Sample records for dna identification system

  1. Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria.

    PubMed

    Loong, Shih Keng; Khor, Chee Sieng; Jafar, Faizatul Lela; AbuBakar, Sazaly

    2016-11-01

    Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification. One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method. Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates. The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools. © 2016 Wiley Periodicals, Inc.

  2. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    PubMed

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.

  3. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  4. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  5. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  6. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  7. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  8. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  9. Evaluation of partial 16S ribosomal DNA sequencing for identification of nocardia species by using the MicroSeq 500 system with an expanded database.

    PubMed

    Cloud, Joann L; Conville, Patricia S; Croft, Ann; Harmsen, Dag; Witebsky, Frank G; Carroll, Karen C

    2004-02-01

    Identification of clinically significant nocardiae to the species level is important in patient diagnosis and treatment. A study was performed to evaluate Nocardia species identification obtained by partial 16S ribosomal DNA (rDNA) sequencing by the MicroSeq 500 system with an expanded database. The expanded portion of the database was developed from partial 5' 16S rDNA sequences derived from 28 reference strains (from the American Type Culture Collection and the Japanese Collection of Microorganisms). The expanded MicroSeq 500 system was compared to (i). conventional identification obtained from a combination of growth characteristics with biochemical and drug susceptibility tests; (ii). molecular techniques involving restriction enzyme analysis (REA) of portions of the 16S rRNA and 65-kDa heat shock protein genes; and (iii). when necessary, sequencing of a 999-bp fragment of the 16S rRNA gene. An unknown isolate was identified as a particular species if the sequence obtained by partial 16S rDNA sequencing by the expanded MicroSeq 500 system was 99.0% similar to that of the reference strain. Ninety-four nocardiae representing 10 separate species were isolated from patient specimens and examined by using the three different methods. Sequencing of partial 16S rDNA by the expanded MicroSeq 500 system resulted in only 72% agreement with conventional methods for species identification and 90% agreement with the alternative molecular methods. Molecular methods for identification of Nocardia species provide more accurate and rapid results than the conventional methods using biochemical and susceptibility testing. With an expanded database, the MicroSeq 500 system for partial 16S rDNA was able to correctly identify the human pathogens N. brasiliensis, N. cyriacigeorgica, N. farcinica, N. nova, N. otitidiscaviarum, and N. veterana.

  10. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  11. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  12. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  13. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  14. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  15. [Principles for molecular identification of traditional Chinese materia medica using DNA barcoding].

    PubMed

    Chen, Shi-Lin; Yao, Hui; Han, Jian-Ping; Xin, Tian-Yi; Pang, Xiao-Hui; Shi, Lin-Chun; Luo, Kun; Song, Jing-Yuan; Hou, Dian-Yun; Shi, Shang-Mei; Qian, Zhong-Zhi

    2013-01-01

    Since the research of molecular identification of Chinese Materia Medica (CMM) using DNA barcode is rapidly developing and popularizing, the principle of this method is approved to be listed in the Supplement of the Pharmacopoeia of the People's Republic of China. Based on the study on comprehensive samples, the DNA barcoding systems have been established to identify CMM, i.e. ITS2 as a core barcode and psbA-trnH as a complementary locus for identification of planta medica, and COI as a core barcode and ITS2 as a complementary locus for identification of animal medica. This article introduced the principle of molecular identification of CMM using DNA barcoding and its drafting instructions. Furthermore, its application perspective was discussed.

  16. Pitfalls of Establishing DNA Barcoding Systems in Protists: The Cryptophyceae as a Test Case

    PubMed Central

    Hoef-Emden, Kerstin

    2012-01-01

    A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5′-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed. PMID:22970104

  17. Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case.

    PubMed

    Hoef-Emden, Kerstin

    2012-01-01

    A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5'-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed.

  18. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    PubMed Central

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  19. Potential for DNA-based identification of Great Lakes fauna: match and mismatch between taxa inventories and DNA barcode libraries.

    PubMed

    Trebitz, Anett S; Hoffman, Joel C; Grant, George W; Billehus, Tyler M; Pilgrim, Erik M

    2015-07-22

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to bioassessment and non-native species monitoring. The ability to assign species identities to DNA sequences found depends on the availability of comprehensive DNA reference libraries. Here, we compile inventories for aquatic metazoans extant in or threatening to invade the Laurentian Great Lakes and examine the availability of reference mitochondrial COI DNA sequences (barcodes) in the Barcode of Life Data System for them. We found barcode libraries largely complete for extant and threatening-to-invade vertebrates (100% of reptile, 99% of fish, and 92% of amphibian species had barcodes). In contrast, barcode libraries remain poorly developed for precisely those organisms where morphological identification is most challenging; 46% of extant invertebrates lacked reference barcodes with rates especially high among rotifers, oligochaetes, and mites. Lack of species-level identification for many aquatic invertebrates also is a barrier to matching DNA sequences with physical specimens. Attaining the potential for DNA-based identification of mixed-organism samples covering the breadth of aquatic fauna requires a concerted effort to build supporting barcode libraries and voucher collections.

  20. Potential for DNA-based identification of Great Lakes fauna: match and mismatch between taxa inventories and DNA barcode libraries

    NASA Astrophysics Data System (ADS)

    Trebitz, Anett S.; Hoffman, Joel C.; Grant, George W.; Billehus, Tyler M.; Pilgrim, Erik M.

    2015-07-01

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to bioassessment and non-native species monitoring. The ability to assign species identities to DNA sequences found depends on the availability of comprehensive DNA reference libraries. Here, we compile inventories for aquatic metazoans extant in or threatening to invade the Laurentian Great Lakes and examine the availability of reference mitochondrial COI DNA sequences (barcodes) in the Barcode of Life Data System for them. We found barcode libraries largely complete for extant and threatening-to-invade vertebrates (100% of reptile, 99% of fish, and 92% of amphibian species had barcodes). In contrast, barcode libraries remain poorly developed for precisely those organisms where morphological identification is most challenging; 46% of extant invertebrates lacked reference barcodes with rates especially high among rotifers, oligochaetes, and mites. Lack of species-level identification for many aquatic invertebrates also is a barrier to matching DNA sequences with physical specimens. Attaining the potential for DNA-based identification of mixed-organism samples covering the breadth of aquatic fauna requires a concerted effort to build supporting barcode libraries and voucher collections.

  1. DNA typing for the identification of old skeletal remains from Korean War victims.

    PubMed

    Lee, Hwan Young; Kim, Na Young; Park, Myung Jin; Sim, Jeong Eun; Yang, Woo Ick; Shin, Kyoung-Jin

    2010-11-01

    The identification of missing casualties of the Korean War (1950-1953) has been performed using mitochondrial DNA (mtDNA) profiles, but recent advances in DNA extraction techniques and approaches using smaller amplicons have significantly increased the possibility of obtaining DNA profiles from highly degraded skeletal remains. Therefore, 21 skeletal remains of Korean War victims and 24 samples from biological relatives of the supposed victims were selected based on circumstantial evidence and/or mtDNA-matching results and were analyzed to confirm the alleged relationship. Cumulative likelihood ratios were obtained from autosomal short tandem repeat, Y-chromosomal STR, and mtDNA-genotyping results, and mainly confirmed the alleged relationship with values over 10⁵. The present analysis emphasizes the value of mini- and Y-STR systems as well as an efficient DNA extraction method in DNA testing for the identification of old skeletal remains. © 2010 American Academy of Forensic Sciences.

  2. Utility of GenBank and the Barcode of Life Data Systems (BOLD) for the identification of forensically important Diptera from Belgium and France

    PubMed Central

    Sonet, Gontran; Jordaens, Kurt; Braet, Yves; Bourguignon, Luc; Dupont, Eréna; Backeljau, Thierry; De Meyer, Marc; Desmyter, Stijn

    2013-01-01

    Abstract Fly larvae living on dead corpses can be used to estimate post-mortem intervals. The identification of these flies is decisive in forensic casework and can be facilitated by using DNA barcodes provided that a representative and comprehensive reference library of DNA barcodes is available. We constructed a local (Belgium and France) reference library of 85 sequences of the COI DNA barcode fragment (mitochondrial cytochrome c oxidase subunit I gene), from 16 fly species of forensic interest (Calliphoridae, Muscidae, Fanniidae). This library was then used to evaluate the ability of two public libraries (GenBank and the Barcode of Life Data Systems – BOLD) to identify specimens from Belgian and French forensic cases. The public libraries indeed allow a correct identification of most specimens. Yet, some of the identifications remain ambiguous and some forensically important fly species are not, or insufficiently, represented in the reference libraries. Several search options offered by GenBank and BOLD can be used to further improve the identifications obtained from both libraries using DNA barcodes. PMID:24453564

  3. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  4. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  5. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  6. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  7. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  8. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    EPA Science Inventory

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  9. Characteristics of Populations of the Russian Federation over the Panel of Fifteen Loci Used for DNA Identification and in Forensic Medical Examination

    PubMed Central

    A Stepanov, V.; Balanovsky, O.P.; Melnikov, A.V.; Lash-Zavada, A.Yu.; Khar’kov, V.N.; Tyazhelova, T.V.; Akhmetova, V.L.; Zhukova, O.V.; Shneider, Yu.V.; Shil’nikova, I.N.; Borinskaya, S.A.; Marusin, A.V.; Spiridonova, M.G.; Simonova, K.V.; Khitrinskaya, I.Yu.; Radzhabov, M.O.; Romanov, A.G.; Shtygasheva, O.V.; Koshel’, S.M.; Balanovskaya, E.V.; Rybakova, A.V.; Khusnutdinova, E.K.; Puzyrev, V.P.; Yankovsky, N.K.

    2011-01-01

    Seventeen population groups within the Russian Federation were characterized for the first time using a panel of 15 genetic markers that are used for DNA identification and in forensic medical examinations. The degree of polymorphism and population diversity of microsatellite loci within the Power Plex system (Promega) in Russian populations; the distribution of alleles and genotypes within the populations of six cities and 11 ethnic groups of the Russian Federation; the levels of intra- and interpopulation genetic differentiation of population; genetic relations between populations; and the identification and forensic medical characteristics of the system of markers under study were determined. Significant differences were revealed between the Russian populations and the U.S. reference base that was used recently in the forensic medical examination of the RF. A database of the allelic frequencies of 15 microsatellite loci that are used for DNA identification and forensic medical examination was created; the database has the potential of becoming the reference for performing forensic medical examinations in Russia. The spatial organization of genetic diversity over the panel of the STR markers that are used for DNA identification was revealed. It represents the general regularities of geographical clusterization of human populations over various types of genetic markers. The necessity to take into account a population’s genetic structure during forensic medical examinations and DNA identification of criminal suspects was substantiated. PMID:22649684

  10. Examples of kinship analysis where Profiler Plus™ was not discriminatory enough for the identification of victims using DNA identification.

    PubMed

    Hartman, D; Benton, L; Morenos, L; Beyer, J; Spiden, M; Stock, A

    2011-02-25

    The identification of the victims of the 2009 Victorian bushfires disaster, as in other mass disasters, relied on a number of scientific disciplines - including DNA analysis. As part of the DVI response, DNA analysis was performed to assist in the identification of victims through kinship (familial matching to relatives) or direct (self source of sample) matching of DNA profiles. The majority of the DNA identifications made (82%) were achieved through kinship matching of familial reference samples to post mortem (PM) samples obtained from the victims. Although each location affected by the bushfires could be treated as a mini-disaster (having a small closed-set of victims), with many such sites spread over vast areas, DNA analysis requires that the short tandem repeat (STR) system used be able to afford enough discrimination between all the DVI cases to assign a match. This publication highlights that although a 9-loci multiplex was sufficient for a DVI of this nature, there were instances that brought to light the short comings of using a 9-loci multiplex for kinship matching--particularly where multiple family members are victims. Moreso it serves to reinforce the recommendation that a minimum of 12 autosomal STR markers (plus Amelogenin) be used for DNA identification of victims which relies heavily on kinship matching. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan.

    PubMed

    Ebihara, Atsushi; Nitta, Joel H; Ito, Motomi

    2010-12-08

    DNA barcoding is expected to be an effective identification tool for organisms with heteromorphic generations such as pteridophytes, which possess a morphologically simple gametophyte generation. Although a reference data set including complete coverage of the target local flora/fauna is necessary for accurate identification, DNA barcode studies including such rich taxonomic sampling on a countrywide scale are lacking. The Japanese pteridophyte flora (733 taxa including subspecies and varieties) was used to test the utility of two plastid DNA barcode regions (rbcL and trnH-psbA) with the intention of developing an identification system for native gametophytes. DNA sequences were obtained from each of 689 (94.0%) taxa for rbcL and 617 (84.2%) taxa for trnH-psbA. Mean interspecific divergence values across all taxon pairs (K2P genetic distances) did not reveal a significant difference in rate between trnH-psbA and rbcL, but mean K2P distances of each genus showed significant heterogeneity according to systematic position. The minimum fail rate of taxon discrimination in an identification test using BLAST (12.52%) was obtained when rbcL and trnH-psbA were combined, and became lower in datasets excluding infraspecific taxa or apogamous taxa, or including sexual diploids only. This study demonstrates the overall effectiveness of DNA barcodes for species identification in the Japanese pteridophyte flora. Although this flora is characterized by a high occurrence of apogamous taxa that pose a serious challenge to identification using DNA barcodes, such taxa are limited to a small number of genera, and only minimally detract from the overall success rate. In the case that a query sequence is matched to a known apogamous genus, routine species identification may not be possible. Otherwise, DNA barcoding is a practical tool for identification of most Japanese pteridophytes, and is especially anticipated to be helpful for identification of non-hybridizing gametophytes.

  12. Nanoscale Bio-engineering Solutions for Space Exploration: The Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Cozmuta, Ioana

    2004-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation, with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes.

  13. Nanoscale Bioengineering Solutions for Space Exploration the Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Ioana, Cozmuta; Viktor, Stoic

    2005-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation. with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes. http://phenomrph.arc.nasa.gov/index.php

  14. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  15. 28 CFR 28.13 - Analysis and indexing of DNA samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Analysis and indexing of DNA samples. 28.13 Section 28.13 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.13 Analysis and indexing of DNA samples. (a) The Federal Bureau of...

  16. 28 CFR 28.13 - Analysis and indexing of DNA samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Analysis and indexing of DNA samples. 28.13 Section 28.13 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.13 Analysis and indexing of DNA samples. (a) The Federal Bureau of...

  17. 28 CFR 28.13 - Analysis and indexing of DNA samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Analysis and indexing of DNA samples. 28.13 Section 28.13 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.13 Analysis and indexing of DNA samples. (a) The Federal Bureau of...

  18. 28 CFR 28.13 - Analysis and indexing of DNA samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Analysis and indexing of DNA samples. 28.13 Section 28.13 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.13 Analysis and indexing of DNA samples. (a) The Federal Bureau of...

  19. 28 CFR 28.13 - Analysis and indexing of DNA samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Analysis and indexing of DNA samples. 28.13 Section 28.13 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.13 Analysis and indexing of DNA samples. (a) The Federal Bureau of...

  20. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market.

    PubMed

    Mishra, Priyanka; Kumar, Amit; Nagireddy, Akshitha; Mani, Daya N; Shukla, Ashutosh K; Tiwari, Rakesh; Sundaresan, Velusamy

    2016-01-01

    The past couple of decades have witnessed global resurgence of herbal-based health care. As a result, the trade of raw drugs has surged globally. Accurate and fast scientific identification of the plant(s) is the key to success for the herbal drug industry. The conventional approach is to engage an expert taxonomist, who uses a mix of traditional and modern techniques for precise plant identification. However, for bulk identification at industrial scale, the process is protracted and time-consuming. DNA barcoding, on the other hand, offers an alternative and feasible taxonomic tool box for rapid and robust species identification. For the success of DNA barcode, the barcode loci must have sufficient information to differentiate unambiguously between closely related plant species and discover new cryptic species. For herbal plant identification, matK, rbcL, trnH-psbA, ITS, trnL-F, 5S-rRNA and 18S-rRNA have been used as successful DNA barcodes. Emerging advances in DNA barcoding coupled with next-generation sequencing and high-resolution melting curve analysis have paved the way for successful species-level resolution recovered from finished herbal products. Further, development of multilocus strategy and its application has provided new vistas to the DNA barcode-based plant identification for herbal drug industry. For successful and acceptable identification of herbal ingredients and a holistic quality control of the drug, DNA barcoding needs to work harmoniously with other components of the systems biology approach. We suggest that for effectively resolving authentication challenges associated with the herbal market, DNA barcoding must be used in conjunction with metabolomics along with need-based transcriptomics and proteomics. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. A DNA Mini-Barcoding System for Authentication of Processed Fish Products.

    PubMed

    Shokralla, Shadi; Hellberg, Rosalee S; Handy, Sara M; King, Ian; Hajibabaei, Mehrdad

    2015-10-30

    Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences-mini-barcodes-for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127-314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products.

  2. Multimodal biometric digital watermarking on immigrant visas for homeland security

    NASA Astrophysics Data System (ADS)

    Sasi, Sreela; Tamhane, Kirti C.; Rajappa, Mahesh B.

    2004-08-01

    Passengers with immigrant Visa's are a major concern to the International Airports due to the various fraud operations identified. To curb tampering of genuine Visa, the Visa's should contain human identification information. Biometric characteristic is a common and reliable way to authenticate the identity of an individual [1]. A Multimodal Biometric Human Identification System (MBHIS) that integrates iris code, DNA fingerprint, and the passport number on the Visa photograph using digital watermarking scheme is presented. Digital Watermarking technique is well suited for any system requiring high security [2]. Ophthalmologists [3], [4], [5] suggested that iris scan is an accurate and nonintrusive optical fingerprint. DNA sequence can be used as a genetic barcode [6], [7]. While issuing Visa at the US consulates, the DNA sequence isolated from saliva, the iris code and passport number shall be digitally watermarked in the Visa photograph. This information is also recorded in the 'immigrant database'. A 'forward watermarking phase' combines a 2-D DWT transformed digital photograph with the personal identification information. A 'detection phase' extracts the watermarked information from this VISA photograph at the port of entry, from which iris code can be used for identification and DNA biometric for authentication, if an anomaly arises.

  3. Forensic DNA Profiling and Database

    PubMed Central

    Panneerchelvam, S.; Norazmi, M.N.

    2003-01-01

    The incredible power of DNA technology as an identification tool had brought a tremendous change in crimnal justice . DNA data base is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. This article discusses the essential steps in compilation of COmbined DNA Index System (CODIS) on validated polymerase chain amplified STRs and their use in crime detection. PMID:23386793

  4. A High-Throughput Approach for Identification of Nontuberculous Mycobacteria in Drinking Water Reveals Relationship between Water Age and Mycobacterium avium

    PubMed Central

    Haig, Sarah-Jane; Kotlarz, Nadine; LiPuma, John J.

    2018-01-01

    ABSTRACT Nontuberculous mycobacteria (NTM) frequently detected in drinking water (DW) include species associated with human infections, as well as species rarely linked to disease. Methods for improved the recovery of NTM DNA and high-throughput identification of NTM are needed for risk assessment of NTM infection through DW exposure. In this study, different methods of recovering bacterial DNA from DW were compared, revealing that a phenol-chloroform DNA extraction method yielded two to four times as much total DNA and eight times as much NTM DNA as two commercial DNA extraction kits. This method, combined with high-throughput, single-molecule real-time sequencing of NTM rpoB genes, allowed the identification of NTM to the species, subspecies, and (in some cases) strain levels. This approach was applied to DW samples collected from 15 households serviced by a chloraminated distribution system, with homes located in areas representing short (<24 h) and long (>24 h) distribution system residence times. Multivariate statistical analysis revealed that greater water age (i.e., combined distribution system residence time and home plumbing stagnation time) was associated with a greater relative abundance of Mycobacterium avium subsp. avium, one of the most prevalent NTM causing infections in humans. DW from homes closer to the treatment plant (with a shorter water age) contained more diverse NTM species, including Mycobacterium abscessus and Mycobacterium chelonae. Overall, our approach allows NTM identification to the species and subspecies levels and can be used in future studies to assess the risk of waterborne infection by providing insight into the similarity between environmental and infection-associated NTM. PMID:29440575

  5. Highlights of DNA Barcoding in identification of salient microorganisms like fungi.

    PubMed

    Dulla, E L; Kathera, C; Gurijala, H K; Mallakuntla, T R; Srinivasan, P; Prasad, V; Mopati, R D; Jasti, P K

    2016-12-01

    Fungi, the second largest kingdom of eukaryotic life, are diverse and widespread. Fungi play a distinctive role in the production of different products on industrial scale, like fungal enzymes, antibiotics, fermented foods, etc., to give storage stability and improved health to meet major global challenges. To utilize algae perfectly for human needs, and to pave the way for getting a healthy relationship with fungi, it is important to identify them in a quick and robust manner with molecular-based identification system. So, there is a technique that aims to provide a well-organized method for species level identifications and to contribute powerfully to taxonomic and biodiversity research is DNA Barcoding. DNA Barcoding is generally achieved by the retrieval of a short DNA sequence - the 'barcode' - from a standard part of the genome and that barcode is then compared with a library of reference barcode sequences derived from individuals of known identity for identification. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Identification of genes in anonymous DNA sequences. Final report: Report period, 15 April 1993--15 April 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, C.A.

    1994-09-01

    This Report concludes the DOE Human Genome Program project, ``Identification of Genes in Anonymous DNA Sequence.`` The central goals of this project have been (1) understanding the problem of identifying genes in anonymous sequences, and (2) development of tools, primarily the automated identification system gm, for identifying genes. The activities supported under the previous award are summarized here to provide a single complete report on the activities supported as part of the project from its inception to its completion.

  7. Development of biometric DNA ink for authentication security.

    PubMed

    Hashiyada, Masaki

    2004-10-01

    Among the various types of biometric personal identification systems, DNA provides the most reliable personal identification. It is intrinsically digital and unchangeable while the person is alive, and even after his/her death. Increasing the number of DNA loci examined can enhance the power of discrimination. This report describes the development of DNA ink, which contains synthetic DNA mixed with printing inks. Single-stranded DNA fragments encoding a personalized set of short tandem repeats (STR) were synthesized. The sequence was defined as follows. First, a decimal DNA personal identification (DNA-ID) was established based on the number of STRs in the locus. Next, this DNA-ID was encrypted using a binary, 160-bit algorithm, using a hashing function to protect privacy. Since this function is irreversible, no one can recover the original information from the encrypted code. Finally, the bit series generated above is transformed into base sequences, and double-stranded DNA fragments are amplified by the polymerase chain reaction (PCR) to protect against physical attacks. Synthesized DNA was detected successfully after samples printed in DNA ink were subjected to several resistance tests used to assess the stability of printing inks. Endurance test results showed that this DNA ink would be suitable for practical use as a printing ink and was resistant to 40 hours of ultraviolet exposure, performance commensurate with that of photogravure ink. Copyright 2004 Tohoku University Medical Press

  8. 28 CFR 28.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Purpose. 28.1 Section 28.1 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA... indexing of a DNA sample from each individual in the custody of the Bureau of Prisons or under the...

  9. 28 CFR 28.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Purpose. 28.1 Section 28.1 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA... indexing of a DNA sample from each individual in the custody of the Bureau of Prisons or under the...

  10. 28 CFR 28.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Purpose. 28.1 Section 28.1 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA... indexing of a DNA sample from each individual in the custody of the Bureau of Prisons or under the...

  11. 28 CFR 28.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Purpose. 28.1 Section 28.1 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA... indexing of a DNA sample from each individual in the custody of the Bureau of Prisons or under the...

  12. 28 CFR 28.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Purpose. 28.1 Section 28.1 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA... indexing of a DNA sample from each individual in the custody of the Bureau of Prisons or under the...

  13. Identification of Active Bacterial Communities in Drinking Water Using 16S rRNA-Based Sequence Analyses

    EPA Science Inventory

    DNA-based methods have considerably increased our understanding of the bacterial diversity of water distribution systems (WDS). However, as DNA may persist after cell death, the use of DNA-based methods cannot be used to describe metabolically-active microbes. In contrast, intra...

  14. BioBarcode: a general DNA barcoding database and server platform for Asian biodiversity resources.

    PubMed

    Lim, Jeongheui; Kim, Sang-Yoon; Kim, Sungmin; Eo, Hae-Seok; Kim, Chang-Bae; Paek, Woon Kee; Kim, Won; Bhak, Jong

    2009-12-03

    DNA barcoding provides a rapid, accurate, and standardized method for species-level identification using short DNA sequences. Such a standardized identification method is useful for mapping all the species on Earth, particularly when DNA sequencing technology is cheaply available. There are many nations in Asia with many biodiversity resources that need to be mapped and registered in databases. We have built a general DNA barcode data processing system, BioBarcode, with open source software - which is a general purpose database and server. It uses mySQL RDBMS 5.0, BLAST2, and Apache httpd server. An exemplary database of BioBarcode has around 11,300 specimen entries (including GenBank data) and registers the biological species to map their genetic relationships. The BioBarcode database contains a chromatogram viewer which improves the performance in DNA sequence analyses. Asia has a very high degree of biodiversity and the BioBarcode database server system aims to provide an efficient bioinformatics protocol that can be freely used by Asian researchers and research organizations interested in DNA barcoding. The BioBarcode promotes the rapid acquisition of biological species DNA sequence data that meet global standards by providing specialized services, and provides useful tools that will make barcoding cheaper and faster in the biodiversity community such as standardization, depository, management, and analysis of DNA barcode data. The system can be downloaded upon request, and an exemplary server has been constructed with which to build an Asian biodiversity system http://www.asianbarcode.org.

  15. Comparison of methods for the identification of microorganisms isolated from blood cultures.

    PubMed

    Monteiro, Aydir Cecília Marinho; Fortaleza, Carlos Magno Castelo Branco; Ferreira, Adriano Martison; Cavalcante, Ricardo de Souza; Mondelli, Alessandro Lia; Bagagli, Eduardo; da Cunha, Maria de Lourdes Ribeiro de Souza

    2016-08-05

    Bloodstream infections are responsible for thousands of deaths each year. The rapid identification of the microorganisms causing these infections permits correct therapeutic management that will improve the prognosis of the patient. In an attempt to reduce the time spent on this step, microorganism identification devices have been developed, including the VITEK(®) 2 system, which is currently used in routine clinical microbiology laboratories. This study evaluated the accuracy of the VITEK(®) 2 system in the identification of 400 microorganisms isolated from blood cultures and compared the results to those obtained with conventional phenotypic and genotypic methods. In parallel to the phenotypic identification methods, the DNA of these microorganisms was extracted directly from the blood culture bottles for genotypic identification by the polymerase chain reaction (PCR) and DNA sequencing. The automated VITEK(®) 2 system correctly identified 94.7 % (379/400) of the isolates. The YST and GN cards resulted in 100 % correct identifications of yeasts (15/15) and Gram-negative bacilli (165/165), respectively. The GP card correctly identified 92.6 % (199/215) of Gram-positive cocci, while the ANC card was unable to correctly identify any Gram-positive bacilli (0/5). The performance of the VITEK(®) 2 system was considered acceptable and statistical analysis showed that the system is a suitable option for routine clinical microbiology laboratories to identify different microorganisms.

  16. Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe

    PubMed Central

    Dincă, Vlad; Zakharov, Evgeny V.; Hebert, Paul D. N.; Vila, Roger

    2011-01-01

    DNA barcoding aims to accelerate species identification and discovery, but performance tests have shown marked differences in identification success. As a consequence, there remains a great need for comprehensive studies which objectively test the method in groups with a solid taxonomic framework. This study focuses on the 180 species of butterflies in Romania, accounting for about one third of the European butterfly fauna. This country includes five eco-regions, the highest of any in the European Union, and is a good representative for temperate areas. Morphology and DNA barcodes of more than 1300 specimens were carefully studied and compared. Our results indicate that 90 per cent of the species form barcode clusters allowing their reliable identification. The remaining cases involve nine closely related species pairs, some whose taxonomic status is controversial or that hybridize regularly. Interestingly, DNA barcoding was found to be the most effective identification tool, outperforming external morphology, and being slightly better than male genitalia. Romania is now the first country to have a comprehensive DNA barcode reference database for butterflies. Similar barcoding efforts based on comprehensive sampling of specific geographical regions can act as functional modules that will foster the early application of DNA barcoding while a global system is under development. PMID:20702462

  17. Real-Time Continuous Identification of Greenhouse Plant Pathogens Based on Recyclable Microfluidic Bioassay System.

    PubMed

    Qu, Xiangmeng; Li, Min; Zhang, Hongbo; Lin, Chenglie; Wang, Fei; Xiao, Mingshu; Zhou, Yi; Shi, Jiye; Aldalbahi, Ali; Pei, Hao; Chen, Hong; Li, Li

    2017-09-20

    The development of a real-time continuous analytical platform for the pathogen detection is of great scientific importance for achieving better disease control and prevention. In this work, we report a rapid and recyclable microfluidic bioassay system constructed from oligonucleotide arrays for selective and sensitive continuous identification of DNA targets of fungal pathogens. We employ the thermal denaturation method to effectively regenerate the oligonucleotide arrays for multiple sample detection, which could considerably reduce the screening effort and costs. The combination of thermal denaturation and laser-induced fluorescence detection technique enables real-time continuous identification of multiple samples (<10 min per sample). As a proof of concept, we have demonstrated that two DNA targets of fungal pathogens (Botrytis cinerea and Didymella bryoniae) can be sequentially analyzed using our rapid microfluidic bioassay system, which provides a new paradigm in the design of microfluidic bioassay system and will be valuable for chemical and biomedical analysis.

  18. Development of a high-throughput screening system for identification of novel reagents regulating DNA damage in human dermal fibroblasts.

    PubMed

    Bae, Seunghee; An, In-Sook; An, Sungkwan

    2015-09-01

    Ultraviolet (UV) radiation is a major inducer of skin aging and accumulated exposure to UV radiation increases DNA damage in skin cells, including dermal fibroblasts. In the present study, we developed a novel DNA repair regulating material discovery (DREAM) system for the high-throughput screening and identification of putative materials regulating DNA repair in skin cells. First, we established a modified lentivirus expressing the luciferase and hypoxanthine phosphoribosyl transferase (HPRT) genes. Then, human dermal fibroblast WS-1 cells were infected with the modified lentivirus and selected with puromycin to establish cells that stably expressed luciferase and HPRT (DREAM-F cells). The first step in the DREAM protocol was a 96-well-based screening procedure, involving the analysis of cell viability and luciferase activity after pretreatment of DREAM-F cells with reagents of interest and post-treatment with UVB radiation, and vice versa. In the second step, we validated certain effective reagents identified in the first step by analyzing the cell cycle, evaluating cell death, and performing HPRT-DNA sequencing in DREAM-F cells treated with these reagents and UVB. This DREAM system is scalable and forms a time-saving high-throughput screening system for identifying novel anti-photoaging reagents regulating DNA damage in dermal fibroblasts.

  19. [Ubiquitin-proteasome system and sperm DNA repair: An update].

    PubMed

    Zhang, Guo-Wei; Cai, Hong-Cai; Shang, Xue-Jun

    2016-09-01

    The ubiquitin-proteasome system (UPS) is a proteasome system widely present in the human body, which is composed of ubiquitin (Ub), ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin protein ligases (E3), 26S proteasome, and deubiquitinating enzymes (DUBs) and involved in cell cycle regulation, immune response, signal transduction, DNA repair as well as protein degradation. Sperm DNA is vulnerable to interference or damage in the progression of chromosome association and homologous recombination. Recent studies show that UPS participates in DNA repair in spermatogenesis by modulating DNA repair enzymes via ubiquitination, assisting in the identification of DNA damage sites, raising damage repair-related proteins, initiating the DNA repair pathway, maintaining chromosome stability, and ensuring the normal process of spermatogenesis.

  20. Bringing colour back after 70 years: Predicting eye and hair colour from skeletal remains of World War II victims using the HIrisPlex system.

    PubMed

    Chaitanya, Lakshmi; Pajnič, Irena Zupanič; Walsh, Susan; Balažic, Jože; Zupanc, Tomaž; Kayser, Manfred

    2017-01-01

    Retrieving information about externally visible characteristics from DNA can provide investigative leads to find unknown perpetrators, and can also help in disaster victim and other missing person identification cases. Aiming for the application to both types of forensic casework, we previously developed and forensically validated the HIrisPlex test system enabling parallel DNA prediction of eye and hair colour. Although a recent proof-of-principle study demonstrated the general suitability of the HIrisPlex system for successfully analysing DNA from bones and teeth of various storage times and conditions, practical case applications to human remains are scarce. In this study, we applied the HIrisPlex system to 49 DNA samples obtained from bones or teeth of World War II victims excavated at six sites, mostly mass graves, in Slovenia. PCR-based DNA quantification ranged from 4pg/μl to 313pg/μl and on an average was 41pg/μl across all samples. All 49 samples generated complete HIrisPlex profiles with the exception of one MC1R DNA marker (N29insA) missing in 83.7% of the samples. In 44 of the 49 samples (89.8%) complete 15-loci autosomal STR (plus amelogenin) profiles were obtained. Of 5 pairs of skeletal remains for which STR profiling suggested an origin in the same individuals, respectively, 4 showed the same HIrisPlex profiles and predicted eye and hair colours, respectively, while discrepancies in one pair (sample 26 and 43) are likely to be explained by DNA quantity and quality issues observed in sample 43. Sample 43 had the lowest DNA concentration of only 4pg/μl, producing least reliable STR results and could be misleading in concluding that samples 43 and 26 originate from the same individual. The HIrisPlex-predicted eye and hair colours from two skeletal samples, suggested to derive from two brothers via STR profiling together with a living sister, were confirmed by the living sister's report. Overall, we demonstrate that after more than 70 years, HIrisPlex-based eye and hair colour prediction from skeletal remains is feasible with high success rate. Our results further encourage the use of the HIrisPlex system in missing person/disaster victim identification to aid the identification process in cases where ante-mortem samples or putative relatives are not directly available, and DNA predicted eye and hair colour information provides leads for locating them, allowing STRbased individual identification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Development of a New Marker System for Identification of Spirodela polyrhiza and Landoltia punctata

    PubMed Central

    Feng, Bo; Fang, Yang; Xu, Zhibin; Xiang, Chao; Zhou, Chunhong; Jiang, Fei; Wang, Tao

    2017-01-01

    Lemnaceae (commonly called duckweed) is an aquatic plant ideal for quantitative analysis in plant sciences. Several species of this family represent the smallest and fastest growing flowering plants. Different ecotypes of the same species vary in their biochemical and physiological properties. Thus, selecting of desirable ecotypes of a species is very important. Here, we developed a simple and rapid molecular identification system for Spirodela polyrhiza and Landoltia punctata based on the sequence polymorphism. First, several pairs of primers were designed and three markers were selected as good for identification. After PCR amplification, DNA fragments (the combination of three PCR products) in different duckweeds were detected using capillary electrophoresis. The high-resolution capillary electrophoresis displayed high identity to the sequencing results. The combination of the PCR products containing several DNA fragments highly improved the identification frequency. These results indicate that this method is not only good for interspecies identification but also ideal for intraspecies distinguishing. Meanwhile, 11 haplotypes were found in both the S. polyrhiza and L. punctata ecotypes. The results suggest that this marker system is useful for large-scale identification of duckweed and for the screening of desirable ecotypes to improve the diverse usage in duckweed utilization. PMID:28168191

  2. 28 CFR 28.25 - Exceptions based on a defendant's conduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 28.25 Section 28.25 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... DNA testing in a court proceeding conducted after the date of enactment, i.e., after October 30, 2004. Hence, for example, if a defendant waives DNA testing in the context of a plea agreement, in a pretrial...

  3. 28 CFR 28.23 - Evidence subject to the preservation requirement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirement. 28.23 Section 28.23 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... guilt or innocence through DNA testing to determine whether the defendant is the source of the material... excluding the defendant as the source of its DNA. Example 1. In a murder case in which the victim struggled...

  4. 28 CFR 28.25 - Exceptions based on a defendant's conduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 28.25 Section 28.25 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... DNA testing in a court proceeding conducted after the date of enactment, i.e., after October 30, 2004. Hence, for example, if a defendant waives DNA testing in the context of a plea agreement, in a pretrial...

  5. 28 CFR 28.23 - Evidence subject to the preservation requirement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirement. 28.23 Section 28.23 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... guilt or innocence through DNA testing to determine whether the defendant is the source of the material... excluding the defendant as the source of its DNA. Example 1. In a murder case in which the victim struggled...

  6. 28 CFR 28.23 - Evidence subject to the preservation requirement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirement. 28.23 Section 28.23 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... guilt or innocence through DNA testing to determine whether the defendant is the source of the material... excluding the defendant as the source of its DNA. Example 1. In a murder case in which the victim struggled...

  7. 28 CFR 28.23 - Evidence subject to the preservation requirement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirement. 28.23 Section 28.23 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... guilt or innocence through DNA testing to determine whether the defendant is the source of the material... excluding the defendant as the source of its DNA. Example 1. In a murder case in which the victim struggled...

  8. 28 CFR 28.25 - Exceptions based on a defendant's conduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 28.25 Section 28.25 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... DNA testing in a court proceeding conducted after the date of enactment, i.e., after October 30, 2004. Hence, for example, if a defendant waives DNA testing in the context of a plea agreement, in a pretrial...

  9. 28 CFR 28.23 - Evidence subject to the preservation requirement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirement. 28.23 Section 28.23 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... guilt or innocence through DNA testing to determine whether the defendant is the source of the material... excluding the defendant as the source of its DNA. Example 1. In a murder case in which the victim struggled...

  10. 28 CFR 28.25 - Exceptions based on a defendant's conduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 28.25 Section 28.25 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... DNA testing in a court proceeding conducted after the date of enactment, i.e., after October 30, 2004. Hence, for example, if a defendant waives DNA testing in the context of a plea agreement, in a pretrial...

  11. 28 CFR 28.25 - Exceptions based on a defendant's conduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 28.25 Section 28.25 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM... DNA testing in a court proceeding conducted after the date of enactment, i.e., after October 30, 2004. Hence, for example, if a defendant waives DNA testing in the context of a plea agreement, in a pretrial...

  12. [Applications of DNA identification technology in protection of wild animals].

    PubMed

    Ni, Ping-Ya; Pei, Li; Ge, Wen-Dong; Zhang, Ying; Yang, Xue-Ying; Xu, Xiao-Yu; Tu, Zheng

    2011-12-01

    With the development of biotechnology, forensic DNA identification technology in protection of wild animals has been used more and more widely. This review introduces the global status of wildlife crime and the relevant protection to wildlife, outlines the practical applications of forensic DNA identification technology with regard to species identification, determination of geographic origin, individual identification and paternity identification. It focus on the techniques commonly used in DNA typing and their merits and demerits, as well as the problems and prospects of forensic DNA technology for wildlife conservation.

  13. BioBarcode: a general DNA barcoding database and server platform for Asian biodiversity resources

    PubMed Central

    2009-01-01

    Background DNA barcoding provides a rapid, accurate, and standardized method for species-level identification using short DNA sequences. Such a standardized identification method is useful for mapping all the species on Earth, particularly when DNA sequencing technology is cheaply available. There are many nations in Asia with many biodiversity resources that need to be mapped and registered in databases. Results We have built a general DNA barcode data processing system, BioBarcode, with open source software - which is a general purpose database and server. It uses mySQL RDBMS 5.0, BLAST2, and Apache httpd server. An exemplary database of BioBarcode has around 11,300 specimen entries (including GenBank data) and registers the biological species to map their genetic relationships. The BioBarcode database contains a chromatogram viewer which improves the performance in DNA sequence analyses. Conclusion Asia has a very high degree of biodiversity and the BioBarcode database server system aims to provide an efficient bioinformatics protocol that can be freely used by Asian researchers and research organizations interested in DNA barcoding. The BioBarcode promotes the rapid acquisition of biological species DNA sequence data that meet global standards by providing specialized services, and provides useful tools that will make barcoding cheaper and faster in the biodiversity community such as standardization, depository, management, and analysis of DNA barcode data. The system can be downloaded upon request, and an exemplary server has been constructed with which to build an Asian biodiversity system http://www.asianbarcode.org. PMID:19958506

  14. Identification of Species in Tripterygium (Celastraceae) Based on DNA Barcoding.

    PubMed

    Zhang, Xiaomei; Li, Na; Yao, Yuanyuan; Liang, Xuming; Qu, Xianyou; Liu, Xiang; Zhu, Yingjie; Yang, Dajian; Sun, Wei

    2016-11-01

    Species of genus Tripterygium (Celastraceae) have attracted much attention owing to their excellent effect on treating autoimmune and inflammatory diseases. However, due to high market demand causing overexploitation, natural populations of genus Tripterygium have rapidly declined. Tripterygium medicinal materials are mainly collected from the wild, making the quality of medicinal materials unstable. Additionally, identification of herbal materials from Tripterygium species and their adulterants is difficult based on morphological characters. Therefore, an accurate, convenient, and stability method is urgently needed. In this wok, we developed a DNA barcoding technique to distinguish T. wilfordii HOOK. f., T. hypoglaucum (LÉVL.) HUTCH, and T. regelii SPRAGUE et TAKEDA and their adulterants based on four uniform and standard DNA regions (internal transcribed spacer 2 (ITS2), matK, rbcL, and psbA-trnH). DNA was extracted from 26 locations of fresh leaves. Phylogenetic tree was constructed with Neighbor-Joining (NJ) method, while barcoding gap was analyzed to assess identification efficiency. Compared with the other DNA barcodes applied individually or in combination, ITS2+psbA-trnH was demonstrated as the optimal barcode. T. hypoglaucum and T. wilfordii can be considered as conspecific, while T. regelii was recognized as a separate species. Furthermore, identification of commercial Tripterygium samples was conducted using BLAST against GenBank and Species Identification System for Traditional Chinese Medicine. Our results indicated that DNA barcoding is a convenient, effective, and stability method to identify and distinguish Tripterygium and its adulterants, and could be applied as the quality control for Tripterygium medicinal preparations and monitoring of the medicinal herb trade in markets.

  15. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    PubMed

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  16. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences.

    PubMed

    Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José

    2015-07-01

    Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses.

  17. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences

    PubMed Central

    Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José

    2015-01-01

    Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses. PMID:26140346

  18. The effectiveness of three regions in mitochondrial genome for aphid DNA barcoding: a case in Lachininae.

    PubMed

    Chen, Rui; Jiang, Li-Yun; Qiao, Ge-Xia

    2012-01-01

    The mitochondrial gene COI has been widely used by taxonomists as a standard DNA barcode sequence for the identification of many animal species. However, the COI region is of limited use for identifying certain species and is not efficiently amplified by PCR in all animal taxa. To evaluate the utility of COI as a DNA barcode and to identify other barcode genes, we chose the aphid subfamily Lachninae (Hemiptera: Aphididae) as the focus of our study. We compared the results obtained using COI with two other mitochondrial genes, COII and Cytb. In addition, we propose a new method to improve the efficiency of species identification using DNA barcoding. Three mitochondrial genes (COI, COII and Cytb) were sequenced and were used in the identification of over 80 species of Lachninae. The COI and COII genes demonstrated a greater PCR amplification efficiency than Cytb. Species identification using COII sequences had a higher frequency of success (96.9% in "best match" and 90.8% in "best close match") and yielded lower intra- and higher interspecific genetic divergence values than the other two markers. The use of "tag barcodes" is a new approach that involves attaching a species-specific tag to the standard DNA barcode. With this method, the "barcoding overlap" can be nearly eliminated. As a result, we were able to increase the identification success rate from 83.9% to 95.2% by using COI and the "best close match" technique. A COII-based identification system should be more effective in identifying lachnine species than COI or Cytb. However, the Cytb gene is an effective marker for the study of aphid population genetics due to its high sequence diversity. Furthermore, the use of "tag barcodes" can improve the accuracy of DNA barcoding identification by reducing or removing the overlap between intra- and inter-specific genetic divergence values.

  19. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive.

    PubMed

    Hering, Daniel; Borja, Angel; Jones, J Iwan; Pont, Didier; Boets, Pieter; Bouchez, Agnes; Bruce, Kat; Drakare, Stina; Hänfling, Bernd; Kahlert, Maria; Leese, Florian; Meissner, Kristian; Mergen, Patricia; Reyjol, Yorick; Segurado, Pedro; Vogler, Alfried; Kelly, Martyn

    2018-07-01

    Assessment of ecological status for the European Water Framework Directive (WFD) is based on "Biological Quality Elements" (BQEs), namely phytoplankton, benthic flora, benthic invertebrates and fish. Morphological identification of these organisms is a time-consuming and expensive procedure. Here, we assess the options for complementing and, perhaps, replacing morphological identification with procedures using eDNA, metabarcoding or similar approaches. We rate the applicability of DNA-based identification for the individual BQEs and water categories (rivers, lakes, transitional and coastal waters) against eleven criteria, summarised under the headlines representativeness (for example suitability of current sampling methods for DNA-based identification, errors from DNA-based species detection), sensitivity (for example capability to detect sensitive taxa, unassigned reads), precision of DNA-based identification (knowledge about uncertainty), comparability with conventional approaches (for example sensitivity of metrics to differences in DNA-based identification), cost effectiveness and environmental impact. Overall, suitability of DNA-based identification is particularly high for fish, as eDNA is a well-suited sampling approach which can replace expensive and potentially harmful methods such as gill-netting, trawling or electrofishing. Furthermore, there are attempts to replace absolute by relative abundance in metric calculations. For invertebrates and phytobenthos, the main challenges include the modification of indices and completing barcode libraries. For phytoplankton, the barcode libraries are even more problematic, due to the high taxonomic diversity in plankton samples. If current assessment concepts are kept, DNA-based identification is least appropriate for macrophytes (rivers, lakes) and angiosperms/macroalgae (transitional and coastal waters), which are surveyed rather than sampled. We discuss general implications of implementing DNA-based identification into standard ecological assessment, in particular considering any adaptations to the WFD that may be required to facilitate the transition to molecular data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Avatar DNA Nanohybrid System in Chip-on-a-Phone

    NASA Astrophysics Data System (ADS)

    Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho

    2014-05-01

    Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording.

  1. Avatar DNA Nanohybrid System in Chip-on-a-Phone

    PubMed Central

    Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho

    2014-01-01

    Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording. PMID:24824876

  2. Application of MALDI-TOF MS Systems in the Rapid Identification of Campylobacter spp. of Public Health Importance.

    PubMed

    Hsieh, Ying-Hsin; Wang, Yun F; Moura, Hercules; Miranda, Nancy; Simpson, Steven; Gowrishankar, Ramnath; Barr, John; Kerdahi, Khalil; Sulaiman, Irshad M

    2018-05-01

    Campylobacteriosis is an infectious gastrointestinal disease caused by Campylobacter spp. In most cases, it is either underdiagnosed or underreported due to poor diagnostics and limited databases. Several DNA-based molecular diagnostic techniques, including 16S ribosomal RNA (rRNA) sequence typing, have been widely used in the species identification of Campylobacter. Nevertheless, these assays are time-consuming and require a high quality of bacterial DNA. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) MS is an emerging diagnostic technology that can provide the rapid identification of microorganisms by using their intact cells without extraction or purification. In this study, we analyzed 24 American Type Culture Collection reference isolates of 16 Campylobacter spp. and five unknown clinical bacterial isolates for rapid identification utilizing two commercially available MADI-TOF MS platforms, namely the bioMérieux VITEK® MS and Bruker Biotyper systems. In addition, 16S rRNA sequencing was performed to confirm the species-level identification of the unknown clinical isolates. Both MALDI-TOF MS systems identified the isolates of C. jejuni, C. coli, C. lari, and C. fetus. The results of this study suggest that the MALDI-TOF MS technique can be used in the identification of Campylobacter spp. of public health importance.

  3. Geographic origin and individual assignment of Shorea platyclados (Dipterocarpaceae) for forensic identification

    PubMed Central

    Diway, Bibian; Khoo, Eyen

    2017-01-01

    The development of timber tracking methods based on genetic markers can provide scientific evidence to verify the origin of timber products and fulfill the growing requirement for sustainable forestry practices. In this study, the origin of an important Dark Red Meranti wood, Shorea platyclados, was studied by using the combination of seven chloroplast DNA and 15 short tandem repeats (STRs) markers. A total of 27 natural populations of S. platyclados were sampled throughout Malaysia to establish population level and individual level identification databases. A haplotype map was generated from chloroplast DNA sequencing for population identification, resulting in 29 multilocus haplotypes, based on 39 informative intraspecific variable sites. Subsequently, a DNA profiling database was developed from 15 STRs allowing for individual identification in Malaysia. Cluster analysis divided the 27 populations into two genetic clusters, corresponding to the region of Eastern and Western Malaysia. The conservativeness tests showed that the Malaysia database is conservative after removal of bias from population subdivision and sampling effects. Independent self-assignment tests correctly assigned individuals to the database in an overall 60.60−94.95% of cases for identified populations, and in 98.99−99.23% of cases for identified regions. Both the chloroplast DNA database and the STRs appear to be useful for tracking timber originating in Malaysia. Hence, this DNA-based method could serve as an effective addition tool to the existing forensic timber identification system for ensuring the sustainably management of this species into the future. PMID:28430826

  4. 28 CFR 28.21 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Purpose. 28.21 Section 28.21 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.21... exceptions. The general purpose of this requirement is to preserve biological evidence for possible DNA...

  5. 28 CFR 28.21 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Purpose. 28.21 Section 28.21 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.21... exceptions. The general purpose of this requirement is to preserve biological evidence for possible DNA...

  6. 28 CFR 28.21 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Purpose. 28.21 Section 28.21 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.21... exceptions. The general purpose of this requirement is to preserve biological evidence for possible DNA...

  7. 28 CFR 28.21 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Purpose. 28.21 Section 28.21 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.21... exceptions. The general purpose of this requirement is to preserve biological evidence for possible DNA...

  8. 28 CFR 28.21 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Purpose. 28.21 Section 28.21 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.21... exceptions. The general purpose of this requirement is to preserve biological evidence for possible DNA...

  9. Performance of two MALDI-TOF MS systems for the identification of yeasts isolated from bloodstream infections and cerebrospinal fluids using a time-saving direct transfer protocol.

    PubMed

    Hamprecht, Axel; Christ, Sara; Oestreicher, Tanja; Plum, Georg; Kempf, Volkhard A J; Göttig, Stephan

    2014-04-01

    The rapid and correct identification of pathogens is of paramount importance for the treatment of patients with invasive infections. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can speed up the identification of bacteria and fungi and has quickly been embraced by medical microbiology laboratories worldwide. Different MALDI-TOF systems have been compared in studies focussing on identification rates of different pathogens. Another aspect that has not been systematically assessed is the performance in daily routine and handling, which is important especially for microbiology routine laboratories. We compared two widespread commercial systems, Microflex LT Biotyper (Bruker) and VitekMS (bioMérieux), for the identification of 210 relevant clinical yeasts under routine conditions, using a time-saving direct transfer protocol. We assessed the need for an additional extraction step, the threshold for species identification and the duration of measurements with the two systems. The tested yeasts included 34 Candida albicans isolates, 144 non-albicans Candida spp. and 32 yeasts of different genera. The results of the two MS systems were compared with that of biochemical identification and, in case of discrepancies, DNA sequencing of the internal transcribed spacer or the large subunit of ribosomal DNA. Both systems correctly identified 96.2 % of isolates [202/210, non-significant (n.s.)]. Misidentifications were observed for VitekMS only (n = 5, no major errors, n.s.). VitekMS was the slower system (19.8 vs. 8.0 min for 10 samples, p = 0.002) but had the advantage of a more effective direct transfer protocol with less need for an additional extraction step.

