Science.gov

Sample records for dna ligase iv

  1. DNA ligase IV syndrome; a review.

    PubMed

    Altmann, Thomas; Gennery, Andrew R

    2016-10-07

    DNA ligase IV deficiency is a rare primary immunodeficiency, LIG4 syndrome, often associated with other systemic features. DNA ligase IV is part of the non-homologous end joining mechanism, required to repair DNA double stranded breaks. Ubiquitously expressed, it is required to prevent mutagenesis and apoptosis, which can result from DNA double strand breakage caused by intracellular events such as DNA replication and meiosis or extracellular events including damage by reactive oxygen species and ionising radiation.Within developing lymphocytes, DNA ligase IV is required to repair programmed DNA double stranded breaks induced during lymphocyte receptor development.Patients with hypomorphic mutations in LIG4 present with a range of phenotypes, from normal to severe combined immunodeficiency. All, however, manifest sensitivity to ionising radiation. Commonly associated features include primordial growth failure with severe microcephaly and a spectrum of learning difficulties, marrow hypoplasia and a predisposition to lymphoid malignancy. Diagnostic investigations include immunophenotyping, and testing for radiosensitivity. Some patients present with microcephaly as a predominant feature, but seemingly normal immunity. Treatment is mainly supportive, although haematopoietic stem cell transplantation has been used in a few cases.

  2. DNA Ligase IV regulates XRCC4 nuclear localization.

    PubMed

    Francis, Dailia B; Kozlov, Mikhail; Chavez, Jose; Chu, Jennifer; Malu, Shruti; Hanna, Mary; Cortes, Patricia

    2014-09-01

    DNA Ligase IV, along with its interacting partner XRCC4, are essential for repairing DNA double strand breaks by non-homologous end joining (NHEJ). Together, they complete the final ligation step resolving the DNA break. Ligase IV is regulated by XRCC4 and XLF. However, the mechanism(s) by which Ligase IV control the NHEJ reaction and other NHEJ factor(s) remains poorly characterized. Here, we show that a C-terminal region of Ligase IV (aa 620-800), which encompasses a NLS, the BRCT I, and the XRCC4 interacting region (XIR), is essential for nuclear localization of its co-factor XRCC4. In Ligase IV deficient cells, XRCC4 showed deregulated localization remaining in the cytosol even after induction of DNA double strand breaks. DNA Ligase IV was also required for efficient localization of XLF into the nucleus. Additionally, human fibroblasts that harbor hypomorphic mutations within the Ligase IV gene displayed decreased levels of XRCC4 protein, implicating that DNA Ligase IV is also regulating XRCC4 stability. Our results provide evidence for a role of DNA Ligase IV in controlling the cellular localization and protein levels of XRCC4.

  3. DNA Ligase IV regulates XRCC4 nuclear localization

    PubMed Central

    Francis, Dailia B.; Kozlov, Mikhail; Chavez, Jose; Chu, Jennifer; Malu, Shruti; Hanna, Mary; Cortes, Patricia

    2014-01-01

    DNA Ligase IV, along with its interacting partner XRCC4, are essential for repairing DNA double strand breaks by non-homologous end joining (NHEJ). Together, they complete the final ligation step resolving the DNA break. Ligase IV is regulated by XRCC4 and XLF. However, the mechanism(s) by which Ligase IV control the NHEJ reaction and other NHEJ factor(s) remains poorly characterized. Here, we show that a C-terminal region of Ligase IV (aa 620 to 800), which encompasses a NLS, the BRCT I, and the XRCC4 interacting region (XIR), is essential for nuclear localization of its co-factor XRCC4. In Ligase IV deficient cells, XRCC4 showed deregulated localization remaining in the cytosol even after induction of DNA double strand breaks. DNA Ligase IV was also required for efficient localization of XLF into the nucleus. Additionally, human fibroblasts that harbor hypomorphic mutations within the Ligase IV gene displayed decreased levels of XRCC4 protein, implicating that DNA Ligase IV is also regulating XRCC4 stability. Our results provide evidence for a role of DNA Ligase IV in controlling the cellular localization and protein levels of XRCC4. PMID:24984242

  4. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    SciTech Connect

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-09-20

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ.

  5. Defining interactions between DNA-PK and ligase IV/XRCC4

    SciTech Connect

    Hsu, Hsin-Ling; Yannone, Steven M.; Chen, David J.

    2001-04-10

    Non-homologous end joining (NHEJ) is a major pathway for the repair of DNA double-strand breaks in mammalian cells. DNA-dependent protein kinase (DNA-PK), ligase IV, and XRCC4 are all critical components of the NHEJ repair pathway. DNA-PK is composed of a heterodimeric DNA-binding component, Ku, and a large catalytic subunit, DNA-PKcs. Ligase IV and XRCC4 associate to form a multimeric complex that is also essential for NHEJ. DNA-PK and ligase IV/XRCC4 interact at DNA termini which results in stimulated ligase activity. Here we define interactions between the components of these two essential complexes, DNA-PK and ligase IV/XRCC4. We find that ligase IV/XRCC4 associates with DNA-PK in a DNA-independent manner. The specific protein-protein interactions that mediate the interaction between these two complexes are further identified. Direct physical interactions between ligase IV and Ku as well as between XRCC4 and DNA-PKcs are shown. No direct interactions are observed between ligase IV and DNA-PKcs or between XRCC4 and Ku. Our data defines the specific protein pairs involved in the association of DNA-PK and ligase IV/XRCC4, and suggests a molecular mechanism for coordinating the assembly of the DNA repair complex at DNA breaks.

  6. Lithium promotes DNA stability and survival of ischemic retinal neurocytes by upregulating DNA ligase IV

    PubMed Central

    Yang, Ying; Wu, Nandan; Tian, Sijia; Li, Fan; Hu, Huan; Chen, Pei; Cai, Xiaoxiao; Xu, Lijun; Zhang, Jing; Chen, Zhao; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-01-01

    Neurons display genomic fragility and show fragmented DNA in pathological degeneration. A failure to repair DNA breaks may result in cell death or apoptosis. Lithium protects retinal neurocytes following nutrient deprivation or partial nerve crush, but the underlying mechanisms are not well defined. Here we demonstrate that pretreatment with lithium protects retinal neurocytes from ischemia-induced damage and enhances light response in rat retina following ischemia–reperfusion injury. Moreover, we found that DNA nonhomologous end-joining (NHEJ) repair is implicated in this process because in ischemic retinal neurocytes, lithium significantly reduces the number of γ-H2AX foci (well-characterized markers of DNA double-strand breaks in situ) and increases the DNA ligase IV expression level. Furthermore, we also demonstrate that nuclear respiratory factor 1 (Nrf-1) and phosphorylated cyclic AMP-response element binding protein-1 (P-CREB1) bind to ligase IV promoter to cause upregulation of ligase IV in neurocytes. The ischemic upregulation of Nrf-1 and lithium-induced increase of P-CREB1 cooperate to promote transcription of ligase IV. Short hairpin RNAs against Nrf-1 and CREB1 could significantly inhibit the increase in promoter activity and expression of ligase IV observed in the control oligos following lithium treatment in retinal neurocytes. More importantly, ischemic stimulation triggers the expression of ligase IV. Taken together, our results thus reveal a novel mechanism that lithium offers neuroprotection from ischemia-induced damage by enhancing DNA NHEJ repair. PMID:27853172

  7. Electron microscopy visualization of DNA-protein complexes formed by Ku and DNA ligase IV.

    PubMed

    Grob, Patricia; Zhang, Teri T; Hannah, Ryan; Yang, Hui; Hefferin, Melissa L; Tomkinson, Alan E; Nogales, Eva

    2012-01-02

    The repair of DNA double-stranded breaks (DSBs) is essential for cell viability and genome stability. Aberrant repair of DSBs has been linked with cancer predisposition and aging. During the repair of DSBs by non-homologous end joining (NHEJ), DNA ends are brought together, processed and then joined. In eukaryotes, this repair pathway is initiated by the binding of the ring-shaped Ku heterodimer and completed by DNA ligase IV. The DNA ligase IV complex, DNA ligase IV/XRRC4 in humans and Dnl4/Lif1 in yeast, is recruited to DNA ends in vitro and in vivo by an interaction with Ku and, in yeast, Dnl4/Lif1 stabilizes the binding of yKu to in vivo DSBs. Here we have analyzed the interactions of these functionally conserved eukaryotic NHEJ factors with DNA by electron microscopy. As expected, the ring-shaped Ku complex bound stably and specifically to DNA ends at physiological salt concentrations. At a ratio of 1 Ku molecule per DNA end, the majority of DNA ends were occupied by a single Ku complex with no significant formation of linear DNA multimers or circular loops. Both Dnl4/Lif1 and DNA ligase IV/XRCC4 formed complexes with Ku-bound DNA ends, resulting in intra- and intermolecular DNA end bridging, even with non-ligatable DNA ends. Together, these studies, which provide the first visualization of the conserved complex formed by Ku and DNA ligase IV at juxtaposed DNA ends by electron microscopy, suggest that the DNA ligase IV complex mediates end-bridging by engaging two Ku-bound DNA ends.

  8. Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4.

    PubMed

    Wu, Peï-Yu; Frit, Philippe; Meesala, SriLakshmi; Dauvillier, Stéphanie; Modesti, Mauro; Andres, Sara N; Huang, Ying; Sekiguchi, JoAnn; Calsou, Patrick; Salles, Bernard; Junop, Murray S

    2009-06-01

    Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain, which induces a kink in the tail region of XRCC4. We further demonstrate that interaction with the second BRCT domain of DNA ligase IV is necessary for stable binding to XRCC4 in cells, as well as to achieve efficient dominant-negative effects resulting in radiosensitization after ectopic overexpression of DNA ligase IV fragments in human fibroblasts. Together our findings provide unanticipated insight for understanding the physical and functional architecture of the nonhomologous end-joining ligation complex.

  9. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV.

    PubMed

    Greco, George E; Matsumoto, Yoshihiro; Brooks, Rhys C; Lu, Zhengfei; Lieber, Michael R; Tomkinson, Alan E

    2016-07-01

    DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV.

  10. C-Terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin.

    PubMed

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-09-20

    DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ.

  11. Molecular and immunological characterization of DNA ligase IV deficiency.

    PubMed

    Jiang, Jinqiu; Tang, Wenjing; An, Yunfei; Tang, Maozhi; Wu, Junfeng; Qin, Tao; Zhao, Xiaodong

    2016-02-01

    DNA ligase IV (LIG4) deficiency is an extremely rare autosomal recessive primary immunodeficiency disease caused by the LIG4 mutation. To date, fewer than 30 cases of patients have been reported worldwide. No reversion mutations have been previously identified in LIG4. This study enrolled seven Chinese patients with LIG4 deficiency who presented with combined immunodeficiency, microcephaly, and growth retardation. One patient (P1) acquired non-Hodgkin lymphoma. Four patients had impaired T cell proliferation function and skewed T cell receptor diversity. Five novel mutations in LIG4 and a potential hotspot mutation (c.833G>T; p.R278L) in the Chinese population were identified. TA cloning analysis of T cells, NK cells, granulocytes, and oral mucosa cells in P6 revealed wild-type clones and clones that contained both maternally and paternally inherited mutations, indicating possible somatic reversion which need further investigation since no functional or protein assays were possible for all the patients died and no cell lines were available.

  12. Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication.

    PubMed

    Muylaert, Isabella; Elias, Per

    2007-04-13

    Herpes simplex virus has a linear double-stranded DNA genome with directly repeated terminal sequences needed for cleavage and packaging of replicated DNA. In infected cells, linear genomes rapidly become endless. It is currently a matter of discussion whether the endless genomes are circles supporting rolling circle replication or arise by recombination of linear genomes forming concatemers. Here, we have examined the role of mammalian DNA ligases in the herpes simplex virus, type I (HSV-1) life cycle by employing RNA interference (RNAi) in human 1BR.3.N fibroblasts. We find that RNAi-mediated knockdown of DNA ligase IV and its co-factor XRCC4 causes a hundred-fold reduction of virus yield, a small plaque phenotype, and reduced DNA synthesis. The effect is specific because RNAi against DNA ligase I or DNA ligase III fail to reduce HSV-1 replication. Furthermore, RNAi against DNA ligase IV and XRCC4 does not affect replication of adenovirus. In addition, high multiplicity infections of HSV-1 in human DNA ligase IV-deficient cells reveal a pronounced delay of production of infectious virus. Finally, we demonstrate that formation of endless genomes is inhibited by RNAi-mediated depletion of DNA ligase IV and XRCC4. Our results suggests that DNA ligase IV/XRCC4 serves an important role in the replication cycle of herpes viruses and is likely to be required for the formation of the endless genomes early during productive infection.

  13. DNA ligases.

    PubMed

    Tabor, S

    2001-05-01

    DNA ligases catalyze the formation of phosphodiester bonds between juxtaposed 5' phosphate and a 3'-hydroxyl terminus in duplex DNA. This activity can repair single-stranded nicks in duplex DNA and join duplex DNA restriction fragments having either blunt ends or homologous cohesive ends. Two ligases are used for nucleic acid research and their reaction conditions and applications are described in this unit: E. coli ligase and T4 ligase. These enzymes differ in two important properties. One is the source of energy: T4 ligase uses ATP, while E. coli ligase uses NAD. Another important difference is their ability to ligate blunt ends; under normal reaction conditions, only T4 DNA ligase will ligate blunt ends.

  14. Ku stimulation of DNA ligase IV-dependent ligation requires inward movement along the DNA molecule.

    PubMed

    Kysela, Boris; Doherty, Aidan J; Chovanec, Miroslav; Stiff, Thomas; Ameer-Beg, Simon M; Vojnovic, Borivoj; Girard, Pierre-Marie; Jeggo, Penny A

    2003-06-20

    The DNA ligase IV.XRCC4 complex (LX) functions in DNA non-homologous-end joining, the main pathway for double-strand break repair in mammalian cells. We show that, in contrast to ligation by T4 ligase, the efficiency of LX ligation of double-stranded (ds) ends is critically dependent upon the length of the DNA substrate. The effect is specific for ds ligation, and LX/DNA binding is not influenced by the substrate length. Ku stimulates LX ligation at concentrations resulting in 1-2 Ku molecules bound per substrate, whereas multiply Ku-bound DNA molecules inhibit ds ligation. The combined footprint of DNA with Ku and LX bound is the sum of each individual footprint suggesting that the two complexes are located in tandem at the DNA end. Inhibition of Ku translocation by the presence of cis-platinum adducts on the DNA substrate severely inhibits ligation by LX. Fluorescence resonance energy transfer analysis using fluorophore-labeled Ku and DNA molecules showed that, as expected, Ku makes close contact with the DNA end and that addition of LX can disrupt this close contact. Finally, we show that recruitment of LX by Ku is impaired in an adenylation-defective mutant providing further evidence that LX interacts directly with the DNA end, possibly via the 5'-phosphate as shown for prokaryotic ligases. Taken together, our results suggest that, when LX binds to a Ku-bound DNA molecule, it causes inward translocation of Ku and that freedom to move inward on the DNA is essential to Ku stimulation of LX activity.

  15. DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells.

    PubMed

    Oh, Sehyun; Harvey, Adam; Zimbric, Jacob; Wang, Yongbao; Nguyen, Thanh; Jackson, Pauline J; Hendrickson, Eric A

    2014-09-01

    Ku-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated. To test the requirement for LIGIII in A-NHEJ we constructed a LIGIII conditionally-null human cell line using gene targeting. Nuclear EJing activity appeared unaffected by a deficiency in LIGIII as, surprisingly, so were random gene targeting integration events. In contrast, LIGIII was required for mitochondrial function and this defined the gene's essential activity. Human Ku:LIGIII and Ku:LIGIV (DNA ligase IV) double knockout cell lines, however, demonstrated that LIGIII is required for the enhanced A-NHEJ activity that is observed in Ku-deficient cells. Most unexpectedly, however, the majority of EJing events remained LIGIV-dependent. In conclusion, although human LIGIII has an essential function in mitochondrial maintenance, it is dispensable for most types of nuclear DSB repair, except for the A-NHEJ events that are normally suppressed by Ku. Moreover, we describe that a robust Ku-independent, LIGIV-dependent repair pathway exists in human somatic cells.

  16. The α2 helix in the DNA ligase IV BRCT-1 domain is required for targeted degradation of ligase IV during adenovirus infection.

    PubMed

    Gilson, Timra; Greer, Amy E; Vindigni, Alessandro; Ketner, Gary; Hanakahi, Leslyn A

    2012-07-05

    In adenovirus E4 mutant infections, viral DNAs form concatemers through a process that requires host Non-homologous End Joining (NHEJ) proteins including DNA Ligase IV (LigIV). Adenovirus proteins E4 34k and E1b 55k form the substrate-selection component of an E3 ubiquitin ligase and prevent concatenation by targeting LigIV for proteasomal degradation. The mechanisms and sites involved in targeting this and other E3 ligase substrates generally are poorly-understood. Through genetic analysis, we identified the α2 helix of one LigIV BRCT domain (BRCT-1) as essential for adenovirus-mediated degradation. Replacement of the BRCT domain of DNA ligase III (LigIII), which is resistant to degradation, with LigIV BRCT-1 does not promote degradation. A humanized mouse LigIV that possesses a BRCT-1 α2 helix identical to the human protein, like its parent, is also resistant to adenovirus-mediated degradation. Thus, both the BRCT-1 α2 helix and an element outside BRCT-1 are required for adenovirus-mediated degradation of LigIV.

  17. DNA ligase IV as a new molecular target for temozolomide

    SciTech Connect

    Kondo, Natsuko; Takahashi, Akihisa; Mori, Eiichiro; Ohnishi, Ken; McKinnon, Peter J.; Sakaki, Toshisuke; Nakase, Hiroyuki; Ohnishi, Takeo

    2009-10-02

    Temozolomide (TMZ) is a methylating agent used in chemotherapy against glioblastoma. This work was designed to clarify details in repair pathways acting to remove DNA double-strand breaks (DSBs) induced by TMZ. Cultured mouse embryonic fibroblasts were used which were deficient in DSB repair genes such as homologous recombination repair-related genes X-ray repair cross-complementing group 2 (XRCC2)and radiation sensitive mutant54 (Rad54), non-homologous end joining repair-related gene DNAligase IV (Lig4). Cell sensitivity to drug treatments was assessed using colony forming assays. The most effective molecular target which was correlated with TMZ cell sensitivity was Lig4. In addition, it was found that small interference RNAs (siRNA) for Lig4 efficiently enhanced cell lethality induced by TMZ in human glioblastoma A172 cells. These findings suggest that down regulation of Lig4 might provide a useful tool for cell sensitization during TMZ chemotherapy.

  18. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    PubMed

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  19. Structural insights into the role of domain flexibility in human DNA ligase IV.

    PubMed

    Ochi, Takashi; Wu, Qian; Chirgadze, Dimitri Y; Grossmann, J Günter; Bolanos-Garcia, Victor M; Blundell, Tom L

    2012-07-03

    Knowledge of the architecture of DNA ligase IV (LigIV) and interactions with XRCC4 and XLF-Cernunnos is necessary for understanding its role in the ligation of double-strand breaks during nonhomologous end joining. Here we report the structure of a subdomain of the nucleotidyltrasferase domain of human LigIV and provide insights into the residues associated with LIG4 syndrome. We use this structural information together with the known structures of the BRCT/XRCC4 complex and those of LigIV orthologs to interpret small-angle X-ray scattering of LigIV in complex with XRCC4 and size exclusion chromatography of LigIV, XRCC4, and XLF-Cernunnos. Our results suggest that the flexibility of the catalytic region is limited in a manner that affects the formation of the LigIV/XRCC4/XLF-Cernunnos complex.

  20. Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK.

    PubMed

    Costantini, Silvia; Woodbine, Lisa; Andreoli, Lucia; Jeggo, Penny A; Vindigni, Alessandro

    2007-06-01

    DNA non-homologous end-joining (NHEJ) is a major mechanism for repairing DNA double-stranded (ds) breaks in mammalian cells. Here, we characterize the interaction between two key components of the NHEJ machinery, the Ku heterodimer and the DNA ligase IV/Xrcc4 complex. Our results demonstrate that Ku interacts with DNA ligase IV via its tandem BRCT domain and that this interaction is enhanced in the presence of Xrcc4 and dsDNA. Moreover, residues 644-748 of DNA ligase IV encompassing the first BRCT motif are necessary for binding. We show that Ku needs to be in its heterodimeric form to bind DNA ligase IV and that the C-terminal tail of Ku80, which mediates binding to DNA-PKcs, is dispensable for DNA ligase IV recognition. Although the interaction between Ku and DNA ligase IV/Xrcc4 occurs in the absence of DNA-PKcs, the presence of the catalytic subunit of DNA-PK kinase enhances complex formation. Previous studies have shown that DNA-PK kinase activity causes disassembly of DNA-PKcs from Ku at the DNA end. Here, we show that DNA-PK kinase activity also results in disassembly of the Ku/DNA ligase IV/Xrcc4 complex. Collectively, our findings provide novel information on the protein-protein interactions that regulate NHEJ in cells.

  1. Saccharomyces cerevisiae DNA ligase IV supports imprecise end joining independently of its catalytic activity.

    PubMed

    Chiruvella, Kishore K; Liang, Zhuobin; Birkeland, Shanda R; Basrur, Venkatesha; Wilson, Thomas E

    2013-06-01

    DNA ligase IV (Dnl4 in budding yeast) is a specialized ligase used in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Although point and truncation mutations arise in the human ligase IV syndrome, the roles of Dnl4 in DSB repair have mainly been examined using gene deletions. Here, Dnl4 catalytic point mutants were generated that were severely defective in auto-adenylation in vitro and NHEJ activity in vivo, despite being hyper-recruited to DSBs and supporting wild-type levels of Lif1 interaction and assembly of a Ku- and Lif1-containing complex at DSBs. Interestingly, residual levels of especially imprecise NHEJ were markedly higher in a deletion-based assay with Dnl4 catalytic mutants than with a gene deletion strain, suggesting a role of DSB-bound Dnl4 in supporting a mode of NHEJ catalyzed by a different ligase. Similarly, next generation sequencing of repair joints in a distinct single-DSB assay showed that dnl4-K466A mutation conferred a significantly different imprecise joining profile than wild-type Dnl4 and that such repair was rarely observed in the absence of Dnl4. Enrichment of DNA ligase I (Cdc9 in yeast) at DSBs was observed in wild-type as well as dnl4 point mutant strains, with both Dnl4 and Cdc9 disappearing from DSBs upon 5' resection that was unimpeded by the presence of catalytically inactive Dnl4. These findings indicate that Dnl4 can promote mutagenic end joining independently of its catalytic activity, likely by a mechanism that involves Cdc9.

  2. Artemis C-terminal region facilitates V(D)J recombination through its interactions with DNA Ligase IV and DNA-PKcs

    PubMed Central

    Malu, Shruti; De Ioannes, Pablo; Kozlov, Mikhail; Greene, Marsha; Francis, Dailia; Hanna, Mary; Pena, Jesse; Escalante, Carlos R.; Kurosawa, Aya; Erdjument-Bromage, Hediye; Tempst, Paul; Adachi, Noritaka; Vezzoni, Paolo; Villa, Anna; Aggarwal, Aneel K.

    2012-01-01

    Artemis is an endonuclease that opens coding hairpin ends during V(D)J recombination and has critical roles in postirradiation cell survival. A direct role for the C-terminal region of Artemis in V(D)J recombination has not been defined, despite the presence of immunodeficiency and lymphoma development in patients with deletions in this region. Here, we report that the Artemis C-terminal region directly interacts with the DNA-binding domain of Ligase IV, a DNA Ligase which plays essential roles in DNA repair and V(D)J recombination. The Artemis–Ligase IV interaction is specific and occurs independently of the presence of DNA and DNA–protein kinase catalytic subunit (DNA-PKcs), another protein known to interact with the Artemis C-terminal region. Point mutations in Artemis that disrupt its interaction with Ligase IV or DNA-PKcs reduce V(D)J recombination, and Artemis mutations that affect interactions with Ligase IV and DNA-PKcs show additive detrimental effects on coding joint formation. Signal joint formation remains unaffected. Our data reveal that the C-terminal region of Artemis influences V(D)J recombination through its interaction with both Ligase IV and DNA-PKcs. PMID:22529269

  3. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    SciTech Connect

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  4. Altered regulation of DNA ligase IV activity by aberrant promoter DNA methylation and gene amplification in colorectal cancer.

    PubMed

    Kuhmann, Christine; Li, Carmen; Kloor, Matthias; Salou, Mariam; Weigel, Christoph; Schmidt, Christopher R; Ng, Linda W C; Tsui, Wendy W Y; Leung, Suet Y; Yuen, Siu T; Becker, Natalia; Weichenhan, Dieter; Plass, Christoph; Schmezer, Peter; Chan, Tsun L; Popanda, Odilia

    2014-04-15

    Colorectal cancer (CRC) presents as a very heterogeneous disease which cannot sufficiently be characterized with the currently known genetic and epigenetic markers. To identify new markers for CRC we scrutinized the methylation status of 231 DNA repair-related genes by methyl-CpG immunoprecipitation followed by global methylation profiling on a CpG island microarray, as altered expression of these genes could drive genomic and chromosomal instability observed in these tumors. We show for the first time hypermethylation of MMP9, DNMT3A and LIG4 in CRC which was confirmed in two CRC patient groups with different ethnicity. DNA ligase IV (LIG4) showed strong differential promoter methylation (up to 60%) which coincided with downregulation of mRNA in 51% of cases. This functional association of LIG4 methylation and gene expression was supported by LIG4 re-expression in 5-aza-2'-deoxycytidine-treated colon cancer cell lines, and reduced ligase IV amounts and end-joining activity in extracts of tumors with hypermethylation. Methylation of LIG4 was not associated with other genetic and epigenetic markers of CRC in our study. As LIG4 is located on chromosome 13 which is frequently amplified in CRC, two loci were tested for gene amplification in a subset of 47 cases. Comparison of amplification, methylation and expression data revealed that, in 30% of samples, the LIG4 gene was amplified and methylated, but expression was not changed. In conclusion, hypermethylation of the LIG4 promoter is a new mechanism to control ligase IV expression. It may represent a new epigenetic marker for CRC independent of known markers.

  5. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface.

    PubMed

    Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick

    2016-03-11

    The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference-NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.

  6. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface

    PubMed Central

    Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick

    2016-01-01

    The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference - NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity. PMID:26964677

  7. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface

    NASA Astrophysics Data System (ADS)

    Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick

    2016-03-01

    The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference - NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.

  8. DNA ligase IV and artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair.

    PubMed

    Kurosawa, Aya; Saito, Shinta; So, Sairei; Hashimoto, Mitsumasa; Iwabuchi, Kuniyoshi; Watabe, Haruka; Adachi, Noritaka

    2013-01-01

    Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR.

  9. DNA ligase I, the replicative DNA ligase.

    PubMed

    Howes, Timothy R L; Tomkinson, Alan E

    2012-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.

  10. DNA-ligase IV and DNA-protein kinase play a critical role in deficient caspases activation in apoptosis-resistant cancer cells by using doxorubicin.

    PubMed

    Friesen, Claudia; Uhl, Miriam; Pannicke, Ulrich; Schwarz, Klaus; Miltner, Erich; Debatin, Klaus-Michael

    2008-08-01

    Resistance toward cytotoxic drugs is one of the primary causes for therapeutic failure in cancer therapy. DNA repair mechanisms as well as deficient caspases activation play a critical role in apoptosis resistance of tumor cells toward anticancer drug treatment. Here, we discovered that deficient caspases activation in apoptosis-resistant cancer cells depends on DNA-ligase IV and DNA-protein kinase (DNA-PK), playing crucial roles in the nonhomologous end joining (NHEJ) pathway, which is the predominant pathway for DNA double-strand break repair (DNA-DSB-repair) in mammalian cells. DNA-PK(+/+) as well as DNA-ligase IV (+/+) cancer cells were apoptosis resistant and deficient in activation of caspase-3, caspase-9, and caspase-8 and in cleavage of poly(ADP-ribose) polymerase after doxorubicin treatment. Inhibition of NHEJ by knocking out DNA-PK or DNA-ligase IV restored caspases activation and apoptosis sensitivity after doxorubicin treatment. In addition, inhibition of caspases activation prevented doxorubicin-induced apoptosis but could not prevent doxorubicin-induced DNA damage, indicating that induction of DNA damage is independent of caspases activation. However, caspases activation depends on induction of DNA damage left unrepaired by NHEJ-DNA-DSB-repair. We conclude that DNA damage left unrepaired by DNA-ligase IV or DNA-PK might be the initiator for caspases activation by doxorubicin in cancer cells. Failure in caspases activation using doxorubicin depends on loss of DNA damage and is due to higher rates of NHEJ-DNA-DBS-repair.

  11. The Architectural Chromatin Factor High Mobility Group A1 Enhances DNA Ligase IV Activity Influencing DNA Repair

    PubMed Central

    Costantini, Silvia; Pegoraro, Silvia; Ros, Gloria; Penzo, Carlotta; Triolo, Gianluca; Demarchi, Francesca; Sgarra, Riccardo; Vindigni, Alessandro; Manfioletti, Guidalberto

    2016-01-01

    The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways. In this work, we provide evidences linking HMGA1 with Non-Homologous End Joining DNA repair. We show that HMGA1 is in complex with and is a substrate for DNA-PK. HMGA1 enhances Ligase IV activity and it counteracts the repressive histone H1 activity towards DNA ends ligation. Moreover, breast cancer cells overexpressing HMGA1 show a faster recovery upon induction of DNA double-strand breaks, which is associated with a higher survival. These data suggest that resistance to DNA-damaging agents in cancer cells could be partially attributed to HMGA1 overexpression thus highlighting the relevance of considering HMGA1 expression levels in the selection of valuable and effective pharmacological regimens. PMID:27723831

  12. The Architectural Chromatin Factor High Mobility Group A1 Enhances DNA Ligase IV Activity Influencing DNA Repair.

    PubMed

    Pellarin, Ilenia; Arnoldo, Laura; Costantini, Silvia; Pegoraro, Silvia; Ros, Gloria; Penzo, Carlotta; Triolo, Gianluca; Demarchi, Francesca; Sgarra, Riccardo; Vindigni, Alessandro; Manfioletti, Guidalberto

    2016-01-01

    The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways. In this work, we provide evidences linking HMGA1 with Non-Homologous End Joining DNA repair. We show that HMGA1 is in complex with and is a substrate for DNA-PK. HMGA1 enhances Ligase IV activity and it counteracts the repressive histone H1 activity towards DNA ends ligation. Moreover, breast cancer cells overexpressing HMGA1 show a faster recovery upon induction of DNA double-strand breaks, which is associated with a higher survival. These data suggest that resistance to DNA-damaging agents in cancer cells could be partially attributed to HMGA1 overexpression thus highlighting the relevance of considering HMGA1 expression levels in the selection of valuable and effective pharmacological regimens.

  13. Phosphorylated Sp1 is the regulator of DNA-PKcs and DNA ligase IV transcription of daunorubicin-resistant leukemia cell lines.

    PubMed

    Nishida, Yayoi; Mizutani, Naoki; Inoue, Minami; Omori, Yukari; Tamiya-Koizumi, Keiko; Takagi, Akira; Kojima, Tetsuhito; Suzuki, Motoshi; Nozawa, Yoshinori; Minami, Yosuke; Ohnishi, Kazunori; Naoe, Tomoki; Murate, Takashi

    2014-01-01

    Multidrug resistance (MDR) is a serious problem faced in the treatment of malignant tumors. In this study, we characterized the expression of non-homologous DNA end joining (NHEJ) components, a major DNA double strand break (DSB) repair mechanism in mammals, in K562 cell and its daunorubicin (DNR)-resistant subclone (K562/DNR). K562/DNR overexpressed major enzymes of NHEJ, DNA-PKcs and DNA ligase IV, and K562/DNR repaired DSB more rapidly than K562 after DNA damage by neocarzinostatin (MDR1-independent radiation-mimetic). Overexpressed DNA-PKcs and DNA ligase IV were also observed in DNR-resistant HL60 (HL60/DNR) cells as compared with parental HL60 cells. Expression level of DNA-PKcs mRNA paralleled its protein level, and the promoter activity of DNA-PKcs of K562/DNR was higher than that of K562, and the 5'-region between -49bp and the first exon was important for its activity. Because this region is GC-rich, we tried to suppress Sp1 family transcription factor using mithramycin A (MMA), a specific Sp1 family inhibitor, and siRNAs for Sp1 and Sp3. Both MMA and siRNAs suppressed DNA-PKcs expression. Higher serine-phosphorylated Sp1 but not total Sp1 of both K562/DNR and HL60/DNR was observed compared with their parental K562 and HL60 cells. DNA ligase IV expression of K562/DNR was also suppressed significantly with Sp1 family protein inhibition. EMSA and ChIP assay confirmed higher binding of Sp1 and Sp3 with DNA-PKcs 5'-promoter region of DNA-PKcs of K562/DNR than that of K562. Thus, the Sp1 family transcription factor affects important NHEJ component expressions in anti-cancer drug-resistant malignant cells, leading to the more aggressive MDR phenotype.

  14. Structure of the catalytic region of DNA ligase IV in complex with an Artemis fragment sheds light on double-strand break repair.

    PubMed

    Ochi, Takashi; Gu, Xiaolong; Blundell, Tom L

    2013-04-02

    Nonhomologous end joining (NHEJ) is central to the repair of double-stranded DNA breaks throughout the cell cycle and plays roles in the development of the immune system. Although three-dimensional structures of most components of NHEJ have been defined, those of the catalytic region of DNA ligase IV (LigIV), a specialized DNA ligase known to work in NHEJ, and of Artemis have remained unresolved. Here, we report the crystal structure at 2.4 Å resolution of the catalytic region of LigIV (residues 1-609) in complex with an Artemis peptide. We describe interactions of the DNA-binding domain of LigIV with the continuous epitope of Artemis, which, together, form a three-helix bundle. A kink in the first helix of LigIV introduced by a conserved VPF motif gives rise to a hydrophobic pocket, which accommodates a conserved tryptophan from Artemis. We provide structural insights into features of LigIV among human DNA ligases.

  15. Prokaryotic DNA ligases unwind superhelical DNA.

    PubMed

    Ivanchenko, M; van Holde, K; Zlatanova, J

    1996-09-13

    We have studied the effect on DNA topology of binding of prokaryotic DNA ligases (T4 and E. coli) to superhelical or nicked circular DNA. Performing topoisomerase I-mediated relaxation in the presence of increasing amounts of T4 ligase led to a shift in the topoisomer distribution to increasingly more negative values. This result suggested that T4 ligase unwound the DNA and was further substantiated by ligation of nicked circular molecules by E. coli DNA ligase in the presence of increasing amounts of T4 ligase. Such an experiment was possible since the two DNA ligases require different cofactors for enzymatic activity. Performing a similar experiment with reverse partners, using E. coli DNA ligase as ligand, and T4 ligase as sealing agent, we observed that the E. coli enzyme also unwound the DNA. Thus, prokaryotic DNA ligases can be added to an ever-growing list of DNA-binding proteins that unwind the DNA upon binding.

  16. Novel compound heterozygous DNA ligase IV mutations in an adolescent with a slowly-progressing radiosensitive-severe combined immunodeficiency.

    PubMed

    Tamura, Shinobu; Higuchi, Kohei; Tamaki, Masaharu; Inoue, Chizuko; Awazawa, Ryoko; Mitsuki, Noriko; Nakazawa, Yuka; Mishima, Hiroyuki; Takahashi, Kenzo; Kondo, Osamu; Imai, Kohsuke; Morio, Tomohiro; Ohara, Osamu; Ogi, Tomoo; Furukawa, Fukumi; Inoue, Masami; Yoshiura, Koh-ichiro; Kanazawa, Nobuo

    2015-10-01

    We herein describe a case of a 17-year-old boy with intractable common warts, short stature, microcephaly and slowly-progressing pancytopenia. Simultaneous quantification of T-cell receptor recombination excision circles (TREC) and immunoglobulin κ-deleting recombination excision circles (KREC) suggested very poor generation of both T-cells and B-cells. By whole exome sequencing, novel compound heterozygous mutations were identified in the patient's DNA ligase IV (LIG4) gene. The diagnosis of LIG4 syndrome was confirmed by delayed DNA double-strand break repair kinetics in γ-irradiated fibroblasts from the patient and their restoration by an introduction of wild-type LIG4. Although the patient received allogeneic hematopoietic stem cell transplantation from his haploidentical mother, he unfortunately expired due to an insufficiently reconstructed immune system. An earlier definitive diagnosis using TREC/KREC quantification and whole exome sequencing would thereby allow earlier intervention, which would be essential for improving long-term survival in similar cases with slowly-progressing LIG4 syndrome masked in adolescents.

  17. An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex.

    PubMed

    Hammel, Michal; Yu, Yaping; Radhakrishnan, Sarvan K; Chokshi, Chirayu; Tsai, Miaw-Sheue; Matsumoto, Yoshihiro; Kuzdovich, Monica; Remesh, Soumya G; Fang, Shujuan; Tomkinson, Alan E; Lees-Miller, Susan P; Tainer, John A

    2016-12-30

    DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF), and XRCC4 (X4)-DNA ligase IV (L4). Ku also interacts with accessory factors such as aprataxin and polynucleotide kinase/phosphatase-like factor (APLF). Yet, how these factors interact to tether, process, and ligate DSB ends while allowing regulation and chromatin interactions remains enigmatic. Here, small angle X-ray scattering (SAXS) and mutational analyses show APLF is largely an intrinsically disordered protein that binds Ku, Ku/DNA-PKcs (DNA-PK), and X4L4 within an extended flexible NHEJ core complex. X4L4 assembles with Ku heterodimers linked to DNA-PKcs via flexible Ku80 C-terminal regions (Ku80CTR) in a complex stabilized through APLF interactions with Ku, DNA-PK, and X4L4. Collective results unveil the solution architecture of the six-protein complex and suggest cooperative assembly of an extended flexible NHEJ core complex that supports APLF accessibility while possibly providing flexible attachment of the core complex to chromatin. The resulting dynamic tethering furthermore, provides geometric access of L4 catalytic domains to the DNA ends during ligation and of DNA-PKcs for targeted phosphorylation of other NHEJ proteins as well as trans-phosphorylation of DNA-PKcs on the opposing DSB without disrupting the core ligation complex. Overall the results shed light on evolutionary conservation of Ku, X4, and L4 activities, while explaining the observation that Ku80CTR and DNA-PKcs only occur in a subset of higher eukaryotes.

  18. An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex*

    PubMed Central

    Hammel, Michal; Yu, Yaping; Radhakrishnan, Sarvan K.; Chokshi, Chirayu; Tsai, Miaw-Sheue; Matsumoto, Yoshihiro; Kuzdovich, Monica; Remesh, Soumya G.; Fang, Shujuan; Tomkinson, Alan E.; Tainer, John A.

    2016-01-01

    DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF), and XRCC4 (X4)-DNA ligase IV (L4). Ku also interacts with accessory factors such as aprataxin and polynucleotide kinase/phosphatase-like factor (APLF). Yet, how these factors interact to tether, process, and ligate DSB ends while allowing regulation and chromatin interactions remains enigmatic. Here, small angle X-ray scattering (SAXS) and mutational analyses show APLF is largely an intrinsically disordered protein that binds Ku, Ku/DNA-PKcs (DNA-PK), and X4L4 within an extended flexible NHEJ core complex. X4L4 assembles with Ku heterodimers linked to DNA-PKcs via flexible Ku80 C-terminal regions (Ku80CTR) in a complex stabilized through APLF interactions with Ku, DNA-PK, and X4L4. Collective results unveil the solution architecture of the six-protein complex and suggest cooperative assembly of an extended flexible NHEJ core complex that supports APLF accessibility while possibly providing flexible attachment of the core complex to chromatin. The resulting dynamic tethering furthermore, provides geometric access of L4 catalytic domains to the DNA ends during ligation and of DNA-PKcs for targeted phosphorylation of other NHEJ proteins as well as trans-phosphorylation of DNA-PKcs on the opposing DSB without disrupting the core ligation complex. Overall the results shed light on evolutionary conservation of Ku, X4, and L4 activities, while explaining the observation that Ku80CTR and DNA-PKcs only occur in a subset of higher eukaryotes. PMID:27875301

  19. The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining.

    PubMed

    Park, Jihye; Welner, Robert S; Chan, Mei-Yee; Troppito, Logan; Staber, Philipp B; Tenen, Daniel G; Yan, Catherine T

    2016-01-01

    Hypomorphic mutations in the nonhomologous end-joining (NHEJ) DNA repair protein DNA ligase IV (LIG4) lead to immunodeficiency with varying severity. In this study, using a murine knock-in model, we investigated the mechanisms underlying abnormalities in class switch recombination (CSR) associated with the human homozygous Lig4 R278H mutation. Previously, we found that despite the near absence of Lig4 end-ligation activity and severely reduced mature B cell numbers, Lig4(R278H/R278H) (Lig4(R/R)) mice exhibit only a partial CSR block, producing near normal IgG1 and IgE but substantially reduced IgG3, IgG2b, and IgA serum levels. In this study, to address the cause of these abnormalities, we assayed CSR in Lig4(R/R) B cells generated via preassembled IgH and IgK V region exons (HL). This revealed that Lig4(R278H) protein levels while intact exhibited a higher turnover rate during activation of switching to IgG3 and IgG2b, as well as delays in CSR kinetics associated with defective proliferation during activation of switching to IgG1 and IgE. Activated Lig4(R/R)HL B cells consistently accumulated high frequencies of activation-induced cytidine deaminase-dependent IgH locus chromosomal breaks and translocations and were more prone to apoptosis, effects that appeared to be p53-independent, as p53 deficiency did not markedly influence these events. Importantly, NHEJ instead of alternative end-joining (A-EJ) was revealed as the predominant mechanism catalyzing robust CSR. Defective CSR was linked to failed NHEJ and residual A-EJ access to unrepaired double-strand breaks. These data firmly demonstrate that Lig4(R278H) activity renders NHEJ to be more error-prone, and they predict increased error-prone NHEJ activity and A-EJ suppression as the cause of the defective B lymphopoiesis in Lig4 patients.

  20. Gene targeting by RNAi-mediated knockdown of potent DNA ligase IV homologue in the cellulase-producing fungus Talaromyces cellulolyticus.

    PubMed

    Hayata, Koutarou; Asada, Seiya; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Sawayama, Shigeki

    2014-11-01

    The genome of the cellulase-producing fungus Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) was screened for a potent DNA ligase IV gene (ligD homologue). Homologous recombination efficiency in T. cellulolyticus is very low. Therefore, suppression of a non-homologous end-joining system was attempted to enable specific gene knockouts for molecular breeding. The transcript levels of ligD homologue were 0.037 of those of the parental YP-4 strain in the Li20 transformant carrying the RNAi construct targeting the ligD homologue. Transformation of the hairpin-type RNAi vector into T. cellulolyticus could be useful in fungal gene knockdown experiments. Cellulase production and protein secretion were similar in the parental YP-4 strain and the Li20 transformant. Knockout transformation of ligD homologue using the Li20 transformant led to 23.1 % double crossover gene targeting. Our results suggest that the potent DNA ligase IV gene of T. cellulolyticus is related to non-homologous end joining and that the knockdown of the ligD homologue is useful in gene targeting.

  1. Expression of DNA ligase IV is linked to poor prognosis and characterizes a subset of prostate cancers harboring TMPRSS2:ERG fusion and PTEN deletion.

    PubMed

    Grupp, Katharina; Roettger, Laura; Kluth, Martina; Hube-Magg, Claudia; Simon, Ronald; Lebok, Patrick; Minner, Sarah; Tsourlakis, Maria Christina; Koop, Christina; Graefen, Markus; Adam, Meike; Haese, Alexander; Wittmer, Corinna; Sauter, Guido; Wilczak, Waldemar; Huland, Hartwig; Schlomm, Thorsten; Steurer, Stefan; Krech, Till

    2015-09-01

    DNA ligases are essential for the maintenance of genome integrity as they are indispensable for DNA replication, recombination and repair. The present study was undertaken to gain insights into the prevalence and clinical significance of ligase IV (LIG4) expression in prostate cancer. A total of 11,152 prostate cancer specimens were analyzed by immunohistochemistry for LIG4 expression. Results were compared to follow-up data, ERG status and deletions at PTEN, 3p13, 5q21 and 6q15. LIG4 expression was predominantly localized in the nucleus of the cells with increased intensities in malignant as compared to benign prostate epithelium. In prostate cancer, LIG4 expression was found in 91% of interpretable tumors, including 12% cancers with weak, 23% with moderate and 56% with strong LIG4 positivity. Strong LIG4 expression was tightly linked to advanced Gleason score (P<0.0001) and positive nodal involvement (P=0.03). There was a remarkable accumulation of strong LIG4 expression in tumors harboring TMPRSS2:ERG fusion and PTEN deletions (P<0.0001 each). High LIG4 expression was also tightly related to early biochemical recurrence when all tumors (P<0.0001) or the subsets of ERG-negative (P=0.0004) or ERG-positive prostate cancers (P=0.006) were analyzed. Multivariate analysis including parameters that are available before surgery demonstrated independent association with biochemical recurrence for advanced Gleason grade on biopsy, high preoperative PSA level, high clinical stage (P<0.0001 each) and for LIG4 immunostaining (P=0.03). Our study identifies LIG4 as a predictor of an increased risk for early PSA recurrence in prostate cancer. Moreover, the strong association with TMPRSS2:ERG fusion and PTEN deletions suggest important interactions between these pathways in prostate cancers.

