08-01

    The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant.

  14. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae)

    PubMed Central

    Vierna, J; Jensen, K T; Martínez-Lage, A; González-Tizón, A M

    2011-01-01

    The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at −25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant. PMID:21364693

  15. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development.

    PubMed

    Sun, Cheng; Wyngaard, Grace; Walton, D Brian; Wichman, Holly A; Mueller, Rachel Lockridge

    2014-03-11

    Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.

  16. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development

    PubMed Central

    2014-01-01

    Background Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution — some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 – 75 Gb, 12–74 Gb of which are lost from pre-somatic cell lineages at germline – soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Results Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Conclusions Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms. PMID:24618421

  17. Ribosomal DNA Organization Before and After Magnification in Drosophila melanogaster

    PubMed Central

    Bianciardi, Alessio; Boschi, Manuela; Swanson, Ellen E.; Belloni, Massimo; Robbins, Leonard G.

    2012-01-01

    In all eukaryotes, the ribosomal RNA genes are stably inherited redundant elements. In Drosophila melanogaster, the presence of a Ybb− chromosome in males, or the maternal presence of the Ribosomal exchange (Rex) element, induces magnification: a heritable increase of rDNA copy number. To date, several alternative classes of mechanisms have been proposed for magnification: in situ replication or extra-chromosomal replication, either of which might act on short or extended strings of rDNA units, or unequal sister chromatid exchange. To eliminate some of these hypotheses, none of which has been clearly proven, we examined molecular-variant composition and compared genetic maps of the rDNA in the bb2 mutant and in some magnified bb+ alleles. The genetic markers used are molecular-length variants of IGS sequences and of R1 and R2 mobile elements present in many 28S sequences. Direct comparison of PCR products does not reveal any particularly intensified electrophoretic bands in magnified alleles compared to the nonmagnified bb2 allele. Hence, the increase of rDNA copy number is diluted among multiple variants. We can therefore reject mechanisms of magnification based on multiple rounds of replication of short strings. Moreover, we find no changes of marker order when pre- and postmagnification maps are compared. Thus, we can further restrict the possible mechanisms to two: replication in situ of an extended string of rDNA units or unequal exchange between sister chromatids. PMID:22505623

  18. Cloning and Characterization of the Scalloped Region of Drosophila Melanogaster

    PubMed Central

    Campbell, S. D.; Duttaroy, A.; Katzen, A. L.; Chovnick, A.

    1991-01-01

    Viable mutants of the scalloped gene (sd) of Drosophila melanogaster exhibit defects that can include gapping of the wing margin and ectopic bristle formation on the wing. Lethal sd alleles characterized in the present study now implicate this gene in a genetic function essential for normal development. In order to further characterize the developmental role of this gene, we have undertaken to clone and characterize the region where sd maps. A P[ry(+)] transposon insertion at 13F associated with sd([ry+2216]) served as the starting point for a 42-kb chromosomal walk. Molecular lesions associated with viable and lethal sd alleles were characterized by genomic hybridization analysis as a means of defining the extent of the gene. DNA rearrangements associated with 11 viable sd alleles map to a 2-kb interval which appears to be a ``hot spot'' for P element activity. Four of five recessive lethal sd mutations were mapped by denaturing gradient gel electrophoresis to a region 12-14 kb away from the region of viable lesions. In a sd(+) genotype, at least two structurally related and developmentally regulated transcripts hybridize to the genomic region where several sd lethal alleles have been localized. A viable mutation, sd(58), used for comparison in the transcript analysis, makes at least two slightly smaller transcripts that also hybridize to this region. Preliminary analysis of cDNA clones has identified three structurally related transcripts that hybridize to this genomic region. The 5' end of these transcripts extends into the 2-kb genomic region wherein DNA rearrangements were seen in the P element rearrangements. We favor the view that the transcripts represented by these cDNA clones are products of the sd gene. If this is true, the sd gene would include genomic sequences extending over at least 14 kb of the described chromosomal walk, and would appear to be subject to alternative splicing. PMID:1706292

  19. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.

    PubMed

    Mikkelsen, Michael D; Thomashow, Michael F

    2009-10-01

    The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.

  20. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution.

    PubMed

    Ishii, Satoshi; Sadowsky, Michael J

    2009-04-01

    A large number of repetitive DNA sequences are found in multiple sites in the genomes of numerous bacteria, archaea and eukarya. While the functions of many of these repetitive sequence elements are unknown, they have proven to be useful as the basis of several powerful tools for use in molecular diagnostics, medical microbiology, epidemiological analyses and environmental microbiology. The repetitive sequence-based PCR or rep-PCR DNA fingerprint technique uses primers targeting several of these repetitive elements and PCR to generate unique DNA profiles or 'fingerprints' of individual microbial strains. Although this technique has been extensively used to examine diversity among variety of prokaryotic microorganisms, rep-PCR DNA fingerprinting can also be applied to microbial ecology and microbial evolution studies since it has the power to distinguish microbes at the strain or isolate level. Recent advancement in rep-PCR methodology has resulted in increased accuracy, reproducibility and throughput. In this minireview, we summarize recent improvements in rep-PCR DNA fingerprinting methodology, and discuss its applications to address fundamentally important questions in microbial ecology and evolution.

  1. Tetris Is a Foldback Transposon that Provided the Building Blocks for an Emerging Satellite DNA of Drosophila virilis

    PubMed Central

    Dias, Guilherme B.; Svartman, Marta; Delprat, Alejandra; Ruiz, Alfredo; Kuhn, Gustavo C.S.

    2014-01-01

    Transposable elements (TEs) and satellite DNAs (satDNAs) are abundant components of most eukaryotic genomes studied so far and their impact on evolution has been the focus of several studies. A number of studies linked TEs with satDNAs, but the nature of their evolutionary relationships remains unclear. During in silico analyses of the Drosophila virilis assembled genome, we found a novel DNA transposon we named Tetris based on its modular structure and diversity of rearranged forms. We aimed to characterize Tetris and investigate its role in generating satDNAs. Data mining and sequence analysis showed that Tetris is apparently nonautonomous, with a structure similar to foldback elements, and present in D. virilis and D. americana. Herein, we show that Tetris shares the final portions of its terminal inverted repeats (TIRs) with DAIBAM, a previously described miniature inverted transposable element implicated in the generation of chromosome inversions. Both elements are likely to be mobilized by the same autonomous TE. Tetris TIRs contain approximately 220-bp internal tandem repeats that we have named TIR-220. We also found TIR-220 repeats making up longer (kb-size) satDNA-like arrays. Using bioinformatic, phylogenetic and cytogenomic tools, we demonstrated that Tetris has contributed to shaping the genomes of D. virilis and D. americana, providing internal tandem repeats that served as building blocks for the amplification of satDNA arrays. The β-heterochromatic genomic environment seemed to have favored such amplification. Our results imply for the first time a role for foldback elements in generating satDNAs. PMID:24858539

  2. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  3. Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation In Vivo in the Escherichia coli Type I-E CRISPR-Cas System.

    PubMed

    Cooper, Lauren A; Stringer, Anne M; Wade, Joseph T

    2018-04-17

    In clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) immunity systems, short CRISPR RNAs (crRNAs) are bound by Cas proteins, and these complexes target invading nucleic acid molecules for degradation in a process known as interference. In type I CRISPR-Cas systems, the Cas protein complex that binds DNA is known as Cascade. Association of Cascade with target DNA can also lead to acquisition of new immunity elements in a process known as primed adaptation. Here, we assess the specificity determinants for Cascade-DNA interaction, interference, and primed adaptation in vivo , for the type I-E system of Escherichia coli Remarkably, as few as 5 bp of crRNA-DNA are sufficient for association of Cascade with a DNA target. Consequently, a single crRNA promotes Cascade association with numerous off-target sites, and the endogenous E. coli crRNAs direct Cascade binding to >100 chromosomal sites. In contrast to the low specificity of Cascade-DNA interactions, >18 bp are required for both interference and primed adaptation. Hence, Cascade binding to suboptimal, off-target sites is inert. Our data support a model in which the initial Cascade association with DNA targets requires only limited sequence complementarity at the crRNA 5' end whereas recruitment and/or activation of the Cas3 nuclease, a prerequisite for interference and primed adaptation, requires extensive base pairing. IMPORTANCE Many bacterial and archaeal species encode CRISPR-Cas immunity systems that protect against invasion by foreign DNA. In the Escherichia coli CRISPR-Cas system, a protein complex, Cascade, binds 61-nucleotide (nt) CRISPR RNAs (crRNAs). The Cascade complex is directed to invading DNA molecules through base pairing between the crRNA and target DNA. This leads to recruitment of the Cas3 nuclease, which destroys the invading DNA molecule and promotes acquisition of new immunity elements. We made the first in vivo measurements of Cascade binding to DNA targets. Thus, we show that Cascade binding to DNA is highly promiscuous; endogenous E. coli crRNAs can direct Cascade binding to >100 chromosomal locations. In contrast, we show that targeted degradation and acquisition of new immunity elements require highly specific association of Cascade with DNA, limiting CRISPR-Cas function to the appropriate targets. Copyright © 2018 Cooper et al.

  4. LINE1 and Alu repetitive element DNA methylation in tumors and white blood cells from epithelial ovarian cancer patients.

    PubMed

    Akers, Stacey N; Moysich, Kirsten; Zhang, Wa; Collamat Lai, Golda; Miller, Austin; Lele, Shashikant; Odunsi, Kunle; Karpf, Adam R

    2014-02-01

    We determined whether DNA methylation of repetitive elements (RE) is altered in epithelial ovarian cancer (EOC) patient tumors and white blood cells (WBC), compared to normal tissue controls. Two different quantitative measures of RE methylation (LINE1 and Alu bisulfite pyrosequencing) were used in normal and tumor tissues from EOC cases and controls. Tissues analyzed included: i) EOC, ii) normal ovarian surface epithelia (OSE), iii) normal fallopian tube surface epithelia (FTE), iv) WBC from EOC patients, obtained before and after treatment, and v) WBC from demographically-matched controls. REs were significantly hypomethylated in EOC compared to OSE and FTE, and LINE1 and Alu methylation showed a significant direct association in these tissues. In contrast, WBC RE methylation was significantly higher in EOC cases compared to controls. RE methylation in patient-matched EOC tumors and pre-treatment WBC did not correlate. EOC shows robust RE hypomethylation compared to normal tissues from which the disease arises. In contrast, RE are generally hypermethylated in EOC patient WBC compared to controls. EOC tumor and WBC methylation did not correlate in matched patients, suggesting that RE methylation is independently controlled in tumor and normal tissues. Despite the significant differences observed over the population, the range of RE methylation in patient and control WBC overlapped, limiting their specific utility as an EOC biomarker. However, our data demonstrate that DNA methylation is deranged in normal tissues from EOC patients, supporting further investigation of WBC DNA methylation biomarkers suitable for EOC risk assessment. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The Persistent Contributions of RNA to Eukaryotic Gen(om)e Architecture and Cellular Function

    PubMed Central

    Brosius, Jürgen

    2014-01-01

    Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery. PMID:25081515

  6. Sox5 is a DNA binding co-factor for BMP R-Smads that directs target specificity during patterning of the early ectoderm

    PubMed Central

    Nordin, Kara; LaBonne, Carole

    2014-01-01

    SUMMARY The SoxD factor, Sox5, is expressed in ectodermal cells at times and places where BMP signaling is active, including the cells of the animal hemisphere at blastula stages, and the neural plate border (NPB) and neural crest (NC) at neurula stages. Sox5 is required for proper ectoderm development, and deficient embryos display patterning defects characteristic of perturbations of BMP signaling, including loss of neural crest and epidermis and expansion of the neural plate. We show that Sox5 is essential for activation of BMP target genes in embryos and explants, that it physically interacts with BMP R-Smads, and that it is essential for recruitment of Smad1/4 to BMP regulatory elements. Our findings identify Sox5 as the long sought DNA binding partner for BMP R-Smads essential to plasticity and pattern in the early ectoderm. PMID:25453832

  7. The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing

    PubMed Central

    Iranzo, Jaime

    2016-01-01

    ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. PMID:27486193

  8. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.

    PubMed

    Pentland, Ieisha; Parish, Joanna L

    2015-07-06

    All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  9. Dynamics and Context-Dependent Roles of DNA Methylation.

    PubMed

    Ambrosi, Christina; Manzo, Massimiliano; Baubec, Tuncay

    2017-05-19

    DNA methylation is one of the most extensively studied epigenetic marks. It is involved in transcriptional gene silencing and plays important roles during mammalian development. Its perturbation is often associated with human diseases. In mammalian genomes, DNA methylation is a prevalent modification that decorates the majority of cytosines. It is found at the promoters and enhancers of inactive genes, at repetitive elements, and within transcribed gene bodies. Its presence at promoters is dynamically linked to gene activity, suggesting that it could directly influence gene expression patterns and cellular identity. The genome-wide distribution and dynamic behaviour of this mark have been studied in great detail in a variety of tissues and cell lines, including early embryonic development and in embryonic stem cells. In combination with functional studies, these genome-wide maps of DNA methylation revealed interesting features of this mark and provided important insights into its dynamic nature and potential functional role in genome regulation. In this review, we discuss how these recent observations, in combination with insights obtained from biochemical and functional genetics studies, have expanded our current knowledge about the regulation and context-dependent roles of DNA methylation in mammalian genomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR)more » shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.« less

  11. A Short Interspersed Nuclear Element (SINE)-Based Real-Time PCR Approach to Detect and Quantify Porcine Component in Meat Products.

    PubMed

    Zhang, Chi; Fang, Xin; Qiu, Haopu; Li, Ning

    2015-01-01

    Real-time PCR amplification of mitochondria gene could not be used for DNA quantification, and that of single copy DNA did not allow an ideal sensitivity. Moreover, cross-reactions among similar species were commonly observed in the published methods amplifying repetitive sequence, which hindered their further application. The purpose of this study was to establish a short interspersed nuclear element (SINE)-based real-time PCR approach having high specificity for species detection that could be used in DNA quantification. After massive screening of candidate Sus scrofa SINEs, one optimal combination of primers and probe was selected, which had no cross-reaction with other common meat species. LOD of the method was 44 fg DNA/reaction. Further, quantification tests showed this approach was practical in DNA estimation without tissue variance. Thus, this study provided a new tool for qualitative detection of porcine component, which could be promising in the QC of meat products.

  12. Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction

    PubMed Central

    Shock, David D.; Freudenthal, Bret D.; Beard, William A.; Wilson, Samuel H.

    2017-01-01

    DNA polymerases catalyze efficient and high fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, removing the DNA primer terminus and generating deoxynucleoside triphosphates. Since pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase β and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that it was limited by a non-chemical step. Utilizing a pyrophosphate analog, where the bridging oxygen is replaced with an imido-group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium that favored the reverse reaction. These results highlight the importance of the bridging atom between the β- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium. PMID:28759020

  13. Structure of p73 DNA-binding domain tetramer modulates p73 transactivation

    PubMed Central

    Ethayathulla, Abdul S.; Tse, Pui-Wah; Monti, Paola; Nguyen, Sonha; Inga, Alberto; Fronza, Gilberto; Viadiu, Hector

    2012-01-01

    The transcription factor p73 triggers developmental pathways and overlaps stress-induced p53 transcriptional pathways. How p53-family response elements determine and regulate transcriptional specificity remains an unsolved problem. In this work, we have determined the first crystal structures of p73 DNA-binding domain tetramer bound to response elements with spacers of different length. The structure and function of the adaptable tetramer are determined by the distance between two half-sites. The structures with zero and one base-pair spacers show compact p73 DNA-binding domain tetramers with large tetramerization interfaces; a two base-pair spacer results in DNA unwinding and a smaller tetramerization interface, whereas a four base-pair spacer hinders tetramerization. Functionally, p73 is more sensitive to spacer length than p53, with one base-pair spacer reducing 90% of transactivation activity and longer spacers reducing transactivation to basal levels. Our results establish the quaternary structure of the p73 DNA-binding domain required as a scaffold to promote transactivation. PMID:22474346

  14. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses

    PubMed Central

    Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F. X.; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A.; Roffler, Stefan

    2016-01-01

    DNA (class 2) transposons are mobile genetic elements which move within their ‘host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761

  15. Active Site Sharing and Subterminal Hairpin Recognition in a New Class of DNA Transposases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronning, Donald R.; Guynet, Catherine; Ton-Hoang, Bao

    2010-07-20

    Many bacteria harbor simple transposable elements termed insertion sequences (IS). In Helicobacter pylori, the chimeric IS605 family elements are particularly interesting due to their proximity to genes encoding gastric epithelial invasion factors. Protein sequences of IS605 transposases do not bear the hallmarks of other well-characterized transposases. We have solved the crystal structure of full-length transposase (TnpA) of a representative member, ISHp608. Structurally, TnpA does not resemble any characterized transposase; rather, it is related to rolling circle replication (RCR) proteins. Consistent with RCR, Mg{sup 2+} and a conserved tyrosine, Tyr127, are essential for DNA nicking and the formation of a covalentmore » intermediate between TnpA and DNA. TnpA is dimeric, contains two shared active sites, and binds two DNA stem loops representing the conserved inverted repeats near each end of ISHp608. The cocrystal structure with stem-loop DNA illustrates how this family of transposases specifically recognizes and pairs ends, necessary steps during transposition.« less

  16. Deletion endpoint allele-specificity in the developmentally regulated elimination of an internal sequence (IES) in Paramecium.