  10. A General Method for Discovering Inhibitors of Protein–DNA Interactions Using Photonic Crystal Biosensors

    PubMed Central

    Chan, Leo L.; Pineda, Maria; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.

    2009-01-01

    Protein–DNA interactions are essential for fundamental cellular processes such as transcription, DNA damage repair, and apoptosis. As such, small molecule disruptors of these interactions could be powerful tools for investigation of these biological processes, and such compounds would have great potential as therapeutics. Unfortunately, there are few methods available for the rapid identification of compounds that disrupt protein–DNA interactions. Here we show that photonic crystal (PC) technology can be utilized to detect protein–DNA interactions, and can be used in a high-throughput screening mode to identify compounds that prevent protein–DNA binding. The PC technology is used to detect binding between protein–DNA interactions that are DNA-sequence-dependent (the bacterial toxin–antitoxin system MazEF) and those that are DNA-sequence-independent (the human apoptosis inducing factor (AIF)). The PC technology was further utilized in a screen for inhibitors of the AIF–DNA interaction, and through this screen aurin tricarboxylic acid was identified as the first in vitro inhibitor of AIF. The generality and simplicity of the photonic crystal method should enable this technology to find broad utility for identification of compounds that inhibit protein–DNA binding. PMID:18582039

  11. [Integrated DNA barcoding database for identifying Chinese animal medicine].

    PubMed

    Shi, Lin-Chun; Yao, Hui; Xie, Li-Fang; Zhu, Ying-Jie; Song, Jing-Yuan; Zhang, Hui; Chen, Shi-Lin

    2014-06-01

    In order to construct an integrated DNA barcoding database for identifying Chinese animal medicine, the authors and their cooperators have completed a lot of researches for identifying Chinese animal medicines using DNA barcoding technology. Sequences from GenBank have been analyzed simultaneously. Three different methods, BLAST, barcoding gap and Tree building, have been used to confirm the reliabilities of barcode records in the database. The integrated DNA barcoding database for identifying Chinese animal medicine has been constructed using three different parts: specimen, sequence and literature information. This database contained about 800 animal medicines and the adulterants and closely related species. Unknown specimens can be identified by pasting their sequence record into the window on the ID page of species identification system for traditional Chinese medicine (www. tcmbarcode. cn). The integrated DNA barcoding database for identifying Chinese animal medicine is significantly important for animal species identification, rare and endangered species conservation and sustainable utilization of animal resources.

  12. Application of DNA-based methods in forensic entomology.

    PubMed

    Wells, Jeffrey D; Stevens, Jamie R

    2008-01-01

    A forensic entomological investigation can benefit from a variety of widely practiced molecular genotyping methods. The most commonly used is DNA-based specimen identification. Other applications include the identification of insect gut contents and the characterization of the population genetic structure of a forensically important insect species. The proper application of these procedures demands that the analyst be technically expert. However, one must also be aware of the extensive list of standards and expectations that many legal systems have developed for forensic DNA analysis. We summarize the DNA techniques that are currently used in, or have been proposed for, forensic entomology and review established genetic analyses from other scientific fields that address questions similar to those in forensic entomology. We describe how accepted standards for forensic DNA practice and method validation are likely to apply to insect evidence used in a death or other forensic entomological investigation.

  13. A brief review of machine vision in the context of automated wood identification systems

    Treesearch

    John C. Hermanson; Alex C. Wiedenhoeft

    2011-01-01

    The need for accurate and rapid field identification of wood to combat illegal logging around the world is outpacing the ability to train personnel to perform this task. Despite increased interest in non-anatomical (DNA, spectroscopic, chemical) methods for wood identification, anatomical characteristics are the least labile data that can be extracted from solid wood...

  14. 28 CFR 28.2 - Determination of offenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Determination of offenses. 28.2 Section 28.2 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA Sample Collection § 28.2 Determination of offenses. (a) Felony means a Federal...

  15. 28 CFR 28.28 - Sanctions for violations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Sanctions for violations. 28.28 Section 28.28 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of... evidence from being subjected to DNA testing or prevent the production or use of that evidence in an...

  16. 28 CFR 28.28 - Sanctions for violations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Sanctions for violations. 28.28 Section 28.28 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of... evidence from being subjected to DNA testing or prevent the production or use of that evidence in an...

  17. 28 CFR 28.2 - Determination of offenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Determination of offenses. 28.2 Section 28.2 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA Sample Collection § 28.2 Determination of offenses. (a) Felony means a Federal...

  18. 28 CFR 28.2 - Determination of offenses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Determination of offenses. 28.2 Section 28.2 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA Sample Collection § 28.2 Determination of offenses. (a) Felony means a Federal...

  19. 28 CFR 28.2 - Determination of offenses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Determination of offenses. 28.2 Section 28.2 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA Sample Collection § 28.2 Determination of offenses. (a) Felony means a Federal...

  20. 28 CFR 28.28 - Sanctions for violations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Sanctions for violations. 28.28 Section 28.28 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of... evidence from being subjected to DNA testing or prevent the production or use of that evidence in an...

  1. 28 CFR 28.28 - Sanctions for violations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Sanctions for violations. 28.28 Section 28.28 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of... evidence from being subjected to DNA testing or prevent the production or use of that evidence in an...

  2. 28 CFR 28.2 - Determination of offenses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Determination of offenses. 28.2 Section 28.2 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Qualifying Federal Offenses for Purposes of DNA Sample Collection § 28.2 Determination of offenses. (a) Felony means a Federal...

  3. 28 CFR 28.28 - Sanctions for violations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Sanctions for violations. 28.28 Section 28.28 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of... evidence from being subjected to DNA testing or prevent the production or use of that evidence in an...

  4. Rapid extraction from and direct identification in clinical samples of methicillin-resistant staphylococci using the PCR.

    PubMed

    Jaffe, R I; Lane, J D; Albury, S V; Niemeyer, D M

    2000-09-01

    Methicillin-resistant staphylococci (MRS) are one of the most common causes of nosocomial infections and bacteremia. Standard bacterial identification and susceptibility testing frequently require as long as 72 h to report results, and there may be difficulty in rapidly and accurately identifying methicillin resistance. The use of the PCR is a rapid and simple process for the amplification of target DNA sequences, which can be used to identify and test bacteria for antimicrobial resistance. However, many sample preparation methods are unsuitable for PCR utilization in the clinical laboratory because they either are not cost-effective, take too long to perform, or do not provide a satisfactory DNA template for PCR. Our goal was to provide same-day results to facilitate rapid diagnosis and therapy. In this report, we describe a rapid method for extraction of bacterial DNA directly from blood culture bottles that gave quality DNA for PCR in as little as 20 min. We compared this extraction method to the standard QIAGEN method for turnaround time (TAT), cost, purity, and use of template in PCR. Specific identification of MRS was determined using intragenic primer sets for bacterial and Staphylococcus 16S rRNA and mecA gene sequences. The PCR primer sets were validated with 416 isolates of staphylococci, including methicillin-resistant Staphylococcus aureus (n = 106), methicillin-sensitive S. aureus (n = 134), and coagulase-negative Staphylococcus (n = 176). The total supply cost of our extraction method and PCR was $2.15 per sample with a result TAT of less than 4 h. The methods described herein represent a rapid and accurate DNA extraction and PCR-based identification system, which makes the system an ideal candidate for use under austere field conditions and one that may have utility in the clinical laboratory.

  5. Candida guilliermondii and Other Species of Candida Misidentified as Candida famata: Assessment by Vitek 2, DNA Sequencing Analysis, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry in Two Global Antifungal Surveillance Programs

    PubMed Central

    Woosley, Leah N.; Diekema, Daniel J.; Jones, Ronald N.; Pfaller, Michael A.

    2013-01-01

    Candida famata (teleomorph Debaryomyces hansenii) has been described as a medically relevant yeast, and this species has been included in many commercial identification systems that are currently used in clinical laboratories. Among 53 strains collected during the SENTRY and ARTEMIS surveillance programs and previously identified as C. famata (includes all submitted strains with this identification) by a variety of commercial methods (Vitek, MicroScan, API, and AuxaColor), DNA sequencing methods demonstrated that 19 strains were C. guilliermondii, 14 were C. parapsilosis, 5 were C. lusitaniae, 4 were C. albicans, and 3 were C. tropicalis, and five isolates belonged to other Candida species (two C. fermentati and one each C. intermedia, C. pelliculosa, and Pichia fabianni). Additionally, three misidentified C. famata strains were correctly identified as Kodomaea ohmeri, Debaryomyces nepalensis, and Debaryomyces fabryi using intergenic transcribed spacer (ITS) and/or intergenic spacer (IGS) sequencing. The Vitek 2 system identified three isolates with high confidence to be C. famata and another 15 with low confidence between C. famata and C. guilliermondii or C. parapsilosis, displaying only 56.6% agreement with DNA sequencing results. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) results displayed 81.1% agreement with DNA sequencing. One strain each of C. metapsilosis, C. fermentati, and C. intermedia demonstrated a low score for identification (<2.0) in the MALDI Biotyper. K. ohmeri, D. nepalensis, and D. fabryi identified by DNA sequencing in this study were not in the current database for the MALDI Biotyper. These results suggest that the occurrence of C. famata in fungal infections is much lower than previously appreciated and that commercial systems do not produce accurate identifications except for the newly introduced MALDI-TOF instruments. PMID:23100350

  6. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification.

    PubMed

    Liu, Jie; Milne, Richard I; Möller, Michael; Zhu, Guang-Fu; Ye, Lin-Jiang; Luo, Ya-Huang; Yang, Jun-Bo; Wambulwa, Moses C; Wang, Chun-Neng; Li, De-Zhu; Gao, Lian-Ming

    2018-05-22

    Rapid and accurate identification of endangered species is a critical component of biosurveillance and conservation management, and potentially policing illegal trades. However, this is often not possible using traditional taxonomy, especially where only small or preprocessed parts of plants are available. Reliable identification can be achieved via a comprehensive DNA barcode reference library, accompanied by precise distribution data. However, these require extensive sampling at spatial and taxonomic scales, which has rarely been achieved for cosmopolitan taxa. Here, we construct a comprehensive DNA barcode reference library and generate distribution maps using species distribution modelling (SDM), for all 15 Taxus species worldwide. We find that trnL-trnF is the ideal barcode for Taxus: It can distinguish all Taxus species and in combination with ITS identify hybrids. Among five analysis methods tested, NJ was the most effective. Among 4,151 individuals screened for trnL-trnF, 73 haplotypes were detected, all species-specific and some population private. Taxonomical, geographical and genetic dimensions of sampling strategy were all found to affect the comprehensiveness of the resulting DNA barcode library. Maps from SDM showed that most species had allopatric distributions, except T. mairei in the Sino-Himalayan region. Using the barcode library and distribution map data, two unknown forensic samples were identified to species (and in one case, population) level and another was determined as a putative interspecific hybrid. This integrated species identification system for Taxus can be used for biosurveillance, conservation management and to monitor and prosecute illegal trade. Similar identification systems are recommended for other IUCN- and CITES-listed taxa. © 2018 John Wiley & Sons Ltd.

  7. Classification of Sharks in the Egyptian Mediterranean Waters Using Morphological and DNA Barcoding Approaches

    PubMed Central

    Moftah, Marie; Abdel Aziz, Sayeda H.; Elramah, Sara; Favereaux, Alexandre

    2011-01-01

    The identification of species constitutes the first basic step in phylogenetic studies, biodiversity monitoring and conservation. DNA barcoding, i.e. the sequencing of a short standardized region of DNA, has been proposed as a new tool for animal species identification. The present study provides an update on the composition of shark in the Egyptian Mediterranean waters off Alexandria, since the latest study to date was performed 30 years ago, DNA barcoding was used in addition to classical taxonomical methodologies. Thus, 51 specimen were DNA barcoded for a 667 bp region of the mitochondrial COI gene. Although DNA barcoding aims at developing species identification systems, some phylogenetic signals were apparent in the data. In the neighbor-joining tree, 8 major clusters were apparent, each of them containing individuals belonging to the same species, and most with 100% bootstrap value. This study is the first to our knowledge to use DNA barcoding of the mitochondrial COI gene in order to confirm the presence of species Squalus acanthias, Oxynotus centrina, Squatina squatina, Scyliorhinus canicula, Scyliorhinus stellaris, Mustelus mustelus, Mustelus punctulatus and Carcharhinus altimus in the Egyptian Mediterranean waters. Finally, our study is the starting point of a new barcoding database concerning shark composition in the Egyptian Mediterranean waters (Barcoding of Egyptian Mediterranean Sharks [BEMS], http://www.boldsystems.org/views/projectlist.php?&#Barcoding%20Fish%20%28FishBOL%29). PMID:22087242

  8. BOLDMirror: a global mirror system of DNA barcode data.

    PubMed

    Liu, D; Liu, L; Guo, G; Wang, W; Sun, Q; Parani, M; Ma, J

    2013-11-01

    DNA barcoding is a novel concept for taxonomic identification using short, specific genetic markers and has been applied to study a large number of eukaryotes. The huge amount of data output generated by DNA barcoding requires well-organized information systems. Besides the Barcode of Life Data system (BOLD) established in Canada, the mirror system is also important for the international barcode of life project (iBOL). For this purpose, we developed the BOLDMirror, a global mirror system of DNA barcode data. It is open-sourced and can run on the LAMP (Linux + Apache + MySQL + PHP) environment. BOLDMirror has data synchronization, data representation and statistics modules, and also provides spaces to store user operation history. BOLDMirror can be accessed at http://www.boldmirror.net and several countries have used it to setup their site of DNA barcoding. © 2012 John Wiley & Sons Ltd.

  9. Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria.

    PubMed

    Branda, John A; Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda F; Westblade, Lars F; Ferraro, Mary Jane

    2014-02-01

    The VITEK MS v2.0 MALDI-TOF mass spectrometry system's performance in identifying fastidious gram-negative bacteria was evaluated in a multicenter study. Compared with the reference method (DNA sequencing), the VITEK MS system provided an accurate, species-level identification for 96% of 226 isolates; an additional 1% were accurately identified to the genus level. © 2013.

  10. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species.

    PubMed

    Nwani, Christopher D; Becker, Sven; Braid, Heather E; Ude, Emmanuel F; Okogwu, Okechukwu I; Hanner, Robert

    2011-10-01

    Fishes are the main animal protein source for human beings and play a vital role in aquatic ecosystems and food webs. Fish identification can be challenging, especially in the tropics (due to high diversity), and this is particularly true for larval forms or fragmentary remains. DNA barcoding, which uses the 5' region of the mitochondrial cytochrome c oxidase subunit I (COI) as a target gene, is an efficient method for standardized species-level identification for biodiversity assessment and conservation, pending the establishment of reference sequence libraries. In this study, fishes were collected from three rivers in southeastern Nigeria, identified morphologically, and imaged digitally. DNA was extracted, PCR-amplified, and the standard barcode region was bidirectionally sequenced for 363 individuals belonging to 70 species in 38 genera. All specimen provenance data and associated sequence information were recorded in the barcode of life data systems (BOLD; www.barcodinglife.org ). Analytical tools on BOLD were used to assess the performance of barcoding to identify species. Using neighbor-joining distance comparison, the average genetic distance was 60-fold higher between species than within species, as pairwise genetic distance estimates averaged 10.29% among congeners and only 0.17% among conspecifics. Despite low levels of divergence within species, we observed river system-specific haplotype partitioning within eight species (11.4% of all species). Our preliminary results suggest that DNA barcoding is very effective for species identification of Nigerian freshwater fishes.

  11. A laboratory information management system for DNA barcoding workflows.

    PubMed

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  12. Identification of five highly priced tuna species by quantitative real-time polymerase chain reaction.

    PubMed

    Liu, Shasha; Xu, Kunhua; Wu, Zhigang; Xie, Xiao; Feng, Junli

    2016-09-01

    Tunas are economically important fishery worldwide, and are often used for commercial processed production. For effective fishery management and protection of consumers' rights, it is important to develop a molecular method to identify species in canned tuna products rapidly and reliably. Here, we have developed a duplex quantitative real-time PCR (qPCR) for identification of five highly priced tuna species (Thunnus maccoyii, Thunnus obesus, Thunnus albacares, Thunnus alalunga and Katsuwonus pelamis) from processed as well as fresh fish. After amplification and sequencing of seven genetic markers commonly used for species identification, 16S rDNA and control region (CR) of mitochondrial DNA were selected as the reference gene markers for genus Thunnus and tuna species identification, respectively. Subsequently, a 73 bp fragment of 16S rDNA and 85-99 bp fragment of CR were simultaneously amplified from each target species by qPCR. The qPCR efficiency of each reaction was calculated according to the standard curves, and the method was validated by amplification DNA extracted from single or mixed tuna specimen. The developed duplex qPCR system was applied to authenticate species of 14 commercial tuna products successfully, which demonstrated it was really a useful and academic technique to identify highly priced tuna species.

  13. Detection of mitochondrial DNA with the compact bead array sensor system (cBASS)

    NASA Astrophysics Data System (ADS)

    Mulvaney, Shawn P.; Ibe, Carol N.; Caldwell, Jane M.; Levine, Jay F.; Whitman, Lloyd J.; Tamanaha, Cy R.

    2009-02-01

    Enteric pathogens are a significant contaminant in surface waters used for recreation, fish and shellfish harvesting, crop irrigation, and human consumption. The need for water monitoring becomes more pronounced when industrial, agricultural, and residential lands are found in close proximity. Fecal contamination is particularly problematic and identification of the pollution source essential to remediation efforts. Standard monitoring for fecal contamination relies on indicator organisms, but the technique is too broad to identify the source of contamination. Instead, real-time PCR of mitochondrial DNA (mtDNA) is an emerging method for identification of the contamination source. Presented herein, we evaluate an alternative technology, the compact Bead Array Sensor System (cBASS®) and its assay approach Fluidic Force Discrimination (FFD), for the detection of mtDNA. Previously, we achieved multiplexed, attomolar detection of toxins and femtomolar detection of nucleic acids in minutes with FFD assays. More importantly, FFD assays are compatible with a variety of complex matrices and therefore potentially applicable for samples where the matrix would interfere with PCR amplification. We have designed a triplex assay for the NADH gene found in human, swine, and bovine mtDNA and demonstrated the specific detection of human mtDNA spiked into a waste water sample.

  14. On-site identification of meat species in processed foods by a rapid real-time polymerase chain reaction system.

    PubMed

    Furutani, Shunsuke; Hagihara, Yoshihisa; Nagai, Hidenori

    2017-09-01

    Correct labeling of foods is critical for consumers who wish to avoid a specific meat species for religious or cultural reasons. Therefore, gene-based point-of-care food analysis by real-time Polymerase Chain Reaction (PCR) is expected to contribute to the quality control in the food industry. In this study, we perform rapid identification of meat species by our portable rapid real-time PCR system, following a very simple DNA extraction method. Applying these techniques, we correctly identified beef, pork, chicken, rabbit, horse, and mutton in processed foods in 20min. Our system was sensitive enough to detect the interfusion of about 0.1% chicken egg-derived DNA in a processed food sample. Our rapid real-time PCR system is expected to contribute to the quality control in food industries because it can be applied for the identification of meat species, and future applications can expand its functionality to the detection of genetically modified organisms or mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The barley EST DNA Replication and Repair Database (bEST-DRRD) as a tool for the identification of the genes involved in DNA replication and repair.

    PubMed

    Gruszka, Damian; Marzec, Marek; Szarejko, Iwona

    2012-06-14

    The high level of conservation of genes that regulate DNA replication and repair indicates that they may serve as a source of information on the origin and evolution of the species and makes them a reliable system for the identification of cross-species homologs. Studies that had been conducted to date shed light on the processes of DNA replication and repair in bacteria, yeast and mammals. However, there is still much to be learned about the process of DNA damage repair in plants. These studies, which were conducted mainly using bioinformatics tools, enabled the list of genes that participate in various pathways of DNA repair in Arabidopsis thaliana (L.) Heynh to be outlined; however, information regarding these mechanisms in crop plants is still very limited. A similar, functional approach is particularly difficult for a species whose complete genomic sequences are still unavailable. One of the solutions is to apply ESTs (Expressed Sequence Tags) as the basis for gene identification. For the construction of the barley EST DNA Replication and Repair Database (bEST-DRRD), presented here, the Arabidopsis nucleotide and protein sequences involved in DNA replication and repair were used to browse for and retrieve the deposited sequences, derived from four barley (Hordeum vulgare L.) sequence databases, including the "Barley Genome version 0.05" database (encompassing ca. 90% of barley coding sequences) and from two databases covering the complete genomes of two monocot models: Oryza sativa L. and Brachypodium distachyon L. in order to identify homologous genes. Sequences of the categorised Arabidopsis queries are used for browsing the repositories, which are located on the ViroBLAST platform. The bEST-DRRD is currently used in our project during the identification and validation of the barley genes involved in DNA repair. The presented database provides information about the Arabidopsis genes involved in DNA replication and repair, their expression patterns and models of protein interactions. It was designed and established to provide an open-access tool for the identification of monocot homologs of known Arabidopsis genes that are responsible for DNA-related processes. The barley genes identified in the project are currently being analysed to validate their function.

  16. A simplified protocol for molecular identification of Eimeria species in field samples.

    PubMed

    Haug, Anita; Thebo, Per; Mattsson, Jens G

    2007-05-15

    This study aimed to find a fast, sensitive and efficient protocol for molecular identification of chicken Eimeria spp. in field samples. Various methods for each of the three steps of the protocol were evaluated: oocyst wall rupturing methods, DNA extraction methods, and identification of species-specific DNA sequences by PCR. We then compared and evaluated five complete protocols. Three series of oocyst suspensions of known number of oocysts from Eimeria mitis, Eimeria praecox, Eimeria maxima and Eimeria tenella were prepared and ground using glass beads or mini-pestle. DNA was extracted from ruptured oocysts using commercial systems (GeneReleaser, Qiagen Stoolkit and Prepman) or phenol-chloroform DNA extraction, followed by identification of species-specific ITS-1 sequences by optimised single species PCR assays. The Stoolkit and Prepman protocols showed insufficient repeatability, and the former was also expensive and relatively time-consuming. In contrast, both the GeneReleaser protocol and phenol-chloroform protocols were robust and sensitive, detecting less than 0.4 oocysts of each species per PCR. Finally, we evaluated our new protocol on 68 coccidia positive field samples. Our data suggests that rupturing the oocysts by mini-pestle grinding, preparing the DNA with GeneReleaser, followed by optimised single species PCR assays, makes a robust and sensitive procedure for identifying chicken Eimeria species in field samples. Importantly, it also provides minimal hands-on-time in the pre-PCR process, lower contamination risk and no handling of toxic chemicals.

  17. Mitochondrial disorders: Challenges in diagnosis & treatment

    PubMed Central

    Khan, Nahid Akhtar; Govindaraj, Periyasamy; Meena, Angamuthu Kannan; Thangaraj, Kumarasamy

    2015-01-01

    Mitochondrial dysfunctions are known to be responsible for a number of heterogenous clinical presentations with multi-systemic involvement. Impaired oxidative phosphorylation leading to a decrease in cellular energy (ATP) production is the most important cause underlying these disorders. Despite significant progress made in the field of mitochondrial medicine during the last two decades, the molecular mechanisms underlying these disorders are not fully understood. Since the identification of first mitochondrial DNA (mtDNA) mutation in 1988, there has been an exponential rise in the identification of mtDNA and nuclear DNA mutations that are responsible for mitochondrial dysfunction and disease. Genetic complexity together with ever widening clinical spectrum associated with mitochondrial dysfunction poses a major challenge in diagnosis and treatment. Effective therapy has remained elusive till date and is mostly efficient in relieving symptoms. In this review, we discuss the important clinical and genetic features of mitochondrials disorders with special emphasis on diagnosis and treatment. PMID:25857492

  18. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  19. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  20. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  1. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  2. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  3. Potential for DNA-based identification of Great Lakes fauna: Match and mismatch between taxa inventories and DNA barcode libraries

    EPA Science Inventory

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to biotic condition assessment and non-native species early-detection monitoring. However, the abi...

  4. Identification of Forensically Important Calliphoridae and Sarcophagidae Species Collected in Korea Using SNaPshot Multiplex System Targeting the Cytochrome c Oxidase Subunit I Gene

    PubMed Central

    Park, Ji Hye

    2018-01-01

    Estimation of postmortem interval (PMI) is paramount in modern forensic investigation. After the disappearance of the early postmortem phenomena conventionally used to estimate PMI, entomologic evidence provides important indicators for PMI estimation. The age of the oldest fly larvae or pupae can be estimated to pinpoint the time of oviposition, which is considered the minimum PMI (PMImin). The development rate of insects is usually temperature dependent and species specific. Therefore, species identification is mandatory for PMImin estimation using entomological evidence. The classical morphological identification method cannot be applied when specimens are damaged or have not yet matured. To overcome this limitation, some investigators employ molecular identification using mitochondrial cytochrome c oxidase subunit I (COI) nucleotide sequences. The molecular identification method commonly uses Sanger's nucleotide sequencing and molecular phylogeny, which are complex and time consuming and constitute another obstacle for forensic investigators. In this study, instead of using conventional Sanger's nucleotide sequencing, single-nucleotide polymorphisms (SNPs) in the COI gene region, which are unique between fly species, were selected and targeted for single-base extension (SBE) technology. These SNPs were genotyped using a SNaPshot® kit. Eleven Calliphoridae and seven Sarcophagidae species were covered. To validate this genotyping, fly DNA samples (103 adults, 84 larvae, and 4 pupae) previously confirmed by DNA barcoding were used. This method worked quickly with minimal DNA, providing a potential alternative to conventional DNA barcoding. Consisting of only a few simple electropherogram peaks, the results were more straightforward compared with those of the conventional DNA barcoding produced by Sanger's nucleotide sequencing. PMID:29682531

  5. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions.

    PubMed

    Raupach, Michael J; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences.

  6. Laser mass spectrometry for DNA fingerprinting for forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.H.; Tang, K.; Taranenko, N.I.

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals.more » DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.« less

  7. Utilization of matrix-assisted laser desorption and ionization time-of-flight mass spectrometry for identification of infantile seborrheic dermatitis-causing Malassezia and incidence of culture-based cutaneous Malassezia microbiota of 1-month-old infants.

    PubMed

    Yamamoto, Mikachi; Umeda, Yoshiko; Yo, Ayaka; Yamaura, Mariko; Makimura, Koichi

    2014-02-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been utilized for identification of various microorganisms. Malassezia species, including Malassezia restricta, which is associated with seborrheic dermatitis, has been difficult to identify by traditional means. This study was performed to develop a system for identification of Malassezia species with MALDI-TOF-MS and to investigate the incidence and variety of cutaneous Malassezia microbiota of 1-month-old infants using this technique. A Malassezia species-specific MALDI-TOF-MS database was developed from eight standard strains, and the availability of this system was assessed using 54 clinical strains isolated from the skin of 1-month-old infants. Clinical isolates were cultured initially on CHROMagar Malassezia growth medium, and the 28S ribosomal DNA (D1/D2) sequence was analyzed for confirmatory identification. Using this database, we detected and analyzed Malassezia species in 68% and 44% of infants with and without infantile seborrheic dermatitis, respectively. The results of MALDI-TOF-MS analysis were consistent with those of rDNA sequencing identification (100% accuracy rate). To our knowledge, this is the first report of a MALDI-TOF-MS database for major skin pathogenic Malassezia species. This system is an easy, rapid and reliable method for identification of Malassezia. © 2014 Japanese Dermatological Association.

  8. Disaster victim identification of military aircrew, 1945-2002.

    PubMed

    Smith, Adrian

    2003-11-01

    Aviation accident fatalities are characterized by substantial tissue disruption and fragmentation, limiting the usefulness of traditional identification methods. This study examines the success of disaster victim identification (DVI) in military aviation accident fatalities in the Australian Defense Force (ADF). Accident reports and autopsy records of aircrew fatalities during the period 1945-2002 were examined to identify difficulties experienced during the DVI process or injuries that would prevent identification of remains using non-DNA methods. The ADF had 301 aircraft fatalities sustained in 144 accidents during the period 1945-2002. The autopsy reports for 117 fatalities were reviewed (covering 73.7% of aircrew fatalities from 1960-2002). Of the 117 victims, 38 (32.4%) sustained injuries which were severe enough to prevent identification by traditional (non-DNA) comparative scientific DVI techniques of fingerprint and dental analysis. Many of the ADF fatalities who could not be positively identified in the past could be identified today through the use of DNA techniques. Successful DNA identification, however, depends on having a reference DNA profile. This paper recommends the establishment of a DNA repository to store reference blood samples to facilitate the identification of ADF aircrew remains without causing additional distress to family members.

  9. DNA barcoding reveals a cryptic nemertean invasion in Atlantic and Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Fernández-Álvarez, Fernando Ángel; Machordom, Annie

    2013-09-01

    For several groups, like nemerteans, morphology-based identification is a hard discipline, but DNA barcoding may help non-experts in the identification process. In this study, DNA barcoding is used to reveal the cryptic invasion of Pacific Cephalothrix cf. simula into Atlantic and Mediterranean coasts. Although DNA barcoding is a promising method for the identification of Nemertea, only 6 % of the known number of nemertean species is currently associated with a correct DNA barcode. Therefore, additional morphological and molecular studies are necessary to advance the utility of DNA barcoding in the characterisation of possible nemertean alien invasions.

  10. Advances in DNA metabarcoding for food and wildlife forensic species identification.

    PubMed

    Staats, Martijn; Arulandhu, Alfred J; Gravendeel, Barbara; Holst-Jensen, Arne; Scholtens, Ingrid; Peelen, Tamara; Prins, Theo W; Kok, Esther

    2016-07-01

    Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison to a reference database as a molecular diagnostic tool in species identification. In recent years, remarkable progress has been made towards developing DNA metabarcoding strategies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in traditional medicine. This review aims to provide insight into advances of plant and animal DNA barcoding and highlights current practices and recent developments for DNA metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is placed on new developments for identifying species listed in the Convention on International Trade of Endangered Species (CITES) appendices for which reliable methods for species identification may signal and/or prevent illegal trade. Current technological developments and challenges of DNA metabarcoding for forensic scientists will be assessed in the light of stakeholders' needs.

  11. MiniX-STR multiplex system population study in Japan and application to degraded DNA analysis.

    PubMed

    Asamura, H; Sakai, H; Kobayashi, K; Ota, M; Fukushima, H

    2006-05-01

    We sought to evaluate a more effective system for analyzing X-chromosomal short tandem repeats (X-STRs) in highly degraded DNA. To generate smaller amplicon lengths, we designed new polymerase chain reaction (PCR) primers for DXS7423, DXS6789, DXS101, GATA31E08, DXS8378, DXS7133, DXS7424, and GATA165B12 at X-linked short tandem repeat (STR) loci, devising two miniX-multiplex PCR systems. Among 333 Japanese individuals, these X-linked loci were detected in amplification products ranging in length from 76 to 169 bp, and statistical analyses of the eight loci indicated a high usefulness for the Japanese forensic practice. Results of tests on highly degraded DNA indicated the miniX-STR multiplex strategies to be an effective system for analyzing degraded DNA. We conclude that analysis by the current miniX-STR multiplex systems offers high effectiveness for personal identification from degraded DNA samples.

  12. Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach.

    PubMed

    Ferri, Gianmarco; Alù, Milena; Corradini, Beatrice; Beduschi, Giovanni

    2009-09-01

    Forensic botany can provide significant supporting evidence during criminal investigations. However, it is still an underutilized field of investigation with its most common application limited to identifying specific as well as suspected illegal plants. The ubiquitous presence of plant species can be useful in forensics, but the absence of an accurate identification system remains the major obstacle to the present inability to routinely and correctly identify trace botanical evidence. Many plant materials cannot be identified and differentiated to the species level by traditional morphological characteristics when botanical specimens are degraded and lack physical features. By taking advantage of a universal barcode system, DNA sequencing, and other biomolecular techniques used routinely in forensic investigations, two chloroplast DNA regions were evaluated for their use as "barcoding" markers for plant identification in the field of forensics. We therefore investigated the forensic use of two non-coding plastid regions, psbA-trnH and trnL-trnF, to create a multimarker system for species identification that could be useful throughout the plant kingdom. The sequences from 63 plants belonging to our local flora were submitted and registered on the GenBank database. Sequence comparison to set up the level of identification (species, genus, or family) through Blast algorithms allowed us to assess the suitability of this method. The results confirmed the effectiveness of our botanic universal multimarker assay in forensic investigations.

  13. Benefits and challenges to using DNA-based identification methods: An example study of larval fish from nearshore areas of Lake Superior

    EPA Science Inventory

    DNA-based identification methods could increase the ability of aquatic resource managers to track patterns of invasive species, especially for taxa that are difficult to identify morphologically. Nonetheless, use of DNA-based identification methods in aquatic surveys is still unc...

  14. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem.

    PubMed

    Balasingham, Katherine D; Walter, Ryan P; Heath, Daniel D

    2017-05-01

    Several studies have demonstrated that environmental DNA (eDNA) can be used to detect the presence of aquatic species, days to weeks after the target species has been removed. However, most studies used eDNA analysis in lentic systems (ponds or lakes), or in controlled laboratory experiments. While eDNA degrades rapidly in all aquatic systems, it also undergoes dilution effects and physical destruction in flowing systems, complicating detection in rivers. However, some eDNA (i.e. residual eDNA) can be retained in aquatic systems, even those subject to high flow regimes. Our goal was to determine residual eDNA detection sensitivity using quantitative real-time polymerase chain reaction (qRT-PCR), in a flowing, uncontrolled river after the eDNA source was removed from the system; we repeated the experiment over 2 years. Residual eDNA had the strongest signal strength at the original source site and was detectable there up to 11.5 h after eDNA source removal. Residual eDNA signal strength decreased as sampling distance downstream from the eDNA source site increased, and was no longer detectable at the source site 48 h after the eDNA source water was exhausted in both experiments. This experiment shows that residual eDNA sampled in surface water can be mapped quantitatively using qRT-PCR, which allows a more accurate spatial identification of the target species location in lotic systems, and relative residual eDNA signal strength may allow the determination of the timing of the presence of target species. © 2016 John Wiley & Sons Ltd.

  15. Developing an Apicomplexan DNA Barcoding System to Detect Blood Parasites of Small Coral Reef Fishes.

    PubMed

    Renoux, Lance P; Dolan, Maureen C; Cook, Courtney A; Smit, Nico J; Sikkel, Paul C

    2017-08-01

    Apicomplexan parasites are obligate parasites of many species of vertebrates. To date, there is very limited understanding of these parasites in the most-diverse group of vertebrates, actinopterygian fishes. While DNA barcoding targeting the eukaryotic 18S small subunit rRNA gene sequence has been useful in identifying apicomplexans in tetrapods, identification of apicomplexans infecting fishes has relied solely on morphological identification by microscopy. In this study, a DNA barcoding method was developed that targets the 18S rRNA gene primers for identifying apicomplexans parasitizing certain actinopterygian fishes. A lead primer set was selected showing no cross-reactivity to the overwhelming abundant host DNA and successfully confirmed 37 of the 41 (90.2%) microscopically verified parasitized fish blood samples analyzed in this study. Furthermore, this DNA barcoding method identified 4 additional samples that screened negative for parasitemia, suggesting this molecular method may provide improved sensitivity over morphological characterization by microscopy. In addition, this PCR screening method for fish apicomplexans, using Whatman FTA preserved DNA, was tested in efforts leading to a more simplified field collection, transport, and sample storage method as well as a streamlining sample processing important for DNA barcoding of large sample sets.

  16. Identification of forensic samples by using an infrared-based automatic DNA sequencer.

    PubMed

    Ricci, Ugo; Sani, Ilaria; Klintschar, Michael; Cerri, Nicoletta; De Ferrari, Francesco; Giovannucci Uzielli, Maria Luisa

    2003-06-01

    We have recently introduced a new protocol for analyzing all core loci of the Federal Bureau of Investigation's (FBI) Combined DNA Index System (CODIS) with an infrared (IR) automatic DNA sequencer (LI-COR 4200). The amplicons were labeled with forward oligonucleotide primers, covalently linked to a new infrared fluorescent molecule (IRDye 800). The alleles were displayed as familiar autoradiogram-like images with real-time detection. This protocol was employed for paternity testing, population studies, and identification of degraded forensic samples. We extensively analyzed some simulated forensic samples and mixed stains (blood, semen, saliva, bones, and fixed archival embedded tissues), comparing the results with donor samples. Sensitivity studies were also performed for the four multiplex systems. Our results show the efficiency, reliability, and accuracy of the IR system for the analysis of forensic samples. We also compared the efficiency of the multiplex protocol with ultraviolet (UV) technology. Paternity tests, undegraded DNA samples, and real forensic samples were analyzed with this approach based on IR technology and with UV-based automatic sequencers in combination with commercially-available kits. The comparability of the results with the widespread UV methods suggests that it is possible to exchange data between laboratories using the same core group of markers but different primer sets and detection methods.

  17. Development and validation of a multiplex reaction analyzing eight miniSTRs of the X chromosome for identity and kinship testing with degraded DNA.

    PubMed

    Castañeda, María; Odriozola, Adrián; Gómez, Javier; Zarrabeitia, María T

    2013-07-01

    We report the development of an effective system for analyzing X chromosome-linked mini short tandem repeat loci with reduced-size amplicons (less than 220 bp), useful for analyzing highly degraded DNA samples. To generate smaller amplicons, we redesigned primers for eight X-linked microsatellites (DXS7132, DXS10079, DXS10074, DXS10075, DXS6801, DXS6809, DXS6789, and DXS6799) and established efficient conditions for a multiplex PCR system (miniX). The validation tests confirmed that it has good sensitivity, requiring as little as 20 pg of DNA, and performs well with DNA from paraffin-embedded tissues, thus showing potential for improved analysis and identification of highly degraded and/or very limited DNA samples. Consequently, this system may help to solve complex forensic cases, particularly when autosomal markers convey insufficient information.

  18. [Application of mtDNA polymorphism in species identification of sarcosaphagous insects].

    PubMed

    Li, Xiang; Cai, Ji-feng

    2011-04-01

    Species identification of sarcosaphagous insects is one of the important steps in forensic research based on the knowledge of entomology. Recent studies reveal that the application of molecular biology, especially the mtDNA sequences analysis, works well in the species identification of sarcosaphagous insects. The molecular biology characteristics, structures, polymorphism of mtDNA of sarcosaphagous insects, and the recent studies in species identification of sarcosaphagous insects are reviewed in this article.

  19. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    NASA Astrophysics Data System (ADS)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  20. Development of DNA-based Identification methods to track the ...

    EPA Pesticide Factsheets

    The ability to track the identity and abundance of larval fish, which are ubiquitous during spawning season, may lead to a greater understanding of fish species distributions in Great Lakes nearshore areas including early-detection of invasive fish species before they become established. However, larval fish are notoriously hard to identify using traditional morphological techniques. While DNA-based identification methods could increase the ability of aquatic resource managers to determine larval fish composition, use of these methods in aquatic surveys is still uncommon and presents many challenges. In response to this need, we have been working with the U. S. Fish and Wildlife Service to develop field and laboratory methods to facilitate the identification of larval fish using DNA-meta-barcoding. In 2012, we initiated a pilot-project to develop a workflow for conducting DNA-based identification, and compared the species composition at sites within the St. Louis River Estuary of Lake Superior using traditional identification versus DNA meta-barcoding. In 2013, we extended this research to conduct DNA-identification of fish larvae collected from multiple nearshore areas of the Great Lakes by the USFWS. The species composition of larval fish generally mirrored that of fish species known from the same areas, but was influenced by the timing and intensity of sampling. Results indicate that DNA-based identification needs only very low levels of biomass to detect pre

  1. Forensic identification of CITES protected slimming cactus (Hoodia) using DNA barcoding.

    PubMed

    Gathier, Gerard; van der Niet, Timotheus; Peelen, Tamara; van Vugt, Rogier R; Eurlings, Marcel C M; Gravendeel, Barbara

    2013-11-01

    Slimming cactus (Hoodia), found only in southwestern Africa, is a well-known herbal product for losing weight. Consequently, Hoodia extracts are sought-after worldwide despite a CITES Appendix II status. The failure to eradicate illegal trade is due to problems with detecting and identifying Hoodia using morphological and chemical characters. Our aim was to evaluate the potential of molecular identification of Hoodia based on DNA barcoding. Screening of nrITS1 and psbA-trnH DNA sequences from 26 accessions of Ceropegieae resulted in successful identification, while conventional chemical profiling using DLI-MS led to inaccurate detection and identification of Hoodia. The presence of Hoodia in herbal products was also successfully established using DNA sequences. A validation procedure of our DNA barcoding protocol demonstrated its robustness to changes in PCR conditions. We conclude that DNA barcoding is an effective tool for Hoodia detection and identification which can contribute to preventing illegal trade. © 2013 American Academy of Forensic Sciences.

  2. DNA Barcodes for Forensically Important Fly Species in Brazil.

    PubMed

    Koroiva, Ricardo; de Souza, Mirian S; Roque, Fabio de Oliveira; Pepinelli, Mateus

    2018-04-07

    Here, we analyze 248 DNA barcode sequences of 35 fly species of forensic importance in Brazil. DNA barcoding can be effectively used for specimen identification of these species, allowing the unambiguous identification of 31 species, an overall success rate of 88%. Our results show a high rate of success for molecular identification using DNA barcoding sequences and open new perspectives for immature species identification, a subject on which limited forensic investigations exist in Tropical regions. We also address the implications of building a robust forensic DNA barcode database. A geographic bias is recognized for the COI dataset available for forensically important fly species in Brazil, with concentration of sequences from specimens collected mainly in sites located in the Cerrado, Mata Atlântica, and Pampa biomes.

  3. Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses.

    PubMed

    Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko

    2015-01-01

    To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.

  4. Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses

    PubMed Central

    Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko

    2015-01-01

    To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources. PMID:26308446

  5. Assessment of mangroves from Goa, west coast India using DNA barcode.

    PubMed

    Saddhe, Ankush Ashok; Jamdade, Rahul Arvind; Kumar, Kundan

    2016-01-01

    Mangroves are salt-tolerant forest ecosystems of tropical and subtropical intertidal regions. They are among most productive, diverse, biologically important ecosystem and inclined toward threatened system. Identification of mangrove species is of critical importance in conserving and utilizing biodiversity, which apparently hindered by a lack of taxonomic expertise. In recent years, DNA barcoding using plastid markers rbcL and matK has been suggested as an effective method to enrich traditional taxonomic expertise for rapid species identification and biodiversity inventories. In the present study, we performed assessment of available 14 mangrove species of Goa, west coast India based on core DNA barcode markers, rbcL and matK. PCR amplification success rate, intra- and inter-specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in rbcL (97.7 %) and matK (95.5 %) region. The two candidate chloroplast barcoding regions (rbcL, matK) yielded barcode gaps. Our results clearly demonstrated that matK locus assigned highest correct identification rates (72.09 %) based on TaxonDNA Best Match criteria. The concatenated rbcL + matK loci were able to adequately discriminate all mangrove genera and species to some extent except those in Rhizophora, Sonneratia and Avicennia. Our study provides the first endorsement of the species resolution among mangroves using plastid genes with few exceptions. Our future work will be focused on evaluation of other barcode markers to delineate complete resolution of mangrove species and identification of putative hybrids.

  6. Assessment of three plastid DNA barcode markers for identification of Clinacanthus nutans (Acanthaceae).

    PubMed

    Ismail, Noor Zafirah; Arsad, Hasni; Samian, Mohammed Razip; Hamdan, Mohammad Razak; Othman, Ahmad Sofiman

    2018-01-01

    This study was conducted to determine the feasibility of using three plastid DNA regions ( matK , trnH - psbA , and rbcL ) as DNA barcodes to identify the medicinal plant Clinacanthus nutans . In this study, C. nutans was collected at several different locations. Total genomic DNA was extracted, amplified by polymerase chain reaction (PCR), and sequenced using matK , trnH - psbA , and rbcL , primers. DNA sequences generated from PCR were submitted to the National Center for Biotechnology Information's (NCBI) GenBank. Identification of C. nutans was carried out using NCBI's Basic Local Alignment Search Tool (BLAST). The rbcL and trnH - psbA regions successfully identified C. nutans with sequencing rates of 100% through BLAST identification. Molecular Evolutionary Genetics Analysis (MEGA) 6.0 was used to analyze interspecific and intraspecific divergence of plastid DNA sequences. rbcL and matK exhibited the lowest average interspecific distance (0.0487 and 0.0963, respectively), whereas trnH - psbA exhibited the highest average interspecific distance (0.2029). The R package Spider revealed that trnH - psbA correctly identified Barcode of Life Data System (BOLD) 96%, best close match 79%, and near neighbor 100% of the species, compared to matK (BOLD 72%; best close match 64%; near neighbor 78%) and rbcL (BOLD 77%; best close match 62%; near neighbor 88%). These results indicate that trnH - psbA is very effective at identifying C. nutans , as it performed well in discriminating species in Acanthaceae.

  7. Choosing and Using a Plant DNA Barcode

    PubMed Central

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance. PMID:21637336

  8. DNA analysis in Disaster Victim Identification.

    PubMed

    Montelius, Kerstin; Lindblom, Bertil

    2012-06-01

    DNA profiling and matching is one of the primary methods to identify missing persons in a disaster, as defined by the Interpol Disaster Victim Identification Guide. The process to identify a victim by DNA includes: the collection of the best possible ante-mortem (AM) samples, the choice of post-mortem (PM) samples, DNA-analysis, matching and statistical weighting of the genetic relationship or match. Each disaster has its own scenario, and each scenario defines its own methods for identification of the deceased.

  9. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    PubMed Central

    Raupach, Michael J.; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C.; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences. PMID:26417993

  10. Identification of structural variation in mouse genomes.

    PubMed

    Keane, Thomas M; Wong, Kim; Adams, David J; Flint, Jonathan; Reymond, Alexandre; Yalcin, Binnaz

    2014-01-01

    Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation.

  11. Evaluation of the Biotyper MALDI-TOF MS system for identification of Staphylococcus species.

    PubMed

    Zhu, Wenming; Sieradzki, Krzysztof; Albrecht, Valerie; McAllister, Sigrid; Lin, Wen; Stuchlik, Olga; Limbago, Brandi; Pohl, Jan; Kamile Rasheed, J

    2015-10-01

    The Bruker Biotyper MALDI-TOF MS (Biotyper) system, with a modified 30 minute formic acid extraction method, was evaluated by its ability to identify 216 clinical Staphylococcus isolates from the CDC reference collection comprising 23 species previously identified by conventional biochemical tests. 16S rDNA sequence analysis was used to resolve discrepancies. Of these, 209 (96.8%) isolates were correctly identified: 177 (84.7%) isolates had scores ≥2.0, while 32 (15.3%) had scores between 1.70 and 1.99. The Biotyper identification was inconsistent with the biochemical identification for seven (3.2%) isolates, but the Biotyper identifications were confirmed by 16S rDNA analysis. The distribution of low scores was strongly species-dependent, e.g. only 5% of Staphylococcus epidermidis and 4.8% of Staphylococcus aureus isolates scored below 2.0, while 100% of Staphylococcus cohnii, 75% of Staphylococcus sciuri, and 60% of Staphylococcus caprae produced low but accurate Biotyper scores. Our results demonstrate that the Biotyper can reliably identify Staphylococcus species with greater accuracy than conventional biochemicals. Broadening of the reference database by inclusion of additional examples of under-represented species could further optimize Biotyper results. Published by Elsevier B.V.

  12. Rapid identification of fungal pathogens in BacT/ALERT, BACTEC, and BBL MGIT media using polymerase chain reaction and DNA sequencing of the internal transcribed spacer regions.

    PubMed

    Pryce, Todd M; Palladino, Silvano; Price, Diane M; Gardam, Dianne J; Campbell, Peter B; Christiansen, Keryn J; Murray, Ronan J

    2006-04-01

    We report a direct polymerase chain reaction/sequence (d-PCRS)-based method for the rapid identification of clinically significant fungi from 5 different types of commercial broth enrichment media inoculated with clinical specimens. Media including BacT/ALERT FA (BioMérieux, Marcy l'Etoile, France) (n = 87), BACTEC Plus Aerobic/F (Becton Dickinson, Microbiology Systems, Sparks, MD) (n = 16), BACTEC Peds Plus/F (Becton Dickinson) (n = 15), BACTEC Lytic/10 Anaerobic/F (Becton Dickinson) (n = 11) bottles, and BBL MGIT (Becton Dickinson) (n = 11) were inoculated with specimens from 138 patients. A universal DNA extraction method was used combining a novel pretreatment step to remove PCR inhibitors with a column-based DNA extraction kit. Target sequences in the noncoding internal transcribed spacer regions of the rRNA gene were amplified by PCR and sequenced using a rapid (24 h) automated capillary electrophoresis system. Using sequence alignment software, fungi were identified by sequence similarity with sequences derived from isolates identified by upper-level reference laboratories or isolates defined as ex-type strains. We identified Candida albicans (n = 14), Candida parapsilosis (n = 8), Candida glabrata (n = 7), Candida krusei (n = 2), Scedosporium prolificans (n = 4), and 1 each of Candida orthopsilosis, Candida dubliniensis, Candida kefyr, Candida tropicalis, Candida guilliermondii, Saccharomyces cerevisiae, Cryptococcus neoformans, Aspergillus fumigatus, Histoplasma capsulatum, and Malassezia pachydermatis by d-PCRS analysis. All d-PCRS identifications from positive broths were in agreement with the final species identification of the isolates grown from subculture. Earlier identification of fungi using d-PCRS may facilitate prompt and more appropriate antifungal therapy.

  13. Human genomic DNA quantitation system, H-Quant: development and validation for use in forensic casework.

    PubMed

    Shewale, Jaiprakash G; Schneida, Elaine; Wilson, Jonathan; Walker, Jerilyn A; Batzer, Mark A; Sinha, Sudhir K

    2007-03-01

    The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/microL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories.

  14. Identification of species with DNA-based technology: current progress and challenges.

    PubMed

    Pereira, Filipe; Carneiro, João; Amorim, António

    2008-01-01

    One of the grand challenges of modern biology is to develop accurate and reliable technologies for a rapid screening of DNA sequence variation. This topic of research is of prime importance for the detection and identification of species in numerous fields of investigation, such as taxonomy, epidemiology, forensics, archaeology or ecology. Molecular identification is also central for the diagnosis, treatment and control of infections caused by different pathogens. In recent years, a variety of DNA-based approaches have been developed for the identification of individuals in a myriad of taxonomic groups. Here, we provide an overview of most commonly used assays, with emphasis on those based on DNA hybridizations, restriction enzymes, random PCR amplifications, species-specific PCR primers and DNA sequencing. A critical evaluation of all methods is presented focusing on their discriminatory power, reproducibility and user-friendliness. Having in mind that the current trend is to develop small-scale devices with a high-throughput capacity, we briefly review recent technological achievements for DNA analysis that offer great potentials for the identification of species.