  2. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair.

    PubMed

    Chen, Xi; Zhong, Shijun; Zhu, Xiao; Dziegielewska, Barbara; Ellenberger, Tom; Wilson, Gerald M; MacKerell, Alexander D; Tomkinson, Alan E

    2008-05-01

    Based on the crystal structure of human DNA ligase I complexed with nicked DNA, computer-aided drug design was used to identify compounds in a database of 1.5 million commercially available low molecular weight chemicals that were predicted to bind to a DNA-binding pocket within the DNA-binding domain of DNA ligase I, thereby inhibiting DNA joining. Ten of 192 candidates specifically inhibited purified human DNA ligase I. Notably, a subset of these compounds was also active against the other human DNA ligases. Three compounds that differed in their specificity for the three human DNA ligases were analyzed further. L82 inhibited DNA ligase I, L67 inhibited DNA ligases I and III, and L189 inhibited DNA ligases I, III, and IV in DNA joining assays with purified proteins and in cell extract assays of DNA replication, base excision repair, and nonhomologous end-joining. L67 and L189 are simple competitive inhibitors with respect to nicked DNA, whereas L82 is an uncompetitive inhibitor that stabilized complex formation between DNA ligase I and nicked DNA. In cell culture assays, L82 was cytostatic whereas L67 and L189 were cytotoxic. Concordant with their ability to inhibit DNA repair in vitro, subtoxic concentrations of L67 and L189 significantly increased the cytotoxicity of DNA-damaging agents. Interestingly, the ligase inhibitors specifically sensitized cancer cells to DNA damage. Thus, these novel human DNA ligase inhibitors will not only provide insights into the cellular function of these enzymes but also serve as lead compounds for the development of anticancer agents.

  3. Structure and function of the DNA ligases encoded by the mammalian LIG3 gene.

    PubMed

    Tomkinson, Alan E; Sallmyr, Annahita

    2013-12-01

    Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA ligase, DNA ligase I. DNA ligase IIIα is a component of an alternative non-homologous end joining (NHEJ) pathway for DNA double-strand break (DSB) repair that is more active when the major DNA ligase IV-dependent pathway is defective. Unlike its other nuclear functions, the role of DNA ligase IIIα in alternative NHEJ is independent of its nuclear partner protein, X-ray repair cross-complementing protein 1 (XRCC1). DNA ligase IIIα is frequently overexpressed in cancer cells, acting as a biomarker for increased dependence upon alternative NHEJ for DSB repair and it is a promising novel therapeutic target.

  4. Lysine 271 but not lysine 210 of XRCC4 is required for the nuclear localization of XRCC4 and DNA ligase IV.

    PubMed

    Fukuchi, Mikoto; Wanotayan, Rujira; Liu, Sicheng; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-06-12

    XRCC4 and DNA Ligase IV (LIG4) cooperate to join two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). However, it is not fully understood how these proteins are localized to the nucleus. Here we created XRCC4(K271R) mutant, as Lys271 lies within the putative nuclear localization signal (NLS), and XRCC4(K210R) mutant, as Lys210 was reported to undergo SUMOylation, implicated in the nuclear localization of XRCC4. Wild-type and mutated XRCC4 with EGFP tag were introduced into HeLa cell, in which endogenous XRCC4 had been knocked down using siRNA directed to 3'-untranslated region, and tested for the nuclear localization function by fluorescence microscopy. XRCC4(K271R) was defective in the nuclear localization of itself and LIG4, whereas XRCC4(K210R) was competent for the nuclear localization with LIG4. To examine DSB repair function, wild-type and mutated XRCC4 were introduced into XRCC4-deficient M10. M10-XRCC4(K271R), but not M10-XRCC4(K210R), showed significantly reduced surviving fraction after 2 Gy γ-ray irradiation as compared to M10-XRCC4(WT). The number of γ-H2AX foci remaining 2 h after 2 Gy γ-ray irradiation was significantly greater in M10-XRCC4(K271R) than in M10-XRCC4(WT), whereas it was only marginally increased in M10-XRCC4(K210R) as compared to M10-XRCC4(WT). The present results collectively indicated that Lys271, but not Lys210, of XRCC4 is required for the nuclear localization of XRCC4 and LIG4 and that the nuclear localizing ability is essential for DSB repair function of XRCC4.

  5. DNA looping by a ligase under nanoconfinement

    NASA Astrophysics Data System (ADS)

    Heidarpour-Roushan, Maedeh; Riehn, Robert

    2013-03-01

    DNA looping is essential for the function and maintenance of genetic information. We have investigated the kinetic evolution of DNA loops (48500 bp) induced by T4 ligase inside a nanofabricated channel system with a channel cross-section of 100x100 nm2, and a few hundred microns channel length. We found that addition of the ligase profoundly alters the behavior of DNA. In particular, ligase acts to stabilize hairpin geometries in which the extended forward and backward arms of the hairpin scan past each other. From the linear density of DNA inside the channel, we deduce that the effective excluded volume vanishes upon addition of T4 ligase and ATP. We conclude that the two strands are effectively stapled together through a large number of weak bonds involving T4 ligase.

  6. Lysine 271 but not lysine 210 of XRCC4 is required for the nuclear localization of XRCC4 and DNA ligase IV

    SciTech Connect

    Fukuchi, Mikoto; Wanotayan, Rujira; Liu, Sicheng; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-06-12

    XRCC4 and DNA Ligase IV (LIG4) cooperate to join two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). However, it is not fully understood how these proteins are localized to the nucleus. Here we created XRCC4{sup K271R} mutant, as Lys271 lies within the putative nuclear localization signal (NLS), and XRCC4{sup K210R} mutant, as Lys210 was reported to undergo SUMOylation, implicated in the nuclear localization of XRCC4. Wild-type and mutated XRCC4 with EGFP tag were introduced into HeLa cell, in which endogenous XRCC4 had been knocked down using siRNA directed to 3′-untranslated region, and tested for the nuclear localization function by fluorescence microscopy. XRCC4{sup K271R} was defective in the nuclear localization of itself and LIG4, whereas XRCC4{sup K210R} was competent for the nuclear localization with LIG4. To examine DSB repair function, wild-type and mutated XRCC4 were introduced into XRCC4-deficient M10. M10-XRCC4{sup K271R}, but not M10-XRCC4{sup K210R}, showed significantly reduced surviving fraction after 2 Gy γ-ray irradiation as compared to M10-XRCC4{sup WT}. The number of γ-H2AX foci remaining 2 h after 2 Gy γ-ray irradiation was significantly greater in M10-XRCC4{sup K271R} than in M10-XRCC4{sup WT}, whereas it was only marginally increased in M10-XRCC4{sup K210R} as compared to M10-XRCC4{sup WT}. The present results collectively indicated that Lys271, but not Lys210, of XRCC4 is required for the nuclear localization of XRCC4 and LIG4 and that the nuclear localizing ability is essential for DSB repair function of XRCC4. - Highlights: • XRCC4{sup K271R} is defective in the nuclear localization of itself and LIG4. • XRCC4{sup K210R} is competent for the nuclear localization of itself and LIG4. • XRCC4{sup K271R} is deficient in DSB repair function. • XRCC4{sup K210R} is mostly normal in DSB repair function.

  7. Disconnecting XRCC1 and DNA ligase III.

    PubMed

    Katyal, Sachin; McKinnon, Peter J

    2011-07-15

    DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.

  8. Disconnecting XRCC1 and DNA ligase III

    PubMed Central

    Katyal, Sachin

    2011-01-01

    DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease. PMID:21636980

  9. Poly (ADP-Ribose) Polymerase is Involved in the Repair of DNA Damage Due to Sulfur Mustard by a Mechanism Other Than DNA Ligase I Activation

    DTIC Science & Technology

    2004-11-16

    agents including sulfur mustard (SM). We observed concurrent activation of PARP and DNA ligase in SM-exposed human epidermal keratinocytes (HEK...Previous reports from other laboratories suggested that DNA ligase activation could be due to its modification by PARP. In humans, there are three distinct...DNA ligases, I, II and IV of which DNA ligase I participates in DNA replication and repair. By metabolically labeling HEK using 3H-adenosine

  10. Yeast DNA ligase IV mutations reveal a nonhomologous end joining function of BRCT1 distinct from XRCC4/Lif1 binding.

    PubMed

    Chiruvella, Kishore K; Renard, Brian M; Birkeland, Shanda R; Sunder, Sham; Liang, Zhuobin; Wilson, Thomas E

    2014-12-01

    LIG4/Dnl4 is the DNA ligase that (re)joins DNA double-strand breaks (DSBs) via nonhomologous end joining (NHEJ), an activity supported by binding of its tandem BRCT domains to the ligase accessory protein XRCC4/Lif1. We screened a panel of 88 distinct ligase mutants to explore the structure–function relationships of the yeast Dnl4 BRCT domains and inter-BRCT linker in NHEJ. Screen results suggested two distinct classes of BRCT mutations with differential effects on Lif1 interaction as compared to NHEJ completion. Validated constructs confirmed that D800K and GG(868:869)AA mutations, which target the Lif1 binding interface, showed a severely defective Dnl4–Lif1 interaction but a less consistent and often small decrease in NHEJ activity in some assays, as well as nearly normal levels of Dnl4 accumulation at DSBs. In contrast, mutants K742A and KTT(742:744)ATA, which target the β3-α2 region of the first BRCT domain, substantially decreased NHEJ function commensurate with a large defect in Dnl4 recruitment to DSBs, despite a comparatively greater preservation of the Lif1 interaction. Together, these separation-of-function mutants indicate that Dnl4 BRCT1 supports DSB recruitment and NHEJ in a manner distinct from Lif1 binding and reveal a complexity of Dnl4 BRCT domain functions in support of stable DSB association.

  11. DNA and RNA ligases: structural variations and shared mechanisms.

    PubMed

    Pascal, John M

    2008-02-01

    DNA and RNA ligases join 3' OH and 5' PO4 ends in polynucleotide substrates using a three-step reaction mechanism that involves covalent modification of both the ligase enzyme and the polynucleotide substrate with AMP. In the past three years, several polynucleotide ligases have been crystallized in complex with nucleic acid, providing the introductory views of ligase enzymes engaging their substrates. Crystal structures for two ATP-dependent DNA ligases, an NAD+-dependent DNA ligase, and an ATP-dependent RNA ligase demonstrate how ligases utilize the AMP group and their multi-domain architectures to manipulate nucleic acid structure and catalyze the end-joining reaction. Together with unliganded crystal structures of DNA and RNA ligases, a more comprehensive and dynamic understanding of the multi-step ligation reaction mechanism has emerged.

  12. Reinvestigation of DNA ligase I in axolotl and Pleurodeles development.

    PubMed Central

    Aoufouchi, S; Hardy, S; Prigent, C; Philippe, M; Thiebaud, P

    1991-01-01

    We have recently shown that the exclusion process causing the replacement of DNA ligases II by DNA ligase I in amphibian eggs after fertilization does not occur in the case of Xenopus laevis [Hardy, S., Aoufouchi, S., Thiebaud, P., and Prigent, C., (1991) Nucleic Acids Res. 19, 701-705]. Since this result is in contradiction with the situation reported in axolotl and Pleurodeles we decided to reinvestigate such results in both species. Three different approaches have been used: (1) the substrate specificity of DNA ligase I; (2) the DNA ligase-AMP adduct reaction and (3) the immunological detection using antibodies raised against the X.laevis DNA ligase I. Our results clearly demonstrate that DNA ligase I activity is associated with a single polypeptide which is present in oocyte, unfertilized egg and embryo of both amphibians. Therefore, the hypothesis of a change in DNA ligase forms, resulting from an expression of the DNA ligase I gene in axolotl and Pleurodeles early development must be rejected. We also show that, in contradiction with published data, the unfertilized sea urchin egg contains a DNA ligase activity able to join blunt ended DNA molecules. Images PMID:1886765

  13. Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase.

    PubMed

    Lohman, Gregory J S; Zhang, Yinhua; Zhelkovsky, Alexander M; Cantor, Eric J; Evans, Thomas C

    2014-02-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10(-3) s(-1) and K(M) < 1 nM at 25 °C under conditions where T4 DNA ligase produced only 5'-adenylylated DNA with a 20-fold lower kcat and a K(M) ≈ 300 nM. The rate of ligation increased with addition of Mn(2+), but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5'-phosphorylated dC or dG residue on the 3' side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA.

  14. Expression and biochemical characterization of Plasmodium falciparum DNA ligase I.

    PubMed

    Buguliskis, Jeffrey S; Casta, Louis J; Butz, Charles E; Matsumoto, Yoshihiro; Taraschi, Theodore F

    2007-10-01

    We report that Plasmodium falciparum (Pf) encodes a 912 amino acid ATP-dependent DNA ligase. Protein sequence analysis of Pf DNA ligase I indicates a strong sequence similarity, particularly in the C-terminal region, to DNA ligase I homologues. The activity of recombinant Pf DNA ligase I (PfLigI) was investigated using protein expressed in HEK293 cells. The PfLigI gene product is approximately 94kDa and catalyzes phosphodiester bond formation on a singly nicked DNA substrate. The enzyme is most active at alkaline pH (8.5) and with Mg(2+) or Mn(2+) and ATP as cofactors. Kinetic studies of PfLigI revealed that the enzyme has similar substrate affinity (K(m) 2.6nM) as compared to human DNA ligase I and k(cat) (2.3x10(-3)s(-1)) and k(cat)/K(m) (8.8x10(5)M(-1)s(-1)) which are similar to other ATP-dependent DNA ligases. PfLigI was able to join RNA-DNA substrates only when the RNA sequence was upstream of the nick, confirming that it is DNA ligase I and has no associated DNA ligase III like activity.

  15. DNA Ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair

    PubMed Central

    Gao, Yankun; Katyal, Sachin; Lee, Youngsoo; Zhao, Jingfeng; Rehg, Jerold E.; Russell, Helen R.; McKinnon, Peter J.

    2011-01-01

    DNA replication and repair in mammalian cells involves three distinct DNA ligases; ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4)1. Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway2,3. Lig3 is also present in the mitochondria where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc14. However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality5. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss6, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair. PMID:21390131

  16. Cellular DNA ligase I is recruited to cytoplasmic vaccinia virus factories and masks the role of the vaccinia ligase in viral DNA replication.

    PubMed

    Paran, Nir; De Silva, Frank S; Senkevich, Tatiana G; Moss, Bernard

    2009-12-17

    Vaccinia virus (VACV) encodes DNA polymerase and additional proteins that enable cytoplasmic replication. We confirmed the ability of VACV DNA ligase mutants to replicate and tested the hypothesis that cellular ligases compensate for loss of viral gene expression. RNA silencing of human DNA ligase I expression and a small molecule inhibitor of human DNA ligase I [corrected] severely reduced replication of viral DNA in cells infected with VACV ligase-deficient mutants, indicating that the cellular enzyme plays a complementary role. Replication of ligase-deficient VACV was greatly reduced and delayed in resting primary cells, correlating with initial low levels of ligase I and subsequent viral induction and localization of ligase I in virus factories. These studies indicate that DNA ligation is essential for poxvirus replication and explain the ability of ligase deletion mutants to replicate in dividing cells but exhibit decreased pathogenicity in mice. Encoding its own ligase might allow VACV to "jump-start" DNA synthesis.

  17. DNA ligase I is not essential for mammalian cell viability.

    PubMed

    Han, Li; Masani, Shahnaz; Hsieh, Chih-lin; Yu, Kefei

    2014-04-24

    Of the three DNA ligases present in all vertebrates, DNA ligase I (Lig1) has been considered essential for ligating Okazaki fragments during DNA replication and thereby essential for cell viability. Here, we report the striking finding that a Lig1-null murine B cell line is viable. Surprisingly, the Lig1-null cells exhibit normal proliferation and normal immunoglobulin heavy chain class switch recombination and are not hypersensitive to a wide variety of DNA damaging agents. These findings demonstrate that Lig1 is not absolutely required for cellular DNA replication and repair and that either Lig3 or Lig4 can substitute for the role of Lig1 in joining Okazaki fragments. The establishment of a Lig1-null cell line will greatly facilitate the characterization of DNA ligase function in mammalian cells, but the finding alone profoundly reprioritizes the role of ligase I in DNA replication, repair, and recombination.

  18. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III.

    PubMed

    Arakawa, Hiroshi; Iliakis, George

    2015-06-23

    Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche-ligase to a

  19. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase.

    PubMed

    Nohales, María-Ángeles; Flores, Ricardo; Daròs, José-Antonio

    2012-08-21

    Viroids are a unique class of noncoding RNAs: composed of only a circular, single-stranded molecule of 246-401 nt, they manage to replicate, move, circumvent host defenses, and frequently induce disease in higher plants. Viroids replicate through an RNA-to-RNA rolling-circle mechanism consisting of transcription of oligomeric viroid RNA intermediates, cleavage to unit-length strands, and circularization. Though the host RNA polymerase II (redirected to accept RNA templates) mediates RNA synthesis and a type-III RNase presumably cleavage of Potato spindle tuber viroid (PSTVd) and closely related members of the family Pospiviroidae, the host enzyme catalyzing the final circularization step, has remained elusive. In this study we propose that PSTVd subverts host DNA ligase 1, converting it to an RNA ligase, for the final step. To support this hypothesis, we show that the tomato (Solanum lycopersicum L.) DNA ligase 1 specifically and efficiently catalyzes circularization of the genuine PSTVd monomeric linear replication intermediate opened at position G95-G96 and containing 5'-phosphomonoester and 3'-hydroxyl terminal groups. Moreover, we also show a decreased PSTVd accumulation and a reduced ratio of monomeric circular to total monomeric PSTVd forms in Nicotiana benthamiana Domin plants in which the endogenous DNA ligase 1 was silenced. Thus, in a remarkable example of parasitic strategy, viroids reprogram for their replication the template and substrate specificity of a DNA-dependent RNA polymerase and a DNA ligase to act as RNA-dependent RNA polymerase and RNA ligase, respectively.

  20. Expression, purification and biochemical characterization of Methanocaldococcus jannaschii DNA ligase.

    PubMed

    Wang, You; Xie, Juan-Juan; Han, Zhong; Liu, Jian-Hua; Liu, Xi-Peng

    2013-02-01

    We describe the biochemical characterization of Methanocaldococcus jannaschii (M. jannaschii) DNA ligase and its potential application in single nucleotide polymorphism (SNP) genotyping. The recombinant M. jannaschii DNA ligase is an ATP-dependent ligase. The ligase activity was dependent on metal ions of Mg(2+) and Mn(2+). The optimal concentrations of ATP cofactor and Mg(2+) ion were 0.01-2 and 10 mM, respectively. The optimal pH value for DNA ligation was 8.5. High concentrations of NaCl inhibited DNA ligation. The effects of mismatches on joining short oligonucleotides by M. jannaschii DNA ligase were fully characterized. The mismatches at the first position 5' to the nick inhibited ligation more than those at the first position 3' to the nick. The mismatches at other positions 5' to the nick (3rd to 7th sites) exhibited less inhibition on ligation. However, the introduction of a C/C mismatch at the third position 5' to the nick could completely inhibit the ligation of the terminal-mismatched nick of an oligonucleotide duplex by M. jannaschii DNA ligase. Therefore, introducing an additional mismatch at the third position 5' to the SNP site is a more effective approach in genotyping by M. jannaschii DNA ligase.

  1. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.

    PubMed

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom

    2010-07-27

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  2. Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States

    SciTech Connect

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom

    2010-09-13

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a 'jackknife model' in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  3. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining

    PubMed Central

    Lu, Guangqing; Duan, Jinzhi; Shu, Sheng; Wang, Xuxiang; Gao, Linlin; Guo, Jing; Zhang, Yu

    2016-01-01

    In eukaryotes, DNA double-strand breaks (DSBs), one of the most harmful types of DNA damage, are repaired by homologous repair (HR) and nonhomologous end-joining (NHEJ). Surprisingly, in cells deficient for core classic NHEJ factors such as DNA ligase IV (Lig4), substantial end-joining activities have been observed in various situations, suggesting the existence of alternative end-joining (A-EJ) activities. Several putative A-EJ factors have been proposed, although results are mostly controversial. By using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we generated mouse CH12F3 cell lines in which, in addition to Lig4, either Lig1 or nuclear Lig3, representing the cells containing a single DNA ligase (Lig3 or Lig1, respectively) in their nucleus, was completely ablated. Surprisingly, we found that both Lig1- and Lig3-containing complexes could efficiently catalyze A-EJ for class switching recombination (CSR) in the IgH locus and chromosomal deletions between DSBs generated by CRISPR/Cas9 in cis-chromosomes. However, only deletion of nuclear Lig3, but not Lig1, could significantly reduce the interchromosomal translocations in Lig4−/− cells, suggesting the unique role of Lig3 in catalyzing chromosome translocation. Additional sequence analysis of chromosome translocation junction microhomology revealed the specificity of different ligase-containing complexes. The data suggested the existence of multiple DNA ligase-containing complexes in A-EJ. PMID:26787905

  4. DNA ligase and the pyridine nucleotide cycle in Salmonella typhimurium.

    PubMed Central

    Park, U E; Olivera, B M; Hughes, K T; Roth, J R; Hillyard, D R

    1989-01-01

    Bacterial DNA ligases use NAD as an energy source. In this study we addressed two questions about these enzymes. First, what is the physiological consequence of completely removing the NAD-dependent enzyme and replacing it with an ATP-dependent DNA ligase? We constructed Salmonella typhimurium strains in which the endogenous NAD-dependent DNA ligase activity was inactivated by an insertion mutation and the ATP-dependent enzyme from bacteriophage T4 was provided by a cloned phage gene. Such strains were physiologically indistinguishable from the wild type, even under conditions of UV irradiation or treatment with alkylating agents. These results suggest that specific functional interactions between DNA ligase and other replication and repair enzymes may be unimportant under the conditions tested. Second, the importance of DNA ligation as the initiating event of the bacterial pyridine nucleotide cycle was critically assessed in these mutant strains. Surprisingly, our results indicate that DNA ligation makes a minimal contribution to the pyridine nucleotide cycle; the Salmonella strains with only an ATP-dependent ligase had the same NAD turnover rates as the wild-type strain with an NAD-dependent ligase. However, we found that NAD turnover was significantly decreased under anaerobic conditions. We suggest that most intracellular pyridine nucleotide breakdown occurs in a process that protects the cell against oxygen damage but involves a biochemical mechanism other than DNA ligation. Images PMID:2649488

  5. Biochemical characterization of the DNA ligase I from Entamoeba histolytica.

    PubMed

    Cardona-Felix, Cesar S; Pastor-Palacios, Guillermo; Cardenas, Helios; Azuara-Liceaga, Elisa; Brieba, Luis G

    2010-11-01

    DNA ligases play an essential role in DNA replication and repair. Herein, we report the cloning and biochemical characterization of DNA ligase I from the protozoan parasite Entamoeba histolytica (EhDNAligI). EhDNAligI is an ATP-dependent DNA ligase of 685 amino acids with 35% identity to human DNA ligase I. This report shows that heterologous expressed EhDNAligI is able to perform the three conserved steps of a DNA ligation reaction: adenylation, binding to a 5'-phosphorylated nicked DNA substrate and sealing of the nick. EhDNAligI is strongly inhibited by NaCl and displays optimal activity at pH 7.5. EhDNAligI uses Mn2+ or Mg2+ as metal cofactors and ATP as nucleotide cofactor. EhDNAligI has a nicked DNA binding constant of 6.6microM and follows Michaelis-Menten steady-state kinetics with a K(m) ATP of 64nM and a k(cat) of 2.4min(-1). Accordingly to its properties as a family I DNA ligase, EhDNAligI is able to ligate a RNA strand upstream of a nucleic acid nick, but not in the downstream or the template position. We propose that EhDNAligI is involved in sealing DNA nicks during lagging strand synthesis and may have a role in base excision repair in E. histolytica.

  6. T4 DNA ligase is more than an effective trap of cyclized dsDNA.

    PubMed

    Yuan, Chongli; Lou, Xiong Wen; Rhoades, Elizabeth; Chen, Huimin; Archer, Lynden A

    2007-01-01

    T4 DNA ligase is used in standard cyclization assays to trap double-stranded DNA (dsDNA) in low-probability, cyclic or highly bent conformations. The cyclization probability, deduced from the relative yield of cyclized product, can be used in conjunction with statistical mechanical models to extract the bending stiffness of dsDNA. By inserting the base analog 2-aminopurine (2-AP) at designated positions in 89 bp and 94 bp dsDNA fragments, we find that T4 DNA ligase can have a previously unknown effect. Specifically, we observe that addition of T4 ligase to dsDNA in proportions comparable to what is used in the cyclization assay leads to a significant increase in fluorescence from 2-AP. This effect is believed to originate from stabilization of local base-pair opening by formation of transient DNA-ligase complexes. Non-specific binding of T4 ligase to dsDNA is also confirmed using fluorescence correlation spectroscopy (FCS) experiments, which reveal a systematic reduction of dsDNA diffusivity in the presence of ligase. ATP competes with regular DNA for non-covalent binding to the T4 ligase and is found to significantly reduce DNA-ligase complexation. For short dsDNA fragments, however, the population of DNA-ligase complexes at typical ATP concentrations used in DNA cyclization studies is determined to be large enough to dominate the cyclization reaction.

  7. DNA ligases ensure fidelity by interrogating minor groove contacts.

    PubMed

    Liu, Pingfang; Burdzy, Artur; Sowers, Lawrence C

    2004-01-01

    DNA ligases, found in both prokaryotes and eukaryotes, covalently link the 3'-hydroxyl and 5'-phosphate ends of duplex DNA segments. This reaction represents a completion step for DNA replication, repair and recombination. It is well established that ligases are sensitive to mispairs present on the 3' side of the ligase junction, but tolerant of mispairs on the 5' side. While such discrimination would increase the overall accuracy of DNA replication and repair, the mechanisms by which this fidelity is accomplished are as yet unknown. In this paper, we present the results of experiments with Tth ligase from Thermus thermophilus HB8 and a series of nucleoside analogs in which the mechanism of discrimination has been probed. Using a series of purine analogs substituted in the 2 and 6 positions, we establish that the apparent base pair geometry is much more important than relative base pair stability and that major groove contacts are of little importance. This result is further confirmed using 5-fluorouracil (FU) mispaired with guanine. At neutral pH, the FU:G mispair on the 3' side of a ligase junction is predominantly in a neutral wobble configuration and is poorly ligated. Increasing the solution pH increases the proportion of an ionized base pair approximating Watson-Crick geometry, substantially increasing the relative ligation efficiency. These results suggest that the ligase could distinguish Watson-Crick from mispaired geometry by probing the hydrogen bond acceptors present in the minor groove as has been proposed for DNA polymerases. The significance of minor groove hydrogen bonding interactions is confirmed with both Tth and T4 DNA ligases upon examination of base pairs containing the pyrimidine shape analog, difluorotoluene (DFT). Although DFT paired with adenine approximates Watson-Crick geometry, a minor groove hydrogen bond acceptor is lost. Consistent with this hypothesis, we observe that DFT-containing base pairs inhibit ligation when on the 3' side of

  8. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I

    PubMed Central

    Srivastava, Sandeep Kumar; Dube, Divya; Tewari, Neetu; Dwivedi, Namrata; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2005-01-01

    DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD+-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD+ binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, Nn-bis-(5-deoxy-α-d-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD+ for binding and inhibit enzyme activity with IC50 values in the µM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD+ with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATP-dependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents. PMID:16361267

  9. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I.

    PubMed

    Srivastava, Sandeep Kumar; Dube, Divya; Tewari, Neetu; Dwivedi, Namrata; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2005-01-01

    DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD+-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD+ binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, N(n)-bis-(5-deoxy-alpha-D-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD+ for binding and inhibit enzyme activity with IC50 values in the microM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD+ with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATP-dependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents.

  10. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase.

    PubMed

    Gansauge, Marie-Theres; Gerber, Tobias; Glocke, Isabelle; Korlević, Petra; Lippik, Laurin; Nagel, Sarah; Riehl, Lara Maria; Schmidt, Anna; Meyer, Matthias

    2017-01-23

    DNA library preparation for high-throughput sequencing of genomic DNA usually involves ligation of adapters to double-stranded DNA fragments. However, for highly degraded DNA, especially ancient DNA, library preparation has been found to be more efficient if each of the two DNA strands are converted into library molecules separately. We present a new method for single-stranded library preparation, ssDNA2.0, which is based on single-stranded DNA ligation with T4 DNA ligase utilizing a splinter oligonucleotide with a stretch of random bases hybridized to a 3' biotinylated donor oligonucleotide. A thorough evaluation of this ligation scheme shows that single-stranded DNA can be ligated to adapter oligonucleotides in higher concentration than with CircLigase (an RNA ligase that was previously chosen for end-to-end ligation in single-stranded library preparation) and that biases in ligation can be minimized when choosing splinters with 7 or 8 random nucleotides. We show that ssDNA2.0 tolerates higher quantities of input DNA than CircLigase-based library preparation, is less costly and better compatible with automation. We also provide an in-depth comparison of library preparation methods on degraded DNA from various sources. Most strikingly, we find that single-stranded library preparation increases library yields from tissues stored in formalin for many years by several orders of magnitude.

  11. Heterogeneity of mammalian DNA ligase detected on activity and DNA sequencing gels.

    PubMed Central

    Mezzina, M; Sarasin, A; Politi, N; Bertazzoni, U

    1984-01-01

    A new method to detect DNA ligase activity in situ after NaDodSO4 polyacrylamide gel electrophoresis has been developed. After renaturation of active polypeptides the ligase reaction occurs in situ by incubating the intact gel in the presence of Mg++ and ATP. Further treatment with alkaline phosphatase removes the unligated 5'-32P-end of oligo (dT) used as a substrate and active polypeptides having ligase activity are identified by autoradiography. Analysis on DNA sequencing gels of the oligo (dT) reaction products present in the activity bands ensures that the radioactive material detected in activity gels or in standard in vitro ligase assays corresponds unambiguously to a ligase activity. Using these methods, we have analysed the purified phage T4 DNA ligase, and the activities present in crude extracts and in purified fractions from monkey kidney (CV1-P) cells. The purified T4 enzyme yields one or two active peptides with Mr values of 60,000 and 70,000. Crude extracts from CV1-P cells contain several polypeptides having DNA ligase activity. Partial purification of these extracts shows that DNA ligase I isolated from hydroxylapatite column is enriched in polypeptides with Mr 200,000, 150,000 and 120,000, while DNA ligase II is enriched in those with Mr 60,000 and 70,000. Images PMID:6377238

  12. One-step assay for the quantification of T4 DNA ligase.

    PubMed

    Franke, Steffi; Kreisig, Thomas; Buettner, Karin; Zuchner, Thole

    2015-02-01

    As one of the most commonly used enzyme in molecular biology, the T4 DNA ligase presents an important tool for the manipulation of DNA. T4 DNA ligase activity measurements are based on the use of radioactivity or rather labor-intense procedures including gel-based analysis. We therefore established a homogeneous T4 DNA ligase assay utilizing a specifically designed fluorescein- and dark quencher-labeled DNA molecule. Upon ligation of both DNA molecules, a quenching occurs and the fluorescence intensity decreases with increasing ligase concentrations. The assay allows a sensitive and precise quantification (CV, 4.6-5.5 %) of T4 DNA ligase activities and showed a high specificity when tested against other ligases of related and different species. Most importantly, this T4 DNA ligase assay requires only one working and incubation step before measurement can take place at room temperature and may therefore offer an interesting alternative to existing, more laborious ligase assays.

  13. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions).

  14. Rejoining of DNA strand breaks by T4 DNA ligase in mammalian cells.

    PubMed

    Ortiz, T; Edreira, A; Piñero, J

    2002-06-01

    We have tested the ability of T4 DNA ligase to rejoin radiation-induced DNA strand breaks in living hamster cells (CHO-K1, EM9, xrs-5). T4 DNA ligase was introduced into cells by electroporation prior to x-irradiation. Single- and double-strand breaks were measured by the alkaline comet assay technique, and double-strand breaks (DSBs) were evaluated by the pulsed-field gel electrophoresis method. In the comet assay, the three cell lines showed reduced tail moments following pretreatment with T4 DNA ligase, both directly after irradiation and after repair incubation for 4 h. Similarly, the results obtained from pulsed-field gel electrophoresis showed reduced DSB frequencies after pretreatment with T4 DNA ligase. We conclude that exogeneous T4 ligase contributes to rejoining of radiation-induced strand breaks.

  15. Splint ligation of RNA with T4 DNA ligase

    PubMed Central

    Kershaw, Christopher J.; O’Keefe, Raymond T.

    2014-01-01

    Splint ligation of RNA, whereby specific RNA molecules are ligated together, can be carried out using T4 DNA ligase and a bridging DNA oligonucleotide complementary to the RNAs. This method takes advantage of the property of T4 DNA ligase to join RNA molecules when they are in an RNA:DNA hybrid. Splint ligation is a useful tool for the introduction of modified nucleotides into RNA molecules, insertion of a radiolabel into a specific position within an RNA and for the assembly of smaller synthetic RNAs into longer RNA molecules. Such modifications enable a wide range of experiments to be carried out with the modified RNA including structural studies, co-immunoprecipitations, and the ability to map sites of RNA:RNA and RNA:protein interactions. PMID:23065567

  16. Mechanism of replication machinery assembly as revealed by the DNA ligase-PCNA-DNA complex architecture.

    PubMed

    Mayanagi, Kouta; Kiyonari, Shinichi; Saito, Mihoko; Shirai, Tsuyoshi; Ishino, Yoshizumi; Morikawa, Kosuke

    2009-03-24

    The 3D structure of the ternary complex, consisting of DNA ligase, the proliferating cell nuclear antigen (PCNA) clamp, and DNA, was investigated by single-particle analysis. This report presents the structural view, where the crescent-shaped DNA ligase with 3 distinct domains surrounds the central DNA duplex, encircled by the closed PCNA ring, thus forming a double-layer structure with dual contacts between the 2 proteins. The relative orientations of the DNA ligase domains, which remarkably differ from those of the known crystal structures, suggest that a large domain rearrangement occurs upon ternary complex formation. A second contact was found between the PCNA ring and the middle adenylation domain of the DNA ligase. Notably, the map revealed a substantial DNA tilt from the PCNA ring axis. This structure allows us to propose a switching mechanism for the replication factors operating on the PCNA ring.

  17. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    PubMed Central

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  18. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

    PubMed

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L; Tomkinson, Alan E; Tainer, John A; Ellenberger, Tom

    2015-08-18

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.

  19. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation.

    PubMed

    Simsek, Deniz; Brunet, Erika; Wong, Sunnie Yan-Wai; Katyal, Sachin; Gao, Yankun; McKinnon, Peter J; Lou, Jacqueline; Zhang, Lei; Li, James; Rebar, Edward J; Gregory, Philip D; Holmes, Michael C; Jasin, Maria

    2011-06-01

    Nonhomologous end-joining (NHEJ) is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4), suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ) pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1.

  20. DNA Ligase III Promotes Alternative Nonhomologous End-Joining during Chromosomal Translocation Formation

    PubMed Central

    Wong, Sunnie Yan-Wai; Katyal, Sachin; Gao, Yankun; McKinnon, Peter J.; Lou, Jacqueline; Zhang, Lei; Li, James; Rebar, Edward J.; Gregory, Philip D.; Holmes, Michael C.; Jasin, Maria

    2011-01-01

    Nonhomologous end-joining (NHEJ) is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4), suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ) pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1. PMID:21655080

  1. DNA ligase I and Nbs1 proteins associate in a complex and colocalize at replication factories.

    PubMed

    Vago, Riccardo; Leva, Valentina; Biamonti, Giuseppe; Montecucco, Alessandra

    2009-08-15

    DNA ligase I is the main DNA ligase activity involved in eukaryotic DNA replication acting in the joining of Okazaki fragments. This enzyme is also implicated in nucleotide excision repair and in the long-patch base excision repair while its role in the recombinational repair pathways is poorly understood. DNA ligase I is phosphorylated during cell cycle at several serine and threonine residues that regulate its participation in different DNA transactions by modulating the interaction with different protein partners. Here we use an antibody-based array method to identify novel DNA ligase-interacting partners. We show that DNA ligase I participates in several multiprotein complexes with proteins involved in DNA replication and repair, cell cycle control, and protein modification. In particular we demonstrate that DNA ligase I complexes with Nbs1, a core component of the MRN complex critical for detection, processing and repair of double-stranded DNA breaks. The analysis of epitope tagged DNA ligase I mutants demonstrates that the association is mediated by the catalytic fragment of the enzyme. DNA ligase I and Nbs1 colocalize at replication factories during unperturbed replication and after treatment with DNA damaging agents. Since MRN complex is involved in the repair of double-stranded DNA breaks by homologous recombination at stalled replication forks our data support the notion that DNA ligase I participates in homology dependent pathways that deal with replication-associated lesions generated when replication fork encounters DNA damage.

  2. A novel interaction between DNA ligase III and DNA polymerase gamma plays an essential role in mitochondrial DNA stability.

    PubMed

    De, Ananya; Campbell, Colin

    2007-02-15

    The data in the present study show that DNA polymerase gamma and DNA ligase III interact in mitochondrial protein extracts from cultured HT1080 cells. An interaction was also observed between the two recombinant proteins in vitro. Expression of catalytically inert versions of DNA ligase III that bind DNA polymerase gamma was associated with reduced mitochondrial DNA copy number and integrity. In contrast, overexpression of wild-type DNA ligase III had no effect on mitochondrial DNA copy number or integrity. Experiments revealed that wild-type DNA ligase III facilitates the interaction of DNA polymerase gamma with a nicked DNA substrate in vitro, and that the zinc finger domain of DNA ligase III is required for this activity. Mitochondrial protein extracts prepared from cells overexpressing a DNA ligase III protein that lacked the zinc finger domain had reduced base excision repair activity compared with extracts from cells overexpressing the wild-type protein. These data support the interpretation that the interaction of DNA ligase III and DNA polymerase gamma is required for proper maintenance of the mammalian mitochondrial genome.

  3. Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks.

    PubMed

    Sallmyr, Annahita; Tomkinson, Alan E; Rassool, Feyruz V

    2008-08-15

    Expression of oncogenic BCR-ABL in chronic myeloid leukemia (CML) results in increased reactive oxygen species (ROS) that in turn cause increased DNA damage, including DNA double-strand breaks (DSBs). We have previously shown increased error-prone repair of DSBs by nonhomologous end-joining (NHEJ) in CML cells. Recent reports have identified alternative NHEJ pathways that are highly error prone, prompting us to examine the role of the alternative NHEJ pathways in BCR-ABL-positive CML. Importantly, we show that key proteins in the major NHEJ pathway, Artemis and DNA ligase IV, are down-regulated, whereas DNA ligase IIIalpha, and the protein deleted in Werner syndrome, WRN, are up-regulated. DNA ligase IIIalpha and WRN form a complex that is recruited to DSBs in CML cells. Furthermore, "knockdown" of either DNA ligase IIIalpha or WRN leads to increased accumulation of unrepaired DSBs, demonstrating that they contribute to the repair of DSBs. These results indicate that altered DSB repair in CML cells is caused by the increased activity of an alternative NHEJ repair pathway, involving DNA ligase IIIalpha and WRN. We suggest that, although the repair of ROS-induced DSBs by this pathway contributes to the survival of CML cells, the resultant genomic instability drives disease progression.

  4. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I.

    PubMed

    Yadav, Nisha; Khanam, Taran; Shukla, Ankita; Rai, Niyati; Hajela, Kanchan; Ramachandran, Ravishankar

    2015-05-21

    DNA ligases are critical components for DNA metabolism in all organisms. NAD(+)-dependent DNA ligases (LigA) found exclusively in bacteria and certain entomopoxviruses are drawing increasing attention as therapeutic targets as they differ in their cofactor requirement from ATP-dependent eukaryotic homologs. Due to the similarities in the cofactor binding sites of the two classes of DNA ligases, it is necessary to find determinants that can distinguish between them for the exploitation of LigA as an anti-bacterial target. In the present endeavour, we have synthesized and evaluated a series of tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives for their ability to distinguish between bacterial and human DNA ligases. The in vivo inhibition assays that employed LigA deficient E. coli GR501 and S. typhimurium LT2 bacterial strains, rescued by ATP-dependent T4 DNA ligase or Mycobacterium tuberculosis NAD(+)-dependent DNA ligase (Mtb LigA), respectively, showed that the compounds can specifically inhibit bacterial LigA. The in vitro enzyme inhibition assays using purified MtbLigA, human DNA ligase I & T4 DNA ligase showed specific inhibition of MtbLigA at low micromolar range. Our results demonstrate that tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can distinguish between bacterial and human DNA ligases by ∼5-folds. In silico docking and enzyme inhibition assays identified that the compounds bind to the cofactor binding site and compete with the cofactor. Ethidium bromide displacement and gel-shift assays showed that the inhibitors do not exhibit any unwanted general interactions with the substrate DNA. These results set the stage for the detailed exploration of this compound class for development as antibacterials.

  5. From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase.

    PubMed

    Tanabe, Maiko; Ishino, Yoshizumi; Nishida, Hirokazu

    2015-01-01

    DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures.

  6. From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase

    PubMed Central

    Tanabe, Maiko; Ishino, Yoshizumi; Nishida, Hirokazu

    2015-01-01

    DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures. PMID:26508902

  7. Influence of polyethylene glycol on the ligation reaction with calf thymus DNA ligases I and II.

    PubMed

    Teraoka, H; Tsukada, K

    1987-01-01

    High concentrations of the nonspecific macromolecule polyethylene glycol 6000 (PEG 6000) enabled DNA ligases I and II from calf thymus to catalyze intermolecular blunt-end ligation of duplex DNA. Intermolecular cohesive-end ligation with these enzymes was markedly stimulated in the presence of 10-16% (w/v) PEG 6000. The effect of PEG 6000 (4-16%) on the sealing of single-stranded breaks in duplex DNA with DNA ligases I and II was not appreciably stimulatory but rather inhibitory. PEG 6000 (15%) enhanced more twofold the rate of DNA ligase II-AMP complex formation, but moderately suppressed the rate of formation of DNA ligase 1-AMP complex. Polyamines and KCl inhibited blunt-end and cohesive-end ligations with DNA ligases I and II in the presence of PEG 6000.

  8. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    SciTech Connect

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt; Pfizer

    2010-09-17

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  9. Structure of the adenylation domain of NAD(+)-dependent DNA ligase from Staphylococcus aureus.

    PubMed

    Han, Seungil; Chang, Jeanne S; Griffor, Matt

    2009-11-01

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3'-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD(+)-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD(+)-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD(+)-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  10. Unique ligation properties of eukaryotic NAD+-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus.

    PubMed

    Lu, Jing; Tong, Jie; Feng, Hong; Huang, Jianmin; Afonso, Claudio L; Rock, Dan L; Barany, Francis; Cao, Weiguo

    2004-09-01

    The eukaryotic Melanoplus sanguinipes entomopoxvirus (MsEPV) genome reveals a homologous sequence to eubacterial nicotinamide adenine dinucleotide (NAD(+))-dependent DNA ligases [J. Virol. 73 (1999) 533]. This 522-amino acid open reading frame (ORF) contains all conserved nucleotidyl transferase motifs but lacks the zinc finger motif and BRCT domain found in conventional eubacterial NAD(+) ligases. Nevertheless, cloned MsEPV ligase seals DNA nicks in a NAD(+)-dependent fashion, while adenosine 5'-monophosphate (ATP) cannot serve as an adenylation cofactor. The ligation activity of MsEPV ligase requires Mg(2+) or Mn(2+). MsEPV ligase seals sticky ends efficiently, but has little activity on 1-nucleotide gap or blunt-ended DNA substrates even in the presence of polyethylene glycol. In comparison, bacterial NAD(+)-dependent ligases seal blunt-ended DNA substrates in the presence of polyethylene glycol. MsEPV DNA ligase readily joins DNA nicks with mismatches at either side of the nick junction, except for mismatches at the nick junction containing an A base in the template strand (A/A, G/A, and C/A). MsEPV NAD(+)-dependent DNA ligase can join DNA probes on RNA templates, a unique property that distinguishes this enzyme from other conventional bacterial NAD(+) DNA ligases. T4 ATP-dependent DNA ligase shows no detectable mismatch ligation at the 3' side of the nick but substantial 5' T/G mismatch ligation on an RNA template. In contrast, MsEPV ligase joins mismatches at the 3' side of the nick more frequently than at the 5' side of the nick on an RNA template. The complementary specificities of these two enzymes suggest alternative primer design for genomic profiling approaches that use allele-specific detection directly from RNA transcripts.