    PubMed Central

    Dubrana, K; Le Mouël, A; Amar, L

    1997-01-01

    Ciliated protozoa undergo thousands of site-specific DNA deletion events during the programmed development of micronuclear genomes to macronuclear genomes. Two deletion elements, W1 and W2, were identified in the Paramecium primaurelia wild-type 156 strain. Here, we report the characterization of both elements in wild-type strain 168 and show that they display variant deletion patterns when compared with those of strain 156. The W1 ( 168 ) element is defective for deletion. The W2 ( 168 ) element is excised utilizing two alternative boundaries on one side, both are different from the boundary utilized to excise the W2156 element. By crossing the 156 and 168 strains, we demonstrate that the definition of all deletion endpoints are each controlled by cis -acting determinant(s) rather than by strain-specific trans-acting factor(s). Sequence comparison of all deleted DNA segments indicates that the 5'-TA-3'terminal sequence is strictly required at their ends. Furthermore the identity of the first eight base pairs of these ends to a previously established consensus sequence correlates with the frequency of the corresponding deletion events. Our data implies the existence of an adaptive convergent evolution of these Paramecium deleted DNA segment end sequences. PMID:9171098

  17. Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms.

    PubMed

    Dinon, Andréia Z; Prins, Theo W; van Dijk, Jeroen P; Arisi, Ana Carolina M; Scholtens, Ingrid M J; Kok, Esther J

    2011-05-01

    Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples.

  18. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.

    PubMed

    Rim, Jong S; Kozak, Leslie P

    2002-09-13

    Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.

  19. Origin of B chromosomes in Characidium alipioi (Characiformes, Crenuchidae) and its relationship with supernumerary chromosomes in other Characidium species.

    PubMed

    Serrano, Érica Alves; Utsunomia, Ricardo; Scudeller, Patrícia Sobrinho; Oliveira, Claudio; Foresti, Fausto

    2017-01-01

    B chromosomes are apparently dispensable components found in the genomes of many species that are mainly composed of repetitive DNA sequences. Among the numerous questions concerning B chromosomes, the origin of these elements has been widely studied. To date, supernumerary chromosomes have been identified in approximately 60 species of fish, including species of the genus Characidium Reinhardt, 1867 in which these elements appear to have independently originated. In this study, we used molecular cytogenetic techniques to investigate the origin of B chromosomes in a population of Characidium alipioi Travassos, 1955 and determine their relationship with the extra chromosomes of other species of the genus. The results showed that the B chromosomes of Characidium alipioi had an intraspecific origin, apparently originated independently in relation to the B chromosomes of Characidium gomesi Travassos, 1956 Characidium pterostictum Gomes, 1947 and Characidium oiticicai Travassos, 1967, since they do not share specific DNA sequences, as well as their possible ancestral chromosomes and belong to different phylogenetic clades. The shared sequences between the supernumerary chromosomes and the autosommal sm pair indicate the origin of these chromosomes.

  20. Identification and chromosome mapping of repetitive elements in the Astyanax scabripinnis (Teleostei: Characidae) species complex.

    PubMed

    Barbosa, Patrícia; de Oliveira, Luiz Antonio; Pucci, Marcela Baer; Santos, Mateus Henrique; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo; Nogaroto, Viviane; de Almeida, Mara Cristina; Artoni, Roberto Ferreira

    2015-02-01

    Most part of the eukaryotic genome is composed of repeated sequences or multiple copies of DNA, which were considered as "junk DNA", and may be associated to the heterochromatin. In this study, three populations of Astyanax aff. scabripinnis from Brazilian rivers of Guaratinguetá and Pindamonhangaba (São Paulo) and a population from Maringá (Paraná) were analyzed concerning the localization of the nucleolar organizer regions (Ag-NORs), the As51 satellite DNA, the 18S ribosomal DNA (rDNA), and the 5S rDNA. Repeated sequences were also isolated and identified by the Cot - 1 method, which indicated similarity (90%) with the LINE UnaL2 retrotransposon. The fluorescence in situ hybridization (FISH) showed the retrotransposon dispersed and more concentrated markers in centromeric and telomeric chromosomal regions. These sequences were co-localized and interspaced with 18S and 5S rDNA and As51, confirmed by fiber-FISH essay. The B chromosome found in these populations pointed to a conspicuous hybridization with LINE probe, which is also co-located in As51 sequences. The NORs were active at unique sites of a homologous pair in the three populations. There were no evidences that transposable elements and repetitive DNA had influence in the transcriptional regulation of ribosomal genes in our analyses.

  1. A Pol V–Mediated Silencing, Independent of RNA–Directed DNA Methylation, Applies to 5S rDNA

    PubMed Central

    Douet, Julien; Tutois, Sylvie; Tourmente, Sylvette

    2009-01-01

    The plant-specific RNA polymerases Pol IV and Pol V are essential to RNA–directed DNA methylation (RdDM), which also requires activities from RDR2 (RNA–Dependent RNA Polymerase 2), DCL3 (Dicer-Like 3), AGO4 (Argonaute), and DRM2 (Domains Rearranged Methyltransferase 2). RdDM is dedicated to the methylation of target sequences which include transposable elements, regulatory regions of several protein-coding genes, and 5S rRNA–encoding DNA (rDNA) arrays. In this paper, we have studied the expression of the 5S-210 transcript, a marker of silencing release at 5S RNA genes, to show a differential impact of RNA polymerases IV and V on 5S rDNA arrays during early development of the plant. Using a combination of molecular and cytological assays, we show that Pol IV, RDR2, DRM2, and Pol V, actors of the RdDM, are required to maintain a transcriptional silencing of 5S RNA genes at chromosomes 4 and 5. Moreover, we have shown a derepression associated to chromatin decondensation specific to the 5S array from chromosome 4 and restricted to the Pol V–loss of function. In conclusion, our results highlight a new role for Pol V on 5S rDNA, which is RdDM–independent and comes specifically at chromosome 4, in addition to the RdDM pathway. PMID:19834541

  2. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less

  3. Evidence of birth-and-death evolution of 5S rRNA gene in Channa species (Teleostei, Perciformes).

    PubMed

    Barman, Anindya Sundar; Singh, Mamta; Singh, Rajeev Kumar; Lal, Kuldeep Kumar

    2016-12-01

    In higher eukaryotes, minor rDNA family codes for 5S rRNA that is arranged in tandem arrays and comprises of a highly conserved 120 bp long coding sequence with a variable non-transcribed spacer (NTS). Initially the 5S rDNA repeats are considered to be evolved by the process of concerted evolution. But some recent reports, including teleost fishes suggested that evolution of 5S rDNA repeat does not fit into the concerted evolution model and evolution of 5S rDNA family may be explained by a birth-and-death evolution model. In order to study the mode of evolution of 5S rDNA repeats in Perciformes fish species, nucleotide sequence and molecular organization of five species of genus Channa were analyzed in the present study. Molecular analyses revealed several variants of 5S rDNA repeats (four types of NTS) and networks created by a neighbor net algorithm for each type of sequences (I, II, III and IV) did not show a clear clustering in species specific manner. The stable secondary structure is predicted and upstream and downstream conserved regulatory elements were characterized. Sequence analyses also shown the presence of two putative pseudogenes in Channa marulius. Present study supported that 5S rDNA repeats in genus Channa were evolved under the process of birth-and-death.

  4. Phylogenetic relationships among East African haplochromine fish as revealed by short interspersed elements (SINEs).

    PubMed

    Terai, Yohey; Takezaki, Naoko; Mayer, Werner E; Tichy, Herbert; Takahata, Naoyuki; Klein, Jan; Okada, Norihiro

    2004-01-01

    Genomic DNA libraries were prepared from two endemic species of Lake Victoria haplochromine (cichlid) fish and used to isolate and characterize a set of short interspersed elements (SINEs). The distribution and sequences of the SINEs were used to infer phylogenetic relationships among East African haplochromines. The SINE-based classification divides the fish into four groups, which, in order of their divergence from a stem lineage, are the endemic Lake Tanganyika flock (group 1); fish of the nonendemic, monotypic, widely distributed genus Astatoreochromis (group 2); the endemic Lake Malawi flock (group 3); and group 4, which contains fish from widely dispersed East African localities including Lakes Victoria, Edward, George, Albert, and Rukwa, as well as many rivers. The group 4 haplochromines are characterized by a subset of polymorphic SINEs, each of which is present in some individuals and absent in others of the same population at a given locality, the same morphologically defined species, and the same mtDNA-defined haplogroup. SINE-defined group 4 contains six of the seven previously described mtDNA haplogroups. One of the polymorphic SINEs appears to be fixed in the endemic Lake Victoria flock; four others display the presence-or-absence polymorphism within the species of this flock. These findings have implications for the origin of Lake Victoria cichlids and for their founding population sizes.

  5. Inhibitory Effects of Bangladeshi Medicinal Plant Extracts on Interactions between Transcription Factors and Target DNA Sequences

    PubMed Central

    Lampronti, Ilaria; Khan, Mahmud T.H.; Borgatti, Monica; Bianchi, Nicoletta

    2008-01-01

    Several transcription factors (TFs) play crucial roles in governing the expression of different genes involved in the immune response, embryo or cell lineage development, cell apoptosis, cell cycle progression, oncogenesis, repair and fibrosis processes and inflammation. As far as inflammation, TFs playing pivotal roles are nuclear factor kappa B (NF-kB), activator protein (AP-1), signal transducer and activator of transcription (STATs), cAMP response element binding protein (CREB) and GATA-1 factors. All these TFs regulate the expression of pro-inflammatory cytokines and are involved in the pathogenesis of a number of human disorders, particularly those with an inflammatory component. Since several medicinal plants can be employed to produce extracts exhibiting biological effects and because alteration of gene transcription represents a very interesting approach to control the expression of selected genes, this study sought to verify the ability of several extracts derived from Bangladeshi medicinal plants in interfering with molecular interactions between different TFs and specific DNA sequences. We first analyzed the antiproliferative activity of 19 medicinal plants on different human cell lines, including erythroleukemia K562, B lymphoid Raji and T lymphoid Jurkat cell lines. Secondly, we employed the electrophoretic mobility shift assay as a suitable technique for a fast screening of plant extracts altering the binding between NF-kB, AP-1, GATA-1, STAT-3, CREB and the relative target DNA elements. PMID:18830455

  6. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro.

    PubMed

    Matzenbacher, Cristina Araujo; Garcia, Ana Letícia Hilario; Dos Santos, Marcela Silva; Nicolau, Caroline Cardoso; Premoli, Suziane; Corrêa, Dione Silva; de Souza, Claudia Telles; Niekraszewicz, Liana; Dias, Johnny Ferraz; Delgado, Tânia Valéria; Kalkreuth, Wolfgang; Grivicich, Ivana; da Silva, Juliana

    2017-02-15

    Coal mining and combustion generating huge amounts of bottom and fly ash are major causes of environmental pollution and health hazards due to the release of polycyclic aromatic hydrocarbons (PAH) and heavy metals. The Candiota coalfield in Rio Grande do Sul, is one of the largest open-cast coal mines in Brazil. The aim of this study was to evaluate genotoxic and mutagenic effects of coal, bottom ash and fly ash samples from Candiota with the comet assay (alkaline and modified version) and micronucleus test using the lung fibroblast cell line (V79). Qualitative and quantitative analysis of PAH and inorganic elements was carried out by High Performance Liquid Chromatography (HPLC) and by Particle-Induced X-ray Emission (PIXE) techniques respectively. The samples demonstrated genotoxic and mutagenic effects. The comet assay modified using DNA-glicosilase formamidopirimidina (FPG) endonuclease showed damage related to oxidative stress mechanisms. The amount of PAHs was higher in fly ash followed by pulverized coal. The amount of inorganic elements was highest in fly ash, followed by bottom ash. It is concluded that the samples induce DNA damage by mechanisms that include oxidative stress, due to their complex composition, and that protective measures have to be taken regarding occupational and environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. RNAi drives nonreciprocal translocations at eroding chromosome ends to establish telomere-free linear chromosomes.

    PubMed

    Begnis, Martina; Apte, Manasi S; Masuda, Hirohisa; Jain, Devanshi; Wheeler, David Lee; Cooper, Julia Promisel

    2018-04-01

    The identification of telomerase-negative HAATI (heterochromatin amplification-mediated and telomerase-independent) cells, in which telomeres are superseded by nontelomeric heterochromatin tracts, challenged the idea that canonical telomeres are essential for chromosome linearity and raised crucial questions as to how such tracts translocate to eroding chromosome ends and confer end protection. Here we show that HAATI arises when telomere loss triggers a newly recognized illegitimate translocation pathway that requires RNAi factors. While RNAi is necessary for the translocation events that mobilize ribosomal DNA (rDNA) tracts to all chromosome ends (forming "HAATI rDNA " chromosomes), it is dispensable for HAATI rDNA maintenance. Surprisingly, Dicer (Dcr1) plays a separate, RNAi-independent role in preventing formation of the rare HAATI subtype in which a different repetitive element (the subtelomeric element) replaces telomeres. Using genetics and fusions between shelterin components and rDNA-binding proteins, we mapped the mechanism by which rDNA loci engage crucial end protection factors-despite the absence of telomere repeats-and secure end protection. Sequence analysis of HAATI rDNA genomes allowed us to propose RNA and DNA polymerase template-switching models for the mechanism of RNAi-triggered rDNA translocations. Collectively, our results reveal unforeseen roles for noncoding RNAs (ncRNAs) in assembling a telomere-free chromosome end protection device. © 2018 Begnis et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Defining functional DNA elements in the human genome

    PubMed Central

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  9. Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system.

    PubMed

    Hoehl, Melanie M; Weißert, Michael; Dannenberg, Arne; Nesch, Thomas; Paust, Nils; von Stetten, Felix; Zengerle, Roland; Slocum, Alexander H; Steigert, Juergen

    2014-06-01

    This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.

  10. Flexible regulation of DNA displacement reaction through nucleic acid-recognition enzyme and its application in keypad lock system and biosensing.

    PubMed

    Li, Chao; Shi, Liu; Tao, Yaqin; Mao, Xiaoxia; Xiang, Yang; Li, Genxi

    2017-08-30

    Toehold-mediated DNA strand displacement reaction (SDR) plays pivotal roles for the construction of diverse dynamic DNA nanodevices. To date, many elements have been introduced into SDR system to achieve controllable activation and fine regulation. However, as the most relevant stimuli for nucleic acid involved reaction, nucleic acid-recognizing enzymes (NAEs) have received nearly no attention so far despite SDR often takes place in NAEs-enriched environment (i.e., biological fluids). Herein, we report a set of NAEs-controlled SDR strategies, which take full advantage of NAEs' properties. In this study, three different kinds of enzymes belonging to several classes (i.e., exonuclease, endonuclease and polymerase) have been used to activate or inhibit SDR, and more importantly, some mechanisms behind these strategies on how NAEs affect SDR have also been revealed. The exploration to use NAEs as possible cues to operate SDR will expand the available toolbox to build novel stimuli-fueled DNA nanodevices and could open the door to many applications including enzyme-triggered biocomputing and biosensing.

  11. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  12. A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei.

    PubMed

    Kanoksilapatham, Wirojne; González, Juan M; Maeder, Dennis L; DiRuggiero, Jocelyne; Robb, Frank T

    2004-10-01

    Pyrococcus species are hyperthermophilic members of the order Thermococcales, with optimal growth temperatures approaching 100 degrees C. All species grow heterotrophically and produce H2 or, in the presence of elemental sulfur (S(o)), H2S. Pyrococcus woesei and P. furiosus were isolated from marine sediments at the same Vulcano Island beach site and share many morphological and physiological characteristics. We report here that the rDNA operons of these strains have identical sequences, including their intergenic spacer regions and part of the 23S rRNA. Both species grow rapidly and produce H2 in the presence of 0.1% maltose and 10-100 microM sodium tungstate in S(o)-free medium. However, P. woesei shows more extensive autolysis than P. furiosus in the stationary phase. Pyrococcus furiosus and P. woesei share three closely related families of insertion sequences (ISs). A Southern blot performed with IS probes showed extensive colinearity between the genomes of P. woesei and P. furiosus. Cloning and sequencing of ISs that were in different contexts in P. woesei and P. furiosus revealed that the napA gene in P. woesei is disrupted by a type III IS element, whereas in P. furiosus, this gene is intact. A type I IS element, closely linked to the napA gene, was observed in the same context in both P. furiosus and P. woesei genomes. Our results suggest that the IS elements are implicated in genomic rearrangements and reshuffling in these closely related strains. We propose to rename P. woesei a subspecies of P. furiosus based on their identical rDNA operon sequences, many common IS elements that are shared genomic markers, and the observation that all P. woesei nucleotide sequences deposited in GenBank to date are > 99% identical to P. furiosus sequences.

  13. E2F mediates induction of the Sp1-controlled promoter of the human DNA polymerase ɛ B-subunit gene POLE2

    PubMed Central

    Huang, Deqi; Jokela, Maarit; Tuusa, Jussi; Skog, Sven; Poikonen, Kari; Syväoja, Juhani E.