  15. Cloud-based adaptive exon prediction for DNA analysis.

    PubMed

    Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen

    2018-02-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.

  16. A DNA microarray for identification of selected Korean birds based on mitochondrial cytochrome c oxidase I gene sequences.

    PubMed

    Chung, In-Hyuk; Yoo, Hye Sook; Eah, Jae-Yong; Yoon, Hyun-Kyu; Jung, Jin-Wook; Hwang, Seung Yong; Kim, Chang-Bae

    2010-10-01

    DNA barcoding with the gene encoding cytochrome c oxidase I (COI) in the mitochondrial genome has been proposed as a standard marker to identify and discover animal species. Some migratory wild birds are suspected of transmitting avian influenza and pose a threat to aircraft safety because of bird strikes. We have previously reported the COI gene sequences of 92 Korean bird species. In the present study, we developed a DNA microarray to identify 17 selected bird species on the basis of nucleotide diversity. We designed and synthesized 19 specific oligonucleotide probes; these probes were arrayed on a silylated glass slide. The length of the probes was 19-24 bps. The COI sequences amplified from the tissues of the selected birds were labeled with a fluorescent probe for microarray hybridization, and unique hybridization patterns were detected for each selected species. These patterns may be considered diagnostic patterns for species identification. This microarray system will provide a sensitive and a high-throughput method for identification of Korean birds.

  17. Cytochrome C oxidase subunit I barcodes provide an efficient tool for Jinqian Baihua She (Bungarus parvus) authentication

    PubMed Central

    Chao, Zhi; Liao, Jing; Liang, Zhenbiao; Huang, Suhua; Zhang, Liang; Li, Junde

    2014-01-01

    Objective: To test the feasibility of DNA barcoding for accurate identification of Jinqian Baihua She and its adulterants. Materials and Methods: Standard cytochrome C oxidase subunit I (COI) gene fragments were sequenced for DNA barcoding of 39 samples from 9 snake species, including Bungarus multicinctus, the officially recognized origin animal by Chinese Pharmacopoeia, and other 8 adulterate species. The aligned sequences, 658 base pairs in length, were analyzed for divergence using the Kimura-2-parameter (K2P) distance model with MEGA5.0. Results: The mean intraspecific K2P distance was 0.0103 and the average interspecific genetic distance was 0.2178 in B. multicinctus, far greater than the minimal interspecific genetic distance of 0.027 recommended for species identification. A neighbor-joining (NJ) tree was constructed, in which each species formed a monophyletic clade with bootstrap supports of 100%. All the data were submitted to Barcode of Life Data system version 3.0 (BOLD, http://www.barcodinglife.org) under the project title “DNA barcoding Bungarus multicinctus and its adulterants”. Ten samples of commercially available crude drugs of JBS were identified using the identification engine provided by BOLD. All the samples were clearly identified at the species level, among which five were found to be the adulterants and identified as Dinodon rufozonatum. Conclusion: DNA barcoding using the standard COI gene fragments provides an effective and accurate means for JBS identification and authentication. PMID:25422545

  18. Taxonomic Identification of Mediterranean Pines and Their Hybrids Based on the High Resolution Melting (HRM) and trnL Approaches: From Cytoplasmic Inheritance to Timber Tracing

    PubMed Central

    Ganopoulos, Ioannis; Aravanopoulos, Filippos; Madesis, Panagiotis; Pasentsis, Konstantinos; Bosmali, Irene; Ouzounis, Christos; Tsaftaris, Athanasios

    2013-01-01

    Fast and accurate detection of plant species and their hybrids using molecular tools will facilitate the assessment and monitoring of local biodiversity in an era of climate and environmental change. Herein, we evaluate the utility of the plastid trnL marker for species identification applied to Mediterranean pines (Pinus spp.). Our results indicate that trnL is a very sensitive marker for delimiting species biodiversity. Furthermore, High Resolution Melting (HRM) analysis was exploited as a molecular fingerprint for fast and accurate discrimination of Pinus spp. DNA sequence variants. The trnL approach and the HRM analyses were extended to wood samples of two species (Pinus nigra and Pinus sylvestris) with excellent results, congruent to those obtained using leaf tissue. Both analyses demonstrate that hybrids from the P. brutia (maternal parent) × P. halepensis (paternal parent) cross, exhibit the P. halepensis profile, confirming paternal plastid inheritance in Group Halepensis pines. Our study indicates that a single one-step reaction method and DNA marker are sufficient for the identification of Mediterranean pines, their hybrids and the origin of pine wood. Furthermore, our results underline the potential for certain DNA regions to be used as novel biological information markers combined with existing morphological characters and suggest a relatively reliable and open taxonomic system that can link DNA variation to phenotype-based species or hybrid assignment status and direct taxa identification from recalcitrant tissues such as wood samples. PMID:23577179

  19. Taxonomic identification of mediterranean pines and their hybrids based on the high resolution melting (HRM) and trnL approaches: from cytoplasmic inheritance to timber tracing.

    PubMed

    Ganopoulos, Ioannis; Aravanopoulos, Filippos; Madesis, Panagiotis; Pasentsis, Konstantinos; Bosmali, Irene; Ouzounis, Christos; Tsaftaris, Athanasios

    2013-01-01

    Fast and accurate detection of plant species and their hybrids using molecular tools will facilitate the assessment and monitoring of local biodiversity in an era of climate and environmental change. Herein, we evaluate the utility of the plastid trnL marker for species identification applied to Mediterranean pines (Pinus spp.). Our results indicate that trnL is a very sensitive marker for delimiting species biodiversity. Furthermore, High Resolution Melting (HRM) analysis was exploited as a molecular fingerprint for fast and accurate discrimination of Pinus spp. DNA sequence variants. The trnL approach and the HRM analyses were extended to wood samples of two species (Pinus nigra and Pinus sylvestris) with excellent results, congruent to those obtained using leaf tissue. Both analyses demonstrate that hybrids from the P. brutia (maternal parent) × P. halepensis (paternal parent) cross, exhibit the P. halepensis profile, confirming paternal plastid inheritance in Group Halepensis pines. Our study indicates that a single one-step reaction method and DNA marker are sufficient for the identification of Mediterranean pines, their hybrids and the origin of pine wood. Furthermore, our results underline the potential for certain DNA regions to be used as novel biological information markers combined with existing morphological characters and suggest a relatively reliable and open taxonomic system that can link DNA variation to phenotype-based species or hybrid assignment status and direct taxa identification from recalcitrant tissues such as wood samples.

  20. Methods for identifying an essential gene in a prokaryotic microorganism

    DOEpatents

    Shizuya, Hiroaki

    2006-01-31

    Methods are provided for the rapid identification of essential or conditionally essential DNA segments in any species of haploid cell (one copy chromosome per cell) that is capable of being transformed by artificial means and is capable of undergoing DNA recombination. This system offers an enhanced means of identifying essential function genes in diploid pathogens, such as gram-negative and gram-positive bacteria.

  1. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding.

    PubMed

    Versteirt, V; Nagy, Z T; Roelants, P; Denis, L; Breman, F C; Damiens, D; Dekoninck, W; Backeljau, T; Coosemans, M; Van Bortel, W

    2015-03-01

    Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well-supported clusters. Intraspecific Kimura 2-parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra- and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species. © 2014 John Wiley & Sons Ltd.

  2. DNA barcodes for 1/1000 of the animal kingdom.

    PubMed

    Hebert, Paul D N; Dewaard, Jeremy R; Landry, Jean-François

    2010-06-23

    This study reports DNA barcodes for more than 1300 Lepidoptera species from the eastern half of North America, establishing that 99.3 per cent of these species possess diagnostic barcode sequences. Intraspecific divergences averaged just 0.43 per cent among this assemblage, but most values were lower. The mean was elevated by deep barcode divergences (greater than 2%) in 5.1 per cent of the species, often involving the sympatric occurrence of two barcode clusters. A few of these cases have been analysed in detail, revealing species overlooked by the current taxonomic system. This study also provided a large-scale test of the extent of regional divergence in barcode sequences, indicating that geographical differentiation in the Lepidoptera of eastern North America is small, even when comparisons involve populations as much as 2800 km apart. The present results affirm that a highly effective system for the identification of Lepidoptera in this region can be built with few records per species because of the limited intra-specific variation. As most terrestrial and marine taxa are likely to possess a similar pattern of population structure, an effective DNA-based identification system can be developed with modest effort.

  3. DNA synthesis inhibitors for the treatment of gastrointestinal cancer.

    PubMed

    Yasui, Hiroshi; Tsurita, Giichiro; Imai, Kohzoh

    2014-11-01

    Intensive laboratory, preclinical and clinical studies have identified and validated molecular targets in cancers, leading to a shift toward the development of novel, rationally designed and specific therapeutic agents. However, gastrointestinal cancers continue to have a poor prognosis, largely due to drug resistance. Here, we discuss the current understanding of DNA synthesis inhibitors and their mechanisms of action for the treatment of gastrointestinal malignancies. Conventional agents, including DNA synthesis inhibitors such as fluoropyrimidines and platinum analogs, remain the most effective therapeutics and are the standards against which new drugs are compared. Novel DNA synthesis inhibitors for the treatment of gastrointestinal malignancies include a combination of the antimetabolite TAS-102, which consists of trifluorothymidine with a thymidine phosphorylase inhibitor, and a novel micellar formulation of cisplatin NC-6004 that uses a nanotechnology-based drug delivery system. The challenges of translational cancer research using DNA synthesis inhibitors include the identification of drugs that are specific to tumor cells to reduce toxicity and increase antitumor efficacy, biomarkers to predict pharmacological responses to chemotherapeutic drugs, identification of ways to overcome drug resistance and development of novel combination therapies with DNA synthesis inhibitors and other cancer therapies, such as targeted molecular therapeutics. Here, we discuss the current understanding of DNA synthesis inhibitors and their mechanisms of action for the treatment of gastrointestinal malignancies.

  4. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    PubMed

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology. © 2014 John Wiley & Sons Ltd.

  5. DNA barcoding and morphological identification of neotropical ichthyoplankton from the Upper Paraná and São Francisco.

    PubMed

    Becker, R A; Sales, N G; Santos, G M; Santos, G B; Carvalho, D C

    2015-07-01

    The identification of fish larvae from two neotropical hydrographic basins using traditional morphological taxonomy and DNA barcoding revealed no conflicting results between the morphological and barcode identification of larvae. A lower rate (25%) of correct morphological identification of eggs as belonging to migratory or non-migratory species was achieved. Accurate identification of ichthyoplankton by DNA barcoding is an important tool for fish reproductive behaviour studies, correct estimation of biodiversity by detecting eggs from rare species, as well as defining environmental and management strategies for fish conservation in the neotropics. © 2015 The Fisheries Society of the British Isles.

  6. Preliminary Identification and Typing of Pathogenic and Toxigenic Fusarium Species Using Restriction Digestion of ITS1-5.8S rDNA-ITS2 Region.

    PubMed

    Mirhendi, H; Ghiasian, A; Vismer, Hf; Asgary, Mr; Jalalizand, N; Arendrup, Mc; Makimura, K

    2010-01-01

    Fusarium species are capable of causing a wide range of crop plants infections as well as uncommon human infections. Many species of the genus produce mycotoxins, which are responsible for acute or chronic diseases in animals and humans. Identification of Fusaria to the species level is necessary for biological, epidemiological, pathological, and toxicological purposes. In this study, we undertook a computer-based analysis of ITS1-5.8SrDNA-ITS2 in 192 GenBank sequences from 36 Fusarium species to achieve data for establishing a molecular method for specie-specific identification. Sequence data and 610 restriction enzymes were analyzed for choosing RFLP profiles, and subsequently designed and validated a PCR-restriction enzyme system for identification and typing of species. DNA extracted from 32 reference strains of 16 species were amplified using ITS1 and ITS4 universal primers followed by sequencing and restriction enzyme digestion of PCR products. The following 3 restriction enzymes TasI, ItaI and CfoI provide the best discriminatory power. Using ITS1 and ITS4 primers a product of approximately 550bp was observed for all Fusarium strains, as expected regarding the sequence analyses. After RFLP of the PCR products, some species were definitely identified by the method and some strains had different patterns in same species. Our profile has potential not only for identification of species, but also for genotyping of strains. On the other hand, some Fusarium species were 100% identical in their ITS-5.8SrDNA-ITS2 sequences, therefore differentiation of these species is impossible regarding this target alone. ITS-PCR-RFLP method might be useful for preliminary differentiation and typing of most common Fusarium species.

  7. Building a DNA barcode library of Alaska's non-marine arthropods.

    PubMed

    Sikes, Derek S; Bowser, Matthew; Morton, John M; Bickford, Casey; Meierotto, Sarah; Hildebrandt, Kyndall

    2017-03-01

    Climate change may result in ecological futures with novel species assemblages, trophic mismatch, and mass extinction. Alaska has a limited taxonomic workforce to address these changes. We are building a DNA barcode library to facilitate a metabarcoding approach to monitoring non-marine arthropods. Working with the Canadian Centre for DNA Barcoding, we obtained DNA barcodes from recently collected and authoritatively identified specimens in the University of Alaska Museum (UAM) Insect Collection and the Kenai National Wildlife Refuge collection. We submitted tissues from 4776 specimens, of which 81% yielded DNA barcodes representing 1662 species and 1788 Barcode Index Numbers (BINs), of primarily terrestrial, large-bodied arthropods. This represents 84% of the species available for DNA barcoding in the UAM Insect Collection. There are now 4020 Alaskan arthropod species represented by DNA barcodes, after including all records in Barcode of Life Data Systems (BOLD) of species that occur in Alaska - i.e., 48.5% of the 8277 Alaskan, non-marine-arthropod, named species have associated DNA barcodes. An assessment of the identification power of the library in its current state yielded fewer species-level identifications than expected, but the results were not discouraging. We believe we are the first to deliberately begin development of a DNA barcode library of the entire arthropod fauna for a North American state or province. Although far from complete, this library will become increasingly valuable as more species are added and costs to obtain DNA sequences fall.

  8. DNA reference libraries of French Guianese mosquitoes for barcoding and metabarcoding

    PubMed Central

    Leroy, Céline; Guidez, Amandine; Dusfour, Isabelle; Girod, Romain; Dejean, Alain; Murienne, Jérôme

    2017-01-01

    The mosquito family (Diptera: Culicidae) constitutes the most medically important group of arthropods because certain species are vectors of human pathogens. In some parts of the world, the diversity is so high that the accurate delimitation and/or identification of species is challenging. A DNA-based identification system for all animals has been proposed, the so-called DNA barcoding approach. In this study, our objectives were (i) to establish DNA barcode libraries for the mosquitoes of French Guiana based on the COI and the 16S markers, (ii) to compare distance-based and tree-based methods of species delimitation to traditional taxonomy, and (iii) to evaluate the accuracy of each marker in identifying specimens. A total of 266 specimens belonging to 75 morphologically identified species or morphospecies were analyzed allowing us to delimit 86 DNA clusters with only 21 of them already present in the BOLD database. We thus provide a substantial contribution to the global mosquito barcoding initiative. Our results confirm that DNA barcodes can be successfully used to delimit and identify mosquito species with only a few cases where the marker could not distinguish closely related species. Our results also validate the presence of new species identified based on morphology, plus potential cases of cryptic species. We found that both COI and 16S markers performed very well, with successful identifications at the species level of up to 98% for COI and 97% for 16S when compared to traditional taxonomy. This shows great potential for the use of metabarcoding for vector monitoring and eco-epidemiological studies. PMID:28575090

  9. Disaster victim investigation recommendations from two simulated mass disaster scenarios utilized for user acceptance testing CODIS 6.0.

    PubMed

    Bradford, Laurie; Heal, Jennifer; Anderson, Jeff; Faragher, Nichole; Duval, Kristin; Lalonde, Sylvain

    2011-08-01

    Members of the National DNA Data Bank (NDDB) of Canada designed and searched two simulated mass disaster (MD) scenarios for User Acceptance Testing (UAT) of the Combined DNA Index System (CODIS) 6.0, developed by the Federal Bureau of Investigation (FBI) and the US Department of Justice. A simulated airplane MD and inland Tsunami MD were designed representing a closed and open environment respectively. An in-house software program was written to randomly generate DNA profiles from a mock Caucasian population database. As part of the UAT, these two MDs were searched separately using CODIS 6.0. The new options available for identity and pedigree searching in addition to the inclusion of mitochondrial DNA (mtDNA) and Y-STR (short tandem repeat) information in CODIS 6.0, led to rapid identification of all victims. A Joint Pedigree Likelihood Ratio (JPLR) was calculated from the pedigree searches and ranks were stored in Rank Manager providing confidence to the user in assigning an Unidentified Human Remain (UHR) to a pedigree tree. Analyses of the results indicated that primary relatives were more useful in Disaster Victim Identification (DVI) compared to secondary or tertiary relatives and that inclusion of mtDNA and/or Y-STR technologies helped to link family units together as shown by the software searches. It is recommended that UHRs have as many informative loci possible to assist with their identification. CODIS 6.0 is a valuable technological tool for rapidly and confidently identifying victims of mass disasters. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  10. High-Throughput Block Optical DNA Sequence Identification.

    PubMed

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 20 years since the introduction of DNA barcoding: from theory to application.

    PubMed

    Fišer Pečnikar, Živa; Buzan, Elena V

    2014-02-01

    Traditionally, taxonomic identification has relied upon morphological characters. In the last two decades, molecular tools based on DNA sequences of short standardised gene fragments, termed DNA barcodes, have been developed for species discrimination. The most common DNA barcode used in animals is a fragment of the cytochrome c oxidase (COI) mitochondrial gene, while for plants, two chloroplast gene fragments from the RuBisCo large subunit (rbcL) and maturase K (matK) genes are widely used. Information gathered from DNA barcodes can be used beyond taxonomic studies and will have far-reaching implications across many fields of biology, including ecology (rapid biodiversity assessment and food chain analysis), conservation biology (monitoring of protected species), biosecurity (early identification of invasive pest species), medicine (identification of medically important pathogens and their vectors) and pharmacology (identification of active compounds). However, it is important that the limitations of DNA barcoding are understood and techniques continually adapted and improved as this young science matures.

  12. Identification of body fluid-specific DNA methylation markers for use in forensic science.

    PubMed

    Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung

    2014-11-01

    DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria.

    PubMed

    Mishra, Prashant K; Fox, Roland T V; Culham, Alastair

    2003-01-28

    Identification of Fusarium species has always been difficult due to confusing phenotypic classification systems. We have developed a fluorescent-based polymerase chain reaction assay that allows for rapid and reliable identification of five toxigenic and pathogenic Fusarium species. The species includes Fusarium avenaceum, F. culmorum, F. equiseti, F. oxysporum and F. sambucinum. The method is based on the PCR amplification of species-specific DNA fragments using fluorescent oligonucleotide primers, which were designed based on sequence divergence within the internal transcribed spacer region of nuclear ribosomal DNA. Besides providing an accurate, reliable, and quick diagnosis of these Fusaria, another advantage with this method is that it reduces the potential for exposure to carcinogenic chemicals as it substitutes the use of fluorescent dyes in place of ethidium bromide. Apart from its multidisciplinary importance and usefulness, it also obviates the need for gel electrophoresis.

  14. Identification of Neoceratitis asiatica (Becker) (Diptera: Tephritidae) based on morphological characteristics and DNA barcode.

    PubMed

    Guo, Shaokun; He, Jia; Zhao, Zihua; Liu, Lijun; Gao, Liyuan; Wei, Shuhua; Guo, Xiaoyu; Zhang, Rong; Li, Zhihong

    2017-12-12

    Neoceratitis asiatica (Becker), which especially infests wolfberry (Lycium barbarum L.), could cause serious economic losses every year in China, especially to organic wolfberry production. In some important wolfberry plantings, it is difficult and time-consuming to rear the larvae or pupae to adults for morphological identification. Molecular identification based on DNA barcode is a solution to the problem. In this study, 15 samples were collected from Ningxia, China. Among them, five adults were identified according to their morphological characteristics. The utility of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) gene sequence as DNA barcode in distinguishing N. asiatica was evaluated by analysing Kimura 2-parameter distances and phylogenetic trees. There were significant differences between intra-specific and inter-specific genetic distances according to the barcoding gap analysis. The uncertain larval and pupal samples were within the same cluster as N. asiatica adults and formed sister cluster to N. cyanescens. A combination of morphological and molecular methods enabled accurate identification of N. asiatica. This is the first study using DNA barcode to identify N. asiatica and the obtained DNA sequences will be added to the DNA barcode database.

  15. Multiple-Locus VNTR Analysis (MLVA) for Bacterial Strain Identification - Quarterly Progress Report for the period 7/1/00 to 10/30/00

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Paul Keim

    2000-11-07

    Multiple locus VNTR analysis (MLVA) systems are being developed for B. anthracis, Y. pestis and F. tularensis. These are high resolution DNA fingerprinting systems that will allow for molecular epidemiology and forensic analysis of these pathogens.

  16. Multiple-Locus VNTR Analysis (MLVA) for Bacterial Strain Identification - Quarterly Progress Report for the Period 4/1/00 to 6/30/00

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Paul Keim

    2000-11-07

    Multiple locus VNTR analysis (MLVA) systems are being developed for B. anthracis, Y. pestis and F. tularensis. These are high resolution DNA fingerprinting systems that will allow for molecular epidemiology and forensic analysis of these pathogens.

  17. DNA analysis in perpetrator identification of terrorism-related disaster: suicide bombing of the Australian Embassy in Jakarta 2004.

    PubMed

    Sudoyo, Herawati; Widodo, Putut T; Suryadi, Helena; Lie, Yuliana S; Safari, Dodi; Widjajanto, Agung; Kadarmo, D Aji; Hidayat, Soegeng; Marzuki, Sangkot

    2008-06-01

    We report the strategy that we employed to identify the perpetrator of a suicide car bombing in front of the Australian Embassy in Jakarta, Indonesia, on 9 September 2004. The bomb was so massive that only small tissue pieces of the perpetrator could be recovered, preventing conventional approach to the identification of the bomber, necessitating the introduction of DNA analysis as the primary means for perpetrator identification. Crime scene investigation revealed the trajectory of the bomb blast, which was used to guide the collection of charred tissue fragments of the perpetrator. Mitochondrial DNA analysis was first conducted on 17 tissue fragments, recovered over large areas of the trajectory to, (a) confirm that they are of a common source, i.e. the perpetrator, and thus (b) establish the mtDNA HV1 sequence profile of the perpetrator. The mtDNA of the perpetrator matches that of a maternally related family member of one of four suspects. Standard autosomal STR analysis confirmed the identification. This case is of interest as an illustration of a successful application of DNA analysis as the primary means of disaster perpetrator identification.

  18. The Hemiptera (Insecta) of Canada: Constructing a Reference Library of DNA Barcodes

    PubMed Central

    Gwiazdowski, Rodger A.; Foottit, Robert G.; Maw, H. Eric L.; Hebert, Paul D. N.

    2015-01-01

    DNA barcode reference libraries linked to voucher specimens create new opportunities for high-throughput identification and taxonomic re-evaluations. This study provides a DNA barcode library for about 45% of the recognized species of Canadian Hemiptera, and the publically available R workflow used for its generation. The current library is based on the analysis of 20,851 specimens including 1849 species belonging to 628 genera and 64 families. These individuals were assigned to 1867 Barcode Index Numbers (BINs), sequence clusters that often coincide with species recognized through prior taxonomy. Museum collections were a key source for identified specimens, but we also employed high-throughput collection methods that generated large numbers of unidentified specimens. Many of these specimens represented novel BINs that were subsequently identified by taxonomists, adding barcode coverage for additional species. Our analyses based on both approaches includes 94 species not listed in the most recent Canadian checklist, representing a potential 3% increase in the fauna. We discuss the development of our workflow in the context of prior DNA barcode library construction projects, emphasizing the importance of delineating a set of reference specimens to aid investigations in cases of nomenclatural and DNA barcode discordance. The identification for each specimen in the reference set can be annotated on the Barcode of Life Data System (BOLD), allowing experts to highlight questionable identifications; annotations can be added by any registered user of BOLD, and instructions for this are provided. PMID:25923328

  19. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin.

    PubMed

    Pugedo, Marina Lages; de Andrade Neto, Francisco Ricardo; Pessali, Tiago Casarim; Birindelli, José Luís Olivan; Carvalho, Daniel Cardoso

    2016-06-01

    Molecular identification through DNA barcoding has been proposed as a way to standardize a global biodiversity identification system using a partial sequence of the mitochondrial COI gene. We applied an integrative approach using DNA barcoding and traditional morphology-based bioassessment to identify fish from a neotropical region possessing low taxonomic knowledge: the Jequitinhonha River Basin (Southeastern Brazil). The Jequitinhonha River Basin (JRB) has a high rate of endemism and is considered an area of high priority for fish conservation, with estimates indicating the presence of around 110 native and non-indigenous species. DNA barcodes were obtained from 260 individuals belonging to 52 species distributed among 35 genera, 21 families and 6 orders, including threatened and rare species such as Rhamdia jequitinhonha and Steindachneridion amblyurum. The mean Kimura two-parameter genetic distances within species, genera and families were: 0.44, 12.16 and 20.58 %, respectively. Mean intraspecific genetic variation ranged from 0 to 11.43 %, and high values (>2 %) were recovered for five species. Species with a deep intraspecific distance, possibly flagging overlooked taxa, were detected within the genus Pimelodella. Fifteen species, only identified to the genus level, had unique BINs, with a nearest neighbor distance over 2 % and therefore, potential new candidate species supported by DNA barcoding. The integrative taxonomy approach using DNA barcoding and traditional taxonomy may be a remedy to taxonomy impediment, accelerating species identification by flagging potential new candidate species and to adequately conserve the megadiverse neotropical ichthyofauna.

  20. Skeletal Remains from World War II Mass Grave: from Discovery to Identification

    PubMed Central

    Definis Gojanović, Marija; Sutlović, Davorka

    2007-01-01

    Aim To present the process of identification of skeletal remains from a mass grave found on a Dalmatian mountain-range in 2005, which allegedly contained the remains of civilians from Herzegovina killed in the World War II, including a group of 8 Franciscan monks. Methods Excavation of the site in Dalmatian hinterland, near the village of Zagvozd, was accomplished according to archeological procedures. Anthropological analysis was performed to estimate sex, age at death, and height of the individuals, as well as pathological and traumatic changes of the bones. Due to the lack of ante-mortem data, DNA typing using Y-chromosome was performed. DNA was isolated from bones and teeth samples using standard phenol/chloroform/isoamyl alcohol extraction. Two Y-chromosome short tandem repeats (STR) systems were used for DNA quantification and amplification. Typing of polymerase chain reaction (PCR) products was performed on an ABI Prism 310 Genetic Analyzer. PCR typing results were matched with results from DNA analysis of samples collected from the relatives of supposed victims – blood samples from the living relatives and bone samples collected during further exhumation of died parents or relatives of the supposed victims. Results The remains contained 18 almost complete skeletons, with considerable post-mortal damage. All remains were men, mainly middle-aged, with gunshot wounds to the head. DNA analysis and cross-matching of the results with relatives’ data resulted in three positive identifications using the Y-chromosomal short tandem repeat (Y-STR) systems. All of the positively identified remains belonged to the Franciscan friars allegedly killed in Herzegovina and buried at the analyzed site. Conclusion Our analysis of remains from a mass grave from the World War II confirmed the value of patrilineal lineage based on Y-STRs, even when missing persons had left no offspring, as was the case with Franciscan monks. Although this report is primarily focused on the identification of remains from a mass grave, it also emphasizes the role of forensic approach in documenting human right violations. PMID:17696307

  1. Patient identification error among prostate needle core biopsy specimens--are we ready for a DNA time-out?

    PubMed

    Suba, Eric J; Pfeifer, John D; Raab, Stephen S

    2007-10-01

    Patient identification errors in surgical pathology often involve switches of prostate or breast needle core biopsy specimens among patients. We assessed strategies for decreasing the occurrence of these uncommon and yet potentially catastrophic events. Root cause analyses were performed following 3 cases of patient identification error involving prostate needle core biopsy specimens. Patient identification errors in surgical pathology result from slips and lapses of automatic human action that may occur at numerous steps during pre-laboratory, laboratory and post-laboratory work flow processes. Patient identification errors among prostate needle biopsies may be difficult to entirely prevent through the optimization of work flow processes. A DNA time-out, whereby DNA polymorphic microsatellite analysis is used to confirm patient identification before radiation therapy or radical surgery, may eliminate patient identification errors among needle biopsies.

  2. Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.

    PubMed

    Dávila-Ibáñez, Ana B; Buurma, Niklaas J; Salgueiriño, Verónica

    2013-06-07

    The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.

  3. DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil

    PubMed Central

    Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha

    2015-01-01

    DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23–19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil. PMID:26506007

  4. DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil.

    PubMed

    Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha; Peixoto, Alexandre Afranio

    2015-01-01

    DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23-19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil.

  5. A multiplex PCR method for the identification of commercially important salmon and trout species (Oncorhynchus and Salmo) in North America.

    PubMed

    Rasmussen Hellberg, Rosalee S; Morrissey, Michael T; Hanner, Robert H

    2010-09-01

    The purpose of this study was to develop a species-specific multiplex polymerase chain reaction (PCR) method that allows for the detection of salmon species substitution on the commercial market. Species-specific primers and TaqMan® probes were developed based on a comprehensive collection of mitochondrial 5' cytochrome c oxidase subunit I (COI) deoxyribonucleic acid (DNA) "barcode" sequences. Primers and probes were combined into multiplex assays and tested for specificity against 112 reference samples representing 25 species. Sensitivity and linearity tests were conducted using 10-fold serial dilutions of target DNA (single-species samples) and DNA admixtures containing the target species at levels of 10%, 1.0%, and 0.1% mixed with a secondary species. The specificity tests showed positive signals for the target DNA in both real-time and conventional PCR systems. Nonspecific amplification in both systems was minimal; however, false positives were detected at low levels (1.2% to 8.3%) in conventional PCR. Detection levels were similar for admixtures and single-species samples based on a 30 PCR cycle cut-off, with limits of 0.25 to 2.5 ng (1% to 10%) in conventional PCR and 0.05 to 5.0 ng (0.1% to 10%) in real-time PCR. A small-scale test with food samples showed promising results, with species identification possible even in heavily processed food items. Overall, this study presents a rapid, specific, and sensitive method for salmon species identification that can be applied to mixed-species and heavily processed samples in either conventional or real-time PCR formats. This study provides a newly developed method for salmon and trout species identification that will assist both industry and regulatory agencies in the detection and prevention of species substitution. This multiplex PCR method allows for rapid, high-throughput species identification even in heavily processed and mixed-species samples. An inter-laboratory study is currently being carried out to assess the ability of this method to identify species in a variety of commercial salmon and trout products.

  6. [A study of culture-based easy identification system for Malassezia].

    PubMed

    Kaneko, Takamasa

    2011-01-01

    Most species of this genus are lipid-dependent yeasts, which colonize the seborrheic part of the skin, and they have been reported to be associated with pityriasis versicolor, Malassezia folliculitis, seborrheic dermatitis, and atopic dermatitis. Malassezia have been re-classified into 7 species based on molecular biological analysis of nuclear ribosomal DNA/RNA and new Malassezia species were reported. As members of the genus Malassezia share similar morphological and biochemical characteristics, it was thought to be difficult to differentiate between them based on phenotypic features. While molecular biological techniques are the most reliable methods for identification of Malassezia, they are not available in most clinical laboratories. We studied ( i ) development of an efficient isolation media and culture based easy identification system, ( ii ) the incidence of atypical biochemical features in Malassezia species and propose a culture-based easy identification system for clinically important Malassezia species, M. globosa, M. restricta, and M. furfur.

  7. Validating DNA barcodes: A non-destructive extraction protocol enables simultaneous vouchering of DNA and morphological vouchers

    USDA-ARS?s Scientific Manuscript database

    Morphology-based keys support accurate identification of many taxa. However, identification can be difficult for taxa that are not well studied, very small, members of cryptic species complexes, or represented by immature stages. For such cases, DNA barcodes may provide diagnostic characters. Ecolog...

  8. Genome-Wide Cell Type-Specific Mapping of In Vivo Chromatin Protein Binding Using an FLP-Inducible DamID System in Drosophila.

    PubMed

    Pindyurin, Alexey V

    2017-01-01

    A thorough study of the genome-wide binding patterns of chromatin proteins is essential for understanding the regulatory mechanisms of genomic processes in eukaryotic nuclei, including DNA replication, transcription, and repair. The DNA adenine methyltransferase identification (DamID) method is a powerful tool to identify genomic binding sites of chromatin proteins. This method does not require fixation of cells and the use of specific antibodies, and has been used to generate genome-wide binding maps of more than a hundred different proteins in Drosophila tissue culture cells. Recent versions of inducible DamID allow performing cell type-specific profiling of chromatin proteins even in small samples of Drosophila tissues that contain heterogeneous cell types. Importantly, with these methods sorting of cells of interest or their nuclei is not necessary as genomic DNA isolated from the whole tissue can be used as an input. Here, I describe in detail an FLP-inducible DamID method, namely generation of suitable transgenic flies, activation of the Dam transgenes by the FLP recombinase, isolation of DNA from small amounts of dissected tissues, and subsequent identification of the DNA binding sites of the chromatin proteins.

  9. DNA preservation in skeletal elements from the World Trade Center disaster: recommendations for mass fatality management.

    PubMed

    Mundorff, Amy Z; Bartelink, Eric J; Mar-Cash, Elaine

    2009-07-01

    The World Trade Center (WTC) victim identification effort highlights taphonomic influences on the degradation of DNA from victims of mass fatality incidents. This study uses a subset of the WTC-Human Remains Database to evaluate differential preservation of DNA by skeletal element. Recovery location, sex, and victim type (civilian, firefighter, or plane passenger) do not appear to influence DNA preservation. Results indicate that more intact elements, as well as elements encased in soft tissue, produced slightly higher identification rates than more fragmented remains. DNA identification rates by element type conform to previous findings, with higher rates generally found in denser, weight-bearing bones. However, smaller bones including patellae, metatarsals, and foot phalanges yielded rates comparable to both femora and tibiae. These elements can be easily sampled with a disposable scalpel, and thus reduce potential DNA contamination. These findings have implications for DNA sampling guidelines in future mass fatality incidents.

  10. Design, optimisation and preliminary validation of a human specific loop-mediated amplification assay for the rapid detection of human DNA at forensic crime scenes.

    PubMed

    Hird, H J; Brown, M K

    2017-11-01

    The identification of samples at a crime scene which require forensic DNA typing has been the focus of recent research interest. We propose a simple, but sensitive analysis system which can be deployed at a crime scene to identify crime scene stains as human or non-human. The proposed system uses the isothermal amplification of DNA in a rapid assay format, which returns results in as little as 30min from sampling. The assay system runs on the Genie II device, a proven in-field detection system which could be deployed at a crime scene. The results presented here demonstrate that the system was sufficiently specific and sensitive and was able to detect the presence of human blood, semen and saliva on mock forensic samples. Copyright © 2017. Published by Elsevier B.V.

  11. QPSO-Based Adaptive DNA Computing Algorithm

    PubMed Central

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409

  12. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  13. DNA identification of human remains in Disaster Victim Identification (DVI): An efficient sampling method for muscle, bone, bone marrow and teeth.

    PubMed

    de Boer, Hans H; Maat, George J R; Kadarmo, D Aji; Widodo, Putut T; Kloosterman, Ate D; Kal, Arnoud J

    2018-06-04

    In disaster victim identification (DVI), DNA profiling is considered to be one of the most reliable and efficient means to identify bodies or separated body parts. This requires a post mortem DNA sample, and an ante mortem DNA sample of the presumed victim or their biological relative(s). Usually the collection of an adequate ante mortem sample is technically simple, but the acquisition of a good quality post mortem sample under unfavourable DVI circumstances is complicated due to the variable degree of preservation of the human remains and the high risk of DNA (cross) contamination. This paper provides the community with an efficient method to collect post-mortem DNA samples from muscle, bone, bone marrow and teeth, with a minimal risk of contamination. Our method has been applied in a recent, challenging DVI operation (i.e. the identification of the 298 victims of the MH17 airplane crash in 2014). 98,2% of the collected PM samples provided the DVI team with highly informative DNA genotyping results without the risk of contamination and consequent mistyping the victim's DNA. Moreover, the method is easy, cheap and quick. This paper provides the DVI community with a step-wise instructions with recommendations for the type of tissue to be sampled and the site of excision (preferably the upper leg). Although initially designed for DVI purposes, the method is also suited for the identification of individual victims. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Nucleotide Sequence Database Comparison for Routine Dermatophyte Identification by Internal Transcribed Spacer 2 Genetic Region DNA Barcoding.

    PubMed

    Normand, A C; Packeu, A; Cassagne, C; Hendrickx, M; Ranque, S; Piarroux, R

    2018-05-01

    Conventional dermatophyte identification is based on morphological features. However, recent studies have proposed to use the nucleotide sequences of the rRNA internal transcribed spacer (ITS) region as an identification barcode of all fungi, including dermatophytes. Several nucleotide databases are available to compare sequences and thus identify isolates; however, these databases often contain mislabeled sequences that impair sequence-based identification. We evaluated five of these databases on a clinical isolate panel. We selected 292 clinical dermatophyte strains that were prospectively subjected to an ITS2 nucleotide sequence analysis. Sequences were analyzed against the databases, and the results were compared to clusters obtained via DNA alignment of sequence segments. The DNA tree served as the identification standard throughout the study. According to the ITS2 sequence identification, the majority of strains (255/292) belonged to the genus Trichophyton , mainly T. rubrum complex ( n = 184), T. interdigitale ( n = 40), T. tonsurans ( n = 26), and T. benhamiae ( n = 5). Other genera included Microsporum (e.g., M. canis [ n = 21], M. audouinii [ n = 10], Nannizzia gypsea [ n = 3], and Epidermophyton [ n = 3]). Species-level identification of T. rubrum complex isolates was an issue. Overall, ITS DNA sequencing is a reliable tool to identify dermatophyte species given that a comprehensive and correctly labeled database is consulted. Since many inaccurate identification results exist in the DNA databases used for this study, reference databases must be verified frequently and amended in line with the current revisions of fungal taxonomy. Before describing a new species or adding a new DNA reference to the available databases, its position in the phylogenetic tree must be verified. Copyright © 2018 American Society for Microbiology.

  15. The influence of diet on faecal DNA amplification and sex identification in brown bears (Ursus arctos)

    USGS Publications Warehouse

    Murphy, M.A.; Waits, L.P.; Kendall, K.C.

    2003-01-01

    To evaluate the influence of diet on faecal DNA amplification, 11 captive brown bears (Ursus arctos) were placed on six restricted diets: grass (Trifolium spp., Haplopappus hirtus and Poa pratensis), alfalfa (Lupinus spp.), carrots (Daucus spp.), white-tailed deer (Odocoileus virginianus), blueberries (Vaccinium spp.) and salmon (Salmo spp.). DNA was extracted from 50 faecal samples of each restricted diet, and amplification of brown bear DNA was attempted for a mitochondrial DNA (mtDNA) locus and nuclear DNA (nDNA) locus. For mtDNA, no significant differences were observed in amplification success rates across diets. For nDNA, amplification success rates for salmon diet extracts were significantly lower than all other diet extracts (P < 0.001). To evaluate the accuracy of faecal DNA sex identification when female carnivores consume male mammalian prey, female bears were fed male white-tailed deer. Four of 10 extracts amplified, and all extracts were incorrectly scored as male due to amplification of X and Y-chromosome fragments. The potential biases highlighted in this study have broad implications for researchers using faecal DNA for individual and sex identification, and should be evaluated in other species.

  16. Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases.

    PubMed

    Ahmed, Towfiq; Haraldsen, Jason T; Rehr, John J; Di Ventra, Massimiliano; Schuller, Ivan; Balatsky, Alexander V

    2014-03-28

    Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.

  17. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications

    PubMed Central

    Hong, Ka Lok

    2015-01-01

    Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed. PMID:26199940

  18. Dental DNA fingerprinting in identification of human remains

    PubMed Central

    Girish, KL; Rahman, Farzan S; Tippu, Shoaib R

    2010-01-01

    The recent advances in molecular biology have revolutionized all aspects of dentistry. DNA, the language of life yields information beyond our imagination, both in health or disease. DNA fingerprinting is a tool used to unravel all the mysteries associated with the oral cavity and its manifestations during diseased conditions. It is being increasingly used in analyzing various scenarios related to forensic science. The technical advances in molecular biology have propelled the analysis of the DNA into routine usage in crime laboratories for rapid and early diagnosis. DNA is an excellent means for identification of unidentified human remains. As dental pulp is surrounded by dentin and enamel, which forms dental armor, it offers the best source of DNA for reliable genetic type in forensic science. This paper summarizes the recent literature on use of this technique in identification of unidentified human remains. PMID:21731342

  19. Cloud-based adaptive exon prediction for DNA analysis

    PubMed Central

    Putluri, Srinivasareddy; Fathima, Shaik Yasmeen

    2018-01-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database. PMID:29515813

  20. Molecular Approach to the Identification of Fish in the South China Sea

    PubMed Central

    Zhang, Junbin; Hanner, Robert

    2012-01-01

    Background DNA barcoding is one means of establishing a rapid, accurate, and cost-effective system for the identification of species. It involves the use of short, standard gene targets to create sequence profiles of known species against sequences of unknowns that can be matched and subsequently identified. The Fish Barcode of Life (FISH-BOL) campaign has the primary goal of gathering DNA barcode records for all the world's fish species. As a contribution to FISH-BOL, we examined the degree to which DNA barcoding can discriminate marine fishes from the South China Sea. Methodology/Principal Findings DNA barcodes of cytochrome oxidase subunit I (COI) were characterized using 1336 specimens that belong to 242 species fishes from the South China Sea. All specimen provenance data (including digital specimen images and geospatial coordinates of collection localities) and collateral sequence information were assembled using Barcode of Life Data System (BOLD; www.barcodinglife.org). Small intraspecific and large interspecific differences create distinct genetic boundaries among most species. In addition, the efficiency of two mitochondrial genes, 16S rRNA (16S) and cytochrome b (cytb), and one nuclear ribosomal gene, 18S rRNA (18S), was also evaluated for a few select groups of species. Conclusions/Significance The present study provides evidence for the effectiveness of DNA barcoding as a tool for monitoring marine biodiversity. Open access data of fishes from the South China Sea can benefit relative applications in ecology and taxonomy. PMID:22363454

  1. Validation of a rapid DNA process with the RapidHIT® ID system using GlobalFiler® Express chemistry, a platform optimized for decentralized testing environments.

    PubMed

    Salceda, Susana; Barican, Arnaldo; Buscaino, Jacklyn; Goldman, Bruce; Klevenberg, Jim; Kuhn, Melissa; Lehto, Dennis; Lin, Frank; Nguyen, Phong; Park, Charles; Pearson, Francesca; Pittaro, Rick; Salodkar, Sayali; Schueren, Robert; Smith, Corey; Troup, Charles; Tsou, Dean; Vangbo, Mattias; Wunderle, Justus; King, David

    2017-05-01

    The RapidHIT ® ID is a fully automated sample-to-answer system for short tandem repeat (STR)-based human identification. The RapidHIT ID has been optimized for use in decentralized environments and processes presumed single source DNA samples, generating Combined DNA Index System (CODIS)-compatible DNA profiles in less than 90min. The system is easy to use, requiring less than one minute of hands-on time. Profiles are reviewed using centralized linking software, RapidLINK™ (IntegenX, Pleasanton, CA), a software tool designed to collate DNA profiles from single or multiple RapidHIT ID systems at different geographic locations. The RapidHIT ID has been designed to employ GlobalFiler ® Express and AmpFLSTR ® NGMSElect™, Thermo Fisher Scientific (Waltham, MA) STR chemistries. The Developmental Validation studies were performed using GlobalFiler ® Express with single source reference samples according to Scientific Working Group for DNA Analysis Methods guidelines. These results show that multiple RapidHIT ID systems networked with RapidLINK software form a highly reliable system for wide-scale deployment in locations such as police booking stations and border crossings enabling real-time testing of arrestees, potential human trafficking victims, and other instances where rapid turnaround is essential. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Chemical Screens Against A Reconstituted Multi-Protein Complex: Myricetin Blocks DnaJ Regulation of DnaK through an Allosteric Mechanism

    PubMed Central

    Chang, Lyra; Miyata, Yoshinari; Ung, Peter M. U.; Bertelsen, Eric B.; McQuade, Thomas J.; Carlson, Heather A.; Zuiderweg, Erik R. P.; Gestwicki, Jason E.

    2011-01-01

    SUMMARY DnaK is a molecular chaperone responsible for multiple aspects of proteostasis. The intrinsically slow ATPase activity of DnaK is stimulated by its co-chaperone, DnaJ, and these proteins often work in concert. To identify inhibitors, we screened plant-derived extracts against a re-constituted mixture of DnaK and DnaJ. This approach resulted in the identification of flavonoids, including myricetin, which inhibited activity by up to 75%. Interestingly, myricetin prevented DnaJ-mediated stimulation of ATPase activity, with minimal impact on either DnaK’s intrinsic turnover rate or its stimulation by another co-chaperone, GrpE. Using NMR, we found that myricetin binds DnaK at an unanticipated site between the IB and IIB subdomains and that it allosterically blocked binding of DnaJ. Together, these results highlight a “gray box” screening approach, which approximates a limited amount of the complexity expected in physiological, multi-protein systems. PMID:21338918

  3. Identification of apple cultivars on the basis of simple sequence repeat markers.

    PubMed

    Liu, G S; Zhang, Y G; Tao, R; Fang, J G; Dai, H Y

    2014-09-12

    DNA markers are useful tools that play an important role in plant cultivar identification. They are usually based on polymerase chain reaction (PCR) and include simple sequence repeats (SSRs), inter-simple sequence repeats, and random amplified polymorphic DNA. However, DNA markers were not used effectively in the complete identification of plant cultivars because of the lack of known DNA fingerprints. Recently, a novel approach called the cultivar identification diagram (CID) strategy was developed to facilitate the use of DNA markers for separate plant individuals. The CID was designed whereby a polymorphic maker was generated from each PCR that directly allowed for cultivar sample separation at each step. Therefore, it could be used to identify cultivars and varieties easily with fewer primers. In this study, 60 apple cultivars, including a few main cultivars in fields and varieties from descendants (Fuji x Telamon) were examined. Of the 20 pairs of SSR primers screened, 8 pairs gave reproducible, polymorphic DNA amplification patterns. The banding patterns obtained from these 8 primers were used to construct a CID map. Each cultivar or variety in this study was distinguished from the others completely, indicating that this method can be used for efficient cultivar identification. The result contributed to studies on germplasm resources and the seedling industry in fruit trees.

  4. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    PubMed Central

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-01-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology. PMID:27435636

  5. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    NASA Astrophysics Data System (ADS)

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta'Ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-07-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.

  6. Search for protein partners of mitochondrial single-stranded DNA-binding protein Rim1p using a yeast two-hybrid system.

    PubMed

    Kucejová, B; Foury, F

    2003-01-01

    RIM1 is a nuclear gene of the yeast Saccharomyces cerevisiae coding for a protein with single-stranded DNA-binding activity that is essential for mitochondrial genome maintenance. No protein partners of Rim1p have been described so far in yeast. To better understand the role of this protein in mitochondrial DNA replication and recombination, a search for protein interactors by the yeast two-hybrid system was performed. This approach led to the identification of several candidates, including a putative transcription factor, Azf1p, and Mph1p, a protein with an RNA helicase domain which is known to influence the mutation rate of nuclear and mitochondrial genomes.

  7. Evaluation of suitable DNA regions for molecular identification of high value medicinal plants in genus Kaempferia.

    PubMed

    Osathanunkul, Maslin; Dheeranupattana, Srisulak; Rotarayanont, Siriphron; Sookkhee, Siriwoot; Osathanunkul, Khukrit; Madesis, Panagiotis

    2017-12-02

    DNA barcoding coupled high resolution melting (Bar-HRM) is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Kaempferia (Zingiberaceae). Four primer pairs were evaluated (rbcL, rpoC, trnL and ITS1). It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Thus, the primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL primer pair gave the lowest resolution. Our Bar-HRM developed here would not only be useful for identification of Kaempferia plant specimens lacking essential parts for morphological identification but will be useful for authenticating products in powdered form of a high value medicinal species Kaempferia parviflora, in particular.

  8. DNA Identification of Skeletal Remains from World War II Mass Graves Uncovered in Slovenia

    PubMed Central

    Marjanović, Damir; Durmić-Pašić, Adaleta; Bakal, Narcisa; Haverić, Sanin; Kalamujić, Belma; Kovačević, Lejla; Ramić, Jasmin; Pojskić, Naris; Škaro, Vedrana; Projić, Petar; Bajrović, Kasim; Hadžiselimović, Rifat; Drobnič, Katja; Huffine, Ed; Davoren, Jon; Primorac, Dragan

    2007-01-01

    Aim To present the joint effort of three institutions in the identification of human remains from the World War II found in two mass graves in the area of Škofja Loka, Slovenia. Methods The remains of 27 individuals were found in two small and closely located mass graves. The DNA was isolated from bone and teeth samples using either standard phenol/chloroform alcohol extraction or optimized Qiagen DNA extraction procedure. Some recovered samples required the employment of additional DNA purification methods, such as N-buthanol treatment. QuantifilerTM Human DNA Quantification Kit was used for DNA quantification. PowerPlex 16 kit was used to simultaneously amplify 15 short tandem repeat (STR) loci. Matching probabilities were estimated using the DNA View program. Results Out of all processed samples, 15 remains were fully profiled at all 15 STR loci. The other 12 profiles were partial. The least successful profile included 13 loci. Also, 69 referent samples (buccal swabs) from potential living relatives were collected and profiled. Comparison of victims' profile against referent samples database resulted in 4 strong matches. In addition, 5 other profiles were matched to certain referent samples with lower probability. Conclusion Our results show that more than 6 decades after the end of the World War II, DNA analysis may significantly contribute to the identification of the remains from that period. Additional analysis of Y-STRs and mitochondrial DNA (mtDNA) markers will be performed in the second phase of the identification project. PMID:17696306

  9. Molecular mechanisms of floral organ specification by MADS domain proteins.

    PubMed

    Yan, Wenhao; Chen, Dijun; Kaufmann, Kerstin

    2016-02-01

    Flower development is a model system to understand organ specification in plants. The identities of different types of floral organs are specified by homeotic MADS transcription factors that interact in a combinatorial fashion. Systematic identification of DNA-binding sites and target genes of these key regulators show that they have shared and unique sets of target genes. DNA binding by MADS proteins is not based on 'simple' recognition of a specific DNA sequence, but depends on DNA structure and combinatorial interactions. Homeotic MADS proteins regulate gene expression via alternative mechanisms, one of which may be to modulate chromatin structure and accessibility in their target gene promoters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The effect on cadaver blood DNA identification by the use of targeted and whole body post-mortem computed tomography angiography.