  11. ATM mediates oxidative stress-induced dephosphorylation of DNA ligase IIIalpha.

    PubMed

    Dong, Zhiwan; Tomkinson, Alan E

    2006-01-01

    Among the three mammalian genes encoding DNA ligases, only the LIG3 gene does not have a homolog in lower eukaryotes. In somatic mammalian cells, the nuclear form of DNA ligase IIIalpha forms a stable complex with the DNA repair protein XRCC1 that is also found only in higher eukaryotes. Recent studies have shown that XRCC1 participates in S phase-specific DNA repair pathways independently of DNA ligase IIIalpha and is constitutively phosphorylated by casein kinase II. In this study we demonstrate that DNA ligase IIIalpha, unlike XRCC1, is phosphorylated in a cell cycle-dependent manner. Specifically, DNA ligase IIIalpha is phosphorylated on Ser123 by the cell division cycle kinase Cdk2 beginning early in S phase and continuing into M phase. Interestingly, treatment of S phase cells with agents that cause oxygen free radicals induces the dephosphorylation of DNA ligase IIIalpha. This oxidative stress-induced dephosphorylation of DNA ligase IIIalpha is dependent upon the ATM (ataxia-telangiectasia mutated) kinase and appears to involve inhibition of Cdk2 and probably activation of a phosphatase.

  12. ATM mediates oxidative stress-induced dephosphorylation of DNA ligase IIIα

    PubMed Central

    Dong, Zhiwan; Tomkinson, Alan E.

    2006-01-01

    Among the three mammalian genes encoding DNA ligases, only the LIG3 gene does not have a homolog in lower eukaryotes. In somatic mammalian cells, the nuclear form of DNA ligase IIIα forms a stable complex with the DNA repair protein XRCC1 that is also found only in higher eukaryotes. Recent studies have shown that XRCC1 participates in S phase-specific DNA repair pathways independently of DNA ligase IIIα and is constitutively phosphorylated by casein kinase II. In this study we demonstrate that DNA ligase IIIα, unlike XRCC1, is phosphorylated in a cell cycle-dependent manner. Specifically, DNA ligase IIIα is phosphorylated on Ser123 by the cell division cycle kinase Cdk2 beginning early in S phase and continuing into M phase. Interestingly, treatment of S phase cells with agents that cause oxygen free radicals induces the dephosphorylation of DNA ligase IIIα. This oxidative stress-induced dephosphorylation of DNA ligase IIIα is dependent upon the ATM (ataxia-telangiectasia mutated) kinase and appears to involve inhibition of Cdk2 and probably activation of a phosphatase. PMID:17040896

  13. DNA-ligase activities appear normal in the CHO mutant EM9.

    PubMed

    Chan, J Y; Thompson, L H; Becker, F F

    1984-01-01

    The Chinese hamster ovary (CHO) mutant strain EM9 was previously shown to be hypersensitive to killing by ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS), to have a 12-fold increased baseline incidence of sister-chromatid exchanges (SCE), and to be defective in rejoining DNA strand breaks after treatment with EMS, MMS, or X-rays. A study was performed to determine if the primary biochemical defect might be a DNA ligase. DNA-ligase activities were assayed and compared after separation of the multiple forms of ligase by AcA 34 gel-filtration chromatography of total cellular extracts. In EM9 cells the levels of the presumptive replicative forms, DNA ligase Ia (480 kd) and ligase Ib (240 kd) were about 50% and 60%, respectively, of those in the parental AA8 cells, whereas DNA ligase II (80 kd) was unaltered in EM9 . In a phenotypic revertant line ( 9R1 ) ligases Ia, Ib and II levels were 35%, 37% and 100%, respectively, of those in AA8 . The reduced levels of ligases Ia and Ib in EM9 and 9R1 cells are apparently not related directly to the mutant phenotype and may be attributable to the somewhat slower growth rates of these strains compared with those of AA8 . To determine if the repair defect in EM9 might reside in the ability to induce DNA-ligase activity after treatment with a DNA-damaging agent, AA8 and EM9 cells were treated with MMS at 30 micrograms/ml for 60 min before preparing fractions for ligase assays. Under these conditions the activities of ligases Ia and Ib decreases 70-80% in both cell lines, but ligase II increased 2.0- and 2.6-fold, respectively, in AA8 and EM9 . As a further test of defective ligase activities in EM9 , assays were performed in the presence of 0.1 M NaCl or after heating the fractions for 10 min at 50 degrees C. Although all 3 forms of ligase showed altered activity under both of these conditions, there were no significant differences between EM9 and AA8 cells. These data combined with the above results provide strong

  14. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107.

    PubMed

    Das-Bradoo, Sapna; Nguyen, Hai Dang; Wood, Jamie L; Ricke, Robin M; Haworth, Justin C; Bielinsky, Anja-Katrin

    2010-01-01

    In all eukaryotes, the ligation of newly synthesized DNA, also known as Okazaki fragments, is catalysed by DNA ligase I (ref. 1). An individual with a DNA ligase I deficiency exhibits growth retardation, sunlight sensitivity and severe immunosuppression, probably due to accumulation of DNA damage. Surprisingly, not much is known about the DNA damage response (DDR) in DNA ligase I-deficient cells. As DNA replication and DDR pathways are highly conserved in eukaryotes, we used Saccharomyces cerevisiae as a model system to address this issue. We uncovered a new pathway, which facilitates ubiquitylation at Lys 107 of proliferating cell nuclear antigen (PCNA). Unlike ubiquitylation at Lys 164 of PCNA in response to UV irradiation, which triggers translesion synthesis, modification of Lys 107 is not dependent on the ubiquitin conjugating enzyme (E2) Rad6 (ref. 4) nor the ubiquitin ligase (E3) Rad18 (ref. 5), but requires the E2 variant Mms2 (ref. 6) in conjunction with Ubc4 (ref. 7) and the E3 Rad5 (Refs 8, 9). Surprisingly, DNA ligase I-deficient S. cerevisiae cdc9-1 cells that carry a PCNAK107R mutation are inviable, because they cannot activate a robust DDR. Furthermore, we show that ubiquitylation of PCNA in response to DNA ligase I deficiency is conserved in humans, yet the lysine residue that is modified remains to be determined. We propose that PCNA ubiquitylation provides a 'DNA damage code' that allows cells to categorize different types of defects that arise during DNA replication.

  15. Structural Basis for Nick Recognition by a Minimal Pluripotent DNA Ligase

    SciTech Connect

    Nair,P.; Nandakumar, J.; Smith, P.; Odell, M.; Lima, C.; Shuman, S.

    2007-01-01

    Chlorella virus DNA ligase, the smallest eukaryotic ligase known, has pluripotent biological activity and an intrinsic nick-sensing function, despite having none of the accessory domains found in cellular ligases. A 2.3-{angstrom} crystal structure of the Chlorella virus ligase-AMP intermediate bound to duplex DNA containing a 3'-OH-5'-PO{sub 4} nick reveals a new mode of DNA envelopment, in which a short surface loop emanating from the OB domain forms a {beta}-hairpin 'latch' that inserts into the DNA major groove flanking the nick. A network of interactions with the 3'-OH and 5'-PO{sub 4} termini in the active site illuminates the DNA adenylylation mechanism and the crucial roles of AMP in nick sensing and catalysis. Addition of a divalent cation triggered nick sealing in crystallo, establishing that the nick complex is a bona fide intermediate in the DNA repair pathway.

  16. Effects of DNA-binding drugs on T4 DNA ligase.

    PubMed Central

    Montecucco, A; Pedrali-Noy, G; Spadari, S; Lestingi, M; Ciarrocchi, G

    1990-01-01

    A number of DNA intercalating and externally binding drugs have been found to inhibit nick sealing, cohesive and blunt end ligation, AMP-dependent DNA topoisomerization and EDTA-induced DNA nicking mediated by bacteriophage T4 DNA ligase. The inhibition seems to arise from drug-substrate interaction so that formation of active DNA-Mg2(+)-AMP-enzyme complex is impaired while assembled and active complexes are not disturbed by drug binding to the substrate. Images Fig. 2. Fig. 4. Fig. 5. PMID:2156493

  17. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway.

    PubMed

    Della-Maria, Julie; Zhou, Yi; Tsai, Miaw-Sheue; Kuhnlein, Jeff; Carney, James P; Paull, Tanya T; Tomkinson, Alan E

    2011-09-30

    Recent studies have implicated a poorly defined alternative pathway of nonhomologous end joining (alt-NHEJ) in the generation of large deletions and chromosomal translocations that are frequently observed in cancer cells. Here, we describe an interaction between two factors, hMre11/hRad50/Nbs1 (MRN) and DNA ligase IIIα/XRCC1, that have been linked with alt-NHEJ. Expression of DNA ligase IIIα and the association between MRN and DNA ligase IIIα/XRCC1 are altered in cell lines defective in the major NHEJ pathway. Most notably, DNA damage induced the association of these factors in DNA ligase IV-deficient cells. MRN interacts with DNA ligase IIIα/XRCC1, stimulating intermolecular ligation, and together these proteins join incompatible DNA ends in a reaction that mimics alt-NHEJ. Thus, our results provide novel mechanistic insights into the alt-NHEJ pathway that not only contributes to genome instability in cancer cells but may also be a therapeutic target.

  18. A high-throughput fluorescence resonance energy transfer-based assay for DNA ligase.

    PubMed

    Shapiro, Adam B; Eakin, Ann E; Walkup, Grant K; Rivin, Olga

    2011-06-01

    DNA ligase is the enzyme that catalyzes the formation of the backbone phosphodiester bond between the 5'-PO(4) and 3'-OH of adjacent DNA nucleotides at single-stranded nicks. These nicks occur between Okazaki fragments during replication of the lagging strand of the DNA as well as during DNA repair and recombination. As essential enzymes for DNA replication, the NAD(+)-dependent DNA ligases of pathogenic bacteria are potential targets for the development of antibacterial drugs. For the purposes of drug discovery, a high-throughput assay for DNA ligase activity is invaluable. This article describes a straightforward, fluorescence resonance energy transfer-based DNA ligase assay that is well suited for high-throughput screening for DNA ligase inhibitors as well as for use in enzyme kinetics studies. Its use is demonstrated for measurement of the steady-state kinetic constants of Haemophilus influenzae NAD(+)-dependent DNA ligase and for measurement of the potency of an inhibitor of this enzyme.

  19. A conserved physical and functional interaction between the cell cycle checkpoint clamp loader and DNA ligase I of eukaryotes.

    PubMed

    Song, Wei; Levin, David S; Varkey, Johnson; Post, Sean; Bermudez, Vladimir P; Hurwitz, Jerard; Tomkinson, Alan E

    2007-08-03

    DNA ligase I joins Okazaki fragments during DNA replication and completes certain excision repair pathways. The participation of DNA ligase I in these transactions is directed by physical and functional interactions with proliferating cell nuclear antigen, a DNA sliding clamp, and, replication factor C (RFC), the clamp loader. Here we show that DNA ligase I also interacts with the hRad17 subunit of the hRad17-RFC cell cycle checkpoint clamp loader, and with each of the subunits of its DNA sliding clamp, the heterotrimeric hRad9-hRad1-hHus1 complex. In contrast to the inhibitory effect of RFC, hRad17-RFC stimulates joining by DNA ligase I. Similar results were obtained with the homologous Saccharomyces cerevisiae proteins indicating that the interaction between the replicative DNA ligase and checkpoint clamp is conserved in eukaryotes. Notably, we show that hRad17 preferentially interacts with and specifically stimulates dephosphorylated DNA ligase I. Moreover, there is an increased association between DNA ligase I and hRad17 in S phase following DNA damage and replication blockage that occurs concomitantly with DNA damage-induced dephosphorylation of chromatin-associated DNA ligase I. Thus, our results suggest that the in vivo interaction between DNA ligase I and the checkpoint clamp loader is regulated by post-translational modification of DNA ligase I.

  20. Human DNA Ligase I Interacts with and Is Targeted for Degradation by the DCAF7 Specificity Factor of the Cul4-DDB1 Ubiquitin Ligase Complex.

    PubMed

    Peng, Zhimin; Liao, Zhongping; Matsumoto, Yoshihiro; Yang, Austin; Tomkinson, Alan E

    2016-10-14

    The synthesis, processing, and joining of Okazaki fragments during DNA replication is complex, requiring the sequential action of a large number of proteins. Proliferating cell nuclear antigen, a DNA sliding clamp, interacts with and coordinates the activity of several DNA replication proteins, including the enzymes flap endonuclease 1 (FEN-1) and DNA ligase I that complete the processing and joining of Okazaki fragments, respectively. Although it is evident that maintaining the appropriate relative stoichiometry of FEN-1 and DNA ligase I, which compete for binding to proliferating cell nuclear antigen, is critical to prevent genomic instability, little is known about how the steady state levels of DNA replication proteins are regulated, in particular the proteolytic mechanisms involved in their turnover. Because DNA ligase I has been reported to be ubiquitylated, we used a proteomic approach to map ubiquitylation sites and screen for DNA ligase I-associated E3 ubiquitin ligases. We identified three ubiquitylated lysine residues and showed that DNA ligase I interacts with and is targeted for ubiquitylation by DCAF7, a specificity factor for the Cul4-DDB1 complex. Notably, knockdown of DCAF7 reduced the degradation of DNA ligase I in response to inhibition of proliferation and replacement of ubiquitylated lysine residues reduced the in vitro ubiquitylation of DNA ligase I by Cul4-DDB1 and DCAF7. In contrast, a different E3 ubiquitin ligase regulates FEN-1 turnover. Thus, although the expression of many of the genes encoding DNA replication proteins is coordinately regulated, our studies reveal that different mechanisms are involved in the turnover of these proteins.

  1. Identification and Validation of Human DNA Ligase Inhibitors Using Computer-Aided Drug Design

    PubMed Central

    Zhong, Shijun; Chen, Xi; Zhu, Xiao; Dziegielewska, Barbara; Bachman, Kurtis E.; Ellenberger, Tom; Ballin, Jeff D.; Wilson, Gerald M.; Tomkinson, Alan E.; MacKerell, Alexander D.

    2009-01-01

    Linking together of DNA strands by DNA ligases is essential for DNA replication and repair. Since many therapies used to treat cancer act by causing DNA damage, there is growing interest in the development of DNA repair inhibitors. Accordingly, virtual database screening and experimental evaluation were applied to identify inhibitors of human DNA ligase I (hLigI). When a DNA binding site within the DNA binding domain (DBD) of hLigI was targeted, more than 1 million compounds were screened from which 192 were chosen for experimental evaluation. In DNA joining assays, 10 compounds specifically inhibited hLigI, 5 of which also inhibited the proliferation of cultured human cell lines. Analysis of the 10 active compounds revealed the utility of including multiple protein conformations and chemical clustering in the virtual screening procedure. The identified ligase inhibitors are structurally diverse and have druglike physical and molecular characteristics making them ideal for further drug development studies. PMID:18630893

  2. Cloning, overexpression and nucleotide sequence of a thermostable DNA ligase-encoding gene.

    PubMed

    Barany, F; Gelfand, D H

    1991-12-20

    Thermostable DNA ligase has been harnessed for the detection of single-base genetic diseases using the ligase chain reaction [Barany, Proc. Natl. Acad. Sci. USA 88 (1991) 189-193]. The Thermus thermophilus (Tth) DNA ligase-encoding gene (ligT) was cloned in Escherichia coli by genetic complementation of a ligts 7 defect in an E. coli host. Nucleotide sequence analysis of the gene revealed a single chain of 676 amino acid residues with 47% identity to the E. coli ligase. Under phoA promoter control, Tth ligase was overproduced to greater than 10% of E. coli cellular proteins. Adenylated and deadenylated forms of the purified enzyme were distinguished by apparent molecular weights of 81 kDa and 78 kDa, respectively, after separation via sodium dodecyl sulfate-polyacrylamide-gel electrophoresis.

  3. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface.

    PubMed

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder

    2014-11-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  4. Efficient gene targeting in ligase IV-deficient Monascus ruber M7 by perturbing the non-homologous end joining pathway.

    PubMed

    He, Yi; Shao, Yanchun; Chen, Fusheng

    2014-01-01

    Inactivating the non-homologous end joining (NHEJ) pathway is a well established method to increase gene replacement frequency (GRF) in filamentous fungi because NHEJ is predominant for the repair of DNA double strand breaks (DSBs), while gene targeting is based on homologous recombination (HR). DNA ligase IV, a component of the NHEJ system, is strictly required for the NHEJ in Saccharomyces cerevisiae and Neurospora crassa. To enhance the GRF in Monascus ruber M7, we deleted the Mrlig4 gene encoding a homolog of N. crassa DNA ligase IV. The obtained mutant (MrΔlig4) showed no apparent defects in vegetative growth, colony phenotype, microscopic morphology, spore yield, and production of Monascus pigments and citrinin compared with the wild-type strain (M. ruber M7). Gene targeting of ku70 and triA genes revealed that GRF in the MrΔlig4 strain increased four-fold compared with that in the wild-type strain, reached 68 % and 85 %, respectively. Thus, the MrΔlig4 strain is a promising host for efficient genetic manipulation. In addition, the MrΔlig4 strain is more sensitive than M. ruber M7 to a DNA-damaging agent, methyl methanesulfonate.

  5. Fragment-based discovery of 6-azaindazoles as inhibitors of bacterial DNA ligase.

    PubMed

    Howard, Steven; Amin, Nader; Benowitz, Andrew B; Chiarparin, Elisabetta; Cui, Haifeng; Deng, Xiaodong; Heightman, Tom D; Holmes, David J; Hopkins, Anna; Huang, Jianzhong; Jin, Qi; Kreatsoulas, Constantine; Martin, Agnes C L; Massey, Frances; McCloskey, Lynn; Mortenson, Paul N; Pathuri, Puja; Tisi, Dominic; Williams, Pamela A

    2013-12-12

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase.

  6. DNA Ligase I is an In Vivo Substrate of DNA-Dependent Protein Kinase and is Activated by Phosphorylation in Response to DNA Double-Strand Breaks

    DTIC Science & Technology

    2006-01-01

    anlysis. to the procedure described by Malanga and Althaus (8). Gel Electrophoresis and A utoradiography. Immunopre- DNA Ligase and Protein Assays. DNA...by casein kinase 11, EMBO J. 11, 2925-2933. In conclusion, we have demonstrated that DNA ligase I 8. Malanga , M., and Althaus, F. R. (1994) Poly (ADP

  7. Cloning, molecular characterization and expression of a DNA-ligase from a new bacteriophage: Phax1.

    PubMed

    Setayesh, Neda; Sabouri-Shahrbabak, Saleheh; Bakherad, Hamid; Sepehrizadeh, Zargham

    2013-12-01

    DNA ligases join 3' hydroxyl and 5' phosphate ends in double stranded DNA and are necessary for maintaining the integrity of genome. The gene encoding a new Escherichia phage (Phax1) DNA ligase was cloned and sequenced. The gene contains an open reading frame with 1,428 base pairs, encoding 475 amino acid residues. Alignment of the entire amino acid sequence showed that Phax1 DNA ligase has a high degree of sequence homology with ligases from Escherichia (vB_EcoM_CBA120), Salmonella (PhiSH19 and SFP10), Shigella (phiSboM-AG3), and Deftia (phiW-14) phages. The Phax1 DNA ligase gene was expressed under the control of the T7lac promoter on the pET-16b (+) in Escherichia coli Rossetta gami. The enzyme was then homogeneously purified by a metal affinity column. Enzymatic activity of the recombinant DNA ligase was assayed by an in-house PCR-based method.

  8. Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida.

    PubMed

    Williamson, Adele; Pedersen, Hege

    2014-05-01

    The genome of the psychrophilic fish-pathogen Aliivibrio salmonicida encodes a putative ATP-dependent DNA ligase in addition to a housekeeping NAD-dependent enzyme. In order to study the structure and activity of the ATP dependent ligase in vitro we have undertaken its recombinant production and purification from an Escherichia coli based expression system. Expression and purification of this protein presented two significant challenges. First, the gene product was moderately toxic to E. coli cells, second it was necessary to remove the large amounts of E. coli DNA present in bacterial lysates without contamination of the protein preparation by nucleases which might interfere with future assaying. The toxicity problem was overcome by fusion of the putative ligase to large solubility tags such as maltose-binding protein (MBP) or Glutathione-S-transferase (GST), and DNA was removed by treatment with a nuclease which could be inhibited by reducing agents. As the A. salmonicida ATP-dependent DNA ligase gene encodes a predicted leader peptide, both the full-length and mature forms of the protein were produced. Both possessed ATP-dependent DNA ligase activity, but the truncated form was significantly more active. Here we detail the first reported production, purification and preliminary characterization of active A. salmonicida ATP-dependent DNA ligase.

  9. Involvement of DNA ligase III and ribonuclease H1 in mitochondrial DNA replication in cultured human cells.

    PubMed

    Ruhanen, Heini; Ushakov, Kathy; Yasukawa, Takehiro

    2011-12-01

    Recent evidence suggests that coupled leading and lagging strand DNA synthesis operates in mammalian mitochondrial DNA (mtDNA) replication, but the factors involved in lagging strand synthesis are largely uncharacterised. We investigated the effect of knockdown of the candidate proteins in cultured human cells under conditions where mtDNA appears to replicate chiefly via coupled leading and lagging strand DNA synthesis to restore the copy number of mtDNA to normal levels after transient mtDNA depletion. DNA ligase III knockdown attenuated the recovery of mtDNA copy number and appeared to cause single strand nicks in replicating mtDNA molecules, suggesting the involvement of DNA ligase III in Okazaki fragment ligation in human mitochondria. Knockdown of ribonuclease (RNase) H1 completely prevented the mtDNA copy number restoration, and replication intermediates with increased single strand nicks were readily observed. On the other hand, knockdown of neither flap endonuclease 1 (FEN1) nor DNA2 affected mtDNA replication. These findings imply that RNase H1 is indispensable for the progression of mtDNA synthesis through removing RNA primers from Okazaki fragments. In the nucleus, Okazaki fragments are ligated by DNA ligase I, and the RNase H2 is involved in Okazaki fragment processing. This study thus proposes that the mitochondrial replication system utilises distinct proteins, DNA ligase III and RNase H1, for Okazaki fragment maturation.

  10. Base-modified NAD and AMP derivatives and their activity against bacterial DNA ligases.

    PubMed

    Pergolizzi, Giulia; Cominetti, Marco M D; Butt, Julea N; Field, Robert A; Bowater, Richard P; Wagner, Gerd K

    2015-06-14

    We report the chemical synthesis and conformational analysis of a collection of 2-, 6- and 8-substituted derivatives of β-NAD(+) and AMP, and their biochemical evaluation against NAD(+)-dependent DNA ligases from Escherichia coli and Mycobacterium tuberculosis. Bacterial DNA ligases are validated anti-microbial targets, and new strategies for their inhibition are therefore of considerable scientific and practical interest. Our study includes several pairs of β-NAD(+) and AMP derivatives with the same substitution pattern at the adenine base. This has enabled the first direct comparison of co-substrate and inhibitor behaviour against bacterial DNA ligases. Our results suggest that an additional substituent in position 6 or 8 of the adenine base in β-NAD(+) is detrimental for activity as either co-substrate or inhibitor. In contrast, substituents in position 2 are not only tolerated, but appear to give rise to a new mode of inhibition, which targets the conformational changes these DNA ligases undergo during catalysis. Using a molecular modelling approach, we highlight that these findings have important implications for our understanding of ligase mechanism and inhibition, and may provide a promising starting point for the rational design of a new class of inhibitors against NAD(+)-dependent DNA ligases.

  11. Enzyme-regulated activation of DNAzyme: a novel strategy for a label-free colorimetric DNA ligase assay and ligase-based biosensing.

    PubMed

    He, Kaiyu; Li, Wang; Nie, Zhou; Huang, Yan; Liu, Zhuoliang; Nie, Lihua; Yao, Shouzhuo

    2012-03-26

    The DNA nick repair catalyzed by DNA ligase is significant for fundamental life processes, such as the replication, repair, and recombination of nucleic acids. Here, we have employed ligase to regulate DNAzyme activity and developed a homogeneous, colorimetric, label-free and DNAzyme-based strategy to detect DNA ligase activity. This novel strategy relies on the ligation-trigged activation or production of horseradish peroxidase mimicking DNAzyme that catalyzes the generation of a color change signal; this results in a colorimetric assay of DNA ligase activity. Using T4 DNA ligase as a model, we have proposed two approaches to demonstrate the validity of the DNAzyme strategy. The first approach utilizes an allosteric hairpin-DNAzyme probe specifically responsive to DNA ligation; this approach has a wide detection range from 0.2 to 40 U mL(-1) and a detection limit of 0.2 U mL(-1). Furthermore, the approach was adapted to probe nucleic acid phosphorylation and single nucleotide mismatch. The second approach employs a "split DNA machine" to produce numerous DNAzymes after being reassembled by DNA ligase; this greatly enhances the detection sensitivity by a signal amplification cascade to achieve a detection limit of 0.01 U mL(-1).

  12. Evolution of DNA ligases of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes: a case of hidden complexity

    PubMed Central

    2009-01-01

    Background Eukaryotic Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) encode most if not all of the enzymes involved in their DNA replication. It has been inferred that genes for these enzymes were already present in the last common ancestor of the NCLDV. However, the details of the evolution of these genes that bear on the complexity of the putative ancestral NCLDV and on the evolutionary relationships between viruses and their hosts are not well understood. Results Phylogenetic analysis of the ATP-dependent and NAD-dependent DNA ligases encoded by the NCLDV reveals an unexpectedly complex evolutionary history. The NAD-dependent ligases are encoded only by a minority of NCLDV (including mimiviruses, some iridoviruses and entomopoxviruses) but phylogenetic analysis clearly indicated that all viral NAD-dependent ligases are monophyletic. Combined with the topology of the NCLDV tree derived by consensus of trees for universally conserved genes suggests that this enzyme was represented in the ancestral NCLDV. Phylogenetic analysis of ATP-dependent ligases that are encoded by chordopoxviruses, most of the phycodnaviruses and Marseillevirus failed to demonstrate monophyly and instead revealed an unexpectedly complex evolutionary trajectory. The ligases of the majority of phycodnaviruses and Marseillevirus seem to have evolved from bacteriophage or bacterial homologs; the ligase of one phycodnavirus, Emiliana huxlei virus, belongs to the eukaryotic DNA ligase I branch; and ligases of chordopoxviruses unequivocally cluster with eukaryotic DNA ligase III. Conclusions Examination of phyletic patterns and phylogenetic analysis of DNA ligases of the NCLDV suggest that the common ancestor of the extant NCLDV encoded an NAD-dependent ligase that most likely was acquired from a bacteriophage at the early stages of evolution of eukaryotes. By contrast, ATP-dependent ligases from different prokaryotic and eukaryotic sources displaced the ancestral NAD-dependent ligase at different

  13. Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms

    PubMed Central

    Swift, Robert V.; Amaro, Rommie E.

    2009-01-01

    Background Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes. Objective In this review, we will focus on efforts targeting pathogenic microorganisms; specifically, bacterial NAD+-dependent DNA ligases, which are promising broad-spectrum antibiotic targets, and ATP-dependent RNA editing ligases from Trypanosoma brucei, the species responsible for the devastating neurodegenerative disease, African sleeping sickness. Conclusion High quality crystal structures of both NAD+-dependent DNA ligase and the Trypanosoma brucei RNA editing ligase have facilitated the development of a number of promising leads. For both targets, further progress will require surmounting permeability issues and improving selectivity and affinity. PMID:20354588

  14. Hairpin DNA probe based surface plasmon resonance biosensor used for the activity assay of E. coli DNA ligase.

    PubMed

    Luan, Qingfen; Xue, Ying; Yao, Xin; Lu, Wu

    2010-02-01

    Using hairpin DNA probe self-structure change during DNA ligation process, a sensitive, label-free and simple method of E. coli DNA ligase assay via a home-built high-resolution surface plasmon resonance (SPR) instrument was developed. The DNA ligation process was monitored in real-time and the effects of single-base mutation on the DNA ligation process were investigated. Then an assay of E. coli DNA ligase was completed with a lower detection limit (0.6 nM), wider concentration range and better reproducibility. Moreover, the influence of Quinacrine on the activity of E. coli DNA ligase was also studied, which demonstrated that our method was useful for drug screening.

  15. Biochemical and structural characterization of DNA ligases from bacteria and archaea

    PubMed Central

    Pergolizzi, Giulia; Wagner, Gerd K.; Bowater, Richard P.

    2016-01-01

    DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterization. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5′-phosphate of the DNA end that will ultimately be joined to the 3′-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use β-nicotinamide adenine dinucleotide (β-NAD+) as their co-factor whereas those that are essential in other cells use adenosine-5′-triphosphate (ATP) as their co-factor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of β-NAD+ affords multiple opportunities for chemical modification. Several recent studies have synthesized novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes. PMID:27582505

  16. Extreme Growth Failure is a Common Presentation of Ligase IV Deficiency

    PubMed Central

    Murray, Jennie E; Bicknell, Louise S; Yigit, Gökhan; Duker, Angela L; van Kogelenberg, Margriet; Haghayegh, Sara; Wieczorek, Dagmar; Kayserili, Hülya; Albert, Michael H; Wise, Carol A; Brandon, January; Kleefstra, Tjitske; Warris, Adilia; van der Flier, Michiel; Bamforth, J Steven; Doonanco, Kurston; Adès, Lesley; Ma, Alan; Field, Michael; Johnson, Diana; Shackley, Fiona; Firth, Helen; Woods, C Geoffrey; Nürnberg, Peter; Gatti, Richard A; Hurles, Matthew; Bober, Michael B; Wollnik, Bernd; Jackson, Andrew P

    2014-01-01

    Ligase IV syndrome is a rare differential diagnosis for Nijmegen breakage syndrome owing to a shared predisposition to lympho-reticular malignancies, significant microcephaly, and radiation hypersensitivity. Only 16 cases with mutations in LIG4 have been described to date with phenotypes varying from malignancy in developmentally normal individuals, to severe combined immunodeficiency and early mortality. Here, we report the identification of biallelic truncating LIG4 mutations in 11 patients with microcephalic primordial dwarfism presenting with restricted prenatal growth and extreme postnatal global growth failure (average OFC −10.1 s.d., height −5.1 s.d.). Subsequently, most patients developed thrombocytopenia and leucopenia later in childhood and many were found to have previously unrecognized immunodeficiency following molecular diagnosis. None have yet developed malignancy, though all patients tested had cellular radiosensitivity. A genotype–phenotype correlation was also noted with position of truncating mutations corresponding to disease severity. This work extends the phenotypic spectrum associated with LIG4 mutations, establishing that extreme growth retardation with microcephaly is a common presentation of bilallelic truncating mutations. Such growth failure is therefore sufficient to consider a diagnosis of LIG4 deficiency and early recognition of such cases is important as bone marrow failure, immunodeficiency, and sometimes malignancy are long term sequelae of this disorder. PMID:24123394

  17. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori.

    PubMed

    Pandey, Preeti; Tarique, Khaja Faisal; Mazumder, Mohit; Rehman, Syed Arif Abdul; Kumari, Nilima; Gourinath, Samudrala

    2016-08-08

    Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp.

  18. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori

    PubMed Central

    Pandey, Preeti; Tarique, Khaja Faisal; Mazumder, Mohit; Rehman, Syed Arif Abdul; kumari, Nilima; Gourinath, Samudrala

    2016-01-01

    Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp. PMID:27499105

  19. Broad nucleotide cofactor specificity of DNA ligase from the hyperthermophilic crenarchaeon Hyperthermus butylicus and its evolutionary significance.

    PubMed

    Kim, Jun-Hwan; Lee, Kang-Keun; Sun, Younguk; Seo, Gang-Jin; Cho, Sung Suk; Kwon, Suk Hyung; Kwon, Suk-Tae

    2013-05-01

    The nucleotide cofactor specificity of the DNA ligase from the hyperthermophilic crenarchaeon Hyperthermus butylicus (Hbu) was studied to investigate the evolutionary relationship of DNA ligases. The Hbu DNA ligase gene was expressed under control of the T7lac promoter of pTARG in Escherichia coli BL21-CodonPlus(DE3)-RIL. The expressed enzyme was purified using the IMPACT™-CN system (intein-mediated purification with an affinity chitin-binding tag) and cation-ion (Arg-tag) chromatography. The optimal temperature for Hbu DNA ligase activity was 75 °C, and the optimal pH was 8.0 in Tris-HCl. The activity was highly dependent on MgCl2 or MnCl2 with maximal activity above 5 mM MgCl2 and 2 mM MnCl2. Notably, Hbu DNA ligase can use ADP and GTP in addition to ATP. The broad nucleotide cofactor specificity of Hbu DNA ligase might exemplify an undifferentiated ancestral stage in the evolution of DNA ligases. This study provides new evidence for possible evolutionary relationships among DNA ligases.

  20. Partial complementation of a DNA ligase I deficiency by DNA ligase III and its impact on cell survival and telomere stability in mammalian cells.

    PubMed

    Le Chalony, Catherine; Hoffschir, Françoise; Gauthier, Laurent R; Gross, Julia; Biard, Denis S; Boussin, François D; Pennaneach, Vincent

    2012-09-01

    DNA ligase I (LigI) plays a central role in the joining of strand interruptions during replication and repair. In our current study, we provide evidence that DNA ligase III (LigIII) and XRCC1, which form a complex that functions in single-strand break repair, are required for the proliferation of mammalian LigI-depleted cells. We show from our data that in cells with either dysfunctional LigI activity or depleted of this enzyme, both LigIII and XRCC1 are retained on the chromatin and accumulate at replication foci. We also demonstrate that the LigI and LigIII proteins cooperate to inhibit sister chromatid exchanges but that only LigI prevents telomere sister fusions. Taken together, these results suggest that in cells with dysfunctional LigI, LigIII contributes to the ligation of replication intermediates but not to the prevention of telomeric instability.

  1. ZRF1 mediates remodeling of E3 ligases at DNA lesion sites during nucleotide excision repair

    PubMed Central

    Gracheva, Ekaterina; Chitale, Shalaka; Wilhelm, Thomas; Rapp, Alexander; Byrne, Jonathan; Stadler, Jens; Medina, Rebeca; Cardoso, M. Cristina

    2016-01-01

    Faithful DNA repair is essential to maintain genome integrity. Ultraviolet (UV) irradiation elicits both the recruitment of DNA repair factors and the deposition of histone marks such as monoubiquitylation of histone H2A at lesion sites. Here, we report how a ubiquitin E3 ligase complex specific to DNA repair is remodeled at lesion sites in the global genome nucleotide excision repair (GG-NER) pathway. Monoubiquitylation of histone H2A (H2A-ubiquitin) is catalyzed predominantly by a novel E3 ligase complex consisting of DDB2, DDB1, CUL4B, and RING1B (UV–RING1B complex) that acts early during lesion recognition. The H2A-ubiquitin binding protein ZRF1 mediates remodeling of this E3 ligase complex directly at the DNA lesion site, causing the assembly of the UV–DDB–CUL4A E3 ligase complex (DDB1–DDB2–CUL4A-RBX1). ZRF1 is an essential factor in GG-NER, and its function at damaged chromatin sites is linked to damage recognition factor XPC. Overall, the results shed light on the interplay between epigenetic and DNA repair recognition factors at DNA lesion sites. PMID:27091446

  2. Poly (ADP-ribose) polymerase (PARP) is essential for sulfur mustard-induced DNA damage repair, but has no role in DNA ligase activation.

    PubMed

    Bhat, K Ramachandra; Benton, Betty J; Ray, Radharaman

    2006-01-01

    Concurrent activation of poly (ADP-ribose) polymerase (PARP) and DNA ligase was observed in cultured human epidermal keratinocytes (HEK) exposed to the DNA alkylating compound sulfur mustard (SM), suggesting that DNA ligase activation could be due to its modification by PARP. Using HEK, intracellular 3H-labeled NAD+ (3H-adenine) was metabolically generated and then these cells were exposed to SM (1 mM). DNA ligase I isolated from these cells was not 3H-labeled, indicating that DNA ligase I is not a substrate for (ADP-ribosyl)ation by PARP. In HEK, when PARP was inhibited by 3-amino benzamide (3-AB, 2 mM), SM-activated DNA ligase had a half-life that was four-fold higher than that observed in the absence of 3-AB. These results suggest that DNA repair requires PARP, and that DNA ligase remains activated until DNA damage repair is complete. The results show that in SM-exposed HEK, DNA ligase I is activated by phosphorylation catalysed by DNA-dependent protein kinase (DNA-PK). Therefore, the role of PARP in DNA repair is other than that of DNA ligase I activation. By using the DNA ligase I phosphorylation assay and decreasing PARP chemically as well as by PARP anti-sense mRNA expression in the cells, it was confirmed that PARP does not modify DNA ligase I. In conclusion, it is proposed that PARP is essential for efficient DNA repair; however, PARP participates in DNA repair by altering the chromosomal structure to make the DNA damage site(s) accessible to the repair enzymes.

  3. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination.

    PubMed

    Masani, Shahnaz; Han, Li; Meek, Katheryn; Yu, Kefei

    2016-02-02

    Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR.

  4. Effects of 2'-O-methyl nucleotide on ligation capability of T4 DNA ligase.

    PubMed

    Zhao, Bin; Tong, Zhaoxue; Zhao, Guojie; Mu, Runqing; Shang, Hong; Guan, Yifu

    2014-09-01

    To further understand the ligation mechanism, effects of 2'-O-methyl nucleotide (2'-OMeN) on the T4 DNA ligation efficiency were investigated. Fluorescence resonance energy transfer assay was used to monitor the nick-joining process by T4 DNA ligase. Results showed that substitutions at 5'- and 3'-ends of the nick decreased the ligation efficiency by 48.7% ± 6.7% and 70.6% ± 4.0%, respectively. Substitutions at both 5'- and 3'-ends decreased the ligation efficiency by 76.6% ± 1.3%. Corresponding kinetic parameters, Vmax, Km, and kcat, have been determined in each case by using the Michaelis-Menten equation. The kinetic data showed that the 2'-OMeN substitutions reduced the maximal initial velocity and increased the Michaelis constant of T4 DNA ligase. Mismatches at 5'- and 3'-ends of the nick have also shown different influences on the ligation. Results here showed that the sugar pucker conformation at 3'-end impairs the ligation efficiency more profoundly than that at 5'-end. Different concentrations of Mg(2+), Ca(2+), K(+), Na(+), and ATP were also demonstrated to affect the T4 DNA ligase activity. These results enriched our knowledge about the effects of 2'-OMeN substitutions on the T4 DNA ligase.

  5. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    PubMed

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions.

  6. Use of adenylate kinase as a solubility tag for high level expression of T4 DNA ligase in Escherichia coli.

    PubMed

    Liu, Xinxin; Huang, Anliang; Luo, Dan; Liu, Haipeng; Han, Huzi; Xu, Yang; Liang, Peng

    2015-05-01

    The discovery of T4 DNA ligase in 1960s was pivotal in the spread of molecular biotechnology. The enzyme has become ubiquitous for recombinant DNA routinely practiced in biomedical research around the globe. Great efforts have been made to express and purify T4 DNA ligase to meet the world demand, yet over-expression of soluble T4 DNA ligase in E. coli has been difficult. Here we explore the use of adenylate kinase to enhance T4 DNA ligase expression and its downstream purification. E.coli adenylate kinase, which can be expressed in active form at high level, was fused to the N-terminus of T4 DNA ligase. The resulting His-tagged AK-T4 DNA ligase fusion protein was greatly over-expressed in E. coli, and readily purified to near homogeneity via two purification steps consisting of Blue Sepharose and Ni-NTA chromatography. The purified AK-T4 DNA ligase not only is fully active for DNA ligation, but also can use ADP in addition to ATP as energy source since adenylate kinase converts ADP to ATP and AMP. Thus adenylate kinase may be used as a solubility tag to facilitate recombinant protein expression as well as their downstream purification.

  7. Effective interaction studies for inhibition of DNA ligase protein from Staphylococcus aureus.

    PubMed

    Vijayalakshmi, Periyasamy; Daisy, Pitchai

    2015-02-01

    Staphylococcus aureus has been recognized as an important human pathogen for more than 100 years. It is among the most important causative agent of human infections in the twenty-first century. DNA ligase is the main protein responsible for the replication of S. aureus. In order to control the replication mechanism, DNA ligase is a successive drug target, hence we have chosen this protein for this study. We performed virtual screening using ZINC database for identification of potent inhibitor against DNA ligase. Based on the scoring methods, we have selected best five compounds from the ZINC database. In order to improve the accuracy, selected compounds were subjected into Quantum Polarized Ligand Docking (QPLD) docking, for which the results showed high docking score, compared to glide docking score. QPLD is more accurate as it includes charges in the scoring function, which was not available in the glide docking. Binding energy calculation results also indicated that selected compounds have good binding capacity with the target protein. In addition, these compounds on screening have good absorption, distribution, metabolism, excretion and toxicity property. In this study, we identified few compounds that particularly work against DNA ligase protein, having better interaction phenomenon and it would help further the experimental analysis.

  8. In vitro selection of optimal DNA substrates for T4 RNA ligase

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 RNA ligase. We find that the ensemble of selected sequences ligated about 10 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly, the majority of the selected sequences approximated a well-defined consensus sequence.

  9. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity.

    PubMed

    Stokes, Suzanne S; Huynh, Hoan; Gowravaram, Madhusudhan; Albert, Robert; Cavero-Tomas, Marta; Chen, Brendan; Harang, Jenna; Loch, James T; Lu, Min; Mullen, George B; Zhao, Shannon; Liu, Ce-Feng; Mills, Scott D

    2011-08-01

    Optimization of adenosine analog inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. Antibacterial activity against Streptococcus pneumoniae and Staphylococcus aureus was improved by modification of the 2-position substituent on the adenine ring and 3'- and 5'-substituents on the ribose. Compounds with logD values 1.5-2.5 maximized potency and maintained drug-like physical properties.

  10. An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination.

    PubMed Central

    Mackey, Z B; Ramos, W; Levin, D S; Walter, C A; McCarrey, J R; Tomkinson, A E

    1997-01-01

    Three mammalian genes encoding DNA ligases have been identified. However, the role of each of these enzymes in mammalian DNA metabolism has not been established. In this study, we show that two forms of mammalian DNA ligase III, alpha and beta, are produced by a conserved tissue-specific alternative splicing mechanism involving exons encoding the C termini of the polypeptides. DNA ligase III-alpha cDNA, which encodes a 103-kDa polypeptide, is expressed in all tissues and cells, whereas DNA ligase III-beta cDNA, which encodes a 96-kDa polypeptide, is expressed only in the testis. During male germ cell differentiation, elevated expression of DNA ligase III-beta mRNA is restricted, beginning only in the latter stages of meiotic prophase and ending in the round spermatid stage. In 96-kDa DNA ligase III-beta, the C-terminal 77 amino acids of DNA ligase III-alpha are replaced by a different 17- to 18-amino acid sequence. As reported previously, the 103-kDa DNA ligase III-alpha interacts with the DNA strand break repair protein encoded by the human XRCC1 gene. In contrast, the 96-kDa DNA ligase III-beta does not interact with XRCC1, indicating that DNA ligase III-beta may play a role in cellular functions distinct from the DNA repair pathways involving the DNA ligase III-alpha x XRCC1 complex. The distinct biochemical properties of DNA ligase III-beta, in combination with the tissue- and cell-type-specific expression of DNA ligase III-beta mRNA, suggest that this form of DNA ligase III is specifically involved in the completion of homologous recombination events that occur during meiotic prophase. PMID:9001252

  11. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.

  12. Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation.

    PubMed

    Schneider, Nils; Meier, Matthias

    2017-02-01

    Padlock probes are single-stranded DNA molecules that are circularized upon hybridization to their target sequence by a DNA ligase. In the following, the circulated padlock probes are amplified and detected with fluorescently labeled probes complementary to the amplification product. The hallmark of padlock probe assays is a high detection specificity gained by the ligation reaction. Concomitantly, the ligation reaction is the largest drawback for a quantitative in situ detection of mRNAs due to the low affinities of common DNA or RNA ligases to RNA-DNA duplex strands. Therefore, current protocols require that mRNAs be reverse transcribed to DNA before detection with padlock probes. Recently, it was found that the DNA ligase from Paramecium bursaria Chlorella virus 1 (PBCV-1) is able to efficiently ligate RNA-splinted DNA. Hence, we designed a padlock probe assay for direct in situ detection of mRNAs using the PBCV-1 DNA ligase. Experimental single-cell data were used to optimize and characterize the efficiency of mRNA detection with padlock probes. Our results demonstrate that the PBCV-1 DNA ligase overcomes the efficiency limitation of current protocols for direct in situ mRNA detection, making the PBCV-1 DNA ligase an attractive tool to simplify in situ ligation sequencing applications.