    2001-01-01

    The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase ɛ (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F–pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase α, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes. PMID:11433027

  14. Associations between genetic variation in one-carbon metabolism and LINE-1 DNA methylation in histologically normal breast tissues

    USDA-ARS?s Scientific Manuscript database

    Genome-wide DNA hypomethylation is an early event in the carcinogenic process. Percent methylation of long interspersed nucleotide element-1 (LINE-1) is a biomarker of genome-wide methylation and is a potential biomarker for breast cancer. Understanding factors associated with percent LINE-1 DNA met...

  15. The DL1 repeats in the genome of Diphyllobothrium latum.

    PubMed

    Usmanova, Nadezhda M; Kazakov, Vasiliy I

    2010-07-01

    Diphyllobothrium latum is a widespread intestinal parasite, which has a great clinical relevance, but there are no sequences of its nuclear genome. In this paper, a repetitive element in the D. latum genome is firstly described. The adult D. latum was obtained in the result of expulsion from intestinum of a patient suffering from diphyllobothriasis. Genomic DNA was isolated from several proglottids of this individual. PstI restriction products of D. latum genomic DNA were sequenced. Polymerase chain reaction (PCR) amplification of these products using genomic DNA and selected primers was carried out. Thereby a cluster of a repetitive element, called DL1, was discovered. For precise identification of a beginning and an end of the repeat, a product of PCR amplification of D. latum genomic DNA with one specific primer was sequenced. In discussion, several evidences that DL1 repeat is a member of the SINE family of retroposons were adduced.

  16. Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation

    PubMed Central

    Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Duncan, Elizabeth J.; Parry, Matthew F.; Weeks, Robert J.; Morison, Ian M.

    2015-01-01

    The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript. PMID:26612583

  17. DNA sequence analysis of ARS elements from chromosome III of Saccharomyces cerevisiae: identification of a new conserved sequence.

    PubMed Central

    Palzkill, T G; Oliver, S G; Newlon, C S

    1986-01-01

    Four fragments of Saccharomyces cerevisiae chromosome III DNA which carry ARS elements have been sequenced. Each fragment contains multiple copies of sequences that have at least 10 out of 11 bases of homology to a previously reported 11 bp core consensus sequence. A survey of these new ARS sequences and previously reported sequences revealed the presence of an additional 11 bp conserved element located on the 3' side of the T-rich strand of the core consensus. Subcloning analysis as well as deletion and transposon insertion mutagenesis of ARS fragments support a role for 3' conserved sequence in promoting ARS activity. PMID:3529036

  18. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis).

    PubMed

    Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang

    2013-10-15

    A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.

  19. Decoding the non-coding genome: elucidating genetic risk outside the coding genome.

    PubMed

    Barr, C L; Misener, V L

    2016-01-01

    Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Lactase non-persistence is directed by DNA variation-dependent epigenetic aging

    PubMed Central

    Labrie, Viviane; Buske, Orion J; Oh, Edward; Jeremian, Richie; Ptak, Carolyn; Gasiūnas, Giedrius; Maleckas, Almantas; Petereit, Rūta; Žvirbliene, Aida; Adamonis, Kęstutis; Kriukienė, Edita; Koncevičius, Karolis; Gordevičius, Juozas; Nair, Akhil; Zhang, Aiping; Ebrahimi, Sasha; Oh, Gabriel; Šikšnys, Virginijus; Kupčinskas, Limas; Brudno, Michael; Petronis, Arturas

    2016-01-01

    Inability to digest lactose due to lactase non-persistence is a common trait in adult mammals, with the exception of certain human populations that exhibit lactase persistence. It is not clear how the lactase gene can be dramatically downregulated with age in most individuals, but remains active in some. We performed a comprehensive epigenetic study of the human and mouse intestine using chromosome-wide DNA modification profiling and targeted bisulfite sequencing. Epigenetically-controlled regulatory elements were found to account for the differences in lactase mRNA levels between individuals, intestinal cell types and species. The importance of these regulatory elements in modulating lactase mRNA levels was confirmed by CRISPR-Cas9-induced deletions. Genetic factors contribute to epigenetic changes occurring with age at the regulatory elements, as lactase persistence- and non-persistence-DNA haplotypes demonstrated markedly different epigenetic aging. Thus, genetic factors facilitate a gradual accumulation of epigenetic changes with age to affect phenotypic outcome. PMID:27159559

  1. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster

    PubMed Central

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S.; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-01-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as ‘homing’ similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. PMID:24803674

  2. Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells

    PubMed Central

    Freire-Pritchett, Paula; Schoenfelder, Stefan; Várnai, Csilla; Wingett, Steven W; Cairns, Jonathan; Collier, Amanda J; García-Vílchez, Raquel; Furlan-Magaril, Mayra; Osborne, Cameron S; Fraser, Peter; Rugg-Gunn, Peter J; Spivakov, Mikhail

    2017-01-01

    Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells. DOI: http://dx.doi.org/10.7554/eLife.21926.001 PMID:28332981

  3. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  4. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  5. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive.

    PubMed

    Hering, Daniel; Borja, Angel; Jones, J Iwan; Pont, Didier; Boets, Pieter; Bouchez, Agnes; Bruce, Kat; Drakare, Stina; Hänfling, Bernd; Kahlert, Maria; Leese, Florian; Meissner, Kristian; Mergen, Patricia; Reyjol, Yorick; Segurado, Pedro; Vogler, Alfried; Kelly, Martyn

    2018-07-01

    Assessment of ecological status for the European Water Framework Directive (WFD) is based on "Biological Quality Elements" (BQEs), namely phytoplankton, benthic flora, benthic invertebrates and fish. Morphological identification of these organisms is a time-consuming and expensive procedure. Here, we assess the options for complementing and, perhaps, replacing morphological identification with procedures using eDNA, metabarcoding or similar approaches. We rate the applicability of DNA-based identification for the individual BQEs and water categories (rivers, lakes, transitional and coastal waters) against eleven criteria, summarised under the headlines representativeness (for example suitability of current sampling methods for DNA-based identification, errors from DNA-based species detection), sensitivity (for example capability to detect sensitive taxa, unassigned reads), precision of DNA-based identification (knowledge about uncertainty), comparability with conventional approaches (for example sensitivity of metrics to differences in DNA-based identification), cost effectiveness and environmental impact. Overall, suitability of DNA-based identification is particularly high for fish, as eDNA is a well-suited sampling approach which can replace expensive and potentially harmful methods such as gill-netting, trawling or electrofishing. Furthermore, there are attempts to replace absolute by relative abundance in metric calculations. For invertebrates and phytobenthos, the main challenges include the modification of indices and completing barcode libraries. For phytoplankton, the barcode libraries are even more problematic, due to the high taxonomic diversity in plankton samples. If current assessment concepts are kept, DNA-based identification is least appropriate for macrophytes (rivers, lakes) and angiosperms/macroalgae (transitional and coastal waters), which are surveyed rather than sampled. We discuss general implications of implementing DNA-based identification into standard ecological assessment, in particular considering any adaptations to the WFD that may be required to facilitate the transition to molecular data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis.

    PubMed

    Dias, Guilherme B; Svartman, Marta; Delprat, Alejandra; Ruiz, Alfredo; Kuhn, Gustavo C S

    2014-05-24

    Transposable elements (TEs) and satellite DNAs (satDNAs) are abundant components of most eukaryotic genomes studied so far and their impact on evolution has been the focus of several studies. A number of studies linked TEs with satDNAs, but the nature of their evolutionary relationships remains unclear. During in silico analyses of the Drosophila virilis assembled genome, we found a novel DNA transposon we named Tetris based on its modular structure and diversity of rearranged forms. We aimed to characterize Tetris and investigate its role in generating satDNAs. Data mining and sequence analysis showed that Tetris is apparently nonautonomous, with a structure similar to foldback elements, and present in D. virilis and D. americana. Herein, we show that Tetris shares the final portions of its terminal inverted repeats (TIRs) with DAIBAM, a previously described miniature inverted transposable element implicated in the generation of chromosome inversions. Both elements are likely to be mobilized by the same autonomous TE. Tetris TIRs contain approximately 220-bp internal tandem repeats that we have named TIR-220. We also found TIR-220 repeats making up longer (kb-size) satDNA-like arrays. Using bioinformatic, phylogenetic and cytogenomic tools, we demonstrated that Tetris has contributed to shaping the genomes of D. virilis and D. americana, providing internal tandem repeats that served as building blocks for the amplification of satDNA arrays. The β-heterochromatic genomic environment seemed to have favored such amplification. Our results imply for the first time a role for foldback elements in generating satDNAs. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    PubMed

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  8. A unique mitigator sequence determines the species specificity of the major late promoter in adenovirus type 12 DNA.

    PubMed Central

    Zock, C; Iselt, A; Doerfler, W

    1993-01-01

    Human adenovirus type 12 (Ad12) cannot replicate in hamster cells, whereas human cells are permissive for Ad12. Ad12 DNA replication and late-gene and virus-associated RNA expression are blocked in hamster cells. Early Ad12 genes are transcribed, and the viral DNA can be integrated into the host genome. Ad12 DNA replication and late-gene transcription can be complemented in hamster cells by E1 functions of Ad2 or Ad5, for which hamster cells are fully permissive (for a review, see W. Doerfler, Adv. Virus Res. 39:89-128, 1991). We have previously demonstrated that a 33-nucleotide mitigator sequence, which is located in the downstream region of the major late promoter (MLP) of Ad12 DNA, is responsible for the inactivity of the Ad12 MLP in hamster cells (C. Zock and W. Doerfler, EMBO J. 9:1615-1623, 1990). A similar negative regulator has not been found in the MLP of Ad2 DNA. We have now studied the mechanism of action of this mitigator element. The results of nuclear run-on experiments document the absence of MLP transcripts in the nuclei of Ad12-infected BHK21 hamster cells. Surprisingly, the mitigator element cannot elicit its function in in vitro transcription experiments with nuclear extracts from both hamster BHK21 and human HeLa cells. Intact nuclear topology and/or tightly bound nuclear elements that cannot be eluted in nuclear extracts are somehow required for recognition of the Ad12 mitigator. Electrophoretic mobility shift assays have not revealed significant differences in the binding of proteins from human HeLa or hamster BHK21 cells to the mitigator sequence in the MLP of Ad12 DNA or to the corresponding sequence in Ad2 DNA. We have converted the sequence of the mitigator in the MLP of Ad12 DNA to the equivalent sequence in the MLP of Ad2 DNA by site-directed mutagenesis. This construct was not active in hamster cells. When the Ad12 mitigator, on the other hand, was inserted into the Ad2 MLP, the latter's function in hamster cells was not compromised. Deletions in the 5' upstream region of the Ad12 MLP have provided evidence for the existence of additional sequences that codetermine the deficiency of the Ad12 MLP in hamster cells. The amphifunctional YY1 protein from HeLa cells can bind specifically to the mitigator and to upstream elements of the MLP of Ad12 DNA.(ABSTRACT TRUNCATED AT 400 WORDS) Images PMID:8419643

  9. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P K; Ghosal, S; Leighton, T J

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developedmore » methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.« less

  10. Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish.

    PubMed

    Glugoski, Larissa; Giuliano-Caetano, Lucia; Moreira-Filho, Orlando; Vicari, Marcelo R; Nogaroto, Viviane

    2018-04-15

    Co-located 5S rDNA genes and interstitial telomeric sites (ITS) revealed the involvement of multiple 5S rDNA clusters in chromosome rearrangements of Loricariidae. Interstitial (TTAGGG)n vestiges, in addition to telomeric sites, can coincide with locations of chromosomal rearrangements, and they are considered to be hotspots for chromosome breaks. This study aimed the molecular characterization of 5S rDNA in two Rineloricaria latirostris populations and examination of roles of 5S rDNA in breakpoint sites and its in situ localization. Rineloricaria latirostris from Brazil's Das Pedras river (2n = 46 chromosomes) presented five pairs identified using a 5S rDNA probe, in addition to a pair bearing a co-located ITS/5S rDNA. Rineloricaria latirostris from the Piumhi river (2n = 48 chromosomes) revealed two pairs containing 5S rDNA, without ITS. A 702-bp amplified sequence, using 5S rDNA primers, revealed an insertion of the hAT transposable element (TE), referred to as a degenerate 5S rDNA. Double-FISH (fluorescence in situ hybridization) demonstrated co-localization of 5S rDNA/degenerate 5S rDNA, 5S rDNA/hAT and ITS/5S rDNA from the Das Pedras river population. Piumhi river isolates possessed only 5S rDNA sites. We suggest that the degenerate 5S rDNA was generated by unequal crossing over, which was driven by invasion of hAT, establishing a breakpoint region susceptible to chromosome breakage, non-homologous recombination and Robertsonian (Rb) fusion. Furthermore, the presence of clusters of 5S rDNA at fusion points in other armored catfish species suggests its re-use and that these regions represent hotspots for evolutionary rearrangements within Loricariidae genomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome

    PubMed Central

    Yu, Shoukai; Lemos, Bernardo

    2016-01-01

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. PMID:27797956

  12. The Dynamic Mu Transpososome: MuB activation prevents disintegration

    PubMed Central

    Lemberg, Kathryn M.; Schweidenback, Caterina T. H.; Baker, Tania A.

    2007-01-01

    Summary DNA transposases use a single active center to sequentially cleave the transposable element DNA and join this DNA to a target site. Recombination requires controlled conformational changes within the transposase to ensure that these chemically distinct steps occur at the right time and place, and that the reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find that Mu transpososomes efficiently catalyze disintegration when recombination on one end of the Mu DNA is blocked. The MuB activator protein controls the integration vs. disintegration equilibrium. When MuB is present, disintegration occurs slowly and transpososomes that have disintegrated catalyze subsequent rounds of recombination. In the absence of MuB, disintegration goes to completion. These results together with experiments mapping the MuA-MuB contacts during DNA joining suggest that MuB controls progression of recombination by specifically stabilizing a concerted transition to the ‘joining’ configuration of MuA. Thus, we propose that MuB's interaction with the transpososome actively promotes coupled joining of both ends of the element DNA into the same target site and thus may provide a mechanism to antagonize formation of single-end transposition products. PMID:17988683

  13. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-03-15

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions.

  14. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed Central

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-01-01

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions. Images PMID:7720715

  15. RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes.

    PubMed

    NandyMazumdar, Monali; Nedialkov, Yuri; Svetlov, Dmitri; Sevostyanova, Anastasia; Belogurov, Georgiy A; Artsimovitch, Irina

    2016-12-27

    Upon RNA polymerase (RNAP) binding to a promoter, the σ factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the β' clamp domain plays the most prominent role. In this work, we investigate the role of the β gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties.

  16. DNA-nanostructure-assembly by sequential spotting

    PubMed Central

    2011-01-01

    Background The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. Results For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures. Conclusions The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element. PMID:22099392

  17. FARE-CAFE: a database of functional and regulatory elements of cancer-associated fusion events.

    PubMed

    Korla, Praveen Kumar; Cheng, Jack; Huang, Chien-Hung; Tsai, Jeffrey J P; Liu, Yu-Hsuan; Kurubanjerdjit, Nilubon; Hsieh, Wen-Tsong; Chen, Huey-Yi; Ng, Ka-Lok

    2015-01-01

    Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available. FARE-CAFE is a unique combination of CTs, fusion proteins, protein domains, domain-domain interactions, protein-protein interactions, transcription factors and microRNAs, with subsequent experimental information, which cannot be found in any other CT database. Genomic DNA information including, for example, manually collected exact locations of the first and second break points, sequences and karyotypes of fusion genes are included. FARE-CAFE will substantially facilitate the cancer biologist's mission of elucidating the pathogenesis of various types of cancer. This database will ultimately help to develop 'novel' therapeutic approaches. Database URL: http://ppi.bioinfo.asia.edu.tw/FARE-CAFE. © The Author(s) 2015. Published by Oxford University Press.

  18. FARE-CAFE: a database of functional and regulatory elements of cancer-associated fusion events

    PubMed Central

    Korla, Praveen Kumar; Cheng, Jack; Huang, Chien-Hung; Tsai, Jeffrey J. P.; Liu, Yu-Hsuan; Kurubanjerdjit, Nilubon; Hsieh, Wen-Tsong; Chen, Huey-Yi; Ng, Ka-Lok

    2015-01-01

    Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available. FARE-CAFE is a unique combination of CTs, fusion proteins, protein domains, domain–domain interactions, protein–protein interactions, transcription factors and microRNAs, with subsequent experimental information, which cannot be found in any other CT database. Genomic DNA information including, for example, manually collected exact locations of the first and second break points, sequences and karyotypes of fusion genes are included. FARE-CAFE will substantially facilitate the cancer biologist’s mission of elucidating the pathogenesis of various types of cancer. This database will ultimately help to develop ‘novel’ therapeutic approaches. Database URL: http://ppi.bioinfo.asia.edu.tw/FARE-CAFE PMID:26384373

  19. Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus

    PubMed Central

    Moszczynska, Anna; Burghardt, Kyle J.; Yu, Dongyue

    2017-01-01

    Short interspersed elements (SINEs) are typically silenced by DNA hypermethylation in somatic cells, but can retrotranspose in proliferating cells during adult neurogenesis. Hypomethylation caused by disease pathology or genotoxic stress leads to genomic instability of SINEs. The goal of the present investigation was to determine whether neurotoxic doses of binge or chronic methamphetamine (METH) trigger retrotransposition of the identifier (ID) element, a member of the rat SINE family, in the dentate gyrus genomic DNA. Adult male Sprague-Dawley rats were treated with saline or high doses of binge or chronic METH and sacrificed at three different time points thereafter. DNA methylation analysis, immunohistochemistry and next-generation sequencing (NGS) were performed on the dorsal dentate gyrus samples. Binge METH triggered hypomethylation, while chronic METH triggered hypermethylation of the CpG-2 site. Both METH regimens were associated with increased intensities in poly(A)-binding protein 1 (PABP1, a SINE regulatory protein)-like immunohistochemical staining in the dentate gyrus. The amplification of several ID element sequences was significantly higher in the chronic METH group than in the control group a week after METH, and they mapped to genes coding for proteins regulating cell growth and proliferation, transcription, protein function as well as for a variety of transporters. The results suggest that chronic METH induces ID element retrotransposition in the dorsal dentate gyrus and may affect hippocampal neurogenesis. PMID:28272323

  20. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice.