    PubMed

    Rutty, Guy N; Barber, Jade; Amoroso, Jasmin; Morgan, Bruno; Graham, Eleanor A M

    2013-12-01

    Post-mortem computed tomography angiography (PMCTA) involves the injection of contrast agents. This could have both a dilution effect on biological fluid samples and could affect subsequent post-contrast analytical laboratory processes. We undertook a small sample study of 10 targeted and 10 whole body PMCTA cases to consider whether or not these two methods of PMCTA could affect post-PMCTA cadaver blood based DNA identification. We used standard methodology to examine DNA from blood samples obtained before and after the PMCTA procedure. We illustrate that neither of these PMCTA methods had an effect on the alleles called following short tandem repeat based DNA profiling, and therefore the ability to undertake post-PMCTA blood based DNA identification.

  11. Harnessing CRISPR-Cas systems for bacterial genome editing.

    PubMed

    Selle, Kurt; Barrangou, Rodolphe

    2015-04-01

    Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. IDENTIFICATION OF STEROCHEMICAL CONFIGERATION OF CYCLOPENTA[CD]PYRENE-DNA ADDUCTS IN STRAIN A/J MOUSE LUNG AND C3H10T1/2CL8

    EPA Science Inventory

    The definitive identification of stereochemical configurations of DNA adducts detected by 32P-postlabeling requires co-chromatography of adducts with synthetic chromatographic standards. Four major and several minor DNA adducts are formed by cyclopenta[cd]pyrene (CPP) in strain A...

  13. Serogroup-level resolution of the “Super-7” Shiga toxin-producing Escherichia coli using nanopore single-molecule DNA sequencing

    USDA-ARS?s Scientific Manuscript database

    DNA sequencing and other DNA-based methods, such as PCR, are now broadly used for detection and identification of bacterial foodborne pathogens. For the identification of foodborne bacterial pathogens, it is important to make taxonomic assignments to the species, or even subspecies level. Long-read ...

  14. Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Zhang, Zhinan; Chen, Haiyan; Sun, Renhua; Wang, Hui; Guo, Lei; Pan, Haijian

    2010-07-01

    In this study, we integrated a DNA barcoding project with an ecological survey on intertidal polychaete communities and investigated the utility of CO1 gene sequence as a DNA barcode for the classification of the intertidal polychaetes. Using 16S rDNA as a complementary marker and combining morphological and ecological characterization, some of dominant and common polychaete species from Chinese coasts were assessed for their taxonomic status. We obtained 22 haplotype gene sequences of 13 taxa, including 10 CO1 sequences and 12 16S rDNA sequences. Based on intra- and inter-specific distances, we built phylogenetic trees using the neighbor-joining method. Our study suggested that the mitochondrial CO1 gene was a valid DNA barcoding marker for species identification in polychaetes, but other genes, such as 16S rDNA, could be used as a complementary genetic marker. For more accurate species identification and effective testing of species hypothesis, DNA barcoding should be incorporated with morphological, ecological, biogeographical, and phylogenetic information. The application of DNA barcoding and molecular identification in the ecological survey on the intertidal polychaete communities demonstrated the feasibility of integrating DNA taxonomy and ecology.

  15. Allele frequencies of combined DNA index system (CODIS) and non-CODIS short tandem repeat loci in Goiás, Central Brazil.

    PubMed

    Rodovalho, R G; Santos, G S; Cavalcanti, L M; Moura, B F S M; Rodrigues, E L; Lima, P R; Gigonzac, M A D; Vieira, T C

    2015-07-03

    In studies of human identification, obtaining a high standard of outcomes and satisfactory conclusions are directly related to the use of highly polymorphic molecular markers. In addition to the combined DNA index system (CODIS) group, it is also important to implement non-CODIS markers into the analysis, as they increase the power of discrimination. During the identification process, it is essential to consider the genetic variation among distinct groups of populations, as the allele frequencies are directly associated with the power of discrimination. However, the population of Goiás, a State located in Central Brazil, is characterized by a highly mixed population due to its diverse ethnic origins. In this study, a survey of the allelic frequencies in the Goiás population was carried out using a molecular assembly composed of 21 autosomal loci both from and external to the CODIS group. The new data, for some of the markers used, were statistically similar to those from previous studies. This consistency means that the use of these markers might serve as a parameter for future population comparisons. The results from these analyses further our knowledge of the study of human identification.

  16. DNA Barcoding of Recently Diverged Species: Relative Performance of Matching Methods

    PubMed Central

    van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T.

    2012-01-01

    Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a ‘barcode gap’ and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification. PMID:22272356

  17. DNA barcoding of recently diverged species: relative performance of matching methods.

    PubMed

    van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T

    2012-01-01

    Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a 'barcode gap' and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification.

  18. Forensic Analysis of Human DNA from Samples Contamined with Bioweapons Agents

    DTIC Science & Technology

    2011-10-01

    Forensic analysis of human DNA from samples contaminated with bioweapons agents Jason Timbers Kathryn Wright Royal Canadian Mounted...Police Forensic Science and Identification Service Prepared By: Royal Canadian Mounted Police RCMP Forensic Science Identification Services... Royal Canadian Mounted Police Forensic Science and Identification Service Prepared By: Royal Canadian Mounted Police RCMP Forensic Science

  19. FBIS: A regional DNA barcode archival & analysis system for Indian fishes.

    PubMed

    Nagpure, Naresh Sahebrao; Rashid, Iliyas; Pathak, Ajey Kumar; Singh, Mahender; Singh, Shri Prakash; Sarkar, Uttam Kumar

    2012-01-01

    DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. The database is available for free at http://mail.nbfgr.res.in/fbis/

  20. The changing epitome of species identification – DNA barcoding

    PubMed Central

    Ajmal Ali, M.; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M.A.; Pandey, Arun K.; Lee, Joongku

    2014-01-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  1. A ranking index for quality assessment of forensic DNA profiles forensic DNA profiles

    PubMed Central

    2010-01-01

    Background Assessment of DNA profile quality is vital in forensic DNA analysis, both in order to determine the evidentiary value of DNA results and to compare the performance of different DNA analysis protocols. Generally the quality assessment is performed through manual examination of the DNA profiles based on empirical knowledge, or by comparing the intensities (allelic peak heights) of the capillary electrophoresis electropherograms. Results We recently developed a ranking index for unbiased and quantitative quality assessment of forensic DNA profiles, the forensic DNA profile index (FI) (Hedman et al. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles, Biotechniques 47 (2009) 951-958). FI uses electropherogram data to combine the intensities of the allelic peaks with the balances within and between loci, using Principal Components Analysis. Here we present the construction of FI. We explain the mathematical and statistical methodologies used and present details about the applied data reduction method. Thereby we show how to adapt the ranking index for any Short Tandem Repeat-based forensic DNA typing system through validation against a manual grading scale and calibration against a specific set of DNA profiles. Conclusions The developed tool provides unbiased quality assessment of forensic DNA profiles. It can be applied for any DNA profiling system based on Short Tandem Repeat markers. Apart from crime related DNA analysis, FI can therefore be used as a quality tool in paternal or familial testing as well as in disaster victim identification. PMID:21062433

  2. DNA Nanostructures as Models for Evaluating the Role of Enthalpy and Entropy in Polyvalent Binding

    PubMed Central

    Nangreave, Jeanette; Yan, Hao; Liu, Yan

    2011-01-01

    DNA nanotechnology allows the design and construction of nano-scale objects that have finely tuned dimensions, orientation, and structure with remarkable ease and convenience. Synthetic DNA nanostructures can be precisely engineered to model a variety of molecules and systems, providing the opportunity to probe very subtle biophysical phenomena. In this study, several such synthetic DNA nanostructures were designed to serve as models to study the binding behavior of polyvalent molecules and gain insight into how small changes to the ligand/receptor scaffolds, intended to vary their conformational flexibility, will affect their association equilibrium. This approach has yielded a quantitative identification of the roles of enthalpy and entropy in the affinity of polyvalent DNA nanostructure interactions, which exhibit an intriguing compensating effect. PMID:21381740

  3. Contemporary microbiology and identification of Corynebacteria spp. causing infections in human.

    PubMed

    Zasada, A A; Mosiej, E

    2018-06-01

    The Corynebacterium is a genus of bacteria of growing clinical importance. Progress in medicine results in growing population of immunocompromised patients and growing number of infections caused by opportunistic pathogens. A new infections caused by new Corynebacterium species and species previously regarded as commensal micro-organisms have been described. Parallel with changes in Corynebacteria infections, the microbiological laboratory diagnostic possibilities are changing. But identification of this group of bacteria to the species level remains difficult. In the paper, we present various manual, semi-automated and automated assays used in clinical laboratories for Corynebacterium identification, such as API Coryne, RapID CB Plus, BBL Crystal Gram Positive ID System, MICRONAUT-RPO, VITEK 2, BD Phoenix System, Sherlock Microbial ID System, MicroSeq Microbial Identification System, Biolog Microbial Identification Systems, MALDI-TOF MS systems, polymerase chain reaction (PCR)-based and sequencing-based assays. The presented assays are based on various properties, like biochemical tests, specific DNA sequences, composition of cellular fatty acids, protein profiles and have specific limitations. The number of opportunistic infections caused by Corynebacteria is increasing due to increase in number of immunocompromised patients. New Corynebacterium species and new human infections, caused by this group of bacteria, has been described recently. However, identification of Corynebacteria is still a challenge despite application of sophisticated laboratory methods. In the study we present possibilities and limitations of various commercial systems for identification of Corynebacteria. © 2018 The Society for Applied Microbiology.

  4. Integrating motion-detection cameras and hair snags for wolverine identification

    Treesearch

    Audrey J. Magoun; Clinton D. Long; Michael K. Schwartz; Kristine L. Pilgrim; Richard E. Lowell; Patrick Valkenburg

    2011-01-01

    We developed an integrated system for photographing a wolverine's (Gulo gulo) ventral pattern while concurrently collecting hair for microsatellite DNA genotyping. Our objectives were to 1) test the system on a wild population of wolverines using an array of camera and hair-snag (C&H) stations in forested habitat where wolverines were known to occur, 2)...

  5. Barcoding of fresh water fishes from Pakistan.

    PubMed

    Karim, Asma; Iqbal, Asad; Akhtar, Rehan; Rizwan, Muhammad; Amar, Ali; Qamar, Usman; Jahan, Shah

    2016-07-01

    DNA bar-coding is a taxonomic method that uses small genetic markers in organisms' mitochondrial DNA (mt DNA) for identification of particular species. It uses sequence diversity in a 658-base pair fragment near the 5' end of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene as a tool for species identification. DNA barcoding is more accurate and reliable method as compared with the morphological identification. It is equally useful in juveniles as well as adult stages of fishes. The present study was conducted to identify three farm fish species of Pakistan (Cyprinus carpio, Cirrhinus mrigala, and Ctenopharyngodon idella) genetically. All of them belonged to family cyprinidae. CO1 gene was amplified. PCR products were sequenced and analyzed by bioinformatic software. Conspecific, congenric, and confamilial k2P nucleotide divergence was estimated. From these findings, it was concluded that the gene sequence, CO1, may serve as milestone for the identification of related species at molecular level.

  6. DNA analysis of hair and scat collected along snow tracks to document the presence of Canada Lynx.

    Treesearch

    Kevin S. McKelvey; Jeffrey von Kienast; Keith B. Aubry; Gary M. Koehler; Bejamin T. Maletzke; John R. Squires; Edward L. Lindquist; Steve Loch; Michael K. Schwartz

    2006-01-01

    Snow tracking is often used to inventory carnivore communities, but species identification using this method can produce ambiguous and misleading results. DNA can be extracted from hair and scat samples collected from tracks made in snow. Using DNA analysis could allow positive track identification across a broad range of snow conditions, thus increasing survey...

  7. The use of Taqman genotyping assays for rapid confirmation of β-thalassaemia mutations in the Malays: accurate diagnosis with low DNA concentrations.

    PubMed

    Teh, L-K; Lee, T-Y; Tan, J A M A; Lai, M-I; George, E

    2015-02-01

    In Malaysia, β-thalassaemia is a common inherited blood disorder in haemoglobin synthesis with a carrier rate of 4.5%. Currently, PCR-incorporating techniques such as amplification refractory mutation system (ARMS) or reverse dot blot hybridization (RDBH) are used in β-thalassaemia mutation detection. ARMS allows single-mutation identification using two reactions, one for wild type and another for mutant alleles. RDBH requires probe immobilization and optimization of hybridization and washing temperatures which is time consuming. The aim of our study was to investigate whether β-thalassaemia mutations can be identified in samples with low DNA concentrations. Genotype identification of common β-thalassaemia mutations in Malays was carried out using Taqman genotyping assays. Results show that the Taqman assays allow mutation detection with DNA template concentrations as low as 2-100 ng. In addition, consistent reproducibility was observed in the Taqman assays when repeated eight times and at different time intervals. The developed sensitive Taqman assays allow molecular characterization of β-thalassaemia mutations in samples with low DNA concentrations. The Taqman genotyping assays have potential as a diagnostic tool for foetal blood, chorionic villi or pre-implantation genetic diagnosis where DNA is limited and precious. © 2014 John Wiley & Sons Ltd.

  8. [DNA barcoding and its utility in commonly-used medicinal snakes].

    PubMed

    Huang, Yong; Zhang, Yue-yun; Zhao, Cheng-jian; Xu, Yong-li; Gu, Ying-le; Huang, Wen-qi; Lin, Kui; Li, Li

    2015-03-01

    Identification accuracy of traditional Chinese medicine is crucial for the traditional Chinese medicine research, production and application. DNA barcoding based on the mitochondrial gene coding for cytochrome c oxidase subunit I (COI), are more and more used for identification of traditional Chinese medicine. Using universal barcoding primers to sequence, we discussed the feasibility of DNA barcoding method for identification commonly-used medicinal snakes (a total of 109 samples belonging to 19 species 15 genera 6 families). The phylogenetic trees using Neighbor-joining were constructed. The results indicated that the mean content of G + C(46.5%) was lower than that of A + T (53.5%). As calculated by Kimera-2-parameter model, the mean intraspecies genetic distance of Trimeresurus albolabris, Ptyas dhumnades and Lycodon rufozonatus was greater than 2%. Further phylogenetic relationship results suggested that identification of one sample of T. albolabris was erroneous. The identification of some samples of P. dhumnades was also not correct, namely originally P. korros was identified as P. dhumnades. Factors influence on intraspecific genetic distance difference of L. rufozonatus need to be studied further. Therefore, DNA barcoding for identification of medicinal snakes is feasible, and greatly complements the morphological classification method. It is necessary to further study in identification of traditional Chinese medicine.

  9. Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage

    PubMed Central

    2011-01-01

    Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a) a preserving medium consisting of solid sodium chloride (salt), (b) no additional substances and (c) garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR) typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing. PMID:21846338

  10. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples

    PubMed Central

    Arulandhu, Alfred J.; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M.; Prins, Theo W.; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B.; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara

    2017-01-01

    Abstract DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. PMID:29020743

  11. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples.

    PubMed

    Arulandhu, Alfred J; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M; Prins, Theo W; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara; Kok, Esther

    2017-10-01

    DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. © The Authors 2017. Published by Oxford University Press.

  12. Identifying insects with incomplete DNA barcode libraries, African fruit flies (Diptera: Tephritidae) as a test case.

    PubMed

    Virgilio, Massimiliano; Jordaens, Kurt; Breman, Floris C; Backeljau, Thierry; De Meyer, Marc

    2012-01-01

    We propose a general working strategy to deal with incomplete reference libraries in the DNA barcoding identification of species. Considering that (1) queries with a large genetic distance with their best DNA barcode match are more likely to be misidentified and (2) imposing a distance threshold profitably reduces identification errors, we modelled relationships between identification performances and distance thresholds in four DNA barcode libraries of Diptera (n = 4270), Lepidoptera (n = 7577), Hymenoptera (n = 2067) and Tephritidae (n = 602 DNA barcodes). In all cases, more restrictive distance thresholds produced a gradual increase in the proportion of true negatives, a gradual decrease of false positives and more abrupt variations in the proportions of true positives and false negatives. More restrictive distance thresholds improved precision, yet negatively affected accuracy due to the higher proportions of queries discarded (viz. having a distance query-best match above the threshold). Using a simple linear regression we calculated an ad hoc distance threshold for the tephritid library producing an estimated relative identification error <0.05. According to the expectations, when we used this threshold for the identification of 188 independently collected tephritids, less than 5% of queries with a distance query-best match below the threshold were misidentified. Ad hoc thresholds can be calculated for each particular reference library of DNA barcodes and should be used as cut-off mark defining whether we can proceed identifying the query with a known estimated error probability (e.g. 5%) or whether we should discard the query and consider alternative/complementary identification methods.

  13. Identifying Insects with Incomplete DNA Barcode Libraries, African Fruit Flies (Diptera: Tephritidae) as a Test Case

    PubMed Central

    Virgilio, Massimiliano; Jordaens, Kurt; Breman, Floris C.; Backeljau, Thierry; De Meyer, Marc

    2012-01-01

    We propose a general working strategy to deal with incomplete reference libraries in the DNA barcoding identification of species. Considering that (1) queries with a large genetic distance with their best DNA barcode match are more likely to be misidentified and (2) imposing a distance threshold profitably reduces identification errors, we modelled relationships between identification performances and distance thresholds in four DNA barcode libraries of Diptera (n = 4270), Lepidoptera (n = 7577), Hymenoptera (n = 2067) and Tephritidae (n = 602 DNA barcodes). In all cases, more restrictive distance thresholds produced a gradual increase in the proportion of true negatives, a gradual decrease of false positives and more abrupt variations in the proportions of true positives and false negatives. More restrictive distance thresholds improved precision, yet negatively affected accuracy due to the higher proportions of queries discarded (viz. having a distance query-best match above the threshold). Using a simple linear regression we calculated an ad hoc distance threshold for the tephritid library producing an estimated relative identification error <0.05. According to the expectations, when we used this threshold for the identification of 188 independently collected tephritids, less than 5% of queries with a distance query-best match below the threshold were misidentified. Ad hoc thresholds can be calculated for each particular reference library of DNA barcodes and should be used as cut-off mark defining whether we can proceed identifying the query with a known estimated error probability (e.g. 5%) or whether we should discard the query and consider alternative/complementary identification methods. PMID:22359600

  14. enDNA-Prot: identification of DNA-binding proteins by applying ensemble learning.

    PubMed

    Xu, Ruifeng; Zhou, Jiyun; Liu, Bin; Yao, Lin; He, Yulan; Zou, Quan; Wang, Xiaolong

    2014-01-01

    DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent research problem. Up to now, many methods have been proposed, but most of them focus on only one classifier and cannot make full use of the large number of negative samples to improve predicting performance. This study proposed a predictor called enDNA-Prot for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range of 3.97-9.52% in ACC and 0.08-0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the performance of enDNA-Prot outperformed the three existing methods by 2.83-16.63% in terms of ACC and 0.02-0.16 in terms of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public.

  15. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. IDENTIFICATION OF STEREOCHEMICAL CONFIGURATIONS OF CYCLOPENTA[CD]PYRENE-DNA ADDUCTS IN STRAIN A/J MOUSE LUNG AND C3H10T1/2CL8 CELLS

    EPA Science Inventory

    Identification of Sterochemical Configurations of Cyclopent A[cd]Pyrene DNA Adducts in Strain A/J Mouse Lung and C3H10T1/2CL8 Cells.

    Four major and several minor DNA adducts were resolved by 32P-postlabeling analysis of DNA from strain A/J mouse lung and C3H10T1/2CL8 (C3H...

  17. Extensive 5.8S nrDNA polymorphism in Mammillaria (Cactaceae) with special reference to the identification of pseudogenic internal transcribed spacer regions.

    PubMed

    Harpke, Doerte; Peterson, Angela

    2008-05-01

    The internal transcribed spacer (ITS) region (ITS1, 5.8S rDNA, ITS2) represents the most widely applied nuclear marker in eukaryotic phylogenetics. Although this region has been assumed to evolve in concert, the number of investigations revealing high degrees of intra-individual polymorphism connected with the presence of pseudogenes has risen. The 5.8S rDNA is the most important diagnostic marker for functionality of the ITS region. In Mammillaria, intra-individual 5.8S rDNA polymorphisms of up to 36% and up to nine different types have been found. Twenty-eight of 30 cloned genomic Mammillaria sequences were identified as putative pseudogenes. For the identification of pseudogenic ITS regions, in addition to formal tests based on substitution rates, we attempted to focus on functional features of the 5.8S rDNA (5.8S motif, secondary structure). The importance of functional data for the identification of pseudogenes is outlined and discussed. The identification of pseudogenes is essential, because they may cause erroneous phylogenies and taxonomic problems.

  18. DNA Identification of Commingled Human Remains from the Cemetery Relocated by Flooding in Central Bosnia and Herzegovina.

    PubMed

    Čakar, Jasmina; Pilav, Amela; Džehverović, Mirela; Ahatović, Anesa; Haverić, Sanin; Ramić, Jasmin; Marjanović, Damir

    2018-01-01

    The floods in Bosnia and Herzegovina in May 2014 caused landslides all over the country. In the small village of Šerići, near the town of Zenica, a landslide destroyed the local cemetery, relocated graves, and commingled skeletal remains. As the use of other physical methods of identification (facial recognition, fingerprint analysis, dental analysis, etc.) was not possible, DNA analysis was applied. DNA was isolated from 20 skeletal remains (bone and tooth samples) and six reference samples (blood from living relatives) and amplified using PowerPlex ® Fusion and PowerPlex ® Y23 kits. DNA profiles were generated for all reference samples and 17 skeletal remains. A statistical analysis (calculation of paternity, maternity, and sibling indexes and matching probabilities) resulted in 10 positive identifications. In this study, 5 individuals were identified based on one reference sample. This has once again demonstrated the significance of DNA analysis in resolving the most complicated cases, such as the identification of commingled human skeletal remains. © 2017 American Academy of Forensic Sciences.

  19. A reliable DNA barcode reference library for the identification of the North European shelf fish fauna.

    PubMed

    Knebelsberger, Thomas; Landi, Monica; Neumann, Hermann; Kloppmann, Matthias; Sell, Anne F; Campbell, Patrick D; Laakmann, Silke; Raupach, Michael J; Carvalho, Gary R; Costa, Filipe O

    2014-09-01

    Valid fish species identification is an essential step both for fundamental science and fisheries management. The traditional identification is mainly based on external morphological diagnostic characters, leading to inconsistent results in many cases. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I (COI) for a valid identification of 93 North Atlantic fish species originating from the North Sea and adjacent waters, including many commercially exploited species. Neighbour-joining analysis based on K2P genetic distances formed nonoverlapping clusters for all species with a ≥99% bootstrap support each. Identification was successful for 100% of the species as the minimum genetic distance to the nearest neighbour always exceeded the maximum intraspecific distance. A barcoding gap was apparent for the whole data set. Within-species distances ranged from 0 to 2.35%, while interspecific distances varied between 3.15 and 28.09%. Distances between congeners were on average 51-fold higher than those within species. The validation of the sequence library by applying BOLDs barcode index number (BIN) analysis tool and a ranking system demonstrated high taxonomic reliability of the DNA barcodes for 85% of the investigated fish species. Thus, the sequence library presented here can be confidently used as a benchmark for identification of at least two-thirds of the typical fish species recorded for the North Sea. © 2014 John Wiley & Sons Ltd.

  20. Quantification of false positive reduction in nucleic acid purification on hemorrhagic fever DNA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.; Pohl, Kenneth Roy; Derzon, Mark Steven

    2006-11-01

    Columbia University has developed a sensitive highly multiplexed system for genetic identification of nucleic acid targets. The primary obstacle to implementing this technology is the high rate of false positives due to high levels of unbound reporters that remain within the system after hybridization. The ability to distinguish between free reporters and reporters bound to targets limits the use of this technology. We previously demonstrated a new electrokinetic method for binary separation of kb pair long DNA molecules and oligonucleotides. The purpose of this project 99864 is to take these previous demonstrations and further develop the technique and hardware formore » field use. Specifically, our objective was to implement separation in a heterogeneous sample (containing target DNA and background oligo), to perform the separation in a flow-based device, and to develop all of the components necessary for field testing a breadboard prototype system.« less

  1. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  2. The campaign to DNA barcode all fishes, FISH-BOL.

    PubMed

    Ward, R D; Hanner, R; Hebert, P D N

    2009-02-01

    FISH-BOL, the Fish Barcode of Life campaign, is an international research collaboration that is assembling a standardized reference DNA sequence library for all fishes. Analysis is targeting a 648 base pair region of the mitochondrial cytochrome c oxidase I (COI) gene. More than 5000 species have already been DNA barcoded, with an average of five specimens per species, typically vouchers with authoritative identifications. The barcode sequence from any fish, fillet, fin, egg or larva can be matched against these reference sequences using BOLD; the Barcode of Life Data System (http://www.barcodinglife.org). The benefits of barcoding fishes include facilitating species identification, highlighting cases of range expansion for known species, flagging previously overlooked species and enabling identifications where traditional methods cannot be applied. Results thus far indicate that barcodes separate c. 98 and 93% of already described marine and freshwater fish species, respectively. Several specimens with divergent barcode sequences have been confirmed by integrative taxonomic analysis as new species. Past concerns in relation to the use of fish barcoding for species discrimination are discussed. These include hybridization, recent radiations, regional differentiation in barcode sequences and nuclear copies of the barcode region. However, current results indicate these issues are of little concern for the great majority of specimens.

  3. Rapid Identification of Seven Waterborne Exophiala Species by RCA DNA Padlock Probes.

    PubMed

    Najafzadeh, M J; Vicente, V A; Feng, Peiying; Naseri, A; Sun, Jiufeng; Rezaei-Matehkolaei, A; de Hoog, G S

    2018-03-05

    The black yeast genus Exophiala includes numerous potential opportunistic species that potentially cause systematic and disseminated infections in immunocompetent individuals. Species causing systemic disease have ability to grow at 37-40 °C, while others consistently lack thermotolerance and are involved in diseases of cold-blooded, waterborne vertebrates and occasionally invertebrates. We explain a fast and sensitive assay for recognition and identification of waterborne Exophiala species without sequencing. The ITS rDNA region of seven Exophiala species (E. equina, E. salmonis, E. opportunistica, E. pisciphila, E. aquamarina, E. angulospora and E. castellanii) along with the close relative Veronaea botryosa was sequenced and aligned for the design of specific padlock probes for the detection of characteristic single-nucleotide polymorphisms. The assay demonstrated to successfully amplify DNA of target fungi, allowing detection at the species level. Amplification products were visualized on 1% agarose gels to confirm specificity of probe-template binding. Amounts of reagents were reduced to prevent the generation of false positive results. The simplicity, tenderness, robustness and low expenses provide padlock probe assay (RCA) a definite place as a very practical method among isothermal approaches for DNA diagnostics.

  4. DNA-Encoded Chemical Libraries: A Selection System Based on Endowing Organic Compounds with Amplifiable Information.

    PubMed

    Neri, Dario; Lerner, Richard A

    2018-06-20

    The discovery of organic ligands that bind specifically to proteins is a central problem in chemistry, biology, and the biomedical sciences. The encoding of individual organic molecules with distinctive DNA tags, serving as amplifiable identification bar codes, allows the construction and screening of combinatorial libraries of unprecedented size, thus facilitating the discovery of ligands to many different protein targets. Fundamentally, one links powers of genetics and chemical synthesis. After the initial description of DNA-encoded chemical libraries in 1992, several experimental embodiments of the technology have been reduced to practice. This review provides a historical account of important milestones in the development of DNA-encoded chemical libraries, a survey of relevant ongoing research activities, and a glimpse into the future.

  5. Chemical Biology Probes from Advanced DNA-encoded Libraries.

    PubMed

    Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas

    2016-02-19

    The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.

  6. Molecular prey identification in Central European piscivores.

    PubMed

    Thalinger, Bettina; Oehm, Johannes; Mayr, Hannes; Obwexer, Armin; Zeisler, Christiane; Traugott, Michael

    2016-01-01

    Diet analysis is an important aspect when investigating the ecology of fish-eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time-consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two-step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection of fish DNA in dietary samples. This approach encompasses 78 fish and lamprey species native to Central European freshwaters and enables the identification of 31 species, six genera, two families, two orders and two fish family clusters. All targeted taxa were successfully amplified from 25 template molecules, and each assay was specific when tested against a wide range of invertebrates and vertebrates inhabiting aquatic environments. The applicability of the multiplex PCR system was evaluated in a feeding trial, wherein it outperformed morphological prey analysis regarding species-specific prey identification in faeces of Eurasian otters. Additionally, a wide spectrum of fish species was detected in field-collected faecal samples and regurgitated pellets of Common Kingfishers and Great Cormorants, demonstrating the broad applicability of the approach. In conclusion, this multiplex PCR system provides an efficient, easy to use and cost-effective tool for assessing the trophic ecology of piscivores in Central Europe. Furthermore, the multiplex PCRs and the primers described therein will be applicable wherever DNA of the targeted fish species needs to be detected at high sensitivity and specificity. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  7. Identification of Skeletal Remains of Communist Armed Forces Victims During and After World War II: Combined Y-chromosome Short Tandem Repeat (STR) and MiniSTR Approach

    PubMed Central

    Marjanović, Damir; Durmić-Pašić, Adaleta; Kovačević, Lejla; Avdić, Jasna; Džehverović, Mirela; Haverić, Sanin; Ramić, Jasmin; Kalamujić, Belma; Bilela, Lada Lukić; Škaro, Vedrana; Projić, Petar; Bajrović, Kasim; Drobnič, Katja; Davoren, Jon; Primorac, Dragan

    2009-01-01

    Aim To report on the use of STR, Y-STRs, and miniSTRs typing methods in the identification of victims of revolutionary violence and crimes against humanity committed by the Communist Armed Forces during and after World War II in which bodies were exhumed from mass and individual graves in Slovenia. Methods Bone fragments and teeth were removed from human remains found in several small and closely located hidden mass graves in the Škofja Loka area (Lovrenska Grapa and Žolšče) and 2 individual graves in the Ljubljana area (Podlipoglav), Slovenia. DNA was isolated using the Qiagen DNA extraction procedure optimized for bone and teeth. Some DNA extracts required additional purification, such as N-buthanol treatment. The QuantifilerTM Human DNA Quantification Kit was used for DNA quantification. Initially, PowerPlex 16 kit was used to simultaneously analyze 15 short tandem repeat (STR) loci. The PowerPlex S5 miniSTR kit and AmpFℓSTR® MiniFiler PCR Amplification Kit was used for additional analysis if preliminary analysis yielded weak partial or no profiles at all. In 2 cases, when the PowerPlex 16 profiles indicated possible relatedness of the remains with reference samples, but there were insufficient probabilities to call the match to possible male paternal relatives, we resorted to an additional analysis of Y-STR markers. PowerPlex® Y System was used to simultaneously amplify 12 Y-STR loci. Fragment analysis was performed on an ABI PRISM 310 genetic analyzer. Matching probabilities were estimated using the DNA-View software. Results Following the Y-STR analysis, 1 of the “weak matches” previously obtained based on autosomal loci, was confirmed while the other 1 was not. Combined standard STR and miniSTR approach applied to bone samples from 2 individual graves resulted in positive identifications. Finally, using the same approach on 11 bone samples from hidden mass grave Žološče, we were able to obtain 6 useful DNA profiles. Conclusion The results of this study, in combination with previously obtained results, demonstrate that Y-chromosome testing and miniSTR methodology can contribute to the identification of human remains of victims of revolutionary violence from World War II. PMID:19480024

  8. Identification of Missing Norwegian World War II Soldiers, in Karelia Russia.

    PubMed

    Morild, Inge; Hamre, Stian S; Huel, Rene; Parsons, Thomas J

    2015-07-01

    This article presents the multidisciplinary effort in trying to identify the skeletal remains of 100 Norwegian soldiers serving in the German army, killed in Karelia Russia in 1944, from the recovery of the remains through the final identification using DNA. Of the 150 bone samples sent for DNA testing, 93 DNA profiles were obtained relating to 57 unique individuals. The relatives could not be directly contacted as the soldiers were considered as traitors to Norway; therefore, only 45 reference samples, relating to 42 cases of the missing, were donated. DNA matches for 14 soldiers and 12 additional body part re-associations for these individuals were found. Another 24 bone samples were re-associated with 16 individuals, but no familial match was found. More than six decades after the end of WWII, DNA analysis can significantly contribute to the identification of the remains. © 2015 American Academy of Forensic Sciences.

  9. Ribosomal Internal Transcribed Spacer of Prototheca wickerhamii Has Characteristic Structure Useful for Identification and Genotyping

    PubMed Central

    Hirose, Noriyuki; Nishimura, Kazuko; Inoue-Sakamoto, Maki; Masuda, Michiaki

    2013-01-01

    Prototheca species are achlorophyllous algae ubiquitous in nature and known to cause localized and systemic infection both in humans and animals. Although identification of the Prototheca species in clinical specimens is a challenge, there are an increasing number of cases in which molecular techniques have successfully been used for diagnosis of protothecosis. In this study, we characterized nuclear ribosomal DNA (rDNA) of a strain of Prototheca (FL11-0001) isolated from a dermatitis patient in Japan for its species identification. When nuclear rDNA of FL11-0001 and that of various other Prototheca strains were compared by polymerase chain reaction (PCR), the results indicated that the sizes of ribosomal internal transcribed spacer (ITS) were different in a species-dependent manner, suggesting that the variation might be useful for differentiation of Prototheca spp. Especially, ITS of P. wickerhamii, the most common cause of human protothecosis, was distinctively larger than that of other Prototheca spp. FL11-0001, whose ITS was comparably large, could easily be identified as P. wickerhamii. The usefulness of the PCR analysis of ITS was also demonstrated by the discovery that one of the clinical isolates that had previously been designated as P. wickerhamii was likely a novel species. Furthermore, our data demonstrated that nucleotide sequences of P. wickerhamii ITS are heterogenous between different rDNA copies in each strain and also polymorphic between strains. Phylogenetic analysis suggested that the ITS sequences could be classified to four clades, based on which P. wickerhamii strains might be grouped into at least two genotypes. Comprehensive characterization of Prototheca rDNA may provide valuable insights into diagnosis and epidemiology of protothecosis, as well as evolution and taxonomy of Prototheca and related organisms. PMID:24312279

  10. Ribosomal internal transcribed spacer of Prototheca wickerhamii has characteristic structure useful for identification and genotyping.

    PubMed

    Hirose, Noriyuki; Nishimura, Kazuko; Inoue-Sakamoto, Maki; Masuda, Michiaki

    2013-01-01

    Prototheca species are achlorophyllous algae ubiquitous in nature and known to cause localized and systemic infection both in humans and animals. Although identification of the Prototheca species in clinical specimens is a challenge, there are an increasing number of cases in which molecular techniques have successfully been used for diagnosis of protothecosis. In this study, we characterized nuclear ribosomal DNA (rDNA) of a strain of Prototheca (FL11-0001) isolated from a dermatitis patient in Japan for its species identification. When nuclear rDNA of FL11-0001 and that of various other Prototheca strains were compared by polymerase chain reaction (PCR), the results indicated that the sizes of ribosomal internal transcribed spacer (ITS) were different in a species-dependent manner, suggesting that the variation might be useful for differentiation of Prototheca spp. Especially, ITS of P. wickerhamii, the most common cause of human protothecosis, was distinctively larger than that of other Prototheca spp. FL11-0001, whose ITS was comparably large, could easily be identified as P. wickerhamii. The usefulness of the PCR analysis of ITS was also demonstrated by the discovery that one of the clinical isolates that had previously been designated as P. wickerhamii was likely a novel species. Furthermore, our data demonstrated that nucleotide sequences of P. wickerhamii ITS are heterogenous between different rDNA copies in each strain and also polymorphic between strains. Phylogenetic analysis suggested that the ITS sequences could be classified to four clades, based on which P. wickerhamii strains might be grouped into at least two genotypes. Comprehensive characterization of Prototheca rDNA may provide valuable insights into diagnosis and epidemiology of protothecosis, as well as evolution and taxonomy of Prototheca and related organisms.

  11. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA.

    PubMed

    Iyer, Lakshminarayan M; Zhang, Dapeng; Burroughs, A Maxwell; Aravind, L

    2013-09-01

    Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel 'readers' of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology.

  12. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng; Maxwell Burroughs, A.; Aravind, L.

    2013-01-01

    Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel ‘readers’ of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology. PMID:23814188

  13. Identification of the skeletal remains of a murder victim by DNA analysis.

    PubMed

    Hagelberg, E; Gray, I C; Jeffreys, A J

    1991-08-01

    There is considerable anthropological and forensic interest in the possibility of DNA typing skeletal remains. Trace amounts of DNA can be recovered even from 5,500-year-old bones and multicopy human mitochondrial DNA sequences can frequently be amplified from such DNA using the polymerase chain reaction (PCR). But given the sensitivity of PCR, it is very difficult to exclude contaminating material. We now report the successful identification of the 8-year-old skeletal remains of a murder victim, by comparative typing of nuclear microsatellite markers in the remains and in the presumptive parents of the victim. This analysis establishes the authenticity of the bone DNA and the feasibility of bone DNA typing in forensic investigations.

  14. Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture.

    PubMed

    Wagner, K; Springer, B; Pires, V P; Keller, P M

    2018-05-03

    The rising incidence of invasive fungal infections and the expanding spectrum of fungal pathogens makes early and accurate identification of the causative pathogen a daunting task. Diagnostics using molecular markers enable rapid identification of fungi, offer new insights into infectious disease dynamics, and open new possibilities for infectious disease control and prevention. We performed a retrospective study using clinical specimens (N = 233) from patients with suspected fungal infection previously subjected to culture and/or internal transcribed spacer (ITS) PCR. We used these specimens to evaluate a high-throughput screening method for fungal detection using automated DNA extraction (QIASymphony), fungal ribosomal small subunit (18S) rDNA RT-PCR and amplicon sequencing. Fungal sequences were compared with sequences from the curated, commercially available SmartGene IDNS database for pathogen identification. Concordance between 18S rDNA RT-PCR and culture results was 91%, and congruence between 18S rDNA RT-PCR and ITS PCR results was 94%. In addition, 18S rDNA RT-PCR and Sanger sequencing detected fungal pathogens in culture negative (N = 13) and ITS PCR negative specimens (N = 12) from patients with a clinically confirmed fungal infection. Our results support the use of the 18S rDNA RT-PCR diagnostic workflow for rapid and accurate identification of fungal pathogens in clinical specimens.

  15. Sordaria, a model system to uncover links between meiotic pairing and recombination

    PubMed Central

    Zickler, Denise; Espagne, Eric

    2017-01-01

    The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) The identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination. PMID:26877138

  16. Aspergillus and Penicillium identification using DNA sequences: Barcode or MLST?

    USDA-ARS?s Scientific Manuscript database

    Current methods in DNA technology can detect single nucleotide polymorphisms with measurable accuracy using several different approaches appropriate for different uses. If there are even single nucleotide differences that are invariant markers of the species, we can accomplish identification through...

  17. DEVELOPMENT OF DNA-BASED TOOLS FOR IDENTIFICATION AND MONITORING OF AQUATIC INTRODUCED SPECIES

    EPA Science Inventory

    Claims for potential applications of DNA taxonomy range from identification of unknown specimens and the discovery of new species to the study of biodiversity through comprehensive characterizations of complex biotic communities drawn from environmental samples. Recently, these a...

  18. 28 CFR 28.27 - Non-preemption of other requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Non-preemption of other requirements. 28.27 Section 28.27 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.27 Non-preemption of other requirements. Section 3600A's requirement to...

  19. 28 CFR 28.27 - Non-preemption of other requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Non-preemption of other requirements. 28.27 Section 28.27 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.27 Non-preemption of other requirements. Section 3600A's requirement to...

  20. 28 CFR 28.22 - The requirement to preserve biological evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false The requirement to preserve biological evidence. 28.22 Section 28.22 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.22 The requirement to preserve biological evidence. (a) Applicability...

  1. 28 CFR 28.22 - The requirement to preserve biological evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false The requirement to preserve biological evidence. 28.22 Section 28.22 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.22 The requirement to preserve biological evidence. (a) Applicability...

  2. 28 CFR 28.27 - Non-preemption of other requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Non-preemption of other requirements. 28.27 Section 28.27 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.27 Non-preemption of other requirements. Section 3600A's requirement to...

  3. 28 CFR 28.27 - Non-preemption of other requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Non-preemption of other requirements. 28.27 Section 28.27 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.27 Non-preemption of other requirements. Section 3600A's requirement to...

  4. 28 CFR 28.22 - The requirement to preserve biological evidence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false The requirement to preserve biological evidence. 28.22 Section 28.22 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.22 The requirement to preserve biological evidence. (a) Applicability...

  5. 28 CFR 28.22 - The requirement to preserve biological evidence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false The requirement to preserve biological evidence. 28.22 Section 28.22 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.22 The requirement to preserve biological evidence. (a) Applicability...

  6. 28 CFR 28.22 - The requirement to preserve biological evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false The requirement to preserve biological evidence. 28.22 Section 28.22 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.22 The requirement to preserve biological evidence. (a) Applicability...

  7. 28 CFR 28.27 - Non-preemption of other requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Non-preemption of other requirements. 28.27 Section 28.27 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM Preservation of Biological Evidence § 28.27 Non-preemption of other requirements. Section 3600A's requirement to...

  8. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system.

    PubMed

    Yosef, Ido; Goren, Moran G; Kiro, Ruth; Edgar, Rotem; Qimron, Udi

    2011-12-13

    Prokaryotic DNA arrays arranged as clustered regularly interspaced short palindromic repeats (CRISPR), along with their associated proteins, provide prokaryotes with adaptive immunity by RNA-mediated targeting of alien DNA or RNA matching the sequences between the repeats. Here, we present a thorough screening system for the identification of bacterial proteins participating in immunity conferred by the Escherichia coli CRISPR system. We describe the identification of one such protein, high-temperature protein G (HtpG), a homolog of the eukaryotic chaperone heat-shock protein 90. We demonstrate that in the absence of htpG, the E. coli CRISPR system loses its suicidal activity against λ prophage and its ability to provide immunity from lysogenization. Transcomplementation of htpG restores CRISPR activity. We further show that inactivity of the CRISPR system attributable to htpG deficiency can be suppressed by expression of Cas3, a protein that is essential for its activity. Accordingly, we also find that the steady-state level of overexpressed Cas3 is significantly enhanced following HtpG expression. We conclude that HtpG is a newly identified positive modulator of the CRISPR system that is essential for maintaining functional levels of Cas3.

  9. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system

    PubMed Central

    Yosef, Ido; Goren, Moran G.; Kiro, Ruth; Edgar, Rotem; Qimron, Udi

    2011-01-01

    Prokaryotic DNA arrays arranged as clustered regularly interspaced short palindromic repeats (CRISPR), along with their associated proteins, provide prokaryotes with adaptive immunity by RNA-mediated targeting of alien DNA or RNA matching the sequences between the repeats. Here, we present a thorough screening system for the identification of bacterial proteins participating in immunity conferred by the Escherichia coli CRISPR system. We describe the identification of one such protein, high-temperature protein G (HtpG), a homolog of the eukaryotic chaperone heat-shock protein 90. We demonstrate that in the absence of htpG, the E. coli CRISPR system loses its suicidal activity against λ prophage and its ability to provide immunity from lysogenization. Transcomplementation of htpG restores CRISPR activity. We further show that inactivity of the CRISPR system attributable to htpG deficiency can be suppressed by expression of Cas3, a protein that is essential for its activity. Accordingly, we also find that the steady-state level of overexpressed Cas3 is significantly enhanced following HtpG expression. We conclude that HtpG is a newly identified positive modulator of the CRISPR system that is essential for maintaining functional levels of Cas3. PMID:22114197

  10. Molecular identification of nematode larvae different from those of the Trichinella genus detected by muscle digestion.

    PubMed

    Marucci, Gianluca; Interisano, Maria; La Rosa, Giuseppe; Pozio, Edoardo

    2013-05-20

    Although larvae of the genus Trichinella are the most common parasite species detected in vertebrate muscles using artificial digestion, nematode larvae belonging to other genera are sometimes detected and incorrectly identified as Trichinella. However, it is often very difficult to identify these larvae at the species, genus or family level using microscopy because of the absence of specific morphological characters or cuticle damage, and the only means of identification is PCR and sequencing of specific molecular markers (12S mtDNA; COI; 18S rDNA; and ITS1). From 2008 to 2011, 18 nematode isolates not belonging to the genus Trichinella were collected from different host species. Eleven of these isolates were successfully identified at the species, genus or superfamily level: larvae from two common kestrels, three hooded crows, a hen harrier and a domestic pig were identified as Toxocara cati; larvae from a badger were identified as Toxocara canis; larvae from a domestic pig were identified as a free-living nematode of the genus Panagrolaimus; larvae from a wild boar were identified as belonging to the Metastrongylus genus; and larvae from a rough-legged buzzard were identified as belonging to the superfamily Filarioidea. The recovery of nematodes belonging to genera other than Trichinella during routine meat inspection suggests that the persons performing the analyses need to be informed of the possibility of false positives and that a molecular-based identification system that allows for a rapid and reliable response must be adopted (i.e., a DNA barcoding-like system). Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Emended descriptions of Prevotella denticola, Prevotella loescheii, Prevotella veroralis, and Prevotella melaninogenica.

    PubMed

    Wu, C C; Johnson, J L; Moore, W E; Moore, L V

    1992-10-01

    During studies of human periodontal disease, a number of bacterial strains were encountered that, on the basis of results of standard biochemical tests, appeared to be Prevotella buccalis, Prevotella denticola, Prevotella melaninogenica, or Prevotella loescheii. However, use of the standard biochemical tests, cellular fatty acid analyses, and the polyacrylamide gel electrophoresis patterns of soluble proteins resulted in conflicting identifications of these strains. The results of tests for cellobiose fermentation, inulin fermentation, and pigment production were responsible for most of the discordant results. Cellular fatty acid analyses in which the Microbial Identification System was used did not differentiate these strains from validly described species, even though separate library entries were created for them. DNA reassociation determinations in which the S1 nuclease procedure was used showed that cellobiose fermentation and pigment production are variable among strains of P. melaninogenica and P. denticola and that fermentation of xylan is not a reliable characteristic for differentiating P. buccalis from Prevotella veroralis. In contrast to previous indications, most strains of P. veroralis do not ferment xylan. These species can be differentiated by DNA-DNA reassociation and by cellular fatty acid analysis, using the Microbial Identification System, but differentiation by currently described phenotypic characteristics is not reliable. Similarly, P. loescheii and the genetically distinct (but closely related) D1C-20 group cannot be distinguished reliably from each other or from P. veroralis, P. denticola, and P. melaninogenica on the basis of currently described phenotypic tests other than cellular fatty acid composition or, for some species, electrophoretic patterns of soluble whole-cell proteins.

  12. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations.

    PubMed

    Yang, Qi; Franco, Christopher M M; Sorokin, Shirley J; Zhang, Wei

    2017-02-02

    For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3-D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers.

  13. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations

    PubMed Central

    Yang, Qi; Franco, Christopher M. M.; Sorokin, Shirley J.; Zhang, Wei

    2017-01-01

    For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3–D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers. PMID:28150727

  14. Gender-Associated Mitochondrial DNA Heteroplasmy in Somatic Tissues of the Endangered Freshwater Mussel Unio crassus (Bivalvia: Unionidae): Implications for Sex Identification and Phylogeographical Studies.

    PubMed

    Mioduchowska, Monika; Kaczmarczyk, Agnieszka; Zając, Katarzyna; Zając, Tadeusz; Sell, Jerzy

    2016-11-01

    Some bivalve species possess two independent mitochondrial DNA lineages: maternally (F-type) and paternally (M-type) inherited. This phenomenon is called doubly uniparental inheritance. It is generally agreed that F-type mtDNA is typically present in female somatic and gonadal tissues as well as in male somatic tissues, whereas the M-type mtDNA occurs only in male germ line and gonadal tissue. In the present study, the mtDNA heteroplasmy (for both F and M genomes) in male somatic tissues of Unio crassus (Philipsson, 1788), species threatened with extinction, has been confirmed. Taking advantage from the presence of Mcox1 marker only in male somatic tissues, we developed a new method of sex identification in this endangered species, using nondestructive tissue sampling. Probability of correct sex identification was estimated at 97.5%. The present study is the first report on gender-associated mitochondrial DNA heteroplasmy in male somatic tissues of thick-shelled river mussel and first approach to U. crassus sex identification at molecular level. Our study also confirmed the utility of paternally inherited Mcox1 gene fragment as a complementary molecular tool for resolving phylogeographical relationships among populations of thick-shelled river mussel. © 2017 Wiley Periodicals, Inc.

  15. Comparison of Whole-Cell SELEX Methods for the Identification of Staphylococcus Aureus-Specific DNA Aptamers

    PubMed Central

    Moon, Jihea; Kim, Giyoung; Park, Saet Byeol; Lim, Jongguk; Mo, Changyeun

    2015-01-01

    Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX) is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria. PMID:25884791

  16. Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers.

    PubMed

    Moon, Jihea; Kim, Giyoung; Park, Saet Byeol; Lim, Jongguk; Mo, Changyeun

    2015-04-15

    Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX) is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria.

  17. Isolation of Mycobacterium massiliense from a corneal biopsy in India.

    PubMed

    Kulandai, Lily Therese; Lakshmipathy, Dhanurekha; Ramasubban, Gayathri; Rao, Madhavan Hajib Narahari

    2014-12-01

    Rapidly growing mycobacteria (RGM) are ubiquitous and are usually considered as saprophytes, and have been recovered from the environment, particularly in dust, watery soil and water distribution systems. However, Mycobacterium massiliense is a rare causative agent of ocular infection. We report a case of M. massiliense in a 44-year-old female with signs and symptoms of a corneal ulcer. We carried out PCR-based DNA sequencing targeting the hsp 65 gene for the identification of M. massiliense . To confirm the identification, we also performed PCR-based RFLP targeting the hsp65 gene and PCR-based DNA sequencing targeting the internal transcribed spacer region, which showed 97 % nucleotide identity with M. massiliense . To the best of our knowledge, this is the first study in India to report the detection of M. massiliense from a corneal biopsy.

  18. European securitization and biometric identification: the uses of genetic profiling.

    PubMed

    Johnson, Paul; Williams, Robin

    2007-01-01

    The recent loss of confidence in textual and verbal methods for validating the identity claims of individual subjects has resulted in growing interest in the use of biometric technologies to establish corporeal uniqueness. Once established, this foundational certainty allows changing biographies and shifting category memberships to be anchored to unchanging bodily surfaces, forms or features. One significant source for this growth has been the "securitization" agendas of nation states that attempt the greater control and monitoring of population movement across geographical borders. Among the wide variety of available biometric schemes, DNA profiling is regarded as a key method for discerning and recording embodied individuality. This paper discusses the current limitations on the use of DNA profiling in civil identification practices and speculates on future uses of the technology with regard to its interoperability with other biometric databasing systems.