  13. A plant DNA ligase is an important determinant of seed longevity.

    PubMed

    Waterworth, Wanda M; Masnavi, Ghzaleh; Bhardwaj, Rajni M; Jiang, Qing; Bray, Clifford M; West, Christopher E

    2010-09-01

    DNA repair is important for maintaining genome integrity. In plants, DNA damage accumulated in the embryo of seeds is repaired early in imbibition, and is important for germination performance and seed longevity. An essential step in most repair pathways is the DNA ligase-mediated rejoining of single- and double-strand breaks. Eukaryotes possess multiple DNA ligase enzymes, each having distinct roles in cellular metabolism. Here, we report the characterization of DNA LIGASE VI, which is only found in plant species. The primary structure of this ligase shows a unique N-terminal region that contains a β-CASP motif, which is found in a number of repair proteins, including the DNA double-strand break (DSB) repair factor Artemis. Phenotypic analysis revealed a delay in the germination of atlig6 mutants compared with wild-type lines, and this delay becomes markedly exacerbated in the presence of the genotoxin menadione. Arabidopsis atlig6 and atlig6 atlig4 mutants display significant hypersensitivity to controlled seed ageing, resulting in delayed germination and reduced seed viability relative to wild-type lines. In addition, atlig6 and atlig6 atlig4 mutants display increased sensitivity to low-temperature stress, resulting in delayed germination and reduced seedling vigour upon transfer to standard growth conditions. Seeds display a rapid transcriptional DNA DSB response, which is activated in the earliest stages of water imbibition, providing evidence for the accumulation of cytotoxic DSBs in the quiescent seed. These results implicate AtLIG6 and AtLIG4 as major determinants of Arabidopsis seed quality and longevity.

  14. Mitochondrial DNA ligase is dispensable for the viability of cultured cells but essential for mtDNA maintenance.

    PubMed

    Shokolenko, Inna N; Fayzulin, Rafik Z; Katyal, Sachin; McKinnon, Peter J; Wilson, Glenn L; Alexeyev, Mikhail F

    2013-09-13

    Multiple lines of evidence support the notion that DNA ligase III (LIG3), the only DNA ligase found in mitochondria, is essential for viability in both whole organisms and in cultured cells. Previous attempts to generate cells devoid of mitochondrial DNA ligase failed. Here, we report, for the first time, the derivation of viable LIG3-deficient mouse embryonic fibroblasts. These cells lack mtDNA and are auxotrophic for uridine and pyruvate, which may explain the apparent lethality of the Lig3 knock-out observed in cultured cells in previous studies. Cells with severely reduced expression of LIG3 maintain normal mtDNA copy number and respiration but show reduced viability in the face of alkylating and oxidative damage, increased mtDNA degradation in response to oxidative damage, and slow recovery from mtDNA depletion. Our findings clarify the cellular role of LIG3 and establish that the loss of viability in LIG3-deficient cells is conditional and secondary to the ρ(0) phenotype.

  15. Mitochondrial DNA Ligase Is Dispensable for the Viability of Cultured Cells but Essential for mtDNA Maintenance*

    PubMed Central

    Shokolenko, Inna N.; Fayzulin, Rafik Z.; Katyal, Sachin; McKinnon, Peter J.; Wilson, Glenn L.; Alexeyev, Mikhail F.

    2013-01-01

    Multiple lines of evidence support the notion that DNA ligase III (LIG3), the only DNA ligase found in mitochondria, is essential for viability in both whole organisms and in cultured cells. Previous attempts to generate cells devoid of mitochondrial DNA ligase failed. Here, we report, for the first time, the derivation of viable LIG3-deficient mouse embryonic fibroblasts. These cells lack mtDNA and are auxotrophic for uridine and pyruvate, which may explain the apparent lethality of the Lig3 knock-out observed in cultured cells in previous studies. Cells with severely reduced expression of LIG3 maintain normal mtDNA copy number and respiration but show reduced viability in the face of alkylating and oxidative damage, increased mtDNA degradation in response to oxidative damage, and slow recovery from mtDNA depletion. Our findings clarify the cellular role of LIG3 and establish that the loss of viability in LIG3-deficient cells is conditional and secondary to the ρ0 phenotype. PMID:23884459

  16. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number.

    PubMed

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion.

  17. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F.

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion. PMID:27031233

  18. Understanding and Engineering Thermostability in DNA Ligase from Thermococcus sp. 1519.

    PubMed

    Modarres, Hassan Pezeshgi; Dorokhov, Boris D; Popov, Vladimir O; Ravin, Nikolai V; Skryabin, Konstantin G; Dal Peraro, Matteo

    2015-05-19

    The physical chemical principles underlying enzymatic thermostability are keys to understand the way evolution has shaped proteins to adapt to a broad range of temperatures. Understanding the molecular determinants at the basis of protein thermostability is also an important factor for engineering more thermoresistant enzymes to be used in the industrial setting, such as, for instance, DNA ligases, which are important for DNA replication and repair and have been long used in molecular biology and biotechnology. Here, we first address the origin of thermostability in the thermophilic DNA ligase from archaeon Thermococcus sp. 1519 and identify thermosensitive regions using molecular modeling and simulations. In addition, we predict mutations that can enhance thermostability of the enzyme through bioinformatics analyses. We show that thermosensitive regions of this enzyme are stabilized at higher temperatures by optimization of charged groups on the surface, and we predict that thermostability can be further increased by further optimization of the network among these charged groups. Engineering this DNA ligase by introducing selected mutations (i.e., A287K, G304D, S364I, and A387K) eventually produced a significant and additive increase in the half-life of the enzyme when compared to that of the wild type.

  19. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage

    PubMed Central

    Kang, Ho Chul; Lee, Yun-Il; Shin, Joo-Ho; Andrabi, Shaida A.; Chi, Zhikai; Gagné, Jean-Philippe; Lee, Yunjong; Ko, Han Seok; Lee, Byoung Dae; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Ubiquitin mediated protein degradation is crucial for regulation of cell signaling and protein quality control. Poly(ADP-ribose) (PAR) is a cell-signaling molecule that mediates changes in protein function through binding at PAR binding sites. Here we characterize the PAR binding protein, Iduna, and show that it is a PAR-dependent ubiquitin E3 ligase. Iduna’s E3 ligase activity requires PAR binding because point mutations at Y156A and R157A eliminate Iduna’s PAR binding and Iduna’s E3 ligase activity. Iduna’s E3 ligase activity also requires an intact really interesting new gene (RING) domain because Iduna possessing point mutations at either H54A or C60A is devoid of ubiquitination activity. Tandem affinity purification reveals that Iduna binds to a number of proteins that are either PARsylated or bind PAR including PAR polymerase-1, 2 (PARP1, 2), nucleolin, DNA ligase III, KU70, KU86, XRCC1, and histones. PAR binding to Iduna activates its E3 ligase function, and PAR binding is required for Iduna ubiquitination of PARP1, XRCC1, DNA ligase III, and KU70. Iduna’s PAR-dependent ubiquitination of PARP1 targets it for proteasomal degradation. Via PAR binding and ubiquitin E3 ligase activity, Iduna protects against cell death induced by the DNA damaging agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and rescues cells from G1 arrest and promotes cell survival after γ-irradiation. Moreover, Iduna facilitates DNA repair by reducing apurinic/apyrimidinic (AP) sites after MNNG exposure and facilitates DNA repair following γ-irradiation as assessed by the comet assay. These results define Iduna as a PAR-dependent E3 ligase that regulates cell survival and DNA repair. PMID:21825151

  20. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans

    PubMed Central

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-01-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline. PMID:21233842

  1. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans.

    PubMed

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-07-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline.

  2. Primary structure and genetic organization of phage T4 DNA ligase.

    PubMed Central

    Armstrong, J; Brown, R S; Tsugita, A

    1983-01-01

    The primary structure of phage T4 DNA ligase has been determined by DNA sequencing of a cloned restriction fragment containing its gene, and partial amino acid sequence analysis of the protein. The molecule has a Mr of 55,230, and contains 487 amino acids. The DNA sequence may also encode all of one and parts of two other, hitherto unidentified, T4 proteins. The four genes are closely packed, with overlaps between terminator and initiator codons of adjacent genes. Potential terminator and promoter sites for transcription are located within the coding sequence of one of the genes. PMID:6314278

  3. Restoration by T4 ligase of DNA sequences sensitive to "flush" cleaving restriction enzyme.

    PubMed

    Mottes, M; Morandi, C; Cremaschi, S; Sgaramella, V

    1977-07-01

    Fouteen "flush"-ended segments originate from the action of the restriction endonuclease Hae III of Haemophilus aegiptius on the DNA of the colicinogenic factor ColE 1 (A. Oka and M. Takanami, Nature, 264, 191, 1976). They are joined by the T4 polynucleotide ligase. The reaction can be monitored by gel electrophoresis, electron microscopy and resistance to phosphatase of the 5'-32P labelled ends. The joined products are a random recombination of the original segments, and can be cleaved by the same Hae III endonuclease to restore the exact electrophoretic pattern of the Hae III-cut ColE 1 DNA. In a properly diluted mixture of 5'-32P segments treated with T4 ligase, the level of phosphatase resistance is very close to the frequency of circle-formation as determined by electron microscopy: thus, the joining of the "flush"-ends involves the formation of circular structures covalently closed in both strands.

  4. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.

    PubMed

    Bauer, Robert J; Evans, Thomas C; Lohman, Gregory J S

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.

  5. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase

    PubMed Central

    Bauer, Robert J.; Evans, Thomas C.; Lohman, Gregory J. S.

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site. PMID:26954034

  6. Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus.

    PubMed

    Tong, J; Barany, F; Cao, W

    2000-03-15

    An NAD(+)-dependent DNA ligase from the hyperthermophilic bacterium Aquifex aeolicus was cloned, expressed in Escherichia coli and purified to homogeneity. The enzyme is most active in slightly alkaline pH conditions with either Mg(2+)or Mn(2+)as the metal cofactor. Ca(2+)and Ni(2+)mainly support formation of DNA-adenylate intermediates. The catalytic cycle is characterized by a low k (cat)value of 2 min(-1)with concomitant accumulation of the DNA - adenylate intermediate when Mg(2+)is used as the metal cofactor. The ligation rates of matched substrates vary by up to 4-fold, but exhibit a general trend of T/A < or = G/C < C/G < A/T on both the 3'- and 5'-side of the nick. Consistent with previous studies on Thermus ligases, this Aquifex ligase exhibits greater discrimination against a mismatched base pair on the 3'-side of the nick junction. The requirement of 3' complementarity for a ligation reaction is reaffirmed by results from 1 nt insertions on either the 3'- or 5'-side of the nick. Furthermore, most of the unligatable 3' mismatched base pairs prohibit formation of the DNA-adenylate intermediate, indicating that the substrate adenylation step is also a control point for ligation fidelity. Unlike previously studied ATP ligases, gapped substrates cannot be ligated and intermediate accumulation is minimal, suggesting that complete elimination of base pair complementarity on one side of the nick affects substrate adenylation on the 5'-side of the nick junction. Relationships among metal cofactors, ligation products and intermediate, and ligation fidelity are discussed.

  7. Discovery of bacterial NAD⁺-dependent DNA ligase inhibitors: improvements in clearance of adenosine series.

    PubMed

    Stokes, Suzanne S; Gowravaram, Madhusudhan; Huynh, Hoan; Lu, Min; Mullen, George B; Chen, Brendan; Albert, Robert; O'Shea, Thomas J; Rooney, Michael T; Hu, Haiqing; Newman, Joseph V; Mills, Scott D

    2012-01-01

    Optimization of clearance of adenosine inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. To reduce Cytochrome P-450-mediated metabolic clearance, many strategies were explored; however, most modifications resulted in compounds with reduced antibacterial activity and/or unchanged total clearance. The alkyl side chains of the 2-cycloalkoxyadenosines were fluorinated, and compounds with moderate antibacterial activity and favorable pharmacokinetic properties in rat and dog were identified.

  8. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.

    PubMed

    Sallmyr, Annahita; Matsumoto, Yoshihiro; Roginskaya, Vera; Van Houten, Bennett; Tomkinson, Alan E

    2016-09-15

    Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR.

  9. Interaction of the β sliding clamp with MutS, ligase, and DNA polymerase I

    PubMed Central

    López de Saro, Francisco J.; O'Donnell, Mike

    2001-01-01

    The β and proliferating cell nuclear antigen (PCNA) sliding clamps were first identified as components of their respective replicases, and thus were assigned a role in chromosome replication. Further studies have shown that the eukaryotic clamp, PCNA, interacts with several other proteins that are involved in excision repair, mismatch repair, cellular regulation, and DNA processing, indicating a much wider role than replication alone. Indeed, the Escherichia coli β clamp is known to function with DNA polymerases II and V, indicating that β also interacts with more than just the chromosomal replicase, DNA polymerase III. This report demonstrates three previously undetected protein–protein interactions with the β clamp. Thus, β interacts with MutS, DNA ligase, and DNA polymerase I. Given the diverse use of these proteins in repair and other DNA transactions, this expanded list of β interactive proteins suggests that the prokaryotic β ring participates in a wide variety of reactions beyond its role in chromosomal replication. PMID:11459978

  10. Derivatized versions of ligase enzymes for constructing DNA sequences

    DOEpatents

    Mariella, Jr., Raymond P.; Christian, Allen T.; Tucker, James D.; Dzenitis, John M.; Papavasiliou, Alexandros P.

    2006-08-15

    A method of making very long, double-stranded synthetic poly-nucleotides. A multiplicity of short oligonucleotides is provided. The short oligonucleotides are sequentially hybridized to each other. Enzymatic ligation of the oligonucleotides provides a contiguous piece of PCR-ready DNA of predetermined sequence.

  11. [The applications of thermostable ligase chain reaction in facilitating DNA recombination].

    PubMed

    Xiangda, Zhou; Xiao, Song; Cong, Huai; Haiyan, Sun; Hongyan, Chen; Daru, Lu

    2016-02-01

    The traditional Type Ⅱ restriction enzyme-based method is restricted by the purification steps, and therefore, cannot be applied to specific DNA assembly in chaotic system. To solve this problem, Thermostable Ligase Chain Reaction (TLCR) was introduced in the process of DNA assembly and capture. This technique combines the feature of thermostable DNA ligase and sequence specific oligo ligation template, "Helper", to achieve specific assembly of target fragments and exponential increase of products in multiple thermocyclings. Two plasmid construction experiments were carried out in order to test the feasibility and practical performance of TLCR. One was that, TLCR was used to specifically capture a 1.5 kb fragment into vector from an unpurified chaotic system which contained 7 different sizes of fragments. The results showed that the capturing accuracy was around 80%, which proved the feasibility and accuracy of using TLCR to specific assembly of DNA fragments in a complicated mixed system. In the other experiment, TLCR was used to capture two fragments (total length was 27 kb) from Hind Ⅲ digestion of Lambda genome into vector by order. The results also showed an accuracy of around 80%. As demonstrated in the results, TLCR can simplify the process of DNA recombination experiments and is suitable for the assembly of multiple and large DNA fragments. This technique can provide convenience to biological experiments.

  12. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair.

    PubMed

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott; Scheibye-Knudsen, Morten; Desler, Claus; Hickson, Ian D; Bohr, Vilhelm A

    2014-04-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy.

  13. The accessibility of thiophosphorylated groups in DNA fragments to the enzymatic activity of ligases and restriction endonuclease Bbs I.

    PubMed

    Schenk, J A; Heymann, S; Micheel, B

    1995-08-01

    The aim of this paper was to test the possibility to ligate and hydrolyse DNA sequences containing thiomodified ends and bonds. T4 DNA ligase was shown to ligate DNA fragments regardless of whether it contains phosphorylated or thiophosphorylated 5'-end. But the cleavage of an internally thiomodified phosphodiester bond was found to be totally inhibited when using the non-palindromic restrictase Bbs I. The special properties of this restriction endonuclease should allow the development of an oriented cloning strategy when combined with T4 ligase and a thiophosphorylation of DNA fragments.

  14. ATP-dependent DNA ligase from Thermococcus sp. 1519 displays a new arrangement of the OB-fold domain.

    PubMed

    Petrova, T; Bezsudnova, E Y; Boyko, K M; Mardanov, A V; Polyakov, K M; Volkov, V V; Kozin, M; Ravin, N V; Shabalin, I G; Skryabin, K G; Stekhanova, T N; Kovalchuk, M V; Popov, V O

    2012-12-01

    DNA ligases join single-strand breaks in double-stranded DNA by catalyzing the formation of a phosphodiester bond between adjacent 5'-phosphate and 3'-hydroxyl termini. Their function is essential for maintaining genome integrity in the replication, recombination and repair of DNA. High flexibility is important for the function of DNA ligase molecules. Two types of overall conformations of archaeal DNA ligase that depend on the relative position of the OB-fold domain have previously been revealed: closed and open extended conformations. The structure of ATP-dependent DNA ligase from Thermococcus sp. 1519 (LigTh1519) in the crystalline state determined at a resolution of 3.02 Å shows a new relative arrangement of the OB-fold domain which is intermediate between the positions of this domain in the closed and the open extended conformations of previously determined archaeal DNA ligases. However, small-angle X-ray scattering (SAXS) measurements indicate that in solution the LigTh1519 molecule adopts either an open extended conformation or both an intermediate and an open extended conformation with the open extended conformation being dominant.

  15. Incorporation of gemcitabine and cytarabine into DNA by DNA polymerase beta and ligase III/XRCC1.

    PubMed

    Prakasha Gowda, A S; Polizzi, Joanna M; Eckert, Kristin A; Spratt, Thomas E

    2010-06-15

    1-Beta-D-arabinofuranosylcytosine (cytarabine, araC) and 2',2'-difluoro-2'-deoxycytidine (gemcitabine, dFdC), are effective cancer chemotherapeutic agents due to their ability to become incorporated into DNA and then subsequently inhibit DNA synthesis by replicative DNA polymerases. However, the impact of these 3'-modified nucleotides on the activity of specialized DNA polymerases has not been investigated. The role of polymerase beta and base excision repair may be of particular importance due to the increased oxidative stress in tumors, increased oxidative stress caused by chemotherapy treatment, and the variable amounts of polymerase beta in tumors. Here we directly investigate the incorporation of the 5'-triphosphorylated form of araC, dFdC, 2'-fluoro-2'-deoxycytidine (FdC), and cytidine into two nicked DNA substrates and the subsequent ligation. Opposite template dG, the relative k(pol)/K(d) for incorporation was dCTP > araCTP, dFdCTP > rCTP. The relative k(pol)/K(d) for FdCTP depended on sequence. The effect on k(pol)/K(d) was due largely to changes in k(pol) with no differences in the affinity of the nucleoside triphosphates to the polymerase. Ligation efficiency by T4 ligase and ligase III/XRCC1 was largely unaffected by the nucleotide analogues. Our results show that BER is capable of incorporating araC and dFdC into the genome.

  16. DNA ligase C1 mediates the LigD-independent nonhomologous end-joining pathway of Mycobacterium smegmatis.

    PubMed

    Bhattarai, Hitesh; Gupta, Richa; Glickman, Michael S

    2014-10-01

    Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3' phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo.

  17. DNA Ligase C1 Mediates the LigD-Independent Nonhomologous End-Joining Pathway of Mycobacterium smegmatis

    PubMed Central

    Bhattarai, Hitesh; Gupta, Richa

    2014-01-01

    Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3′ phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo. PMID:24957619

  18. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks

    PubMed Central

    Dantuma, Nico P.; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  19. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    PubMed

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.

  20. Forkhead-Associated Domain of Yeast Xrs2, a Homolog of Human Nbs1, Promotes Nonhomologous End Joining Through Interaction With a Ligase IV Partner Protein, Lif1

    PubMed Central

    Matsuzaki, Kenichiro; Shinohara, Akira; Shinohara, Miki

    2008-01-01

    DNA double-strand breaks (DSB) are repaired through two different pathways, homologous recombination (HR) and nonhomologous end joining (NHEJ). Yeast Xrs2, a homolog of human Nbs1, is a component of the Mre11-Rad50-Xrs2 (MRX) complex required for both HR and NHEJ. Previous studies showed that the N-terminal forkhead-associated (FHA) domain of Xrs2/Nbs1 in yeast is not involved in HR, but is likely to be in NHEJ. In this study, we showed that the FHA domain of Xrs2 plays a critical role in efficient DSB repair by NHEJ. The FHA domain of Xrs2 specifically interacts with Lif1, a component of the ligase IV complex, Dnl4-Nej1-Lif1 (DNL). Lif1, which is phosphorylated in vivo, contains two Xrs2-binding regions. Serine 383 of Lif1 plays an important role in the interaction with Xrs2 as well as in NHEJ. Interestingly, the phospho-mimetic substitutions of serine 383 enhance the NHEJ activity of Lif1. Our results suggest that the phosphorylation of Lif1 at serine 383 is recognized by the Xrs2 FHA domain, which in turn may promote recruitment of the DNL complex to DSB for NHEJ. The interaction between Xrs2 and Lif1 through the FHA domain is conserved in humans; the FHA domain Nbs1 interacts with Xrcc4, a Lif1 homolog of human. PMID:18458108

  1. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors.

    PubMed

    Tilgner, K; Neganova, I; Moreno-Gimeno, I; Al-Aama, J Y; Burks, D; Yung, S; Singhapol, C; Saretzki, G; Evans, J; Gorbunova, V; Gennery, A; Przyborski, S; Stojkovic, M; Armstrong, L; Jeggo, P; Lako, M

    2013-08-01

    DNA double strand breaks (DSBs) are the most common form of DNA damage and are repaired by non-homologous-end-joining (NHEJ) or homologous recombination (HR). Several protein components function in NHEJ, and of these, DNA Ligase IV is essential for performing the final 'end-joining' step. Mutations in DNA Ligase IV result in LIG4 syndrome, which is characterised by growth defects, microcephaly, reduced number of blood cells, increased predisposition to leukaemia and variable degrees of immunodeficiency. In this manuscript, we report the creation of a human induced pluripotent stem cell (iPSC) model of LIG4 deficiency, which accurately replicates the DSB repair phenotype of LIG4 patients. Our findings demonstrate that impairment of NHEJ-mediated-DSB repair in human iPSC results in accumulation of DSBs and enhanced apoptosis, thus providing new insights into likely mechanisms used by pluripotent stem cells to maintain their genomic integrity. Defects in NHEJ-mediated-DSB repair also led to a significant decrease in reprogramming efficiency of human cells and accumulation of chromosomal abnormalities, suggesting a key role for NHEJ in somatic cell reprogramming and providing insights for future cell based therapies for applications of LIG4-iPSCs. Although haematopoietic specification of LIG4-iPSC is not affected per se, the emerging haematopoietic progenitors show a high accumulation of DSBs and enhanced apoptosis, resulting in reduced numbers of mature haematopoietic cells. Together our findings provide new insights into the role of NHEJ-mediated-DSB repair in the survival and differentiation of progenitor cells, which likely underlies the developmental abnormalities observed in many DNA damage disorders. In addition, our findings are important for understanding how genomic instability arises in pluripotent stem cells and for defining appropriate culture conditions that restrict DNA damage and result in ex vivo expansion of stem cells with intact genomes.

  2. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms.

    PubMed

    Wang, Hao; Li, Jishan; Wang, Yongxiang; Jin, Jiangyu; Yang, Ronghua; Wang, Kemin; Tan, Weihong

    2010-09-15

    A new fluorescent sensing approach for detection of single-nucleotide polymorphisms (SNPs) is proposed based on the ligase reaction and gold nanoparticle (AuNPs)-quenched fluorescent oligonucleotides. The design exploits the strong fluorescence quenching of AuNPs for organic dyes and the difference in noncovalent interactions of the nanoparticles with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), where ssDNA can be adsorbed onto the surface of AuNPs while dsDNA cannot be. In the assay, two half primer DNA probes, one being labeled with a dye and the other being phosphorylated, were first incubated with a target DNA template. In the presence of DNA ligase, the two captured ssDNAs are linked for the perfectly matched DNA target to form a stable duplex, but the duplex could not be formed by the single-base mismatched DNA template. After addition of AuNPs, the fluorescence of dye-tagged DNA probe will be efficiently quenched unless the perfectly matched DNA target is present. To demonstrate the feasibility of this design, the performance of SNP detection using two different DNA ligases, T4 DNA ligase and Escherichia coli DNA ligase, were investigated. In the case of T4 DNA ligase, the signal enhancement of the dye-tagged DNA for perfectly matched DNA target is 4.6-fold higher than that for the single-base mismatched DNA. While in the presence of E. coli DNA ligase, the value raises to be 30.2, suggesting excellent capability for SNP discrimination.

  3. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells.

    PubMed

    Cremaschi, Paolo; Oliverio, Matteo; Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.

  4. In vitro construction of bacteriophage lambda carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase.

    PubMed Central

    Cameron, J R; Panasenko, S M; Lehman, I R; Davis, R W

    1975-01-01

    DNA from lambdagt-lambdaB bacteriophage was cleaved with EcoRI endonuclease and fragments from EcoRI-digested E. coli DNA were inserted. This DNA was used to infect E. coli, and phages containing the gene for DNA ligase were isolated by genetic selection. Two different hybrids were found with the same E. coli segment inserted in opposite orientations. Both hybrids produced similar levels of ligase as measured in crude extracts of infected cells. Images PMID:1103146

  5. Rad18 E3 ubiquitin ligase activity mediates Fanconi anemia pathway activation and cell survival following DNA Topoisomerase 1 inhibition.

    PubMed

    Palle, Komaraiah; Vaziri, Cyrus

    2011-05-15

    Camptothecin (CPT) and related chemotherapeutic drugs induce formation of DNA Topoisomerase I (Top1) covalent or cleavage complexes (Top1ccs) that block leading-strand DNA synthesis and elicit DNA Double Stranded Breaks (DSB) during S phase. The Fanconi Anemia (FA) pathway is implicated in tolerance of CPT-induced DNA damage yet the mechanism of FA pathway activation by Top1 poisons has not been studied. We show here that the FA core complex protein FANCA and monoubiquitinated FANCD2 (an effector of the FA pathway) are rapidly mobilized to chromatin in response to CPT treatment in several human cancer cell lines and untransformed primary human dermal fibroblasts. FANCD2 depletion using siRNA leads to impaired recovery from CPT-induced inhibition or DNA synthesis, persistence of γH2AX (a DSB marker) and reduced cell survival following CPT treatment. The E3 ubiquitin ligase Rad18 is necessary for CPT-induced recruitment of FANCA and FANCD2 to chromatin. Moreover, Rad18-depletion recapitulates the DNA synthesis and survival defects of FANCD2-deficiency in CPT-treated cells. It is well-established that Rad18 promotes FA pathway activation and DNA damage tolerance in response to bulky DNA lesions via a mechanism involving PCNA monoubiquitination. In contrast, PCNA monoubiquitination is not involved in Rad18-mediated FA pathway activation or cell survival following acquisition of CPT-induced DSB. Moreover, while Rad18 is implicated in recombinational repair of DSB via an E3 ligase-independent mechanism, we demonstrate that Rad18 E3 ligase activity is essential for appropriate FA pathway activation and DNA damage tolerance after CPT treatment. Taken together, our results define a novel pathway of Rad18-dependent DSB repair that is dissociable from known Rad18-mediated DNA repair mechanisms based on its independence from PCNA ubiquitination and requirement for E3 ligase activity.

  6. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors.

    PubMed

    Srivastava, Sandeep Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2005-08-26

    DNA ligases utilize either ATP or NAD+ as cofactors to catalyze the formation of phosphodiester bonds in nicked DNA. Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement for ligase activity. We report here the crystal structure of the adenylation domain of the Mycobacterium tuberculosis NAD+-dependent ligase with bound AMP. The adenosine nucleoside moiety of AMP adopts a syn-conformation. The structure also captures a new spatial disposition between the two subdomains of the adenylation domain. Based on the crystal structure and an in-house compound library, we have identified a novel class of inhibitors for the enzyme using in silico docking calculations. The glycosyl ureide-based inhibitors were able to distinguish between NAD+- and ATP-dependent ligases as evidenced by in vitro assays using T4 ligase and human DNA ligase I. Moreover, assays involving an Escherichia coli strain harboring a temperature-sensitive ligase mutant and a ligase-deficient Salmonella typhimurium strain suggested that the bactericidal activity of the inhibitors is due to inhibition of the essential ligase enzyme. The results can be used as the basis for rational design of novel antibacterial agents.

  7. 4-coumarate:coenzyme a ligase from loblolly pine xylem. Isolation, characterization, and complementary DNA cloning.

    PubMed Central

    Voo, K S; Whetten, R W; O'Malley, D M; Sederoff, R R

    1995-01-01

    4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) was purified from differentiating xylem of loblolly pine (Pinus taeda L.). The pine enzyme had an apparent molecular mass of 64 kD and was similar in size and kinetic properties to 4CL isolated from Norway spruce. The pine enzyme used 4-coumaric acid, caffeic acid, ferulic acid, and cinnamic acid as substrates but had no detectable activity using sinapic acid. 4CL was inhibited by naringenin and coniferin, products of phenylpropanoid metabolism. Although the lignin composition in compression wood is higher in p-hydroxyphenyl units than lignin from normal wood, there was no evidence for a different form of 4CL enzyme in differentiating xylem that was forming compression wood. cDNA clones for 4CL were obtained from a xylem expression library. The cDNA sequences matched pine xylem 4CL protein sequences and showed 60 to 66% DNA sequence identity with 4CL sequences from herbaceous angiosperms. There were two classes of cDNA obtained from pine xylem, and the genetic analysis showed that they were products of a single gene. PMID:7784527

  8. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage

    PubMed Central

    Mallik, Sarita; Popodi, Ellen M.; Hanson, Andrew J.

    2015-01-01

    ABSTRACT Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. IMPORTANCE DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings

  9. Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo.

    PubMed

    Mills, Scott D; Eakin, Ann E; Buurman, Ed T; Newman, Joseph V; Gao, Ning; Huynh, Hoan; Johnson, Kenneth D; Lahiri, Sushmita; Shapiro, Adam B; Walkup, Grant K; Yang, Wei; Stokes, Suzanne S

    2011-03-01

    DNA ligases are indispensable enzymes playing a critical role in DNA replication, recombination, and repair in all living organisms. Bacterial NAD+-dependent DNA ligase (LigA) was evaluated for its potential as a broad-spectrum antibacterial target. A novel class of substituted adenosine analogs was discovered by target-based high-throughput screening (HTS), and these compounds were optimized to render them more effective and selective inhibitors of LigA. The adenosine analogs inhibited the LigA activities of Escherichia coli, Haemophilus influenzae, Mycoplasma pneumoniae, Streptococcus pneumoniae, and Staphylococcus aureus, with inhibitory activities in the nanomolar range. They were selective for bacterial NAD+-dependent DNA ligases, showing no inhibitory activity against ATP-dependent human DNA ligase 1 or bacteriophage T4 ligase. Enzyme kinetic measurements demonstrated that the compounds bind competitively with NAD+. X-ray crystallography demonstrated that the adenosine analogs bind in the AMP-binding pocket of the LigA adenylation domain. Antibacterial activity was observed against pathogenic Gram-positive and atypical bacteria, such as S. aureus, S. pneumoniae, Streptococcus pyogenes, and M. pneumoniae, as well as against Gram-negative pathogens, such as H. influenzae and Moraxella catarrhalis. The mode of action was verified using recombinant strains with altered LigA expression, an Okazaki fragment accumulation assay, and the isolation of resistant strains with ligA mutations. In vivo efficacy was demonstrated in a murine S. aureus thigh infection model and a murine S. pneumoniae lung infection model. Treatment with the adenosine analogs reduced the bacterial burden (expressed in CFU) in the corresponding infected organ tissue as much as 1,000-fold, thus validating LigA as a target for antibacterial therapy.

  10. Adenylation-Dependent Conformation and Unfolding Pathways of the NAD+-Dependent DNA Ligase from the Thermophile Thermus scotoductus

    PubMed Central

    Georlette, Daphné; Blaise, Vinciane; Bouillenne, Fabrice; Damien, Benjamin; Thorbjarnardóttir, Sigridur H.; Depiereux, Eric; Gerday, Charles; Uversky, Vladimir N.; Feller, Georges

    2004-01-01

    In the last few years, an increased attention has been focused on NAD+-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these essential enzymes would result in the death of the bacterium. However, development of an efficient drug requires that the conformational modifications involved in the catalysis of NAD+-dependent DNA ligases are understood. From this perspective, we have investigated the conformational changes occurring in the thermophilic Thermus scotoductus NAD+-DNA ligase upon adenylation, as well as the effect of cofactor binding on protein resistance to thermal and chemical (guanidine hydrochloride) denaturation. Our results indicate that cofactor binding induces conformational rearrangement within the active site and promotes a compaction of the enzyme. These data support an induced “open-closure” process upon adenylation, leading to the formation of the catalytically active enzyme that is able to bind DNA. These conformational changes are likely to be associated with the protein function, preventing the formation of nonproductive complexes between deadenylated ligases and DNA. In addition, enzyme adenylation significantly increases resistance of the protein to thermal denaturation and GdmCl-induced unfolding, establishing a thermodynamic link between ligand binding and increased conformational stability. Finally, chemical unfolding of deadenylated and adenylated enzyme is accompanied by accumulation of at least two equilibrium intermediates, the molten globule and premolten globule states. Maximal populations of these intermediates are shifted toward higher GdmCl concentrations in the case of the adenylated ligase. These data provide further insights into the properties of partially folded intermediates. PMID:14747344

  11. Mutations of Asp540 and the domain-connecting residues synergistically enhance Pyrococcus furiosus DNA ligase activity.

    PubMed

    Tanabe, Maiko; Ishino, Sonoko; Ishino, Yoshizumi; Nishida, Hirokazu

    2014-01-21

    The structure of Pyrococcus furiosus DNA ligase (PfuLig), which architecturally resembles human DNA ligase I (hLigI), revealed that the C-terminal helix stabilizes the closed conformation through several ionic interactions between two domains (adenylylation domain (AdD) and C-terminal OB-fold domain (OBD)). This helix is oriented differently in DNA-bound hLigI, suggesting that the disruption of its interactions with AdD facilitates DNA binding. Previously, we demonstrated that the replacement of Asp540 with arginine improves the ligation activity. Here we report that the combination of the Asp540-replacement and the elimination of ionic residues in the helix, forming interactions with AdD, effectively enhanced the activity.

  12. M. tuberculosis Sliding β-Clamp Does Not Interact Directly with the NAD+ -Dependent DNA Ligase

    PubMed Central

    Kukshal, Vandna; Khanam, Taran; Chopra, Deepti; Singh, Nidhi; Sanyal, Sabyasachi; Ramachandran, Ravishankar

    2012-01-01

    The sliding β-clamp, an important component of the DNA replication and repair machinery, is drawing increasing attention as a therapeutic target. We report the crystal structure of the M. tuberculosis β-clamp (Mtbβ-clamp) to 3.0 Å resolution. The protein crystallized in the space group C2221 with cell-dimensions a = 72.7, b = 234.9 & c = 125.1 Å respectively. Mtbβ-clamp is a dimer, and exhibits head-to-tail association similar to other bacterial clamps. Each monomer folds into three domains with similar structures respectively and associates with its dimeric partner through 6 salt-bridges and about 21 polar interactions. Affinity experiments involving a blunt DNA duplex, primed-DNA and nicked DNA respectively show that Mtbβ-clamp binds specifically to primed DNA about 1.8 times stronger compared to the other two substrates and with an apparent Kd of 300 nM. In bacteria like E. coli, the β-clamp is known to interact with subunits of the clamp loader, NAD+ -dependent DNA ligase (LigA) and other partners. We tested the interactions of the Mtbβ-clamp with MtbLigA and the γ-clamp loader subunit through radioactive gel shift assays, size exclusion chromatography, yeast-two hybrid experiments and also functionally. Intriguingly while Mtbβ-clamp interacts in vitro with the γ-clamp loader, it does not interact with MtbLigA unlike in bacteria like E. coli where it does. Modeling studies involving earlier peptide complexes reveal that the peptide-binding site is largely conserved despite lower sequence identity between bacterial clamps. Overall the results suggest that other as-yet-unidentified factors may mediate interactions between the clamp, LigA and DNA in mycobacteria. PMID:22545130

  13. Cloning of linear DNAs in vivo by overexpressed T4 DNA ligase: construction of a T4 phage hoc gene display vector.

    PubMed

    Ren, Z J; Baumann, R G; Black, L W

    1997-08-22

    A method was developed to clone linear DNAs by overexpressing T4 phage DNA ligase in vivo, based upon recombination deficient E. coli derivatives that carry a plasmid containing an inducible T4 DNA ligase gene. Integration of this ligase-plasmid into the chromosome of such E. coli allows standard plasmid isolation following linear DNA transformation of the strains containing high levels of T4 DNA ligase. Intramolecular ligation allows high efficiency recircularization of cohesive and blunt-end terminated linear plasmid DNAs following transformation. Recombinant plasmids could be constructed in vivo by co-transformation with linearized vector plus insert DNAs, followed by intermolecular ligation in the T4 ligase strains to yield clones without deletions or rearrangements. Thus, in vitro packaged lox-site terminated plasmid DNAs injected from phage T4 were recircularized by T4 ligase in vivo with an efficiency comparable to CRE recombinase. Clones that expressed a capsid-binding 14-aa N-terminal peptide extension derivative of the HOC (highly antigenic outer capsid) protein for T4 phage hoc gene display were constructed by co-transformation with a linearized vector and a PCR-synthesized hoc gene. Therefore, the T4 DNA ligase strains are useful for cloning linear DNAs in vivo by transformation or transduction of DNAs with nonsequence-specific but compatible DNA ends.

  14. DNA gyrase, topoisomerase IV, and the 4-quinolones.

    PubMed Central

    Drlica, K; Zhao, X

    1997-01-01

    For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases. PMID:9293187

  15. An exonic splicing silencer in the testes-specific DNA ligase III β exon

    PubMed Central

    Chew, Shern L.; Baginsky, Lysa; Eperon, Ian C.

    2000-01-01

    Alternative pre-mRNA splicing of two terminal exons (α and β) regulates the expression of the human DNA ligase III gene. In most tissues, the α exon is expressed. In testes and during spermatogenesis, the β exon is used instead. The α exon encodes the interaction domain with a scaffold DNA repair protein, XRCC1, while the β exon-encoded C-terminal does not. Sequence elements regulating the alternative splicing pattern were mapped by in vitro splicing assays in HeLa nuclear extracts. Deletion of a region beginning in the β exon and extending into the downstream intron derepressed splicing to the β exon. Two silencing elements were found within this 101 nt region: a 16 nt exonic splicing silencer immediately upstream of the β exon polyadenylation signal and a 45 nt intronic splicing silencer. The exonic splicing silencer inhibited splicing, even when the polyadenylation signal was deleted or replaced by a 5′ splice site. This element also enhanced polyadenylation under conditions unfavourable to splicing. The splicing silencer partially inhibited assembly of spliceosomal complexes and functioned in an adenoviral pre-mRNA context. Silencing of splicing by the element was associated with cross-linking of a 37 kDa protein to the RNA substrate. The element exerts opposite functions in splicing and polyadenylation. PMID:10606636

  16. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  17. Rad51 and RecA juxtapose dsDNA ends ready for DNA ligase-catalyzed end-joining under recombinase-suppressive conditions.

    PubMed

    Konomura, Naoto; Arai, Naoto; Shinohara, Takeshi; Kobayashi, Jun; Iwasaki, Wakana; Ikawa, Shukuko; Kusano, Kohji; Shibata, Takehiko

    2017-01-09

    RecA-family recombinase-catalyzed ATP-dependent homologous joint formation is critical for homologous recombination, in which RecA or Rad51 binds first to single-stranded (ss)DNA and then interacts with double-stranded (ds)DNA. However, when RecA or Rad51 interacts with dsDNA before binding to ssDNA, the homologous joint-forming activity of RecA or Rad51 is quickly suppressed. We found that under these and adenosine diphosphate (ADP)-generating suppressive conditions for the recombinase activity, RecA or Rad51 at similar optimal concentrations enhances the DNA ligase-catalyzed dsDNA end-joining (DNA ligation) about 30- to 40-fold. The DNA ligation enhancement by RecA or Rad51 transforms most of the substrate DNA into multimers within 2-5 min, and for this enhancement, ADP is the common and best cofactor. Adenosine triphosphate (ATP) is effective for RecA, but not for Rad51. Rad51/RecA-enhanced DNA ligation depends on dsDNA-binding, as shown by a mutant, and is independent of physical interactions with the DNA ligase. These observations demonstrate the common and unique activities of RecA and Rad51 to juxtapose dsDNA-ends in preparation for covalent joining by a DNA ligase. This new in vitro function of Rad51 provides a simple explanation for our genetic observation that Rad51 plays a role in the fidelity of the end-joining of a reporter plasmid DNA, by yeast canonical non-homologous end-joining (NHEJ) in vivo.

  18. Rad51 and RecA juxtapose dsDNA ends ready for DNA ligase-catalyzed end-joining under recombinase-suppressive conditions

    PubMed Central

    Konomura, Naoto; Arai, Naoto; Shinohara, Takeshi; Kobayashi, Jun; Iwasaki, Wakana; Ikawa, Shukuko; Kusano, Kohji; Shibata, Takehiko

    2017-01-01

    RecA-family recombinase-catalyzed ATP-dependent homologous joint formation is critical for homologous recombination, in which RecA or Rad51 binds first to single-stranded (ss)DNA and then interacts with double-stranded (ds)DNA. However, when RecA or Rad51 interacts with dsDNA before binding to ssDNA, the homologous joint-forming activity of RecA or Rad51 is quickly suppressed. We found that under these and adenosine diphosphate (ADP)-generating suppressive conditions for the recombinase activity, RecA or Rad51 at similar optimal concentrations enhances the DNA ligase-catalyzed dsDNA end-joining (DNA ligation) about 30- to 40-fold. The DNA ligation enhancement by RecA or Rad51 transforms most of the substrate DNA into multimers within 2–5 min, and for this enhancement, ADP is the common and best cofactor. Adenosine triphosphate (ATP) is effective for RecA, but not for Rad51. Rad51/RecA-enhanced DNA ligation depends on dsDNA-binding, as shown by a mutant, and is independent of physical interactions with the DNA ligase. These observations demonstrate the common and unique activities of RecA and Rad51 to juxtapose dsDNA-ends in preparation for covalent joining by a DNA ligase. This new in vitro function of Rad51 provides a simple explanation for our genetic observation that Rad51 plays a role in the fidelity of the end-joining of a reporter plasmid DNA, by yeast canonical non-homologous end-joining (NHEJ) in vivo. PMID:27794044

  19. Mechanistic Assessment of DNA Ligase as an Antibacterial Target in Staphylococcus aureus

    PubMed Central

    Podos, Steven D.; Thanassi, Jane A.

    2012-01-01

    We report the use of a known pyridochromanone inhibitor with antibacterial activity to assess the validity of NAD+-dependent DNA ligase (LigA) as an antibacterial target in Staphylococcus aureus. Potent inhibition of purified LigA was demonstrated in a DNA ligation assay (inhibition constant [Ki] = 4.0 nM) and in a DNA-independent enzyme adenylation assay using full-length LigA (50% inhibitory concentration [IC50] = 28 nM) or its isolated adenylation domain (IC50 = 36 nM). Antistaphylococcal activity was confirmed against methicillin-susceptible and -resistant S. aureus (MSSA and MRSA) strains (MIC = 1.0 μg/ml). Analysis of spontaneous resistance potential revealed a high frequency of emergence (4 × 10−7) of high-level resistant mutants (MIC > 64) with associated ligA lesions. There were no observable effects on growth rate in these mutants. Of 22 sequenced clones, 3 encoded point substitutions within the catalytic adenylation domain and 19 in the downstream oligonucleotide-binding (OB) fold and helix-hairpin-helix (HhH) domains. In vitro characterization of the enzymatic properties of four selected mutants revealed distinct signatures underlying their resistance to inhibition. The infrequent adenylation domain mutations altered the kinetics of adenylation and probably elicited resistance directly. In contrast, the highly represented OB fold domain mutations demonstrated a generalized resistance mechanism in which covalent LigA activation proceeds normally and yet the parameters of downstream ligation steps are altered. A resulting decrease in substrate Km and a consequent increase in substrate occupancy render LigA resistant to competitive inhibition. We conclude that the observed tolerance of staphylococcal cells to such hypomorphic mutations probably invalidates LigA as a viable target for antistaphylococcal chemotherapy. PMID:22585221

  20. Development of a PCR/ligase detection reaction/nanogold-based universal array approach for the detection of low-abundant DNA point mutations.

    PubMed

    Yi, Ping; Lu, Weiping; Guo, Jianxin; Liu, Qiang; Chen, Zhuqin; Han, Jian; Li, Li

    2011-12-01

    The aim of this study was to investigate the feasibility of combining PCR and ligase detection reaction (LDR) with a novel nano-gold-based universal array for the detection of low abundance point mutations from fetal DNA in maternal plasma samples. The sequence with the target point mutation was first amplified by PCR and then used as a template for LDR in which the upstream specific primer contains a tag sequence at the 5'-end. After hybridization to the probes of a universal array containing anti-tag sequences, the ligated products were bound to streptavidin-labeled nano-gold particles and the hybridization signals were amplified by silver staining. The PCR/LDR/universal array was first tested for sensitivity with nano-gold-based detection, and then this system was applied to detect the low abundance specific mutation IVS2 654(C→T) of the β-globin gene in a model using maternal plasma samples. The nano-gold-based method unambiguously identified a single mutation at a sensitivity of 1:1000. This approach was applied to detect the paternally inherited IVS2 654(C→T) mutation from thirty maternal plasma samples. The results were consistent with those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. The PCR/LDR/nano-gold-based universal array is able to detect low-abundance point mutations with high sensitivity.