    PubMed

    Shimizu, Akinori; Tani, Haruna; Takibuchi, Gaku; Ishikawa, Kaori; Sakurazawa, Ryota; Inoue, Takafumi; Hashimoto, Tetsuo; Nakada, Kazuto; Takenaga, Keizo; Hayashi, Jun-Ichi

    2017-11-04

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29 H (sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29 H (sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold

    NASA Astrophysics Data System (ADS)

    Li, Yizhou; De Luca, Roberto; Cazzamalli, Samuele; Pretto, Francesca; Bajic, Davor; Scheuermann, Jörg; Neri, Dario

    2018-03-01

    In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody-antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.

  2. Staphylococci on ICE: Overlooked agents of horizontal gene transfer.

    PubMed

    Sansevere, Emily A; Robinson, D Ashley

    2017-01-01

    Horizontal gene transfer plays a significant role in spreading antimicrobial resistance and virulence genes throughout the genus Staphylococcus , which includes species of clinical relevance to humans and animals. While phages and plasmids are the most well-studied agents of horizontal gene transfer in staphylococci, the contribution of integrative conjugative elements (ICEs) has been mostly overlooked. Experimental work demonstrating the activity of ICEs in staphylococci remained frozen for years after initial work in the 1980s that showed Tn 916 was capable of transfer from Enterococcus to Staphylococcus . However, recent work has begun to thaw this field. To date, 2 families of ICEs have been identified among staphylococci - Tn 916 that includes the Tn 5801 subfamily, and ICE 6013 that includes at least 7 subfamilies. Both Tn 5801 and ICE 6013 commonly occur in clinical strains of S. aureus . Tn 5801 is the most studied of the Tn 916 family elements in staphylococci and encodes tetracycline resistance and a protein that, when expressed in Escherichia coli , inhibits restriction barriers to incoming DNA. ICE 6013 is among the shortest known ICEs, but it still includes many uncharacterized open reading frames. This element uses an IS 30 -like transposase as its recombinase, providing some versatility in integration sites. ICE 6013 also conjugatively transfers among receptive S. aureus strains at relatively higher frequency than Tn 5801 . Continued study of these mobile genetic elements may reveal the full extent to which ICEs impact horizontal gene transfer and the evolution of staphylococci.

  3. High copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer.

    PubMed

    Garcia-Fernàndez, J; Bayascas-Ramírez, J R; Marfany, G; Muñoz-Mármol, A M; Casali, A; Baguñà, J; Saló, E

    1995-05-01

    Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle-repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.

  4. Using FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) to isolate active regulatory DNA

    PubMed Central

    Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.

    2013-01-01

    Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007

  5. Profiles of embryonic nuclear protein binding to the proximal promoter region of the soybean β-conglycinin α subunit gene.

    PubMed

    Yoshino, M; Tsutsumi, K; Kanazawa, A

    2015-01-01

    β-Conglycinin, a major component of seed storage protein in soybean, comprises three subunits: α, α' and β. The expression of genes for these subunits is strictly controlled during embryogenesis. The proximal promoter region up to 245 bp upstream of the transcription start site of the α subunit gene sufficiently confers spatial and temporal control of transcription in embryos. Here, the binding profile of nuclear proteins in the proximal promoter region of the α subunit gene was analysed. DNase I footprinting analysis indicated binding of proteins to the RY element and DNA regions including box I, a region conserved in cognate gene promoters. An electrophoretic mobility shift assay (EMSA) using different portions of box I as a probe revealed that multiple portions of box I bind to nuclear proteins. In addition, an EMSA using nuclear proteins extracted from embryos at different developmental stages indicated that the levels of major DNA-protein complexes on box I increased during embryo maturation. These results are consistent with the notion that box I is important for the transcriptional control of seed storage protein genes. Furthermore, the present data suggest that nuclear proteins bind to novel motifs in box I including 5'-TCAATT-3' rather than to predicted cis-regulatory elements. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH

    PubMed Central

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M.

    2017-01-01

    Abstract Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. PMID:28961970

  7. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.

    PubMed

    Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V

    1985-09-01

    The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.

  8. Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax.

    PubMed

    Baranger, A M; Palmer, C R; Hamm, M K; Giebler, H A; Brauweiler, A; Nyborg, J K; Schepartz, A

    1995-08-17

    Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment. This interaction increases the stability of the GCN4 bZIP dimer by 1.7 kcal mol-1 and the DNA affinity of the dimer by 1.9 kcal mol-1. The differential effect of Tax on several bZip-DNA complexes that differ in peptide sequence or DNA conformation suggests a model for Tax action based on stabilization of a distinct DNA-bound protein structure. This model may explain how Tax interacts with transcription factors of considerable sequence diversity to alter patterns of gene expression.

  9. Characterization of "cis"-regulatory elements ("c"RE) associated with mammary gland function

    USDA-ARS?s Scientific Manuscript database

    The Bos taurus genome assembly has propelled dairy science into a new era; still, most of the information encoded in the genome has not yet been decoded. The human Encyclopedia of DNA Elements (ENCODE) project has spearheaded the identification and annotation of functional genomic elements in the hu...

  10. Transposable genetic elements in Spirulina and potential applications for genetic engineering

    NASA Astrophysics Data System (ADS)

    Hiroyuki, Kojima; Qin, Song; Thankappan, Ajith Kumar; Yoshikazu, Kawata; Shin-Ichi, Yano

    1998-03-01

    Transposable elements in cyanobacteria are briefly reviewed. Evidence is presented to show that transposable elements in Spirulina platensis is actually reflected on the phenotype change, i e., helical to straight filaments. Transposition intermediates of DNA were isolated from the extrachromosome and the transposition was related to helical variations in Spirulina. Uses of transposable elements for microalgal recombination are discussed based on the transposition mechanism.

  11. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  12. A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering.

    PubMed

    Wang, Jing; Cui, Xun; Yang, Le; Zhang, Zhe; Lv, Liping; Wang, Haoyuan; Zhao, Zhenmin; Guan, Ningzi; Dong, Lichun; Chen, Rachel

    2017-07-01

    Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulation that includes an enhancement element by introducing duplex DNA aptamers upstream promoter and a repression element by introducing a RNA aptamer upstream ribosome binding site. With the presence of ligands corresponding to the DNA aptamers, the expression of the target gene can be potentially enhanced at the transcriptional level by strengthening the recognition capability of RNAP to the recognition region and speeding up the separation efficiency of the unwinding region due to the induced DNA bubble around the thrombin-bound aptamers; while with the presence of RNA aptamer ligand, the gene expression can be repressed at the translational level by weakening the recognition capability of ribosome to RBS due to the shielding of RBS by the formed aptamer-ligand complex upstream RBS. The effectiveness and potential utility of the developed gene regulation system were demonstrated by regulating the expression of ecaA gene in the cell-free systems. The realistic metabolic engineering application of the system has also tested by regulating the expression of mgtC gene and thrombin cDNA in Escherichia coli JD1021 for controlling metabolic flux and improving thrombin production, verifying that the real-time control system of gene regulation is able to realize the dynamic regulation of gene expression with potential applications in bacterial physiology studies and metabolic engineering. Copyright © 2017. Published by Elsevier Inc.

  13. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients

    PubMed Central

    Flanagan, James M.; Munoz-Alegre, Marta; Henderson, Stephen; Tang, Thomas; Sun, Ping; Johnson, Nichola; Fletcher, Olivia; dos Santos Silva, Isabel; Peto, Julian; Boshoff, Chris; Narod, Steven; Petronis, Arturas

    2009-01-01

    Bilaterality of breast cancer is an indicator of constitutional cancer susceptibility; however, the molecular causes underlying this predisposition in the majority of cases is not known. We hypothesize that epigenetic misregulation of cancer-related genes could partially account for this predisposition. We have performed methylation microarray analysis of peripheral blood DNA from 14 women with bilateral breast cancer compared with 14 unaffected matched controls throughout 17 candidate breast cancer susceptibility genes including BRCA1, BRCA2, CHEK2, ATM, ESR1, SFN, CDKN2A, TP53, GSTP1, CDH1, CDH13, HIC1, PGR, SFRP1, MLH1, RARB and HSD17B4. We show that the majority of methylation variability is associated with intragenic repetitive elements. Detailed validation of the tiled region around ATM was performed by bisulphite modification and pyrosequencing of the same samples and in a second set of peripheral blood DNA from 190 bilateral breast cancer patients compared with 190 controls. We show significant hypermethylation of one intragenic repetitive element in breast cancer cases compared with controls (P = 0.0017), with the highest quartile of methylation associated with a 3-fold increased risk of breast cancer (OR 3.20, 95% CI 1.78–5.86, P = 0.000083). Increased methylation of this locus is associated with lower steady-state ATM mRNA level and correlates with age of cancer patients but not controls, suggesting a combined age–phenotype-related association. This research demonstrates the potential for gene-body epigenetic misregulation of ATM and other cancer-related genes in peripheral blood DNA that may be useful as a novel marker to estimate breast cancer risk. Accession numbers: The microarray data and associated .BED and .WIG files can be accessed through Gene Expression Omnibus accession number: GSE14603. PMID:19153073

  14. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes.

    PubMed

    Tubio, Jose M C; Li, Yilong; Ju, Young Seok; Martincorena, Inigo; Cooke, Susanna L; Tojo, Marta; Gundem, Gunes; Pipinikas, Christodoulos P; Zamora, Jorge; Raine, Keiran; Menzies, Andrew; Roman-Garcia, Pablo; Fullam, Anthony; Gerstung, Moritz; Shlien, Adam; Tarpey, Patrick S; Papaemmanuil, Elli; Knappskog, Stian; Van Loo, Peter; Ramakrishna, Manasa; Davies, Helen R; Marshall, John; Wedge, David C; Teague, Jon W; Butler, Adam P; Nik-Zainal, Serena; Alexandrov, Ludmil; Behjati, Sam; Yates, Lucy R; Bolli, Niccolo; Mudie, Laura; Hardy, Claire; Martin, Sancha; McLaren, Stuart; O'Meara, Sarah; Anderson, Elizabeth; Maddison, Mark; Gamble, Stephen; Foster, Christopher; Warren, Anne Y; Whitaker, Hayley; Brewer, Daniel; Eeles, Rosalind; Cooper, Colin; Neal, David; Lynch, Andy G; Visakorpi, Tapio; Isaacs, William B; Veer, Laura Van't; Caldas, Carlos; Desmedt, Christine; Sotiriou, Christos; Aparicio, Sam; Foekens, John A; Eyfjörd, Jórunn Erla; Lakhani, Sunil R; Thomas, Gilles; Myklebost, Ola; Span, Paul N; Børresen-Dale, Anne-Lise; Richardson, Andrea L; Van de Vijver, Marc; Vincent-Salomon, Anne; Van den Eynden, Gert G; Flanagan, Adrienne M; Futreal, P Andrew; Janes, Sam M; Bova, G Steven; Stratton, Michael R; McDermott, Ultan; Campbell, Peter J

    2014-08-01

    Long interspersed nuclear element-1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3' transduction. Because 3' transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3' transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3' transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3' transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome. Copyright © 2014, American Association for the Advancement of Science.

  15. Infant peripheral blood repetitive element hypomethylation associated with antiretroviral therapy in utero.

    PubMed

    Marsit, Carmen J; Brummel, Sean S; Kacanek, Deborah; Seage, George R; Spector, Stephen A; Armstrong, David A; Lester, Barry M; Rich, Kenneth

    2015-01-01

    The use of combination antiretroviral therapy (cART) to prevent HIV mother-to-child transmission during pregnancy and delivery is generally considered safe. However, vigilant assessment of potential risks of these agents remains warranted. Epigenetic changes including DNA methylation are considered potential mechanisms linking the in utero environment with long-term health outcomes. Few studies have examined the epigenetic effects of prenatal exposure to pharmaceutical agents, including antiretroviral therapies, on children. In this study, we examined the methylation status of the LINE-1 and ALU-Yb8 repetitive elements as markers of global DNA methylation alteration in peripheral blood mononuclear cells obtained from newborns participating in the Pediatric HIV/AIDS Cohort Study SMARTT cohort of HIV-exposed, cART-exposed uninfected infants compared to a historical cohort of HIV-exposed, antiretroviral-unexposed infants from the Women and Infants Transmission Study Cohort. In linear regression models controlling for potential confounders, we found the adjusted mean difference of AluYb8 methylation of the cART-exposed compared to the -unexposed was -0.568 (95% CI: -1.023, -0.149) and for LINE-1 methylation was -1.359 (95% CI: -1.860, -0.857). Among those exposed to cART, subjects treated with atazanavir (ATV), compared to those on other treatments, had less AluYb8 methylation (-0.524, 95% CI: -0.025, -1.024). Overall, these results suggest a small but statistically significant reduction in the methylation of these repetitive elements in an HIV-exposed, cART-exposed cohort compared to an HIV-exposed, cART-unexposed historic cohort. The potential long-term implications of these differences are worthy of further examination.

  16. Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays.

    PubMed

    Mak, Angel C Y; Lai, Yvonne Y Y; Lam, Ernest T; Kwok, Tsz-Piu; Leung, Alden K Y; Poon, Annie; Mostovoy, Yulia; Hastie, Alex R; Stedman, William; Anantharaman, Thomas; Andrews, Warren; Zhou, Xiang; Pang, Andy W C; Dai, Heng; Chu, Catherine; Lin, Chin; Wu, Jacob J K; Li, Catherine M L; Li, Jing-Woei; Yim, Aldrin K Y; Chan, Saki; Sibert, Justin; Džakula, Željko; Cao, Han; Yiu, Siu-Ming; Chan, Ting-Fung; Yip, Kevin Y; Xiao, Ming; Kwok, Pui-Yan

    2016-01-01

    Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation. Copyright © 2016 by the Genetics Society of America.

  17. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome

    PubMed Central

    Hamilton, Eileen P; Kapusta, Aurélie; Huvos, Piroska E; Bidwell, Shelby L; Zafar, Nikhat; Tang, Haibao; Hadjithomas, Michalis; Krishnakumar, Vivek; Badger, Jonathan H; Caler, Elisabet V; Russ, Carsten; Zeng, Qiandong; Fan, Lin; Levin, Joshua Z; Shea, Terrance; Young, Sarah K; Hegarty, Ryan; Daza, Riza; Gujja, Sharvari; Wortman, Jennifer R; Birren, Bruce W; Nusbaum, Chad; Thomas, Jainy; Carey, Clayton M; Pritham, Ellen J; Feschotte, Cédric; Noto, Tomoko; Mochizuki, Kazufumi; Papazyan, Romeo; Taverna, Sean D; Dear, Paul H; Cassidy-Hanley, Donna M; Xiong, Jie; Miao, Wei; Orias, Eduardo; Coyne, Robert S

    2016-01-01

    The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena’s germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum. DOI: http://dx.doi.org/10.7554/eLife.19090.001 PMID:27892853

  18. Molecular determinants of origin discrimination by Orc1 initiators in archaea.

    PubMed

    Dueber, Erin C; Costa, Alessandro; Corn, Jacob E; Bell, Stephen D; Berger, James M

    2011-05-01

    Unlike bacteria, many eukaryotes initiate DNA replication from genomic sites that lack apparent sequence conservation. These loci are identified and bound by the origin recognition complex (ORC), and subsequently activated by a cascade of events that includes recruitment of an additional factor, Cdc6. Archaeal organisms generally possess one or more Orc1/Cdc6 homologs, belonging to the Initiator clade of ATPases associated with various cellular activities (AAA(+)) superfamily; however, these proteins recognize specific sequences within replication origins. Atomic resolution studies have shown that archaeal Orc1 proteins contact double-stranded DNA through an N-terminal AAA(+) domain and a C-terminal winged-helix domain (WHD), but use remarkably few base-specific contacts. To investigate the biochemical effects of these associations, we mutated the DNA-interacting elements of the Orc1-1 and Orc1-3 paralogs from the archaeon Sulfolobus solfataricus, and tested their effect on origin binding and deformation. We find that the AAA(+) domain has an unpredicted role in controlling the sequence selectivity of DNA binding, despite an absence of base-specific contacts to this region. Our results show that both the WHD and ATPase region influence origin recognition by Orc1/Cdc6, and suggest that not only DNA sequence, but also local DNA structure help define archaeal initiator binding sites. © The Author(s) 2011. Published by Oxford University Press.

  19. Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa.