  19. DNA Barcoding for Species Identification of Insect Skins: A Test on Chironomidae (Diptera) Pupal Exuviae

    PubMed Central

    Ekrem, Torbjørn; Stur, Elisabeth

    2017-01-01

    Abstract Chironomidae (Diptera) pupal exuviae samples are commonly used for biological monitoring of aquatic habitats. DNA barcoding has proved useful for species identification of chironomid life stages containing cellular tissue, but the barcoding success of chironomid pupal exuviae is unknown. We assessed whether standard DNA barcoding could be efficiently used for species identification of chironomid pupal exuviae when compared with morphological techniques and if there were differences in performance between temperate and tropical ecosystems, subfamilies, and tribes. PCR, sequence, and identification success differed significantly between geographic regions and taxonomic groups. For Norway, 27 out of 190 (14.2%) of pupal exuviae resulted in high-quality chironomid sequences that match species. For Costa Rica, 69 out of 190 (36.3%) Costa Rican pupal exuviae resulted in high-quality sequences, but none matched known species. Standard DNA barcoding of chironomid pupal exuviae had limited success in species identification of unknown specimens due to contaminations and lack of matching references in available barcode libraries, especially from Costa Rica. Therefore, we recommend future biodiversity studies that focus their efforts on understudied regions, to simultaneously use morphological and molecular identification techniques to identify all life stages of chironomids and populate the barcode reference library with identified sequences.

  20. A new strategy for complete identification of sea buckthorn cultivars by using random amplified polymorphic DNA markers.

    PubMed

    Yang, G; Ding, J; Wu, L R; Duan, Y D; Li, A Y; Shan, J Y; Wu, Y X

    2015-03-13

    DNA fingerprinting is both a popular and important technique with several advantages in plant cultivar identification. However, this technique has not been used widely and efficiently in practical plant identification because the analysis and recording of data generated from fingerprinting and genotyping are tedious and difficult. We developed a novel approach known as a cultivar identification diagram (CID) strategy that uses DNA markers to separate plant individuals in a more efficient, practical, and referable manner. A CID was manually constructed and a polymorphic marker was generated from each polymerase chain reaction for sample separation. In this study, 67 important sea buckthorn cultivars cultivated in China were successfully separated with random amplified polymorphic DNA markers using the CID analysis strategy, with only seven 11-nucleotide primers employed. The utilization of the CID of these 67 sea buckthorn cultivars was verified by identifying 2 randomly chosen groups of cultivars among the 67 cultivars. The main advantages of this identification strategy include fewer primers used and separation of all cultivars using the corresponding primers. This sea buckthorn CID was able to separate any sea buckthorn cultivars among the 67 studied, which is useful for sea buckthorn cultivar identification, cultivar-right-protection, and for the sea buckthorn nursery industry in China.

  1. Current genetic methodologies in the identification of disaster victims and in forensic analysis.

    PubMed

    Ziętkiewicz, Ewa; Witt, Magdalena; Daca, Patrycja; Zebracka-Gala, Jadwiga; Goniewicz, Mariusz; Jarząb, Barbara; Witt, Michał

    2012-02-01

    This review presents the basic problems and currently available molecular techniques used for genetic profiling in disaster victim identification (DVI). The environmental conditions of a mass disaster often result in severe fragmentation, decomposition and intermixing of the remains of victims. In such cases, traditional identification based on the anthropological and physical characteristics of the victims is frequently inconclusive. This is the reason why DNA profiling became the gold standard for victim identification in mass-casualty incidents (MCIs) or any forensic cases where human remains are highly fragmented and/or degraded beyond recognition. The review provides general information about the sources of genetic material for DNA profiling, the genetic markers routinely used during genetic profiling (STR markers, mtDNA and single-nucleotide polymorphisms [SNP]) and the basic statistical approaches used in DNA-based disaster victim identification. Automated technological platforms that allow the simultaneous analysis of a multitude of genetic markers used in genetic identification (oligonucleotide microarray techniques and next-generation sequencing) are also presented. Forensic and population databases containing information on human variability, routinely used for statistical analyses, are discussed. The final part of this review is focused on recent developments, which offer particularly promising tools for forensic applications (mRNA analysis, transcriptome variation in individuals/populations and genetic profiling of specific cells separated from mixtures).

  2. Mitochondrial transcription: Lessons from mouse models

    PubMed Central

    Peralta, Susana; Wang, Xiao; Moraes, Carlos T.

    2012-01-01

    Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ∼ 16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. PMID:22120174

  3. Use of rbcL and trnL-F as a Two-Locus DNA Barcode for Identification of NW-European Ferns: An Ecological Perspective

    PubMed Central

    de Groot, G. Arjen; During, Heinjo J.; Maas, Jan W.; Schneider, Harald; Vogel, Johannes C.; Erkens, Roy H. J.

    2011-01-01

    Although consensus has now been reached on a general two-locus DNA barcode for land plants, the selected combination of markers (rbcL + matK) is not applicable for ferns at the moment. Yet especially for ferns, DNA barcoding is potentially of great value since fern gametophytes—while playing an essential role in fern colonization and reproduction—generally lack the morphological complexity for morphology-based identification and have therefore been underappreciated in ecological studies. We evaluated the potential of a combination of rbcL with a noncoding plastid marker, trnL-F, to obtain DNA-identifications for fern species. A regional approach was adopted, by creating a reference database of trusted rbcL and trnL-F sequences for the wild-occurring homosporous ferns of NW-Europe. A combination of parsimony analyses and distance-based analyses was performed to evaluate the discriminatory power of the two-region barcode. DNA was successfully extracted from 86 tiny fern gametophytes and was used as a test case for the performance of DNA-based identification. Primer universality proved high for both markers. Based on the combined rbcL + trnL-F dataset, all genera as well as all species with non-equal chloroplast genomes formed their own well supported monophyletic clade, indicating a high discriminatory power. Interspecific distances were larger than intraspecific distances for all tested taxa. Identification tests on gametophytes showed a comparable result. All test samples could be identified to genus level, species identification was well possible unless they belonged to a pair of Dryopteris species with completely identical chloroplast genomes. Our results suggest a high potential of the combined use of rbcL and trnL-F as a two-locus cpDNA barcode for identification of fern species. A regional approach may be preferred for ecological tests. We here offer such a ready-to-use barcoding approach for ferns, which opens the way for answering a whole range of questions previously unaddressed in fern gametophyte ecology. PMID:21298108

  4. FBIS: A regional DNA barcode archival & analysis system for Indian fishes

    PubMed Central

    Nagpure, Naresh Sahebrao; Rashid, Iliyas; Pathak, Ajey Kumar; Singh, Mahender; Singh, Shri Prakash; Sarkar, Uttam Kumar

    2012-01-01

    DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. Availability The database is available for free at http://mail.nbfgr.res.in/fbis/ PMID:22715304

  5. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq)

    PubMed Central

    Langley, Alexander R.; Gräf, Stefan; Smith, James C.; Krude, Torsten

    2016-01-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. PMID:27587586

  6. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).

    PubMed

    Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten

    2016-12-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    PubMed

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.

  8. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Dunn, J.; Gao, S.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing asmore » little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.« less

  9. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages

    PubMed Central

    Datta, Simanti; Costantino, Nina; Zhou, Xiaomei; Court, Donald L.

    2008-01-01

    We report the identification and functional analysis of nine genes from Gram-positive and Gram-negative bacteria and their phages that are similar to lambda (λ) bet or Escherichia coli recT. Beta and RecT are single-strand DNA annealing proteins, referred to here as recombinases. Each of the nine other genes when expressed in E. coli carries out oligonucleotide-mediated recombination. To our knowledge, this is the first study showing single-strand recombinase activity from diverse bacteria. Similar to bet and recT, most of these other recombinases were found to be associated with putative exonuclease genes. Beta and RecT in conjunction with their cognate exonucleases carry out recombination of linear double-strand DNA. Among four of these foreign recombinase/exonuclease pairs tested for recombination with double-strand DNA, three had activity, albeit barely detectable. Thus, although these recombinases can function in E. coli to catalyze oligonucleotide recombination, the double-strand DNA recombination activities with their exonuclease partners were inefficient. This study also demonstrated that Gam, by inhibiting host RecBCD nuclease activity, helps to improve the efficiency of λ Red-mediated recombination with linear double-strand DNA, but Gam is not absolutely essential. Thus, in other bacterial species where Gam analogs have not been identified, double-strand DNA recombination may still work in the absence of a Gam-like function. We anticipate that at least some of the recombineering systems studied here will potentiate oligonucleotide and double-strand DNA-mediated recombineering in their native or related bacteria. PMID:18230724

  10. Potential for DNA-based ID of Great Lakes fauna: Species inventories vs. barcode libraries

    EPA Science Inventory

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to biotic condition assessment and non-native species early-detection monitoring. However the abil...

  11. Identification of Rays through DNA Barcoding: An Application for Ecologists

    PubMed Central

    Cerutti-Pereyra, Florencia; Meekan, Mark G.; Wei, Nu-Wei V.; O'Shea, Owen; Bradshaw, Corey J. A.; Austin, Chris M.

    2012-01-01

    DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data. PMID:22701556

  12. Short tandem repeat DNA typing provides an international reference standard for authentication of human cell lines.

    PubMed

    Dirks, Wilhelm Gerhard; Faehnrich, Silke; Estella, Isabelle Annick Janine; Drexler, Hans Guenter

    2005-01-01

    Cell lines have wide applications as model systems in the medical and pharmaceutical industry. Much drug and chemical testing is now first carried out exhaustively on in vitro systems, reducing the need for complicated and invasive animal experiments. The basis for any research, development or production program involving cell lines is the choice of an authentic cell line. Microsatellites in the human genome that harbour short tandem repeat (STR) DNA markers allow individualisation of established cell lines at the DNA level. Fluorescence polymerase chain reaction amplification of eight highly polymorphic microsatellite STR loci plus gender determination was found to be the best tool to screen the uniqueness of DNA profiles in a fingerprint database. Our results demonstrate that cross-contamination and misidentification remain chronic problems in the use of human continuous cell lines. The combination of rapidly generated DNA types based on single-locus STR and their authentication or individualisation by screening the fingerprint database constitutes a highly reliable and robust method for the identification and verification of cell lines.

  13. Rapid quantification and sex determination of forensic evidence materials.

    PubMed

    Andréasson, Hanna; Allen, Marie

    2003-11-01

    DNA quantification of forensic evidence is very valuable for an optimal use of the available biological material. Moreover, sex determination is of great importance as additional information in criminal investigations as well as in identification of missing persons, no suspect cases, and ancient DNA studies. While routine forensic DNA analysis based on short tandem repeat markers includes a marker for sex determination, analysis of samples containing scarce amounts of DNA is often based on mitochondrial DNA, and sex determination is not performed. In order to allow quantification and simultaneous sex determination on minute amounts of DNA, an assay based on real-time PCR analysis of a marker within the human amelogenin gene has been developed. The sex determination is based on melting curve analysis, while an externally standardized kinetic analysis allows quantification of the nuclear DNA copy number in the sample. This real-time DNA quantification assay has proven to be highly sensitive, enabling quantification of single DNA copies. Although certain limitations were apparent, the system is a rapid, cost-effective, and flexible assay for analysis of forensic casework samples.

  14. [Two cases of personal identification from dental information].

    PubMed

    Yamaguchi, T; Yamada, Y; Ohtani, S; Kogure, T; Nagao, M; Takatori, T; Ohira, H; Yamamoto, I; Watanabe, A

    1997-08-01

    We describe two cases in which unknown bodies were positively identified from dental information and biochemical examination using tooth materials. In one case, a charred body was positively identified with little effort by comparison of antemortem dental records (dental chart and dental X-ray film) with postmortem data. In the other case, although the unknown individual had dental treatment, the police were unable to obtain the antemortem dental records of the victim. We then conducted biochemical analysis of teeth, facilitating personal identification using DNA analysis and age estimation based on aspartic acid racemization. The mutation obtained from the sequence of mtDNA and the genotypes of HLADQ alpha, HPRTB and ABO blood groups including the data for estimated age supported the kinship between the unknown individual and his mother. The data for maternally inherited mtDNA were of great importance in this case, since it was possible to obtain DNA from the mother. Dental identification in one of the most accurate methods of personal identification if suitable antemortem records are available. In the absence of such records, biochemical analysis of teeth also makes it possible to increase the probability of correct personal identification.

  15. FISH-BOL and seafood identification: geographically dispersed case studies reveal systemic market substitution across Canada.

    PubMed

    Hanner, Robert; Becker, Sven; Ivanova, Natalia V; Steinke, Dirk

    2011-10-01

    The Fish Barcode of Life campaign involves a broad international collaboration among scientists working to advance the identification of fishes using DNA barcodes. With over 25% of the world's known ichthyofauna currently profiled, forensic identification of seafood products is now feasible and is becoming routine. Driven by growing consumer interest in the food supply, investigative reporters from five different media establishments procured seafood samples (n = 254) from numerous retail establishments located among five Canadian metropolitan areas between 2008 and 2010. The specimens were sent to the Canadian Centre for DNA Barcoding for analysis. By integrating the results from these individual case studies in a summary analysis, we provide a broad perspective on seafood substitution across Canada. Barcodes were recovered from 93% of the samples (n = 236), and identified using the Barcode of Life Data Systems "species identification" engine ( www.barcodinglife.org ). A 99% sequence similarity threshold was employed as a conservative matching criterion for specimen identification to the species level. Comparing these results against the Canadian Food Inspection Agency's "Fish List" a guideline to interpreting "false, misleading or deceptive" names (as per s 27 of the Fish Inspection regulations) demonstrated that 41% of the samples were mislabeled. Most samples were readily identified; however, this was not true in all cases because some samples had no close match. Others were ambiguous due to limited barcode resolution (or imperfect taxonomy) observed within a few closely related species complexes. The latter cases did not significantly impact the results because even the partial resolution achieved was sufficient to demonstrate mislabeling. This work highlights the functional utility of barcoding for the identification of diverse market samples. It also demonstrates how barcoding serves as a bridge linking scientific nomenclature with approved market names, potentially empowering regulatory bodies to enforce labeling standards. By synchronizing taxonomic effort with sequencing effort and database curation, barcoding provides a molecular identification resource of service to applied forensics.

  16. Identification of human remains from the Second World War mass graves uncovered in Bosnia and Herzegovina

    PubMed Central

    Marjanović, Damir; Hadžić Metjahić, Negra; Čakar, Jasmina; Džehverović, Mirela; Dogan, Serkan; Ferić, Elma; Džijan, Snježana; Škaro, Vedrana; Projić, Petar; Madžar, Tomislav; Rod, Eduard; Primorac, Dragan

    2015-01-01

    Aim To present the results obtained in the identification of human remains from World War II found in two mass graves in Ljubuški, Bosnia and Herzegovina. Methods Samples from 10 skeletal remains were collected. Teeth and femoral fragments were collected from 9 skeletons and only a femoral fragment from 1 skeleton. DNA was isolated from bone and teeth samples using an optimized phenol/chloroform DNA extraction procedure. All samples required a pre-extraction decalcification with EDTA and additional post-extraction DNA purification using filter columns. Additionally, DNA from 12 reference samples (buccal swabs from potential living relatives) was extracted using the Qiagen DNA extraction method. QuantifilerTM Human DNA Quantification Kit was used for DNA quantification. PowerPlex ESI kit was used to simultaneously amplify 15 autosomal short tandem repeat (STR) loci, and PowerPlex Y23 was used to amplify 23 Y chromosomal STR loci. Matching probabilities were estimated using a standard statistical approach. Results A total of 10 samples were processed, 9 teeth and 1 femoral fragment. Nine of 10 samples were profiled using autosomal STR loci, which resulted in useful DNA profiles for 9 skeletal remains. A comparison of established victims' profiles against a reference sample database yielded 6 positive identifications. Conclusion DNA analysis may efficiently contribute to the identification of remains even seven decades after the end of the World War II. The significant percentage of positively identified remains (60%), even when the number of the examined possible living relatives was relatively small (only 12), proved the importance of cooperation with the members of the local community, who helped to identify the closest missing persons’ relatives and collect referent samples from them. PMID:26088850

  17. Identification of human remains from the Second World War mass graves uncovered in Bosnia and Herzegovina.

    PubMed

    Marjanović, Damir; Hadžić Metjahić, Negra; Čakar, Jasmina; Džehverović, Mirela; Dogan, Serkan; Ferić, Elma; Džijan, Snježana; Škaro, Vedrana; Projić, Petar; Madžar, Tomislav; Rod, Eduard; Primorac, Dragan

    2015-06-01

    To present the results obtained in the identification of human remains from World War II found in two mass graves in Ljubuški, Bosnia and Herzegovina. Samples from 10 skeletal remains were collected. Teeth and femoral fragments were collected from 9 skeletons and only a femoral fragment from 1 skeleton. DNA was isolated from bone and teeth samples using an optimized phenol/chloroform DNA extraction procedure. All samples required a pre-extraction decalcification with EDTA and additional post-extraction DNA purification using filter columns. Additionally, DNA from 12 reference samples (buccal swabs from potential living relatives) was extracted using the Qiagen DNA extraction method. QuantifilerTM Human DNA Quantification Kit was used for DNA quantification. PowerPlex ESI kit was used to simultaneously amplify 15 autosomal short tandem repeat (STR) loci, and PowerPlex Y23 was used to amplify 23 Y chromosomal STR loci. Matching probabilities were estimated using a standard statistical approach. A total of 10 samples were processed, 9 teeth and 1 femoral fragment. Nine of 10 samples were profiled using autosomal STR loci, which resulted in useful DNA profiles for 9 skeletal remains. A comparison of established victims' profiles against a reference sample database yielded 6 positive identifications. DNA analysis may efficiently contribute to the identification of remains even seven decades after the end of the World War II. The significant percentage of positively identified remains (60%), even when the number of the examined possible living relatives was relatively small (only 12), proved the importance of cooperation with the members of the local community, who helped to identify the closest missing persons' relatives and collect referent samples from them.

  18. Evaluation of the branched-chain DNA assay for measurement of RNA in formalin-fixed tissues.

    PubMed

    Knudsen, Beatrice S; Allen, April N; McLerran, Dale F; Vessella, Robert L; Karademos, Jonathan; Davies, Joan E; Maqsodi, Botoul; McMaster, Gary K; Kristal, Alan R

    2008-03-01

    We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93-100%) than for qPCR (82.4-95%). Correlations between qPCR(FROZEN), the gold standard, and bDNA(FFPE) ranged from 0.60 to 0.94, similar to those from qPCR(FROZEN) and qPCR(FFPE). Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management.

  19. The seven deadly sins of DNA barcoding.

    PubMed

    Collins, R A; Cruickshank, R H

    2013-11-01

    Despite the broad benefits that DNA barcoding can bring to a diverse range of biological disciplines, a number of shortcomings still exist in terms of the experimental design of studies incorporating this approach. One underlying reason for this lies in the confusion that often exists between species discovery and specimen identification, and this is reflected in the way that hypotheses are generated and tested. Although these aims can be associated, they are quite distinct and require different methodological approaches, but their conflation has led to the frequently inappropriate use of commonly used analytical methods such as neighbour-joining trees, bootstrap resampling and fixed distance thresholds. Furthermore, the misidentification of voucher specimens can also have serious implications for end users of reference libraries such as the Barcode of Life Data Systems, and in this regard we advocate increased diligence in the a priori identification of specimens to be used for this purpose. This commentary provides an assessment of seven deficiencies that we identify as common in the DNA barcoding literature, and outline some potential improvements for its adaptation and adoption towards more reliable and accurate outcomes. © 2012 John Wiley & Sons Ltd.

  20. An Accelerated Analytical Process for the Development of STR Profiles for Casework Samples.

    PubMed

    Laurin, Nancy; Frégeau, Chantal J

    2015-07-01

    Significant efforts are being devoted to the development of methods enabling rapid generation of short tandem repeat (STR) profiles in order to reduce turnaround times for the delivery of human identification results from biological evidence. Some of the proposed solutions are still costly and low throughput. This study describes the optimization of an analytical process enabling the generation of complete STR profiles (single-source or mixed profiles) for human identification in approximately 5 h. This accelerated process uses currently available reagents and standard laboratory equipment. It includes a 30-min lysis step, a 27-min DNA extraction using the Promega Maxwell(®) 16 System, DNA quantification in <1 h using the Qiagen Investigator(®) Quantiplex HYres kit, fast amplification (<26 min) of the loci included in AmpFℓSTR(®) Identifiler(®), and analysis of the profiles on the 3500-series Genetic Analyzer. This combination of fast individual steps produces high-quality profiling results and offers a cost-effective alternative approach to rapid DNA analysis. © 2015 American Academy of Forensic Sciences.

  1. Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes.

    PubMed

    Geiger, M F; Herder, F; Monaghan, M T; Almada, V; Barbieri, R; Bariche, M; Berrebi, P; Bohlen, J; Casal-Lopez, M; Delmastro, G B; Denys, G P J; Dettai, A; Doadrio, I; Kalogianni, E; Kärst, H; Kottelat, M; Kovačić, M; Laporte, M; Lorenzoni, M; Marčić, Z; Özuluğ, M; Perdices, A; Perea, S; Persat, H; Porcelotti, S; Puzzi, C; Robalo, J; Šanda, R; Schneider, M; Šlechtová, V; Stoumboudi, M; Walter, S; Freyhof, J

    2014-11-01

    Incomplete knowledge of biodiversity remains a stumbling block for conservation planning and even occurs within globally important Biodiversity Hotspots (BH). Although technical advances have boosted the power of molecular biodiversity assessments, the link between DNA sequences and species and the analytics to discriminate entities remain crucial. Here, we present an analysis of the first DNA barcode library for the freshwater fish fauna of the Mediterranean BH (526 spp.), with virtually complete species coverage (498 spp., 98% extant species). In order to build an identification system supporting conservation, we compared species determination by taxonomists to multiple clustering analyses of DNA barcodes for 3165 specimens. The congruence of barcode clusters with morphological determination was strongly dependent on the method of cluster delineation, but was highest with the general mixed Yule-coalescent (GMYC) model-based approach (83% of all species recovered as GMYC entity). Overall, genetic morphological discontinuities suggest the existence of up to 64 previously unrecognized candidate species. We found reduced identification accuracy when using the entire DNA-barcode database, compared with analyses on databases for individual river catchments. This scale effect has important implications for barcoding assessments and suggests that fairly simple identification pipelines provide sufficient resolution in local applications. We calculated Evolutionarily Distinct and Globally Endangered scores in order to identify candidate species for conservation priority and argue that the evolutionary content of barcode data can be used to detect priority species for future IUCN assessments. We show that large-scale barcoding inventories of complex biotas are feasible and contribute directly to the evaluation of conservation priorities. © 2014 John Wiley & Sons Ltd.

  2. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  3. Identification of food and beverage spoilage yeasts from DNA sequence analyses

    USDA-ARS?s Scientific Manuscript database

    Detection, identification, and classification of yeasts has undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of th...

  4. Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding.

    PubMed

    Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong

    2011-09-01

    Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis. © 2011 Blackwell Publishing Ltd.

  5. DNA in a bottle-Rapid metabarcoding survey for early alerts of invasive species in ports.

    PubMed

    Borrell, Yaisel J; Miralles, Laura; Do Huu, Hoang; Mohammed-Geba, Khaled; Garcia-Vazquez, Eva

    2017-01-01

    Biota monitoring in ports is increasingly needed for biosecurity reasons and safeguarding marine biodiversity from biological invasion. Present and future international biosecurity directives can be accomplished only if the biota acquired by maritime traffic in ports is controlled. Methodologies for biota inventory are diverse and now rely principally on extensive and labor-intensive sampling along with taxonomic identification by experts. In this study, we employed an extremely simplified environmental DNA (eDNA) sampling methodology from only three 1-L bottles of water per port, followed by metabarcoding (high-throughput sequencing and DNA-based species identification) using 18S rDNA and Cytochrome oxidase I as genetic barcodes. Eight Bay of Biscay ports with available inventory of fouling invertebrates were employed as a case study. Despite minimal sampling efforts, three invasive invertebrates were detected: the barnacle Austrominius modestus, the tubeworm Ficopomatus enigmaticus and the polychaete Polydora triglanda. The same species have been previously found from visual and DNA barcoding (genetic identification of individuals) surveys in the same ports. The current costs of visual surveys, conventional DNA barcoding and this simplified metabarcoding protocol were compared. The results encourage the use of metabarcoding for early biosecurity alerts.

  6. Logical Framework of Forensic Identification: Ability to Resist Fabricated DNA.

    PubMed

    Wang, Zheng; Zhou, Di; Zhang, Suhua; Bian, Yingnan; Hu, Zhen; Zhu, Ruxin; Lu, Daru; Li, Chengtao

    2015-12-01

    Over the past 30 years, DNA analysis has revolutionized forensic science and has become the most useful single tool in the multifaceted fight against crime. Today, DNA profiling with sets of highly polymorphic autosomal short tandem repeat markers is widely employed and accepted in the courts due to its high discriminating power and reliability. However, an artificial bloodstain purposefully created using molecular biology techniques succeeded in tricking a leading forensic DNA laboratory. The disturbing possibility that a forensic DNA profile can be faked shocked the general public and the mass media, and generated serious discussion about the credibility of DNA evidence. Herein, we present two exemplary assays based on tissue-specific methylation patterns and cell-specific mRNA expression, respectively. These two assays can be integrated into the DNA analysis pipelines without consumption of additional samples. We show that the two assays can not only distinguish between artificial and genuine samples, but also provide information on tissue origin. The two assays were tested on natural and artificial bloodstains (generated by polymerase chain reaction and whole genome amplification technique) and the results illustrated that the logical framework of forensic identification is still useful for forensic identification with the high credibility.

  7. DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports

    PubMed Central

    Miralles, Laura; Do Huu, Hoang; Mohammed-Geba, Khaled; Garcia-Vazquez, Eva

    2017-01-01

    Biota monitoring in ports is increasingly needed for biosecurity reasons and safeguarding marine biodiversity from biological invasion. Present and future international biosecurity directives can be accomplished only if the biota acquired by maritime traffic in ports is controlled. Methodologies for biota inventory are diverse and now rely principally on extensive and labor-intensive sampling along with taxonomic identification by experts. In this study, we employed an extremely simplified environmental DNA (eDNA) sampling methodology from only three 1-L bottles of water per port, followed by metabarcoding (high-throughput sequencing and DNA-based species identification) using 18S rDNA and Cytochrome oxidase I as genetic barcodes. Eight Bay of Biscay ports with available inventory of fouling invertebrates were employed as a case study. Despite minimal sampling efforts, three invasive invertebrates were detected: the barnacle Austrominius modestus, the tubeworm Ficopomatus enigmaticus and the polychaete Polydora triglanda. The same species have been previously found from visual and DNA barcoding (genetic identification of individuals) surveys in the same ports. The current costs of visual surveys, conventional DNA barcoding and this simplified metabarcoding protocol were compared. The results encourage the use of metabarcoding for early biosecurity alerts. PMID:28873426

  8. DNA Barcoding of Malagasy Rosewoods: Towards a Molecular Identification of CITES-Listed Dalbergia Species.

    PubMed

    Hassold, Sonja; Lowry, Porter P; Bauert, Martin R; Razafintsalama, Annick; Ramamonjisoa, Lolona; Widmer, Alex

    2016-01-01

    Illegal selective logging of tropical timber is of increasing concern worldwide. Madagascar is a biodiversity hotspot and home to some of the world's most sought after tropical timber species. Malagasy rosewoods belong to the genus Dalbergia (Fabaceae), which is highly diverse and has a pantropical distribution, but these timber species are among the most threatened as a consequence of intensive illegal selective logging and deforestation. Reliable identification of Dalbergia species from Madagascar is important for law enforcement but is almost impossible without fertile plant material, which is often unavailable during forest inventories or when attempting to identify logged trees of cut wood. DNA barcoding has been promoted as a promising tool for species identification in such cases. In this study we tested whether DNA barcoding with partial sequences of three plastid markers (matK, rbcL and trnL (UAA)) can distinguish between Dalbergia from Madagascar and from other areas of its distributional range, and whether Malagasy species can be distinguished from one another. Phylogenetic analyses revealed that the Malagasy Dalbergia species studied form two monophyletic groups, each containing two subgroups, only one of which corresponds to a single species. We characterized diagnostic polymorphisms in the three DNA barcoding markers that allow rapid discrimination between Dalbergia from Madagascar and from other areas of its distribution range. Species identification success based on individual barcoding markers or combinations was poor, whereas subgroup identification success was much higher (up to 98%), revealing both the value and limitations of a DNA barcoding approach for the identification of closely related Malagasy rosewoods.

  9. Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques

    USGS Publications Warehouse

    Ammer, F.K.; Wood, P.B.; McPherson, R.J.

    2008-01-01

    Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

  10. Sliding Window Analyses for Optimal Selection of Mini-Barcodes, and Application to 454-Pyrosequencing for Specimen Identification from Degraded DNA

    PubMed Central

    Boyer, Stephane; Brown, Samuel D. J.; Collins, Rupert A.; Cruickshank, Robert H.; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Wratten, Stephen D.

    2012-01-01

    DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential ‘mini-barcodes’ for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation. PMID:22666489

  11. [Advances of studies on new technology and method for identifying traditional Chinese medicinal materials].

    PubMed

    Chen, Shilin; Guo, Baolin; Zhang, Guijun; Yan, Zhuyun; Luo, Guangming; Sun, Suqin; Wu, Hezhen; Huang, Linfang; Pang, Xiaohui; Chen, Jianbo

    2012-04-01

    In this review, the authors summarized the new technologies and methods for identifying traditional Chinese medicinal materials, including molecular identification, chemical identification, morphological identification, microscopic identification and identification based on biological effects. The authors introduced the principle, characteristics, application and prospect on each new technology or method and compared their advantages and disadvantages. In general, new methods make the result more objective and accurate. DNA barcoding technique and spectroscopy identification have their owner obvious strongpoint in universality and digitalization. In the near future, the two techniques are promising to be the main trend for identifying traditional Chinese medicinal materials. The identification techniques based on microscopy, liquid chromatography, PCR, biological effects and DNA chip will be indispensable supplements. However, the bionic identification technology is just placed in the developing stage at present.

  12. A collaborative exercise on DNA methylation based body fluid typing.

    PubMed

    Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young

    2016-10-01

    A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples.

    PubMed

    Peñarrubia, Luis; Alcaraz, Carles; Vaate, Abraham Bij de; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi

    2016-12-14

    The zebra mussel (Dreissena polymorpha Pallas, 1771) and the quagga mussel (D. rostriformis Deshayes, 1838) are successful invasive bivalves with substantial ecological and economic impacts in freshwater systems once they become established. Since their eradication is extremely difficult, their detection at an early stage is crucial to prevent spread. In this study, we optimized and validated a qPCR detection method based on the histone H2B gene to quantify combined infestation levels of zebra and quagga mussels in environmental DNA samples. Our results show specific dreissenid DNA present in filtered water samples for which microscopic diagnostic identification for larvae failed. Monitoring a large number of locations for invasive dreissenid species based on a highly specific environmental DNA qPCR assay may prove to be an essential tool for management and control plans focused on prevention of establishment of dreissenid mussels in new locations.

  14. Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples

    PubMed Central

    Peñarrubia, Luis; Alcaraz, Carles; Vaate, Abraham bij de; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi

    2016-01-01

    The zebra mussel (Dreissena polymorpha Pallas, 1771) and the quagga mussel (D. rostriformis Deshayes, 1838) are successful invasive bivalves with substantial ecological and economic impacts in freshwater systems once they become established. Since their eradication is extremely difficult, their detection at an early stage is crucial to prevent spread. In this study, we optimized and validated a qPCR detection method based on the histone H2B gene to quantify combined infestation levels of zebra and quagga mussels in environmental DNA samples. Our results show specific dreissenid DNA present in filtered water samples for which microscopic diagnostic identification for larvae failed. Monitoring a large number of locations for invasive dreissenid species based on a highly specific environmental DNA qPCR assay may prove to be an essential tool for management and control plans focused on prevention of establishment of dreissenid mussels in new locations. PMID:27966602

  15. Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs

    PubMed Central

    Srinivasan, Ajay; Gold, Barry

    2013-01-01

    A major challenge in the future development of cancer therapeutics is the identification of biological targets and pathways, and the subsequent design of molecules to combat the drug-resistant cells hiding in virtually all cancers. This therapeutic approach is justified based upon the limited advances in cancer cures over the past 30 years, despite the development of many novel chemotherapies and earlier detection, which often fail due to drug resistance. Among the various targets to overcome tumor resistance are the DNA repair systems that can reverse the cytotoxicity of many clinically used DNA-damaging agents. Some progress has already been made but much remains to be done. We explore some components of the DNA-repair process, which are involved in repair of alkylation damage of DNA, as targets for the development of novel and effective molecules designed to improve the efficacy of existing anticancer drugs. PMID:22709253

  16. Combining atomic force and fluorescence microscopy for analysis of quantum-dot labeled protein–DNA complexes

    PubMed Central

    Ebenstein, Yuval; Gassman, Natalie; Kim, Soohong; Weiss, Shimon

    2011-01-01

    Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA. PMID:19452448

  17. Comparison of DNA Microarray, Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR with DNA Sequencing for Identification of Fusarium spp. Obtained from Patients with Hematologic Malignancies.

    PubMed

    de Souza, Marcela; Matsuzawa, Tetsuhiro; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Busso-Lopes, Ariane Fidelis; Levin, Anna Sara Shafferman; Schreiber, Angélica Zaninelli; Mikami, Yuzuru; Gonoi, Tohoru; Kamei, Katsuhiko; Moretti, Maria Luiza; Trabasso, Plínio

    2017-08-01

    The performance of three molecular biology techniques, i.e., DNA microarray, loop-mediated isothermal amplification (LAMP), and real-time PCR were compared with DNA sequencing for properly identification of 20 isolates of Fusarium spp. obtained from blood stream as etiologic agent of invasive infections in patients with hematologic malignancies. DNA microarray, LAMP and real-time PCR identified 16 (80%) out of 20 samples as Fusarium solani species complex (FSSC) and four (20%) as Fusarium spp. The agreement among the techniques was 100%. LAMP exhibited 100% specificity, while DNA microarray, LAMP and real-time PCR showed 100% sensitivity. The three techniques had 100% agreement with DNA sequencing. Sixteen isolates were identified as FSSC by sequencing, being five Fusarium keratoplasticum, nine Fusarium petroliphilum and two Fusarium solani. On the other hand, sequencing identified four isolates as Fusarium non-solani species complex (FNSSC), being three isolates as Fusarium napiforme and one isolate as Fusarium oxysporum. Finally, LAMP proved to be faster and more accessible than DNA microarray and real-time PCR, since it does not require a thermocycler. Therefore, LAMP signalizes as emerging and promising methodology to be used in routine identification of Fusarium spp. among cases of invasive fungal infections.

  18. A new disaster victim identification management strategy targeting "near identification-threshold" cases: Experiences from the Boxing Day tsunami.

    PubMed

    Wright, Kirsty; Mundorff, Amy; Chaseling, Janet; Forrest, Alexander; Maguire, Christopher; Crane, Denis I

    2015-05-01

    The international disaster victim identification (DVI) response to the Boxing Day tsunami, led by the Royal Thai Police in Phuket, Thailand, was one of the largest and most complex in DVI history. Referred to as the Thai Tsunami Victim Identification operation, the group comprised a multi-national, multi-agency, and multi-disciplinary team. The traditional DVI approach proved successful in identifying a large number of victims quickly. However, the team struggled to identify certain victims due to incomplete or poor quality ante-mortem and post-mortem data. In response to these challenges, a new 'near-threshold' DVI management strategy was implemented to target presumptive identifications and improve operational efficiency. The strategy was implemented by the DNA Team, therefore DNA kinship matches that just failed to reach the reporting threshold of 99.9% were prioritized, however the same approach could be taken by targeting, for example, cases with partial fingerprint matches. The presumptive DNA identifications were progressively filtered through the Investigation, Dental and Fingerprint Teams to add additional information necessary to either strengthen or conclusively exclude the identification. Over a five-month period 111 victims from ten countries were identified using this targeted approach. The new identifications comprised 87 adults, 24 children and included 97 Thai locals. New data from the Fingerprint Team established nearly 60% of the total near-threshold identifications and the combined DNA/Physical method was responsible for over 30%. Implementing the new strategy, targeting near-threshold cases, had positive management implications. The process initiated additional ante-mortem information collections, and established a much-needed, distinct "end-point" for unresolved cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. DNA Barcoding for Identification of ‘Candidatus Phytoplasmas’ Using a Fragment of the Elongation Factor Tu Gene

    PubMed Central

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta; Kawube, Geofrey; Bertaccini, Assunta; Nicolaisen, Mogens

    2012-01-01

    Background Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported. Methodology/Principal Findings We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter−/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases. Conclusions/Significance This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification. PMID:23272216

  20. Towards writing the encyclopaedia of life: an introduction to DNA barcoding

    PubMed Central

    Savolainen, Vincent; Cowan, Robyn S; Vogler, Alfried P; Roderick, George K; Lane, Richard

    2005-01-01

    An international consortium of major natural history museums, herbaria and other organizations has launched an ambitious project, the ‘Barcode of Life Initiative’, to promote a process enabling the rapid and inexpensive identification of the estimated 10 million species on Earth. DNA barcoding is a diagnostic technique in which short DNA sequence(s) can be used for species identification. The first international scientific conference on Barcoding of Life was held at the Natural History Museum in London in February 2005, and here we review the scientific challenges discussed during this conference and in previous publications. Although still controversial, the scientific benefits of DNA barcoding include: (i) enabling species identification, including any life stage or fragment, (ii) facilitating species discoveries based on cluster analyses of gene sequences (e.g. cox1=CO1, in animals), (iii) promoting development of handheld DNA sequencing technology that can be applied in the field for biodiversity inventories and (iv) providing insight into the diversity of life. PMID:16214739

  1. DNA-based identification of Brassica vegetable species for the juice industry.

    PubMed

    Etoh, Kazumi; Niijima, Noritaka; Yokoshita, Masahiko; Fukuoka, Shin-Ichi

    2003-10-01

    Since kale (Brassica oleracea var. acephala), a cruciferous vegetable with a high level of vitamins and functional compounds beneficial to health and wellness, has become widely used in the juice industry, a precise method for quality control of vegetable species is necessary. We describe here a DNA-based identification method to distinguish kale from cabbage (Brassica oleracea var. capitata), a closely related species, which can be inadvertently mixed with kale during the manufacturing process. Using genomic DNA from these vegetables and combinatory sets of nucleotide primers, we screened for random amplified polymorphic DNA (RAPD) fragments and found three cabbage-specific fragments. These RAPD fragments, with lengths of 1.4, 0.5, and 1.5 kb, were purified, subcloned, and sequenced. Based on sequence-tagged sites (STS), we designed sets of primers to detect cabbage-specific identification (CAI) DNA markers. Utilizing the CAI markers, we successfully distinguished more than 10 different local cabbage accessions from 20 kale accessions, and identified kale juices experimentally spiked with different amounts of cabbage.

  2. gene GIS: Computational Tools for Spatial Analyses of DNA Profiles with Associated Photo-Identification and Telemetry Records of Marine Mammals

    DTIC Science & Technology

    2011-09-30

    DNA profiles. Referred to as geneGIS, the program will provide the ability to display, browse, select, filter and summarize spatial or temporal...of the SPLASH photo-identification records and available DNA profiles is underway through integration and crosschecking by Cascadia and MMI . An...Darwin Core standards where possible and can accommodate the current databases developed for telemetry data at MMI and SPLASH collection records at

  3. DNA-based identification of invasive alien species in relation to Canadian federal policy and law, and the basis of rapid-response management.

    PubMed

    Thomas, Vernon G; Hanner, Robert H; Borisenko, Alex V

    2016-11-01

    Managing invasive alien species in Canada requires reliable taxonomic identification as the basis of rapid-response management. This can be challenging, especially when organisms are small and lack morphological diagnostic features. DNA-based techniques, such as DNA barcoding, offer a reliable, rapid, and inexpensive toolkit for taxonomic identification of individual or bulk samples, forensic remains, and even environmental DNA. Well suited for this requirement, they could be more broadly deployed and incorporated into the operating policy and practices of Canadian federal departments and should be authorized under these agencies' articles of law. These include Fisheries and Oceans Canada, Canadian Food Inspection Agency, Transport Canada, Environment Canada, Parks Canada, and Health Canada. These efforts should be harmonized with the appropriate provisions of provincial jurisdictions, for example, the Ontario Invasive Species Act. This approach necessitates that a network of accredited, certified laboratories exists, and that updated DNA reference libraries are readily accessible. Harmonizing this approach is vital among Canadian federal agencies, and between the federal and provincial levels of government. Canadian policy and law must also be harmonized with that of the USA when detecting, and responding to, invasive species in contiguous lands and waters. Creating capacity in legislation for use of DNA-based identifications brings the authority to fund, train, deploy, and certify staff, and to refine further developments in this molecular technology.

  4. Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.

    PubMed

    Korshoj, Lee E; Afsari, Sepideh; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-03-01

    Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    PubMed

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  6. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification.

  7. Identification of Forensic Samples via Mitochondrial DNA in the Undergraduate Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Millard, Julie T.; Pilon, André M.

    2003-04-01

    A recent forensic approach for identification of unknown biological samples is mitochondrial DNA (mtDNA) sequencing. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify a 440 base pair hypervariable region of human mtDNA from a variety of "crime scene" samples (e.g., teeth, hair, nails, cigarettes, envelope flaps, toothbrushes, and chewing gum). Amplification is verified via agarose gel electrophoresis and then samples are subjected to cycle sequencing. Sequence alignments are made via the program CLUSTAL W, allowing students to compare samples and solve the "crime."

  8. A molecular identification system for grasses: a novel technology for forensic botany.

    PubMed

    Ward, J; Peakall, R; Gilmore, S R; Robertson, J

    2005-09-10

    Our present inability to rapidly, accurately and cost-effectively identify trace botanical evidence remains the major impediment to the routine application of forensic botany. Grasses are amongst the most likely plant species encountered as forensic trace evidence and have the potential to provide links between crime scenes and individuals or other vital crime scene information. We are designing a molecular DNA-based identification system for grasses consisting of several PCR assays that, like a traditional morphological taxonomic key, provide criteria that progressively identify an unknown grass sample to a given taxonomic rank. In a prior study of DNA sequences across 20 phylogenetically representative grass species, we identified a series of potentially informative indels in the grass mitochondrial genome. In this study we designed and tested five PCR assays spanning these indels and assessed the feasibility of these assays to aid identification of unknown grass samples. We confirmed that for our control set of 20 samples, on which the design of the PCR assays was based, the five primer combinations produced the expected results. Using these PCR assays in a 'blind test', we were able to identify 25 unknown grass samples with some restrictions. Species belonging to genera represented in our control set were all correctly identified to genus with one exception. Similarly, genera belonging to tribes in the control set were correctly identified to the tribal level. Finally, for those samples for which neither the tribal or genus specific PCR assays were designed, we could confidently exclude these samples from belonging to certain tribes and genera. The results confirmed the utility of the PCR assays and the feasibility of developing a robust full-scale usable grass identification system for forensic purposes.

  9. DNA methylation: the future of crime scene investigation?

    PubMed

    Gršković, Branka; Zrnec, Dario; Vicković, Sanja; Popović, Maja; Mršić, Gordan

    2013-07-01

    Proper detection and subsequent analysis of biological evidence is crucial for crime scene reconstruction. The number of different criminal acts is increasing rapidly. Therefore, forensic geneticists are constantly on the battlefield, trying hard to find solutions how to solve them. One of the essential defensive lines in the fight against the invasion of crime is relying on DNA methylation. In this review, the role of DNA methylation in body fluid identification and other DNA methylation applications are discussed. Among other applications of DNA methylation, age determination of the donor of biological evidence, analysis of the parent-of-origin specific DNA methylation markers at imprinted loci for parentage testing and personal identification, differentiation between monozygotic twins due to their different DNA methylation patterns, artificial DNA detection and analyses of DNA methylation patterns in the promoter regions of circadian clock genes are the most important ones. Nevertheless, there are still a lot of open chapters in DNA methylation research that need to be closed before its final implementation in routine forensic casework.

  10. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.

  11. Comparing different post-mortem human samples as DNA sources for downstream genotyping and identification.

    PubMed

    Calacal, Gayvelline C; Apaga, Dame Loveliness T; Salvador, Jazelyn M; Jimenez, Joseph Andrew D; Lagat, Ludivino J; Villacorta, Renato Pio F; Lim, Maria Cecilia F; Fortun, Raquel D R; Datar, Francisco A; De Ungria, Maria Corazon A

    2015-11-01

    The capability of DNA laboratories to perform genotyping procedures from post-mortem remains, including those that had undergone putrefaction, continues to be a challenge in the Philippines, a country characterized by very humid and warm conditions all year round. These environmental conditions accelerate the decomposition of human remains that were recovered after a disaster and those that were left abandoned after a crime. When considerable tissue decomposition of human remains has taken place, there is no other option but to extract DNA from bone and/or teeth samples. Routinely, femur shafts are obtained from recovered bodies for human identification because the calcium matrix protects the DNA contained in the osteocytes. In the Philippines, there is difficulty in collecting femur samples after natural disasters or even human-made disasters, because these events are usually characterized by a large number of fatalities. Identification of casualties is further delayed by limitation in human and material resources. Hence, it is imperative to test other types of biological samples that are easier to collect, transport, process and store. We analyzed DNA that were obtained from body fluid, bone marrow, muscle tissue, clavicle, femur, metatarsal, patella, rib and vertebral samples from five recently deceased untreated male cadavers and seven male human remains that were embalmed, buried for ∼ 1 month and then exhumed. The bodies had undergone different environmental conditions and were in various stages of putrefaction. A DNA extraction method utilizing a detergent-washing step followed by an organic procedure was used. The utility of bone marrow and vitreous fluid including bone marrow and vitreous fluid that was transferred on FTA(®) cards and subjected to autosomal STR and Y-STR DNA typing were also evaluated. DNA yield was measured and the presence or absence of PCR inhibitors in DNA extracts was assessed using Plexor(®)HY. All samples were amplified using PowerPlex(®)21 and PowerPlexY(®)23 systems and analyzed using the AB3500 Genetic Analyzer and the GeneMapper(®) ID-X v.1.2 software. PCR inhibitors were consistently detected in bone marrow, muscle tissue, rib and vertebra samples. Amplifiable DNA was obtained in a majority of the samples analyzed. DNA recovery from 0.1g biological material was adequate for successful genotyping of most of the non-bone and bone samples. Complete DNA profiles were generated from bone marrow, femur, metatarsal and patella with 0.1 ng DNA template. Using 0.5 ng DNA template resulted in increased allele recovery and improved intra- and inter-locus peak balance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Mechanisms of Enhanced Catalysis in Enzyme-DNA Nanostructures Revealed through Molecular Simulations and Experimental Analysis.

    PubMed

    Gao, Yingning; Roberts, Christopher C; Toop, Aaron; Chang, Chia-En A; Wheeldon, Ian

    2016-08-03

    Understanding and controlling the molecular interactions between enzyme substrates and DNA nanostructures has important implications in the advancement of enzyme-DNA technologies as solutions in biocatalysis. Such hybrid nanostructures can be used to create enzyme systems with enhanced catalysis by controlling the local chemical and physical environments and the spatial organization of enzymes. Here we have used molecular simulations with corresponding experiments to describe a mechanism of enhanced catalysis due to locally increased substrate concentrations. With a series of DNA nanostructures conjugated to horseradish peroxidase, we show that binding interactions between substrates and the DNA structures can increase local substrate concentrations. Increased local substrate concentrations in HRP(DNA) nanostructures resulted in 2.9- and 2.4-fold decreases in the apparent Michaelis constants of tetramethylbenzidine and 4-aminophenol, substrates of HRP with tunable binding interactions to DNA nanostructures with dissociation constants in the micromolar range. Molecular simulations and kinetic analysis also revealed that increased local substrate concentrations enhanced the rates of substrate association. Identification of the mechanism of increased local concentration of substrates in close proximity to enzymes and their active sites adds to our understanding of nanostructured biocatalysis from which we can develop guidelines for enhancing catalysis in rationally designed systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification and molecular epidemiology of dermatophyte isolates by repetitive-sequence-PCR-based DNA fingerprinting using the DiversiLab system in Turkey.

    PubMed

    Koc, A Nedret; Atalay, Mustafa A; Inci, Melek; Sariguzel, Fatma M; Sav, Hafize

    2017-05-01

    Dermatophyte species, isolation and identification in clinical samples are still difficult and take a long time. The identification and molecular epidemiology of dermatophytes commonly isolated in a clinical laboratory in Turkey by repetitive sequence-based PCR (rep-PCR) were assessed by comparing the results with those of reference identification. A total of 44 dermatophytes isolated from various clinical specimens of 20 patients with superficial mycoses in Kayseri and 24 patients in Hatay were studied. The identification of dermatophyte isolates was based on the reference identification and rep-PCR using the DiversiLab System (BioMerieux). The genotyping of dermatophyte isolates from different patients was determined by rep-PCR. In the identification of dermatophyte isolates, agreement between rep-PCR and conventional methods was 87.8 % ( 36 of 41). The dermatophyte strains belonged to four clones (A -D) which were determined by the use of rep-PCR. The dermatophyte strains in Clone B, D showed identical patterns with respect to the region. In conclusion, rep-PCR appears to be useful for evaluation of the identification and clonal relationships between Trichophyton rubrum species complex and Trichophyton mentagrophytes species complex isolates. The similarity and diversity of these isolates may be assessed according to different regions by rep-PCR. © 2017 Blackwell Verlag GmbH.