  1. Molecular Characterization of NAD+-Dependent DNA Ligase from Wolbachia Endosymbiont of Lymphatic Filarial Parasite Brugia malayi

    PubMed Central

    Shrivastava, Nidhi; Nag, Jeetendra Kumar; Misra-Bhattacharya, Shailja

    2012-01-01

    The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD+-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD+-dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA) for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD+-dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH) and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid) was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies. PMID:22815933

  2. A High-Fidelity Codon Set for the T4 DNA Ligase-Catalyzed Polymerization of Modified Oligonucleotides.

    PubMed

    Lei, Yi; Kong, Dehui; Hili, Ryan

    2015-12-14

    In vitro selection of nucleic acid polymers can readily deliver highly specific receptors and catalysts for a variety of applications; however, it is suspected that the functional group deficit of nucleic acids has limited their potential with respect to proteinogenic polymers. This has stimulated research toward expanding their chemical diversity to bridge the functional gap between nucleic acids and proteins to develop a superior biopolymer. In this study, we investigate the effect of codon library size and composition on the sequence specificity of T4 DNA ligase in the DNA-templated polymerization of both unmodified and modified oligonucleotides. Using high-throughput DNA sequencing of duplex pairs, we have uncovered a 256-membered codon set that yields sequence-defined modified ssDNA polymers in high yield and with high fidelity.

  3. Atomic Structure and Nonhomologous End-Joining Function of the Polymerase Component of Bacterial DNA Ligase D

    SciTech Connect

    Zhu,H.; Nandakumar, J.; Aniukwu, J.; Wang, L.; Glickman, M.; Lima, C.; Shuman, S.

    2006-01-01

    DNA ligase D (LigD) is a large polyfunctional protein that participates in a recently discovered pathway of nonhomologous end-joining in bacteria. LigD consists of an ATP-dependent ligase domain fused to a polymerase domain (Pol) and a phosphoesterase module. The Pol activity is remarkable for its dependence on manganese, its ability to perform templated and nontemplated primer extension reactions, and its preference for adding ribonucleotides to blunt DNA ends. Here we report the 1.5- Angstroms crystal structure of the Pol domain of Pseudomonas LigD and its complexes with manganese and ATP-dATP substrates, which reveal a minimized polymerase with a two-metal mechanism and a fold similar to that of archaeal DNA primase. Mutational analysis highlights the functionally relevant atomic contacts in the active site. Although distinct nucleoside conformations and contacts for ATP versus dATP are observed in the cocrystals, the functional analysis suggests that the ATP-binding mode is the productive conformation for dNMP and rNMP incorporation. We find that a mutation of Mycobacterium LigD that uniquely ablates the polymerase activity results in increased fidelity of blunt-end double-strand break repair in vivo by virtue of eliminating nucleotide insertions at the recombination junctions. Thus, LigD Pol is a direct catalyst of mutagenic nonhomologous end-joining in vivo. Our studies underscore a previously uncharacterized role for the primase-like polymerase family in DNA repair.

  4. The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase.

    PubMed

    Pawlowska, Roza; Korczynski, Dariusz; Nawrot, Barbara; Stec, Wojciech J; Chworos, Arkadiusz

    2016-08-01

    T4 DNA ligase is one of the most commonly used enzymes for in vitro molecular research and a useful model for testing the ligation mechanism of ATP-dependent DNA ligation. To better understand the influence of phosphate group modifications in the ligation process, a series of ATP analogs were tested as cofactors. P-diastereomers of newly developed β,γ-hypo-ATPαS (thio) and β,γ-hypo-ATP (oxo) were synthesized and their activity was compared to ATPαS and their natural precursors. The evaluation of presented ATP analogs revealed the importance of the α-phosphate stereogenic center in ATPαS for the T4 DNA ligase activity and sheds new light on the interaction between ATP-dependent DNA ligases and cofactors.

  5. The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro.

    PubMed

    Lei, Chao; Li, Shi-Yuan; Liu, Jia-Kun; Zheng, Xuan; Zhao, Guo-Ping; Wang, Jin

    2017-01-23

    As Cpf1 cleaves double-stranded DNA in a staggered way, it can be used in DNA assembly. However, the Cpf1 cleavage was found to be inaccurate, which may cause errors in DNA assembly. Here, the Cpf1 cleavage sites were precisely characterized, where the cleavage site on the target strand was around the 22nd base relative to the protospacer adjacent motif site, but the cleavage on the non-target strand was affected by the spacer length. When the spacer length was 20 nt or longer, Cpf1 mainly cleaved around the 14th and the 18th bases on the non-target strand; otherwise, with a shorter spacer (i.e. 17-19 nt), Cpf1 mainly cleaved after the 14th base, generating 8-nt sticky ends. With this finding, Cpf1 with a 17-nt spacer crRNA were employed for in vitro substitution of the actII-orf4 promoter in the actinorhodin biosynthetic cluster with a constitutively expressing promoter. The engineered cluster yielded more actinorhodin and produced actinorhodin from an earlier phase. Moreover, Taq DNA ligase was further employed to increase both the ligation efficiency and the ligation accuracy of the method. We expect this CCTL (Cpf1-assisted Cutting and Taq DNA ligase-mediated Ligation) method can be widely used in in vitro editing of large DNA constructs.

  6. Specific DNA recognition mediated by a type IV pilin

    PubMed Central

    Cehovin, Ana; Simpson, Peter J.; McDowell, Melanie A.; Brown, Daniel R.; Noschese, Rossella; Pallett, Mitchell; Brady, Jacob; Baldwin, Geoffrey S.; Lea, Susan M.; Matthews, Stephen J.; Pelicic, Vladimir

    2013-01-01

    Natural transformation is a dominant force in bacterial evolution by promoting horizontal gene transfer. This process may have devastating consequences, such as the spread of antibiotic resistance or the emergence of highly virulent clones. However, uptake and recombination of foreign DNA are most often deleterious to competent species. Therefore, model naturally transformable Gram-negative bacteria, including the human pathogen Neisseria meningitidis, have evolved means to preferentially take up homotypic DNA containing short and genus-specific sequence motifs. Despite decades of intense investigations, the DNA uptake sequence receptor in Neisseria species has remained elusive. We show here, using a multidisciplinary approach combining biochemistry, molecular genetics, and structural biology, that meningococcal type IV pili bind DNA through the minor pilin ComP via an electropositive stripe that is predicted to be exposed on the filaments surface and that ComP displays an exquisite binding preference for DNA uptake sequence. Our findings illuminate the earliest step in natural transformation, reveal an unconventional mechanism for DNA binding, and suggest that selective DNA uptake is more widespread than previously thought. PMID:23386723

  7. Differential Expression of DNA Double-Strand Break Repair Proteins in Breast Cells

    DTIC Science & Technology

    2001-07-01

    resting breast tissues from 10 different patients express both components of DNA-PK, DNAPKcs and Ku. These tissues also expressed XRCC4, DNA Ligase IV...DNA-PK in human breast tissues by immuno-histochemistry and extended these studies to two other components of the NHEJ repair pathway, XRCC4 and DNA ... ligase IV, as well as three other DNA repair components NBS1, MRE11, and PCNA. In contrast to the original report, 90% of the epithelial cells in normal

  8. Kinetics of T3-DNA Ligase-Catalyzed Phosphodiester Bond Formation Measured Using the α-Hemolysin Nanopore.

    PubMed

    Tan, Cherie S; Riedl, Jan; Fleming, Aaron M; Burrows, Cynthia J; White, Henry S

    2016-12-27

    The latch region of the wild-type α-hemolysin (α-HL) protein channel can be used to distinguish single base modifications in double-stranded DNA (dsDNA) via ion channel measurements upon electrophoretic capture of dsDNA in the vestibule of α-HL. Herein, we investigated the use of the latch region to detect a nick in the phosphodiester DNA backbone. The presence of a nick in the phosphodiester backbone of one strand of the duplex results in a significant increase in both the blockade current and noise level relative to the intact duplex. Differentiation between the nicked and intact duplexes based on blockade current or noise, with near baseline resolution, allows real-time monitoring of the rate of T3-DNA ligase-catalyzed phosphodiester bond formation. Under low ionic strength conditions containing divalent cations and a molecular crowding agent (75 mg mL(-1) PEG), the rate of enzyme-catalyzed reaction in the bulk solution was continuously monitored by electrophoretically capturing reaction substrate or product dsDNA in the α-HL protein channel vestibule. Enzyme kinetic results obtained from the nanopore experiments match those from gel electrophoresis under the same reaction conditions, indicating the α-HL nanopore measurement provides a viable approach for monitoring enzymatic DNA repair activity.

  9. Amplified detection of DNA ligase and polynucleotide kinase/phosphatase on the basis of enrichment of catalytic G-quadruplex DNAzyme by rolling circle amplification.

    PubMed

    Jiang, Hong-Xin; Kong, De-Ming; Shen, Han-Xi

    2014-05-15

    As two commonly used tool enzymes, DNA ligase and polynucleotide kinase/phosphatase (PNKP) play important roles in DNA metabolism. More and more studies show that regulation of their activity represents promising means for cancer therapy. To detect the activity of DNA ligase with high sensitivity and specificity, a G-quadruplex DNAzyme-based DNA ligase sensor was developed. In this sensor, the use of G-quadruplex DNAzyme eliminated the needs for any labeled oligonucleotide probes, thus making label-free detection possible. The introduction of rolling circle amplification (RCA) reaction could lead to the formation of multimeric G-quadruplexes containing thousands of G-quadruplex units, which can provide highly active hemin-binding sites, thus significantly improving the sensitivity of the sensor. The proposed sensor allowed specific detection of T4 DNA ligase with a detection limit of 0.0019 U/mL. By adding a PNKP-triggered 5'-phosphroylation step of the template DNA, the above sensing strategy could be easily extended to the design of PNKP sensor. The established sensor allowed specific detection of T4 PNKP with a detection limit of 0.0018 U/mL. In addition, these two sensors could also be used for the studies on inhibitors of these two enzymes.

  10. Rad7 E3 Ubiquitin Ligase Attenuates Polyubiquitylation of Rpn10 and Dsk2 Following DNA Damage in Saccharomyces cerevisiae

    PubMed Central

    Benoun, Joseph M.; Lalimar-Cortez, Danielle; Valencia, Analila; Granda, Adriana; Moore, Destaye M.; Kelson, Eric P.

    2016-01-01

    During Nucleotide Excision Repair (NER) in the yeast S. cerevisiae, ubiquitylation of Rad4 is carried out by the E3 ubiquitin ligase that includes Rad7-Elc1-Cul3 and is critical to optimal NER. Rad7 E3 activity targets Rad4 for degradation by the proteaseome but, in principle, could also trigger other DNA damage responses. We observed increased nuclear ubiquitin foci (Ub-RFP) formation in S. cerevisiae containing a Rad7 E3 ligase mutant (rad7SOCS) in response to DNA damage by benzo[a]pyrenediolepoxide (BPDE) in dividing cells. Immunoblots reveal that ubiquitin conjugates of Rpn10 and Dsk2 accumulate in greater abundance in rad7SOCS compared to RAD7 in dividing cells in response to BPDE which makes Rpn10 and Dsk2 candidates for being the ubiquitylated species observed in our microscopy experiments. Microscopy analysis with strains containing Dsk2-GFP shows that Dsk2-GFP and Dsk2-GFP/Ub-RFP colocalized in nuclear foci form to an increased extent in a rad7SOCS mutant background in dividing cells than in a RAD7 wild-type strain. Further, Dsk2-GFP in the rad7SOCS strain formed more foci at the plasma membrane following BPDE treatment in dividing cells relative to strains containing RAD7 or a rad7Δ deletion mutant. In response to a different agent, UV irradiation, levels of ubiquitylated proteins were increased in rad7SOCS relative to RAD7, and the proteasomal deubiquitylase subunit, Rpn11 was even monoubiquitylated in the absence of damaging agents. Together these data show that Rad7 E3 activity attenuates ubiquitylation of proteins regulating the shuttling of polyubiquitylated proteins to the proteasome (Dsk2 and Rpn10) and removal of ubiquitin chains just prior to degradation (Rpn11). Since Rad7 E3 ligase activity has been shown to increase ubiquitylation of its target proteins, yet our results show increased ubiquitylation in the absence of Rad7 E3, we suggest that Rad7 E3 action regulates ubiquitin ligase and deubiquitylase (DUB) activities that act on Rpn10, Dsk2

  11. Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR.

    PubMed

    Le, Yilin; Chen, Huayou; Zagursky, Robert; Wu, J H David; Shao, Weilan

    2013-08-01

    Polymerase chain reaction (PCR) is a powerful method to produce linear DNA fragments. Here we describe the Tma thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. In this thermostable DNA ligase-mediated whole-plasmid amplification method, the resultant DNA nick between the 5' end of the PCR primer and the extended newly synthesized DNA 3' end of each PCR cycle is ligated by Tma DNA ligase, resulting in circular plasmid DNA product that can be directly transformed. The template plasmid DNA is eliminated by 'selection marker swapping' upon transformation. When performed under an error-prone condition with Taq DNA polymerase, PPCP allows one-step construction of mutagenesis libraries based on in situ error-prone PCR so that random mutations are introduced into the target gene without altering the expression vector plasmid. A significant difference between PPCP and previously published methods is that PPCP allows exponential amplification of circular DNA. We used this method to create random mutagenesis libraries of a xylanase gene and two cellulase genes. Screening of these libraries resulted in mutant proteins with desired properties, demonstrating the usefulness of in situ error-prone PPCP for creating random mutagenesis libraries for directed evolution.

  12. Cofactor binding modulates the conformational stabilities and unfolding patterns of NAD(+)-dependent DNA ligases from Escherichia coli and Thermus scotoductus.

    PubMed

    Georlette, Daphné; Blaise, Vinciane; Dohmen, Christophe; Bouillenne, Fabrice; Damien, Benjamin; Depiereux, Eric; Gerday, Charles; Uversky, Vladimir N; Feller, Georges

    2003-12-12

    DNA ligases are important enzymes required for cellular processes such as DNA replication, recombination, and repair. NAD(+)-dependent DNA ligases are essentially restricted to eubacteria, thus constituting an attractive target in the development of novel antibiotics. Although such a project might involve the systematic testing of a vast number of chemical compounds, it can essentially gain from the preliminary deciphering of the conformational stability and structural perturbations associated with the formation of the catalytically active adenylated enzyme. We have, therefore, investigated the adenylation-induced conformational changes in the mesophilic Escherichia coli and thermophilic Thermus scotoductus NAD(+)-DNA ligases, and the resistance of these enzymes to thermal and chemical (guanidine hydrochloride) denaturation. Our results clearly demonstrate that anchoring of the cofactor induces a conformational rearrangement within the active site of both mesophilic and thermophilic enzymes accompanied by their partial compaction. Furthermore, the adenylation of enzymes increases their resistance to thermal and chemical denaturation, establishing a thermodynamic link between cofactor binding and conformational stability enhancement. Finally, guanidine hydrochloride-induced unfolding of NAD(+)-dependent DNA ligases is shown to be a complex process that involves accumulation of at least two equilibrium intermediates, the molten globule and its precursor.

  13. DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair

    PubMed Central

    Abdou, Ismail; Poirier, Guy G.; Hendzel, Michael J.; Weinfeld, Michael

    2015-01-01

    In the current model of DNA SSBR, PARP1 is regarded as the sensor of single-strand breaks (SSBs). However, biochemical studies have implicated LIG3 as another possible SSB sensor. Using a laser micro-irradiation protocol that predominantly generates SSBs, we were able to demonstrate that PARP1 is dispensable for the accumulation of different single-strand break repair (SSBR) proteins at sites of DNA damage in live cells. Furthermore, we show in live cells for the first time that LIG3 plays a role in mediating the accumulation of the SSBR proteins XRCC1 and PNKP at sites of DNA damage. Importantly, the accumulation of LIG3 at sites of DNA damage did not require the BRCT domain-mediated interaction with XRCC1. We were able to show that the N-terminal ZnF domain of LIG3 plays a key role in the enzyme's SSB sensing function. Finally, we provide cellular evidence that LIG3 and not PARP1 acts as the sensor for DNA damage caused by the topoisomerase I inhibitor, irinotecan. Our results support the existence of a second damage-sensing mechanism in SSBR involving the detection of nicks in the genome by LIG3. PMID:25539916

  14. Identification of a conserved 5′-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair

    PubMed Central

    de Ory, Ana; Nagler, Katja; Carrasco, Begoña; Raguse, Marina; Zafra, Olga; Moeller, Ralf; de Vega, Miguel

    2016-01-01

    Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5′-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2′-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs. PMID:26826709

  15. RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans

    PubMed Central

    Ossareh-Nazari, Batool; Katsiarimpa, Anthi; Merlet, Jorge; Pintard, Lionel

    2016-01-01

    Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint. PMID:27543292

  16. Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection.

    PubMed

    Ferretti, Lorenza P; Himmels, Sarah-Felicitas; Trenner, Anika; Walker, Christina; von Aesch, Christine; Eggenschwiler, Aline; Murina, Olga; Enchev, Radoslav I; Peter, Matthias; Freire, Raimundo; Porro, Antonio; Sartori, Alessandro A

    2016-08-26

    Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein-protein interactions and post-translational modifications. Here, we identify the Cullin3 E3 ligase substrate adaptor Kelch-like protein 15 (KLHL15) as a new interaction partner of CtIP and show that KLHL15 promotes CtIP protein turnover via the ubiquitin-proteasome pathway. A tripeptide motif (FRY) conserved across vertebrate CtIP proteins is essential for KLHL15-binding; its mutation blocks KLHL15-dependent CtIP ubiquitination and degradation. Consequently, DNA-end resection is strongly attenuated in cells overexpressing KLHL15 but amplified in cells either expressing a CtIP-FRY mutant or lacking KLHL15, thus impacting the balance between HR and NHEJ. Collectively, our findings underline the key importance and high complexity of CtIP modulation for genome integrity.

  17. Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection

    PubMed Central

    Ferretti, Lorenza P.; Himmels, Sarah-Felicitas; Trenner, Anika; Walker, Christina; von Aesch, Christine; Eggenschwiler, Aline; Murina, Olga; Enchev, Radoslav I.; Peter, Matthias; Freire, Raimundo; Porro, Antonio; Sartori, Alessandro A.

    2016-01-01

    Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein–protein interactions and post-translational modifications. Here, we identify the Cullin3 E3 ligase substrate adaptor Kelch-like protein 15 (KLHL15) as a new interaction partner of CtIP and show that KLHL15 promotes CtIP protein turnover via the ubiquitin-proteasome pathway. A tripeptide motif (FRY) conserved across vertebrate CtIP proteins is essential for KLHL15-binding; its mutation blocks KLHL15-dependent CtIP ubiquitination and degradation. Consequently, DNA-end resection is strongly attenuated in cells overexpressing KLHL15 but amplified in cells either expressing a CtIP-FRY mutant or lacking KLHL15, thus impacting the balance between HR and NHEJ. Collectively, our findings underline the key importance and high complexity of CtIP modulation for genome integrity. PMID:27561354

  18. Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D.

    PubMed

    Zhu, Hui; Bhattarai, Hitesh; Yan, Han-Guang; Shuman, Stewart; Glickman, Michael S

    2012-12-21

    Mycobacteria exploit nonhomologous end-joining (NHEJ) to repair DNA double-strand breaks. The core NHEJ machinery comprises the homodimeric DNA end-binding protein Ku and DNA ligase D (LigD), a modular enzyme composed of a C-terminal ATP-dependent ligase domain (LIG), a central 3'-phosphoesterase domain (PE), and an N-terminal polymerase domain (POL). LigD POL is proficient at adding templated and nontemplated deoxynucleotides and ribonucleotides to DNA ends in vitro and is the catalyst in vivo of unfaithful NHEJ events involving nontemplated single-nucleotide additions to blunt DSB ends. Here, we identify two mycobacterial proteins, PolD1 and PolD2, as stand-alone homologues of the LigD POL domain. Biochemical characterization of PolD1 and PolD2 shows that they resemble LigD POL in their monomeric quaternary structures, their ability to add templated and nontemplated nucleotides to primer-templates and blunt ends, and their preference for rNTPs versus dNTPs. Deletion of polD1, polD2, or both from a Mycobacterium smegmatis strain carrying an inactivating mutation in LigD POL failed to reveal a role for PolD1 or PolD2 in templated nucleotide additions during NHEJ of 5'-overhang DSBs or in clastogen resistance. Whereas our results document the existence and characteristics of new stand-alone members of the LigD POL family of RNA/DNA polymerases, they imply that other polymerases can perform fill-in synthesis during mycobacterial NHEJ.

  19. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV

    PubMed Central

    Tashjian, Tommy F.; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M.; Godoy, Veronica G.

    2017-01-01

    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB’s fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability. PMID:28298904

  20. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV.

    PubMed

    Tashjian, Tommy F; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M; Godoy, Veronica G

    2017-01-01

    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB's fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability.

  1. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage

    PubMed Central

    Hong, Xuehui; Liu, Wenyu; Song, Ruipeng; Shah, Jamie J.; Feng, Xing; Tsang, Chi Kwan; Morgan, Katherine M.; Bunting, Samuel F.; Inuzuka, Hiroyuki; Zheng, X. F. Steven; Shen, Zhiyuan; Sabaawy, Hatem E.; Liu, LianXin; Pine, Sharon R.

    2016-01-01

    SOX9 encodes a transcription factor that governs cell fate specification throughout development and tissue homeostasis. Elevated SOX9 is implicated in the genesis and progression of human tumors by increasing cell proliferation and epithelial-mesenchymal transition. We found that in response to UV irradiation or genotoxic chemotherapeutics, SOX9 is actively degraded in various cancer types and in normal epithelial cells, through a pathway independent of p53, ATM, ATR and DNA-PK. SOX9 is phosphorylated by GSK3β, facilitating the binding of SOX9 to the F-box protein FBW7α, an E3 ligase that functions in the DNA damage response pathway. The binding of FBW7α to the SOX9 K2 domain at T236-T240 targets SOX9 for subsequent ubiquitination and proteasomal destruction. Exogenous overexpression of SOX9 after genotoxic stress increases cell survival. Our findings reveal a novel regulatory mechanism for SOX9 stability and uncover a unique function of SOX9 in the cellular response to DNA damage. This new mechanism underlying a FBW7-SOX9 axis in cancer could have implications in therapy resistance. PMID:27566146

  2. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage.

    PubMed

    Hong, Xuehui; Liu, Wenyu; Song, Ruipeng; Shah, Jamie J; Feng, Xing; Tsang, Chi Kwan; Morgan, Katherine M; Bunting, Samuel F; Inuzuka, Hiroyuki; Zheng, X F Steven; Shen, Zhiyuan; Sabaawy, Hatem E; Liu, LianXin; Pine, Sharon R

    2016-10-14

    SOX9 encodes a transcription factor that governs cell fate specification throughout development and tissue homeostasis. Elevated SOX9 is implicated in the genesis and progression of human tumors by increasing cell proliferation and epithelial-mesenchymal transition. We found that in response to UV irradiation or genotoxic chemotherapeutics, SOX9 is actively degraded in various cancer types and in normal epithelial cells, through a pathway independent of p53, ATM, ATR and DNA-PK. SOX9 is phosphorylated by GSK3β, facilitating the binding of SOX9 to the F-box protein FBW7α, an E3 ligase that functions in the DNA damage response pathway. The binding of FBW7α to the SOX9 K2 domain at T236-T240 targets SOX9 for subsequent ubiquitination and proteasomal destruction. Exogenous overexpression of SOX9 after genotoxic stress increases cell survival. Our findings reveal a novel regulatory mechanism for SOX9 stability and uncover a unique function of SOX9 in the cellular response to DNA damage. This new mechanism underlying a FBW7-SOX9 axis in cancer could have implications in therapy resistance.

  3. Efficient single-strand cleavage of DNA mediated by a MnIIIMnIV-based artificial nuclease.

    PubMed

    Qian, Jing; Yu, Shasha; Wang, Wenjun; Wang, Liping; Tian, Jinlei; Yan, Shiping

    2014-02-14

    A water-soluble Mn(IV) 1,4,7-triazacyclononane complex, [Mn(IV)2L2(μ-O)2](ClO4)2·2H2O (1), was prepared to serve as a nuclease mimic (L = 1,4,7-triazacyclononane-N-acetate). Complex 1 was readily synthesized from the highly water soluble ligand (L), with Mn(III) salt, [Mn3O(MeCO2)7]·3H2O in basic condition, and characterized by X-ray, IR, electronic spectroscopy, cyclic voltammetry and magnetic susceptibility as well as ESI-MS. The bond valence sum (BVS) analysis and magnetic data suggest that 1 is a Mn(IV)-μ-O2-Mn(IV) species. The electrospray mass spectrum and electronic spectrum of 1 in aqueous solution indicates that dinuclear Mn complex [Mn(III)Mn(IV)L2(μ-O)2](+) (2) is the active species. A predominantly hydrolytic cleavage mechanism was confirmed through experiments performed in the presence of various radical scavengers, T4 ligase and under anaerobic conditions. The kinetic aspects of DNA cleavage under pseudo- or true-Michaelis-Menten conditions were also detailed, kinetic parameters (kcat, KM, Vmax) were calculated to be 6.27 h(-1), 7.35 × 10(-5) M, 4.6 × 10(-4) M h(-1); 0.683 h(-1), 1.93 × 10(-5) M, 1.32 × 10(-5) M h(-1) for 2, respectively.

  4. Structure-guided mutational analysis of the OB, HhH, and BRCT domains of Escherichia coli DNA ligase.

    PubMed

    Wang, Li Kai; Nair, Pravin A; Shuman, Stewart

    2008-08-22

    NAD(+)-dependent DNA ligases (LigAs) are ubiquitous in bacteria and essential for growth. LigA enzymes have a modular structure in which a central catalytic core composed of nucleotidyltransferase and oligonucleotide-binding (OB) domains is linked via a tetracysteine zinc finger to distal helix-hairpin-helix (HhH) and BRCT (BRCA1-like C-terminal) domains. The OB and HhH domains contribute prominently to the protein clamp formed by LigA around nicked duplex DNA. Here we conducted a structure-function analysis of the OB and HhH domains of Escherichia coli LigA by alanine scanning and conservative substitutions, entailing 43 mutations at 22 amino acids. We thereby identified essential functional groups in the OB domain that engage the DNA phosphodiester backbone flanking the nick (Arg(333)); penetrate the minor grove and distort the nick (Val(383) and Ile(384)); or stabilize the OB fold (Arg(379)). The essential constituents of the HhH domain include: four glycines (Gly(455), Gly(489), Gly(521), Gly(553)), which bind the phosphate backbone across the minor groove at the outer margins of the LigA-DNA interface; Arg(487), which penetrates the minor groove at the outer margin on the 3 (R)-OH side of the nick; and Arg(446), which promotes protein clamp formation via contacts to the nucleotidyltransferase domain. We find that the BRCT domain is required in its entirety for effective nick sealing and AMP-dependent supercoil relaxation.

  5. Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA)

    PubMed Central

    Chauleau, Mathieu; Shuman, Stewart

    2016-01-01

    Escherichia coli DNA ligase (EcoLigA) repairs 3′-OH/5′-PO4 nicks in duplex DNA via reaction of LigA with NAD+ to form a covalent LigA-(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the nick 5′-PO4 to form an AppDNA intermediate (step 2); and attack of the nick 3′-OH on AppDNA to form a 3′-5′ phosphodiester (step 3). A distinctive feature of EcoLigA is its stimulation by ammonium ion. Here we used rapid mix-quench methods to analyze the kinetic mechanism of single-turnover nick sealing by EcoLigA–AMP. For substrates with correctly base-paired 3′-OH/5′-PO4 nicks, kstep2 was fast (6.8–27 s−1) and similar to kstep3 (8.3–42 s−1). Absent ammonium, kstep2 and kstep3 were 48-fold and 16-fold slower, respectively. EcoLigA was exquisitely sensitive to 3′-OH base mispairs and 3′ N:abasic lesions, which elicited 1000- to >20000-fold decrements in kstep2. The exception was the non-canonical 3′ A:oxoG configuration, which EcoLigA accepted as correctly paired for rapid sealing. These results underscore: (i) how EcoLigA requires proper positioning of the nick 3′ nucleoside for catalysis of 5′ adenylylation; and (ii) EcoLigA's potential to embed mutations during the repair of oxidative damage. EcoLigA was relatively tolerant of 5′-phosphate base mispairs and 5′ N:abasic lesions. PMID:26857547

  6. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4

    PubMed Central

    Liddiard, Kate; Ruis, Brian; Takasugi, Taylor; Harvey, Adam; Ashelford, Kevin E.; Hendrickson, Eric A.; Baird, Duncan M.

    2016-01-01

    Telomeres shorten with each cell division and can ultimately become substrates for nonhomologous end-joining repair, leading to large-scale genomic rearrangements of the kind frequently observed in human cancers. We have characterized more than 1400 telomere fusion events at the single-molecule level, using a combination of high-throughput sequence analysis together with experimentally induced telomeric double-stranded DNA breaks. We show that a single chromosomal dysfunctional telomere can fuse with diverse nontelomeric genomic loci, even in the presence of an otherwise stable genome, and that fusion predominates in coding regions. Fusion frequency was markedly increased in the absence of TP53 checkpoint control and significantly modulated by the cellular capacity for classical, versus alternative, nonhomologous end joining (NHEJ). We observed a striking reduction in inter-chromosomal fusion events in cells lacking DNA ligase 4, in contrast to a remarkably consistent profile of intra-chromosomal fusion in the context of multiple genetic knockouts, including DNA ligase 3 and 4 double-knockouts. We reveal distinct mutational signatures associated with classical NHEJ-mediated inter-chromosomal, as opposed to alternative NHEJ-mediated intra-chromosomal, telomere fusions and evidence for an unanticipated sufficiency of DNA ligase 1 for these intra-chromosomal events. Our findings have implications for mechanisms driving cancer genome evolution. PMID:26941250

  7. Expansion of CAG triplet repeats by human DNA polymerases λ and β in vitro, is regulated by flap endonuclease 1 and DNA ligase 1.

    PubMed

    Crespan, Emmanuele; Hübscher, Ulrich; Maga, Giovanni

    2015-05-01

    Huntington's disease (HD) is a neurological genetic disorder caused by the expansion of the CAG trinucleotide repeats (TNR) in the N-terminal region of coding sequence of the Huntingtin's (HTT) gene. This results in the addition of a poly-glutamine tract within the Huntingtin protein, resulting in its pathological form. The mechanism by which TRN expansion takes place is not yet fully understood. We have recently shown that DNA polymerase (Pol) β can promote the microhomology-mediated end joining and triplet expansion of a substrate mimicking a double strand break in the TNR region of the HTT gene. Here we show that TNR expansion is dependent on the structure of the DNA substrate, as well as on the two essential Pol β co-factors: flap endonuclease 1 (Fen1) and DNA ligase 1 (Lig1). We found that Fen1 significantly stimulated TNR expansion by Pol β, but not by the related enzyme Pol λ, and subsequent ligation of the DNA products by Lig1. Interestingly, the deletion of N-terminal domains of Pol λ, resulted in an enzyme which displayed properties more similar to Pol β, suggesting a possible evolutionary mechanism. These results may suggest a novel mechanism for somatic TNR expansion in HD.

  8. Transfection with replicating DNA from the temperate Bacillus bacteriophage phi 105 and with T4-ligase treated phi105 DNA: the importance in transfection of being longer than genome-length.

    PubMed

    Flock, J I

    1978-07-06

    Replicating phage DNA extracted from Bacillus subtilis infected with phage phi 105 has a higher activity in transfection than mature DNA. By heteroduplex analysis it was shown that this DNA contains concatemeric molecules. Concatemers, constructed in vitro by treatment of mature DNA with T4-ligase also have an increased activity in transfection. DNA showing an increased activity in transfection does not have a requirement for more than one molecule per transfection event as is typically found for transfection with mature phi 105 DNA. An explanation is given for this difference suggesting that the structure of the ends of the transfecting molecules play an important role intransfection.

  9. Relationship between genetic polymorphisms of DNA ligase 1 and non-small cell lung cancer susceptibility and radiosensitivity.

    PubMed

    Tian, H; He, X; Yin, L; Guo, W J; Xia, Y Y; Jiang, Z X

    2015-06-26

    The aim of this study was to examine the relationship between genetic polymorphisms in DNA ligase 1 (LIG1) and non-small cell lung cancer (NSCLC) susceptibility and radiosensitivity in a Chinese population. This was a case-control study that included 352 NSCLC patients and 448 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism analysis was conducted to detect HaeIII polymorphisms in exon 6 of the LIG1 gene in this popula-tion. This information was used to observe the effects of radiation in pa-tients with different genotypes in order to determine the genotypes as-sociated with radiosensitivity. The CC genotype and C allele frequency were significantly higher in the NSCLC group than in the control group (P = 0.012 and P = 0.023, respectively). The relative risk of experienc-ing NSCLC was 2.55 [95% confidence interval (CI), 1.12-3.98] for CC homozygous patients and 0.87 (95%CI, 0.46-1.88) for AA homozygous patients. Analysis of LIG1 genetic polymorphisms and radiosensitiv-ity of NSCLC patients showed that AA homozygous patients were sig-nificantly more radiosensitive than the control group (AA vs AC, P = 0.014; AA vs CC, P < 0.001; AC vs CC, P = 0.023). Therefore, the LIG1 CC genotype was associated with susceptibility to NSCLC, and the AA genotype demonstrated increased radiosensitivity compared to the AC and CC genotypes.

  10. A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice1[OPEN

    PubMed Central

    Cermak, Tomas; Sugimoto, Kazuhiko; Saika, Hiroaki; Mori, Akiko; Osakabe, Keishi; Hamada, Masao; Katayose, Yuichi; Voytas, Daniel F.

    2016-01-01

    We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing. PMID:26668331

  11. Dual-color detection of DNA sequence variants by ligase-mediated analysis

    SciTech Connect

    Samiotaki, M.; Kwiatkowski, M.; Parik, J.; Landegren, U. )

    1994-03-15

    Genetic screening for sequence variants associated with disease is assuming increasing importance in clinical medicine as well as in research. The authors describe an efficient method for such analyses, comprising a combination of practical features: (1) Amplified DNA samples are analyzed for their ability to serve as templates in standardized allele-specific ligation reactions between oligonucleotide probes; (2) Two allele-specific probes, differentially labeled with either of two lanthanide labels, compete for ligation to a third oligonucleotide (the signal from the two labeled probes can thus be directly compared in a sensitive time-resolved fluorescence detection reaction); and (3) Large sets of analyses are processed in parallel using a 96-pin capture manifold, serving to reduce pipetting steps and the risk of contamination. The authors present here the basis of the technique and its application to the screening for two common mutations causing cystic fibrosis and [alpha][sub 1]-antiytrypsin deficiency. 19 refs., 4 figs.

  12. Homology modeling of NAD+-dependent DNA ligase of the Wolbachia endosymbiont of Brugia malayi and its drug target potential using dispiro-cycloalkanones.

    PubMed

    Shrivastava, Nidhi; Nag, Jeetendra K; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran; Misra-Bhattacharya, Shailja

    2015-07-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD(+)-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD(+)-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD(+) cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates.

  13. Homology Modeling of NAD+-Dependent DNA Ligase of the Wolbachia Endosymbiont of Brugia malayi and Its Drug Target Potential Using Dispiro-Cycloalkanones

    PubMed Central

    Shrivastava, Nidhi; Nag, Jeetendra K.; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran

    2015-01-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD+-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD+-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD+ cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates. PMID:25845868

  14. Inhibiting NAD+-dependent DNA ligase activity with 2-(cyclopentyloxy)-5'-deoxyadenosine (CPOdA) offers a new tool for DNA replication and repair studies in the model archaeon Haloferax volcanii.

    PubMed

    Giroux, Xavier; MacNeill, Stuart A

    2015-11-01

    DNA ligases play an essential role in many aspects of DNA metabolism in all three domains of life. The haloarchaeal organism Haloferax volcanii encodes both ATP- and NAD(+)-dependent DNA ligase enzymes designated LigA and LigN, respectively. Neither LigA nor LigN alone is required for cell viability but they share an essential function, most likely the ligation of Okazaki fragments during chromosome replication. Here we show that 2-(cyclopentyloxy)-5'-deoxyadenosine (referred to as CPOdA), originally developed as a inhibitor of bacterial NAD(+)-dependent DNA ligases, is a potent inhibitor of the growth of Hfx. volcanii cells expressing LigN alone, causing chromosome fragmentation and cell death, while cells expressing LigA are unaffected. Growth inhibition occurs at significantly lower CPOdA concentrations (MIC ≤ 50 ng ml(-1)) than those required for inhibition of bacterial growth (≥2 μg ml(-1)). CPOdA has the potential to become a vital tool in DNA replication and repair studies in this important model organism.

  15. Synthesis, Acetylation, and Phosphorylation of Histone IV and Its Binding to DNA During Spermatogenesis in Trout*

    PubMed Central

    Louie, Andrew J.; Dixon, Gordon H.

    1972-01-01

    During spermatogenesis in trout testis, histone IV is extensively modified by acetylation and phosphorylation. To examine the relationship of synthesis of histone IV to its modification, histone IV labeled with [3H]aminoacids and inorganic [32P]phosphate was prepared from testis cells by acid extraction and column chromatography. Purified histone IV was resolved by starch gel electrophoresis into 10 bands, of which nine are modified by acetylation and/or phosphorylation. In the first 4 hr of labeling, the diacetyl-histone IV band showed the highest proportion of [3H]aminoacid label. After 12 hr of incorporation, more label was found in the triacetyl and tetraacetyl bands. A significant amount of amino-acid label in the two major bands (the unsubstituted and monoacetyl bands) of histone IV was not seen until 16 hr of incubation. From 1 to 12 days, the proportion of label in the unsubstituted and monoacetylated bands increased, while that in the tetra-, tri-, and monoacetyl bands decreased. Very little [3H]aminoacid was found in the phosphorylated bands of histone IV in the first 12 hr. However, after 16 hr about 20% of the total 3H was found in the phosphorylated bands. The proportion increased to 33% and remained at this level between 1 and 8 days, but, by 16 days, had decreased to 12% of the total. These data suggest that an “obligatory” acetylation of recently synthesized histone IV is involved in the correct binding of newly synthesized histone IV to DNA. We propose that ε-amino acetylation of lysyl residues 5, 8, 12, and 16 neutralizes their positive charges and allows the NH2-terminal region of histone IV to assume the correct conformation (in this case, an α-helix), and fit into the major groove of DNA. Deacetylation then “locks” histone IV to DNA by ionic linkages. The biological significance of phosphorylation of histone IV is not known. Images PMID:4505675

  16. A new 10-min ligation method using a modified buffer system with a very low amount of T4 DNA ligase: the "Coffee Break Ligation" technique.

    PubMed

    Yoshino, Yuki; Ishida, Masaharu; Horii, Akira

    2007-10-01

    The ligation reaction is widely used in molecular biology. There are several kits available that complete the ligation reaction very rapidly but they are rather expensive. In this study, we successfully modified the ligation buffer with much lower cost than existing kits. The ligation reaction can be completed in 10 min using very low activities such as 0.01 U T4 DNA ligase, and costs only $1 for 100 reactions of 20 microl scale. We name this ligation system the "Coffee Break Ligation" system; one can complete ligation reaction while drinking a cup of coffee, and perform 100 reactions by spending money equivalent to a cup of coffee.

  17. The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line

    PubMed Central

    Mohiuddin; Kobayashi, Shunsuke; Keka, Islam Shamima; Guilbaud, Guillaume; Sale, Julian; Narita, Takeo; Abdel-Aziz, H. Ismail; Wang, Xin; Ogawa, Saki; Sasanuma, Hiroyuki; Chiu, Roland; Oestergaard, Vibe H.; Lisby, Michael; Takeda, Shunichi

    2017-01-01

    The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2-/- and RNF8-/- cells and HERC2-/-/RNF8-/- double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2-/- and RNF8-/- mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks. PMID:26994443

  18. The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line.

    PubMed

    Mohiuddin; Kobayashi, Shunsuke; Keka, Islam Shamima; Guilbaud, Guillaume; Sale, Julian; Narita, Takeo; Abdel-Aziz, H Ismail; Wang, Xin; Ogawa, Saki; Sasanuma, Hiroyuki; Chiu, Roland; Oestergaard, Vibe H; Lisby, Michael; Takeda, Shunichi

    2016-04-01

    The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2(-/-) and RNF8(-/-) cells and HERC2(-/-)/RNF8(-/-) double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2(-/-) and RNF8(-/-) mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks.

  19. Vanadium(IV) and copper(II) complexes of salicylaldimines and aromatic heterocycles: Cytotoxicity, DNA binding and DNA cleavage properties.

    PubMed

    Correia, Isabel; Roy, Somnath; Matos, Cristina P; Borovic, Sladjana; Butenko, Nataliya; Cavaco, Isabel; Marques, Fernanda; Lorenzo, Julia; Rodríguez, Alejandra; Moreno, Virtudes; Pessoa, João Costa

    2015-06-01

    Five copper(II) complexes, [Cu(sal-Gly)(bipy)](1), [Cu(sal-Gly)(phen)] (2), [Cu(sal-l-Ala)(phen)] (3), [Cu(sal-D-Ala)(phen)] (4), [Cu(sal-l-Phe)(phen)] (5) and five oxidovanadium(IV) complexes, [V(IV)O(sal-Gly)(bipy)] (6), [V(IV)O(sal-Gly)(phen)] (7), [V(IV)O(sal-l-Phe)(H2O)] (8), [V(IV)O(sal-l-Phe)(bipy)] (9), [V(IV)O(sal-l-Phe)(phen)] (10) (sal=salicylaldehyde, bipy=2,2'-bipyridine, phen=1,10-phenanthroline) were synthesized and characterized, and their interaction with DNA was evaluated by different techniques: gel electrophoresis, fluorescence, UV-visible and circular dichroism spectroscopy. The complexes interact with calf-thymus DNA and efficiently cleave plasmid DNA in the absence (only 2 and 5) and/or presence of additives. The cleavage ability is concentration-dependent as well as metal and ligand-dependent. Moreover, DNA binding experiments show that the phen-containing Cu(II) and V(IV)O compounds display stronger DNA interaction ability than the corresponding bipy analogues. The complexes present cytotoxic activity against human ovarian (A2780) and breast (MCF7) carcinoma cells. Cell-growth inhibition (IC50) of compounds 1, 2 and 5 in human promyelocytic leukemia (HL60) and human cervical cancer (HeLa) cells were also determined. The copper complexes show much higher cytotoxic activity than the corresponding vanadium complexes and the reference drug cisplatin (except for the sal-Gly complexes); namely, the phenanthroline copper complexes 2-5 are ca. 10-fold more cytotoxic than cisplatin and more cytotoxic than their bipyridine analogues.

  20. Construction of a cDNA clone corresponding to mouse alpha 1(IV) procollagen.

    PubMed Central

    dos Santos, C L; Villa, L L; Sonohara, S; Brentani, R R

    1984-01-01

    A new procedure for the synthesis of double stranded cDNA, based upon release of mRNA by "in vitro" translation, was used to clone type IV collagen. Collagen synthesizing polysomes selectively isolated from a mouse parietal yolk sac carcinoma (PYS-2) were used for translation in an heterologous cell-free system. Translation products were collagenase-sensitive and displayed an electrophoretic mobility correspondent to type IV collagen. Translation released mRNA was employed to construct a 100 base pairs long cDNA clone which hybridized to a 7,800 nucleotides long mRNA. Peptides synthesized by "in vitro" translation of hybrid selected mRNA displayed an electrophoretic mobility compatible with that of alpha 1 (IV) collagen, were sensitive to collagenase and were immunoprecipitated by anti-type IV collagen antibody. Images PMID:6546618

  1. Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion

    PubMed Central

    Donti, Taraka R.; Stromberger, Carmen; Ge, Ming; Eldin, Karen W.; Craigen, William J.; Graham, Brett H.

    2014-01-01

    ABSTRACT Mutations in subunits of succinyl-CoA synthetase/ligase (SCS), a component of the citric acid cycle, are associated with mitochondrial encephalomyopathy, elevation of methylmalonic acid (MMA), and mitochondrial DNA (mtDNA) depletion. A FACS-based retroviral-mediated gene trap mutagenesis screen in mouse embryonic stem (ES) cells for abnormal mitochondrial phenotypes identified a gene trap allele of Sucla2 (Sucla2SAβgeo), which was used to generate transgenic mice. Sucla2 encodes the ADP-specific β-subunit isoform of SCS. Sucla2SAβgeo homozygotes exhibited recessive lethality, with most mutants dying late in gestation (e18.5). Mutant placenta and embryonic (e17.5) brain, heart and muscle showed varying degrees of mtDNA depletion (20–60%). However, there was no mtDNA depletion in mutant liver, where the gene is not normally expressed. Elevated levels of MMA were observed in embryonic brain. SCS-deficient mouse embryonic fibroblasts (MEFs) demonstrated a 50% reduction in mtDNA content compared with wild-type MEFs. The mtDNA depletion resulted in reduced steady state levels of mtDNA encoded proteins and multiple respiratory chain deficiencies. mtDNA content could be restored by reintroduction of Sucla2. This mouse model of SCS deficiency and mtDNA depletion promises to provide insights into the pathogenesis of mitochondrial diseases with mtDNA depletion and into the biology of mtDNA maintenance. In addition, this report demonstrates the power of a genetic screen that combines gene trap mutagenesis and FACS analysis in mouse ES cells to identify mitochondrial phenotypes and to develop animal models of mitochondrial dysfunction. PMID:24271779

  2. CRL4Cdt2 E3 ubiquitin ligase and proliferating cell nuclear antigen (PCNA) cooperate to degrade thymine DNA glycosylase in S phase.