    PubMed

    Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Chen, Qingqing; Tian, Jiaxing; Zhang, Deqiang

    2013-12-01

    Dioecious plants have evolved sex-specific floral development mechanisms. However, the precise gene expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. Comparative transcriptome and physiological analysis allowed us to characterize sex-specific development of female and male flowers. Transcriptome analysis identified genes significantly differentially expressed between the sexes, including genes related to floral development, phytohormone synthesis and metabolism, and DNA methylation. Correlation analysis revealed a significant correlation between phytohormone signaling and gene expression, identifying specific phytohormone-responsive genes and their cis-regulatory elements. Two genes related to DNA methylation, METHYLTRANSFERASE1 (MET1) and DECREASED DNA METHYLATION 1 (DDM1), which are located in the sex determination region of Chromosome XIX, have differential expression between female and male flowers. A time-course analysis revealed that MET1 and DDM1 expression may produce different DNA methylation levels in female and male flowers. Understanding the interactions of phytohormone signaling, DNA methylation and target gene expression should lead to a better understanding of sexual differences in floral development. Thus, this study identifies a set of candidate genes for further studies of poplar sexual dimorphism and relates sex-specific floral development to physiological and epigenetic changes.

  20. Multiple roles of genome-attached bacteriophage terminal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid.more » Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.« less

  1. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes.

    PubMed

    Cer, Regina Z; Bruce, Kevin H; Mudunuri, Uma S; Yi, Ming; Volfovsky, Natalia; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2011-01-01

    Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.

  2. Optimization of hCFTR Lung Expression in Mice Using DNA Nanoparticles

    PubMed Central

    Padegimas, Linas; Kowalczyk, Tomasz H; Adams, Sam; Gedeon, Chris R; Oette, Sharon M; Dines, Karla; Hyatt, Susannah L; Sesenoglu-Laird, Ozge; Tyr, Olena; Moen, Robert C; Cooper, Mark J

    2012-01-01

    Efficient and prolonged human cystic fibrosis transmembrane conductance regulator (hCFTR) expression is a major goal for cystic fibrosis (CF) lung therapy. A hCFTR expression plasmid was optimized as a payload for compacted DNA nanoparticles formulated with polyethylene glycol (PEG)-substituted 30-mer lysine peptides. A codon-optimized and CpG-reduced hCFTR synthetic gene (CO-CFTR) was placed in a polyubiquitin C expression plasmid. Compared to hCFTR complementary DNA (cDNA), CO-CFTR produced a ninefold increased level of hCFTR protein in transfected HEK293 cells and, when compacted as DNA nanoparticles, produced a similar improvement in lung mRNA expression in Balb/c and fatty acid binding protein promoter (FABP) CF mice, although expression duration was transient. Various vector modifications were tested to extend duration of CO-CFTR expression. A novel prolonged expression (PE) element derived from the bovine growth hormone (BGH) gene 3′ flanking sequence produced prolonged expression of CO-CFTR mRNA at biologically relevant levels. A time course study in the mouse lung revealed that CO-CFTR mRNA did not change significantly, with CO-CFTR/mCFTR geometric mean ratios of 94% on day 2, 71% on day 14, 53% on day 30, and 14% on day 59. Prolonged CO-CFTR expression is dependent on the orientation of the PE element and its transcription, is not specific to the UbC promoter, and is less dependent on other vector backbone elements. PMID:21952168

  3. An Integrated Encyclopedia of DNA Elements in the Human Genome

    PubMed Central

    2012-01-01

    Summary The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure, and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall the project provides new insights into the organization and regulation of our genes and genome, and an expansive resource of functional annotations for biomedical research. PMID:22955616

  4. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention?

    PubMed Central

    Diamond, Alan M.

    2013-01-01

    The trace element selenium is an essential micronutrient that has received considerable attention for its potential use in the prevention of cancer. In spite of this interest, the mechanism(s) by which selenium might function as a chemopreventive remain to be determined. Considerable experimental evidence indicates that one possible mechanism by which selenium supplementation may exert its benefits is by enhancing the DNA damage repair response, and this includes data obtained using cultured cells, animal models as well as in human clinical studies. In these studies, selenium supplementation has been shown to be beneficial in reducing the frequency of DNA adducts and chromosome breaks, consequentially reducing the likelihood of detrimental mutations that ultimately contribute to carcinogenesis. The benefits of selenium can be envisioned as being due, at least in part, to it being a critical constituent of selenoproteins such as glutathione peroxidases and thioredoxin reductases, proteins that play important roles in antioxidant defence and maintaining the cellular reducing environment. Selenium, therefore, may be protective by preventing DNA damage from occurring as well as by increasing the activity of repair enzymes such as DNA glycosylases and DNA damage repair pathways that involve p53, BRCA1 and Gadd45. An improved understanding of the mechanism of selenium’s impact on DNA repair processes may help to resolve the apparently contradicting data obtained from decades of animal work, human epidemiology and more recently, clinical supplementation studies. PMID:23204505

  5. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro

    PubMed Central

    Serfiotis-Mitsa, Dimitra; Herbert, Andrew P.; Roberts, Gareth A.; Soares, Dinesh C.; White, John H.; Blakely, Garry W.; Uhrín, Dušan; Dryden, David T. F.

    2010-01-01

    Plasmids, conjugative transposons and phage frequently encode anti-restriction proteins to enhance their chances of entering a new bacterial host that is highly likely to contain a Type I DNA restriction and modification (RM) system. The RM system usually destroys the invading DNA. Some of the anti-restriction proteins are DNA mimics and bind to the RM enzyme to prevent it binding to DNA. In this article, we characterize ArdB anti-restriction proteins and their close homologues, the KlcA proteins from a range of mobile genetic elements; including an ArdB encoded on a pathogenicity island from uropathogenic Escherichia coli and a KlcA from an IncP-1b plasmid, pBP136 isolated from Bordetella pertussis. We show that all the ArdB and KlcA act as anti-restriction proteins and inhibit the four main families of Type I RM systems in vivo, but fail to block the restriction endonuclease activity of the archetypal Type I RM enzyme, EcoKI, in vitro indicating that the action of ArdB is indirect and very different from that of the DNA mimics. We also present the structure determined by NMR spectroscopy of the pBP136 KlcA protein. The structure shows a novel protein fold and it is clearly not a DNA structural mimic. PMID:20007596

  6. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    PubMed

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single-stranded oligonucleotides targeting the replication fork on either leading or lagging strands, we showed that viral lagging-strand replication activates the promoter. We also identified a transcriptional repressor element located upstream of the promoter transcription start site which interacts with cellular proteins hnRNP D0B and hnRNP A/B and modulates the late promoter activity. This is the first report on how DNA replication activates a viral late promoter. Copyright © 2017 Wang et al.

  7. A Conserved Helicase Processivity Factor Is Needed for Conjugation and Replication of an Integrative and Conjugative Element

    PubMed Central

    Thomas, Jacob; Lee, Catherine A.; Grossman, Alan D.

    2013-01-01

    Integrative and conjugative elements (ICEs) are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT) by the ICE–encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP), encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability. PMID:23326247

  8. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity

    PubMed Central

    Song, Lingyun; Zhang, Zhancheng; Grasfeder, Linda L.; Boyle, Alan P.; Giresi, Paul G.; Lee, Bum-Kyu; Sheffield, Nathan C.; Gräf, Stefan; Huss, Mikael; Keefe, Damian; Liu, Zheng; London, Darin; McDaniell, Ryan M.; Shibata, Yoichiro; Showers, Kimberly A.; Simon, Jeremy M.; Vales, Teresa; Wang, Tianyuan; Winter, Deborah; Zhang, Zhuzhu; Clarke, Neil D.; Birney, Ewan; Iyer, Vishwanath R.; Crawford, Gregory E.; Lieb, Jason D.; Furey, Terrence S.

    2011-01-01

    The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map “open chromatin.” Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease. PMID:21750106

  9. Sequence variations in RepMP2/3 and RepMP4 elements reveal intragenomic homologous DNA recombination events in Mycoplasma pneumoniae.

    PubMed

    Spuesens, Emiel B M; Oduber, Minoushka; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis

    2009-07-01

    The gene encoding major adhesin protein P1 of Mycoplasma pneumoniae, MPN141, contains two DNA sequence stretches, designated RepMP2/3 and RepMP4, which display variation among strains. This variation allows strains to be differentiated into two major P1 genotypes (1 and 2) and several variants. Interestingly, multiple versions of the RepMP2/3 and RepMP4 elements exist at other sites within the bacterial genome. Because these versions are closely related in sequence, but not identical, it has been hypothesized that they have the capacity to recombine with their counterparts within MPN141, and thereby serve as a source of sequence variation of the P1 protein. In order to determine the variation within the RepMP2/3 and RepMP4 elements, both within the bacterial genome and among strains, we analysed the DNA sequences of all RepMP2/3 and RepMP4 elements within the genomes of 23 M. pneumoniae strains. Our data demonstrate that: (i) recombination is likely to have occurred between two RepMP2/3 elements in four of the strains, and (ii) all previously described P1 genotypes can be explained by inter-RepMP recombination events. Moreover, the difference between the two major P1 genotypes was reflected in all RepMP elements, such that subtype 1 and 2 strains can be differentiated on the basis of sequence variation in each RepMP element. This implies that subtype 1 and subtype 2 strains represent evolutionarily diverged strain lineages. Finally, a classification scheme is proposed in which the P1 genotype of M. pneumoniae isolates can be described in a sequence-based, universal fashion.

  10. Epigenetic regulation of transcription and possible functions of mammalian short interspersed elements, SINEs.

    PubMed

    Ichiyanagi, Kenji

    2013-01-01

    Short interspersed elements (SINEs) are a class of retrotransposons, which amplify their copy numbers in their host genomes by retrotransposition. More than a million copies of SINEs are present in a mammalian genome, constituting over 10% of the total genomic sequence. In contrast to the other two classes of retrotransposons, long interspersed elements (LINEs) and long terminal repeat (LTR) elements, SINEs are transcribed by RNA polymerase III. However, like LINEs and LTR elements, the SINE transcription is likely regulated by epigenetic mechanisms such as DNA methylation, at least for human Alu and mouse B1. Whereas SINEs and other transposable elements have long been thought as selfish or junk DNA, recent studies have revealed that they play functional roles at their genomic locations, for example, as distal enhancers, chromatin boundaries and binding sites of many transcription factors. These activities imply that SINE retrotransposition has shaped the regulatory network and chromatin landscape of their hosts. Whereas it is thought that the epigenetic mechanisms were originated as a host defense system against proliferation of parasitic elements, this review discusses a possibility that the same mechanisms are also used to regulate the SINE-derived functions.

  11. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB

    PubMed Central

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R.; Stedtfeld, Robert D.; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A.

    2017-01-01

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131). PMID:28555058

  12. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB.

    PubMed

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A

    2017-05-29

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R² = 0.8131).

  13. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    PubMed Central

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-01-01

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5′-phosphodiester bond at an AP site to generate a free 3′-­hydroxyl group and a 5′-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-­ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. PMID:20823514

  14. Personal DNA testing in college classrooms: perspectives of students and professors.

    PubMed

    Daley, Lori-Ann A; Wagner, Jennifer K; Himmel, Tiffany L; McPartland, Kaitlyn A; Katsanis, Sara H; Shriver, Mark D; Royal, Charmaine D

    2013-06-01

    Discourse on the integration of personal genetics and genomics into classrooms is increasing; however, limited data have been collected on the perspectives of students and professors. We conducted a cross-sectional survey of undergraduate and graduate students as well as professors at two major universities to assess attitudes regarding the use of personal DNA testing and other personalized activities in college classrooms. Students indicated that they were more likely to enroll (60.2%) in a genetics course if it offered personal DNA testing; undergraduate students were more likely than graduate students to enroll if personal DNA testing was offered (p=0.029). Students who majored in the physical sciences were less likely to enroll than students in the biological or social sciences (p=0.019). Students also indicated that when course material is personalized, the course is more interesting (94.6%) and the material is easier to learn (87.3%). Professors agreed that adding a personalized element increases student interest, participation, and learning (86.0%, 82.6%, and 72.6%, respectively). The results of this study indicate that, overall, students and professors had a favorable view of the integration of personalized information, including personal DNA testing, into classroom activities, and students welcomed more opportunities to participate in personalized activities.

  15. [Structure and function of eukaryotic nuclear DNA-dependent RNA polymerase I].

    PubMed

    Shematorova, E K; Shpakovskiĭ, G V

    2002-01-01

    In the eukaryotic cell, normal protein biosynthesis is sustained by several million ribosomes, which contain rRNA as an essential component. The high-molecular-weight precursor of large and 5.8S rRNAs is synthesized by DNA-dependent RNA polymerase I (Pol I) in the nucleolus. Data on DNA regulatory elements, protein factors involved in rDNA transcription by Pol I, subunit composition of Pol I, and on the interactions and possible functions of individual subunits are summarized.

  16. Transitional circuitry for studying the properties of DNA

    NASA Astrophysics Data System (ADS)

    Trubochkina, N.

    2018-01-01

    The article is devoted to a new view of the structure of DNA as an intellectual scheme possessing the properties of logic and memory. The theory of transient circuitry, developed by the author for optimal computer circuits, revealed an amazing structural similarity between mathematical models of transition silicon elements and logic and memory circuits of solid state transient circuitry and atomic models of parts of DNA.

  17. The Interplay Between Estrogen and Replication Origins in Breast Cancer DNA Amplification

    DTIC Science & Technology

    2013-09-01

    Replication Origins in Breast Cancer DNA Amplification PRINCIPAL INVESTIGATOR: Cinzia Casella CONTRACTING ORGANIZATION: Brown...Interplay Between Estrogen and Replication Origins in Breast Cancer DNA Amplification 5b. GRANT NUMBER W81XWH-11-1-0599 5c. PROGRAM ELEMENT NUMBER 6... amplification and oncogenes activation in breast cancer cells? This project aims to understand the role of estrogen in inducing re-replication, thus

  18. Genome size diversity in angiosperms and its influence on gene space.

    PubMed

    Dodsworth, Steven; Leitch, Andrew R; Leitch, Ilia J

    2015-12-01

    Genome size varies c. 2400-fold in angiosperms (flowering plants), although the range of genome size is skewed towards small genomes, with a mean genome size of 1C=5.7Gb. One of the most crucial factors governing genome size in angiosperms is the relative amount and activity of repetitive elements. Recently, there have been new insights into how these repeats, previously discarded as 'junk' DNA, can have a significant impact on gene space (i.e. the part of the genome comprising all the genes and gene-related DNA). Here we review these new findings and explore in what ways genome size itself plays a role in influencing how repeats impact genome dynamics and gene space, including gene expression. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Mutations in Cockayne Syndrome-Associated Genes (Csa and Csb) Predispose to Cisplatin-Induced Hearing Loss in Mice

    PubMed Central

    Rainey, Robert N.; Ng, Sum-yan; Llamas, Juan; van der Horst, Gijsbertus T. J.

    2016-01-01

    Cisplatin is a common and effective chemotherapeutic agent, yet it often causes permanent hearing loss as a result of sensory hair cell death. The causes of sensitivity to DNA-damaging agents in nondividing cell populations, such as cochlear hair and supporting cells, are poorly understood, as are the specific DNA repair pathways that protect these cells. Nucleotide excision repair (NER) is a conserved and versatile DNA repair pathway for many DNA-distorting lesions, including cisplatin-DNA adducts. Progressive sensorineural hearing loss is observed in a subset of NER-associated DNA repair disorders including Cockayne syndrome and some forms of xeroderma pigmentosum. We investigated whether either of the two overlapping branches that encompass NER, transcription-coupled repair or global genome repair, which are implicated in Cockayne syndrome and xeroderma pigmentosum group C, respectively, modulates cisplatin-induced hearing loss and cell death in the organ of Corti, the auditory sensory epithelium of mammals. We report that cochlear hair cells and supporting cells in transcription-coupled repair-deficient Cockayne syndrome group A (Csa−/−) and group B (Csb−/−) mice are hypersensitive to cisplatin, in contrast to global genome repair-deficient Xpc−/− mice, both in vitro and in vivo. We show that sensory hair cells in Csa−/− and Csb−/− mice fail to remove cisplatin-DNA adducts efficiently in vitro; and unlike Xpc−/− mice, Csa−/− and Csb−/− mice lose hearing and manifest outer hair cell degeneration after systemic cisplatin treatment. Our results demonstrate that Csa and Csb deficiencies predispose to cisplatin-induced hearing loss and hair/supporting cell damage in the mammalian organ of Corti, and emphasize the importance of transcription-coupled DNA repair in the protection against cisplatin ototoxicity. SIGNIFICANCE STATEMENT The utility of cisplatin in chemotherapy remains limited due to serious side effects, including sensorineural hearing loss. We show that mouse models of Cockayne syndrome, a progeroid disorder resulting from a defect in the transcription-coupled DNA repair (TCR) branch of nucleotide excision repair, are hypersensitive to cisplatin-induced hearing loss and sensory hair cell death in the organ of Corti, the mammalian auditory sensory epithelium. Our work indicates that Csa and Csb, two genes involved in TCR, are preferentially required to protect against cisplatin ototoxicity, relative to global genome repair-specific elements of nucleotide excision repair, and suggests that TCR is a major force maintaining DNA integrity in the cochlea. The Cockayne syndrome mice thus represent a model for testing the contribution of DNA repair mechanisms to cisplatin ototoxicity. PMID:27122034

  20. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis.