  14. Identification of species based on DNA barcode using k-mer feature vector and Random forest classifier.

    PubMed

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Rao, A R

    2016-11-05

    DNA barcoding is a molecular diagnostic method that allows automated and accurate identification of species based on a short and standardized fragment of DNA. To this end, an attempt has been made in this study to develop a computational approach for identifying the species by comparing its barcode with the barcode sequence of known species present in the reference library. Each barcode sequence was first mapped onto a numeric feature vector based on k-mer frequencies and then Random forest methodology was employed on the transformed dataset for species identification. The proposed approach outperformed similarity-based, tree-based, diagnostic-based approaches and found comparable with existing supervised learning based approaches in terms of species identification success rate, while compared using real and simulated datasets. Based on the proposed approach, an online web interface SPIDBAR has also been developed and made freely available at http://cabgrid.res.in:8080/spidbar/ for species identification by the taxonomists. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Using DNA barcoding to differentiate invasive Dreissena species (Mollusca, Bivalvia)

    PubMed Central

    Marescaux, Jonathan; Van Doninck, Karine

    2013-01-01

    Abstract The zebra mussel (Dreissena polymorpha) and the quagga mussel (Dreissena rostriformis bugensis) are considered as the most competitive invaders in freshwaters of Europe and North America. Although shell characteristics exist to differentiate both species, phenotypic plasticity in the genus Dreissena does not always allow a clear identification. Therefore, the need to find an accurate identification method is essential. DNA barcoding has been proven to be an adequate procedure to discriminate species. The cytochrome c oxidase subunit I mitochondrial gene (COI) is considered as the standard barcode for animals. We tested the use of this gene as an efficient DNA barcode and found that it allow rapid and accurate identification of adult Dreissena individuals. PMID:24453560

  16. Quantitative competitive (QC) PCR for quantification of porcine DNA.

    PubMed

    Wolf, C; Lüthy, J

    2001-02-01

    Many meat products nowadays may contain several species in different proportions. To protect consumers from fraud and misdeclarations, not only a qualitative but also a quantitative monitoring of ingredients of complex food products is necessary. DNA based techniques like the polymerase chain reaction (PCR) are widely used for identification of species but no answer to the proportional amount of a certain species could be given using current techniques. In this study we report the development and evaluation of a quantitative competitive polymerase chain reaction (QC-PCR) for detection and quantification of porcine DNA using a new porcine specific PCR system based on the growth hormone gene of sus scrofa. A DNA competitor differing by 30 bp in length from the porcine target sequence was constructed and used for PCR together with the target DNA. Specificity of the new primers was evaluated with DNA from cattle, sheep, chicken and turkey. The competitor concentration was adjusted to porcine DNA contents of 2 or 20% by coamplification of mixtures containing porcine and corresponding amounts of bovine DNA in defined ratios.

  17. Forensic dentistry in human identification: A review of the literature.

    PubMed

    Ata-Ali, Javier; Ata-Ali, Fadi

    2014-04-01

    An update is provided of the literature on the role of odontology in human identification, based on a PubMed-Medline search of the last 5 years and using the terms: "forensic dentistry" (n = 464 articles), "forensic odontology" (n = 141 articles) and "forensic dentistry identification" (n = 169 articles). Apart from these initial 774 articles, others considered to be important and which were generated by a manual search and cited as references in review articles were also included. Forensic dentistry requires interdisciplinary knowledge, since the data obtained from the oral cavity can contribute to identify an individual or provide information needed in a legal process. Furthermore, the data obtained from the oral cavity can narrow the search range of an individual and play a key role in the victim identification process following mass disasters or catastrophes. This literature search covering the last 5 years describes the novelties referred to buccodental studies in comparative identification, buccodental evaluation in reconstructive identification, human bites as a method for identifying the aggressor, and the role of DNA in dental identification. The oral cavity is a rich and noninvasive source of DNA, and can be used to solve problems of a social, economic or legal nature. Key words:Forensic identification, DNA, forensic dentistry, rugoscopy, cheiloscopy, saliva.

  18. Got black swimming dots in your cell culture? Identification of Achromobacter as a novel cell culture contaminant

    PubMed Central

    Gray, Jennifer Sue; Birmingham, Janette Marie; Fenton, Jenifer Imig

    2009-01-01

    ARTICLE SUMMARY Cell culture model systems are utilized for their ease of use, relative inexpensiveness, and potentially limitless sample size. Reliable results cannot be obtained, however, when cultures contain contamination. This report discusses the observation and identification of mobile black specks observed in multiple cell lines. Cultures of the contamination were grown, and DNA was purified from isolated colonies. The 16S rDNA gene was PCR amplified using primers that will amplify the gene from many genera, and then sequenced. Sequencing results matched the members of the genus Achromobacter, bacteria common in the environment. Achromobacter species have been shown to be resistant to multiple antibiotics. Attempts to decontaminate the eukaryotic cell culture used multiple antibiotics at different concentrations. The contaminating Achromobacter was eventually eliminated, without permanently harming the eukaryotic cells, using a combination of the antibiotics ciprofloxacin and piperacillin. PMID:19926304

  19. [The application of genome editing in identification of plant gene function and crop breeding].

    PubMed

    Zhou, Xiang-chun; Xing, Yong-zhong

    2016-03-01

    Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.

  20. Identification of Fungal Colonies on Ground Control and Flight Veggie Plant Pillows

    NASA Technical Reports Server (NTRS)

    Scotten, Jessica E.; Hummerick, Mary E.; Khodadad, Christina L.; Spencer, Lashelle E.; Massa, Gioia D.

    2017-01-01

    The Veggie system focuses on growing fresh produce that can be harvested and consumed by astronauts. The microbial colonies in each Veggie experiment are evaluated to determine the safety level of the produce and then differences between flight and ground samples. The identifications of the microbial species can detail risks or benefits to astronaut and plant health. Each Veggie ground or flight experiment includes six plants grown from seeds that are glued into wicks in Teflon pillows filled with clay arcillite and fertilizer. Fungal colonies were isolated from seed wicks, growth media, and lettuce (cv. 'Outredgeous') roots grown in VEG-01B pillows on ISS and in corresponding ground control pillows grown in controlled growth chambers. The colonies were sorted by morphology and identified using MicroSeq(TM) 500 16s rDNA Bacterial Identification System and BIOLOG GEN III MicroPlate(TM). Health risks for each fungal identification were then assessed using literature sources. The goal was to identify all the colonies isolated from flight and ground control VEG-01B plants, roots, and rooting medium and compare the resulting identifications.

  1. Identification and characterization of a DnaJ gene from red alga Pyropia yezoensis (Bangiales, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Liu, Jiao; Li, Xianchao; Tang, Xuexi; Zhou, Bin

    2016-03-01

    Members of the DnaJ family are proteins that play a pivotal role in various cellular processes, such as protein folding, protein transport and cellular responses to stress. In the present study, we identified and characterized the full-length DnaJ cDNA sequence from expressed sequence tags of Pyropia yezoensis ( PyDnaJ) via rapid identification of cDNA ends. This cDNA encoded a protein of 429 amino acids, which shared high sequence similarity with other identified DnaJ proteins, such as a heat shock protein 40/DnaJ from Pyropia haitanensis. The relative mRNA expression level of PyDnaJ was investigated using real-time PCR to determine its specific expression during the algal life cycle and during desiccation. The relative mRNA expression level in sporophytes was higher than that in gametophytes and significantly increased during the whole desiccation process. These results indicate that PyDnaJ is an authentic member of the DnaJ family in plants and red algae and might play a pivotal role in mitigating damage to P. yezoensis during desiccation.

  2. DNA-based identification and phylogeny of North American Armillaria species

    Treesearch

    Amy L. Ross-Davis; John W. Hanna; Ned B. Klopfenstein

    2011-01-01

    Because Armillaria species display different ecological behaviors across diverse forest ecosystems, it is critical to identify Armillaria species accurately for any assessment of forest health. To further develop DNA-based identification methods, partial sequences of the translation elongation factor-1 alpha (EF-1α) gene were used to examine the phylogenetic...

  3. Comparison of Radio Frequency Distinct Native Attribute and Matched Filtering Techniques for Device Discrimination and Operation Identification

    DTIC Science & Technology

    identification. URE from ten MSP430F5529 16-bit microcontrollers were analyzed using: 1) RF distinct native attributes (RF-DNA) fingerprints paired with multiple...discriminant analysis/maximum likelihood (MDA/ML) classification, 2) RF-DNA fingerprints paired with generalized relevance learning vector quantized

  4. Isolation of Candida Species from Gastroesophageal Lesions among Pediatrics in Isfahan, Iran: Identification and Antifungal Susceptibility Testing of Clinical Isolates by E-test

    PubMed Central

    Salehi, Fatemeh; Esmaeili, Mehran; Mohammadi, Rasoul

    2017-01-01

    Background: Candida species can become opportunistic pathogens causing local or systemic invasive infections. Gastroesophageal candidiasis may depend on the Candida colonization and local damage of the mucosal barrier. Risk factors are gastric acid suppression, diabetes mellitus, chronic debilitating states such as carcinomas, and the use of systemic antibiotics and corticosteroids. The aim of this study is collection and molecular identification of Candida species from gastroesophageal lesions among pediatrics in Isfahan, and determination of minimum inhibitory concentration (MIC) ranges for clinical isolates. Materials and Methods: A total of 200 patients underwent endoscopy (130 specimens from gastritis and 70 samples from esophagitis) were included in this study between April 2015 and November 2015. All specimens were subcultured on sabouraud dextrose agar, and genomic DNA of all strains was extracted using boiling method. Polymerase chain reaction and DNA sequencing of the ITS1-5.8SrDNA-ITS2 region were used for the identification of all Candida strains. MIC ranges were determined for itraconazole (ITC), amphotericin B (AmB), and fluconazole (FLU) by E-test. Results: Twenty of 200 suspected patients (10%) were positive by direct microscopy and culture. Candida albicans was the most common species (60%) followed by Candida glabrata (30%), Candida parapsilosis (5%), and Candida kefyr (5%). MIC ranges were determined for FLU (0.125–8 μg/mL), ITC (0.008–0.75 μg/mL), and AmB (0.008–0.75 μg/mL), respectively. Conclusion: Every colonization of Candida species should be considered as a potentially factor of mucocutaneous candidiasis and should be treated with antifungal drugs. PMID:28904931

  5. Genomics dataset of unidentified disclosed isolates.

    PubMed

    Rekadwad, Bhagwan N

    2016-09-01

    Analysis of DNA sequences is necessary for higher hierarchical classification of the organisms. It gives clues about the characteristics of organisms and their taxonomic position. This dataset is chosen to find complexities in the unidentified DNA in the disclosed patents. A total of 17 unidentified DNA sequences were thoroughly analyzed. The quick response codes were generated. AT/GC content of the DNA sequences analysis was carried out. The QR is helpful for quick identification of isolates. AT/GC content is helpful for studying their stability at different temperatures. Additionally, a dataset on cleavage code and enzyme code studied under the restriction digestion study, which helpful for performing studies using short DNA sequences was reported. The dataset disclosed here is the new revelatory data for exploration of unique DNA sequences for evaluation, identification, comparison and analysis.

  6. Identification and DNA annotation of a plasmid isolated from Chromobacterium violaceum.

    PubMed

    Lima, Daniel C; Nyberg, Lena K; Westerlund, Fredrik; Batistuzzo de Medeiros, Silvia R

    2018-03-28

    Chromobacterium violaceum is a ß-proteobacterium found widely worldwide with important biotechnological properties and is associated to lethal sepsis in immune-depressed individuals. In this work, we report the discover, complete sequence and annotation of a plasmid detected in C. violaceum that has been unnoticed until now. We used DNA single-molecule analysis to confirm that the episome found was a circular molecule and then proceeded with NGS sequencing. After DNA annotation, we found that this extra-chromosomal DNA is probably a defective bacteriophage of approximately 44 kilobases, with 39 ORFs comprising, mostly hypothetical proteins. We also found DNA sequences that ensure proper plasmid replication and partitioning as well as a toxin addiction system. This report sheds light on the biology of this important species, helping us to understand the mechanisms by which C. violaceum endures to several harsh conditions. This discovery could also be a first step in the development of a DNA manipulation tool in this bacterium.

  7. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    PubMed Central

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  8. Molecular structures guide the engineering of chromatin

    PubMed Central

    Tekel, Stefan J.

    2017-01-01

    Abstract Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. PMID:28609787

  9. An integrated strategy combining DNA walking and NGS to detect GMOs.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Papazova, Nina; De Loose, Marc; Deforce, Dieter; Ruttink, Tom; Roosens, Nancy H

    2017-10-01

    Recently, we developed a DNA walking system for the detection and characterization of a broad spectrum of GMOs in routine analysis of food/feed matrices. Here, we present a new version with improved throughput and sensitivity by coupling the DNA walking system to Pacific Bioscience® Next-generation sequencing technology. The performance of the new strategy was thoroughly assessed through several assays. First, we tested its detection and identification capability on grains with high or low GMO content. Second, the potential impacts of food processing were investigated using rice noodle samples. Finally, GMO mixtures and a real-life sample were analyzed to illustrate the applicability of the proposed strategy in routine GMO analysis. In all tested samples, the presence of multiple GMOs was unambiguously proven by the characterization of transgene flanking regions and the combinations of elements that are typical for transgene constructs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Labean, Thomas H.; Feng, Liping; Reif, John H.

    2003-07-01

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.

  11. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices.

    PubMed

    Yan, Hao; LaBean, Thomas H; Feng, Liping; Reif, John H

    2003-07-08

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.

  12. Cell-free identification of novel N-myristoylated proteins from complementary DNA resources using bioorthogonal myristic acid analogues.

    PubMed

    Takamitsu, Emi; Fukunaga, Kazuki; Iio, Yusuke; Moriya, Koko; Utsumi, Toshihiko

    2014-11-01

    To establish a non-radioactive, cell-free detection system for protein N-myristoylation, metabolic labeling in a cell-free protein synthesis system using bioorthogonal myristic acid analogues was performed. After Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with a biotin tag, the tagged proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted on a polyvinylidene fluoride (PVDF) membrane, and then protein N-myristoylation was detected by enhanced chemiluminescence (ECL) using horseradish peroxidase (HRP)-conjugated streptavidin. The results showed that metabolic labeling in an insect cell-free protein synthesis system using an azide analogue of myristic acid followed by CuAAC with alkynyl biotin was the most effective strategy for cell-free detection of protein N-myristoylation. To determine whether the newly developed detection method can be applied for the detection of novel N-myristoylated proteins from complementary DNA (cDNA) resources, four candidate cDNA clones were selected from a human cDNA resource and their susceptibility to protein N-myristoylation was evaluated using the newly developed strategy. As a result, the products of three cDNA clones were found to be novel N-myristoylated protein, and myristoylation-dependent specific intracellular localization was observed for two novel N-myristoylated proteins. Thus, the metabolic labeling in an insect cell-free protein synthesis system using bioorthogonal azide analogue of myristic acid was an effective strategy to identify novel N-myristoylated proteins from cDNA resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Sordaria, a model system to uncover links between meiotic pairing and recombination.

    PubMed

    Zickler, Denise; Espagne, Eric

    2016-06-01

    The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. DNA barcoding a nightmare taxon: assessing barcode index numbers and barcode gaps for sweat bees.

    PubMed

    Gibbs, Jason

    2018-01-01

    There is an ongoing campaign to DNA barcode the world's >20 000 bee species. Recent revisions of Lasioglossum (Dialictus) (Hymenoptera: Halictidae) for Canada and the eastern United States were completed using integrative taxonomy. DNA barcode data from 110 species of L. (Dialictus) are examined for their value in identification and discovering additional taxonomic diversity. Specimen identification success was estimated using the best close match method. Error rates were 20% relative to current taxonomic understanding. Barcode Index Numbers (BINs) assigned using Refined Single Linkage Analysis (RESL) and barcode gaps using the Automatic Barcode Gap Discovery (ABGD) method were also assessed. RESL was incongruent for 44.5% of species, although some cryptic diversity may exist. Forty-three of 110 species were part of merged BINs with multiple species. The barcode gap is non-existent for the data set as a whole and ABGD showed levels of discordance similar to the RESL. The viridatum species-group is particularly problematic, so that DNA barcodes alone would be misleading for species delimitation and specimen identification. Character-based methods using fixed nucleotide substitutions could improve specimen identification success in some cases. The use of DNA barcoding for species discovery for standard taxonomic practice in the absence of a well-defined barcode gap is discussed.

  15. Challenges to a molecular approach to prey identification in the Burmese python, Python molurus bivittatus

    USGS Publications Warehouse

    Falk, Bryan; Reed, Robert N.

    2015-01-01

    Molecular approaches to prey identification are increasingly useful in elucidating predator–prey relationships, and we aimed to investigate the feasibility of these methods to document the species identities of prey consumed by invasive Burmese pythons in Florida. We were particularly interested in the diet of young snakes, because visual identification of prey from this size class has proven difficult. We successfully extracted DNA from the gastrointestinal contents of 43 young pythons, as well as from several control samples, and attempted amplification of DNA mini-barcodes, a 130-bp region of COX1. Using a PNA clamp to exclude python DNA, we found that prey DNA was not present in sufficient quality for amplification of this locus in 86% of our samples. All samples from the GI tracts of young pythons contained only hair, and the six samples we were able to identify to species were hispid cotton rats. This suggests that young Burmese pythons prey predominantly on small mammals and that prey diversity among snakes of this size class is low. We discuss prolonged gastrointestinal transit times and extreme gastric breakdown as possible causes of DNA degradation that limit the success of a molecular approach to prey identification in Burmese pythons

  16. DNA barcoding and morphological analysis for rapid identification of most economically important crop-infesting Sunn pests belonging to Eurygaster Laporte, 1833 (Hemiptera, Scutelleridae).

    PubMed

    Syromyatnikov, Mikhail Y; Golub, Victor B; Kokina, Anastasia V; Victoria A Soboleva; Popov, Vasily N

    2017-01-01

    The genus Eurygaster Laporte, 1833 includes ten species five of which inhabit the European part of Russia. The harmful species of the genus is E. integriceps . Eurygaster species identification based on the morphological traits is very difficult, while that of the species at the egg or larval stages is extremely difficult or impossible. Eurygaster integriceps , E. maura , and E. testudinaria differ only slightly between each other morphologically, E. maura and E. testudinaria being almost indiscernible. DNA barcoding based on COI sequences have shown that E. integriceps differs significantly from these closely related species, which enables its rapid and accurate identification. Based on COI nucleotide sequences, three species of Sunn pests, E. maura , E. testudinarius , E. dilaticollis , could not be differentiated from each other through DNA barcoding. The difference in the DNA sequences between the COI gene of E. integriceps and COI genes of E. maura and E. testudinarius was more than 4%. In the present study DNA barcoding of two Eurygaster species was performed for the first time on E. integriceps , the most dangerous pest in the genus, and E. dilaticollis that only inhabits natural ecosystems. The PCR-RFLP method was developed in this work for the rapid identification of E. integriceps .

  17. DNA barcoding and morphological analysis for rapid identification of most economically important crop-infesting Sunn pests belonging to Eurygaster Laporte, 1833 (Hemiptera, Scutelleridae)

    PubMed Central

    Syromyatnikov, Mikhail Y.; Golub, Victor B.; Kokina, Anastasia V.; Victoria A. Soboleva; Popov, Vasily N.

    2017-01-01

    Abstract The genus Eurygaster Laporte, 1833 includes ten species five of which inhabit the European part of Russia. The harmful species of the genus is E. integriceps. Eurygaster species identification based on the morphological traits is very difficult, while that of the species at the egg or larval stages is extremely difficult or impossible. Eurygaster integriceps, E. maura, and E. testudinaria differ only slightly between each other morphologically, E. maura and E. testudinaria being almost indiscernible. DNA barcoding based on COI sequences have shown that E. integriceps differs significantly from these closely related species, which enables its rapid and accurate identification. Based on COI nucleotide sequences, three species of Sunn pests, E. maura, E. testudinarius, E. dilaticollis, could not be differentiated from each other through DNA barcoding. The difference in the DNA sequences between the COI gene of E. integriceps and COI genes of E. maura and E. testudinarius was more than 4%. In the present study DNA barcoding of two Eurygaster species was performed for the first time on E. integriceps, the most dangerous pest in the genus, and E. dilaticollis that only inhabits natural ecosystems. The PCR-RFLP method was developed in this work for the rapid identification of E. integriceps. PMID:29118620

  18. DNA extraction and barcode identification of development stages of forensically important flies in the Czech Republic.

    PubMed

    Olekšáková, Tereza; Žurovcová, Martina; Klimešová, Vanda; Barták, Miroslav; Šuláková, Hana

    2018-04-01

    Several methods of DNA extraction, coupled with 'DNA barcoding' species identification, were compared using specimens from early developmental stages of forensically important flies from the Calliphoridae and Sarcophagidae families. DNA was extracted at three immature stages - eggs, the first instar larvae, and empty pupal cases (puparia) - using four different extraction methods, namely, one simple 'homemade' extraction buffer protocol and three commercial kits. The extraction conditions, including the amount of proteinase K and incubation times, were optimized. The simple extraction buffer method was successful for half of the eggs and for the first instar larval samples. The DNA Lego Kit and DEP-25 DNA Extraction Kit were useful for DNA extractions from the first instar larvae samples, and the DNA Lego Kit was also successful regarding the extraction from eggs. The QIAamp DNA mini kit was the most effective; the extraction was successful with regard to all sample types - eggs, larvae, and pupari.

  19. Evaluation of the PCR method for identification of Bifidobacterium species.

    PubMed

    Youn, S Y; Seo, J M; Ji, G E

    2008-01-01

    Bifidobacterium species are known for their beneficial effects on health and their wide use as probiotics. Although various polymerase chain reaction (PCR) methods for the identification of Bifidobacterium species have been published, the reliability of these methods remains open to question. In this study, we evaluated 37 previously reported PCR primer sets designed to amplify 16S rDNA, 23S rDNA, intergenic spacer regions, or repetitive DNA sequences of various Bifidobacterium species. Ten of 37 experimental primer sets showed specificity for B. adolescentis, B. angulatum, B. pseudocatenulatum, B. breve, B. bifidum, B. longum, B. longum biovar infantis and B. dentium. The results suggest that published Bifidobacterium primer sets should be re-evaluated for both reproducibility and specificity for the identification of Bifidobacterium species using PCR. Improvement of existing PCR methods will be needed to facilitate identification of other Bifidobacterium strains, such as B. animalis, B. catenulatum, B. thermophilum and B. subtile.

  20. Possibilities in identification of genomic species of Burkholderia cepacia complex by PCR and RFLP.

    PubMed

    Navrátilová, Lucie; Chromá, Magdalena; Hanulík, Vojtech; Raclavský, Vladislav

    2013-01-01

    The strains belonging to Burkholderia cepacia complex are important opportunistic pathogens in immunocompromised patients and cause serious diseases. It is possible to obtain isolates from soil, water, plants and human samples. Taxonomy of this group is difficult. Burkholderia cepacia complex consists of seventeen genomic species and the genetic scheme is based on recA gene. Commonly, first five genomovars occurre in humans, mostly genomovars II and III, subdivision IIIA. Within this study we tested identification of first five genomovars by PCR with following melting analysis and RFLP. The experiments were targeted on eubacterial 16S rDNA and specific gene recA, which allowed identification of all five genomovars. RecA gene appeared as more suitable than 16S rDNA, which enabled direct identification of only genomovars II and V; genomovars I, III and IV were similar within 16S rDNA sequence.

  1. Evaluation of the Branched-Chain DNA Assay for Measurement of RNA in Formalin-Fixed Tissues

    PubMed Central

    Knudsen, Beatrice S.; Allen, April N.; McLerran, Dale F.; Vessella, Robert L.; Karademos, Jonathan; Davies, Joan E.; Maqsodi, Botoul; McMaster, Gary K.; Kristal, Alan R.

    2008-01-01

    We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93–100%) than for qPCR (82.4–95%). Correlations between qPCRFROZEN, the gold standard, and bDNAFFPE ranged from 0.60 to 0.94, similar to those from qPCRFROZEN and qPCRFFPE. Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management. PMID:18276773

  2. Identification of hallucinogenic fungi from the genera Psilocybe and Panaeolus by amplified fragment length polymorphism.

    PubMed

    Lee, J C; Cole, M; Linacre, A

    2000-05-01

    Unambiguous identification of the hallucinogenic fungi of the genera Psilocybe and Panaeolus is required by national and international drug control legislation. We report on a DNA-based test using the technique of amplified fragment length polymorphism (AFLP). AFLP can differentiate species of the two genera Psilocybe and Panaeolus by using different primer sets. The identification of hallucinogenic fungi using a DNA-based test, which can be used in conjunction with morphological features, will assist in forensic investigations.

  3. DNA methods for identification of Chinese medicinal materials

    PubMed Central

    Yip, Pui Ying; Chau, Chi Fai; Mak, Chun Yin; Kwan, Hoi Shan

    2007-01-01

    As adulterated and substituted Chinese medicinal materials are common in the market, therapeutic effectiveness of such materials cannot be guaranteed. Identification at species-, strain- and locality-levels, therefore, is required for quality assurance/control of Chinese medicine. This review provides an informative introduction to DNA methods for authentication of Chinese medicinal materials. Technical features and examples of the methods based on sequencing, hybridization and polymerase chain reaction (PCR) are described and their suitability for different identification objectives is discussed. PMID:17803808

  4. Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos

    PubMed Central

    Hajibabaei, Mehrdad; Shokralla, Shadi; Zhou, Xin; Singer, Gregory A. C.; Baird, Donald J.

    2011-01-01

    Timely and accurate biodiversity analysis poses an ongoing challenge for the success of biomonitoring programs. Morphology-based identification of bioindicator taxa is time consuming, and rarely supports species-level resolution especially for immature life stages. Much work has been done in the past decade to develop alternative approaches for biodiversity analysis using DNA sequence-based approaches such as molecular phylogenetics and DNA barcoding. On-going assembly of DNA barcode reference libraries will provide the basis for a DNA-based identification system. The use of recently introduced next-generation sequencing (NGS) approaches in biodiversity science has the potential to further extend the application of DNA information for routine biomonitoring applications to an unprecedented scale. Here we demonstrate the feasibility of using 454 massively parallel pyrosequencing for species-level analysis of freshwater benthic macroinvertebrate taxa commonly used for biomonitoring. We designed our experiments in order to directly compare morphology-based, Sanger sequencing DNA barcoding, and next-generation environmental barcoding approaches. Our results show the ability of 454 pyrosequencing of mini-barcodes to accurately identify all species with more than 1% abundance in the pooled mixture. Although the approach failed to identify 6 rare species in the mixture, the presence of sequences from 9 species that were not represented by individuals in the mixture provides evidence that DNA based analysis may yet provide a valuable approach in finding rare species in bulk environmental samples. We further demonstrate the application of the environmental barcoding approach by comparing benthic macroinvertebrates from an urban region to those obtained from a conservation area. Although considerable effort will be required to robustly optimize NGS tools to identify species from bulk environmental samples, our results indicate the potential of an environmental barcoding approach for biomonitoring programs. PMID:21533287

  5. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections.

    PubMed

    Chambers, E Anne; Hebert, Paul D N

    2016-01-01

    High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale.

  6. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections

    PubMed Central

    Chambers, E. Anne; Hebert, Paul D. N.

    2016-01-01

    Background High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. Methodology/Principal Findings This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. Conclusions/Significance This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale. PMID:27116180

  7. Inconsistent identification of pit bull-type dogs by shelter staff.

    PubMed

    Olson, K R; Levy, J K; Norby, B; Crandall, M M; Broadhurst, J E; Jacks, S; Barton, R C; Zimmerman, M S

    2015-11-01

    Shelter staff and veterinarians routinely make subjective dog breed identification based on appearance, but their accuracy regarding pit bull-type breeds is unknown. The purpose of this study was to measure agreement among shelter staff in assigning pit bull-type breed designations to shelter dogs and to compare breed assignments with DNA breed signatures. In this prospective cross-sectional study, four staff members at each of four different shelters recorded their suspected breed(s) for 30 dogs; there was a total of 16 breed assessors and 120 dogs. The terms American pit bull terrier, American Staffordshire terrier, Staffordshire bull terrier, pit bull, and their mixes were included in the study definition of 'pit bull-type breeds.' Using visual identification only, the median inter-observer agreements and kappa values in pair-wise comparisons of each of the staff breed assignments for pit bull-type breed vs. not pit bull-type breed ranged from 76% to 83% and from 0.44 to 0.52 (moderate agreement), respectively. Whole blood was submitted to a commercial DNA testing laboratory for breed identification. Whereas DNA breed signatures identified only 25 dogs (21%) as pit bull-type, shelter staff collectively identified 62 (52%) dogs as pit bull-type. Agreement between visual and DNA-based breed assignments varied among individuals, with sensitivity for pit bull-type identification ranging from 33% to 75% and specificity ranging from 52% to 100%. The median kappa value for inter-observer agreement with DNA results at each shelter ranged from 0.1 to 0.48 (poor to moderate). Lack of consistency among shelter staff indicated that visual identification of pit bull-type dogs was unreliable. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Identification and reassessment of the specific status of some tropical freshwater midges (Diptera: Chironomidae) using DNA barcode data.

    PubMed

    Pramual, Pairot; Simwisat, Kusumart; Martin, Jon

    2016-01-28

    Chironomidae are a highly diverse group of insects. Members of this family are often included in programs monitoring the health of freshwater ecosystems. However, a difficulty in morphological identification, particularly of larval stages is the major obstacle to this application. In this study, we tested the efficiency of mitochondrial cytochrome c oxidase I (COI) sequences as the DNA barcoding region for species identification of Chironomidae in Thailand. The results revealed 14 species with a high success rate (>90%) for the correct species identification, which suggests the potential usefulness of the technique. However, some morphological species possess high (>3%) intraspecific genetic divergence that suggests these species could be species complexes and need further morphological or cytological examination. Sequence-based species delimitation analyses indicated that most specimens identified as Chironomus kiiensis, Tokunaga 1936, in Japan are conspecific with C. striatipennis, Kieffer 1912, although a small number form a separate cluster. A review of the descriptions of Kiefferulus tainanus (Kieffer 1912) and its junior synonym, K. biroi (Kieffer 1918), following our results, suggests that this synonymy is probably not correct and that K. tainanus occurs in Japan, China and Singapore, while K. biroi occurs in India and Thailand. Our results therefore revealed the usefulness of DNA barcoding for correct species identification of Chironomidae, particularly the immature stages. In addition, DNA barcodes could also uncover hidden diversity that can guide further taxonomic study, and offer a more efficient way to identify species than morphological analysis where large numbers of specimens are involved, provided the identifications of DNA barcodes in the databases are correct. Our studies indicate that this is not the case, and we identify cases of misidentifications for C. flaviplumus, Tokunaga 1940 and K. tainanus.

  9. A DNA Barcode Library for North American Pyraustinae (Lepidoptera: Pyraloidea: Crambidae).

    PubMed

    Yang, Zhaofu; Landry, Jean-François; Hebert, Paul D N

    2016-01-01

    Although members of the crambid subfamily Pyraustinae are frequently important crop pests, their identification is often difficult because many species lack conspicuous diagnostic morphological characters. DNA barcoding employs sequence diversity in a short standardized gene region to facilitate specimen identifications and species discovery. This study provides a DNA barcode reference library for North American pyraustines based upon the analysis of 1589 sequences recovered from 137 nominal species, 87% of the fauna. Data from 125 species were barcode compliant (>500bp, <1% n), and 99 of these taxa formed a distinct cluster that was assigned to a single BIN. The other 26 species were assigned to 56 BINs, reflecting frequent cases of deep intraspecific sequence divergence and a few instances of barcode sharing, creating a total of 155 BINs. Two systems for OTU designation, ABGD and BIN, were examined to check the correspondence between current taxonomy and sequence clusters. The BIN system performed better than ABGD in delimiting closely related species, while OTU counts with ABGD were influenced by the value employed for relative gap width. Different species with low or no interspecific divergence may represent cases of unrecognized synonymy, whereas those with high intraspecific divergence require further taxonomic scrutiny as they may involve cryptic diversity. The barcode library developed in this study will also help to advance understanding of relationships among species of Pyraustinae.

  10. Molecular identification of environmental bacteria in indoor air in the domestic home: description of a new species of Exiguobacterium.

    PubMed

    Yuan, Ivan; Xu, Jiru; Millar, B Cherie; Dooley, James S G; Rooney, Paul J; Alexander, H Denis; Moore, John E

    2007-02-01

    The quality of indoor air in terms of its bioaerosol composition with microorganisms is important due to its potential aetiological role in development of conditions such as Sick Building Syndrome. Hence, laboratory identification of bacteriological components in any bioaerosol from buildings may help elucidate the role of such organisms in disease states, particularly allergy-related conditions. A molecular method was developed employing universal or "broad-range" eubacterial PCR to help identify environmental culturable bacteria from domestic household air. In a "proof of concept" experiment, 16S rDNA PCR was performed on a collection of bacterial isolates originating from indoor air in the domestic home. 16S rDNA PCR was performed using a set of universal primers to successfully generate an amplicon of approximately 1400 bp, which was sequenced to obtain each isolate's identity. Sequence analysis was able to identify 12/13 of the isolates, whereby the majority were Gram-positive (12/13). Nine different genera were identified from the 13 isolates examined, of which, 12/13 were Gram-positive, with the exception being Moraxella osloensis, which was Gram-negative, as well as a novel species of Exiguobacterium. The closest phylogenetic neighbour of the wildtype isolate to a named species within this genus was E. aestuarii (1364/1384 bases; 98.4% homology), followed by E. marinum (97.5%) and with E. acetylicum being the most distantly related of all the described species. On account of this divergence within the 16S rDNA gene operon of the unknown Exiguobacterium isolate, we believe this isolate to represent a novel species of Exiguobacterium, which we have tentatively named Exiguobacterium belfastensis. Although from this study, these organisms are usually unlikely to be clinically significant to healthy individuals with a competent immune system, we recommend that molecular identification methods are used, if considered necessary, as an adjunct to first line phenotypic identification schemes, where a definitive identification is required. When the use of molecular identification methods is justified, employment of partial 16S rDNA PCR and sequencing provides a valuable and reliable method of identification of environmental bacteria in the home. This study demonstrates the usefulness of such methods and a full and comprehensive study is now required to examine the diversity of bacteria in indoor air in the home, with particular emphasis on the risk of such environmental organisms to immunosurpressed patients, such as those with haematological malignancies and who are neutropenic.

  11. Electronic Properties of Synthetic Shrimp Pathogens-derived DNA Schottky Diodes.

    PubMed

    Rizan, Nastaran; Yew, Chan Yen; Niknam, Maryam Rajabpour; Krishnasamy, Jegenathan; Bhassu, Subha; Hong, Goh Zee; Devadas, Sridevi; Din, Mohamed Shariff Mohd; Tajuddin, Hairul Anuar; Othman, Rofina Yasmin; Phang, Siew Moi; Iwamoto, Mitsumasa; Periasamy, Vengadesh

    2018-01-17

    The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.

  12. Results of a collaborative study on DNA identification of aged bone samples

    PubMed Central

    Vanek, Daniel; Budowle, Bruce; Dubska-Votrubova, Jitka; Ambers, Angie; Frolik, Jan; Pospisek, Martin; Al Afeefi, Ahmed Anwar; Al Hosani, Khalid Ismaeil; Allen, Marie; Al Naimi, Khudooma Saeed; Al Salafi, Dina; Al Tayyari, Wafa Ali Rashid; Arguetaa, Wendy; Bottinelli, Michel; Bus, Magdalena M.; Cemper-Kiesslich, Jan; Cepil, Olivier; De Cock, Greet; Desmyter, Stijn; El Amri, Hamid; El Ossmani, Hicham; Galdies, Ruth; Grün, Sebastian; Guidet, Francois; Hoefges, Anna; Iancu, Cristian Bogdan; Lotz, Petra; Maresca, Alessandro; Nagy, Marion; Novotny, Jindrich; Rachid, Hajar; Rothe, Jessica; Stenersen, Marguerethe; Stephenson, Mishel; Stevanovitch, Alain; Strien, Juliane; Sumita, Denilce R.; Vella, Joanna; Zander, Judith

    2017-01-01

    Aim A collaborative exercise with several institutes was organized by the Forensic DNA Service (FDNAS) and the Institute of the Legal Medicine, 2nd Faculty of Medicine, Charles University in Prague, Czech Republic, with the aim to test performance of different laboratories carrying out DNA analysis of relatively old bone samples. Methods Eighteen laboratories participating in the collaborative exercise were asked to perform DNA typing of two samples of bone powder. Two bone samples provided by the National Museum and the Institute of Archaelogy in Prague, Czech Republic, came from archeological excavations and were estimated to be approximately 150 and 400 years old. The methods of genetic characterization including autosomal, gonosomal, and mitochondrial markers was selected solely at the discretion of the participating laboratory. Results Although the participating laboratories used different extraction and amplification strategies, concordant results were obtained from the relatively intact 150 years old bone sample. Typing was more problematic with the analysis of the 400 years old bone sample due to poorer quality. Conclusion The laboratories performing identification DNA analysis of bone and teeth samples should regularly test their ability to correctly perform DNA-based identification on bone samples containing degraded DNA and potential inhibitors and demonstrate that risk of contamination is minimized. PMID:28613037

  13. Gene Identification Algorithms Using Exploratory Statistical Analysis of Periodicity

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shashi Bajaj; Sen, Pradip Kumar

    2010-10-01

    Studying periodic pattern is expected as a standard line of attack for recognizing DNA sequence in identification of gene and similar problems. But peculiarly very little significant work is done in this direction. This paper studies statistical properties of DNA sequences of complete genome using a new technique. A DNA sequence is converted to a numeric sequence using various types of mappings and standard Fourier technique is applied to study the periodicity. Distinct statistical behaviour of periodicity parameters is found in coding and non-coding sequences, which can be used to distinguish between these parts. Here DNA sequences of Drosophila melanogaster were analyzed with significant accuracy.

  14. Use of mitochondrial COI gene for the identification of family Salticidae and Lycosidae of spiders.

    PubMed

    Naseem, Sajida; Tahir, Hafiz Muhammad

    2018-01-01

    In recent years, DNA barcoding has become quite popular for molecular identification of species because it is simple, quick and an affordable method. Present study was conducted to identify spiders of most abundant families, i.e. Salticidae and Lycosidae from citrus orchards in Sargodha district using DNA barcoding. A total of 160 specimens were subjected to DNA barcoding but, sequences up to 600 bp were recovered for 156 specimens. This molecular approach proved helpful to assign the exact taxon to those specimens which were misidentified through morphological characters in the study. We were succeeded to discriminate six species of Lycosidae and nine species of Salticidae through DNA barcoding. Results revealed the presence of clear barcode gap (discontinuity in intra- and inter-specific divergences) for members of both families. Furthermore, the maximum intra-specific divergence was less than NN (nearest neighbour) distance for all species. This suggested the reliability of DNA barcoding for spider's identification up to species level. We got 98% success in our study. It is concluded from present study that DNA barcoding is more reliable tool especially for immature spiders, when morphological characters are ambiguous.

  15. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites.

    PubMed

    Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F

    2011-08-02

    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.

  16. Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

    PubMed

    Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F

    2016-01-01

    Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample types that can be processed and minimizes the time between sample collection, sample processing and analysis, and generation of actionable intelligence. The fully integrated Expert System is capable of interpreting a wide range or sample types and input DNA quantities, allowing samples to be processed and interpreted without a technical operator.

  17. DNA fingerprinting of Chinese melon provides evidentiary support of seed quality appraisal.

    PubMed

    Gao, Peng; Ma, Hongyan; Luan, Feishi; Song, Haibin

    2012-01-01

    Melon, Cucumis melo L. is an important vegetable crop worldwide. At present, there are phenomena of homonyms and synonyms present in the melon seed markets of China, which could cause variety authenticity issues influencing the process of melon breeding, production, marketing and other aspects. Molecular markers, especially microsatellites or simple sequence repeats (SSRs) are playing increasingly important roles for cultivar identification. The aim of this study was to construct a DNA fingerprinting database of major melon cultivars, which could provide a possibility for the establishment of a technical standard system for purity and authenticity identification of melon seeds. In this study, to develop the core set SSR markers, 470 polymorphic SSRs were selected as the candidate markers from 1219 SSRs using 20 representative melon varieties (lines). Eighteen SSR markers, evenly distributed across the genome and with the highest contents of polymorphism information (PIC) were identified as the core marker set for melon DNA fingerprinting analysis. Fingerprint codes for 471 melon varieties (lines) were established. There were 51 materials which were classified into17 groups based on sharing the same fingerprint code, while field traits survey results showed that these plants in the same group were synonyms because of the same or similar field characters. Furthermore, DNA fingerprinting quick response (QR) codes of 471 melon varieties (lines) were constructed. Due to its fast readability and large storage capacity, QR coding melon DNA fingerprinting is in favor of read convenience and commercial applications.

  18. DNA Fingerprinting of Chinese Melon Provides Evidentiary Support of Seed Quality Appraisal

    PubMed Central

    Gao, Peng; Ma, Hongyan; Luan, Feishi; Song, Haibin

    2012-01-01

    Melon, Cucumis melo L. is an important vegetable crop worldwide. At present, there are phenomena of homonyms and synonyms present in the melon seed markets of China, which could cause variety authenticity issues influencing the process of melon breeding, production, marketing and other aspects. Molecular markers, especially microsatellites or simple sequence repeats (SSRs) are playing increasingly important roles for cultivar identification. The aim of this study was to construct a DNA fingerprinting database of major melon cultivars, which could provide a possibility for the establishment of a technical standard system for purity and authenticity identification of melon seeds. In this study, to develop the core set SSR markers, 470 polymorphic SSRs were selected as the candidate markers from 1219 SSRs using 20 representative melon varieties (lines). Eighteen SSR markers, evenly distributed across the genome and with the highest contents of polymorphism information (PIC) were identified as the core marker set for melon DNA fingerprinting analysis. Fingerprint codes for 471 melon varieties (lines) were established. There were 51 materials which were classified into17 groups based on sharing the same fingerprint code, while field traits survey results showed that these plants in the same group were synonyms because of the same or similar field characters. Furthermore, DNA fingerprinting quick response (QR) codes of 471 melon varieties (lines) were constructed. Due to its fast readability and large storage capacity, QR coding melon DNA fingerprinting is in favor of read convenience and commercial applications. PMID:23285039

  19. DNA barcoding insect–host plant associations

    PubMed Central

    Jurado-Rivera, José A.; Vogler, Alfried P.; Reid, Chris A.M.; Petitpierre, Eduard; Gómez-Zurita, Jesús

    2008-01-01

    Short-sequence fragments (‘DNA barcodes’) used widely for plant identification and inventorying remain to be applied to complex biological problems. Host–herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL(UAA) intron as barcode amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included—more than 10 per cent of the known Australian fauna—feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions. PMID:19004756

  20. Sorting through the chaff, nDNA gene trees for phylogenetic inference and hybrid identification of annual sunflowers (Helianthus sect. Helianthus).

    PubMed

    Moody, Michael L; Rieseberg, Loren H

    2012-07-01

    The annual sunflowers (Helianthus sect. Helianthus) present a formidable challenge for phylogenetic inference because of ancient hybrid speciation, recent introgression, and suspected issues with deep coalescence. Here we analyze sequence data from 11 nuclear DNA (nDNA) genes for multiple genotypes of species within the section to (1) reconstruct the phylogeny of this group, (2) explore the utility of nDNA gene trees for detecting hybrid speciation and introgression; and (3) test an empirical method of hybrid identification based on the phylogenetic congruence of nDNA gene trees from tightly linked genes. We uncovered considerable topological heterogeneity among gene trees with or without three previously identified hybrid species included in the analyses, as well as a general lack of reciprocal monophyly of species. Nonetheless, partitioned Bayesian analyses provided strong support for the reciprocal monophyly of all species except H. annuus (0.89 PP), the most widespread and abundant annual sunflower. Previous hypotheses of relationships among taxa were generally strongly supported (1.0 PP), except among taxa typically associated with H. annuus, apparently due to the paraphyly of the latter in all gene trees. While the individual nDNA gene trees provided a useful means for detecting recent hybridization, identification of ancient hybridization was problematic for all ancient hybrid species, even when linkage was considered. We discuss biological factors that affect the efficacy of phylogenetic methods for hybrid identification.

  1. An efficient and reliable DNA-based sex identification method for archaeological Pacific salmonid (Oncorhynchus spp.) remains.

    PubMed

    Royle, Thomas C A; Sakhrani, Dionne; Speller, Camilla F; Butler, Virginia L; Devlin, Robert H; Cannon, Aubrey; Yang, Dongya Y

    2018-01-01

    Pacific salmonid (Oncorhynchus spp.) remains are routinely recovered from archaeological sites in northwestern North America but typically lack sexually dimorphic features, precluding the sex identification of these remains through morphological approaches. Consequently, little is known about the deep history of the sex-selective salmonid fishing strategies practiced by some of the region's Indigenous peoples. Here, we present a DNA-based method for the sex identification of archaeological Pacific salmonid remains that integrates two PCR assays that each co-amplify fragments of the sexually dimorphic on the Y chromosome (sdY) gene and an internal positive control (Clock1a or D-loop). The first assay co-amplifies a 95 bp fragment of sdY and a 108 bp fragment of the autosomal Clock1a gene, whereas the second assay co-amplifies the same sdY fragment and a 249 bp fragment of the mitochondrial D-loop region. This method's reliability, sensitivity, and efficiency, were evaluated by applying it to 72 modern Pacific salmonids from five species and 75 archaeological remains from six Pacific salmonids. The sex identities assigned to each of the modern samples were concordant with their known phenotypic sex, highlighting the method's reliability. Applications of the method to dilutions of modern DNA samples indicate it can correctly identify the sex of samples with as little as ~39 pg of total genomic DNA. The successful sex identification of 70 of the 75 (93%) archaeological samples further demonstrates the method's sensitivity. The method's reliance on two co-amplifications that preferentially amplify sdY helps validate the sex identities assigned to samples and reduce erroneous identifications caused by allelic dropout and contamination. Furthermore, by sequencing the D-loop fragment used as a positive control, species-level and sex identifications can be simultaneously assigned to samples. Overall, our results indicate the DNA-based method reported in this study is a sensitive and reliable sex identification method for ancient salmonid remains.

  2. Should DNA sequence be incorporated with other taxonomical data for routine identifying of plant species?

    PubMed

    Suesatpanit, Tanakorn; Osathanunkul, Kitisak; Madesis, Panagiotis; Osathanunkul, Maslin

    2017-08-31

    A variety of plants in Acanthaceae have long been used in traditional Thai ailment and commercialised with significant economic value. Nowadays medicinal plants are sold in processed forms and thus morphological authentication is almost impossible. Full identification requires comparison of the specimen with some authoritative sources, such as a full and accurate description and verification of the species deposited in herbarium. Intake of wrong herbals can cause adverse effects. Identification of both raw materials and end products is therefore needed. Here, the potential of a DNA-based identification method, called Bar-HRM (DNA barcoding coupled with High Resolution Melting analysis), in raw material species identification is investigated. DNA barcode sequences from five regions (matK, rbcL, trnH-psbA spacer region, trnL and ITS2) of Acanthaceae species were retrieved for in silico analysis. Then the specific primer pairs were used in HRM assay to generate unique melting profiles for each plants species. The method allows identification of samples lacking necessary morphological parts. In silico analyses of all five selected regions suggested that ITS2 is the most suitable marker for Bar-HRM in this study. The HRM analysis on dried samples of 16 Acanthaceae medicinal species was then performed using primer pair derived from ITS2 region. 100% discrimination of the tested samples at both genus and species level was observed. However, two samples documented as Clinacanthus nutans and Clinacanthus siamensis were recognised as the same species from the HRM analysis. Further investigation reveals that C. siamensis is now accepted as C. nutans. The results here proved that Bar-HRM is a promising technique in species identification of the studied medicinal plants in Acanthaceae. In addition, molecular biological data is currently used in plant taxonomy and increasingly popular in recent years. Here, DNA barcode sequence data should be incorporated with morphological characters in the species identification.

  3. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    PubMed

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-07-22

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.

  4. Dangers resulting from DNA profiling of biological materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) with regard to forensic genetic analysis.

    PubMed

    Jacewicz, R; Lewandowski, K; Rupa-Matysek, J; Jędrzejczyk, M; Berent, J

    The study documents the risk that comes with DNA analysis of materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in forensic genetics. DNA chimerism was studied in 30 patients after allo-HSCT, based on techniques applied in contemporary forensic genetics, i.e. real-time PCR and multiplex PCR-STR with the use of autosomal DNA as well as Y-DNA markers. The results revealed that the DNA profile of the recipient's blood was identical with the donor's in the majority of cases. Therefore, blood analysis can lead to false conclusions in personal identification as well as kinship analysis. An investigation of buccal swabs revealed a mixture of DNA in the majority of recipients. Consequently, personal identification on the basis of stain analysis of the same origin may be impossible. The safest (but not ideal) material turned out to be the hair root. Its analysis based on autosomal DNA revealed 100% of the recipient's profile. However, an analysis based on Y-chromosome markers performed in female allo-HSCT recipients with male donors demonstrated the presence of donor DNA in hair cells - similarly to the blood and buccal swabs. In the light of potential risks arising from DNA profiling of biological materials derived from persons after allotransplantation in judicial aspects, certain procedures were proposed to eliminate such dangers. The basic procedures include abandoning the approach based exclusively on blood collection, both for kinship analysis and personal identification; asking persons who are to be tested about their history of allo-HSCT before sample collection and profile entry in the DNA database, and verification of DNA profiling based on hair follicles in uncertain cases.

  5. Short, interspersed, and repetitive DNA sequences in Spiroplasma species.

    PubMed

    Nur, I; LeBlanc, D J; Tully, J G

    1987-03-01

    Small fragments of DNA from an 8-kbp plasmid, pRA1, from a plant pathogenic strain of Spiroplasma citri were shown previously to be present in the chromosomal DNA of at least two species of Spiroplasma. We describe here the shot-gun cloning of chromosomal DNA from S. citri Maroc and the identification of two distinct sequences exhibiting homology to pRA1. Further subcloning experiments provided specific molecular probes for the identification of these two sequences in chromosomal DNA from three distinct plant pathogenic species of Spiroplasma. The results of Southern blot hybridization indicated that each of the pRA1-associated sequences is present as multiple copies in short, dispersed, and repetitive sequences in the chromosomes of these three strains. None of the sequences was detectable in chromosomal DNA from an additional nine Spiroplasma strains examined.

  6. Rapid real-time diagnostic PCR for Trichophyton rubrum and Trichophyton mentagrophytes in patients with tinea unguium and tinea pedis using specific fluorescent probes.

    PubMed

    Miyajima, Yoshiharu; Satoh, Kazuo; Uchida, Takao; Yamada, Tsuyoshi; Abe, Michiko; Watanabe, Shin-ichi; Makimura, Miho; Makimura, Koichi

    2013-03-01

    Trichophyton rubrum and Trichophyton mentagrophytes human-type (synonym, Trichophyton interdigitale (anthropophilic)) are major causative pathogens of tinea unguium. For suitable diagnosis and treatment, rapid and accurate identification of etiologic agents in clinical samples using reliable molecular based method is required. For identification of organisms causing tinea unguium, we developed a new real-time polymerase chain reaction (PCR) with a pan-fungal primer set and probe, as well as specific primer sets and probes for T. rubrum and T. mentagrophytes human-type. We designed two sets of primers from the internal transcribed spacer 1 (ITS1) region of fungal ribosomal DNA (rDNA) and three quadruple fluorescent probes, one for detection wide range pathogenic fungi and two for classification of T. rubrum and T. mentagrophytes by specific binding to different sites in the ITS1 region. We investigated the specificity of these primer sets and probes using fungal genomic DNA, and also examined 42 clinical specimens with our real-time PCR. The primers and probes specifically detected T. rubrum, T. mentagrophytes, and a wide range of pathogenic fungi. The causative pathogens were identified in 42 nail and skin samples from 32 patients. The total time required for identification of fungal species in each clinical specimen was about 3h. The copy number of each fungal DNA in the clinical specimens was estimated from the intensity of fluorescence simultaneously. This PCR system is one of the most rapid and sensitive methods available for diagnosing dermatophytosis, including tinea unguium and tinea pedis. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Validation of a sensitive DNA walking strategy to characterise unauthorised GMOs using model food matrices mimicking common rice products.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; De Loose, Marc; Van Nieuwerburgh, Filip; Deforce, Dieter; Roosens, Nancy H

    2015-04-15

    To identify unauthorised GMOs in food and feed matrices, an integrated approach has recently been developed targeting pCAMBIA family vectors, highly present in transgenic plants. Their presence is first assessed by qPCR screening and is subsequently confirmed by characterising the transgene flanking regions, using DNA walking. Here, the DNA walking performance has been thoroughly tested for the first time, regarding the targeted DNA quality and quantity. Several assays, on model food matrices mimicking common rice products, have allowed to determine the limit of detection as well as the potential effects of food mixture and processing. This detection system allows the identification of transgenic insertions as low as 10 HGEs and was not affected by the presence of untargeted DNA. Moreover, despite the clear impact of food processing on DNA quality, this method was able to cope with degraded DNA. Given its specificity, sensitivity, reliability, applicability and practicability, the proposed approach is a key detection tool, easily implementable in enforcement laboratories. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Normalization of environmental metagenomic DNA enhances the discovery of under-represented microbial community members.