    PubMed

    Shibata, Etsuko; Dar, Ashraf; Dutta, Anindya

    2014-08-15

    Thymine DNA glycosylase (TDG) is an essential enzyme playing multiple roles in base excision repair, transcription regulation, and DNA demethylation. TDG mediates the cytotoxicity of the anti-cancer chemotherapeutic drug 5-fluorouracil (5-FU) by prolonging S phase, generating DNA strand breaks, and inducing DNA damage signaling. During S phase of the cell cycle, TDG is degraded via the proteasomal pathway. Here we show that CRL4(Cdt2) E3 ubiquitin ligase promotes ubiquitination and proteasomal degradation of TDG in S phase in a reaction that is dependent on the interaction of TDG with proliferating cell nuclear antigen (PCNA). siRNA-mediated depletion of PCNA or components of CRL4(Cdt2), specifically cullin4A/B or substrate adaptor Cdt2, stabilizes TDG in human cells. Mutations in the PCNA-interacting peptide (PIP) motif of TDG that disrupt the interaction of TDG with PCNA or change critical basic residues essential for the action of the PIP degron prevent the ubiquitination and degradation of TDG. Thus physical interaction of TDG with PCNA through the PIP degron is required for targeting TDG to the CRL4(Cdt2) E3 ubiquitin ligase complex. Compared with forced expression of wild type TDG, CRL4(Cdt2)- resistant TDG (ΔPIP) slows cell proliferation and slightly increases the toxicity of 5-FU. Thus, CRL4(Cdt2)-dependent degradation of TDG occurs in S phase because of the requirement for TDG to interact with chromatin-loaded PCNA, and this degradation is important for preventing toxicity from excess TDG.

  3. Partial suppression of bacteriophage T4 ligase mutations by T4 endonuclease II deficiency: role of host ligase.

    PubMed

    Warner, H R

    1971-04-01

    Endonuclease II-deficient, ligase-deficient double mutants of phage T4 induce considerably more deoxyribonucleic acid (DNA) synthesis after infection of Escherichia coli B than does the ligase-deficient single mutant. Furthermore, the double mutant can replicate 10 to 15% as well as wild-type T4, whereas the single mutant fails to replicate. When the E. coli host is also deficient in ligase, the double mutant resembles the single mutant. The results indicate that host ligase can substitute for phage ligase when the host DNA is not attacked by the phage-induced endonuclease II.

  4. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD(+)-dependent DNA ligase inhibitor.

    PubMed

    Zhou, Xiaofeng; Cai, Guoqiang; He, Yi; Tong, Guotong

    2016-09-01

    Cordycepin exhibits various bio-activities, including anticancer, antibacterial, antiviral and immune regulation activities, and is a significant focus of research. However, the preparation of high-purity cordycepin remains challenging. Also, the molecular target with which cordycepin interacts to cause an antibacterial effect remains unknown. In the present study, cordycepin was prepared by preparative high-performance liquid chromatography (prep-HPLC) and the purity obtained was 99.6%, indicating that this technique may be useful for the large-scale isolation of cordycepin in the future. The results of computational molecular docking analysis indicated that the interaction energy between cordycepin and NAD+-dependent DNA ligase (LigA) was lower than that between cordycepin and other common antibacterial targets. The highly pure cordycepin obtained by prep-HPLC demonstrated inhibitory activity against LigA from various bacteria in vitro. In conclusion, cordycepin may be useful as a broad-spectrum antibiotic targeting LigA in various bacteria.

  5. The carboxyl terminus of FANCE recruits FANCD2 to the Fanconi Anemia (FA) E3 ligase complex to promote the FA DNA repair pathway.

    PubMed

    Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D; Kee, Younghoon

    2014-03-07

    Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair.

  6. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells

    SciTech Connect

    Duan Wenrui; Gao, Li; Wu Xin; Zhang Yang; Otterson, Gregory A.; Villalona-Calero, Miguel A. . E-mail: Miguel.villalona@osumc.edu

    2006-10-15

    Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after {gamma} irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity.

  7. DNA cleavage activity of V IV O(acac)2 and derivatives.

    PubMed

    Butenko, Nataliya; Tomaz, Ana Isabel; Nouri, Ofelia; Escribano, Esther; Moreno, Virtudes; Gama, Sofia; Ribeiro, Vera; Telo, João Paulo; Pesssoa, João Costa; Cavaco, Isabel

    2009-04-01

    The DNA cleavage activity of several beta-diketonate vanadyl complexes is examined. Vanadyl acetylacetonate, V(IV)O(acac)(2), 1, shows a remarkable activity in degrading plasmid DNA in the absence of any activating agents, air and photoirradiation. The cleaving activity of several related complexes V(IV)O(hd)(2) (2, Hhd=3,5-heptanedione), V(IV)O(acac-NH(2))(2) (3, Hacac-NH(2)=acetoacetamide) and V(IV)O(acac-NMe(2))(2) (4, Hacac-NMe(2)=N,N-dimethylacetoacetamide) is also evaluated. It is shown that 2 exhibits an activity similar to 1, while 3 and 4 are much less efficient cleaving agents. The different activity of the complexes is related to their stability towards hydrolysis in aqueous solution, which follows the order 1 approximately 2>3 approximately 4. The nature of the pH buffer was also found to be determinant in the nuclease activity of 1 and 2. In a phosphate buffered medium DNA cleavage by these agents is much more efficient than in tris, hepes, mes or mops buffers. The reaction seems to take place through a mixed mechanism, involving the formation of reactive oxygen species (ROS), namely OH radicals, and possibly also direct cleavage at phosphodiester linkages induced by the vanadium complexes.

  8. The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair.

    PubMed

    Kari, Vijayalakshmi; Shchebet, Andrei; Neumann, Heinz; Johnsen, Steven A

    2011-10-15

    Many anticancer therapies function largely by inducing DNA double-strand breaks (DSBs) or altering the ability of cancer cells to repair them. Proper and timely DNA repair requires dynamic changes in chromatin assembly and disassembly characterized by histone H3 lysine 56 acetylation (H3K56ac) and phosphorylation of the variant histone H2AX (γH2AX). Similarly, histone H2B monoubiquitination (H2Bub1) functions in DNA repair, but its role in controlling dynamic changes in chromatin structure following DSBs and the histone chaperone complexes involved remain unknown. Therefore, we investigated the role of the H2B ubiquitin ligase RNF40 in the DSB response. We show that RNF40 depletion results in sustained H2AX phosphorylation and a decrease in rapid cell cycle checkpoint activation. Furthermore, RNF40 knockdown resulted in decreased H3K56ac and decreased recruitment of the facilitates chromatin transcription (FACT) complex to chromatin following DSB. Knockdown of the FACT component suppressor of Ty homolog-16 (SUPT16H) phenocopied the effects of RNF40 knockdown on both γH2AX and H3K56ac following DSB induction. Consistently, both RNF40 and SUPT16H were required for proper DNA end resection and timely DNA repair, suggesting that H2Bub1 and FACT cooperate to increase chromatin dynamics, which facilitates proper checkpoint activation and timely DNA repair. These results provide important mechanistic insights into the tumor suppressor function of H2Bub1 and provide a rational basis for pursuing H2Bub1-based therapies in conjunction with traditional chemo- and radiotherapy.

  9. How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation.

    PubMed

    Rawdon, Eric J; Dorier, Julien; Racko, Dusan; Millett, Kenneth C; Stasiak, Andrzej

    2016-06-02

    Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation.

  10. How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation

    PubMed Central

    Rawdon, Eric J.; Dorier, Julien; Racko, Dusan; Millett, Kenneth C.; Stasiak, Andrzej

    2016-01-01

    Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation. PMID:27106058

  11. Differential Expression of DNA Double-Strand Break Repair Proteins in Breast Cells

    DTIC Science & Technology

    2002-07-01

    DNA-PK in human breast tissues by immuno-histochemistry and extended these studies to two other components of the NHEJ repair pathway, XRCC4 and DNA ... ligase IV, as well as other DNA repair components including NBS 1 and MRE11. In contrast to the original report, 90% of the epithelial cells in normal

  12. Differential Expression of DNA Double-Strand Break Repair Proteins in Breast Cells

    DTIC Science & Technology

    2003-07-01

    DNA-PK in human breast tissues by immuno-histochemistry and extended these studies to two other components of the NHEJ repair pathway, XRCC4 and DNA ... ligase IV, as well as other DNA repair components including NBSl and MRE11. In contrast to the original report, 90% of the epithelial cells in normal

  13. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification.

    PubMed

    McKenzie, G J; Lee, P L; Lombardo, M J; Hastings, P J; Rosenberg, S M

    2001-03-01

    Adaptive point mutation and amplification are induced responses to environmental stress, promoting genetic changes that can enhance survival. A specialized adaptive mutation mechanism has been documented in one Escherichia coli assay, but its enzymatic basis remained unclear. We report that the SOS-inducible, error-prone DNA polymerase (pol) IV, encoded by dinB, is required for adaptive point mutation in the E. coli lac operon. A nonpolar dinB mutation reduces adaptive mutation frequencies by 85% but does not affect adaptive amplification, growth-dependent mutation, or survival after oxidative or UV damage. We show that pol IV, together with the major replicase, pol III, can account for all adaptive point mutations at lac. The results identify a role for pol IV in inducible genetic change.

  14. Clerocidin interacts with the cleavage complex of Streptococcus pneumoniae topoisomerase IV to induce selective irreversible DNA damage.

    PubMed

    Richter, Sara N; Leo, Elisabetta; Giaretta, Giulia; Gatto, Barbara; Fisher, L Mark; Palumbo, Manlio

    2006-01-01

    Clerocidin (CL), a diterpenoid natural product, alkylates DNA through its epoxide moiety and exhibits both anticancer and antibacterial activities. We have examined CL action in the presence of topoisomerase IV from Streptococcus pneumoniae. CL promoted irreversible enzyme-mediated DNA cleavage leading to single- and double-stranded DNA breaks at specific sites. Reaction required the diterpenoid function: no cleavage was seen using a naphthalene-substituted analogue. Moreover, drug-induced DNA breakage was not observed using a mutant topoisomerase IV (ParC Y118F) unable to form a cleavage complex with DNA. Sequence analysis of 102 single-stranded DNA breaks and 79 double-stranded breaks revealed an overwhelming preference for G at the -1 position, i.e. immediately 5' of the enzyme DNA scission site. This specificity contrasts with that of topoisomerase IV cleavage with antibacterial quinolones. Indeed, CL stimulated DNA breakage by a quinolone-resistant topoisomerase IV (ParC S79F). Overall, the results indicate that topoisomerase IV facilitates selective irreversible CL attack at guanine and that its cleavage complex differs markedly from that of mammalian topoisomerase II which promotes both irreversible and reversible CL attack at guanine and cytosine, respectively. The unique ability to form exclusively irreversible DNA breaks suggests topoisomerase IV may be a key intracellular target of CL in bacteria.

  15. Fast capillary electrophoresis-laser induced fluorescence analysis of ligase chain reaction products: human mitochondrial DNA point mutations causing Leber's hereditary optic neuropathy.

    PubMed

    Muth, J; Williams, P M; Williams, S J; Brown, M D; Wallace, D C; Karger, B L

    1996-12-01

    High speed capillary electrophoresis-laser-induced fluorescence (CE-LIF) has been used to separate and detect point mutations using the ligase chain reaction (LCR). The method utilizes short capillary columns (7.5 cm effective length) and fields of 400 V/cm to analyze DNA-ethidium bromide complexes using an He/Ne laser. The method was first demonstrated with a commercially available kit for LCR based on a lacI gene fragment inserted in a Bluescript II phagemid. LCR-CE-LIF was then applied to detect point mutations in human mitochondrial DNA, resulting in Leber's hereditary optic neuropathy (LHON). Three severe mutations were analyzed in which the original base is substituted by a thymidine base at positions 3460, 11778 and 14459. Appropriate primers were designed with polyT tails for length discrimination of pooled samples. Successful detection of mutated samples was achieved, with appropriate correction for small amounts of nonspecific ligated product. The method is rapid, easy to implement, and automatable.

  16. Steric and electrostatic effects in DNA synthesis by the SOS-induced DNA polymerases II and IV of Escherichia coli.

    PubMed

    Silverman, Adam P; Jiang, Qingfei; Goodman, Myron F; Kool, Eric T

    2007-12-04

    The SOS-induced DNA polymerases II and IV (pol II and pol IV, respectively) of Escherichia coli play important roles in processing lesions that occur in genomic DNA. Here we study how electrostatic and steric effects play different roles in influencing the efficiency and fidelity of DNA synthesis by these two enzymes. These effects were probed by the use of nonpolar shape analogues of thymidine, in which substituted toluenes replace the polar thymine base. We compared thymine with nonpolar analogues to evaluate the importance of hydrogen bonding in the polymerase active sites, while we used comparisons among a set of variably sized thymine analogues to measure the role of steric effects in the two enzymes. Steady-state kinetics measurements were carried out to evaluate activities for nucleotide insertion and extension. The results showed that both enzymes inserted nucleotides opposite nonpolar template bases with moderate to low efficiency, suggesting that both polymerases benefit from hydrogen bonding or other electrostatic effects involving the template base. Surprisingly, however, pol II inserted nonpolar nucleotide (dNTP) analogues into a primer strand with high (wild-type) efficiency, while pol IV handled them with an extremely low efficiency. Base pair extension studies showed that both enzymes bypass non-hydrogen-bonding template bases with moderately low efficiency, suggesting a possible beneficial role of minor groove hydrogen bonding interactions at the N-1 position. Measurement of the two polymerases' sensitivity to steric size changes showed that both enzymes were relatively flexible, yielding only small kinetic differences with increases or decreases in nucleotide size. Comparisons are made to recent data for DNA pol I (Klenow fragment), the archaeal polymerase Dpo4, and human pol kappa.

  17. Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology

    PubMed Central

    Chambers, Cecilia R.; Patrick, Wayne M.

    2015-01-01

    With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area. PMID:26494982

  18. Investigation of DNA binding, DNA photocleavage, topoisomerase I inhibition and antioxidant activities of water soluble titanium(IV) phthalocyanine compounds.

    PubMed

    Özel, Arzu; Barut, Burak; Demirbaş, Ümit; Biyiklioglu, Zekeriya

    2016-04-01

    The binding mode of water soluble peripherally tetra-substituted titanium(IV) phthalocyanine (Pc) compounds Pc1, Pc2 and Pc3 with calf thymus (CT) DNA was investigated by using UV-Vis spectroscopy and thermal denaturation studies in this work. The results of DNA binding constants (Kb) and the changes in the thermal denaturation profile of DNA with the addition of Pc compounds indicated that Pc1, Pc2 and Pc3 are able to bind to CT-DNA with different binding affinities. DNA photocleavage studies of Pc compounds were performed in the absence and presence of oxidizing agents such as hydrogen peroxide (H2O2), ascorbic acid (AA) and 2-mercaptoethanol (ME) using the agarose gel electrophoresis method at irradiation 650 nm. According to the results of electrophoresis studies, Pc1, Pc2 and Pc3 cleaved of supercoiled pBR322 DNA via photocleavage pathway. The Pc1, Pc2 and Pc3 compounds were examined for topoisomerase I inhibition by measuring the relaxation of supercoiled pBR322 DNA. The all of Pc compounds inhibited topoisomerase I at 20 μM concentration. A series of antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, superoxide radical scavenging (SOD) assay and metal chelating effect assay were performed for Pc1, Pc2 and Pc3 compounds. The results of antioxidant assays indicated that Pc1, Pc2 and Pc3 compounds have remarkable superoxide radical scavenging activities, moderate 2,2-diphenyl-1-picrylhydrazyl activities and metal chelating effect activities. All the experimental studies showed that Pc1, Pc2 and Pc3 compounds bind to CT-DNA via minor groove binding, cleave of supercoiled pBR322 DNA via photocleavage pathway, inhibit topoisomerase I and have remarkable superoxide radical scavenging activities. Thanks to these properties the Pc1, Pc2 and Pc3 compounds are suitable agents for photo dynamic therapy.

  19. Poly (ADP-Ribose) Polymerase (PARP) is Essential for Sulfur Mustard-Induced DNA Damage Repair, But Has No Role in DNA Ligase Activation

    DTIC Science & Technology

    2006-01-01

    ligase activation could be due to its modification by PARP. Using HEK, intracellular "H-labeled NAD÷ (H-adenine) was metabolically generated and then... acetic acid methyl ester) (Bhat et al., 1998). These observations indicate a Stock HEK from adult skin of a single donor at passage need for a better...0.76 HEK were used in which NAD’ was metabolically 3H- Z-VAD-FMK (4 pm) 0.55CDO5 antibodly (2 pag ml )/(.( labeled at adenine (Malanga and Althaus

  20. A Type IV Pilus Mediates DNA Binding during Natural Transformation in Streptococcus pneumoniae

    PubMed Central

    Laurenceau, Raphaël; Péhau-Arnaudet, Gérard; Baconnais, Sonia; Gault, Joseph; Malosse, Christian; Dujeancourt, Annick; Campo, Nathalie; Chamot-Rooke, Julia; Le Cam, Eric; Claverys, Jean-Pierre; Fronzes, Rémi

    2013-01-01

    Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material. PMID:23825953

  1. Mutational analysis of bacteriophage T4 RNA ligase 1. Different functional groups are required for the nucleotidyl transfer and phosphodiester bond formation steps of the ligation reaction.

    PubMed

    Wang, Li Kai; Ho, C Kiong; Pei, Yi; Shuman, Stewart

    2003-08-08

    T4 RNA ligase 1 (Rnl1) exemplifies an ATP-dependent RNA ligase family that includes fungal tRNA ligase (Trl1) and a putative baculovirus RNA ligase. Rnl1 acts via a covalent enzyme-AMP intermediate generated by attack of Lys-99 N zeta on the alpha phosphorus of ATP. Mutation of Lys-99 abolishes ligase activity. Here we tested the effects of alanine mutations at 19 conserved positions in Rnl1 and thereby identified 9 new residues essential for ligase activity: Arg-54, Lys-75, Phe-77, Gly-102, Lys-119, Glu-227, Gly-228, Lys-240, and Lys-242. Seven of the essential residues are located within counterparts of conserved nucleotidyltransferase motifs I (99KEDG102), Ia (118SK119), IV (227EGYVA231), and V (238HFKIK242) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligase 2. Three other essential residues, Arg-54, Lys-75 and Phe-77, are located upstream of the AMP attachment site within a conserved domain unique to the Rnl1-like ligase family. We infer a shared evolutionary history and active site architecture in Rnl1 (a tRNA repair enzyme) and Trl1 (a tRNA splicing enzyme). We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of Rnl1 adenylylation (step 1) and phosphodiester bond formation (step 3). Lys-75, Lys-240, and Lys-242 were found to be essential for step 1 and overall ligation of 5'-phosphorylated RNA but not for phosphodiester bond formation. These results suggest that the composition of the Rnl1 active site is different during steps 1 and 3. Mutations at Arg-54 and Lys-119 abolished the overall RNA ligation reaction without affecting steps 1 and 3. Arg-54 and Lys-119 are thereby implicated as specific catalysts of the RNA adenylation reaction (step 2) of the ligation pathway.

  2. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+-dependent DNA ligase inhibitor

    PubMed Central

    Zhou, Xiaofeng; Cai, Guoqiang; He, Yi; Tong, Guotong

    2016-01-01

    Cordycepin exhibits various bio-activities, including anticancer, antibacterial, antiviral and immune regulation activities, and is a significant focus of research. However, the preparation of high-purity cordycepin remains challenging. Also, the molecular target with which cordycepin interacts to cause an antibacterial effect remains unknown. In the present study, cordycepin was prepared by preparative high-performance liquid chromatography (prep-HPLC) and the purity obtained was 99.6%, indicating that this technique may be useful for the large-scale isolation of cordycepin in the future. The results of computational molecular docking analysis indicated that the interaction energy between cordycepin and NAD+-dependent DNA ligase (LigA) was lower than that between cordycepin and other common antibacterial targets. The highly pure cordycepin obtained by prep-HPLC demonstrated inhibitory activity against LigA from various bacteria in vitro. In conclusion, cordycepin may be useful as a broad-spectrum antibiotic targeting LigA in various bacteria. PMID:27588098

  3. ct-DNA Binding and Antibacterial Activity of Octahedral Titanium (IV) Heteroleptic (Benzoylacetone and Hydroxamic Acids) Complexes

    PubMed Central

    Kaushal, Raj; Thakur, Sheetal; Nehra, Kiran

    2016-01-01

    Five structurally related titanium (IV) heteroleptic complexes, [TiCl2(bzac)(L1–4)] and [TiCl3(bzac)(HL5)]; bzac = benzoylacetonate; L1–5 = benzohydroximate (L1), salicylhydroximate (L2), acetohydroximate (L3), hydroxyurea (L4), and N-benzoyl-N-phenyl hydroxylamine (L5), were used for the assessment of their antibacterial activities against ten pathogenic bacterial strains. The titanium (IV) complexes (1–5) demonstrated significant level of antibacterial properties as measured using agar well diffusion method. UV-Vis absorption spectroscopic technique was applied, to get a better insight into the nature of binding between titanium (IV) complexes with calf thymus DNA (ct-DNA). On the basis of the results of UV-Vis absorption spectroscopy, the interaction between ct-DNA and the titanium (IV) complexes is likely to occur through the same mode. Results indicated that titanium (IV) complex can bind to calf thymus DNA (ct-DNA) via an intercalative mode. The intrinsic binding constant (Kb) was calculated by absorption spectra by using Benesi-Hildebrand equation. Further, Gibbs free energy was also calculated for all the complexes. PMID:27119022

  4. Dual targeting of DNA gyrase and topoisomerase IV: target interactions of heteroaryl isothiazolones in Staphylococcus aureus.

    PubMed

    Cheng, Jijun; Thanassi, Jane A; Thoma, Christy L; Bradbury, Barton J; Deshpande, Milind; Pucci, Michael J

    2007-07-01

    Heteroaryl isothiazolones (HITZs) are antibacterial agents that display excellent in vitro activity against Staphylococcus aureus. We recently identified a series of these compounds that show potent bactericidal activities against methicillin-resistant Staphylococcus aureus (MRSA). We report here the results of in vitro resistance studies that reveal potential underlying mechanisms of action. HITZs selected gyrA mutations exclusively in first-step mutants of wild-type S. aureus, indicating that in contrast to the case with most quinolones, DNA gyrase is the primary target. The compounds displayed low mutation frequencies (10(-9) to 10(-10)) at concentrations close to the MICs and maintained low MICs (< or =0.016 microg/ml) against mutants with single mutations in either gyrA or grlA (parC). These data suggested that HITZs possess significant inhibitory activities against target enzymes, DNA gyrase and topoisomerase IV. This dual-target inhibition was supported by low 50% inhibitory concentrations against topoisomerase IV as measured in a decatenation activity assay and against DNA gyrase as measured in a supercoiling activity assay. Good antibacterial activities (< or =1 microg/ml) against staphylococcal gyrA grlA double mutants, as well as low frequencies (10(-9) to 10(-10)) of selection of still higher-level mutants, also suggested that HITZs remained active against mutant enzymes. We further demonstrated that HITZs exhibit good inhibition of both S. aureus mutant enzymes and thus continue to possess a novel dual-targeting mode of action against these mutant strains. In stepwise acquisition of mutations, HITZs selected quinolone resistance determining region mutations gyrA(Ser84Leu), grlA(Ser80Phe), grlA(Ala116Val), and gyrA(Glu88Lys) sequentially, suggesting that the corresponding amino acids are key amino acids involved in the binding of HITZs to topoisomerases. The overall profile of these compounds suggests the potential utility of HITZs in combating

  5. Pharmacological evaluation of poly(3-methylthiophene) and its titanium(IV)phosphate nanocomposite: DNA interaction, molecular docking, and cytotoxic activity.

    PubMed

    Baig, Umair; Gondal, M A; Alam, Md Fazle; Wani, Waseem A; Younus, Hina

    2016-11-01

    Cancer and pathogenic microbial diseases have terribly affected human health over a longer period of time. In response to the increasing casualties due to cancer and microbial diseases, unique poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were prepared via in-situ oxidative chemical polymerization in this work. The poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were well characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. DNA binding studies by UV-Visible and fluorescence spectroscopic investigations indicated strong binding affinities of poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite; leading to structural damage of DNA. Poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed stronger interactions with DNA as compared to poly(3-methylthiophene) and from dye displacement assay it was confirmed that mode of binding of both the formulations was intercalative. The antimicrobial screening revealed that polymer and its composite displayed stronger antibacterial effects than ampicillin against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhimurium. Besides, the poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed dose dependent effects towards estrogen receptor positive breast cancer (MCF-7) and estrogen receptor negative breast cancer (MDA-MB-231) cell lines; with poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showing better activities against both cell lines. In all in-vitro biological investigations, poly(3-methylthiophene)-titanium(IV)phosphate composite showed superior properties to that of the pure poly(3-methylthiophene), which encouraged us to suggest its potential as future therapeutic gear in drug delivery and other allied fields.

  6. Types of Ubiquitin Ligases.

    PubMed

    Morreale, Francesca Ester; Walden, Helen

    2016-03-24

    Ubiquitination is a post-translational modification of proteins involved in a variety of cellular processes. Ubiquitination requires the sequential action of three enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin ligases). This SnapShot highlights the main types of E3 ubiquitin ligases, which can be classified in three families depending on the presence of characteristic domains and on the mechanism of ubiquitin transfer to the substrate protein.

  7. Development of a ligase detection reaction/CGE method using a LIF dual-channel detection system for direct identification of allelic composition of mutated DNA in a mixed population of excess wild-type DNA.

    PubMed

    Hamada, Mariko; Shimase, Koji; Noda, Keiichi; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-05-01

    We developed an inexpensive LIF dual-channel detection system and applied it to a ligase detection reaction (LDR)/CGE method to identify the allelic composition of low-abundance point mutations in a large excess of wild-type DNA in a single reaction with a high degree of certainty. Ligation was performed in a tube with a nonlabeled common primer and multiplex discriminating primers, each labeled with a different standard fluorophore. The discriminating primers were directed against three mutant variations in codon 12 of the K-ras oncogene that have a high diagnostic value for colorectal cancer. LDR products generated from a particular K-ras mutation through successful ligation events were separated from remaining discriminating primers by CGE, followed by LIF detection using the new system, which consists of two photomultiplier tubes, each with a unique optical filter. Each fluorophore label conjugated to the corresponding LDR product produced a distinct fluorescence signal intensity ratio from the two detection channels, allowing spectral discrimination of the three labels. The ability of this system to detect point mutations in a wild-type sequence-dominated population, and to disclose their allelic composition, was thus demonstrated successfully.

  8. Synthesis and properties of new DNA cleavage agents based on oxoruthenium(IV)

    SciTech Connect

    Gupta, N.; Grover, N.; Neyhart, G.A.; Singh, P.; Thorp, H.H. )

    1993-02-03

    New aquaruthenium(II) reagents that are capable of being oxidized to hydrooxoruthenium(III) and oxoruthenium(IV) have been prepared. Complexes based on Ru(tpy)(L)OH[sub 2][sup 2+] (L = [eta][sup 2]-tpt, phen, dppz, tmen; tpy = 2,2[prime]:6[prime],2[double prime]-terpyridine, tpt = 2,4,6-tripyridyltriazine, phen = 1,10-phenanthroline, dppz = dipyridophenazine, and tmen = N,N,N[prime],N[prime]-tetramethylethylenediamine) have been prepared and can all be reversibly oxidized to their Ru[sup IV]O forms, which are component DNA cleavage agents, as in Ru(phen)[sub 2](py)O[sup 2+]. In addition to Ru(tpy)([eta][sup 2]-tpt)OH[sub 2][sup 2+], the [eta][sup 3] complex of tpt, Ru(tpy)([eta][sup 3]-tpt)[sup 2+], can also be prepared under similar conditions. In the presence of Ag[sup +] ion, a novel Ru[sub 2]Ag complex can be isolated and has been crystallographically characterized. The complex [Ru(tpy)([eta][sup 3]-tpt)](ClO[sub 4])[sub 2][center dot]0.5AgClO[sub 4][center dot]0.5H[sub 2]O crystallizes in the monoclinic space group A2/A with a = 14.723 (5) [Angstrom], b = 26.061 (6) [Angstrom], c = 22.148 (6) [Angstrom], [beta] = 106.33 (3)[degrees], V = 8155 (5) [Angstrom][sup 3], Z = 4, R = 0.0807, and R[sub w] = 0.1156 for 2,923 reflections with I [ge] 2[sigma](I). The Ru(tpy)OH[sub 2][sup 2+] unit can also be attached to the tmen-AO[sup +] ligand, where a N,N[prime],N[prime]-trimethylethylenediamine function is appended via a (CH[sub 2])[sub 6] linker to the acridine orange intercalator. The Ru(tpy)(tmen-AO)OH[sub 2][sup 3+] complex is an effective cleavage agent, but only when oxidation is performed on the complex prebound to DNA. In homogeneous solution, electrochemically reversible access of only the Ru[sup III]OH form is possible, probably because of oxidation of the polymethylene linker. 25 refs., 11 figs., 9 tabs.

  9. Sequence studies on mouse L-cell satellite DNA by base-specific degradation with T4 endonuclease IV.

    PubMed

    Harbers, K; Spencer, J H

    1978-10-24

    The base sequence of mouse L-cell satellite DNA was investigated by degradation of the two separated complementary strands with the base specific enzyme, T4 endonuclease IV. Digestion of the heavy strand DNA released a limited number of oligonucleotides which were separated by ionophoresis/homochromatography, isolated, and sequenced by the 'wandering spot' method. The light strand DNA was resistant to digestion with T4 endonuclease IV and no detectable amounts of oligonucleotides were released. The oligonucleotides obtained from the heavy strand were related in sequence, indicating that mouse satellite DNA derived from a short tandemly repeated sequence. The sequence of part of the original repeat unit is proposed to be C-A-T-T-T-T-T-C. Five major oligonucleotides were identified, all of which differ from the proposed original sequence by single base changes. The five major oligonucleotides occur with about equal frequency and together comprise approximately 50% of the oligonucleotides released by T4 endonuclease IV from the heavy strand DNA. In addition to the five major oligonucleotides, several oligonucleotides were found to occur in lesser amounts. Since these oligonucleotides are related to the major oligonucleotides, it is likely that they have arisen from them by mutation.

  10. Non-histone chromosomal proteins HMG1 and 2 enhance ligation reaction of DNA double-strand breaks.

    PubMed

    Nagaki, S; Yamamoto, M; Yumoto, Y; Shirakawa, H; Yoshida, M; Teraoka, H

    1998-05-08

    DNA ligase IV in a complex with XRCC4 is responsible for DNA end-joining in repair of DNA double-strand breaks (DSB) and V(D)J recombination. We found that non-histone chromosomal high mobility group (HMG) proteins 1 and 2 enhanced the ligation of linearized pUC119 DNA with DNA ligase IV from rat liver nuclear extract. Intra-molecular and inter-molecular ligations of cohesive-ended and blunt-ended DNA were markedly stimulated by HMG1 and 2. Recombinant HMG2-domain A, B, and (A + B) polypeptides were similarly, but non-identically, effective for the stimulation of DSB ligation reaction. Ligation of single-strand breaks (nicks) was only slightly activated by the HMG proteins. The DNA end-binding Ku protein singly or in combination with the catalytic component of DNA-dependent protein kinase (DNA-PK) as the DNA-PK holoenzyme was ineffective for the ligation of linearized pUC119 DNA. Although the stimulatory effect of HMG1 and 2 on ligation of DSB in vitro was not specific to DNA ligase IV, these results suggest that HMG1 and 2 are involved in the final ligation step in DNA end-joining processes of DSB repair and V(D)J recombination.

  11. Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences

    PubMed Central

    Crespan, Emmanuele; Czabany, Tibor; Maga, Giovanni; Hübscher, Ulrich

    2012-01-01

    ‘Classical’ non-homologous end joining (NHEJ), dependent on the Ku70/80 and the DNA ligase IV/XRCC4 complexes, is essential for the repair of DNA double-strand breaks. Eukaryotic cells possess also an alternative microhomology-mediated end-joining (MMEJ) mechanism, which is independent from Ku and DNA ligase 4/XRCC4. The components of the MMEJ machinery are still largely unknown. Family X DNA polymerases (pols) are involved in the classical NHEJ pathway. We have compared in this work, the ability of human family X DNA pols β, λ and μ, to promote the MMEJ of different model templates with terminal microhomology regions. Our results reveal that DNA pol λ and DNA ligase I are sufficient to promote efficient MMEJ repair of broken DNA ends in vitro, and this in the absence of auxiliary factors. However, DNA pol β, not λ, was more efficient in promoting MMEJ of DNA ends containing the (CAG)n triplet repeat sequence of the human Huntingtin gene, leading to triplet expansion. The checkpoint complex Rad9/Hus1/Rad1 promoted end joining by DNA pol λ on non-repetitive sequences, while it limited triplet expansion by DNA pol β. We propose a possible novel role of DNA pol β in MMEJ, promoting (CAG)n triplet repeats instability. PMID:22373917

  12. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    SciTech Connect

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin; Stone, Michael P.

    2012-07-18

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternary (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves stacking of the AFB{sub 1

  13. Exploration of DNA binding mode, chemical nuclease, cytotoxic and apoptotic potentials of diketone based oxovanadium(IV) complexes.

    PubMed

    Inamdar, Poonam Rajiv; Sheela, Angappan

    2015-05-01

    Two diketone based oxovanadium complexes, viz., bis(4,4,4-trifluoro-1-phenylbutane-1,3-dionato)oxovanadium(IV) (1) and bis(1,1,1-trifluoropentane-2,4-dionato)oxovanadium(IV) (2), have been synthesized and characterized by spectroscopic and analytical techniques. The DNA binding and the cleaving ability of the complexes is assessed by UV-vis spectroscopy, fluorescence spectroscopy, viscometry and gel electrophoretic studies. The DNA binding constant values (Kb) are found to be 1.95 ± 0.16 × 10(3)M(-1) for complex 1 and 1.064 ± 0.17 × 10(3)M(-1) for complex 2, respectively. Based on the results of the spectral and viscosity studies, it is observed that the complexes, interestingly, have preferred minor groove binding with DNA. Further, the concentration-dependent oxidative cleavage pattern of pBR322 in the presence of the activating reagent, hydrogen peroxide, has also been discussed. In addition, the complexes have shown moderate cytotoxic activity by inducing apoptosis against the cervical cancer cell line, HeLa. The results of in silico analysis and logP predictions are found to be in good agreement with the experimental observations. Thus, synthesized oxovanadium complexes have displayed promising DNA binding behavior and DNA cleavage activity with moderately cytotoxic nature.

  14. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg2+ to the second metal binding site

    PubMed Central

    Oppegard, Lisa M.; Schwanz, Heidi A.; Towle, Tyrell R.; Kerns, Robert J.; Hiasa, Hiroshi

    2016-01-01

    Background Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. Methods We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg2+-, Mn2+-, or Ca2+-supported DNA cleavage activity of Esherichia coli Topo IV. Results In the absence of any drug, 20–30 mM Mg2+ was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1 mM of either Mn2+ or Ca2+ was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg2+ concentrations where Topo IV alone could not efficiently cleave DNA. Conclusions and General Significance At low Mg2+ concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg2+ binding to metal binding site B through the structural distortion in DNA. As Mg2+ concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg2+ at site B or inhibition the binding of Mg2+ to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg2+ binding. PMID:26723176

  15. The conserved Fanconi anemia nuclease Fan1 and the SUMO E3 ligase Pli1 act in two novel Pso2-independent pathways of DNA interstrand crosslink repair in yeast

    PubMed Central

    Fontebasso, Y.; Etheridge, T.J.; Oliver, A.W.; Murray, J.M.; Carr, A.M.

    2013-01-01

    DNA interstrand cross-links (ICLs) represent a physical barrier to the progression of cellular machinery involved in DNA metabolism. Thus, this type of adduct represents a serious threat to genomic stability and as such, several DNA repair pathways have evolved in both higher and lower eukaryotes to identify this type of damage and restore the integrity of the genetic material. Human cells possess a specialized ICL-repair system, the Fanconi anemia (FA) pathway. Conversely yeasts rely on the concerted action of several DNA repair systems. Recent work in higher eukaryotes identified and characterized a novel conserved FA component, FAN1 (Fanconi anemia-associated nuclease 1, or FANCD2/FANCI-associated nuclease 1). In this study, we characterize Fan1 in the yeast Schizosaccharomyces pombe. Using standard genetics, we demonstrate that Fan1 is a key component of a previously unidentified ICL-resolution pathway. Using high-throughput synthetic genetic arrays, we also demonstrate the existence of a third pathway of ICL repair, dependent on the SUMO E3 ligase Pli1. Finally, using sequence-threaded homology models, we predict and validate key residues essential for Fan1 activity in ICL repair. PMID:24192486

  16. Two divergent members of a tobacco 4-coumarate:coenzyme A ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins.

    PubMed Central

    Lee, D; Douglas, C J

    1996-01-01

    Several cDNA clones encoding 4-coumarate:coenzyme A ligase (4CL) were isolated from a tobacco (Nicotiana tabacum) cDNA library and grouped into two classes. Sequencing of one cDNA from each class showed that the clones were similar to other 4CL genes and about 80% identical with each other. Genomic Southern blots using DNA from Nicotiana sylvestris, Nicotiana tomentosiformis, and N. tabacum demonstrated the presence of both classes of 4CL sequences (4CL1 and 4CL2) in the progenitor species and in tobacco. Northern blots indicated that 4CL mRNA transcripts are highest in old stems and higher in the unpigmented corolla tubes than in the pigmented limbs of tobacco flowers. The 4CL genes are developmentally regulated and are wound and methyl jasmonate inducible. The relative abilities of recombinant 4CL1 and 4CL2 proteins to utilize 4-coumarate, ferulate, and caffeate as substrates were similar and comparable with that of 4CL in tobacco stem extracts. Surprisingly, both recombinant 4CL proteins utilized cinnamate as a substrate, an activity not observed in stem extracts. This activity was inhibited by a heat-labile, high-molecular-weight factor found in tobacco stem extracts, suggesting that the substrate specificity of 4CL is, in part, determined by the activity of proteinaceous cellular components. PMID:8819324

  17. Active site of the mRNA-capping enzyme guanylyltransferase from Saccharomyces cerevisiae: similarity to the nucleotidyl attachment motif of DNA and RNA ligases.

    PubMed Central

    Fresco, L D; Buratowski, S

    1994-01-01

    Nascent mRNA chains are capped at the 5' end by the addition of a guanylyl residue to form a G(5')ppp(5')N ... structure. During the capping reaction, the guanylyltransferase (GTP:mRNA guanylyltransferase, EC 2.7.7.50) is reversibly and covalently guanylylated. In this enzyme-GMP (E-GMP) intermediate, GMP is linked to the epsilon-amino group of a lysine residue via a phosphoamide bond. Lys-70 was identified as the GMP attachment site of the Saccharomyces cerevisiae guanylyltransferase (encoded by the CEG1 gene) by guanylylpeptide sequencing. CEG1 genes with substitutions at Lys-70 were unable to support viability in yeast and produced proteins that were not guanylylated in vitro. The CEG1 active site exhibits sequence similarity to the active sites of viral guanylyltransferases and polynucleotide ligases, suggesting similarity in the mechanisms of nucleotidyl transfer catalyzed by these enzymes. Images PMID:8022828

  18. Restoration of ligase activity in E. coli K12 lig ts7 strain by bacteriophage Mu and cloning of a DNA fragment harbouring the Mu 'lig' gene.

    PubMed Central

    Ghelardini, P; Paolozzi, L; Liebart, J C

    1980-01-01

    Restoration of ligase activity has been observed in E. coli K12 ligts7 strain lysogenic for Mu, in presence as well in absence of lysogenic immunity. This restoration consist in phenotypic reversal of temperature sensitivity of E. coli ligts7 which also regain the ability to sustain the complete growth cycle of T4 lig-phages. It is possible to put under the control of the gal operon the expression of the viral gene responsible for the restoration effect. This new gene of Mu has been named 'lig'. A 5 kb fragment responsible for the reported effects and localized between genes gam and lys of Mu genome has been cloned in pBR322. This recombinant plasmid used for transforming ligts7 strain restores in it normal behaviour for ligation of Okazaki pieces. PMID:6449688

  19. Contribution of mutations in DNA gyrase and topoisomerase IV genes to ciprofloxacin resistance in Escherichia coli clinical isolates.

    PubMed

    Bansal, Sandhya; Tandon, Vibha

    2011-03-01

    DNA gyrase (GyrA and GyrB) and topoisomerase IV (ParC and ParE) are the two essential type II topoisomerases in Escherichia coli. These enzymes act via inhibition of DNA replication. Mutations in the quinolone resistance-determining region (QRDR) of the gyrA, gyrB, parC and parE genes from clinical isolates of E. coli were determined by DNA sequencing of 54 ciprofloxacin-resistant clinical isolates from a hospital in Delhi, India. The majority of the E. coli isolates were shown to carry mutations in gyrA, parC and parE. Ciprofloxacin resistance due to accumulation of such a high number of mutations in the QRDR regions of gyrA at positions Ser83 and Asp87 and parC at position Ser80 as well as outside of the QRDR region of parE at Ser458 and Glu460 confers high-level resistance of ciprofloxacin in clinical isolates. The high frequency of occurrence of mutations in the parE gene (44.4% strains) is alarming, as topoisomerase IV is a secondary target of quinolones.

  20. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases.

    PubMed

    Kasparkova, Jana; Kostrhunova, Hana; Novakova, Olga; Křikavová, Radka; Vančo, Ján; Trávníček, Zdeněk; Brabec, Viktor

    2015-11-23

    We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl-bis-hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a Pt(IV) pro-drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy.

  1. Discovery of a novel azaindole class of antibacterial agents targeting the ATPase domains of DNA gyrase and Topoisomerase IV.

    PubMed

    Manchester, John I; Dussault, Daemian D; Rose, Jonathan A; Boriack-Sjodin, P Ann; Uria-Nickelsen, Maria; Ioannidis, Georgine; Bist, Shanta; Fleming, Paul; Hull, Kenneth G

    2012-08-01

    We present the discovery and optimization of a novel series of bacterial topoisomerase inhibitors. Starting from a virtual screening hit, activity was optimized through a combination of structure-based design and physical property optimization. Synthesis of fewer than a dozen compounds was required to achieve inhibition of the growth of methicillin-resistant Staphyloccus aureus (MRSA) at compound concentrations of 1.56 μM. These compounds simultaneously inhibit DNA gyrase and Topoisomerase IV at similar nanomolar concentrations, reducing the likelihood of the spontaneous occurrence of target-based mutations resulting in antibiotic resistance, an increasing threat in the treatment of serious infections.

  2. A comprehensive package for DNA sequence analysis in FORTRAN IV for the PDP-11.

    PubMed Central

    Arnold, J; Eckenrode, V K; Lemke, K; Phillips, G J; Schaeffer, S W

    1986-01-01

    A computer package written in Fortran-IV for the PDP-11 minicomputer is described. The package's novel features are: software for voice-entry of sequence data; a less memory intensive algorithm for optimal sequence alignment; and programs that fit statistical models to nucleic acid and protein sequences. PMID:3003673

  3. Chiral manganese (IV) complexes derived from Schiff base ligands: Synthesis, characterization, in vitro cytotoxicity and DNA/BSA interaction.

    PubMed

    Li, Zhen; Niu, Meiju; Chang, Guoliang; Zhao, Changqiu

    2015-12-01

    Two new couples of chiral manganese (IV) complexes with Schiff-base ligands, Λ-[Mn(R-L(1))2]·2(CH3OH) (Λ-1) and Δ-[Mn(S-L(1))2]·2(CH3OH) (Δ-1), Λ-[Mn(R-L(2))2]·(H2O)2 (Λ-2) and Δ-[Mn(S-L(2))2]·(H2O)2 (Δ-2), {H2L(1)=(R/S)-(±)-1-[(1-hydroxymethyl-propylimino)-methyl]-naphthalen-2-ol, H2L(2)=(R/S)-(±)-1-[(1-Hydroxymethyl-2-phenyl-ethylimino)-methyl]-naphthalen-2-ol} have been synthesized, and fully characterized by elemental analyses, UV-Vis spectrum, circular dichroism spectrum, FT-IR spectrum, mass spectrum, and single crystal X-ray diffraction (SXRD). The interaction of the four chiral Mn (IV) complexes with CT-DNA and BSA were also investigated by various spectroscopic techniques (UV-visible, fluorescence spectroscopic). The results show that the Δ-complexes exhibit more efficient CT-DNA interaction with respect to the Λ-complexes. All the complexes could quench the intrinsic fluorescence of BSA by a static quenching process. In addition, the vitro cytotoxicity of these complexes toward four kinds of cancerous cell lines (A549, HeLa, HL-60, and Caco-2) was assayed by the MTT method, which exhibited to be selectively active against certain cell lines.