    PubMed

    Smith, Michael G; Gianoulis, Tara A; Pukatzki, Stefan; Mekalanos, John J; Ornston, L Nicholas; Gerstein, Mark; Snyder, Michael

    2007-03-01

    Acinetobacter baumannii has emerged as an important and problematic human pathogen as it is the causative agent of several types of infections including pneumonia, meningitis, septicemia, and urinary tract infections. We explored the pathogenic content of this harmful pathogen using a combination of DNA sequencing and insertional mutagenesis. The genome of this organism was sequenced using a strategy involving high-density pyrosequencing, a novel, rapid method of high-throughput sequencing. Excluding the rDNA repeats, the assembled genome is 3,976,746 base pairs (bp) and has 3830 ORFs. A significant fraction of ORFs (17.2%) are located in 28 putative alien islands, indicating that the genome has acquired a large amount of foreign DNA. Consistent with its role in pathogenesis, a remarkable number of the islands (16) contain genes implicated in virulence, indicating the organism devotes a considerable portion of its genes to pathogenesis. The largest island contains elements homologous to the Legionella/Coxiella Type IV secretion apparatus. Type IV secretion systems have been demonstrated to be important for virulence in other organisms and thus are likely to help mediate pathogenesis of A. baumannii. Insertional mutagenesis generated avirulent isolates of A. baumannii and verified that six of the islands contain virulence genes, including two novel islands containing genes that lacked homology with others in the databases. The DNA sequencing approach described in this study allows the rapid elucidation of the DNA sequence of any microbe and, when combined with genetic screens, can identify many novel genes important for microbial pathogenesis.

  1. Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.).

    PubMed

    Shoemaker, D D; Ross, K G; Keller, L; Vargo, E L; Werren, J H

    2000-12-01

    Wolbachia are cytoplasmically inherited bacteria that induce a variety of effects with fitness consequences on host arthropods, including cytoplasmic incompatibility, parthenogenesis, male-killing and feminization. We report here the presence of Wolbachia in native South American populations of the fire ant Solenopsis invicta, but the apparent absence of the bacteria in introduced populations of this pest species in the USA. The Wolbachia strains in native S. invicta are of two divergent types (A and B), and the frequency of infection varies dramatically between geographical regions and social forms of this host. Survey data reveal that Wolbachia also are found in other native fire ant species within the Solenopsis saevissima species complex from South America, including S. richteri. This latter species also has been introduced in the USA, where it lacks Wolbachia. Sequence data reveal complete phylogenetic concordance between mtDNA haplotype in S. invicta and Wolbachia infection type (A or B). In addition, the mtDNA and associated group A Wolbachia strain in S. invicta are more closely related to the mtDNA and Wolbachia strain found in S. richteri than they are to the mtDNA and associated group B Wolbachia in S. invicta. These data are consistent with historical introgression of S. richteri cytoplasmic elements into S. invicta populations, resulting in enhanced infection and mtDNA polymorphisms in S. invicta. Wolbachia may have significant fitness effects on these hosts (either directly or by cytoplasmic incompatibility) and therefore these microbes potentially could be used in biological control programmes to suppress introduced fire ant populations.

  2. Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention

    PubMed Central

    Stefanska, B; Karlic, H; Varga, F; Fabianowska-Majewska, K; Haslberger, AG

    2012-01-01

    The hallmarks of carcinogenesis are aberrations in gene expression and protein function caused by both genetic and epigenetic modifications. Epigenetics refers to the changes in gene expression programming that alter the phenotype in the absence of a change in DNA sequence. Epigenetic modifications, which include amongst others DNA methylation, covalent modifications of histone tails and regulation by non-coding RNAs, play a significant role in normal development and genome stability. The changes are dynamic and serve as an adaptation mechanism to a wide variety of environmental and social factors including diet. A number of studies have provided evidence that some natural bioactive compounds found in food and herbs can modulate gene expression by targeting different elements of the epigenetic machinery. Nutrients that are components of one-carbon metabolism, such as folate, riboflavin, pyridoxine, cobalamin, choline, betaine and methionine, affect DNA methylation by regulating the levels of S-adenosyl-L-methionine, a methyl group donor, and S-adenosyl-L-homocysteine, which is an inhibitor of enzymes catalyzing the DNA methylation reaction. Other natural compounds target histone modifications and levels of non-coding RNAs such as vitamin D, which recruits histone acetylases, or resveratrol, which activates the deacetylase sirtuin and regulates oncogenic and tumour suppressor micro-RNAs. As epigenetic abnormalities have been shown to be both causative and contributing factors in different health conditions including cancer, natural compounds that are direct or indirect regulators of the epigenome constitute an excellent approach in cancer prevention and potentially in anti-cancer therapy. PMID:22536923

  3. Cascade DNA nanomachine and exponential amplification biosensing.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Lesion bypass activity of DNA polymerase θ (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts.

    PubMed

    Hogg, Matthew; Seki, Mineaki; Wood, Richard D; Doublié, Sylvie; Wallace, Susan S

    2011-01-21

    DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    PubMed

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  6. The Alarmin Properties of DNA and DNA-associated Nuclear Proteins.

    PubMed

    Magna, Melinda; Pisetsky, David S

    2016-05-01

    The communication of cell injury and death is a critical element in host defense. Although immune cells can serve this function by elaborating cytokines and chemokines, somatic cells can repurpose nuclear macromolecules to function as damage-associated molecular patterns (DAMPs) or alarmins to exert similar activity. Among these molecules, DNA, high-mobility group box-1, and histone proteins can all act as DAMPs once they are in an extracellular location. This review describes current information on the role of the nuclear DAMPs, their translocation to the outside of cells, and pathways of activation after uptake into the inside of immune cells. MEDLINE and PubMed databases were searched for citations (1990-2016) in English related to the following terms: DAMPs, high-mobility group box-1, DNA, histones, cell death, danger, and immune activation. Selected articles with the most relevant studies were included for a more detailed consideration. Although nuclear molecules have important structural and genetic regulatory roles inside the cell nucleus, when released into the extracellular space during cell death, these molecules can acquire immune activity and serve as alarmins or DAMPs. Although apoptosis is generally considered the source of extracellular nuclear material, other cell death pathways such as necroptosis, NETosis, and pyroptosis can contribute to the release of nuclear molecules. Importantly, the release of nuclear DAMPs occurs with both soluble and particulate forms of these molecules. The activity of nuclear molecules may depend on posttranslational modifications, redox changes, and the binding of other molecules. Once in an extracellular location, nuclear DAMPs can engage the same pattern recognition receptors as do pathogen-associated molecular patterns. These interactions can activate immune cells and lead to cytokine and chemokine production. Among these receptors, internal receptors for DNA are key to the response to this molecule; the likely function of these internal sensors is the recognition of DNA from intracellular infection by bacteria or viruses. Activation of these receptors requires translocation of extracellular DNA into specialized compartments. In addition to nuclear DNA, mitochondrial DNA can also serve as a DAMP. The communication of cell injury and death is a critical element in host defense and involves the repurposing of nuclear molecules as immune triggers. As such, the presence of extracellular nuclear material can serve as novel biomarkers for conditions involving cell injury and death. Targeting of these molecules may also represent an important new approach to therapy. Published by Elsevier Inc.

  7. Enrichment of short interspersed transposable elements to embryonic stem cell-specific hypomethylated gene regions.

    PubMed

    Muramoto, Hiroki; Yagi, Shintaro; Hirabayashi, Keiji; Sato, Shinya; Ohgane, Jun; Tanaka, Satoshi; Shiota, Kunio

    2010-08-01

    Embryonic stem cells (ESCs) have a distinctive epigenome, which includes their genome-wide DNA methylation modification status, as represented by the ESC-specific hypomethylation of tissue-dependent and differentially methylated regions (T-DMRs) of Pou5f1 and Nanog. Here, we conducted a genome-wide investigation of sequence characteristics associated with T-DMRs that were differentially methylated between ESCs and somatic cells, by focusing on transposable elements including short interspersed elements (SINEs), long interspersed elements (LINEs) and long terminal repeats (LTRs). We found that hypomethylated T-DMRs were predominantly present in SINE-rich/LINE-poor genomic loci. The enrichment for SINEs spread over 300 kb in cis and there existed SINE-rich genomic domains spreading continuously over 1 Mb, which contained multiple hypomethylated T-DMRs. The characterization of sequence information showed that the enriched SINEs were relatively CpG rich and belonged to specific subfamilies. A subset of the enriched SINEs were hypomethylated T-DMRs in ESCs at Dppa3 gene locus, although SINEs are overall methylated in both ESCs and the liver. In conclusion, we propose that SINE enrichment is the genomic property of regions harboring hypomethylated T-DMRs in ESCs, which is a novel aspect of the ESC-specific epigenomic information.

  8. The SIDER2 elements, interspersed repeated sequences that populate the Leishmania genomes, constitute subfamilies showing chromosomal proximity relationship.

    PubMed

    Requena, Jose M; Folgueira, Cristina; López, Manuel C; Thomas, M Carmen

    2008-06-02

    Protozoan parasites of the genus Leishmania are causative agents of a diverse spectrum of human diseases collectively known as leishmaniasis. These eukaryotic pathogens that diverged early from the main eukaryotic lineage possess a number of unusual genomic, molecular and biochemical features. The completion of the genome projects for three Leishmania species has generated invaluable information enabling a direct analysis of genome structure and organization. By using DNA macroarrays, made with Leishmania infantum genomic clones and hybridized with total DNA from the parasite, we identified a clone containing a repeated sequence. An analysis of the recently completed genome sequence of L. infantum, using this repeated sequence as bait, led to the identification of a new class of repeated elements that are interspersed along the different L. infantum chromosomes. These elements turned out to be homologues of SIDER2 sequences, which were recently identified in the Leishmania major genome; thus, we adopted this nomenclature for the Leishmania elements described herein. Since SIDER2 elements are very heterogeneous in sequence, their precise identification is rather laborious. We have characterized 54 LiSIDER2 elements in chromosome 32 and 27 ones in chromosome 20. The mean size for these elements is 550 bp and their sequence is G+C rich (mean value of 66.5%). On the basis of sequence similarity, these elements can be grouped in subfamilies that show a remarkable relationship of proximity, i.e. SIDER2s of a given subfamily locate close in a chromosomal region without intercalating elements. For comparative purposes, we have identified the SIDER2 elements existing in L. major and Leishmania braziliensis chromosomes 32. While SIDER2 elements are highly conserved both in number and location between L. infantum and L. major, no such conservation exists when comparing with SIDER2s in L. braziliensis chromosome 32. SIDER2 elements constitute a relevant piece in the Leishmania genome organization. Sequence characteristics, genomic distribution and evolutionarily conservation of SIDER2s are suggestive of relevant functions for these elements in Leishmania. Apart from a proved involvement in post-transcriptional mechanisms of gene regulation, SIDER2 elements could be involved in DNA amplification processes and, perhaps, in chromosome segregation as centromeric sequences.

  9. Promoter-proximal rDNA terminator augments initiation by preventing disruption of the stable transcription complex caused by polymerase read-in

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, S.L.; Ryan, K.; Sollner-Webb, B.

    1989-02-01

    We have examined the mechanism by which transcriptional initiation at the mouse rDNA promoter is augmented by the RNA polymerase I terminator element that resides just upstream of it. Using templates in which terminator elements are instead positioned at the opposite side of the plasmid rather than proximal to the promoter, or conditions where transcription is terminated elsewhere in the plasmid by UV-induced lesions, we show that the terminator's stimulatory effect is not position dependent. Mouse terminator elements therefore do not stimulate via the previously postulated 'read-through enhancement' model in which terminated polymerases are handed off to an adjacent promotermore » in a concerted reaction. The position independence and orientation dependence of the terminator also makes it unlikely that the terminator functions as a promoter element or as an enhancer. Instead, terminators serve to augment initiation by preventing polymerases from reading completely around the plasmid and through the promoter from upstream, an event which we show interferes with subsequent rounds of initiation. Notably, this transcriptional interference arises because polymerase passage across a promoter disrupts the otherwise stable transcription complex, specifically releasing the bound transcription factor D. These liberated D molecules can then bind to other templates and activate their expression. The rDNA transcriptional interference is not due to a steric impediment to the binding of new polymerase molecules, and it does not similarly liberate the initiation-competent polymerase (factor C). These studies have also convincingly demonstrated that multiple rounds of transcription are obtained from rDNA template molecules in vitro.« less

  10. Ultraviolet light-resistant primary transfectants of xeroderma pigmentosum cells are also DNA repair-proficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, M.; Naiman, T.; Canaani, D.

    1989-08-15

    In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced ({sup 3}H)thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line.

  11. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.

    PubMed

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-06-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as 'homing' similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Distribution of Unlinked Transpositions of a Ds Element from a T-DNA Locus on Tomato Chromosome 4

    PubMed Central

    Briza, J.; Carroll, B. J.; Klimyuk, V. I.; Thomas, C. M.; Jones, D. A.; Jones, JDG.

    1995-01-01

    In maize, receptor sites for unlinked transpositions of Activator (Ac) elements are not distributed randomly. To test whether the same is true in tomato, the receptor sites for a Dissociation (Ds) element derived from Ac, were mapped for 26 transpositions unlinked to a donor T-DNA locus on chromosome 4. Four independent transposed Dss mapped to sites on chromosome 4 genetically unlinked to the donor T-DNA, consistent with a preference for transposition to unlinked sites on the same chromosome as opposed to sites on other chromosomes. There was little preference among the nondonor chromosomes, except perhaps for chromosome 2, which carried seven transposed Dss, but these could not be proven to be independent. However, these data, when combined with those from other studies in tomato examining the distribution of transposed Acs or Dss among nondonor chromosomes, suggest there may be absolute preferences for transposition irrespective of the chromosomal location of the donor site. If true, transposition to nondonor chromosomes in tomato would differ from that in maize, where the preference seems to be determined by the spatial arrangement of chromosomes in the interphase nucleus. The tomato lines carrying Ds elements at known locations are available for targeted transposon tagging experiments. PMID:8536985

  13. RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells.

    PubMed

    Zhang, Honglian; Gan, Haiyun; Wang, Zhiquan; Lee, Jeong-Heon; Zhou, Hui; Ordog, Tamas; Wold, Marc S; Ljungman, Mats; Zhang, Zhiguo

    2017-01-19

    The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. AzaHx, a novel fluorescent, DNA minor groove and G·C recognition element: Synthesis and DNA binding properties of a p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (azaHx-PI) polyamide.

    PubMed

    Satam, Vijay; Babu, Balaji; Patil, Pravin; Brien, Kimberly A; Olson, Kevin; Savagian, Mia; Lee, Megan; Mepham, Andrew; Jobe, Laura Beth; Bingham, John P; Pett, Luke; Wang, Shuo; Ferrara, Maddi; Bruce, Chrystal D; Wilson, W David; Lee, Moses; Hartley, John A; Kiakos, Konstantinos

    2015-09-01

    The design, synthesis, and DNA binding properties of azaHx-PI or p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (5) are described. AzaHx, 2-(p-anisyl)-4-aza-benzimidazole-5-carboxamide, is a novel, fluorescent DNA recognition element, derived from Hoechst 33258 to recognize G·C base pairs. Supported by theoretical data, the results from DNase I footprinting, CD, ΔT(M), and SPR studies provided evidence that an azaHx/IP pairing, formed from antiparallel stacking of two azaHx-PI molecules in a side-by-side manner in the minor groove, selectively recognized a C-G doublet. AzaHx-PI was found to target 5'-ACGCGT-3', the Mlu1 Cell Cycle Box (MCB) promoter sequence with specificity and significant affinity (K(eq) 4.0±0.2×10(7) M(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A SHORT SEQUENCE IMMEDIATELY UPSTREAM OF THE INTERNAL REPEAT ELEMENTS IS CRITICAL FOR KSHV LANA MEDIATED DNA REPLICATION AND IMPACTS EPISOME PERSISTENCE

    PubMed Central

    León Vázquez, Erika De; Juillard, Franceline; Rosner, Bernard; Kaye, Kenneth M.

    2013-01-01

    Kaposi’s sarcoma-associated herpesvirus LANA (1162 residues) mediates episomal persistence of viral genomes during latency. LANA mediates viral DNA replication and segregates episomes to daughter nuclei. A 59 residue deletion immediately upstream of the internal repeat elements rendered LANA highly deficient for DNA replication and modestly deficient for the ability to segregate episomes, while smaller deletions did not. The 59 amino acid deletion reduced LANA episome persistence by ~14-fold, while sequentially smaller deletions resulted in ~3-fold, or no deficiency. Three distinct LANA regions reorganized heterochromatin, one of which contains the deleted sequence, but the deletion did not abolish LANA’s ability to alter chromatin. Therefore, this work identifies a short internal LANA sequence that is critical for DNA replication, has modest effects on episome segregation, and substantially impacts episome persistence; this region may exert its effects through an interacting host cell protein(s). PMID:24314665

  16. Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO.