    PubMed

    Ramond, J-B; Makhalanyane, T P; Tuffin, M I; Cowan, D A

    2015-04-01

    Normalization is a procedure classically employed to detect rare sequences in cellular expression profiles (i.e. cDNA libraries). Here, we present a normalization protocol involving the direct treatment of extracted environmental metagenomic DNA with S1 nuclease, referred to as normalization of metagenomic DNA: NmDNA. We demonstrate that NmDNA, prior to post hoc PCR-based experiments (16S rRNA gene T-RFLP fingerprinting and clone library), increased the diversity of sequences retrieved from environmental microbial communities by detection of rarer sequences. This approach could be used to enhance the resolution of detection of ecologically relevant rare members in environmental microbial assemblages and therefore is promising in enabling a better understanding of ecosystem functioning. This study is the first testing 'normalization' on environmental metagenomic DNA (mDNA). The aim of this procedure was to improve the identification of rare phylotypes in environmental communities. Using hypoliths as model systems, we present evidence that this post-mDNA extraction molecular procedure substantially enhances the detection of less common phylotypes and could even lead to the discovery of novel microbial genotypes within a given environment. © 2014 The Society for Applied Microbiology.

  9. qPMS9: An Efficient Algorithm for Quorum Planted Motif Search

    NASA Astrophysics Data System (ADS)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2015-01-01

    Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, discovery of short functional motifs, etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study the (l, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two integers l and d. It returns all sequences M of length l that occur in each input string, where each occurrence differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA (l, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.

  10. Forensic dentistry in human identification: A review of the literature

    PubMed Central

    Ata-Ali, Fadi

    2014-01-01

    An update is provided of the literature on the role of odontology in human identification, based on a PubMed-Medline search of the last 5 years and using the terms: “forensic dentistry” (n = 464 articles), “forensic odontology” (n = 141 articles) and “forensic dentistry identification” (n = 169 articles). Apart from these initial 774 articles, others considered to be important and which were generated by a manual search and cited as references in review articles were also included. Forensic dentistry requires interdisciplinary knowledge, since the data obtained from the oral cavity can contribute to identify an individual or provide information needed in a legal process. Furthermore, the data obtained from the oral cavity can narrow the search range of an individual and play a key role in the victim identification process following mass disasters or catastrophes. This literature search covering the last 5 years describes the novelties referred to buccodental studies in comparative identification, buccodental evaluation in reconstructive identification, human bites as a method for identifying the aggressor, and the role of DNA in dental identification. The oral cavity is a rich and noninvasive source of DNA, and can be used to solve problems of a social, economic or legal nature. Key words:Forensic identification, DNA, forensic dentistry, rugoscopy, cheiloscopy, saliva. PMID:24790717

  11. Interspecific Introgression in Cetaceans: DNA Markers Reveal Post-F1 Status of a Pilot Whale

    PubMed Central

    Miralles, Laura; Lens, Santiago; Rodríguez-Folgar, Antonio; Carrillo, Manuel; Martín, Vidal; Mikkelsen, Bjarni; Garcia-Vazquez, Eva

    2013-01-01

    Visual species identification of cetacean strandings is difficult, especially when dead specimens are degraded and/or species are morphologically similar. The two recognised pilot whale species (Globicephala melas and Globicephala macrorhynchus) are sympatric in the North Atlantic Ocean. These species are very similar in external appearance and their morphometric characteristics partially overlap; thus visual identification is not always reliable. Genetic species identification ensures correct identification of specimens. Here we have employed one mitochondrial (D-Loop region) and eight nuclear loci (microsatellites) as genetic markers to identify six stranded pilot whales found in Galicia (Northwest Spain), one of them of ambiguous phenotype. DNA analyses yielded positive amplification of all loci and enabled species identification. Nuclear microsatellite DNA genotypes revealed mixed ancestry for one individual, identified as a post-F1 interspecific hybrid employing two different Bayesian methods. From the mitochondrial sequence the maternal species was Globicephala melas. This is the first hybrid documented between Globicephala melas and G. macrorhynchus, and the first post-F1 hybrid genetically identified between cetaceans, revealing interspecific genetic introgression in marine mammals. We propose to add nuclear loci to genetic databases for cetacean species identification in order to detect hybrid individuals. PMID:23990883

  12. The significance of gtf genes in caries expression: a rapid identification of Streptococcus mutans from dental plaque of child patients.

    PubMed

    Mishra, Apurva; Pandey, Ramesh K; Manickam, Natesan

    2015-01-01

    Rapid phylogenetic and functional gene (gtfB) identification of S. mutans from the dental plaque derived from children. Dental plaque collected from fifteen patients of age group 7-12 underwent centrifugation followed by genomic DNA extraction for S. mutans. Genomic DNA was processed with S. mutans specific primers in suitable PCR condtions for phylogenetic and functional gene (gtfB) identification. The yield and results were confirmed by agarose gel electrophoresis. 1% agarose gel electrophoresis depicts the positive PCR amplification at 1,485 bp when compared with standard 1 kbp indicating the presence of S. mutans in the test sample. Another PCR reaction was set using gtfB primers specific for S. mutans for functional gene identification. 1.2% agarose gel electrophoresis was done and a positive amplication was observed at 192 bp when compared to 100 bp standards. With the advancement in molecular biology techniques, PCR based identification and quantification of the bacterial load can be done within hours using species-specific primers and DNA probes. Thus, this technique may reduce the laboratory time spend in conventional culture methods, reduces the possibility of colony identification errors and is more sensitive to culture techniques.

  13. Species From Feces: Order-Wide Identification of Chiroptera From Guano and Other Non-Invasive Genetic Samples

    PubMed Central

    Williamson, Charles H. D.; Sanchez, Daniel E.; Sobek, Colin J.; Chambers, Carol L.

    2016-01-01

    Bat guano is a relatively untapped reservoir of information, having great utility as a DNA source because it is often available at roosts even when bats are not and is an easy type of sample to collect from a difficult-to-study mammalian order. Recent advances from microbial community studies in primer design, sequencing, and analysis enable fast, accurate, and cost-effective species identification. Here, we borrow from this discipline to develop an order-wide DNA mini-barcode assay (Species from Feces) based on a segment of the mitochondrial gene cytochrome c oxidase I (COI). The assay works effectively with fecal DNA and is conveniently transferable to low-cost, high-throughput Illumina MiSeq technology that also allows simultaneous pairing with other markers. Our PCR primers target a region of COI that is highly discriminatory among Chiroptera (92% species-level identification of barcoded species), and are sufficiently degenerate to allow hybridization across diverse bat taxa. We successfully validated our system with 54 bat species across both suborders. Despite abundant arthropod prey DNA in guano, our primers were highly specific to bats; no arthropod DNA was detected in thousands of feces run on Sanger and Illumina platforms. The assay is extendable to fecal pellets of unknown age as well as individual and pooled guano, to allow for individual (using singular fecal pellets) and community (using combined pellets collected from across long-term roost sites) analyses. We developed a searchable database (http://nau.edu/CEFNS/Forestry/Research/Bats/Search-Tool/) that allows users to determine the discriminatory capability of our markers for bat species of interest. Our assay has applications worldwide for examining disease impacts on vulnerable species, determining species assemblages within roosts, and assessing the presence of bat species that are vulnerable or facing extinction. The development and analytical pathways are rapid, reliable, and inexpensive, and can be applied to ecology and conservation studies of other taxa. PMID:27654850

  14. Species From Feces: Order-Wide Identification of Chiroptera From Guano and Other Non-Invasive Genetic Samples.

    PubMed

    Walker, Faith M; Williamson, Charles H D; Sanchez, Daniel E; Sobek, Colin J; Chambers, Carol L

    Bat guano is a relatively untapped reservoir of information, having great utility as a DNA source because it is often available at roosts even when bats are not and is an easy type of sample to collect from a difficult-to-study mammalian order. Recent advances from microbial community studies in primer design, sequencing, and analysis enable fast, accurate, and cost-effective species identification. Here, we borrow from this discipline to develop an order-wide DNA mini-barcode assay (Species from Feces) based on a segment of the mitochondrial gene cytochrome c oxidase I (COI). The assay works effectively with fecal DNA and is conveniently transferable to low-cost, high-throughput Illumina MiSeq technology that also allows simultaneous pairing with other markers. Our PCR primers target a region of COI that is highly discriminatory among Chiroptera (92% species-level identification of barcoded species), and are sufficiently degenerate to allow hybridization across diverse bat taxa. We successfully validated our system with 54 bat species across both suborders. Despite abundant arthropod prey DNA in guano, our primers were highly specific to bats; no arthropod DNA was detected in thousands of feces run on Sanger and Illumina platforms. The assay is extendable to fecal pellets of unknown age as well as individual and pooled guano, to allow for individual (using singular fecal pellets) and community (using combined pellets collected from across long-term roost sites) analyses. We developed a searchable database (http://nau.edu/CEFNS/Forestry/Research/Bats/Search-Tool/) that allows users to determine the discriminatory capability of our markers for bat species of interest. Our assay has applications worldwide for examining disease impacts on vulnerable species, determining species assemblages within roosts, and assessing the presence of bat species that are vulnerable or facing extinction. The development and analytical pathways are rapid, reliable, and inexpensive, and can be applied to ecology and conservation studies of other taxa.

  15. [Molecular identification and detection of moon jellyfish (Aurelia sp.) based on partial sequencing of mitochondrial 16S rDNA and COI].

    PubMed

    Wang, Jian-Yan; Zhen, Yu; Wang, Guo-shan; Mi, Tie-Zhu; Yu, Zhi-gang

    2013-03-01

    Taking the moon jellyfish Aurelia sp. commonly found in our coastal sea areas as test object, its genome DNA was extracted, the partial sequences of mt-16S rDNA (650 bp) and mt-COI (709 bp) were PCR-amplified, and, after purification, cloning, and sequencing, the sequences obtained were BLASTn-analyzed. The sequences of greater difference with those of the other jellyfish were chosen, and eight specific primers for the mt-16S rDNA and mt-COI of Aurelia sp. were designed, respectively. The specificity test indicated that the primer AS3 for the mt-16S rDNA and the primer AC3 for the mt-COI were excellent in rapidly detecting the target jellyfish from Rhopilema esculentum, Nemopilema nomurai, Cyanea nozakii, Acromitus sp., and Aurelia sp., and thus, the techniques for the molecular identification and detection of moon jellyfish were preliminarily established, which could get rid of the limitations in classical morphological identification of Aurelia sp. , being able to find the Aurelia sp. in the samples more quickly and accurately.

  16. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin.

    PubMed

    Gomes, Laís Carvalho; Pessali, Tiago Casarim; Sales, Naiara Guimarães; Pompeu, Paulo Santos; Carvalho, Daniel Cardoso

    2015-10-01

    The great freshwater fish diversity found in the neotropical region makes management and conservation actions challenging. Due to shortage of taxonomists and insufficient infrastructure to deal with such great biodiversity (i.e. taxonomic impediment), proposed remedies to accelerate species identification and descriptions include techniques that combine DNA-based identification and concise morphological description. The building of a DNA barcode reference database correlating meristic and genetic data was developed for 75 % of the Mucuri River basin's freshwater fish. We obtained a total of 141 DNA barcode sequences from 37 species belonging to 30 genera, 19 families, and 5 orders. Genetic distances within species, genera, and families were 0.74, 9.5, and 18.86 %, respectively. All species could be clearly identified by the DNA barcodes. Divergences between meristic morphological characteristics and DNA barcodes revealed two cryptic species among the Cyphocharax gilbert and Astyanax gr. bimaculatus specimens, and helped to identify two overlooked species within the Gymnotus and Astyanax taxa. Therefore, using a simplified model of neotropical biodiversity, we tested the efficiency of an integrative taxonomy approach for species discovery, identification of cryptic diversity, and accelerating biodiversity descriptions.

  17. Extended-Spectrum β-lactamase (ESBL) producing Enterobacter aerogenes phenotypically misidentified as Klebsiella pneumoniae or K. terrigena

    PubMed Central

    Claeys, Geert; De Baere, Thierry; Wauters, Georges; Vandecandelaere, Patricia; Verschraegen, Gerda; Muylaert, An; Vaneechoutte, Mario

    2004-01-01

    Background Enterobacter aerogenes and Klebsiella pneumoniae are common isolates in clinical microbiology and important as producers of extended spectrum β-lactamases (ESBL). The discrimination between both species, which is routinely based on biochemical characteristics, is generally accepted to be straightforward. Here we report that genotypically unrelated strains of E. aerogenes can be misidentified as K. pneumoniae by routine laboratories using standard biochemical identification and using identification automates. Results Ten clinical isolates, identified as K. pneumoniae or K. terrigena with the routinely used biochemical tests and with API-20E, were identified as E. aerogenes by tDNA-PCR – an identification that was confirmed by 16S rRNA gene sequencing for five of these isolates. Misidentification also occurred when using the automated identification systems Vitek 2 and Phoenix, and was due to delayed positivity for ornithine decarboxylase and motility. Subculture and prolonged incubation resulted in positive results for ornithine decarboxylase and for motility. It could be shown by RAPD-analysis that the E. aerogenes strains belonged to different genotypes. Conclusions Clinical E. aerogenes isolates can be easily misidentified as Klebsiella due to delayed positivity for ornithine decarboxylase and motility. The phenomenon may be widespread, since it was shown to occur among genotypically unrelated strains from different hospitals and different isolation dates. A useful clue for correct identification is the presence of an inducible β-lactamase, which is highly unusual for K. pneumoniae. In several instances, the use of genotypic techniques like tDNA-PCR may circumvent problems of phenotypic identification. PMID:15619329

  18. Identification of cytomegalovirus and human herpesvirus-6 DNA in a patient with corneal endotheliitis.

    PubMed

    Yokogawa, Hideaki; Kobayashi, Akira; Yamazaki, Natsuko; Sugiyama, Kazuhisa

    2013-03-01

    To report the case of a patient with unilateral corneal endotheliitis in which both cytomegalovirus (CMV) and human herpesvirus-6 (HHV6) DNA was identified in the aqueous humor. A 67-year-old man with corneal endotheliitis OD was referred to us for decreased visual acuity. Local corneal stromal edema, pigmented keratic precipitates, a coin-shaped lesion and minimal anterior chamber reaction were observed by slit-lamp biomicroscopy. Cells with owl's eye appearance in the endothelial cell layer were observed by in vivo laser confocal microscopy. The patient had rheumatoid arthritis, which was treated by oral prednisolone and intravenous abatacept. Polymerase chain reaction analysis of aqueous humor samples detected both CMV and HHV6 DNA, but not other HHVs. Treatment with topical ganciclovir and systemic valganciclovir resulted in a clear cornea. A patient with corneal endotheliitis had both CMV and HHV6 DNA identified in the aqueous humor. Although both viruses were identified in this case, clinical manifestations resembled CMV corneal endotheliitis, and it was unclear whether HHV6 could affect the clinical course. Systemic abatacept and corticosteroid therapy might play a positive role in cases with both CMV and HHV6 DNA in this corneal endotheliitis.

  19. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    PubMed

    Bertolini, Francesca; Ghionda, Marco Ciro; D'Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  20. A Next Generation Semiconductor Based Sequencing Approach for the Identification of Meat Species in DNA Mixtures

    PubMed Central

    Bertolini, Francesca; Ghionda, Marco Ciro; D’Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures. PMID:25923709

  1. Estimation and quantification of human DNA in dental calculus: A pilot study.

    PubMed

    Singh, Udita; Goel, Saurabh

    2017-01-01

    Identification using DNA has proved its accuracy multiple times in the field of forensic investigations. Investigators usually rely on either teeth or bone as the DNA reservoirs. However, there are instances where the skeletal or dental remains are not available or not preserved properly. Moreover, due to religious beliefs, the family members of the dead do not allow the investigating team to damage the remains for the sole purpose of identification. To investigate the presence of human DNA in dental calculus and to quantify the amount, if present. This prospective single-blinded pilot study included twenty subjects selected from the patients visiting a dental college. The samples of dental calculus were collected from the thickest portion of calculus deposited on the lingual surfaces of mandibular incisors. These samples were decontaminated and subjected to gel electrophoresis for DNA extraction. DNA was found in 85% cases. The amount of DNA varied from 21 to 37 μg/ml of dental calculus. Dental calculus is a rich reservoir of human DNA.

  2. Charging YOYO-1 on Capillary Wall for Online DNA Intercalation and Integrating This Approach with Multiplex PCR and Bare Narrow Capillary–Hydrodynamic Chromatography for Online DNA Analysis

    PubMed Central

    2016-01-01

    Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111

  3. Assessment of Multi Fragment Melting Analysis System (MFMAS) for the Identification of Food-Borne Yeasts.

    PubMed

    Kesmen, Zülal; Büyükkiraz, Mine E; Özbekar, Esra; Çelik, Mete; Özkök, F Özge; Kılıç, Özge; Çetin, Bülent; Yetim, Hasan

    2018-06-01

    Multi Fragment Melting Analysis System (MFMAS) is a novel approach that was developed for the species-level identification of microorganisms. It is a software-assisted system that performs concurrent melting analysis of 8 different DNA fragments to obtain a fingerprint of each strain analyzed. The identification is performed according to the comparison of these fingerprints with the fingerprints of known yeast species recorded in a database to obtain the best possible match. In this study, applicability of the yeast version of the MFMAS (MFMAS-yeast) was evaluated for the identification of food-associated yeast species. For this purpose, in this study, a total of 145 yeast strains originated from foods and beverages and 19 standard yeast strains were tested. The DNAs isolated from these yeast strains were analyzed by the MFMAS, and their species were successfully identified with a similarity rate of 95% or higher. It was shown that the strains belonged to 43 different yeast species that are widely found in the foods. A clear discrimination was also observed in the phylogenetically related species. In conclusion, it might be suggested that the MFMAS-yeast seems to be a highly promising approach for a rapid, accurate, and one-step identification of the yeasts isolated from food products and/or their processing environments.

  4. Digging up the recent Spanish memory: genetic identification of human remains from mass graves of the Spanish Civil War and posterior dictatorship.

    PubMed

    Baeta, Miriam; Núñez, Carolina; Cardoso, Sergio; Palencia-Madrid, Leire; Herrasti, Lourdes; Etxeberria, Francisco; de Pancorbo, Marian M

    2015-11-01

    The Spanish Civil War (1936-1939) and posterior dictatorship (until 1970s) stands as one of the major conflicts in the recent history of Spain. It led to nearly two hundred thousand men and women executed or murdered extra-judicially or after dubious legal procedures. Nowadays, most of them remain unidentified or even buried in irretraceable mass graves across Spain. Here, we present the genetic identification of human remains found in 26 mass graves located in Northern Spain. A total of 252 post-mortem remains were analyzed and compared to 186 relatives, allowing the identification of 87 victims. Overall, a significant success of DNA profiling was reached, since informative profiles (≥ 12 STRs and/or mitochondrial DNA profile) were obtained in 85.71% of the remains. This high performance in DNA profiling from challenging samples demonstrated the efficacy of DNA extraction and amplification methods used herein, given that only around 14.29% of the samples did not provide an informative genetic profile for the analysis performed, probably due to the presence of degraded and/or limited DNA in these remains. However, this study shows a partial identification success rate, which is clearly a consequence of the lack of both appropriate family members for genetic comparisons and accurate information about the victims' location. Hence, further perseverance in the exhumation of other intact graves as well as in the search of more alleged relatives is crucial in order to facilitate and increase the number of genetic identifications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Stress Sensors and Signal Transducers in Cyanobacteria

    PubMed Central

    Los, Dmitry A.; Zorina, Anna; Sinetova, Maria; Kryazhov, Sergey; Mironov, Kirill; Zinchenko, Vladislav V.

    2010-01-01

    In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks), 12 genes for serine-threonine protein kinases (Spks), 42 genes for response regulators (Rres), seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress. PMID:22294932

  6. Identification of Bacillus spp. from Bikalga, fermented seeds of Hibiscus sabdariffa: phenotypic and genotypic characterization.

    PubMed

    Ouoba, L I I; Parkouda, C; Diawara, B; Scotti, C; Varnam, A H

    2008-01-01

    To identify Bacillus spp. responsible of the fermentation of Hibiscus sabdariffa for production of Bikalga, an alkaline fermented food used as a condiment in Burkina Faso. Seventy bacteria were isolated from Bikalga produced in different regions of Burkina Faso and identified by phenotyping and genotyping using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR), repetitive sequence-based PCR (rep-PCR) and DNA sequencing. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. ITS-PCR allowed typing mainly at species level. Rep-PCR was more discriminative and allowed a typing at ssp. level. The DNA sequencing combined with the Blast search program and fermentation profiles using API 50CHB system allowed an identification of the bacteria as Bacillus subtilis, B. licheniformis, B. cereus, B. pumilus, B. badius, Brevibacillus bortelensis, B. sphaericus and B. fusiformis. B. subtilis were the predominant bacterium (42) followed by B. licheniformis (16). Various species and ssp. of Bacillus are involved in fermentation of H. sabdariffa for production of Bikalga. Selection of starter cultures of Bacillus for controlled production of Bikalga, selection of probiotic bacteria.

  7. Identification of genes in anonymous DNA sequences. Annual performance report, February 1, 1991--January 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, C.A.

    1996-06-01

    The objective of this project is the development of practical software to automate the identification of genes in anonymous DNA sequences from the human, and other higher eukaryotic genomes. A software system for automated sequence analysis, gm (gene modeler) has been designed, implemented, tested, and distributed to several dozen laboratories worldwide. A significantly faster, more robust, and more flexible version of this software, gm 2.0 has now been completed, and is being tested by operational use to analyze human cosmid sequence data. A range of efforts to further understand the features of eukaryoyic gene sequences are also underway. This progressmore » report also contains papers coming out of the project including the following: gm: a Tool for Exploratory Analysis of DNA Sequence Data; The Human THE-LTR(O) and MstII Interspersed Repeats are subfamilies of a single widely distruted highly variable repeat family; Information contents and dinucleotide compostions of plant intron sequences vary with evolutionary origin; Splicing signals in Drosophila: intron size, information content, and consensus sequences; Integration of automated sequence analysis into mapping and sequencing projects; Software for the C. elegans genome project.« less

  8. How effective are DNA barcodes in the identification of African rainforest trees?

    PubMed

    Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W; Kenfack, David; Chuyong, George B; Cruaud, Corinne; Hardy, Olivier J

    2013-01-01

    DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95-100% success), but less for species identification (71-88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84-90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications.

  9. How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?

    PubMed Central

    Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W.; Kenfack, David; Chuyong, George B.; Cruaud, Corinne; Hardy, Olivier J.

    2013-01-01

    Background DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. Methodology/Principal Findings We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95–100% success), but less for species identification (71–88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84–90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Conclusions/Significance Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications. PMID:23565134

  10. Nanofluidic Lab-On-Chip Technology for DNA Identification

    DTIC Science & Technology

    2013-09-30

    samples Fluorescently labeled (FAM tag) DNA oligomers (10, 20, and 50 bases long) were purchased with standard desalting and additional HPLC purification...A.2 DNA samples: DNA oligomers (10, 20, 50 nt long) were purchased with standard desalting and additional HPLC purification for the 50 base

  11. IDENTIFICATION OF CHICKEN-SPECIFIC FECAL MICROBIAL SEQUENCES USING A METAGENOMIC APPROACH

    EPA Science Inventory

    In this study, we applied a genome fragment enrichment (GFE) method to select for genomic regions that differ between different fecal metagenomes. Competitive DNA hybridizations were performed between chicken fecal DNA and pig fecal DNA (C-P) and between chicken fecal DNA and an ...

  12. Apical root canal microbiota as determined by reverse-capture checkerboard analysis of cryogenically ground root samples from teeth with apical periodontitis.

    PubMed

    Rôças, Isabela N; Alves, Flávio R F; Santos, Adriana L; Rosado, Alexandre S; Siqueira, José F

    2010-10-01

    Bacteria located in the apical root canal system potentially participate in the pathogenesis of apical periodontitis. Detection and identification of apical bacteria can be compromised because of limitations in conventional sampling and identification procedures. This study identified several bacterial taxa in the apical and middle/coronal segments of primarily infected root canal system by using pulverized root segments and a culture-independent molecular method. Seventeen extracted teeth with attached apical periodontitis lesions were sectioned to obtain 2 root fragments (apical and middle/coronal segments). Root fragments were cryogenically ground, and DNA was extracted from samples. After multiple displacement amplification, DNA from samples was used as template in a reverse-capture checkerboard hybridization assay targeting 28 bacterial taxa. Bacterial DNA was detected in all samples. The most prevalent taxa in the apical root canal system were Olsenella uli (76.5%), Prevotella baroniae (71%), Porphyromonas endodontalis (65%), Fusobacterium nucleatum (53%), and Tannerella forsythia (47%). O. uli, P. endodontalis, and Propionibacterium acnes were as frequently detected in apical samples as they were in middle/coronal samples. P. baroniae, T. forsythia, and F. nucleatum were found more frequently in the apical part of the canal as compared with matched coronal segments. Streptococcus species were more prevalent in middle/coronal samples. The median and mean of shared bacterial taxa between matched apical and middle/coronal segments were 27% and 41%, respectively. Several candidate endodontic pathogens were very prevalent in the apical root canal system. The apical microbiota was usually complex and differed in species composition when compared with the microbiota of middle/coronal samples from the same tooth. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Identification of metabolically active bacteria in the gut of the generalist Spodoptera littoralis via DNA stable isotope probing using 13C-glucose.

    PubMed

    Shao, Yongqi; Arias-Cordero, Erika M; Boland, Wilhelm

    2013-11-13

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction(1), boosting the immune response(2), pheromone production(3), as well as nutrition, including the synthesis of essential amino acids(4,) among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing (13)C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA(5). The incorporation of (13)C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled ((12)C) one. In the end, the (13)C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the (12)C-unlabeled similar one(6). Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA was done using pyrosequencing, which allowed high resolution and precision in the identification of insect gut bacterial community. As main substrate, (13)C-labeled glucose was used in the experiments. The substrate was fed to the insects using an artificial diet.

  14. Identification of Aspergillus fumigatus and Related Species by Nested PCR Targeting Ribosomal DNA Internal Transcribed Spacer Regions

    PubMed Central

    Zhao, Jun; Kong, Fanrong; Li, Ruoyu; Wang, Xiaohong; Wan, Zhe; Wang, Duanli

    2001-01-01

    Aspergillus fumigatus is the most common species that causes invasive aspergillosis. In order to identify A. fumigatus, partial ribosomal DNA (rDNA) from two to six strains of five different Aspergillus species was sequenced. By comparing sequence data from GenBank, we designed specific primer pairs targeting rDNA internal transcribed spacer (ITS) regions of A. fumigatus. A nested PCR method for identification of other A. fumigatus-related species was established by using the primers. To evaluate the specificities and sensitivities of those primers, 24 isolates of A. fumigatus and variants, 8 isolates of Aspergillus nidulans, 7 isolates of Aspergillus flavus and variants, 8 isolates of Aspergillus terreus, 9 isolates of Aspergillus niger, 1 isolate each of Aspergillus parasiticus, Aspergillus penicilloides, Aspergillus versicolor, Aspergillus wangduanlii, Aspergillus qizutongii, Aspergillus beijingensis, and Exophiala dermatitidis, 4 isolates of Candida, 4 isolates of bacteria, and human DNA were used. The nested PCR method specifically identified the A. fumigatus isolates and closely related species and showed a high degree of sensitivity. Additionally, four A. fumigatus strains that were recently isolated from our clinic were correctly identified by this method. Our results demonstrate that these primers are useful for the identification of A. fumigatus and closely related species in culture and suggest further studies for the identification of Aspergillus fumigatus species in clinical specimens. PMID:11376067

  15. Identification of Amazonian trees with DNA barcodes.

    PubMed

    Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme

    2009-10-16

    Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.

  16. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  17. New taxonomy and old collections: integrating DNA barcoding into the collection curation process.

    PubMed

    Puillandre, N; Bouchet, P; Boisselier-Dubayle, M-C; Brisset, J; Buge, B; Castelin, M; Chagnoux, S; Christophe, T; Corbari, L; Lambourdière, J; Lozouet, P; Marani, G; Rivasseau, A; Silva, N; Terryn, Y; Tillier, S; Utge, J; Samadi, S

    2012-05-01

    Because they house large biodiversity collections and are also research centres with sequencing facilities, natural history museums are well placed to develop DNA barcoding best practices. The main difficulty is generally the vouchering system: it must ensure that all data produced remain attached to the corresponding specimen, from the field to publication in articles and online databases. The Museum National d'Histoire Naturelle in Paris is one of the leading laboratories in the Marine Barcode of Life (MarBOL) project, which was used as a pilot programme to include barcode collections for marine molluscs and crustaceans. The system is based on two relational databases. The first one classically records the data (locality and identification) attached to the specimens. In the second one, tissue-clippings, DNA extractions (both preserved in 2D barcode tubes) and PCR data (including primers) are linked to the corresponding specimen. All the steps of the process [sampling event, specimen identification, molecular processing, data submission to Barcode Of Life Database (BOLD) and GenBank] are thus linked together. Furthermore, we have developed several web-based tools to automatically upload data into the system, control the quality of the sequences produced and facilitate the submission to online databases. This work is the result of a joint effort from several teams in the Museum National d'Histoire Naturelle (MNHN), but also from a collaborative network of taxonomists and molecular systematists outside the museum, resulting in the vouchering so far of ∼41,000 sequences and the production of ∼11,000 COI sequences. © 2012 Blackwell Publishing Ltd.

  18. Short-read, high-throughput sequencing technology for STR genotyping

    PubMed Central

    Bornman, Daniel M.; Hester, Mark E.; Schuetter, Jared M.; Kasoji, Manjula D.; Minard-Smith, Angela; Barden, Curt A.; Nelson, Scott C.; Godbold, Gene D.; Baker, Christine H.; Yang, Boyu; Walther, Jacquelyn E.; Tornes, Ivan E.; Yan, Pearlly S.; Rodriguez, Benjamin; Bundschuh, Ralf; Dickens, Michael L.; Young, Brian A.; Faith, Seth A.

    2013-01-01

    DNA-based methods for human identification principally rely upon genotyping of short tandem repeat (STR) loci. Electrophoretic-based techniques for variable-length classification of STRs are universally utilized, but are limited in that they have relatively low throughput and do not yield nucleotide sequence information. High-throughput sequencing technology may provide a more powerful instrument for human identification, but is not currently validated for forensic casework. Here, we present a systematic method to perform high-throughput genotyping analysis of the Combined DNA Index System (CODIS) STR loci using short-read (150 bp) massively parallel sequencing technology. Open source reference alignment tools were optimized to evaluate PCR-amplified STR loci using a custom designed STR genome reference. Evaluation of this approach demonstrated that the 13 CODIS STR loci and amelogenin (AMEL) locus could be accurately called from individual and mixture samples. Sensitivity analysis showed that as few as 18,500 reads, aligned to an in silico referenced genome, were required to genotype an individual (>99% confidence) for the CODIS loci. The power of this technology was further demonstrated by identification of variant alleles containing single nucleotide polymorphisms (SNPs) and the development of quantitative measurements (reads) for resolving mixed samples. PMID:25621315

  19. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices

    PubMed Central

    Yan, Hao; LaBean, Thomas H.; Feng, Liping; Reif, John H.

    2003-01-01

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping. PMID:12821776

  20. Is the extraction by Whatman FTA filter matrix technology and sequencing of large ribosomal subunit D1-D2 region sufficient for identification of clinical fungi?

    PubMed

    Kiraz, Nuri; Oz, Yasemin; Aslan, Huseyin; Erturan, Zayre; Ener, Beyza; Akdagli, Sevtap Arikan; Muslumanoglu, Hamza; Cetinkaya, Zafer

    2015-10-01

    Although conventional identification of pathogenic fungi is based on the combination of tests evaluating their morphological and biochemical characteristics, they can fail to identify the less common species or the differentiation of closely related species. In addition these tests are time consuming, labour-intensive and require experienced personnel. We evaluated the feasibility and sufficiency of DNA extraction by Whatman FTA filter matrix technology and DNA sequencing of D1-D2 region of the large ribosomal subunit gene for identification of clinical isolates of 21 yeast and 160 moulds in our clinical mycology laboratory. While the yeast isolates were identified at species level with 100% homology, 102 (63.75%) clinically important mould isolates were identified at species level, 56 (35%) isolates at genus level against fungal sequences existing in DNA databases and two (1.25%) isolates could not be identified. Consequently, Whatman FTA filter matrix technology was a useful method for extraction of fungal DNA; extremely rapid, practical and successful. Sequence analysis strategy of D1-D2 region of the large ribosomal subunit gene was found considerably sufficient in identification to genus level for the most clinical fungi. However, the identification to species level and especially discrimination of closely related species may require additional analysis. © 2015 Blackwell Verlag GmbH.

  1. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement.

    PubMed

    Søe, Martin Jensen; Nejsum, Peter; Fredensborg, Brian Lund; Kapel, Christian Moliin Outzen

    2015-02-01

    Ancient parasite eggs were recovered from environmental samples collected at a Viking-age settlement in Viborg, Denmark, dated 1018-1030 A.D. Morphological examination identified Ascaris sp., Trichuris sp., and Fasciola sp. eggs, but size and shape did not allow species identification. By carefully selecting genetic markers, PCR amplification and sequencing of ancient DNA (aDNA) isolates resulted in identification of: the human whipworm, Trichuris trichiura , using SSUrRNA sequence homology; Ascaris sp. with 100% homology to cox1 haplotype 07; and Fasciola hepatica using ITS1 sequence homology. The identification of T. trichiura eggs indicates that human fecal material is present and, hence, that the Ascaris sp. haplotype 07 was most likely a human variant in Viking-age Denmark. The location of the F. hepatica finding suggests that sheep or cattle are the most likely hosts. Further, we sequenced the Ascaris sp. 18S rRNA gene in recent isolates from humans and pigs of global distribution and show that this is not a suited marker for species-specific identification. Finally, we discuss ancient parasitism in Denmark and the implementation of aDNA analysis methods in paleoparasitological studies. We argue that when employing species-specific identification, soil samples offer excellent opportunities for studies of human parasite infections and of human and animal interactions of the past.

  2. Assessing universality of DNA barcoding in geographically isolated selected desert medicinal species of Fabaceae and Poaceae

    PubMed Central

    Hussain, Fatma; Ahmed, Nisar; Ghorbani, Abdolbaset

    2018-01-01

    In pursuit of developing fast and accurate species-level molecular identification methods, we tested six DNA barcodes, namely ITS2, matK, rbcLa, ITS2+matK, ITS2+rbcLa, matK+rbcLa and ITS2+matK+rbcLa, for their capacity to identify frequently consumed but geographically isolated medicinal species of Fabaceae and Poaceae indigenous to the desert of Cholistan. Data were analysed by BLASTn sequence similarity, pairwise sequence divergence in TAXONDNA, and phylogenetic (neighbour-joining and maximum-likelihood trees) methods. Comparison of six barcode regions showed that ITS2 has the highest number of variable sites (209/360) for tested Fabaceae and (106/365) Poaceae species, the highest species-level identification (40%) in BLASTn procedure, distinct DNA barcoding gap, 100% correct species identification in BM and BCM functions of TAXONDNA, and clear cladding pattern with high nodal support in phylogenetic trees in both families. ITS2+matK+rbcLa followed ITS2 in its species-level identification capacity. The study was concluded with advocating the DNA barcoding as an effective tool for species identification and ITS2 as the best barcode region in identifying medicinal species of Fabaceae and Poaceae. Current research has practical implementation potential in the fields of pharmaco-vigilance, trade of medicinal plants and biodiversity conservation. PMID:29576968

  3. How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae)

    PubMed Central

    Zou, Shanmei; Fei, Cong; Wang, Chun; Gao, Zhan; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-01-01

    Microalgae identification is extremely difficult. The efficiency of DNA barcoding in microalgae identification involves ideal gene markers and approaches employed, which however, is still under the way. Although Scenedesmus has obtained much research in producing lipids its identification is difficult. Here we present a comprehensive coalescent, distance and character-based DNA barcoding for 118 Scenedesmus strains based on rbcL, tufA, ITS and 16S. The four genes, and their combined data rbcL + tufA + ITS + 16S, rbcL + tufA and ITS + 16S were analyzed by all of GMYC, P ID, PTP, ABGD, and character-based barcoding respectively. It was apparent that the three combined gene data showed a higher proportion of resolution success than the single gene. In comparison, the GMYC and PTP analysis produced more taxonomic lineages. The ABGD generated various resolution in discrimination among the single and combined data. The character-based barcoding was proved to be the most effective approach for species discrimination in both single and combined data which produced consistent species identification. All the integrated results recovered 11 species, five out of which were revealed as potential cryptic species. We suggest that the character-based DNA barcoding together with other approaches based on multiple genes and their combined data could be more effective in microalgae diversity revelation. PMID:27827440

  4. How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae).

    PubMed

    Zou, Shanmei; Fei, Cong; Wang, Chun; Gao, Zhan; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-11-09

    Microalgae identification is extremely difficult. The efficiency of DNA barcoding in microalgae identification involves ideal gene markers and approaches employed, which however, is still under the way. Although Scenedesmus has obtained much research in producing lipids its identification is difficult. Here we present a comprehensive coalescent, distance and character-based DNA barcoding for 118 Scenedesmus strains based on rbcL, tufA, ITS and 16S. The four genes, and their combined data rbcL + tufA + ITS + 16S, rbcL + tufA and ITS + 16S were analyzed by all of GMYC, P ID, PTP, ABGD, and character-based barcoding respectively. It was apparent that the three combined gene data showed a higher proportion of resolution success than the single gene. In comparison, the GMYC and PTP analysis produced more taxonomic lineages. The ABGD generated various resolution in discrimination among the single and combined data. The character-based barcoding was proved to be the most effective approach for species discrimination in both single and combined data which produced consistent species identification. All the integrated results recovered 11 species, five out of which were revealed as potential cryptic species. We suggest that the character-based DNA barcoding together with other approaches based on multiple genes and their combined data could be more effective in microalgae diversity revelation.

  5. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    PubMed

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  6. DNA-Catalyzed Amide Hydrolysis.

    PubMed

    Zhou, Cong; Avins, Joshua L; Klauser, Paul C; Brandsen, Benjamin M; Lee, Yujeong; Silverman, Scott K

    2016-02-24

    DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.

  7. DNA-barcoding of forensically important blow flies (Diptera: Calliphoridae) in the Caribbean Region

    PubMed Central

    Agnarsson, Ingi

    2017-01-01

    Correct identification of forensically important insects, such as flies in the family Calliphoridae, is a crucial step for them to be used as evidence in legal investigations. Traditional identification based on morphology has been effective, but has some limitations when it comes to identifying immature stages of certain species. DNA-barcoding, using COI, has demonstrated potential for rapid and accurate identification of Calliphoridae, however, this gene does not reliably distinguish among some recently diverged species, raising questions about its use for delimitation of species of forensic importance. To facilitate DNA based identification of Calliphoridae in the Caribbean we developed a vouchered reference collection from across the region, and a DNA sequence database, and further added the nuclear ITS2 as a second marker to increase accuracy of identification through barcoding. We morphologically identified freshly collected specimens, did phylogenetic analyses and employed several species delimitation methods for a total of 468 individuals representing 19 described species. Our results show that combination of COI + ITS2 genes yields more accurate identification and diagnoses, and better agreement with morphological data, than the mitochondrial barcodes alone. All of our results from independent and concatenated trees and most of the species delimitation methods yield considerably higher diversity estimates than the distance based approach and morphology. Molecular data support at least 24 distinct clades within Calliphoridae in this study, recovering substantial geographic variation for Lucilia eximia, Lucilia retroversa, Lucilia rica and Chloroprocta idioidea, probably indicating several cryptic species. In sum, our study demonstrates the importance of employing a second nuclear marker for barcoding analyses and species delimitation of calliphorids, and the power of molecular data in combination with a complete reference database to enable identification of taxonomically and geographically diverse insects of forensic importance. PMID:28761780

  8. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains

    PubMed Central

    2013-01-01

    Background DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person’s externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Methods Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Results Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Conclusions Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including ancient DNA studies, for the prediction of eye and hair colour of deceased individuals. PMID:23317428

  9. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains.

    PubMed

    Draus-Barini, Jolanta; Walsh, Susan; Pośpiech, Ewelina; Kupiec, Tomasz; Głąb, Henryk; Branicki, Wojciech; Kayser, Manfred

    2013-01-14

    DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person's externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including ancient DNA studies, for the prediction of eye and hair colour of deceased individuals.

  10. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor

    NASA Astrophysics Data System (ADS)

    Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee

    2017-07-01

    The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.

  11. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    PubMed

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.

  12. DNA Barcoding in Fragaria L. (Strawberry) Species

    USDA-ARS?s Scientific Manuscript database

    DNA barcoding for species identification using a short DNA sequence has been successful in animals due to rapid mutation rates of the mitochondrial genome where the animal DNA barocode, cytochrome c oxidase 1 gene is located. The chloroplast PsbA-trnH spacer and the nuclear ribosomal internal transc...

  13. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  14. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  15. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  16. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  17. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  18. Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region.

    PubMed

    Fernandez-Tajes, Juan; Méndez, Josefina

    2007-09-05

    Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis of the 5S ribosomal DNA region has been applied to the establishment of DNA-based molecular markers for the identification of five razor clam species: Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus. PCR amplifications were carried out using a pair of universal primers from the coding region of 5S rDNA. S. marginatus was simply distinguished by the different size of the amplicons obtained. Species-specific restriction endonuclease patterns were found with the enzymes Hae III for E. arcuatus, E. siliqua, and E. directus, and Acs I for E. macha, and when two enzymes were combined, the four species were also identified. Thus, this work provides a simple, reliable, and rapid protocol for the accurate identification of Ensis and Solen species in fresh and canned products, which is very useful for traceability and to enforce labeling regulations.

  19. Forensic identification of Indian snakeroot (Rauvolfia serpentina Benth. ex Kurz) using DNA barcoding.

    PubMed

    Eurlings, Marcel C M; Lens, Frederic; Pakusza, Csilla; Peelen, Tamara; Wieringa, Jan J; Gravendeel, Barbara

    2013-05-01

    Indian snakeroot (Rauvolfia serpentina) is a valuable forest product, root extracts of which are used as an antihypertensive drug. Increasing demand led to overharvesting in the wild. Control of international trade is hampered by the inability to identify root samples to the species level. We therefore evaluated the potential of molecular identification by searching for species-specific DNA polymorphisms. We found two species-specific indels in the rps16 intron region for R. serpentina. Our DNA barcoding method was tested for its specificity, reproducibility, sensitivity and stability. We included samples of various tissues and ages, which had been treated differently for preservation. DNA extractions were tested in a range of amplification settings and dilutions. Species-specific rps16 intron sequences were obtained from 79 herbarium accessions and one confiscated root, encompassing 39 different species. Our results demonstrate that molecular analysis provides new perspectives for forensic identification of Indian snakeroot. © 2013 American Academy of Forensic Sciences.

  20. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms.

    PubMed

    Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao

    2013-01-02

    Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs.

  1. DNA-mounted self-assembly: new approaches for genomic analysis and SNP detection.

    PubMed

    Bichenkova, Elena V; Lang, Zhaolei; Yu, Xuan; Rogert, Candelaria; Douglas, Kenneth T

    2011-01-01

    This article presents an overview of new emerging approaches for nucleic acid detection via hybridization techniques that can potentially be applied to genomic analysis and SNP identification in clinical diagnostics. Despite the availability of a diverse variety of SNP genotyping technologies on the diagnostic market, none has truly succeeded in dominating its competitors thus far. Having been designed for specific diagnostic purposes or clinical applications, each of the existing bio-assay systems (briefly outlined here) is usually limited to a relatively narrow aspect or format of nucleic acid detection, and thus cannot entirely satisfy all the varieties of commercial requirements and clinical demands. This drives the diagnostic sector to pursue novel, cost-effective approaches to ensure rapid and reliable identification of pathogenic or hereditary human diseases. Hence, the purpose of this review is to highlight some new strategic directions in DNA detection technologies in order to inspire development of novel molecular diagnostic tools and bio-assay systems with superior reliability, reproducibility, robustness, accuracy and sensitivity at lower assay cost. One approach to improving the sensitivity of an assay to confidently discriminate between single point mutations is based on the use of target assembled, split-probe systems, which constitutes the main focus of this review. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates

    PubMed Central

    Faron, Matthew L.; Buchan, Blake W.; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L.; Granato, Paul A.; Wilson, Deborah A.; Procop, Gary W.; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A.

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria. PMID:26529504

  3. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    PubMed

    Faron, Matthew L; Buchan, Blake W; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L; Granato, Paul A; Wilson, Deborah A; Procop, Gary W; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  4. Comprehensive DNA barcoding of the herpetofauna of Germany.

    PubMed

    Hawlitschek, O; Morinière, J; Dunz, A; Franzen, M; Rödder, D; Glaw, F; Haszprunar, G

    2016-01-01

    We present the first comprehensive DNA barcoding study of German reptiles and amphibians representing likewise the first on the European herpetofauna. A total of 248 barcodes for all native species and subspecies in the country and a few additional taxa were obtained in the framework of the projects 'Barcoding Fauna Bavarica' (BFB) and 'German Barcode of Life' (GBOL). In contrast to many invertebrate groups, the success rate of the identification of mitochondrial lineages representing species via DNA barcode was almost 100% because no cases of Barcode Index Number (BIN) sharing were detected within German native reptiles and amphibians. However, as expected, a reliable identification of the hybridogenetic species complex in the frog genus Pelophylax was not possible. Deep conspecific lineages resulting in the identification of more than one BIN were found in Lissotriton vulgaris, Natrix natrix and the hybridogenetic Pelophylax complex. A high variety of lineages with different BINs was also found in the barcodes of wall lizards (Podarcis muralis), confirming the existence of many introduced lineages and the frequent occurrence of multiple introductions. Besides the reliable species identification of all life stages and even of tissue remains, our study highlights other potential applications of DNA barcoding concerning German amphibians and reptiles, such as the detection of allochthonous lineages, monitoring of gene flow and also noninvasive sampling via environmental DNA. DNA barcoding based on COI has now proven to be a reliable and efficient tool for studying most amphibians and reptiles as it is already for many other organism groups in zoology. © 2015 John Wiley & Sons Ltd.

  5. Inclusion probability for DNA mixtures is a subjective one-sided match statistic unrelated to identification information

    PubMed Central

    Perlin, Mark William

    2015-01-01

    Background: DNA mixtures of two or more people are a common type of forensic crime scene evidence. A match statistic that connects the evidence to a criminal defendant is usually needed for court. Jurors rely on this strength of match to help decide guilt or innocence. However, the reliability of unsophisticated match statistics for DNA mixtures has been questioned. Materials and Methods: The most prevalent match statistic for DNA mixtures is the combined probability of inclusion (CPI), used by crime labs for over 15 years. When testing 13 short tandem repeat (STR) genetic loci, the CPI-1 value is typically around a million, regardless of DNA mixture composition. However, actual identification information, as measured by a likelihood ratio (LR), spans a much broader range. This study examined probability of inclusion (PI) mixture statistics for 517 locus experiments drawn from 16 reported cases and compared them with LR locus information calculated independently on the same data. The log(PI-1) values were examined and compared with corresponding log(LR) values. Results: The LR and CPI methods were compared in case examples of false inclusion, false exclusion, a homicide, and criminal justice outcomes. Statistical analysis of crime laboratory STR data shows that inclusion match statistics exhibit a truncated normal distribution having zero center, with little correlation to actual identification information. By the law of large numbers (LLN), CPI-1 increases with the number of tested genetic loci, regardless of DNA mixture composition or match information. These statistical findings explain why CPI is relatively constant, with implications for DNA policy, criminal justice, cost of crime, and crime prevention. Conclusions: Forensic crime laboratories have generated CPI statistics on hundreds of thousands of DNA mixture evidence items. However, this commonly used match statistic behaves like a random generator of inclusionary values, following the LLN rather than measuring identification information. A quantitative CPI number adds little meaningful information beyond the analyst's initial qualitative assessment that a person's DNA is included in a mixture. Statistical methods for reporting on DNA mixture evidence should be scientifically validated before they are relied upon by criminal justice. PMID:26605124

  6. Inclusion probability for DNA mixtures is a subjective one-sided match statistic unrelated to identification information.

    PubMed

    Perlin, Mark William

    2015-01-01

    DNA mixtures of two or more people are a common type of forensic crime scene evidence. A match statistic that connects the evidence to a criminal defendant is usually needed for court. Jurors rely on this strength of match to help decide guilt or innocence. However, the reliability of unsophisticated match statistics for DNA mixtures has been questioned. The most prevalent match statistic for DNA mixtures is the combined probability of inclusion (CPI), used by crime labs for over 15 years. When testing 13 short tandem repeat (STR) genetic loci, the CPI(-1) value is typically around a million, regardless of DNA mixture composition. However, actual identification information, as measured by a likelihood ratio (LR), spans a much broader range. This study examined probability of inclusion (PI) mixture statistics for 517 locus experiments drawn from 16 reported cases and compared them with LR locus information calculated independently on the same data. The log(PI(-1)) values were examined and compared with corresponding log(LR) values. The LR and CPI methods were compared in case examples of false inclusion, false exclusion, a homicide, and criminal justice outcomes. Statistical analysis of crime laboratory STR data shows that inclusion match statistics exhibit a truncated normal distribution having zero center, with little correlation to actual identification information. By the law of large numbers (LLN), CPI(-1) increases with the number of tested genetic loci, regardless of DNA mixture composition or match information. These statistical findings explain why CPI is relatively constant, with implications for DNA policy, criminal justice, cost of crime, and crime prevention. Forensic crime laboratories have generated CPI statistics on hundreds of thousands of DNA mixture evidence items. However, this commonly used match statistic behaves like a random generator of inclusionary values, following the LLN rather than measuring identification information. A quantitative CPI number adds little meaningful information beyond the analyst's initial qualitative assessment that a person's DNA is included in a mixture. Statistical methods for reporting on DNA mixture evidence should be scientifically validated before they are relied upon by criminal justice.