  4. Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel DNA adducts.

    PubMed

    Zhao, Yao; Woods, Julie A; Farrer, Nicola J; Robinson, Kim S; Pracharova, Jitka; Kasparkova, Jana; Novakova, Olga; Li, Huilin; Salassa, Luca; Pizarro, Ana M; Clarkson, Guy J; Song, Lijiang; Brabec, Viktor; Sadler, Peter J

    2013-07-15

    Platinum diam(m)ine complexes, such as cisplatin, are successful anticancer drugs, but suffer from problems of resistance and side-effects. Photoactivatable Pt(IV) prodrugs offer the potential of targeted drug release and new mechanisms of action. We report the synthesis, X-ray crystallographic and spectroscopic properties of photoactivatable diazido complexes trans,trans,trans-[Pt(N3)2(OH)2(MA)(Py)] (1; MA=methylamine, Py=pyridine) and trans,trans,trans-[Pt(N3)2(OH)2(MA)(Tz)] (2; Tz=thiazole), and interpret their photophysical properties by TD-DFT modelling. The orientation of the azido groups is highly dependent on H bonding and crystal packing, as shown by polymorphs 1p and 1q. Complexes 1 and 2 are stable in the dark towards hydrolysis and glutathione reduction, but undergo rapid photoreduction with UVA or blue light with minimal amine photodissociation. They are over an order of magnitude more potent towards HaCaT keratinocytes, A2780 ovarian, and OE19 oesophageal carcinoma cells than cisplatin and show particular potency towards cisplatin-resistant human ovarian cancer cells (A2780cis). Analysis of binding to calf-thymus (CT), plasmids, oligonucleotide DNA and individual nucleotides reveals that photoactivated 1 and 2 form both mono- and bifunctional DNA lesions, with preference for G and C, similar to transplatin, but with significantly larger unwinding angles and a higher percentage of interstrand cross-links, with evidence for DNA strand cross-linking further supported by a comet assay. DNA lesions of 1 and 2 on a 50 bp duplex were not recognised by HMGB1 protein, in contrast to cisplatin-type lesions. The photo-induced platination reactions of DNA by 1 and 2 show similarities with the products of the dark reactions of the Pt(II) compounds trans-[PtCl2(MA)(Py)] (5) and trans-[PtCl2(MA)(Tz)] (6). Following photoactivation, complex 2 reacted most rapidly with CT DNA, followed by 1, whereas the dark reactions of 5 and 6 with DNA were comparatively slow

  5. Ubiquitin Protein Ligase Ring2 Is Involved in S-phase Checkpoint and DNA Damage in Cells Exposed to Benzo[a]pyrene.

    PubMed

    Yang, Jin; Chen, Wentao; Fan, Yanfeng; Zhang, Huitao; Wang, Wubin; Zhang, Hongjie

    2016-10-01

    Previous studies in our laboratory demonstrated that Ring2 may affect DNA damage and repair through pathways other than through regulating the expression of the nucleotide excision repair protein. In a series of experiments using wild-type cell (16HBE and WI38) and small interfering RNA (siRNA) Ring2 cells exposed to benzo[a]pyrene (BaP), we evaluated the cell cycle and DNA damage. The benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE-DNA) adduct assay demonstrated that in vitro exposure to BaP increased DNA damage in a time- and dose-dependent manner in wild-type and siRNA Ring2 cells. Analysis of covariance showed that a decrease of Ring2 caused DNA hypersensitivity to BaP. Flow cytometry results and proliferating cell nuclear antigen levels indicated that inhibition of Ring2 attenuated the effect of BaP on S-phase arrest. Taken together, these data implied that the lower proportion of cells in the S phase induced by inhibition of Ring2 may play an important role in DNA hypersensitivity to BaP.

  6. Suppression of Recj Exonuclease Mutants of Escherichia Coli by Alterations in DNA Helicases II (Uvrd) and IV (Held)

    PubMed Central

    Lovett, S. T.; Sutera-Jr., V. A.

    1995-01-01

    The recJ gene encodes a single-strand DNA-specific exonuclease involved in homologous recombination. We have isolated a pseudorevertant strain in which recJ mutant phenotypes were alleviated. Suppression of recJ was due to at least three mutations, two of which we have identified as alterations in DNA helicase genes. A recessive amber mutation, ``uvrD517(am),'' at codon 503 of the gene encoding helicase II was sufficient to suppress recJ partially. The uvrD517(am) mutation does not eliminate uvrD function because it affects UV survival only weakly; moreover, a uvrD insertion mutation could not replace uvrD517(am) as a suppressor. However, suppression may result from differential loss of uvrD function: mutation rate in a uvrD517(am) derivative was greatly elevated, equal to that in a uvrD insertion mutant. The second cosuppressor mutation is an allele of the helD gene, encoding DNA helicase IV, and could be replaced by insertion mutations in helD. The identity of the third cosuppressor ``srjD'' is not known. Strains carrying the three cosuppressor mutations exhibited hyperrecombinational phenotypes including elevated excision of repeated sequences. To explain recJ suppression, we propose that loss of antirecombinational helicase activity by the suppressor mutations stabilizes recombinational intermediates formed in the absence of recJ. PMID:7635292

  7. DNA binding, antitumor activities, and hydroxyl radical scavenging properties of novel oxovanadium (IV) complexes with substituted isoniazid.

    PubMed

    Liao, Xiangwen; Lu, Jiazheng; Ying, Peng; Zhao, Ping; Bai, Yinliang; Li, Wengjie; Liu, Mingpei

    2013-12-01

    Four novel oxovanadium(IV) complexes—[VO(PAHN)(phen)] (1; PAHN is 4-pyridinecarboxylic acid, 2-[(2-hydroxy)-1-naphthalenylene] hydrazide, phen is 1,10-phenanthroline), [VO(PAHN)(bpy)] (2; bpy is 2,2′-bipyridine), [VO(PAH)(phen)] (3; PAH is 4-pyridinecarboxylic acid, 2-[(2-hydroxy)-1-phenyl]methylene hydrazide), and [VO(PAH)(bpy)] (4)—have been synthesized and characterized by elemental analysis, UV–vis spectroscopy, electrospray ionization mass spectrometry, IR spectroscopy, 1H-NMR spectroscopy, and 13C-NMR spectroscopy. Their interactions with calf thymus DNA were investigated. The results suggest that these complexes bind to DNA in an intercalative mode. All four complexes exhibited highly cytotoxic activity against tumor cells (SH-SY5Y, MCF-7, and SK-N-SH), with 50 % inhibitory concentrations of the same order of magnitude as for cisplatin or of lower order of magnitude. Complex 1 exhibited the highest interaction ability and was found to be the most potent antitumor agent among the four complexes. It can cause G2/M phase arrest of the cell cycle, induces significant apoptosis in SK-N-SH cells, and displays typical morphological apoptotic characteristics. In addition, their hydroxyl radical scavenging properties have been tested, and complex 1 was the best inhibitor.

  8. MutS regulates access of the error-prone DNA polymerase Pol IV to replication sites: a novel mechanism for maintaining replication fidelity

    PubMed Central

    Margara, Lucía M.; Fernández, Marisa M.; Malchiodi, Emilio L.; Argaraña, Carlos E.; Monti, Mariela R.

    2016-01-01

    Translesion DNA polymerases (Pol) function in the bypass of template lesions to relieve stalled replication forks but also display potentially deleterious mutagenic phenotypes that contribute to antibiotic resistance in bacteria and lead to human disease. Effective activity of these enzymes requires association with ring-shaped processivity factors, which dictate their access to sites of DNA synthesis. Here, we show for the first time that the mismatch repair protein MutS plays a role in regulating access of the conserved Y-family Pol IV to replication sites. Our biochemical data reveals that MutS inhibits the interaction of Pol IV with the β clamp processivity factor by competing for binding to the ring. Moreover, the MutS–β clamp association is critical for controlling Pol IV mutagenic replication under normal growth conditions. Thus, our findings reveal important insights into a non-canonical function of MutS in the regulation of a replication activity. PMID:27257069

  9. Crystallization and preliminary X-ray diffraction analysis of two N-terminal fragments of the DNA-cleavage domain of topoisomerase IV from Staphylococcus aureus

    SciTech Connect

    Carr, Stephen B.; Makris, George; Phillips, Simon E. V.; Thomas, Christopher D.

    2006-11-01

    The crystallization and data collection of topoisomerase IV from S. aureus is described. Phasing by molecular replacement proved difficult owing to the presence of translational NCS and strategies used to overcome this are discussed. DNA topoisomerase IV removes undesirable topological features from DNA molecules in order to help maintain chromosome stability. Two constructs of 56 and 59 kDa spanning the DNA-cleavage domain of the A subunit of topoisomerase IV from Staphylococcus aureus (termed GrlA56 and GrlA59) have been crystallized. Crystals were grown at 291 K using the sitting-drop vapour-diffusion technique with PEG 3350 as a precipitant. Preliminary X-ray analysis revealed that GrlA56 crystals belong to space group P2{sub 1}, diffract to a resolution of 2.9 Å and possess unit-cell parameters a = 83.6, b = 171.5, c = 87.8 Å, β = 90.1°, while crystals of GrlA59 belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 41.5, b = 171.89, c = 87.9 Å. These crystals diffract to a resolution of 2.8 Å. This is the first report of the crystallization and preliminary X-ray analysis of the DNA-cleavage domain of a topoisomerase IV from a Gram-positive organism.

  10. Overview of the membrane-associated RING-CH (MARCH) E3 ligase family.

    PubMed

    Bauer, Johannes; Bakke, Oddmund; Morth, J Preben

    2016-12-14

    E3 ligases are critical checkpoints for protein ubiquitination, a signal that often results in protein sorting and degradation but has also been linked to regulation of transcription and DNA repair. In line with their key role in cellular trafficking and cell-cycle control, malfunction of E3 ligases is often linked to human disease. Thus, they have emerged as prime drug targets. However, the molecular basis of action of membrane-bound E3 ligases is still unknown. Here, we review the current knowledge on the membrane-embedded MARCH E3 ligases (MARCH-1-6,7,8,11) with a focus on how the transmembrane regions can contribute via GxxxG-motifs to the selection and recognition of other membrane proteins as substrates for ubiquitination. Further understanding of the molecular parameters that govern target protein recognition of MARCH E3 ligases will contribute to development of strategies for therapeutic regulation of MARCH-induced ubiquitination.

  11. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer

    PubMed Central

    Nacerddine, Karim; Beaudry, Jean-Bernard; Ginjala, Vasudeva; Westerman, Bart; Mattiroli, Francesca; Song, Ji-Ying; van der Poel, Henk; Ponz, Olga Balagué; Pritchard, Colin; Cornelissen-Steijger, Paulien; Zevenhoven, John; Tanger, Ellen; Sixma, Titia K.; Ganesan, Shridar; van Lohuizen, Maarten

    2012-01-01

    Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis. PMID:22505453

  12. Circulating Tumor DNA in Predicting Outcomes in Patients With Stage IV Head and Neck Cancer or Stage III-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2016-10-19

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  13. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions.

    PubMed

    Tadi, Satish Kumar; Sebastian, Robin; Dahal, Sumedha; Babu, Ravi K; Choudhary, Bibha; Raghavan, Sathees C

    2016-01-15

    Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.

  14. Sensitive and specific miRNA detection method using SplintR Ligase

    PubMed Central

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M.; Posfai, Janos; McReynolds, Larry A.

    2016-01-01

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR® Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4–6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  15. Molecular Biology of STLV-III and HTLV-IV

    DTIC Science & Technology

    1990-08-22

    gel bands, pooled, and sedimented. The DNA pellet was resuspended in a lOp1 reaction volume containing T4 DNA ligase . Ligations were incubated...this procedure, all enzymes were from New England Biolabs, approximately 5u. of each restriction enzyme and approximately 3 Weiss u. of T4 DNA ligase were...volume 2-propanol. The fragments were re-ligated using T4 DNA ligase , in a 200pl reaction volume containing 15% PEG-8000, for 0.5-2hr at room temperature

  16. SCF ubiquitin ligase targeted therapies

    PubMed Central

    Skaar, Jeffrey R.; Pagan, Julia K.; Pagano, Michele

    2015-01-01

    Summary The recent clinical successes of inhibitors of the proteasome for the treatment of cancer have highlighted the therapeutic potential of this protein degradation system. Proteasome inhibitors prevent the degradation of numerous proteins, so increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a large number of processes at the cellular and organismal levels, and their misregulation is implicated in many pathologies. SCF ligases are characterized by a high specificity for their substrates, so they represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This review will explore and discuss potential strategies to target SCF-mediated biology to treat human diseases. PMID:25394868

  17. Crystallization and preliminary X-ray diffraction analysis of two N-terminal fragments of the DNA-cleavage domain of topoisomerase IV from Staphylococcus aureus.

    PubMed

    Carr, Stephen B; Makris, George; Phillips, Simon E V; Thomas, Christopher D

    2006-11-01

    DNA topoisomerase IV removes undesirable topological features from DNA molecules in order to help maintain chromosome stability. Two constructs of 56 and 59 kDa spanning the DNA-cleavage domain of the A subunit of topoisomerase IV from Staphylococcus aureus (termed GrlA56 and GrlA59) have been crystallized. Crystals were grown at 291 K using the sitting-drop vapour-diffusion technique with PEG 3350 as a precipitant. Preliminary X-ray analysis revealed that GrlA56 crystals belong to space group P2(1), diffract to a resolution of 2.9 A and possess unit-cell parameters a = 83.6, b = 171.5, c = 87.8 A, beta = 90.1 degrees, while crystals of GrlA59 belong to space group P2(1)2(1)2, with unit-cell parameters a = 41.5, b = 171.89, c = 87.9 A. These crystals diffract to a resolution of 2.8 A. This is the first report of the crystallization and preliminary X-ray analysis of the DNA-cleavage domain of a topoisomerase IV from a Gram-positive organism.

  18. Role of deoxyribonucleic acid ligase in a doxyribonucleic acid membrane fraction extracted from pneumococci.

    PubMed Central

    Greene, M; Firshein, W

    1976-01-01

    Deoxyribonucleic acid (DNA) ligase has been detected in a DNA membrane fraction extracted from Pneumococcus. The specific activity of the enzyme in this fraction is 10-fold greater than in the remaining cell extract. It remains firmly bound (with other enzymes) to the complex after a purification procedure in which a considerable percentage of the macromolecules are dissociated. The ligase acts in two ways in the DNA membrane fraction in vitro. One, it catalyzes the linkage of small-molecular-weight pieces of newly synthesized DNA into heavier-molecular-weight DNA strands as shown by others (M Gellert, 1976; R. Okazaki, A. Sugino, S. Hirose, T. Okazaki, Y. Imae, R. Kainuma-Kuroda, T. Ogawa, M. Arisawa, and Y. Kurosowa, 1973; B. Olivera and I. Lehman, 14; and A. Sugino, S. Hirose, and R. Okazaki, 1972) and, two, it protects DNA from degradation by deoxyribonucleases. This latter effect is due to a competition between the ability of the nucleases to degrade DNA and the ability of DNA ligase to seal the nicks produced by these degradative enzymes. The ligase acts cooperatively with other enzymes in the DNA membrane fraction to synthesize DNA. PMID:4433

  19. Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency*

    PubMed Central

    Chang, Howard H. Y.; Watanabe, Go; Gerodimos, Christina A.; Ochi, Takashi; Blundell, Tom L.; Jackson, Stephen P.; Lieber, Michael R.

    2016-01-01

    The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (paralog of XRCC4 and XLF). In vivo studies have demonstrated the degrees of importance of these NHEJ proteins in the mechanism of repair of dsDNA breaks, but interpretations can be confounded by other cellular processes. In vitro studies with NHEJ proteins have been performed to evaluate the nucleolytic resection, polymerization, and ligation steps, but a complete system has been elusive. Here we have developed a NHEJ reconstitution system that includes the nuclease, polymerase, and ligase components to evaluate relative NHEJ efficiency and analyze ligated junctional sequences for various types of DNA ends, including blunt, 5′ overhangs, and 3′ overhangs. We find that different dsDNA end structures have differential dependence on these enzymatic components. The dependence of some end joining on only Ku and XRCC4·DNA ligase IV allows us to formulate a physical model that incorporates nuclease and polymerase components as needed. PMID:27703001

  20. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge.

    PubMed

    Lu, Yu-Chun; Li, Min-Chen; Chen, Yi-Min; Chu, Chun-Yen; Lin, Shuen-Fuh; Yang, Wen-Jen

    2011-10-13

    Actinobacillus pleuropneumoniae is a gram-negative bacterial pathogen that causes swine pleuropneumonia, a highly contagious and often fatal disease that occurs worldwide. Our previous study showed that DNA vaccines encoding Apx exotoxin structural proteins ApxIA and/or ApxIIA, are a promising novel approach for immunization against the lethal challenge of A. pleuropneumoniae serotype 1. Vaccination against A. pleuropneumoniae is impeded by the lack of vaccines inducing reliable cross-serotype protection. Type IV fimbrial protein ApfA has been shown to be present and highly conserved in various serotypes of A. pleuropneumoniae. A novel DNA vaccine encoding ApfA (pcDNA-apfA) was constructed to evaluate the protective efficacy against infection with A. pleuropneumoniae serotype 2. A significant antibody response against pilin was generated following pcDNA-apfA immunization, suggesting that it was expressed in vivo. The IgG subclass (IgG1 and IgG2a) analysis indicates that the pcDNA-apfA vaccine induces both Th1 and Th2 immune responses. The IgA analysis shows that mucosal immunity could be enhanced by this DNA vaccine. Nevertheless, the strong antibody response induced by pcDNA-apfA vaccine only provided limited 30% protective efficacy against the serotype 2 challenge. These results in this study do not coincide with that the utility of type IV pilin is a good vaccine candidate against other infectious pathogens. It indicates that pilin should play a limited role in the development of a vaccine against A. pleuropneumoniae infection.

  1. Helix–hairpin–helix protein MJ1434 from Methanocaldococcus jannaschii and EndoIV homologue TTC0482 from Thermus thermophilus HB27 do not process DNA uracil residues

    PubMed Central

    Schomacher, Lars; Smolorz, Sabine; Ciirdaeva, Elena; Ber, Svetlana; Kramer, Wilfried; Fritz, Hans-Joachim

    2010-01-01

    The mutagenic threat of hydrolytic DNA cytosine deamination is met mostly by uracil DNA glycosylases (UDG) initiating base excision repair. However, several sequenced genomes of archaeal organisms are devoid of genes coding for homologues of the otherwise ubiquitous UDG superfamily of proteins. Previously, two possible solutions to this problem were offered by (i) a report of a newly discovered family of uracil DNA glycosylases exemplified by MJ1434, a protein found in the hyperthermophilic archaeon Methanocaldococcus jannaschii, and (ii) the description of TTC0482, an EndoIV homologue from the hyperthermophilic bacterium Thermus thermophilus HB27, as being able to excise uracil from DNA. Sequence homologues of both proteins can be found throughout the archaeal domain of life. Three proteins orthologous to MJ1434 and the family founder itself were tested for but failed to exhibit DNA uracil glycosylase activity when produced in an Ung-deficient Escherichia coli host. Likewise, no DNA uracil processing activity could be detected to be associated with TTC0482, while the protein was fully active as an AP endonuclease. We propose that the uracil processing activities formerly found were due to contaminations with Ung enzyme. Use of Δung-strains as hosts for production of putatively DNA-U processing enzymes provides a simple safeguard. PMID:20410075

  2. Endonuclease IV and exonuclease III are involved in the repair and mutagenesis of DNA lesions induced by UVB in Escherichia coli.

    PubMed

    Souza, L L; Eduardo, I R; Pádula, M; Leitão, A C

    2006-03-01

    Exonuclease III (Exo III) and endonuclease IV (Endo IV) play a critical role in the base excision repair (BER) of Escherichia coli. Both are endowed with AP endonucleolytic activity, cleaving the 5' phosphodiester bond adjacent to spontaneous or induced abasic sites in DNA. Although mutants defective in Exo III (xthA) are usually hypersensitive to oxidative agents such as hydrogen peroxide, near-UV-light and X-rays, mutants defective in Endo IV (nfo) are not as sensitive as the xthA strain. To further investigate the roles of these AP endonucleases in DNA repair, we evaluated the sensitivity and mutagenesis of xthA and nfo strains after UVB and compared with UVC light. Our results revealed that xthA but not nfo strain was hypersensitive to UVB. The use of Fe(+2) ion chelator (dipyridyl), prior to irradiation, completely protected the xthA mutant against UVB lethal lesions, suggesting the generation of toxic oxidative lesions mediated by transition metal reactions. The nfo strain displayed increased UVB-induced mutagenesis, which was significantly suppressed by pre-treatment with dipyridyl. Although xthA strain did not display increased mutagenesis after UVC and UVB treatments, this phenotype was not related to xthA mutation, but rather to an unknown secondary mutation specifying an antimutator phenotype. After UVB irradiation, the base substitution spectra of nfo strain revealed a bias towards AT-->GC transitions and GC-->CG transversions, which were also suppressed by previous treatment with the iron chelator. Overall, on the basis of the differential sensitivities and mutational spectra displayed after UVC and UVB treatments, we propose a role for Endo IV and Exo III to counteract DNA damage induced by the oxidative counterpart of UVB in E.coli.

  3. Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae

    PubMed Central

    Schröder, Gunnar; Schuelein, Ralf; Quebatte, Maxime; Dehio, Christoph

    2011-01-01

    Bacterial type IV secretion systems (T4SS) mediate interbacterial conjugative DNA transfer and transkingdom protein transfer into eukaryotic host cells in bacterial pathogenesis. The sole bacterium known to naturally transfer DNA into eukaryotic host cells via a T4SS is the plant pathogen Agrobacterium tumefaciens. Here we demonstrate T4SS-mediated DNA transfer from a human bacterial pathogen into human cells. We show that the zoonotic pathogen Bartonella henselae can transfer a cryptic plasmid occurring in the bartonellae into the human endothelial cell line EA.hy926 via its T4SS VirB/VirD4. DNA transfer into EA.hy926 cells was demonstrated by using a reporter derivative of this Bartonella-specific mobilizable plasmid generated by insertion of a eukaryotic egfp-expression cassette. Fusion of the C-terminal secretion signal of the endogenous VirB/VirD4 protein substrate BepD with the plasmid-encoded DNA-transport protein Mob resulted in a 100-fold increased DNA transfer rate. Expression of the delivered egfp gene in EA.hy926 cells required cell division, suggesting that nuclear envelope breakdown may facilitate passive entry of the transferred ssDNA into the nucleus as prerequisite for complementary strand synthesis and transcription of the egfp gene. Addition of an eukaryotic neomycin phosphotransferase expression cassette to the reporter plasmid facilitated selection of stable transgenic EA.hy926 cell lines that display chromosomal integration of the transferred plasmid DNA. Our data suggest that T4SS-dependent DNA transfer into host cells may occur naturally during human infection with Bartonella and that these chronically infecting pathogens have potential for the engineering of in vivo gene-delivery vectors with applications in DNA vaccination and therapeutic gene therapy. PMID:21844337

  4. New modulated design and synthesis of chiral CuII/SnIV bimetallic potential anticancer drug entity: In vitro DNA binding and pBR322 DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh

    2012-05-01

    A new chiral ligand scaffold L derived from (R)-2-amino-2-phenyl ethanol and diethyl oxalate was isolated and thoroughly characterized by various spectroscopic methods. The ligand L was allowed to react with CuCl2·2H2O and NiCl2·6H2O to achieve monometallic complexes 1 and 2, respectively. Subsequently modulation of 1 and 2 was carried out in the presence of SnCl4·5H2O to obtain heterobimetallic potential drug candidates 3 and 4 possessing (CuII/SnIV and NiII/SnIV) metallic cores, respectively and characterized by elemental analysis and spectroscopic data including 1H, 13C and 119Sn NMR in case of 3 and 4. In vitro DNA binding studies revealed that complex 3 avidly binds to DNA as quantified by Kb and Ksv values. Complex 3 exhibits a remarkable DNA cleavage activity (concentration dependent) with pBR322 DNA and the cleavage activity of 3 was significantly enhanced in the presence of activators and follows the order H2O2 > Asc > MPA > GSH. Complex 3 cleave pBR322 DNA via hydrolytic pathway and accessible to major groove of DNA.

  5. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquinolones.

    PubMed

    Laponogov, Ivan; Pan, Xiao-Su; Veselkov, Dennis A; Cirz, Ryan T; Wagman, Allan; Moser, Heinz E; Fisher, L Mark; Sanderson, Mark R

    2016-09-01

    As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site-the E-site-found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem. 280, 14 252-14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site.

  6. Synthesis, structural characterization, cytotoxicity in vitro, and effect on DNA of sulfate-trans-dichloro-trans-bis(dimethylsulfoxide)-trans-dimethyl-tin(IV)

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, Víctor M.; Muñoz-Flores, Blanca M.; Gómez, Alberto; Kharisov, Boris; Santillan, Rosa; Ochoa, María E.; Blanco Jerez, Leonor M.; García, Concepción; Waksman, Noemí; Ramírez, Rosalba

    2014-01-01

    The trans-dichloro-trans-bis(dimethylsulfoxide)-trans-dimethyl-tin(IV) resulted from the reaction of dimethyl-tin(IV) dichloride and sodium sulfate in dimethylsulfoxide (DMSO). The tin compound was characterized by IR, NMR, FE-SEM, EDS, and single crystal X-ray diffraction studies. Suitable DMSO single crystals were obtained after 7 months by slow evaporation at room temperature. The crystal structure has a polymeric arrangement with eight-membered rings as a result of intermolecular coordination SO → Sn. The tin atom has an octahedral distorted geometry where the DMSO molecule is coordinated, and also has an infinite arrangement in 2D. Cytotoxicity against A431 cancer cells and MOLT4 leukemic cells and the DNA interaction of the organotin compound were determined. The organotin sulfate derivative showed low biological activity because of the polymeric structure and the saturated tin coordination capability.

  7. Replication Bypass of the trans-4-Hydroxynonenal-Derived (6S,8R,11S)-1,N2-Deoxyguanosine DNA Adduct by the Sulfolobus solfataricus DNA Polymerase IV

    PubMed Central

    2012-01-01

    trans-4-Hydroxynonenal (HNE) is the major peroxidation product of ω-6 polyunsaturated fatty acids in vivo. Michael addition of the N2-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N2-dGuo (1,N2-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N2-dGuo adduct was incorporated into the 18-mer templates 5′-d(TCATXGAATCCTTCCCCC)-3′ and d(TCACXGAATCCTTCCCCC)-3′, where X = (6S,8R,11S)-HNE-1,N2-dGuo adduct. These differed in the identity of the template 5′-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5′-d(GGGGGAAGGATTC)-3′ or a 14-mer primer 5′-d(GGGGGAAGGATTCC)-3′. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N2-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N2-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N2-dGuo adduct in a sequence-specific manner. If the template 5′-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5′-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua → Thy mutations during replication bypass when the template 5′-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N2-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N2-dGuo adduct, the (6S,8R,11S)-1,N2-dGuo lesion remained in the ring-closed conformation at the active site. The incoming dNTP, either d

  8. Systematic approaches to identify E3 ligase substrates

    PubMed Central

    Iconomou, Mary; Saunders, Darren N.

    2016-01-01

    Protein ubiquitylation is a widespread post-translational modification, regulating cellular signalling with many outcomes, such as protein degradation, endocytosis, cell cycle progression, DNA repair and transcription. E3 ligases are a critical component of the ubiquitin proteasome system (UPS), determining the substrate specificity of the cascade by the covalent attachment of ubiquitin to substrate proteins. Currently, there are over 600 putative E3 ligases, but many are poorly characterized, particularly with respect to individual protein substrates. Here, we highlight systematic approaches to identify and validate UPS targets and discuss how they are underpinning rapid advances in our understanding of the biochemistry and biology of the UPS. The integration of novel tools, model systems and methods for target identification is driving significant interest in drug development, targeting various aspects of UPS function and advancing the understanding of a diverse range of disease processes. PMID:27834739

  9. Genetic evidence for an additional function of phage T4 gene 32 protein: interaction with ligase.

    PubMed

    Mosig, G; Breschkin, A M

    1975-04-01

    Gene 32 of bacteriophage T4 is essential for DNA replication, recombination, and repair. In an attempt to clarify the role of the corresponding gene product, we have looked for mutations that specifically inactivate one but not all of its functions and for compensating suppressor mutations in other genes. Here we describe a gene 32 ts mutant that does not produce progeny, but in contrast to an am mutant investigated by others, is capable of some primary and secondary DNA replication and of forming "joint" recombinational intermediates after infection of Escherichia coli B at the restrictive temperature. However, parental and progeny DNA strands are not ligated to covalently linked "recombinant" molecules, and single strands of vegetative DNA do not exceed unit length. Progeny production as well as capacity for covalent linkage in this gene 32 ts mutant are partially restored by additional rII mutations. Suppression by rII depends on functioning host ligase [EC 6.5.1.2; poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-forming, NMN-forming)]. This gene 32 ts mutation (unlike some others) in turn suppresses the characteristic plaque morphology of rII mutants. We conclude that gene 32 protein, in addition to its role in DNA replication and in the formation of "joint" recombinational intermediates, interacts with T4 ligase [EC 6.5.1.1; poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-forming)] when recombining DNA strands are covalently linked. The protein of the mutant that we describe here is mainly defective in this interaction, thus inactivating T4 ligase in recombination. Suppressing rII mutations facilitate substitution of host ligase. There is suggestive evidence that these interactions occur at the membrane.

  10. Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase

    PubMed Central

    Henke, Sarah K.; Cronan, John E.

    2014-01-01

    Group II biotin protein ligases (BPLs) are characterized by the presence of an N-terminal DNA binding domain that allows transcriptional regulation of biotin biosynthetic and transport genes whereas Group I BPLs lack this N-terminal domain. The Bacillus subtilis BPL, BirA, is classified as a Group II BPL based on sequence predictions of an N-terminal helix-turn-helix motif and mutational alteration of its regulatory properties. We report evidence that B. subtilis BirA is a Group II BPL that regulates transcription at three genomic sites: bioWAFDBI, yuiG and yhfUTS. Moreover, unlike the paradigm Group II BPL, E. coli BirA, the N-terminal DNA binding domain can be deleted from Bacillus subtilis BirA without adverse effects on its ligase function. This is the first example of successful conversion of a Group II BPL to a Group I BPL with retention of full ligase activity. PMID:24816803

  11. Molecular DNA switches and DNA chips

    NASA Astrophysics Data System (ADS)

    Sabanayagam, Chandran R.; Berkey, Cristin; Lavi, Uri; Cantor, Charles R.; Smith, Cassandra L.

    1999-06-01

    We present an assay to detect single-nucleotide polymorphisms on a chip using molecular DNA switches and isothermal rolling- circle amplification. The basic principle behind the switch is an allele-specific oligonucleotide circularization, mediated by DNA ligase. A DNA switch is closed when perfect hybridization between the probe oligonucleotide and target DNA allows ligase to covalently circularize the probe. Mismatches around the ligation site prevent probe circularization, resulting in an open switch. DNA polymerase is then used to preferentially amplify the closed switches, via rolling-circle amplification. The stringency of the molecular switches yields 102 - 103 fold discrimination between matched and mismatched sequences.

  12. Synthesis, characterization, in vitro antitumoral investigations and interaction with plasmid pBR322 DNA of R2eddp-platinum(IV) complexes (R = Et, n-Pr).

    PubMed

    Kaluderović, Goran N; Kommera, Harish; Schwieger, Sebastian; Paethanom, Anchan; Kunze, Michael; Schmidt, Harry; Paschke, Reinhard; Steinborn, Dirk

    2009-12-28

    The studies on synthetic, spectroscopic and biological properties of platinum(IV) complexes, [PtCl(4)(R(2)eddp)] (R = Et, 1; n-Pr, 2), containing kappa(2)N,N' bidentate ligands, esters of ethylenediamine-N,N'-di-3-propionic acid (HOOCCH(2)CH(2)NHCH(2)CH(2)NHCH(2)CH(2)COOH, H(2)eddp), are reported. Complexes have been characterized by infrared, (1)H and (13)C NMR spectroscopy and elemental analysis and it was concluded that the coordination of the ligands occurs via nitrogen donor atoms of the ester ligands (R(2)eddp). Cytotoxicity studies were performed for ligand precursors and corresponding platinum(IV) complexes. Although the n-Pr(2)eddp.2HCl itself showed no activity (IC(50) values > 125 microM) in selected cell lines, the activity of complex 2, via apoptotic mode of cell death, has increased significantly for a broad range of cancer cell lines tested in vitro (IC(50) = 8.6-49 microM). As it was found that complexes 1 and 2 are able to interact with pBR322 plasmid DNA, platinum(IV) complexes of this type may act as drugs and pro-drugs.

  13. Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase

    PubMed Central

    Unciuleac, Mihaela-Carmen; Goldgur, Yehuda; Shuman, Stewart

    2015-01-01

    ATP-dependent RNA ligases are agents of RNA repair that join 3′-OH and 5′-PO4 RNA ends. Naegleria gruberi RNA ligase (NgrRnl) exemplifies a family of RNA nick-sealing enzymes found in bacteria, viruses, and eukarya. Crystal structures of NgrRnl at three discrete steps along the reaction pathway—covalent ligase-(lysyl-Nζ)–AMP•Mn2+ intermediate; ligase•ATP•(Mn2+)2 Michaelis complex; and ligase•Mn2+ complex—highlight a two-metal mechanism of nucleotidyl transfer, whereby (i) an enzyme-bound “catalytic” metal coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; and (ii) a second metal coordination complex bridges the β- and γ-phosphates. The NgrRnl N domain is a distinctively embellished oligonucleotide-binding (OB) fold that engages the γ-phosphate and associated metal complex and orients the pyrophosphate leaving group for in-line catalysis with stereochemical inversion at the AMP phosphate. The unique domain architecture of NgrRnl fortifies the theme that RNA ligases have evolved many times, and independently, by fusions of a shared nucleotidyltransferase domain to structurally diverse flanking modules. The mechanistic insights to lysine adenylylation gained from the NgrRnl structures are likely to apply broadly to the covalent nucleotidyltransferase superfamily of RNA ligases, DNA ligases, and RNA capping enzymes. PMID:26512110

  14. Cullin RING Ligases: Glommed by Glomulin

    PubMed Central

    Hristova, Ventzislava A.; Stringer, Daniel K.; Weissman, Allan M.

    2012-01-01

    Cullin ring ligases (CRLs) constitute the largest group of RING finger ubiquitin ligases. Two recent studies in Molecular Cell describe glomulin as a CRL1 inhibitor that blocks interactions with its ubiquitin-conjugating enzyme (E2) (Duda et al., 2012; Tron et al., 2012). These findings and their significance are discussed. PMID:22883621

  15. Properties of bacteriophage T4 mutants defective in gene 30 (deoxyribonucleic acid ligase) and the rII gene.

    PubMed

    Karam, J D; Barker, B

    1971-02-01

    In Escherichia coli K-12 strains infected with phage T4 which is defective in gene 30 [deoxyribonucleic acid (DNA) ligase] and in the rII gene (product unknown), near normal levels of DNA and viable phage were produced. Growth of such T4 ligase-rII double mutants was less efficient in E. coli B strains which show the "rapidlysis" phenotype of rII mutations. In pulse-chase experiments coupled with temperature shifts and with inhibition of DNA synthesis, it was observed that DNA synthesized by gene 30-defective phage is more susceptible to breakdown in vivo when the phage is carrying a wild-type rII gene. Breakdown was delayed or inhibited by continued DNA synthesis. Mutations of the rII gene decreased but did not completely abolish the breakdown. T4 ligase-rII double mutants had normal sensitivity to ultraviolet irradiation.

  16. Discrimination of Listeria monocytogenes from other Listeria species by ligase chain reaction.

    PubMed Central

    Wiedmann, M; Czajka, J; Barany, F; Batt, C A

    1992-01-01

    A ligase chain reaction assay based on a single-base-pair difference in the V9 region of the 16S rRNA gene (16S rDNA) was developed to distinguish between Listeria monocytogenes and other Listeria species. For this purpose, two pairs of primers were designed, with one primer of each pair being radioactively labeled. The ligated product was separated from the primers by denaturing polyacrylamide gel electrophoresis and then detected by autoradiography. To achieve a higher sensitivity, the 16S rDNA was initially amplified by polymerase chain reaction prior to the ligase chain reaction. The ligase chain reaction was tested on 19 different Listeria species and strains and proved to be a highly specific diagnostic method for the detection of L. monocytogenes. Images PMID:1482171

  17. High-Throughput Sequencing Reveals Circular Substrates for an Archaeal RNA ligase.

    PubMed

    Becker, Hubert F; Heliou, Alice; Djaout, Kamel; Lestini, Roxane; Regnier, Mireille; Myllykallio, Hannu

    2017-03-09

    It is only recently that the abundant presence of circular RNAs (circRNAs) in all kingdoms of Life, including the hyperthermophilic archaeon Pyrococcus abyssi, has emerged. This led us to investigate the physiological significance of a previously observed weak intramolecular ligation activity of Pab1020 RNA ligase. Here we demonstrate that this enzyme, despite sharing significant sequence similarity with DNA ligases, is indeed an RNA-specific polynucleotide ligase efficiently acting on physiologically significant substrates. Using a combination of RNA immunoprecipitation assays and RNA-seq, our genome-wide studies revealed 133 individual circRNA loci in P. abyssi. The large majority of these loci interacted with Pab1020 in cells and circularization of selected C/D Box and 5S rRNA transcripts was confirmed biochemically. Altogether these studies revealed that Pab1020 is required for RNA circularization. Our results further suggest the functional speciation of an ancestral NTase domain and/or DNA ligase towards RNA ligase activity and prompt for further characterization of the widespread functions of circular RNAs in prokaryotes. Detailed insight into the cellular substrates of Pab1020 may facilitate the development of new biotechnological applications e.g. in ligation of preadenylated adaptors to RNA molecules.

  18. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    PubMed Central

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  19. Antagonistic role of tea against sodium arsenite-induced oxidative DNA damage and inhibition of DNA repair in Swiss albino mice.

    PubMed

    Sinha, Dona; Roy, Madhumita

    2011-01-01

    Arsenic (As) contamination in groundwater is of increasing health concern in West Bengal, India. Arsenic has been associated with various human cancers, but the precise mechanism of its co-carcinogenic action is not clearly elucidated. Oxidative stress and defective repair mechanisms may promote accumulation of mutations and may be a stepping stone for carcinogenesis. Prevention of arsenic-induced oxidative stress and repair inhibition may reduce the chances of initiation of cancer. Tea polyphenols are reported to have excellent chemopreventive properties against cancer. This study aimed to elucidate the role of tea against arsenic-induced formation of 8-hydroxy-2'-deoxyguanosine (8OHdG) and arsenic-suppressed DNA repair in Swiss albino mice. Both green and black tea gave fruitful results in the reduction of 8OHdG and 8-oxoguanine DNA glycosylase (OGG1) in Swiss albino mice administered sodium arsenite (As III). DNA repair enzymes--such as PARP1, DNA β-polymerase, XRCC1, DNA ligase III, DNA protein kinase (catalytic subunit), XRCC 4, DNA ligase IV, and DNA topoisomerase IIβ--were induced by the phytochemicals at both the protein and genetic levels. Thus, tea polyphenols may prove effective in treating arsenic-induced carcinogenesis.

  20. Dysregulation of ubiquitin ligases in cancer

    PubMed Central

    Ronai, Ze’ev A.

    2015-01-01

    Ubiquitin ligases are critical components of the ubiquitin proteasome system (UPS), which governs fundamental processes regulating normal cellular homeostasis, metabolism, and cell cycle in response to external stress signals and DNA damage. Among multiple steps of the UPS system required to regulate protein ubiquitination and stability, UBLs define specificity, as they recognize and interact with substrates in a temporally- and spatially-regulated manner. Such interactions are required for substrate modification by ubiquitin chains, which marks proteins for recognition and degradation by the proteasome, or alters their subcellular localization or assembly into functional complexes. UBLs are often deregulated in cancer, altering substrate availability or activity in a manner that can promote cellular transformation. Such deregulation can occur at the epigenetic, genomic, or post-translational levels. Alterations in UBL can be used to predict their contributions, affecting tumor suppressors or oncogenes in select tumors. Better understanding of mechanisms underlying UBL expression and activities is expected to drive the development of next generation modulators that can serve as novel therapeutic modalities. This review summarizes our current understanding of UBL deregulation in cancer and highlights novel opportunities for therapeutic interventions. PMID:26690337

  1. Multi-targeting exploration of new 2-aminothiazolyl quinolones: Synthesis, antimicrobial evaluation, interaction with DNA, combination with topoisomerase IV and penetrability into cells.

    PubMed

    Cheng, Yu; Avula, Srinivasa Rao; Gao, Wei-Wei; Addla, Dinesh; Tangadanchu, Vijai Kumar Reddy; Zhang, Ling; Lin, Jian-Mei; Zhou, Cheng-He

    2016-11-29

    A series of new potentially multi-targeting antimicrobial 2-aminothiazolyl quinolones were designed, synthesized and characterized by (1)H NMR, (13)C NMR, IR, MS and HRMS spectra. Bioactive assay manifested that some of the prepared compounds showed moderate to good antibacterial and antifungal activities. Noticeably, compound 10f could effectively inhibit the growth of B. typhi and MRSA with MIC values of 1 and 8 μg/mL, respectively. Experimental results revealed that compound 10f was membrane-active and had the ability to rapidly kill the tested strains and effectively prevent the development of bacterial resistance. Moreover, this compound also exhibited low toxicity against L929 cells. Molecular docking indicated that compound 10f could bind with topoisomerase IV-DNA complexes through hydrogen bonds and hydrophobic interactions. Quantum chemical studies were also performed on 10f to understand the structural features essential for activity. The preliminary mechanism research suggested that compound 10f could intercalate into calf thymus DNA to form a steady supramolecular complex which might block DNA replication to exert the powerful bioactivities.

  2. Diorganotin(IV) complexes of biologically potent 4(3H)-quinazolinone derived Schiff bases: synthesis, spectroscopic characterization, DNA interaction studies and antimicrobial activity.

    PubMed

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Jayalakshmi, Basvegowda; Revanasiddappa, Hosakere D

    2011-10-15

    Four Schiff base ligands and their corresponding organotin(IV) complexes have been synthesized and characterized by elemental analyses, IR, (1)H NMR, MS and thermal studies. The Schiff bases are obtained by the condensation of 3-amino-2-methyl-4(3H)-quinazolinone with different substituted aldehydes. The elemental analysis data suggest the stoichiometry to be 1:1 ratio formation. Infrared spectral data agreed with the coordination to the central metal ion through imine nitrogen, lactam oxygen and deprotonated phenolic oxygen atoms. All the synthesized compounds have been evaluated for antimicrobial activity against selected species of microorganisms. In addition, DNA binding/cleavage capacity of the compounds was analyzed by absorption spectroscopy, viscosity measurements and gel electrophoresis methods.

  3. New modulated design, docking and synthesis of carbohydrate-conjugate heterobimetallic CuII-SnIV complex as potential topoisomerase II inhibitor: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines.

    PubMed

    Tabassum, Sartaj; Afzal, Mohd; Arjmand, Farukh

    2014-03-03

    New carbohydrate-conjugate heterobimetallic complexes [C₂₂H₅₀N₆O₁₃CuSnCl₂] (3) and [C₂₂H₅₈N₆O₁₇NiSnCl₂] (4) were synthesized from their monometallic analogs [C₂₂H₅₂N₆O₁₃Cu] (1) and [C₂₂H₆₀N₆O₁₇Ni] (2) containing N-glycoside ligand (L). In vitro DNA binding studies of L and complexes (1-4) with CT DNA were carried out by employing various biophysical and molecular docking techniques which revealed that heterobimetallic complex 3 strongly binds to DNA in comparison to 4, monometallic complexes (1 and 2) and the free ligand. Complex 3 cleaves pBR322 DNA via hydrolytic pathway (confirmed by T4 DNA ligase assay) and inhibited Topo-II activity in a dose-dependent manner. Furthermore, complex 3 was docked into the ATPase domain of human-Topo-II in order to probe the possible mechanism of inhibition.

  4. DNA Methylation Alterations in Breast Cancer

    DTIC Science & Technology

    2002-07-01

    EDTA buffer (1-1TE), mary tumor prostate tissues, five matched pairs of normal 5 ViL of 10 x T4 DNA ligase buffer, 1.25 giL each of and primary tumor... DNA ligase were added, and the DNA was incubated breast tissues, was used in the study. The breast and overnight at 16’C. The ligated DNA was...nanograms of Notl primer tion endonuclease Notl and T4 DNA ligase were pur- and 30 ng of Msel primer were used for PCR with chased from Boehringer Mannheim

  5. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia.