    PubMed

    Fraiture, Marie-Alice; Saltykova, Assia; Hoffman, Stefan; Winand, Raf; Deforce, Dieter; Vanneste, Kevin; De Keersmaecker, Sigrid C J; Roosens, Nancy H C

    2018-05-21

    In order to strengthen the current genetically modified organism (GMO) detection system for unauthorized GMO, we have recently developed a new workflow based on DNA walking to amplify unknown sequences surrounding a known DNA region. This DNA walking is performed on transgenic elements, commonly found in GMO, that were earlier detected by real-time PCR (qPCR) screening. Previously, we have demonstrated the ability of this approach to detect unauthorized GMO via the identification of unique transgene flanking regions and the unnatural associations of elements from the transgenic cassette. In the present study, we investigate the feasibility to integrate the described workflow with the MinION Next-Generation-Sequencing (NGS). The MinION sequencing platform can provide long read-lengths and deal with heterogenic DNA libraries, allowing for rapid and efficient delivery of sequences of interest. In addition, the ability of this NGS platform to characterize unauthorized and unknown GMO without any a priori knowledge has been assessed.

  17. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    PubMed Central

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  18. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies.

    PubMed

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-11-01

    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  19. Mobile small RNAs regulate genome-wide DNA methylation.

    PubMed

    Lewsey, Mathew G; Hardcastle, Thomas J; Melnyk, Charles W; Molnar, Attila; Valli, Adrián; Urich, Mark A; Nery, Joseph R; Baulcombe, David C; Ecker, Joseph R

    2016-02-09

    RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21-24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.

  20. DNA and RNA profiling of excavated human remains with varying postmortem intervals.

    PubMed

    van den Berge, M; Wiskerke, D; Gerretsen, R R R; Tabak, J; Sijen, T

    2016-11-01

    When postmortem intervals (PMIs) increase such as with longer burial times, human remains suffer increasingly from the taphonomic effects of decomposition processes such as autolysis and putrefaction. In this study, various DNA analysis techniques and a messenger RNA (mRNA) profiling method were applied to examine for trends in nucleic acid degradation and the postmortem interval. The DNA analysis techniques include highly sensitive DNA quantitation (with and without degradation index), standard and low template STR profiling, insertion and null alleles (INNUL) of retrotransposable elements typing and mitochondrial DNA profiling. The used mRNA profiling system targets genes with tissue specific expression for seven human organs as reported by Lindenbergh et al. (Int J Legal Med 127:891-900, 27) and has been applied to forensic evidentiary traces but not to excavated tissues. The techniques were applied to a total of 81 brain, lung, liver, skeletal muscle, heart, kidney and skin samples obtained from 19 excavated graves with burial times ranging from 4 to 42 years. Results show that brain and heart are the organs in which both DNA and RNA remain remarkably stable, notwithstanding long PMIs. The other organ tissues either show poor overall profiling results or vary for DNA and RNA profiling success, with sometimes DNA and other times RNA profiling being more successful. No straightforward relations were observed between nucleic acid profiling results and the PMI. This study shows that not only DNA but also RNA molecules can be remarkably stable and used for profiling of long-buried human remains, which corroborate forensic applications. The insight that the brain and heart tissues tend to provide the best profiling results may change sampling policies in identification cases of degrading cadavers.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberg, Matthew J; Appel, C Denise; Adhikari, Sanjay

    The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5'-phosphotyrosyl–linked topo II–DNA adducts. Here, X-ray structures of mouse Tdp2–DNA complexes reveal that Tdp2 β–2-helix–β DNA damage–binding 'grasp', helical 'cap' and DNA lesion–binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5'-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analysesmore » support a single–metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.« less

  2. DNA Fingerprinting of Lactobacillus crispatus Strain CTV-05 by Repetitive Element Sequence-Based PCR Analysis in a Pilot Study of Vaginal Colonization

    PubMed Central

    Antonio, May A. D.; Hillier, Sharon L.

    2003-01-01

    Lactobacillus crispatus is one of the predominant hydrogen peroxide (H2O2)-producing species found in the vagina and is under development as a probiotic for the treatment of bacterial vaginosis. In this study, we assessed whether DNA fingerprinting by repetitive element sequence-based PCR (rep-PCR) can be used to distinguish the capsule strain of L. crispatus (CTV-05) from other endogenous strains as well as other species of vaginal lactobacilli. Vaginal and rectal lactobacilli were identified to the species level by using whole-chromosome probe DNA hybridization. The DNAs from L. crispatus, L. jensenii, L. gasseri, and an as-yet-unnamed H2O2-negative Lactobacillus species designated 1086V were subjected to rep-PCR. The results of gel electrophoresis and ethidium bromide staining of the DNA fingerprints obtained were compared. L. crispatus CTV-05 had a unique DNA fingerprint compared to all other lactobacilli. DNA fingerprints for 27 production lots of L. crispatus sampled from 1994 through 2001 were identical to that of the original strain isolated in 1993, suggesting strain stability. In a pilot study of nine women, this DNA fingerprinting method distinguished CTV-05 from other endogenous vaginal lactobacilli prior to and after vaginal capsule use. rep-PCR DNA fingerprinting is useful for strain typing and for evaluating longitudinal loss or acquisition of vaginal lactobacilli used as probiotics. PMID:12734221

  3. Evolution in the block: common elements of 5S rDNA organization and evolutionary patterns in distant fish genera.

    PubMed

    Campo, Daniel; García-Vázquez, Eva

    2012-01-01

    The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).

  4. In vitro selection of single-stranded DNA molecular recognition elements against S. aureus alpha toxin and sensitive detection in human serum.

    PubMed

    Hong, Ka L; Battistella, Luisa; Salva, Alysia D; Williams, Ryan M; Sooter, Letha J

    2015-01-27

    Alpha toxin is one of the major virulence factors secreted by Staphylococcus aureus, a bacterium that is responsible for a wide variety of infections in both community and hospital settings. Due to the prevalence of S. aureus related infections and the emergence of methicillin-resistant S. aureus, rapid and accurate diagnosis of S. aureus infections is crucial in benefiting patient health outcomes. In this study, a rigorous Systematic Evolution of Ligands by Exponential Enrichment (SELEX) variant previously developed by our laboratory was utilized to select a single-stranded DNA molecular recognition element (MRE) targeting alpha toxin with high affinity and specificity. At the end of the 12-round selection, the selected MRE had an equilibrium dissociation constant (Kd) of 93.7 ± 7.0 nM. Additionally, a modified sandwich enzyme-linked immunosorbent assay (ELISA) was developed by using the selected ssDNA MRE as the toxin-capturing element and a sensitive detection of 200 nM alpha toxin in undiluted human serum samples was achieved.

  5. A deep-branching clade of retrovirus-like retrotransposons in bdelloid rotifers

    PubMed Central

    Gladyshev, Eugene A.; Meselson, Matthew; Arkhipova, Irina R.

    2007-01-01

    Rotifers of class Bdelloidea, a group of aquatic invertebrates in which males and meiosis have never been documented, are also unusual in their lack of multicopy LINE-like and gypsy-like retrotransposons, groups inhabiting the genomes of nearly all other metazoans. Bdelloids do contain numerous DNA transposons, both intact and decayed, and domesticated Penelope-like retroelements Athena, concentrated at telomeric regions. Here we describe two LTR retrotransposons, each found at low copy number in a different bdelloid species, which define a clade different from previously known clades of LTR retrotransposons. Like bdelloid DNA transposons and Athena, these elements have been found preferentially in telomeric regions. Unlike bdelloid DNA transposons, many of which are decayed, the newly described elements, named Vesta and Juno, inhabiting the genomes of Philodina roseola and Adineta vaga, respectively, appear to be intact and to represent recent insertions, possibly from an exogenous source. We describe the retrovirus-like structure of the new elements, containing gag, pol, and env-like open reading frames, and discuss their possible origins, transmission, and behavior in bdelloid genomes. PMID:17129685

  6. Population genetics and molecular evolution of DNA sequences in transposable elements. I. A simulation framework.

    PubMed

    Kijima, T E; Innan, Hideki

    2013-11-01

    A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.

  7. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice.

    PubMed

    Song, Xianwei; Cao, Xiaofeng

    2017-04-01

    Transposable elements (TEs) have long been regarded as 'selfish DNA', and are generally silenced by epigenetic mechanisms. However, work in the past decade has identified positive roles for TEs in generating genomic novelty and diversity in plants. In particular, recent studies suggested that TE-induced epigenetic alterations and modification of gene expression contribute to phenotypic variation and adaptation to geography or stress. These findings have led many to regard TEs, not as junk DNA, but as sources of control elements and genomic diversity. As a staple food crop and model system for genomic research on monocot plants, rice (Oryza sativa) has a modest-sized genome that harbors massive numbers of DNA transposons (class II transposable elements) scattered across the genome, which may make TE regulation of genes more prevalent. In this review, we summarize recent progress in research on the functions of rice TEs in modulating gene expression and creating new genes. We also examine the contributions of TEs to phenotypic diversity and adaptation to environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Seedling lethality in Nicotiana plumbaginifolia conferred by Ds transposable element insertion into a plant-specific gene.

    PubMed

    Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole

    2002-10-01

    A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.

  9. Transposons As Tools for Functional Genomics in Vertebrate Models.

    PubMed

    Kawakami, Koichi; Largaespada, David A; Ivics, Zoltán

    2017-11-01

    Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  11. CpG methylation in human papillomavirus (HPV) type 31 long control region (LCR) in cervical infections associated with cytological abnormalities.

    PubMed

    László, Brigitta; Ferenczi, Annamária; Madar, László; Gyöngyösi, Eszter; Szalmás, Anita; Szakács, Levente; Veress, György; Kónya, József

    2016-08-01

    The mechanisms that regulate papillomavirus gene expression include DNA methylation. The transcription of papillomavirus oncogenes E6 and E7 is controlled by certain regulatory elements in the LCR, which include binding sites for the E2 protein, a viral regulator of oncogene expression. In HPV-31-infected exfoliated cervical cells, the CpG methylation of the entire LCR was determined by next-generation sequencing after bisulfite modification. Six of the 22 cases had methylated CpG sites in the HPV-31 LCR, including position 7479 and/or 7485, at the promoter distal E2 binding site, thus suggesting a potential regulatory mechanism for papillomavirus transcription.

  12. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target.

    PubMed

    Plummer, Ruth

    2010-09-15

    Inhibitors of various elements of the DNA repair pathways have entered clinical development or are in late preclinical stages of drug development. It was initially considered that agents targeting DNA repair would act to overcome tumor resistance to chemotherapy and radiotherapy. More recent data have shown that targeting DNA repair pathways can be effective in selected tumors via a synthetically lethal route, with single agent activity having been shown with poly-ADP ribose polymerase (PARP) inhibitors. An increased understanding of the biology and interaction of the DNA repair pathways also means that rational combination of DNA repair inhibitors may also give great benefit in the clinic. ©2010 AACR.

  13. Mechanical Strength and Stability of DNA-modified Gold Nanoparticle Systems

    NASA Astrophysics Data System (ADS)

    Lam, Letisha McLaughlin

    Systems in which gold nanoparticles (AuNPs) are functionalized with DNA have the potential for a broad range of applications in gene regulation therapies, drug delivery, sensing, innovative biomaterials and material templates. The use of DNA-modified gold nanoparticle (AuNP-DNA) systems is driven by their ease of assembly with bottom-up methods as well as the tunability of the systems' mechanical, optical, and electronic properties by exploiting AuNP characteristics and behavior in a multi-particle arrangement. Periodic arrangements of AuNPs precisely distributed through ligated DNA linkers may be assembled and used on relatively large length scales, on the order of hundreds of nanometers, for use in potential nanoscale technologies and applications. However, because of the size and heterogeneous composition of AuNP-DNA systems, their stability under mechanical loading is not well understood or quantified on relevant physical scales for these applications. Hence, a large-scale specialized finite-element predictive approach with a dislocation-density based crystalline plasticity has been used to investigate the mechanical stability of AuNP-DNA-ligand systems with AuNPs within the physical dimensions required for plasmon resonance. The crystalline formulation for the AuNPs accounts for multiple crystalline slip, dislocation-density evolution, lattice rotations, and large inelastic strains. A hypoelastic formulation was used for the DNA and the ligands. The nonlinear finite-element scheme is based on accounting for finite elastic and inelastic strains. These approaches were employed to predict and understand the fundamental scale-dependent microstructural behavior, the evolving heterogeneous microstructure, and localized phenomena that can contribute to failure initiation and instability. Each system was loaded using quasi-static plane strain tension and compression to simulate application loading conditions, and the elastic and inelastic evolutions were analyzed for evidence of mechanical strengthening as well as possible failure modes. To establish a foundation for AuNP-DNA stability analysis, several different two-particle conformations were investigated, including systems with pentagonally twinned AuNPs, systems with circular AuNPs, systems with non-textured and textured cuboctahedron AuNPs with 6 nm DNA, 12 nm DNA, and 18 nm DNA. In general, the analyses indicated that the systems' stability are mainly affected by large stress gradients at AuNP-ligand interfaces, as well as large dislocation-density, normal stresses, and inelastic accumulations in the region adjacent to these interfaces between the AuNPs and the DNA. The predictions also indicate that highly faceted f.c.c. AuNPs with DNA lengths of approximately 6 nm in biaxial loading conditions were found to have the highest strength and overall stability. Furthermore, periodic AuNP-DNA superlattice composites, which mimic the crystallography of f.c.c. atomic lattices, were investigated for mechanical effectiveness as both a composite material and thin film. This investigation analyzed the stress behavior and inelastic evolution of f.c.c. AuNP-DNA superlattice systems with different Au volume fractions, matrix strengths, intrinsic nanoparticle crystallographic orientations and sizes. These analyses were also extended to superlattice f.c.c. composites on a silicon substrate. The results indicate that f.c.c. AuNP-DNA superlattices have a combination of high strength and toughness due to the ductile nature of the nanoparticles in conjunction with the physical properties of the DNA and matrix materials. The superlattice films also exhibited high strengths and toughness, with the limiting factor being the interrelated aspects of film thickness and delamination. These predictions can be used as guidelines for using these composites, superlattices, and thin films as candidates for innovative building blocks for new material systems.

  14. Molecular Population Genetics of the Alcohol Dehydrogenase Gene Region of DROSOPHILA MELANOGASTER

    PubMed Central

    Aquadro, Charles F.; Desse, Susan F.; Bland, Molly M.; Langley, Charles H.; Laurie-Ahlberg, Cathy C.

    1986-01-01

    Variation in the DNA restriction map of a 13-kb region of chromosome II including the alcohol dehydrogenase structural gene (Adh) was examined in Drosophila melanogaster from natural populations. Detailed analysis of 48 D. melanogaster lines representing four eastern United States populations revealed extensive DNA sequence variation due to base substitutions, insertions and deletions. Cloning of this region from several lines allowed characterization of length variation as due to unique sequence insertions or deletions [nine sizes; 21–200 base pairs (bp)] or transposable element insertions (several sizes, 340 bp to 10.2 kb, representing four different elements). Despite this extensive variation in sequences flanking the Adh gene, only one length polymorphism is clearly associated with altered Adh expression (a copia element approximately 250 bp 5' to the distal transcript start site). Nonetheless, the frequency spectra of transposable elements within and between Drosophila species suggests they are slightly deleterious. Strong nonrandom associations are observed among Adh region sequence variants, ADH allozyme (Fast vs. Slow), ADH enzyme activity and the chromosome inversion ln(2L) t. Phylogenetic analysis of restriction map haplotypes suggest that the major twofold component of ADH activity variation (high vs. low, typical of Fast and Slow allozymes, respectively) is due to sequence variation tightly linked to and possibly distinct from that underlying the allozyme difference. The patterns of nucleotide and haplotype variation for Fast and Slow allozyme lines are consistent with the recent increase in frequency and spread of the Fast haplotype associated with high ADH activity. These data emphasize the important role of evolutionary history and strong nonrandom associations among tightly linked sequence variation as determinants of the patterns of variation observed in natural populations. PMID:3026893

  15. Functional organization of DNA elements regulating SM30alpha, a spicule matrix gene of sea urchin embryos.

    PubMed

    Yamasu, K; Wilt, F H

    1999-02-01

    The SM30a gene encodes a protein in the embryonic endoskeleton of the sea urchin Strongylocentrotus purpuratus, and is specifically expressed in the skeletogenic primary mesenchyme cell lineage. To clarify the mechanism for the differentiation of this cell lineage, which proceeds rather autonomously in the embryo, regulation of the SM30alpha gene was investigated previously and it was shown that the distal DNA region upstream of this gene from - 1.6 to - 1.0 kb contained numerous negative regulatory elements that suppressed the ectopic expression of the gene in the gut. Here we study the influence of the proximal region from - 303 to + 104 bp. Analysis of the expression of reporter constructs indicated that a strong positive enhancer element existed in the region from -142 to -105bp. This element worked both in forward and reverse orientations and additively when placed tandemly upstream to the reporter gene. In addition, other weaker positive and negative regulatory sites were also detected throughout the proximal region. Electrophoretic gel mobility shift analyses showed that multiple nuclear proteins were bound to the putative strong enhancer region. One of the proteins binding to this region was present in ear y blastulae, a time when the SM30 gene was still silent, but it was not in prism embryos actively expressing the gene. The binding region for this blastula-specific protein was narrowed down to the region from - 132 to -122 bp, which included the consensus binding site for the mammalian proto-oncogene product, Ets. Two possible SpGCF1 binding sites were identified in the vicinity of the enhancer region. This information was used to make a comparison of the general regulatory architecture of genes that contribute to the formation of the skeletal spicule.