  7. Diagnostics of Neisseriaceae and Moraxellaceae by Ribosomal DNA Sequencing: Ribosomal Differentiation of Medical Microorganisms

    PubMed Central

    Harmsen, Dag; Singer, Christian; Rothgänger, Jörg; Tønjum, Tone; Sybren de Hoog, Gerrit; Shah, Haroun; Albert, Jürgen; Frosch, Matthias

    2001-01-01

    Fast and reliable identification of microbial isolates is a fundamental goal of clinical microbiology. However, in the case of some fastidious gram-negative bacterial species, classical phenotype identification based on either metabolic, enzymatic, or serological methods is difficult, time-consuming, and/or inadequate. 16S or 23S ribosomal DNA (rDNA) bacterial sequencing will most often result in accurate speciation of isolates. Therefore, the objective of this study was to find a hypervariable rDNA stretch, flanked by strongly conserved regions, which is suitable for molecular species identification of members of the Neisseriaceae and Moraxellaceae. The inter- and intrageneric relationships were investigated using comparative sequence analysis of PCR-amplified partial 16S and 23S rDNAs from a total of 94 strains. When compared to the type species of the genera Acinetobacter, Moraxella, and Neisseria, an average of 30 polymorphic positions was observed within the partial 16S rDNA investigated (corresponding to Escherichia coli positions 54 to 510) for each species and an average of 11 polymorphic positions was observed within the 202 nucleotides of the 23S rDNA gene (positions 1400 to 1600). Neisseria macacae and Neisseria mucosa subsp. mucosa (ATCC 19696) had identical 16S and 23S rDNA sequences. Species clusters were heterogeneous in both genes in the case of Acinetobacter lwoffii, Moraxella lacunata, and N. mucosa. Neisseria meningitidis isolates failed to cluster only in the 23S rDNA subset. Our data showed that the 16S rDNA region is more suitable than the partial 23S rDNA for the molecular diagnosis of Neisseriaceae and Moraxellaceae and that a reference database should include more than one strain of each species. All sequence chromatograms and taxonomic and disease-related information are available as part of our ribosomal differentiation of medical microorganisms (RIDOM) web-based service (http://www.ridom.hygiene.uni-wuerzburg.de/). Users can submit a sequence and conduct a similarity search against the RIDOM reference database for microbial identification purposes. PMID:11230407

  8. Taxonomic challenges in freshwater fishes: a mismatch between morphology and DNA barcoding in fish of the north-eastern part of the Congo basin.

    PubMed

    Decru, Eva; Moelants, Tuur; De Gelas, Koen; Vreven, Emmanuel; Verheyen, Erik; Snoeks, Jos

    2016-01-01

    This study evaluates the utility of DNA barcoding to traditional morphology-based species identifications for the fish fauna of the north-eastern Congo basin. We compared DNA sequences (COI) of 821 samples from 206 morphologically identified species. Best match, best close match and all species barcoding analyses resulted in a rather low identification success of 87.5%, 84.5% and 64.1%, respectively. The ratio 'nearest-neighbour distance/maximum intraspecific divergence' was lower than 1 for 26.1% of the samples, indicating possible taxonomic problems. In ten genera, belonging to six families, the number of species inferred from mtDNA data exceeded the number of species identified using morphological features; and in four cases indications of possible synonymy were detected. Finally, the DNA barcodes confirmed previously known identification problems within certain genera of the Clariidae, Cyprinidae and Mormyridae. Our results underscore the large number of taxonomic problems lingering in the taxonomy of the fish fauna of the Congo basin and illustrate why DNA barcodes will contribute to future efforts to compile a reliable taxonomic inventory of the Congo basin fish fauna. Therefore, the obtained barcodes were deposited in the reference barcode library of the Barcode of Life Initiative. © 2015 John Wiley & Sons Ltd.

  9. Integrating early detection with DNA barcoding: species identification of a non-native monitor lizard (Squamata: Varanidae) carcass in Mississippi, U.S.A.

    USGS Publications Warehouse

    Reed, Robert N.; Hopken, Matthew W.; Steen, David A.; Falk, Bryan G.; Piaggio, Antoinette J.

    2016-01-01

    Early detection of invasive species is critical to increasing the probability of successful management. At the primary stage of an invasion, invasive species are easier to control as the population is likely represented by just a few individuals. Detection of these first few individuals can be challenging, particularly if they are cryptic or otherwise characterized by low detectability. The engagement of members of the public may be critical to early detection as there are far more citizen s on the landscape than trained biologists. However, it can be difficult to assess the credibility of public reporting, especially when a diagnostic digital image or a physical specimen in good condition are lacking. DNA barcoding can be used for verification when morphological identification of a specimen is not possible or uncertain (i.e., degraded or partial specimen). DNA barcoding relies on obtaining a DNA sequence from a relatively small fragment of mitochondrial DNA and comparing it to a database of sequences containing a variety of expertly identified species. He rein we report the successful identification of a degraded specimen of a non-native, potentially invasive reptile species (Varanus niloticus) via DNA barcoding, after discovery and reporting by a member of the public.

  10. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  11. DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria

    PubMed Central

    Falade, Mofolusho O.; Opene, Anthony J.; Benson, Otarigho

    2016-01-01

    DNA barcoding has been adopted as a gold standard rapid, precise and unifying identification system for animal species and provides a database of genetic sequences that can be used as a tool for universal species identification. In this study, we employed mitochondrial genes 16S rRNA (16S) and cytochrome oxidase subunit I (COI) for the identification of some Nigerian freshwater catfish and Tilapia species. Approximately 655 bp were amplified from the 5′ region of the mitochondrial cytochrome C oxidase subunit I (COI) gene whereas 570 bp were amplified for the 16S rRNA gene. Nucleotide divergences among sequences were estimated based on Kimura 2-parameter distances and the genetic relationships were assessed by constructing phylogenetic trees using the neighbour-joining (NJ) and maximum likelihood (ML) methods. Analyses of consensus barcode sequences for each species, and alignment of individual sequences from within a given species revealed highly consistent barcodes (99% similarity on average), which could be compared with deposited sequences in public databases. The nucleotide distance between species belonging to different genera based on COI ranged from 0.17% between Sarotherodon melanotheron and Coptodon zillii to 0.49% between Clarias gariepinus and C. zillii, indicating that S. melanotheron and C. zillii are closely related. Based on the data obtained, the utility of COI gene was confirmed in accurate identification of three fish species from Southwest Nigeria. PMID:27990256

  12. DNA barcoding of morphologically characterized mosquitoes belonging to the subfamily Culicinae from Sri Lanka.

    PubMed

    Weeraratne, Thilini Chathurika; Surendran, Sinnathamby Noble; Parakrama Karunaratne, S H P

    2018-04-25

    Vectors of mosquito-borne diseases in Sri Lanka, except for malaria, belong to the subfamily Culicinae, which includes nearly 84% of the mosquito fauna of the country. Hence, accurate and precise species identification of culicine mosquitoes is a crucial factor in implementing effective vector control strategies. During the present study, a combined effort using morphology and DNA barcoding was made to characterize mosquitoes of the subfamily Culicinae for the first time from nine districts of Sri Lanka. Cytochrome c oxidase subunit 1 (cox1) gene from the mitochondrial genome and the internal transcribed spacer 2 (ITS2) region from the nuclear ribosomal DNA were used for molecular characterization. According to morphological identification, the field collected adult mosquitoes belonged to 5 genera and 14 species, i.e. Aedes aegypti, Ae. albopictus, Ae. pallidostriatus, Aedes sp. 1, Armigeres sp. 1, Culex bitaeniorhynchus, Cx. fuscocephala, Cx. gelidus, Cx. pseudovishnui, Cx. quinquefasciatus, Cx. tritaeniorhynchus, Cx. whitmorei, Mansonia uniformis and Mimomyia chamberlaini. Molecular analyses of 62 cox1 and 36 ITS2 sequences were exclusively comparable with the morphological identifications of all the species except for Ae. pallidostriatus and Aedes sp. 1. Although the species identification of Armigeres sp. 1 specimens using morphological features was not possible during this study, DNA barcodes of the specimens matched 100% with the publicly available Ar. subalbatus sequences, giving their species status. Analysis of all the cox1 sequences (14 clades supported by strong bootstrap value in the Neighbor-Joining tree and interspecific distances of > 3%) showed the presence of 14 different species. This is the first available DNA sequence in the GenBank records for morphologically identified Ae. pallidostriatus. Aedes sp. 1 could not be identified morphologically or by publicly available sequences. Aedes aegypti, Ae. albopictus and all Culex species reported during the current study are vectors of human diseases. All these vector species showed comparatively high diversity. The current study reflects the significance of integrated systematic approach and use of cox1 and ITS genetic markers in mosquito taxonomy. Results of DNA barcoding were comparable with morphological identifications and, more importantly, DNA barcoding could accurately identify the species in the instances where the traditional morphological identification failed due to indistinguishable characters of damaged specimens and the presence of subspecies.

  13. Applying plant DNA barcodes to identify species of Parnassia (Parnassiaceae).

    PubMed

    Yang, Jun-Bo; Wang, Yi-Ping; Möller, Michael; Gao, Lian-Ming; Wu, Ding

    2012-03-01

    DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia. © 2011 Blackwell Publishing Ltd.

  14. Molecular contributions to conservation

    USGS Publications Warehouse

    Haig, Susan M.

    1998-01-01

    Recent advances in molecular technology have opened a new chapter in species conservation efforts, as well as population biology. DNA sequencing, MHC (major histocompatibility complex), minisatellite, microsatellite, and RAPD (random amplified polymorphic DNA) procedures allow for identification of parentage, more distant relatives, founders to new populations, unidentified individuals, population structure, effective population size, population-specific markers, etc. PCR (polymerase chain reaction) amplification of mitochondrial DNA, nuclear DNA, ribosomal DNA, chloroplast DNA, and other systems provide for more sophisticated analyses of metapopulation structure, hybridization events, and delineation of species, subspecies, and races, all of which aid in setting species recovery priorities. Each technique can be powerful in its own right but is most credible when used in conjunction with other molecular techniques and, most importantly, with ecological and demographic data collected from the field. Surprisingly few taxa of concern have been assayed with any molecular technique. Thus, rather than showcasing exhaustive details from a few well-known examples, this paper attempts to present a broad range of cases in which molecular techniques have been used to provide insight into conservation efforts.

  15. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve whole mitochondrial genome sequences from even the most challenging samples. PMID:24289217

  16. Rescue of replication failure by Fanconi anaemia proteins.

    PubMed

    Constantinou, Angelos

    2012-02-01

    Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms.

  17. Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.

    PubMed

    Karvelis, Tautvydas; Gasiunas, Giedrius; Siksnys, Virginijus

    2017-05-15

    Recently the Cas9, an RNA guided DNA endonuclease, emerged as a powerful tool for targeted genome manipulations. Cas9 protein can be reprogrammed to cleave, bind or nick any DNA target by simply changing crRNA sequence, however a short nucleotide sequence, termed PAM, is required to initiate crRNA hybridization to the DNA target. PAM sequence is recognized by Cas9 protein and must be determined experimentally for each Cas9 variant. Exploration of Cas9 orthologs could offer a diversity of PAM sequences and novel biochemical properties that may be beneficial for genome editing applications. Here we briefly review and compare Cas9 PAM identification assays that can be adopted for other PAM-dependent CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  19. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  20. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  1. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  2. Multicenter Evaluation of the Vitek MS v3.0 System for the Identification of Filamentous Fungi.

    PubMed

    Rychert, Jenna; Slechta, E Sue; Barker, Adam P; Miranda, Edwin; Babady, N Esther; Tang, Yi-Wei; Gibas, Connie; Wiederhold, Nathan; Sutton, DeAnna; Hanson, Kimberly E

    2018-02-01

    Invasive fungal infections are an important cause of morbidity and mortality affecting primarily immunocompromised patients. While fungal identification to the species level is critical to providing appropriate therapy, it can be slow and laborious and often relies on subjective morphological criteria. The use of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry has the potential to speed up and improve the accuracy of identification. In this multicenter study, we evaluated the accuracy of the Vitek MS v3.0 system in identifying 1,601 clinical mold isolates compared to identification by DNA sequence analysis and supported by morphological and phenotypic testing. Among the 1,519 isolates representing organisms in the v3.0 database, 91% ( n = 1,387) were correctly identified to the species level. An additional 27 isolates (2%) were correctly identified to the genus level. Fifteen isolates were incorrectly identified, due to either a single incorrect identification ( n = 13) or multiple identifications from different genera ( n = 2). In those cases, when a single identification was provided that was not correct, the misidentification was within the same genus. The Vitek MS v3.0 was unable to identify 91 (6%) isolates, despite repeat testing. These isolates were distributed among all the genera. When considering all isolates tested, even those that were not represented in the database, the Vitek MS v3.0 provided a single correct identification 98% of the time. These findings demonstrate that the Vitek MS v3.0 system is highly accurate for the identification of common molds encountered in the clinical mycology laboratory. Copyright © 2018 American Society for Microbiology.

  3. Chemocoding as an identification tool where morphological- and DNA-based methods fall short: Inga as a case study.

    PubMed

    Endara, María-José; Coley, Phyllis D; Wiggins, Natasha L; Forrister, Dale L; Younkin, Gordon C; Nicholls, James A; Pennington, R Toby; Dexter, Kyle G; Kidner, Catherine A; Stone, Graham N; Kursar, Thomas A

    2018-04-01

    The need for species identification and taxonomic discovery has led to the development of innovative technologies for large-scale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in species-rich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or 'chemocoding', has great potential for plant identification in challenging tropical biomes. Using untargeted metabolomics in combination with multivariate analysis, we constructed species-level fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to next-generation DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae), both at single study sites and across broad geographic scales. Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continental-scale ranges. Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  4. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    PubMed

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  5. Mass spectrometry-based cDNA profiling as a potential tool for human body fluid identification.

    PubMed

    Donfack, Joseph; Wiley, Anissa

    2015-05-01

    Several mRNA markers have been exhaustively evaluated for the identification of human venous blood, saliva, and semen in forensic genetics. As new candidate human body fluid specific markers are discovered, evaluated, and reported in the scientific literature, there is an increasing trend toward determining the ideal markers for cDNA profiling of body fluids of forensic interest. However, it has not been determined which molecular genetics-based technique(s) should be utilized to assess the performance of these markers. In recent years, only a few confirmatory, mRNA/cDNA-based methods have been evaluated for applications in body fluid identification. The most frequently described methods tested to date include quantitative polymerase chain reaction (qPCR) and capillary electrophoresis (CE). However these methods, in particular qPCR, often favor narrow multiplex PCR due to the availability of a limited number of fluorescent dyes/tags. In an attempt to address this technological constraint, this study explored matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for human body fluid identification via cDNA profiling of venous blood, saliva, and semen. Using cDNA samples at 20pg input phosphoglycerate kinase 1 (PGK1) amounts, body fluid specific markers for the candidate genes were amplified in their corresponding body fluid (i.e., venous blood, saliva, or semen) and absent in the remaining two (100% specificity). The results of this study provide an initial indication that MALDI-TOF MS is a potential fluorescent dye-free alternative method for body fluid identification in forensic casework. However, the inherent issues of low amounts of mRNA, and the damage caused to mRNA by environmental exposures, extraction processes, and storage conditions are important factors that significantly hinder the implementation of cDNA profiling into forensic casework. Published by Elsevier Ireland Ltd.

  6. Application of DNA Barcodes in Asian Tropical Trees--A Case Study from Xishuangbanna Nature Reserve, Southwest China.

    PubMed

    Huang, Xiao-cui; Ci, Xiu-qin; Conran, John G; Li, Jie

    2015-01-01

    Within a regional floristic context, DNA barcoding is more useful to manage plant diversity inventories on a large scale and develop valuable conservation strategies. However, there are no DNA barcode studies from tropical areas of China, which represents one of the biodiversity hotspots around the world. A DNA barcoding database of an Asian tropical trees with high diversity was established at Xishuangbanna Nature Reserve, Yunnan, southwest China using rbcL and matK as standard barcodes, as well as trnH-psbA and ITS as supplementary barcodes. The performance of tree species identification success was assessed using 2,052 accessions from four plots belonging to two vegetation types in the region by three methods: Neighbor-Joining, Maximum-Likelihood and BLAST. We corrected morphological field identification errors (9.6%) for the three plots using rbcL and matK based on Neighbor-Joining tree. The best barcode region for PCR and sequencing was rbcL (97.6%, 90.8%), followed by trnH-psbA (93.6%, 85.6%), while matK and ITS obtained relative low PCR and sequencing success rates. However, ITS performed best for both species (44.6-58.1%) and genus (72.8-76.2%) identification. With trnH-psbA slightly less effective for species identification. The two standard barcode rbcL and matK gave poor results for species identification (24.7-28.5% and 31.6-35.3%). Compared with other studies from comparable tropical forests (e.g. Cameroon, the Amazon and India), the overall performance of the four barcodes for species identification was lower for the Xishuangbanna Nature Reserve, possibly because of species/genus ratios and species composition between these tropical areas. Although the core barcodes rbcL and matK were not suitable for species identification of tropical trees from Xishuangbanna Nature Reserve, they could still help with identification at the family and genus level. Considering the relative sequence recovery and the species identification performance, we recommend the use of trnH-psbA and ITS in combination as the preferred barcodes for tropical tree species identification in China.

  7. Molecular structures guide the engineering of chromatin.

    PubMed

    Tekel, Stefan J; Haynes, Karmella A

    2017-07-27

    Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Time- and Cost-Efficient Identification of T-DNA Insertion Sites through Targeted Genomic Sequencing

    PubMed Central

    Lepage, Étienne; Zampini, Éric; Boyle, Brian; Brisson, Normand

    2013-01-01

    Forward genetic screens enable the unbiased identification of genes involved in biological processes. In Arabidopsis, several mutant collections are publicly available, which greatly facilitates such practice. Most of these collections were generated by agrotransformation of a T-DNA at random sites in the plant genome. However, precise mapping of T-DNA insertion sites in mutants isolated from such screens is a laborious and time-consuming task. Here we report a simple, low-cost and time efficient approach to precisely map T-DNA insertions simultaneously in many different mutants. By combining sequence capture, next-generation sequencing and 2D-PCR pooling, we developed a new method that allowed the rapid localization of T-DNA insertion sites in 55 out of 64 mutant plants isolated in a screen for gyrase inhibition hypersensitivity. PMID:23951038

  9. Identification of Medically Important Yeasts Using PCR-Based Detection of DNA Sequence Polymorphisms in the Internal Transcribed Spacer 2 Region of the rRNA Genes

    PubMed Central

    Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.

    2000-01-01

    Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993

  10. DNA barcoding as an aid for species identification in austral black flies (Insecta: Diptera: Simuliidae).

    PubMed

    Hernández-Triana, Luis M; Montes De Oca, Fernanda; Prosser, Sean W J; Hebert, Paul D N; Gregory, T Ryan; McMurtrie, Shelley

    2017-04-01

    In this paper, the utility of a partial sequence of the COI gene, the DNA barcoding region, for the identification of species of black flies in the austral region was assessed. Twenty-eight morphospecies were analyzed: eight of the genus Austrosimulium (four species in the subgenus Austrosimulium s. str., three species in the subgenus Novaustrosimulium, and one species unassigned to subgenus), two of the genus Cnesia, eight of Gigantodax, three of Paracnephia, one of Paraustrosimulium, and six of Simulium (subgenera Morops, Nevermannia, and Pternaspatha). The neighbour-joining tree derived from the DNA barcode sequences grouped most specimens according to species or species groups recognized by morphotaxonomic studies. Intraspecific sequence divergences within morphologically distinct species ranged from 0% to 1.8%, while higher divergences (2%-4.2%) in certain species suggested the presence of cryptic diversity. The existence of well-defined groups within S. simile revealed the likely inclusion of cryptic diversity. DNA barcodes also showed that specimens identified as C. dissimilis, C. nr. pussilla, and C. ornata might be conspecific, suggesting possible synonymy. DNA barcoding combined with a sound morphotaxonomic framework would provide an effective approach for the identification of black flies in the region.

  11. Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia).

    PubMed

    Sinniger, Frederic; Reimer, James D; Pawlowski, Jan

    2008-12-01

    The order Zoantharia is known for its chaotic taxonomy and difficult morphological identification. One method that potentially could help for examining such troublesome taxa is DNA barcoding, which identifies species using standard molecular markers. The mitochondrial cytochrome oxidase subunit I (COI) has been utilized to great success in groups such as birds and insects; however, its applicability in many other groups is controversial. Recently, some studies have suggested that barcoding is not applicable to anthozoans. Here, we examine the use of COI and mitochondrial 16S ribosomal DNA for zoanthid identification. Despite the absence of a clear barcoding gap, our results show that for most of 54 zoanthid samples, both markers could separate samples to the species, or species group, level, particularly when easily accessible ecological or distributional data were included. Additionally, we have used the short V5 region of mt 16S rDNA to identify eight old (13 to 50 years old) museum samples. We discuss advantages and disadvantages of COI and mt 16S rDNA as barcodes for Zoantharia, and recommend that either one or both of these markers be considered for zoanthid identification in the future.

  12. RNA:DNA Ratio and Other Nucleic Acid Derived Indices in Marine Ecology

    PubMed Central

    Chícharo, Maria Alexandra; Chícharo, Luis

    2008-01-01

    Some of most used indicators in marine ecology are nucleic acid-derived indices. They can be divided by target levels in three groups: 1) at the organism level as ecophysiologic indicators, indicators such as RNA:DNA ratios, DNA:dry weight and RNA:protein, 2) at the population level, indicators such as growth rate, starvation incidence or fisheries impact indicators, and 3) at the community level, indicators such as trophic interactions, exergy indices and prey identification. The nucleic acids derived indices, especially RNA:DNA ratio, have been applied with success as indicators of nutritional condition, well been and growth in marine organisms. They are also useful as indicators of natural or anthropogenic impacts in marine population and communities, such as upwelling or dredge fisheries, respectively. They can help in understanding important issues of marine ecology such as trophic interactions in marine environment, fish and invertebrate recruitment failure and biodiversity changes, without laborious work of counting, measuring and identification of small marine organisms. Besides the objective of integrate nucleic acid derived indices across levels of organization, the paper will also include a general characterization of most used nucleic acid derived indices in marine ecology and also advantages and limitations of them. We can conclude that using indicators, such RNA:DNA ratios and other nucleic acids derived indices concomitantly with organism and ecosystems measures of responses to climate change (distribution, abundance, activity, metabolic rate, survival) will allow for the development of more rigorous and realistic predictions of the effects of anthropogenic climate change on marine systems. PMID:19325815

  13. [PCR identification of DNA of hosts of the taiga tick nymphs (Ixodes persulcatus: Ixodinae) in St. Petersburg and its suburbs].

    PubMed

    Grigor'eva, L A; Markov, A V

    2011-01-01

    PCR identification of host DNA in unfed females and males of taiga tick Ixodes persulcatus was performed. Amplification of each sample was done using primers species-specific by 12S rDNA mitochondrial gene. Four species of small mammals (Apodemus uralensis, Clethrionomys glareolus, Microtus arvalis, and Sorex araneus) and two passeriform bird species (Fringilla coelebs and Parus major) were analysed. For one third of tick samples, hosts of previous stages were established using this method. In five cases, feeding on more than one host species was detected.

  14. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    PubMed

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  15. DNA barcoding the floras of biodiversity hotspots.

    PubMed

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G; Savolainen, Vincent

    2008-02-26

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a "DNA barcoding gap" is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes.

  16. DNA barcoding the floras of biodiversity hotspots

    PubMed Central

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G.; Savolainen, Vincent

    2008-01-01

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a “DNA barcoding gap” is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes. PMID:18258745

  17. Evaluation of protein spectra cluster analysis for Streptococcus spp. identification from various swine clinical samples.

    PubMed

    Matajira, Carlos E C; Moreno, Luisa Z; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Doto, Daniela S; Calderaro, Franco F; de Souza, Fernando N; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2017-03-01

    Traditional microbiological methods enable genus-level identification of Streptococcus spp. isolates. However, as the species of this genus show broad phenotypic variation, species-level identification or even differentiation within the genus is difficult. Herein we report the evaluation of protein spectra cluster analysis for the identification of Streptococcus species associated with disease in swine by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 250 S. suis-like isolates obtained from pigs with clinical signs of encephalitis, arthritis, pneumonia, metritis, and urinary or septicemic infection were studied. The isolates came from pigs in different Brazilian states from 2001 to 2014. The MALDI-TOF MS analysis identified 86% (215 of 250) as S. suis and 14% (35 of 250) as S. alactolyticus, S. dysgalactiae, S. gallinaceus, S. gallolyticus, S. gordonii, S. henryi, S. hyointestinalis, S. hyovaginalis, S. mitis, S. oralis, S. pluranimalium, and S. sanguinis. The MALDI-TOF MS identification was confirmed in 99.2% of the isolates by 16S rDNA sequencing, with MALDI-TOF MS misidentifying 2 S. pluranimalium as S. hyovaginalis. Isolates were also tested by a biochemical automated system that correctly identified all isolates of 8 of the 10 species in the database. Neither the isolates of the 3 species not in the database ( S. gallinaceus, S. henryi, and S. hyovaginalis) nor the isolates of 2 species that were in the database ( S. oralis and S. pluranimalium) could be identified. The topology of the protein spectra cluster analysis appears to sustain the species phylogenetic similarities, further supporting identification by MALDI-TOF MS examination as a rapid and accurate alternative to 16S rDNA sequencing.

  18. Issues and strategies in the DNA identification of World Trade Center victims.

    PubMed

    Brenner, C H; Weir, B S

    2003-05-01

    Identification of the nearly 3000 victims of the World Trade Center attack, represented by about 15,000 body parts, rests heavily on DNA. Reference DNA profiles are often from relatives rather than from the deceased themselves. With so large a set of victims, coincidental similarities between non-relatives abound. Therefore considerable care is necessary to succeed in correlating references with correct victims while avoiding spurious assignments. Typically multiple relatives are necessary to establish the identity of a victim. We describe a 3-stage paradigm--collapse, screen, test--to organize the work of sorting out the identities. Inter alia we present a simple and general formula for the likelihood ratio governing practically any potential relationship between two DNA profiles.

  19. Phylogenetic Reconstruction and DNA Barcoding for Closely Related Pine Moth Species (Dendrolimus) in China with Multiple Gene Markers

    PubMed Central

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), “best close match” (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10–97.40%, while ITS1 and ITS2 obtained a success rate of 64.70–81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our results indicate that the most closely related species D. punctatus, D. tabulaeformis, and D. spectabilis, may be still in the process of incomplete lineage sorting, with occasional hybridizations occurring among them. PMID:22509245

  20. The Fulton County Medical Examiner's experience with the Federal Bureau of Investigation National Missing Person DNA Database Program, 2004-2007.

    PubMed

    Heninger, Michael; Hanzlick, Randy

    2011-03-01

    Medical examiners and coroners occasionally encounter unidentified human bodies, which remain unidentified for extended periods. In such cases, when traditional methods of identification have failed or cannot be used, DNA profiling may be used. The Federal Bureau of Investigation has a National Missing Person DNA database (NMPDD) laboratory to which samples may be submitted on such cases and from possible relatives or environments of unidentified decedents. This article describes the experience of the Fulton County Medical Examiner (FCME) in submitting samples to the NMPDD laboratory. A database was established at the FCME to track the submission of samples from unidentified decedents to the NMPDD laboratory for DNA testing along with the results and turnaround times. In December 2004, the FCME inventoried all cases for which samples were available and began to submit them to the NMPDD laboratory for testing. DNA testing and isolation rates, sample type, and turnaround times were tabulated in October 2006 for samples submitted between December 16, 2004 and December 16, 2005. An overall summary of data was also prepared concerning the status of all samples submitted as of April 17, 2007. During the 1-year study period, samples from 77 unidentified decedents were submitted to the laboratory. As of October 2006 (22 months after submission of the first samples and 10 months after submission of the last samples), testing had been completed on 53% of the samples submitted, and 68% of those tested resulted in a mitochondrial DNA profile. Turnaround times ranged from 66 to 557 days, improved with time, and had a mean of 107 days for specimens submitted during the latter part of the study period. As of April 17, 2007, we had submitted samples involving 84 unidentified decedents. Seventy-five percent of the samples have now been tested. Data from the NMPDD laboratory have resulted in 4 identifications by comparison with putative relatives, 4 exclusions, and no cold hits through comparison NMPDD DNA profiles from missing persons. More extensive data are presented in the body of this article. The NMPDD laboratory provides useful and free services to medical examiners, coroners, and law enforcement agencies that require DNA services regarding missing and unidentified persons. Turnaround times have improved. The success of the system in getting cold hits will be heavily dependent on law enforcement filing missing persons reports and submission of reference samples from putative relatives of the decedent. We recommend collecting specimens for DNA analysis early on in the postmortem investigation, submitting samples to the NMPDD laboratory or one of its participating laboratories when traditional methods for identification cannot be used or have failed, not burying bodies until a DNA profile has been obtained, and not cremating unidentified remains.

  1. [Analysis of genetic diversity of Russian regional populations based on common STR markers used in DNA identification].

    PubMed

    Pesik, V Yu; Fedunin, A A; Agdzhoyan, A T; Utevska, O M; Chukhraeva, M I; Evseeva, I V; Churnosov, M I; Lependina, I N; Bogunov, Yu V; Bogunova, A A; Ignashkin, M A; Yankovsky, N K; Balanovska, E V; Orekhov, V A; Balanovsky, O P

    2014-06-01

    We conducted the first genetic analysis of a wide a range of rural Russian populations in European Russia with a panel of common DNA markers commonly used in criminalistics genetic identification. We examined a total of 647 samples from indigenous ethnic Russian populations in Arkhangelsk, Belgorod, Voronezh, Kursk, Rostov, Ryazan, and Orel regions. We employed a multiplex genotyping kit, COrDIS Plus, to genotype Short Tandem Repeat (STR) loci, which included the genetic marker panel officially recommended for DNA identification in the Russian Federation, the United States, and the European Union. In the course of our study, we created a database of allelic frequencies, examined the distribution of alleles and genotypes in seven rural Russian populations, and defined the genetic relationships between these populations. We found that, although multidimensional analysis indicated a difference between the Northern gene pool and the rest of the Russian European populations, a pairwise comparison using 19 STR markers among all populations did not reveal significant differences. This is in concordance with previous studies, which examined up to 12 STR markers of urban Russian populations. Therefore, the database of allelic frequencies created in this study can be applied for forensic examinations and DNA identification among the ethnic Russian population over European Russia. We also noted a decrease in the levels of heterozygosity in the northern Russian population compared to ethnic populations in southern and central Russia, which is consistent with trends identified previously using classical gene markers and analysis of mitochondrial DNA.

  2. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing

    PubMed Central

    Karimi, Ramin; Hajdu, Andras

    2016-01-01

    Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identification method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identification process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation sequencing analysis. PMID:26884678

  3. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing.

    PubMed

    Karimi, Ramin; Hajdu, Andras

    2016-01-01

    Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identification method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identification process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation sequencing analysis.

  4. DNA barcodes reveal microevolutionary signals in fire response trait in two legume genera

    PubMed Central

    Bello, Abubakar; Daru, Barnabas H.; Stirton, Charles H.; Chimphango, Samson B. M.; van der Bank, Michelle; Maurin, Olivier; Muasya, A. Muthama

    2015-01-01

    Large-scale DNA barcoding provides a new technique for species identification and evaluation of relationships across various levels (populations and species) and may reveal fundamental processes in recently diverged species. Here, we analysed DNA sequence variation in the recently diverged legumes from the Psoraleeae (Fabaceae) occurring in the Cape Floristic Region (CFR) of southern Africa to test the utility of DNA barcodes in species identification and discrimination. We further explored the phylogenetic signal on fire response trait (reseeding and resprouting) at species and generic levels. We showed that Psoraleoid legumes of the CFR exhibit a barcoding gap yielding the combination of matK and rbcLa (matK + rbcLa) data set as a better barcode than single regions. We found a high score (100 %) of correct identification of individuals to their respective genera but a very low score (<50 %) in identifying them to species. We found a considerable match (54 %) between genetic species and morphologically delimited species. We also found that different lineages showed a weak but significant phylogenetic conservatism in their response to fire as reseeders or resprouters, with more clustering of resprouters than would be expected by chance. These novel microevolutionary patterns might be acting continuously over time to produce multi-scale regularities of biodiversity. This study provides the first insight into the DNA barcoding campaign of land plants in species identification and detection of the phylogenetic signal in recently diverged lineages of the CFR. PMID:26507570

  5. Identification of Amazonian Trees with DNA Barcodes

    PubMed Central

    Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A.; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme

    2009-01-01

    Background Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Methodology/Principal Findings Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. Conclusion/Significance We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs. PMID:19834612

  6. Application of permanents of square matrices for DNA identification in multiple-fatality cases

    PubMed Central

    2013-01-01

    Background DNA profiling is essential for individual identification. In forensic medicine, the likelihood ratio (LR) is commonly used to identify individuals. The LR is calculated by comparing two hypotheses for the sample DNA: that the sample DNA is identical or related to a reference DNA, and that it is randomly sampled from a population. For multiple-fatality cases, however, identification should be considered as an assignment problem, and a particular sample and reference pair should therefore be compared with other possibilities conditional on the entire dataset. Results We developed a new method to compute the probability via permanents of square matrices of nonnegative entries. As the exact permanent is known as a #P-complete problem, we applied the Huber–Law algorithm to approximate the permanents. We performed a computer simulation to evaluate the performance of our method via receiver operating characteristic curve analysis compared with LR under the assumption of a closed incident. Differences between the two methods were well demonstrated when references provided neither obligate alleles nor impossible alleles. The new method exhibited higher sensitivity (0.188 vs. 0.055) at a threshold value of 0.999, at which specificity was 1, and it exhibited higher area under a receiver operating characteristic curve (0.990 vs. 0.959, P = 9.6E-15). Conclusions Our method therefore offers a solution for a computationally intensive assignment problem and may be a viable alternative to LR-based identification for closed-incident multiple-fatality cases. PMID:23962363

  7. Molecular identification of python species: development and validation of a novel assay for forensic investigations.

    PubMed

    Ciavaglia, Sherryn A; Tobe, Shanan S; Donnellan, Stephen C; Henry, Julianne M; Linacre, Adrian M T

    2015-05-01

    Python snake species are often encountered in illegal activities and the question of species identity can be pertinent to such criminal investigations. Morphological identification of species of pythons can be confounded by many issues and molecular examination by DNA analysis can provide an alternative and objective means of identification. Our paper reports on the development and validation of a PCR primer pair that amplifies a segment of the mitochondrial cytochrome b gene that has been suggested previously as a good candidate locus for differentiating python species. We used this DNA region to perform species identification of pythons, even when the template DNA was of poor quality, as might be the case with forensic evidentiary items. Validation tests are presented to demonstrate the characteristics of the assay. Tests involved the cross-species amplification of this marker in non-target species, minimum amount of DNA template required, effects of degradation on product amplification and a blind trial to simulate a casework scenario that provided 100% correct identity. Our results demonstrate that this assay performs reliably and robustly on pythons and can be applied directly to forensic investigations where the presence of a species of python is in question. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  9. Identification and Antifungal Susceptibility Testing of Candida Species: A Comparison of Vitek-2 System with Conventional and Molecular Methods.

    PubMed

    Kaur, Ravinder; Dhakad, Megh Singh; Goyal, Ritu; Haque, Absarul; Mukhopadhyay, Gauranga

    2016-01-01

    Candida infection is a major cause of morbidity and mortality in immunocompromised patients; an accurate and early identification is a prerequisite need to be taken as an effective measure for the management of patients. The purpose of this study was to compare the conventional identification of Candida species with identification by Vitek-2 system and the antifungal susceptibility testing (AST) by broth microdilution method with Vitek-2 AST system. A total of 172 Candida isolates were subjected for identification by the conventional methods, Vitek-2 system, restriction fragment length polymorphism, and random amplified polymorphic DNA analysis. AST was carried out as per the Clinical and Laboratory Standards Institute M27-A3 document and by Vitek-2 system. Candida albicans (82.51%) was the most common Candida species followed by Candida tropicalis (6.29%), Candida krusei (4.89%), Candida parapsilosis (3.49%), and Candida glabrata (2.79%). With Vitek-2 system, of the 172 isolates, 155 Candida isolates were correctly identified, 13 were misidentified, and four were with low discrimination. Whereas with conventional methods, 171 Candida isolates were correctly identified and only a single isolate of C. albicans was misidentified as C. tropicalis . The average measurement of agreement between the Vitek-2 system and conventional methods was >94%. Most of the isolates were susceptible to fluconazole (88.95%) and amphotericin B (97.67%). The measurement of agreement between the methods of AST was >94% for fluconazole and >99% for amphotericin B, which was statistically significant ( P < 0.01). The study confirmed the importance and reliability of conventional and molecular methods, and the acceptable agreements suggest Vitek-2 system an alternative method for speciation and sensitivity testing of Candida species infections.

  10. Genetic genealogy reveals true Y haplogroup of House of Bourbon contradicting recent identification of the presumed remains of two French Kings.

    PubMed

    Larmuseau, Maarten H D; Delorme, Philippe; Germain, Patrick; Vanderheyden, Nancy; Gilissen, Anja; Van Geystelen, Anneleen; Cassiman, Jean-Jacques; Decorte, Ronny

    2014-05-01

    Genetic analysis strongly increases the opportunity to identify skeletal remains or other biological samples from historical figures. However, validation of this identification is essential and should be done by DNA typing of living relatives. Based on the similarity of a limited set of Y-STRs, a blood sample and a head were recently identified as those belonging respectively to King Louis XVI and his paternal ancestor King Henry IV. Here, we collected DNA samples from three living males of the House of Bourbon to validate the since then controversial identification of these remains. The three living relatives revealed the Bourbon's Y-chromosomal variant on a high phylogenetic resolution for several members of the lineage between Henry IV and Louis XVI. This 'true' Bourbon's variant is different from the published Y-STR profiles of the blood as well as of the head. The earlier identifications of these samples can therefore not be validated. Moreover, matrilineal genealogical data revealed that the published mtDNA sequence of the head was also different from the one of a series of relatives. This therefore leads to the conclusion that the analyzed samples were not from the French kings. Our study once again demonstrated that in order to realize an accurate genetic identification of historical remains DNA typing of living persons, who are paternally or maternally related with the presumed donor of the samples, is required.

  11. Genetic genealogy reveals true Y haplogroup of House of Bourbon contradicting recent identification of the presumed remains of two French Kings

    PubMed Central

    Larmuseau, Maarten H D; Delorme, Philippe; Germain, Patrick; Vanderheyden, Nancy; Gilissen, Anja; Van Geystelen, Anneleen; Cassiman, Jean-Jacques; Decorte, Ronny

    2014-01-01

    Genetic analysis strongly increases the opportunity to identify skeletal remains or other biological samples from historical figures. However, validation of this identification is essential and should be done by DNA typing of living relatives. Based on the similarity of a limited set of Y-STRs, a blood sample and a head were recently identified as those belonging respectively to King Louis XVI and his paternal ancestor King Henry IV. Here, we collected DNA samples from three living males of the House of Bourbon to validate the since then controversial identification of these remains. The three living relatives revealed the Bourbon's Y-chromosomal variant on a high phylogenetic resolution for several members of the lineage between Henry IV and Louis XVI. This ‘true' Bourbon's variant is different from the published Y-STR profiles of the blood as well as of the head. The earlier identifications of these samples can therefore not be validated. Moreover, matrilineal genealogical data revealed that the published mtDNA sequence of the head was also different from the one of a series of relatives. This therefore leads to the conclusion that the analyzed samples were not from the French kings. Our study once again demonstrated that in order to realize an accurate genetic identification of historical remains DNA typing of living persons, who are paternally or maternally related with the presumed donor of the samples, is required. PMID:24105374

  12. Rapid identification and classification of Mycobacterium spp. using whole-cell protein barcodes with matrix assisted laser desorption ionization time of flight mass spectrometry in comparison with multigene phylogenetic analysis.

    PubMed

    Wang, Jun; Chen, Wen Feng; Li, Qing X

    2012-02-24

    The need of quick diagnostics and increasing number of bacterial species isolated necessitate development of a rapid and effective phenotypic identification method. Mass spectrometry (MS) profiling of whole cell proteins has potential to satisfy the requirements. The genus Mycobacterium contains more than 154 species that are taxonomically very close and require use of multiple genes including 16S rDNA for phylogenetic identification and classification. Six strains of five Mycobacterium species were selected as model bacteria in the present study because of their 16S rDNA similarity (98.4-99.8%) and the high similarity of the concatenated 16S rDNA, rpoB and hsp65 gene sequences (95.9-99.9%), requiring high identification resolution. The classification of the six strains by MALDI TOF MS protein barcodes was consistent with, but at much higher resolution than, that of the multi-locus sequence analysis of using 16S rDNA, rpoB and hsp65. The species were well differentiated using MALDI TOF MS and MALDI BioTyper™ software after quick preparation of whole-cell proteins. Several proteins were selected as diagnostic markers for species confirmation. An integration of MALDI TOF MS, MALDI BioTyper™ software and diagnostic protein fragments provides a robust phenotypic approach for bacterial identification and classification. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Automation of DNA and miRNA co-extraction for miRNA-based identification of human body fluids and tissues.

    PubMed

    Kulstein, Galina; Marienfeld, Ralf; Miltner, Erich; Wiegand, Peter

    2016-10-01

    In the last years, microRNA (miRNA) analysis came into focus in the field of forensic genetics. Yet, no standardized and recommendable protocols for co-isolation of miRNA and DNA from forensic relevant samples have been developed so far. Hence, this study evaluated the performance of an automated Maxwell® 16 System-based strategy (Promega) for co-extraction of DNA and miRNA from forensically relevant (blood and saliva) samples compared to (semi-)manual extraction methods. Three procedures were compared on the basis of recovered quantity of DNA and miRNA (as determined by real-time PCR and Bioanalyzer), miRNA profiling (shown by Cq values and extraction efficiency), STR profiles, duration, contamination risk and handling. All in all, the results highlight that the automated co-extraction procedure yielded the highest miRNA and DNA amounts from saliva and blood samples compared to both (semi-)manual protocols. Also, for aged and genuine samples of forensically relevant traces the miRNA and DNA yields were sufficient for subsequent downstream analysis. Furthermore, the strategy allows miRNA extraction only in cases where it is relevant to obtain additional information about the sample type. Besides, this system enables flexible sample throughput and labor-saving sample processing with reduced risk of cross-contamination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    PubMed

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  15. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering

    PubMed Central

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M. Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945

  16. Phylogenetic reconstruction in the Order Nymphaeales: ITS2 secondary structure analysis and in silico testing of maturase k (matK) as a potential marker for DNA bar coding

    PubMed Central

    2012-01-01

    Background The Nymphaeales (waterlilly and relatives) lineage has diverged as the second branch of basal angiosperms and comprises of two families: Cabombaceae and Nymphaceae. The classification of Nymphaeales and phylogeny within the flowering plants are quite intriguing as several systems (Thorne system, Dahlgren system, Cronquist system, Takhtajan system and APG III system (Angiosperm Phylogeny Group III system) have attempted to redefine the Nymphaeales taxonomy. There have been also fossil records consisting especially of seeds, pollen, stems, leaves and flowers as early as the lower Cretaceous. Here we present an in silico study of the order Nymphaeales taking maturaseK (matK) and internal transcribed spacer (ITS2) as biomarkers for phylogeny reconstruction (using character-based methods and Bayesian approach) and identification of motifs for DNA barcoding. Results The Maximum Likelihood (ML) and Bayesian approach yielded congruent fully resolved and well-supported trees using a concatenated (ITS2+ matK) supermatrix aligned dataset. The taxon sampling corroborates the monophyly of Cabombaceae. Nuphar emerges as a monophyletic clade in the family Nymphaeaceae while there are slight discrepancies in the monophyletic nature of the genera Nymphaea owing to Victoria-Euryale and Ondinea grouping in the same node of Nymphaeaceae. ITS2 secondary structures alignment corroborate the primary sequence analysis. Hydatellaceae emerged as a sister clade to Nymphaeaceae and had a basal lineage amongst the water lilly clades. Species from Cycas and Ginkgo were taken as outgroups and were rooted in the overall tree topology from various methods. Conclusions MatK genes are fast evolving highly variant regions of plant chloroplast DNA that can serve as potential biomarkers for DNA barcoding and also in generating primers for angiosperms with identification of unique motif regions. We have reported unique genus specific motif regions in the Order Nymphaeles from matK dataset which can be further validated for barcoding and designing of PCR primers. Our analysis using a novel approach of sequence-structure alignment and phylogenetic reconstruction using molecular morphometrics congrue with the current placement of Hydatellaceae within the early-divergent angiosperm order Nymphaeales. The results underscore the fact that more diverse genera, if not fully resolved to be monophyletic, should be represented by all major lineages. PMID:23282079

  17. Development of propidium iodide as a fluorescence probe for the on-line screening of non-specific DNA-intercalators in Fufang Banbianlian Injection.

    PubMed

    Niu, Yanyan; Li, Sensen; Lin, Zongtao; Liu, Meixian; Wang, Daidong; Wang, Hong; Chen, Shizhong

    2016-09-09

    Fufang Banbianlian Injection (FBI) has been widely used as an anti-inflammatory and anti-tumor prescription. To understand the relationships between its bioactive ingredients and pharmacological efficacies, our previous study has been successfully identified some DNA-binding compounds in FBI using an established on-line screening system, in which 4',6-diamidino-2-phenylindole (DAPI) was developed as a probe. However, DAPI can be only used to screen ATT-specific DNA minor groove binders, leaving the potential active intercalators unknown in FBI. As a continuation of our studies on FBI, here we present a sensitive analytical method for rapid identification and evaluation of DNA-intercalators using propidium iodide (PI) as a fluorescent probe. We have firstly established the technique of high-performance liquid chromatography-diode-array detector-multistage mass spectrometry-deoxyribonucleic acid-propidium iodide-fluorescence detector (HPLC-DAD-MS(n)-DNA-PI-FLD) system. As a result, 38 of 58 previously identified compounds in FBI were DNA-intercalation active. Interestingly, all previously reported DNA-binders also showed intercalative activities, suggesting they are dual-mode DNA-binders. Quantitative study showed that flavonoid glycosides and chlorogenic acids were the main active compounds in FBI, and displayed similar DNA-binding ability using either DAPI or PI. In addition, 13 active compounds were used to establish the structure-activity relationships. In this study, PI was developed into an on-line method for identifying DNA-intercalators for the first time, and thus it will be a useful high-throughput screening technique for other related samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae).

    PubMed

    Magnacca, Karl N; Brown, Mark J F

    2010-06-11

    The past several years have seen a flurry of papers seeking to clarify the utility and limits of DNA barcoding, particularly in areas such as species discovery and paralogy due to nuclear pseudogenes. Heteroplasmy, the coexistence of multiple mitochondrial haplotypes in a single organism, has been cited as a potentially serious problem for DNA barcoding but its effect on identification accuracy has not been tested. In addition, few studies of barcoding have tested a large group of closely-related species with a well-established morphological taxonomy. In this study we examine both of these issues, by densely sampling the Hawaiian Hylaeus bee radiation. Individuals from 21 of the 49 a priori morphologically-defined species exhibited coding sequence heteroplasmy at levels of 1-6% or more. All homoplasmic species were successfully identified by COI using standard methods of analysis, but only 71% of heteroplasmic species. The success rate in identifying heteroplasmic species was increased to 86% by treating polymorphisms as character states rather than ambiguities. Nuclear pseudogenes (numts) were also present in four species, and were distinguishable from heteroplasmic sequences by patterns of nucleotide and amino acid change. Heteroplasmy significantly decreased the reliability of species identification. In addition, the practical issue of dealing with large numbers of polymorphisms- and resulting increased time and labor required - makes the development of DNA barcode databases considerably more complex than has previously been suggested. The impact of heteroplasmy on the utility of DNA barcoding as a bulk specimen identification tool will depend upon its frequency across populations, which remains unknown. However, DNA barcoding is still likely to remain an important identification tool for those species that are difficult or impossible to identify through morphology, as is the case for the ecologically important solitary bee fauna.

  19. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae)

    PubMed Central

    2010-01-01

    Background The past several years have seen a flurry of papers seeking to clarify the utility and limits of DNA barcoding, particularly in areas such as species discovery and paralogy due to nuclear pseudogenes. Heteroplasmy, the coexistence of multiple mitochondrial haplotypes in a single organism, has been cited as a potentially serious problem for DNA barcoding but its effect on identification accuracy has not been tested. In addition, few studies of barcoding have tested a large group of closely-related species with a well-established morphological taxonomy. In this study we examine both of these issues, by densely sampling the Hawaiian Hylaeus bee radiation. Results Individuals from 21 of the 49 a priori morphologically-defined species exhibited coding sequence heteroplasmy at levels of 1-6% or more. All homoplasmic species were successfully identified by COI using standard methods of analysis, but only 71% of heteroplasmic species. The success rate in identifying heteroplasmic species was increased to 86% by treating polymorphisms as character states rather than ambiguities. Nuclear pseudogenes (numts) were also present in four species, and were distinguishable from heteroplasmic sequences by patterns of nucleotide and amino acid change. Conclusions Heteroplasmy significantly decreased the reliability of species identification. In addition, the practical issue of dealing with large numbers of polymorphisms- and resulting increased time and labor required - makes the development of DNA barcode databases considerably more complex than has previously been suggested. The impact of heteroplasmy on the utility of DNA barcoding as a bulk specimen identification tool will depend upon its frequency across populations, which remains unknown. However, DNA barcoding is still likely to remain an important identification tool for those species that are difficult or impossible to identify through morphology, as is the case for the ecologically important solitary bee fauna. PMID:20540728

  20. Integrating DNA-based data into bioassessments improves ...

    EPA Pesticide Factsheets

    The integration of DNA-based identification methods into bioassessments could result in more accurate representations of species distributions and species-habitat relationships. DNA-based approaches may be particularly informative for tracking the distributions of rare and/or invasive species that can comprise a small proportion of samples or are difficult to identify morphologically. In 2012 and 2013, we used a combination of morphological and DNA-based methods (meta-barcoding) to identify fish eggs and larvae collected in the St. Louis River estuary area, Minnesota. We found a large proportion of cases where a lack of agreement occurred between species identified at a site using morphological versus DNA identification, prompting a discussion of how to best reconcile these differences. Choices made during sampling collection, DNA amplification/extraction, and bioinformatics processing influence the DNA-morphology match. The distribution of some species (including several invasives) and their relationships to habitat changed after DNA-data was incorporated. Results highlight how incorporating of DNA-data may get us closer to the “truth”, which has large ramifications in the search for rare species and when understanding the environmental drivers of species distributions is important for management. not applicable

Top