  16. Engineering the Structure and Properties of DNA-Nanoparticle Superstructures Using Polyvalent Counterions.

    PubMed

    Chou, Leo Y T; Song, Fayi; Chan, Warren C W

    2016-04-06

    DNA assembly of nanoparticles is a powerful approach to control their properties and prototype new materials. However, the structure and properties of DNA-assembled nanoparticles are labile and sensitive to interactions with counterions, which vary with processing and application environment. Here we show that substituting polyamines in place of elemental counterions significantly enhanced the structural rigidity and plasmonic properties of DNA-assembled metal nanoparticles. These effects arose from the ability of polyamines to condense DNA and cross-link DNA-coated nanoparticles. We further used polyamine wrapped DNA nanostructures as structural templates to seed the growth of polymer multilayers via layer-by-layer assembly, and controlled the degree of DNA condensation, plasmon coupling efficiency, and material responsiveness to environmental stimuli by varying polyelectrolyte composition. These results highlight counterion engineering as a versatile strategy to tailor the properties of DNA-nanoparticle assemblies for various applications, and should be applicable to other classes of DNA nanostructures.

  17. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains

    PubMed Central

    Cotton, Allison M.; Chen, Chih-Yu; Lam, Lucia L.; Wasserman, Wyeth W.; Kobor, Michael S.; Brown, Carolyn J.

    2014-01-01

    X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853

  18. Robust Translation of the Nucleoid Protein Fis Requires a Remote Upstream AU Element and Is Enhanced by RNA Secondary Structure

    PubMed Central

    Nafissi, Maryam; Chau, Jeannette; Xu, Jimin

    2012-01-01

    Synthesis of the Fis nucleoid protein rapidly increases in response to nutrient upshifts, and Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions. Previous work has shown that control of Fis synthesis occurs at transcription initiation of the dusB-fis operon. We show here that while translation of the dihydrouridine synthase gene dusB is low, unusual mechanisms operate to enable robust translation of fis. At least two RNA sequence elements located within the dusB coding region are responsible for high fis translation. The most important is an AU element centered 35 nucleotides (nt) upstream of the fis AUG, which may function as a binding site for ribosomal protein S1. In addition, a 44-nt segment located upstream of the AU element and predicted to form a stem-loop secondary structure plays a prominent role in enhancing fis translation. On the other hand, mutations close to the AUG, including over a potential Shine-Dalgarno sequence, have little effect on Fis protein levels. The AU element and stem-loop regions are phylogenetically conserved within dusB-fis operons of representative enteric bacteria. PMID:22389479

  19. Integrative and conjugative elements and their hosts: composition, distribution and organization

    PubMed Central

    Touchon, Marie; Rocha, Eduardo P. C.

    2017-01-01

    Abstract Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. PMID:28911112

  20. Structure Prediction and Analysis of DNA Transposon and LINE Retrotransposon Proteins*

    PubMed Central

    Abrusán, György; Zhang, Yang; Szilágyi, András

    2013-01-01

    Despite the considerable amount of research on transposable elements, no large-scale structural analyses of the TE proteome have been performed so far. We predicted the structures of hundreds of proteins from a representative set of DNA and LINE transposable elements and used the obtained structural data to provide the first general structural characterization of TE proteins and to estimate the frequency of TE domestication and horizontal transfer events. We show that 1) ORF1 and Gag proteins of retrotransposons contain high amounts of structural disorder; thus, despite their very low conservation, the presence of disordered regions and probably their chaperone function is conserved. 2) The distribution of SCOP classes in DNA transposons and LINEs indicates that the proteins of DNA transposons are more ancient, containing folds that already existed when the first cellular organisms appeared. 3) DNA transposon proteins have lower contact order than randomly selected reference proteins, indicating rapid folding, most likely to avoid protein aggregation. 4) Structure-based searches for TE homologs indicate that the overall frequency of TE domestication events is low, whereas we found a relatively high number of cases where horizontal transfer, frequently involving parasites, is the most likely explanation for the observed homology. PMID:23530042

  1. The structure of the regulatory region of the rat L1 (L1Rn, long interspersed repeated) DNA family of transposable elements.

    PubMed Central

    Furano, A V; Robb, S M; Robb, F T

    1988-01-01

    Here we report the DNA structure of the left 1.5 kb of two newly isolated full length members of the rat L1 DNA family (L1Rn, long interspersed repeated DNA). In contrast to earlier isolated rat L1 members, both of these contain promoter-like regions that are most likely full length. In addition, the promoter-like region of both members has undergone a partial tandem duplication. A second internal region of the left end of one of the reported members is also tandemly duplicated. The propensity of the left end of rat L1 elements to undergo this form of genetic rearrangement, as well as other structural features revealed by the present work, is discussed in light of the fact that during evolution the otherwise conserved mammalian L1 DNA families have each acquired completely different promoter-like regions. In an accompanying paper [Nur, I., Pascale, E., and Furano, A. V. (1988) Nucleic Acids Res. 16, submitted], we report that one of the rat promoter-like regions can function as a promoter in rat cells when fused to the Escherichia coli chloramphenicol acyltransferase gene. PMID:2845369

  2. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.

    PubMed Central

    Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V

    1985-01-01

    The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this. Images PMID:3016521

  3. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells

    PubMed Central

    Pezic, Dubravka; Manakov, Sergei A.; Sachidanandam, Ravi; Aravin, Alexei A.

    2014-01-01

    Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments. PMID:24939875

  4. Improved results of LINE-1 methylation analysis in formalin-fixed, paraffin-embedded tissues with the application of a heating step during the DNA extraction process.

    PubMed

    Wen, Xianyu; Jeong, Seorin; Kim, Younghoon; Bae, Jeong Mo; Cho, Nam Yun; Kim, Jung Ho; Kang, Gyeong Hoon

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues are important resources for profiling DNA methylation changes and for studying a variety of diseases. However, formalin fixation introduces inter-strand crosslinking, which might cause incomplete bisulfite conversion of unmethylated cytosines, which might lead to falsely elevated measurements of methylation levels in pyrosequencing assays. Long interspersed nucleotide element-1 (LINE-1) is a major constituent of repetitive transposable DNA elements, and its methylation is referred to correlates with global DNA methylation. To identify whether formalin fixation might impact the measured values of methylation in LINE-1 repetitive elements and whether prolonged heat-induced denaturation of DNA might reduce the artificial increases in measured values caused by formalin fixation, we analyzed paired fresh-frozen (FF) and FFPE xenograft tissue samples for their methylation levels in LINE-1 using a pyrosequencing assay. To further confirm the effect of a heating step in the measurement of LINE-1 or single gene methylation levels, we analyzed FFPE tissue samples of gastric cancer and colorectal cancer for their methylation status in LINE-1 and eight single genes, respectively. Formalin fixation led to an increase in the measured values of LINE-1 methylation regardless of the duration of fixation. Prolonged heating of the DNA at 95 °C for 30 min before bisulfite conversion was found (1) to decrease the discrepancy in the measured values between the paired FF and FFPE tissue samples, (2) to decrease the standard deviation of the measured value of LINE-1 methylation levels in FFPE tissue samples of gastric cancer, and (3) to improve the performance in the measurement of single gene methylation levels in FFPE tissue samples of colorectal cancer. Formalin fixation leads to artificial increases in the measured values of LINE-1 methylation, and the application of prolonged heating of DNA samples decreases the discrepancy in the measured values of LINE-1 methylation between paired FF and FFPE tissue samples. The application of prolonged heating of DNA samples improves bisulfite conversion-based measurement of LINE-1 or single gene methylation levels in FFPE tissue samples.

  5. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone.

    PubMed

    Pinhasi, Ron; Fernandes, Daniel; Sirak, Kendra; Novak, Mario; Connell, Sarah; Alpaslan-Roodenberg, Songül; Gerritsen, Fokke; Moiseyev, Vyacheslav; Gromov, Andrey; Raczky, Pál; Anders, Alexandra; Pietrusewsky, Michael; Rollefson, Gary; Jovanovic, Marija; Trinhhoang, Hiep; Bar-Oz, Guy; Oxenham, Marc; Matsumura, Hirofumi; Hofreiter, Michael

    2015-01-01

    The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses.

  6. Nucleases Encoded by Integrated Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    The species Campylobacter jejuni displays huge genetic diversity, and is naturally competent for DNA uptake. Nevertheless, not every strain is able to acquire foreign DNA since nonnaturally transformable strains do exist. Previously we showed that many nonnaturally transformable C. jejuni strains ex...

  7. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome

    PubMed Central

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes. PMID:25482895

  8. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.

    PubMed

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.

  9. Mutations on the DNA Binding Surface of TBP Discriminate between Yeast TATA and TATA-Less Gene Transcription

    PubMed Central

    Kamenova, Ivanka; Warfield, Linda

    2014-01-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. PMID:24865972

  10. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription.

    PubMed

    Kamenova, Ivanka; Warfield, Linda; Hahn, Steven

    2014-08-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. A HLA class I cis-regulatory element whose activity can be modulated by hormones.

    PubMed

    Sim, B C; Hui, K M

    1994-12-01

    To elucidate the basis of the down-regulation in major histocompatibility complex (MHC) class I gene expression and to identify possible DNA-binding regulatory elements that have the potential to interact with class I MHC genes, we have studied the transcriptional regulation of class I HLA genes in human breast carcinoma cells. A 9 base pair (bp) negative cis-regulatory element (NRE) has been identified using band-shift assays employing DNA sequences derived from the 5'-flanking region of HLA class I genes. This 9-bp element, GTCATGGCG, located within exon I of the HLA class I gene, can potently inhibit the expression of a heterologous thymidine kinase (TK) gene promoter and the HLA enhancer element. Furthermore, this regulatory element can exert its suppressive function in either the sense or anti-sense orientation. More interestingly, NRE can suppress dexamethasone-mediated gene activation in the context of the reported glucocorticoid-responsive element (GRE) in MCF-7 cells but has no influence on the estrogen-mediated transcriptional activation of MCF-7 cells in the context of the reported estrogen-responsive element (ERE). Furthermore, the presence of such a regulatory element within the HLA class I gene whose activity can be modulated by hormones correlates well with our observation that the level of HLA class I gene expression can be down-regulated by hormones in human breast carcinoma cells. Such interactions between negative regulatory elements and specific hormone trans-activators are novel and suggest a versatile form of transcriptional control.

  12. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    PubMed

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Bridging of double-stranded breaks by the nonhomologous end-joining ligation complex is modulated by DNA end chemistry.

    PubMed

    Reid, Dylan A; Conlin, Michael P; Yin, Yandong; Chang, Howard H; Watanabe, Go; Lieber, Michael R; Ramsden, Dale A; Rothenberg, Eli

    2017-02-28

    The nonhomologous end-joining (NHEJ) pathway is the primary repair pathway for DNA double strand breaks (DSBs) in humans. Repair is mediated by a core complex of NHEJ factors that includes a ligase (DNA Ligase IV; L4) that relies on juxtaposition of 3΄ hydroxyl and 5΄ phosphate termini of the strand breaks for catalysis. However, chromosome breaks arising from biological sources often have different end chemistries, and how these different end chemistries impact the way in which the core complex directs the necessary transitions from end pairing to ligation is not known. Here, using single-molecule FRET (smFRET), we show that prior to ligation, differences in end chemistry strongly modulate the bridging of broken ends by the NHEJ core complex. In particular, the 5΄ phosphate group is a recognition element for L4 and is critical for the ability of NHEJ factors to promote stable pairing of ends. Moreover, other chemical incompatibilities, including products of aborted ligation, are sufficient to disrupt end pairing. Based on these observations, we propose a mechanism for iterative repair of DSBs by NHEJ. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Saturnia jonasii Butler, 1877 on Jejudo Island, a new saturnid moth of South Korea with DNA data and morphology (Lepidoptera: Saturniidae).

    PubMed

    Kim, Min Jee; Choi, Sei-Woong; Kim, Iksoo

    2015-04-10

    Saturnia (Rinaca) jonasii Butler, 1877 is distributed in Japan, including Tsushima Island and Taiwan, whereas S. boisduvalii Eversmann, 1846 is distributed in northern areas, such as China, Russia, and South Korea. In the present study we found that the specimens from Mt. Hallasan on Jejudo, a southern remote offshore island, were S. jonasii, rather than S. boisduvalii based on morphology, DNA barcode, and nuclear elongation factor 1 alpha (EF-1α) sequences. The major morphological differences between the two species included the shape of wing pattern elements of fore- and hindwings and male and female genitalia. A DNA barcode analysis of the sequences of the Jejudo specimens and S. boisduvalii, along with those of Saturnia species obtained from a public database showed a minimum sequence divergence of 4.26% (28 bp). A phylogenetic analysis also showed clustering of the Jejudo specimens with S. jonasii, separating S. boisduvalii (Bayesian posterior probability = 0.99). The EF-1α-based sequence and phylogenetic analyses of the two species from Jejudo Island and the Korean mainland showed the uniqueness of the Jejudo specimens from S. boisduvalii collected on the Korean mainland, indicating distribution of S. jonasii on Jejudo Island in South Korea, instead of S. boisduvalii.

  15. Continuous Influx of Genetic Material from Host to Virus Populations

    PubMed Central

    Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane

    2016-01-01

    Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors. PMID:26829124

  16. Continuous Influx of Genetic Material from Host to Virus Populations.

    PubMed

    Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane; Cordaux, Richard; Herniou, Elisabeth A

    2016-02-01

    Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.

  17. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage.

    PubMed

    Gong, Lu; Gong, Hongjian; Pan, Xiao; Chang, Changqing; Ou, Zhao; Ye, Shengfan; Yin, Le; Yang, Lina; Tao, Ting; Zhang, Zhenhai; Liu, Cong; Lane, David P; Peng, Jinrong; Chen, Jun

    2015-03-01

    The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.

  18. FKBP5 DNA methylation does not mediate the association between childhood maltreatment and depression symptom severity in the Detroit Neighborhood Health Study.

    PubMed

    Bustamante, Angela C; Aiello, Allison E; Guffanti, Guia; Galea, Sandro; Wildman, Derek E; Uddin, Monica

    2018-01-01

    Exposure to childhood maltreatment increases the risk of developing mental illness later in life. Childhood maltreatment and depression have both been associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis-a key regulator of the body's stress response. Additionally, HPA axis dysregulation has been implicated in the etiology of a range of mental illnesses. A substantial body of work has shown history of childhood maltreatment alters DNA methylation levels within key HPA axis genes. We therefore investigated whether one of these key genes, FKBP5 mediates the relationship between childhood maltreatment and depression, and assessed FKBP5 DNA methylation and gene expression within 112 adults from the Detroit Neighborhood Health Study (DNHS). DNA methylation was assessed in 4 regions, including the upstream promoter, downstream promoter, and two glucocorticoid response elements (GREs) via pyrosequencing using whole blood derived DNA; Taqman assays measured relative RNA expression from leukocytes. Mediation analyses were conducted using sequential linear regression. Childhood maltreatment was significantly associated with depression symptom severity (FDR < 0.006), but was not a significant predictor of DNA methylation in any of the four loci examined. FKBP5 showed elevated expression levels in participants with vs. without a history of depression (p < 0.001); no significant difference in gene expression levels was observed in relation to childhood maltreatment (p > 0.05). Our results suggest DNA methylation does not mediate the childhood maltreatment-depression association in the DNHS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Functional properties and structural requirements of the plasmid pMV158-encoded MobM relaxase domain.

    PubMed

    Fernández-López, Cris; Pluta, Radoslaw; Pérez-Luque, Rosa; Rodríguez-González, Lorena; Espinosa, Manuel; Coll, Miquel; Lorenzo-Díaz, Fabián; Boer, D Roeland

    2013-07-01

    A crucial element in the horizontal transfer of mobilizable and conjugative plasmids is the relaxase, a single-stranded endonuclease that nicks the origin of transfer (oriT) of the plasmid DNA. The relaxase of the pMV158 mobilizable plasmid is MobM (494 residues). In solution, MobM forms a dimer through its C-terminal domain, which is proposed to anchor the protein to the cell membrane and to participate in type 4 secretion system (T4SS) protein-protein interactions. In order to gain a deeper insight into the structural MobM requirements for efficient DNA catalysis, we studied two endonuclease domain variants that include the first 199 or 243 amino acid residues (MobMN199 and MobMN243, respectively). Our results confirmed that the two proteins behaved as monomers in solution. Interestingly, MobMN243 relaxed supercoiled DNA and cleaved single-stranded oligonucleotides harboring oriTpMV158, whereas MobMN199 was active only on supercoiled DNA. Protein stability studies using gel electrophoresis and mass spectrometry showed increased susceptibility to degradation at the domain boundary between the N- and C-terminal domains, suggesting that the domains change their relative orientation upon DNA binding. Overall, these results demonstrate that MobMN243 is capable of nicking the DNA substrate independently of its topology and that the amino acids 200 to 243 modulate substrate specificity but not the nicking activity per se. These findings suggest that these amino acids are involved in positioning the DNA for the nuclease reaction rather than in the nicking mechanism itself.

  20. Expanded CAG/CTG Repeat DNA Induces a Checkpoint Response That Impacts Cell Proliferation in Saccharomyces cerevisiae

    PubMed Central

    Sundararajan, Rangapriya; Freudenreich, Catherine H.

    2011-01-01

    Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275

Top