    PubMed

    Bouquet, Fanny; Ousset, Marielle; Biard, Denis; Fallone, Frédérique; Dauvillier, Stéphanie; Frit, Philippe; Salles, Bernard; Muller, Catherine

    2011-06-01

    DNA-dependent protein kinase (DNA-PK) is involved in DNA double-strand break (DSB) signalling and repair. We report that DNA-PK is activated by mild hypoxia conditions (0.1-1% O₂) as shown by (1) its autophosphorylation on Ser2056, and (2) its mobilisation from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. The recruitment of DNA-PK was not followed by activation and recruitment of the XRCC4-DNA-ligase-IV complex, suggesting that DSBs are not responsible for activation of DNA-PK. To unravel the mechanism of DNA-PK activation, we show that exposure of cells to trichostatin A, a histone deacetylase inhibitor, leads to DNA-PK autophosphorylation and relocalisation to DNA. Histone acetylation (mainly H3K14) is increased in hypoxic cells and treatment with anacardic acid, an inhibitor of histone acetyl transferase, prevented both histone modifications and DNA-PK activation in hypoxic conditions. Importantly, in using either silenced DNA-PK cells or cells exposed to a specific DNA-PK inhibitor (NU7026), we demonstrated that hypoxic DNA-PK activation positively regulates the key transcription factor HIF-1 and one subsequent target gene, GLUT1. Our results show that hypoxia initiates chromatin modification and consequently DNA-PK activation, which positively regulate cellular oxygen-sensing and oxygen-signalling pathways.

  6. Lithium chloride protects retinal neurocytes from nutrient deprivation by promoting DNA non-homologous end-joining

    SciTech Connect

    Zhuang Jing; Li Fan; Liu Xuan; Liu Zhiping; Lin Jianxian; Ge Yihong; Kaminski, Joseph M.; Summers, James Bradley; Wang Zhichong; Ge Jian Yu Keming

    2009-03-13

    Lithium chloride is a therapeutic agent for treatment of bipolar affective disorders. Increasing numbers of studies have indicated that lithium has neuroprotective effects. However, the molecular mechanisms underlying the actions of lithium have not been fully elucidated. This study aimed to investigate whether lithium chloride produces neuroprotective function by improving DNA repair pathway in retinal neurocyte. In vitro, the primary cultured retinal neurocytes (85.7% are MAP-2 positive cells) were treated with lithium chloride, then cultured with serum-free media to simulate the nutrient deprived state resulting from ischemic insult. The neurite outgrowth of the cultured cells increased significantly in a dose-dependent manner when exposed to different levels of lithium chloride. Genomic DNA electrophoresis demonstrated greater DNA integrity of retinal neurocytes when treated with lithium chloride as compared to the control. Moreover, mRNA and protein levels of Ligase IV (involved in DNA non-homologous end-joining (NHEJ) pathway) in retinal neurocytes increased with lithium chloride. The end joining activity assay was performed to determine the role of lithium on NHEJ in the presence of extract from retinal neurocytes. The rejoining levels in retinal neurocytes treated with lithium were significantly increased as compared to the control. Furthermore, XRCC4, the Ligase IV partner, and the transcriptional factor, CREB and CTCF, were up-regulated in retinal cells after treating with 1.0 mM lithium chloride. Therefore, our data suggest that lithium chloride protects the retinal neural cells from nutrient deprivation in vitro, which may be similar to the mechanism of cell death in glaucoma. The improvement in DNA repair pathway involving in Ligase IV might have an important role in lithium neuroprotection. This study provides new insights into the neural protective mechanisms of lithium chloride.

  7. Radiation-induced XRCC4 association with chromatin DNA analyzed by biochemical fractionation.

    PubMed

    Kamdar, Radhika Pankaj; Matsumoto, Yoshihisa

    2010-01-01

    XRCC4, in association with DNA ligase IV, is thought to play a critical role in the ligation of two DNA ends in DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ) pathway. In the present study, we captured radiation-induced chromatin-recruitment of XRCC4 by biochemical fractionation using detergent Nonidet P-40. A subpopulation of XRCC4 changed into a form that is resistant to the extraction with 0.5% Nonidet P-40-containing buffer after irradiation. This form of XRCC4 was liberated by micrococcal nuclease treatment, indicating that it had been tethered to chromatin DNA. This chromatin-recruitment of XRCC4 could be seen immediately (< 0.1 hr) after irradiation and remained up to 4 hr after 20 Gy irradiation. It was seen even after irradiation of small doses, i.e., 2 Gy, but the residence of XRCC4 on chromatin was very transient after 2 Gy irradiation, returning to near normal level in 0.2-0.5 hr after irradiation. The chromatin-bound XRCC4 represented only approximately 1% of total XRCC4 molecules even after 20 Gy irradiation and the quantitative analysis using purified protein as the reference suggested that only a few XRCC4-DNA ligase IV complexes were recruited to each DNA end. We further show that the chromatin-recruitment of XRCC4 was not attenuated by wortmannin, an inhibitor of DNA-PK, or siRNA-mediated knockdown of the DNA-PK catalytic subunit (DNA-PKcs), indicating that this process does not require DNA-PKcs. These results would provide us with useful experimental tools and important insights to understand the DNA repair process through NHEJ pathway.

  8. ATP utilization by yeast replication factor C. IV. RFC ATP-binding mutants show defects in DNA replication, DNA repair, and checkpoint regulation.

    PubMed

    Schmidt, S L; Pautz, A L; Burgers, P M

    2001-09-14

    Replication factor C is required to load proliferating cell nuclear antigen onto primer-template junctions, using the energy of ATP hydrolysis. Four of the five RFC genes have consensus ATP-binding motifs. To determine the relative importance of these sites for proper DNA metabolism in the cell, the conserved lysine in the Walker A motif of RFC1, RFC2, RFC3, or RFC4 was mutated to either arginine or glutamic acid. Arginine mutations in all RFC genes tested permitted cell growth, although poor growth was observed for rfc2-K71R. A glutamic acid substitution resulted in lethality in RFC2 and RFC3 but not in RFC1 or RFC4. Most double mutants combining mutations in two RFC genes were inviable. Except for the rfc1-K359R and rfc4-K55E mutants, which were phenotypically similar to wild type in every assay, the mutants were sensitive to DNA-damaging agents. The rfc2-K71R and rfc4-K55R mutants show checkpoint defects, most likely in the intra-S phase checkpoint. Regulation of the damage-inducible RNR3 promoter was impaired in these mutants, and phosphorylation of Rad53p in response to DNA damage was specifically defective when cells were in S phase. No dramatic defects in telomere length regulation were detected in the mutants. These data demonstrate that the ATP binding function of RFC2 is important for both DNA replication and checkpoint function and, for the first time, that RFC4 also plays a role in checkpoint regulation.

  9. Assembly of the Elongin A Ubiquitin Ligase Is Regulated by Genotoxic and Other Stresses*

    PubMed Central

    Weems, Juston C.; Slaughter, Brian D.; Unruh, Jay R.; Hall, Shawn M.; McLaird, Merry B.; Gilmore, Joshua M.; Washburn, Michael P.; Florens, Laurence; Yasukawa, Takashi; Aso, Teijiro; Conaway, Joan W.; Conaway, Ronald C.

    2015-01-01

    Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription. PMID:25878247

  10. Directed evolution of the substrate specificity of biotin ligase.

    PubMed

    Lu, Wei-Cheng; Levy, Matthew; Kincaid, Rodney; Ellington, Andrew D

    2014-06-01

    We have developed selection scheme for directing the evolution of Escherichia coli biotin protein ligase (BPL) via in vitro compartmentalization, and have used this scheme to alter the substrate specificity of the ligase towards the utilization of the biotin analogue desthiobiotin. In this scheme, a peptide substrate (BAP) was conjugated to a DNA library encoding BirA, emulsified such that there was a single template per compartment, and protein variants were transcribed and translated in vitro. Those variants that could efficiently desthiobiotinylate their corresponding peptide:DNA conjugate were subsequently captured and amplified. Following just six rounds of selection and amplification several variants that demonstrated higher activity with desthiobiotin were identified. The best variants from Round 6, BirA6-40 and BirA6-47 , showed 17-fold and 10-fold higher activity, respectively, their abilities to use desthiobiotin as a substrate. While selected enzymes contained a number of substitutions, a single mutation, M157T, proved sufficient to provide much greater activity with desthiobiotin. Further characterization of BirA6-40 and the single substitution variant BirAM157T revealed that they had twoto threefold higher kcat values for desthiobiotin. These variants had also lost much of their ability to utilize biotin, resulting in orthogonal enzymes that in conjunction with streptavidin variants that can utilize desthiobiotin may prove to be of great use in developing additional, robust conjugation handles for a variety of biological and biotechnological applications.

  11. A novel ubiquitin ligase is deficient in Fanconi anemia.

    PubMed

    Meetei, Amom Ruhikanta; de Winter, Johan P; Medhurst, Annette L; Wallisch, Michael; Waisfisz, Quinten; van de Vrugt, Henri J; Oostra, Anneke B; Yan, Zhijiang; Ling, Chen; Bishop, Colin E; Hoatlin, Maureen E; Joenje, Hans; Wang, Weidong

    2003-10-01

    Fanconi anemia is a recessively inherited disease characterized by congenital defects, bone marrow failure and cancer susceptibility. Cells from individuals with Fanconi anemia are highly sensitive to DNA-crosslinking drugs, such as mitomycin C (MMC). Fanconi anemia proteins function in a DNA damage response pathway involving breast cancer susceptibility gene products, BRCA1 and BRCA2 (refs. 1,2). A key step in this pathway is monoubiquitination of FANCD2, resulting in the redistribution of FANCD2 to nuclear foci containing BRCA1 (ref. 3). The underlying mechanism is unclear because the five Fanconi anemia proteins known to be required for this ubiquitination have no recognizable ubiquitin ligase motifs. Here we report a new component of a Fanconi anemia protein complex, called PHF9, which possesses E3 ubiquitin ligase activity in vitro and is essential for FANCD2 monoubiquitination in vivo. Because PHF9 is defective in a cell line derived from an individual with Fanconi anemia, we conclude that PHF9 (also called FANCL) represents a novel Fanconi anemia complementation group (FA-L). Our data suggest that PHF9 has a crucial role in the Fanconi anemia pathway as the likely catalytic subunit required for monoubiquitination of FANCD2.

  12. Synthesis and characterization of water-insoluble and water-soluble dibutyltin(IV) porphinate complexes based on the tris(pyridinyl)porphyrin moiety, their anti-tumor activity in vitro and interaction with DNA.

    PubMed

    Han, Gaoyi; Yang, Pin

    2002-07-25

    The water-insoluble and water-soluble organotin(IV)porphinate complexes based on the tris-(4-pyridinyl)porphyrin and tris(N-methyl-4-pyridiniumyl)porphyrin moieties were synthesized and characterized by elemental analysis, (1)H NMR, IR and electrospray ionization mass spectra. The in vitro activity of the compounds against P388 leukemia and A-549 was determined. The results show that the anti-tumor activities of organotin(IV)porphinate is related to the water solubility of the compounds and the central ion in the porphyrin ring. The interaction between the water-soluble dibutyltin(IV) porphinate (7 and 10) complexes and DNA has been investigated. The result shows that compounds 7 and 10 cause DNA hypochromism measured by A(260), a slight increase in the viscosity of the DNA, and an increase in the melting point of DNA by 2.9 and 1.6 degrees C, respectively at DNA(base)/Drug(Por) ratios of 60. The binding constants to DNA were 1.35+/-0.16 x 10(7) M(-1) (7) and 1.45+/-0.12 x 10(6) M(-1) (10) determined using EB competition method based on the porphyrin concentration, which is 20 and five times greater than that of precursor porphyrins [5-p,o-(carboxy)methoxyphenyl-10,15,20-tris(N-methyl-4-pyridiniumyl)] porphyrin (p,o-tMPyPac) to DNA. Electrophoresis test shows that the compounds cannot cleave the DNA. According to the electrophoresis test result and all the above results, the cytotoxic activity against P388 and A-549 tumor cells appears not to come from the cleavage of DNA caused by the compounds but from the high affinity of compounds to DNA.

  13. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    PubMed

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility.

  14. Conventional and microwave-assisted synthesis, characterization, DFT calculations, in vitro DNA binding and cleavage studies of potential chemotherapeutic diorganotin(IV) mandelates.

    PubMed

    Mridula; Nath, Mala

    2016-09-01

    Diorganotin(IV) complexes of the general formulae {[R2Sn(L)]2O}(R=Me (1), n-Bu (2), and n-Oct (3); L=anion of mandelic acid) and {[R2Sn(L)]2Cl2}(R=Ph (4)) have been synthesized by conventional thermal method (1a-3a), except 4a and by microwave-assisted reactions (1b-4b). The elemental analysis, IR, NMR ((1)H, (13)C and (119)Sn) and ESI-MS/DART-mass spectral studies revealed that dimeric 1:1 complexes with SnOSn bridges (1-3) are formed possessing distorted trigonal bipyramidal geometry around the Sn atoms, except 4b which exhibits octahedral geometry with SnClSn bridges. The proposed geometries have been validated by density functional theory calculations. Thermal behavior of 1b-4b, studied by using thermogravimetry (TG), differential thermal analysis (DTA) and derivative thermogravimetric (DTG) techniques, indicated that all except 4b are stable up to 200°C. In vitro interaction studies of 1b-4b with CT-DNA were performed by UV-Vis, fluorescence titrations and results suggest that the complexes are binding to DNA via an intercalative mode. The binding affinity and quenching ability were quantified in terms of intrinsic binding constant (Kb) (3.74×10(4)M(-1), 2b; >3.67×10(4)M(-1), 4b; >3.03×10(4)M(-1), 3b; >0.72×10(4)M(-1), 1b) and Stern-Volmer quenching constant (Ksv) (2.16×10(5), 2b; >1.73×10(5), 4b; >1.66×10(5)3b; >1.51×10(5), 1b) which showed high binding affinity of 2b with CT-DNA. The cleavage studies of 1b-4b with pBR322 plasmid DNA was ascertained by agarose gel electrophoresis. They exhibited effective cleavage of supercoiled plasmid DNA into its nicked form (1b, 3b, 4b) and even into its linear form in presence of 2b.

  15. A Tale of Two PMLs: Elements Regulating a Differential Substrate Recognition by the ICP0 E3 Ubiquitin Ligase of Herpes Simplex Virus 1.

    PubMed

    Zheng, Yi; Samrat, Subodh Kumar; Gu, Haidong

    2016-12-01

    Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an α gene product required for viral replication at low multiplicities of infection. Upon entry, nuclear domain 10 (ND10) converges at the incoming DNA and represses viral gene expression. ICP0 contains a RING-type E3 ubiquitin ligase that degrades the ND10 organizer PML and disperses ND10 to alleviate the repression. In the present study, we focused on understanding the regulation of ICP0 E3 ligase activity in the degradation of different ICP0 substrates. We report the following. (i) A SUMO interaction motif located at ICP0 residues 362 to 364 is required for the degradation of PML isoforms II, IV, and VI but not isoform I. This differentiation mechanism exists in both HEp-2 and U2OS cells, regardless of the cell's permissiveness to the ICP0-null virus. (ii) Physical interaction between SIM362-364 and PML II is necessary but not sufficient for PML II degradation. Both proximal sequences surrounding SIM362-364 and distal sequences located at the ICP0 C terminus enhance the degradation of PML II. (iii) The ICP0 C terminus is dispensable for PML I degradation. Instead, bipartite PML I binding domains located in the N-terminal half of ICP0 coordinate to promote the degradation of PML I. (iv) The stability of ICP0, but not its ND10 fusion ability, affects the rate of PML I degradation. Taken together, our results show that ICP0 uses at least two regulatory mechanisms to differentiate its substrates. The disparate recognition of the ICP0 E3 substrates may be related to the different roles these substrates may play in HSV-1 infection.

  16. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    PubMed Central

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke; Mortuza, Gulnahar B.; Räschle, Markus; Ibañez de Opakua, Alain; Oka, Yasuyoshi; Feng, Yunpeng; Blanco, Francisco J.; Mann, Matthias; Montoya, Guillermo; Groth, Anja; Bekker-Jensen, Simon

    2016-01-01

    Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication. PMID:26711499

  17. How Y-Family DNA polymerase IV is more accurate than Dpo4 at dCTP insertion opposite an N2-dG adduct of benzo[a]pyrene.

    PubMed

    Sholder, Gabriel; Creech, Amanda; Loechler, Edward L

    2015-11-01

    To bypass DNA damage, cells have Y-Family DNA polymerases (DNAPs). One Y-Family-class includes DNAP κ and DNAP IV, which accurately insert dCTP opposite N(2)-dG adducts, including from the carcinogen benzo[a]pyrene (BP). Another class includes DNAP η and DNAP V, which insert accurately opposite UV-damage, but inaccurately opposite BP-N(2)-dG. To investigate structural differences between Y-Family-classes, regions are swapped between DNAP IV (a κ/IV-class-member) and Dpo4 (a η/V-class-member); the kinetic consequences are evaluated via primer-extension studies with a BP-N(2)-dG-containing template. Four key structural elements are revealed. (1) Y-Family DNAPs have discreet non-covalent contacts between their little finger-domain (LF-Domain) and their catalytic core-domain (CC-Domain), which we call "non-covalent bridges" (NCBs). Arg37 and Arg38 in DNAP IV's CC-Domain near the active site form a non-covalent bridge (AS-NCB) by interacting with Glu251 and Asp252, respectively, in DNAP IV's LF-Domain. Without these interactions dATP/dGTP/dTTP misinsertions increase. DNAP IV's AS-NCB suppresses misinsertions better than Dpo4's equivalent AS-NCB. (2) DNAP IV also suppresses dATP/dGTP/dTTP misinsertions via a second non-covalent bridge, which is ∼8Å from the active site (Distal-NCB). Dpo4 has no Distal-NCB, rendering it inferior at dATP/dGTP/dTTP suppression. (3) dCTP insertion is facilitated by the larger minor groove opening near the active site in DNAP IV versus Dpo4, which is sensible given that Watson/Crick-like [dCTP:BP-N(2)-dG] pairing requires the BP-moiety to be in the minor groove. (4) Compared to Dpo4, DNAP IV has a smaller major groove opening, which suppresses dGTP misinsertion, implying BP-N(2)-dG bulk in the major groove during Hoogsteen syn-adduct-dG:dGTP pairing. In summary, DNAP IV has a large minor groove opening to enhance dCTP insertion, a plugged major groove opening to suppress dGTP misinsertion, and two non-covalent bridges (near and distal

  18. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    Asteroids are fascinating worlds. Considered the building blocks of our planets, many of the authors of this book have devoted their scientific careers to exploring them with the tools of our trade: ground- and spacebased observations, in situ space missions, and studies that run the gamut from theoretical modeling efforts to laboratory work. Like fossils for paleontologists, or DNA for geneticists, they allow us to construct a veritable time machine and provide us with tantalizing glimpses of the earliest nature of our solar system. By investigating them, we can probe what our home system was like before life or even the planets existed. The origin and evolution of life on our planet is also intertwined with asteroids in a different way. It is believed that impacts on the primordial Earth may have delivered the basic components for life, with biology favoring attributes that could more easily survive the aftermath of such energetic events. In this fashion, asteroids may have banished many probable avenues for life to relative obscurity. Similarly, they may have also prevented our biosphere from becoming more complex until more recent eras. The full tale of asteroid impacts on the history of our world, and how human life managed to emerge from myriad possibilities, has yet to be fully told. The hazard posed by asteroid impacts to our civilization is low but singular. The design of efficient mitigation strategies strongly relies on asteroid detection by our ground- and spacebased surveys as well as knowledge of their physical properties. A more positive motivation for asteroid discovery is that the proximity of some asteroids to Earth may allow future astronauts to harvest their water and rare mineral resources for use in exploration. A key goal of asteroid science is therefore to learn how humans and robotic probes can interact with asteroids (and extract their materials) in an efficient way. We expect that these adventures may be commonplace in the future

  19. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling.

    PubMed

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression.

  20. Crystal Structure of Human XLF: A Twist in Nonhomologous DNA End-Joining

    SciTech Connect

    Andres,S.; Modesit, M.; Tsai, C.; Chu, G.; Junop, M.

    2007-01-01

    DNA double-strand breaks represent one of the most severe forms of DNA damage in mammalian cells. One pathway for repairing these breaks occurs via nonhomologous end-joining (NHEJ) and depends on XRCC4, LigaseIV, and Cernunnos, also called XLF. Although XLF stimulates XRCC4/LigaseIV to ligate mismatched and noncohesive DNA ends, the mechanistic basis for this function remains unclear. Here we report the structure of a partially functional 224 residue N-terminal fragment of human XLF. Despite only weak sequence similarity, XLF1-170 shares structural homology with XRCC41-159. However, unlike the highly extended 130 Angstroms helical domain observed in XRCC4, XLF adopts a more compact, folded helical C-terminal region involving two turns and a twist, wrapping back to the structurally conserved N terminus. Mutational analysis of XLF and XRCC4 reveals a potential interaction interface, suggesting a mechanism for how XLF stimulates the ligation of mismatched ends.

  1. Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes.

    PubMed

    Hung, Putzer J; Chen, Bo-Ruei; George, Rosmy; Liberman, Caleb; Morales, Abigail J; Colon-Ortiz, Pedro; Tyler, Jessica K; Sleckman, Barry P; Bredemeyer, Andrea L

    2017-02-01

    Non-homologous end joining (NHEJ) is a major DNA double-strand break (DSB) repair pathway that functions in all phases of the cell cycle. NHEJ repairs genotoxic and physiological DSBs, such as those generated by ionizing radiation and during V(D)J recombination at antigen receptor loci, respectively. DNA end joining by NHEJ relies on the core factors Ku70, Ku80, XRCC4, and DNA Ligase IV. Additional proteins also play important roles in NHEJ. The XRCC4-like factor (XLF) participates in NHEJ through its interaction with XRCC4, and XLF deficiency in humans leads to immunodeficiency and increased sensitivity to ionizing radiation. However, XLF is dispensable for NHEJ-mediated DSB repair during V(D)J recombination in murine lymphocytes, where it may have redundant functions with other DSB repair factors. Paralog of XRCC4 and XLF (PAXX) is a recently identified NHEJ factor that has structural similarity to XRCC4 and XLF. Here we show that PAXX is also dispensable for NHEJ during V(D)J recombination and during the repair of genotoxic DSBs in lymphocytes. However, a combined deficiency of PAXX and XLF blocks NHEJ with a severity comparable to that observed in DNA Ligase IV-deficient cells. Similar to XLF, PAXX interacts with Ku through its C-terminal region, and mutations that disrupt Ku binding prevent PAXX from promoting NHEJ in XLF-deficient lymphocytes. Our findings suggest that the PAXX and XLF proteins may have redundant functions during NHEJ.

  2. Speciation studies of diorganotin(IV) complexes with 3,3-bis(1-methylimidazol-2-yl)propionate--displacement reaction by DNA constituents.

    PubMed

    Shoukry, Mohamed M; Hassan, Safaa S

    2013-01-01

    The interaction of 3,3-bis(1-methylimidazol-2-yl)propionate (BIMP) with dimethyltin(IV) dichloride (DMT), dibutyltin(IV) dichloride (DBT), and diphenyltin(IV) dichloride (DPT) is investigated at 25°C and 0.1 M ionic strength in water for dimethyltin(IV), and in a 50% dioxane-water mixture for dibutyltin(IV) and diphenyltin(IV). The stepwise formation constants of the 1 : 1 and 1 : 2 complexes formed in solution are calculated from potentiometric measurements using the nonlinear least-square program MINIQUAD-75. The concentration distribution of the various complex species is evaluated as a function of pH. Displacement reactions of the coordinated 3,3-bis(1-methylimidazol-2-yl)propionate by inosine and inosine-5'-monophosphate are investigated from calculations based upon equilibrium properties.

  3. THE ROLE OF E3 LIGASES IN THE UBIQUITIN-DEPENDENT REGULATION OF SPERMATOGENESIS*

    PubMed Central

    Richburg, John H.; Myers, Jessica L.; Bratton, Shawn B.

    2014-01-01

    The ubiquitination of proteins is a post-translational modification that was first described as a means to target misfolded or unwanted proteins for degradation by the proteasome. It is now appreciated that the ubiquitination of proteins also serves as a mechanism to modify protein function and cellular functions such as protein trafficking, cell signaling, DNA repair, chromatin modifications, cell-cycle progression and cell death. The ubiquitination of proteins occurs through the hierarchal transfer of ubiquitin from an E1 ubiquitin-activating enzyme to an E2 ubiquitin-conjugating enzyme and finally to an E3 ubiquitin ligase that transfers the ubiquitin to its target protein. It is the final E3 ubiquitin ligase that confers the substrate specificity for ubiquitination and is the focus of this review. Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells undergo mitotic proliferation and expansion of the diploid spermatogonial population, differentiate into spermatocytes and progress through two meiotic divisions to produce haploid spermatids that proceed through a final morphogenesis to generate mature spermatozoa. The ubiquitination of proteins in the cells of the testis occurs in many of the processes required for the progression of mature spermatozoa. Since it is the E3 ubiquitin ligase that recognizes the target protein and provides the specificity and selectivity for ubiquitination, this review highlights known examples of E3 ligases in the testis and the differing roles that they play in maintaining functional spermatogenesis. PMID:24632385

  4. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  5. Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We cloned the full length 4CL ortholog encoding 4-coumarate: coenzymeA ligase from kenaf (Hibiscus cannabiuns) using degenerate primers and RACE (rapid amplification of cDNA ends) systems. The 4CL is a key regulatory enzyme of the phenylpropanoid pathway that regulates the activation of cinnamic ac...

  6. Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.

    PubMed

    Lama, Lodoe; Ryan, Kevin

    2016-01-01

    Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency.

  7. Poxvirus DNA Replication

    PubMed Central

    Moss, Bernard

    2013-01-01

    Poxviruses are large, enveloped viruses that replicate in the cytoplasm and encode proteins for DNA replication and gene expression. Hairpin ends link the two strands of the linear, double-stranded DNA genome. Viral proteins involved in DNA synthesis include a 117-kDa polymerase, a helicase–primase, a uracil DNA glycosylase, a processivity factor, a single-stranded DNA-binding protein, a protein kinase, and a DNA ligase. A viral FEN1 family protein participates in double-strand break repair. The DNA is replicated as long concatemers that are resolved by a viral Holliday junction endonuclease. PMID:23838441

  8. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  9. Protein Neddylation: Beyond Cullin-RING Ligases

    PubMed Central

    Enchev, Radoslav I.; Schulman, Brenda A.; Peter, Matthias

    2016-01-01

    NEDD8 is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here we re-evaluate these studies in light of the current understanding of the neddylation pathway, and suggest criteria for the identification of genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights. PMID:25531226

  10. The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications

    PubMed Central

    Sang, Youzhou; Yan, Fan; Ren, Xiubao

    2015-01-01

    CRLs (Cullin-RING E3 ubiquitin ligases) are the largest E3 ligase family in eukaryotes, which ubiquitinate a wide range of substrates involved in cell cycle regulation, signal transduction, transcriptional regulation, DNA damage response, genomic integrity, tumor suppression and embryonic development. CRL4 E3 ubiquitin ligase, as one member of CRLs family, consists of a RING finger domain protein, cullin4 (CUL4) scaffold protein and DDB1–CUL4 associated substrate receptors. The CUL4 subfamily includes two members, CUL4A and CUL4B, which share extensively sequence identity and functional redundancy. Aberrant expression of CUL4 has been found in a majority of tumors. Given the significance of CUL4 in cancer, understanding its detailed aspects of pathogenesis of human malignancy would have significant value for the treatment of cancer. Here, the work provides an overview to address the role of CRL4 E3 ubiquitin ligase in cancer development and progression, and discuss the possible mechanisms of CRL4 ligase involving in many cellular processes associated with tumor. Finally, we discuss its potential value in cancer therapy. PMID:26460955

  11. IVS Organization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  12. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2)

    PubMed Central

    Pommier, Yves; Huang, Shar-yin N.; Gao, Rui; Das, Benu Brata; Murai, Junko; Marchand, Christophe

    2014-01-01

    TDP1 and TDP2 were discovered and named based on the fact they process 3′- and 5′-DNA ends by excising irreversible protein tyrosyl-DNA complexes involving topoisomerases I and II, respectively. Yet, both enzymes have an extended spectrum of activities. TDP1 not only excises trapped topoisomerases I (Top1 in the nucleus and Top1mt in mitochondria), but also repairs oxidative damage-induced 3′-phosphoglycolates and alkylation damage-induced DNA breaks, and excises chain terminating anticancer and antiviral nucleosides in the nucleus and mitochondria. The repair function of TDP2 is devoted to the excision of topoisomerase II- and potentially topoisomerases III-DNA adducts. TDP2 is also essential for the life cycle of picornaviruses (important human and bovine pathogens) as it unlinks VPg proteins from the 5′-end of the viral RNA genome. Moreover, TDP2 has been involved in signal transduction (under the former names of TTRAP or EAPII). The DNA repair partners of TDP1 include PARP1, XRCC1, ligase III and PNKP from the base excision repair (BER) pathway. By contrast, TDP2 repair functions are coordinated with Ku and ligase IV in the non-homologous end joining pathway (NHEJ). This article summarizes and compares the biochemistry, functions, and post-translational regulation of TDP1 and TDP2, as well as the relevance of TDP1 and TDP2 as determinants of response to anticancer agents. We discuss the rationale for developing TDP inhibitors for combinations with topoisomerase inhibitors (topotecan, irinotecan, doxorubicin, etoposide, mitoxantrone) and DNA damaging agents (temozolomide, bleomycin, cytarabine, and ionizing radiation), and as novel antiviral agents. PMID:24856239

  13. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response

    PubMed Central

    Lv, Zhongshi; Mao, Zhaomin; Tang, Yijun; Kong, Xiufang; Li, Senlin; Cui, Ye; Liu, Heng; Zhang, Lele; Zhang, Xiaojie; Jiang, Lindi; Zhou, Qin

    2017-01-01

    The cyclic GMP-AMP synthase (cGAS), upon cytosolic DNA stimulation, catalyzes the formation of the second messenger 2′3′-cGAMP, which then binds to stimulator of interferon genes (STING) and activates downstream signaling. It remains to be elucidated how the cGAS enzymatic activity is modulated dynamically. Here, we reported that the ER ubiquitin ligase RNF185 interacted with cGAS during HSV-1 infection. Ectopic-expression or knockdown of RNF185 respectively enhanced or impaired the IRF3-responsive gene expression. Mechanistically, RNF185 specifically catalyzed the K27-linked poly-ubiquitination of cGAS, which promoted its enzymatic activity. Additionally, Systemic Lupus Erythematosus (SLE) patients displayed elevated expression of RNF185 mRNA. Collectively, this study uncovers RNF185 as the first E3 ubiquitin ligase of cGAS, shedding light on the regulation of cGAS activity in innate immune responses. PMID:28273161

  14. E3 ubiquitin ligase Hades negatively regulates the exonuclear function of p53

    PubMed Central

    Jung, J H; Bae, S; Lee, J Y; Woo, S R; Cha, H J; Yoon, Y; Suh, K-S; Lee, S-J; Park, I-C; Jin, Y-W; Lee, K-H; An, S; Lee, J H

    2011-01-01

    Following DNA damage, p53 translocates to the cytoplasm and mitochondria, where it triggers transcription-independent apoptosis by binding to Bcl-2 family proteins. However, little is known about how this exonuclear function of p53 is regulated. Here, we identify and characterize a p53-interacting protein called Hades, an E3 ligase that interacts with p53 in the mitochondria. Hades reduces p53 stability via a mechanism that requires its RING-finger domain with ubiquitin ligase activity. Hades polyubiquitinates p53 in vitro independent of Mdm2 and targets a critical lysine residue in p53 (lysine 24) distinct from those targeted by Mdm2. Hades inhibits a p53-dependent mitochondrial cell death pathway by inhibiting p53 and Bcl-2 interactions. These findings show that Hades-mediated p53 ubiquitination is a novel mechanism for negatively regulating the exonuclear function of p53. PMID:21597459

  15. E3 ubiquitin ligase Hades negatively regulates the exonuclear function of p53.

    PubMed

    Jung, J H; Bae, S; Lee, J Y; Woo, S R; Cha, H J; Yoon, Y; Suh, K-S; Lee, S-J; Park, I-C; Jin, Y-W; Lee, K-H; An, S; Lee, J H

    2011-12-01

    Following DNA damage, p53 translocates to the cytoplasm and mitochondria, where it triggers transcription-independent apoptosis by binding to Bcl-2 family proteins. However, little is known about how this exonuclear function of p53 is regulated. Here, we identify and characterize a p53-interacting protein called Hades, an E3 ligase that interacts with p53 in the mitochondria. Hades reduces p53 stability via a mechanism that requires its RING-finger domain with ubiquitin ligase activity. Hades polyubiquitinates p53 in vitro independent of Mdm2 and targets a critical lysine residue in p53 (lysine 24) distinct from those targeted by Mdm2. Hades inhibits a p53-dependent mitochondrial cell death pathway by inhibiting p53 and Bcl-2 interactions. These findings show that Hades-mediated p53 ubiquitination is a novel mechanism for negatively regulating the exonuclear function of p53.

  16. The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates

    PubMed Central

    Whitaker, Neal; Chen, Yuqing; Jakubowski, Simon J.; Sarkar, Mayukh K.; Li, Feng

    2015-01-01

    ABSTRACT Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are

  17. Origin and diversification of TRIM ubiquitin ligases.

    PubMed

    Marín, Ignacio

    2012-01-01

    Most proteins of the TRIM family (also known as RBCC family) are ubiquitin ligases that share a peculiar protein structure, characterized by including an N-terminal RING finger domain closely followed by one or two B-boxes. Additional protein domains found at their C termini have been used to classify TRIM proteins into classes. TRIMs are involved in multiple cellular processes and many of them are essential components of the innate immunity system of animal species. In humans, it has been shown that mutations in several TRIM-encoding genes lead to diverse genetic diseases and contribute to several types of cancer. They had been hitherto detected only in animals. In this work, by comprehensively analyzing the available diversity of TRIM and TRIM-like protein sequences and evaluating their evolutionary patterns, an improved classification of the TRIM family is obtained. Members of one of the TRIM subfamilies defined, called Subfamily A, turn to be present not only in animals, but also in many other eukaryotes, such as fungi, apusozoans, alveolates, excavates and plants. The rest of subfamilies are animal-specific and several of them originated only recently. Subfamily A proteins are characterized by containing a MATH domain, suggesting a potential evolutionary connection between TRIM proteins and a different type of ubiquitin ligases, known as TRAFs, which contain quite similar MATH domains. These results indicate that the TRIM family emerged much earlier than so far thought and contribute to our understanding of its origin and diversification. The structural and evolutionary links with the TRAF family of ubiquitin ligases can be experimentally explored to determine whether functional connections also exist.

  18. CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1

    PubMed Central

    Tong, Xin; Zhang, Deqiang; Guha, Anirvan; Arthurs, Blake; Cazares, Victor; Gupta, Neil; Yin, Lei

    2015-01-01

    The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant’s resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1. PMID:26431207

  19. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  20. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism

    PubMed Central

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K.

    2015-01-01

    ABSTRACT The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. PMID:26060274

  1. Replication Bypass of the trans-4-Hydroxynonenal-Derived (6S,8R,11S)-1,N[superscript 2]-Deoxyguanosine DNA Adduct by the Sulfolobus solfataricus DNA Polymerase IV

    SciTech Connect

    Banerjee, Surajit; Christov, Plamen P.; Kozekova, Albena; Rizzo, Carmelo J.; Egli, Martin; Stone, Michael P.

    2014-10-02

    trans-4-Hydroxynonenal (HNE) is the major peroxidation product of {omega}-6 polyunsaturated fatty acids in vivo. Michael addition of the N{sub 2}-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N{sub 2}-dGuo (1,N{sub 2}-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua {yields} Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, the (6S,8R,11S)-1,N{sub 2}-dGuo lesion remained in the ring

  2. Fabry disease: incidence of the common later-onset α-galactosidase A IVS4+919G→A mutation in Taiwanese newborns--superiority of DNA-based to enzyme-based newborn screening for common mutations.

    PubMed

    Chien, Yin-Hsiu; Lee, Ni-Chung; Chiang, Shu-Chuan; Desnick, Robert J; Hwu, Wuh-Liang

    2012-07-18

    Fabry disease is a panethnic, X-linked, inborn error of glycosphingolipid metabolism resulting from mutations in the α-galactosidase A gene (GLA) that lead to the deficient activity of the lysosomal enzyme, α-galactosidase A (α-Gal A). Affected males with no α-Gal A activity have the early-onset classic phenotype, whereas those with residual activity present with the later-onset subtype. Recently, we reported that newborn enzyme-based screening using dried blood spots (DBS) in Taiwan revealed a high incidence of newborn males who had the GLA c.936+919G→A (IVS4+919G→A) mutation. This lesion causes cryptic splicing, markedly reducing the amount of wild-type GLA mRNA, and has been found in males with the later-onset Fabry phenotype, manifesting as cardiac, renal and/or cerebrovascular disease. To more accurately determine the incidence of the IVS4+919G→A mutation, 20,063 consecutive newborns were screened by a deoxyribonucleic acid (DNA)-based assay. Of the 10,499 males, 12 (1/875) and 24 of the 9,564 females (1/399) had the mutation. On the basis of these frequencies, the previous newborn enzyme-based DBS screening (cutoff: <30% of the normal mean) only identified 67% and 17% of mutation-positive males and females, respectively. The mean DBS α-Gal A activities in the mutation-positive males and females were 23% (1.54 U) and 55% (3.63 U) of normal mean male/female values, respectively. These studies confirm the high incidence of the IVS4+919G→A mutation in the Taiwanese population and indicate that its detectability by enzyme-based DBS screening is unreliable, especially in females. These studies emphasize the superiority of DNA-based newborn screening for common mutations, particularly for X-linked diseases.

  3. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair

    PubMed Central

    Çağlayan, Melike; Wilson, Samuel H.

    2015-01-01

    DNA lesions arise from many endogenous and environmental agents, and they promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26596511

  4. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair

    PubMed Central

    çağlayan, Melike; Wilson, Samuel H.

    2015-01-01

    DNA lesions arise from many endogenous and environmental agents, and they promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5′-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26466358

  5. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair.

    PubMed

    Çağlayan, Melike; Wilson, Samuel H

    2015-11-01

    DNA lesions arise from many endogenous and environmental agents, and such lesions can promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER.

  6. Identification of Erwinia stewartii by a ligase chain reaction assay.

    PubMed Central

    Wilson, W J; Wiedmann, M; Dillard, H R; Batt, C A

    1994-01-01

    A PCR-coupled ligase chain reaction (LCR) assay was developed to distinguish the plant pathogenic bacterium Erwinia stewartii from other erwiniae. This new technique allows discrimination to the species level on the basis of a single-base-pair difference in the 16S rRNA gene which is unique to E. stewartii. Portions of the 16S rRNA genes of E. stewartii and the closely related Erwinia herbicola were sequenced. From comparison of the two 16S rRNA gene regions, two primer pairs were constructed such that only E. stewartii DNA gave a product in the LCR assay. The ligated product was separated from the radioactively labelled primers by denaturing polyacrylamide gel electrophoresis and visualized by autoradiography. Twenty-four different Erwinia species and strains were tested by PCR-coupled LCR to verify the specificity of the assay, and only E. stewartii strains gave a positive reaction. In addition, infected and healthy plant material was also assayed. E. stewartii was detected in infected plant material, even when large populations of epiphytic bacteria were present. No enrichment was necessary for detection of the pathogen in corn leaves. This assay has potential as a diagnostic technique for the detection of E. stewartii in infected plant and vector material. Images PMID:7509585

  7. UHRF2, another E3 ubiquitin ligase for p53

    SciTech Connect

    Bai, Lu; Wang, Xiaohui; Jin, Fangmin; Yang, Yan; Qian, Guanhua; Duan, Changzhu

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UHRF2 associates with p53 in vivo and in vitro. Black-Right-Pointing-Pointer UHRF2 interacts with p53 through its SRA/YDG domain. Black-Right-Pointing-Pointer UHRF2 ubiquitinates p53 in vivo and in vitro. -- Abstract: UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.

  8. Nucleosome linker proteins HMGB1 and histone H1 differentially enhance DNA ligation reactions.

    PubMed

    Yamanaka, Shiho; Katayama, Eisaku; Yoshioka, Ken-ichi; Nagaki, Sumiko; Yoshida, Michiteru; Teraoka, Hirobumi

    2002-03-22

    We previously reported that HMGB1, which originally binds to chromatin in a manner competitive with linker histone H1 to modulate chromatin structure, enhances both intra-molecular and inter-molecular ligations. In this paper, we found that histone H1 differentially enhances ligation reaction of DNA double-strand breaks (DSB). Histone H1 stimulated exclusively inter-molecular ligation reaction of DSB with DNA ligase IIIbeta and IV, whereas HMGB1 enhanced mainly intra-molecular ligation reaction. Electron microscopy of direct DNA-protein interaction without chemical cross-linking visualized that HMGB1 bends and loops linear DNA to form compact DNA structure and that histone H1 is capable of assembling DNA in tandem arrangement with occasional branches. These results suggest that differences in the enhancement of DNA ligation reaction are due to those in alteration of DNA configuration induced by these two linker proteins. HMGB1 and histone H1 may function in non-homologous end-joining of DSB repair and V(D)J recombination in different manners.

  9. Telomere Dysfunction and DNA-PKcs Deficiency: characterization and consequence

    PubMed Central

    Williams, Eli S.; Klingler, Rebekah; Ponnaiya, Brian; Hardt, Tanja; Schrock, Evelin; Lees-Miller, Susan P.; Meek, Katheryn; Ullrich, Robert L.; Bailey, Susan M.

    2013-01-01

    The mechanisms by which cells accurately distinguish between DNA double-strand break (DSB) ends and telomeric DNA ends remain poorly defined. Recent investigations have revealed intriguing interactions between DNA repair and telomeres. We were the first to report a requirement for the non-homologous end-joining (NHEJ) protein DNA-dependent protein kinase (DNA-PK) in the effective end-capping of mammalian telomeres. Here, we report our continued characterization of uncapped (as opposed to shortened) dysfunctional telomeres in cells deficient for the catalytic subunit of DNA-PK (DNA-PKcs) and shed light on their consequence. We present evidence in support of our model that uncapped telomeres in this repair-deficient background are inappropriately detected and processed as DSBs, and so participate not only in spontaneous telomere-telomere fusion, but importantly, also in ionizing radiation (IR)-induced telomere-DSB fusion events. We demonstrate that phosphorylation of DNA-PKcs itself (Thr-2609 cluster) is a critical event for proper telomere end-processing and that ligase IV (NHEJ) is required for uncapped telomere fusion. We also find uncapped telomeres in cells from the BALB/c mouse, which harbors two single-nucleotide polymorphisms (SNPs) that result in reduced DNA-PKcs abundance and activity, most markedly in mammary tissue, and is both radiosensitive and susceptible to radiogenic mammary cancer. Our results suggest mechanistic links between uncapped/dysfunctional telomeres in DNA-PKcs repair-deficient backgrounds, radiation-induced instability and breast cancer. These studies provide the first direct evidence of genetic susceptibility and environmental insult interactions leading to a unique and on-going form of genomic instability capable of driving carcinogenesis. PMID:19244120

  10. The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress

    PubMed Central

    Melnik, Andre; Wilson-Zbinden, Caroline; Schellhaas, René; Kastner, Lisa; Piwko, Wojciech; Dees, Martina; Picotti, Paola; Maric, Marija; Labib, Karim; Luke, Brian; Peter, Matthias

    2016-01-01

    Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks. PMID:26849847

  11. DNA polymorphism identity determination using flow cytometry

    DOEpatents

    Nolan, John P.; White, P. Scott; Cai, Hong

    2001-01-01

    DNA polymorphism identity determination using flow cytometry. Primers designed to be immobilized on microspheres are allowed to anneal to the DNA strand under investigation, and are extended by either DNA polymerase using fluorescent dideoxynucleotides or ligated by DNA ligase to fluorescent reporter oligonucleotides. The fluorescence of either the dideoxynucleotide or the reporter oligonucleotide attached to the immobilized primer is measured by flow cytometry, thereby identifying the nucleotide polymorphism on the DNA strand.

  12. TDP1 promotes assembly of non-homologous end joining protein complexes on DNA.

    PubMed

    Heo, Jinho; Li, Jing; Summerlin, Matthew; Hays, Annette; Katyal, Sachin; McKinnon, Peter J; Nitiss, Karin C; Nitiss, John L; Hanakahi, Leslyn A

    2015-06-01

    The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3'-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ.

  13. TDP1 promotes assembly of non-homologous end joining protein complexes on DNA

    PubMed Central

    Heo, Jinho; Li, Jing; Summerlin, Matthew; Hays, Annette; Katyal, Sachin; McKinnon, Peter J.; Nitiss, Karin C.; Nitiss, John L.; Hanakahi, Leslyn A.

    2015-01-01

    The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3′-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ. PMID:25841101

  14. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  15. Inhibitors of Apoptosis Affect DNA Degradation and Repair in Sulfur Mustard (HD)-Exposed Human Epidermal Keratinocytes (HEK)

    DTIC Science & Technology

    2003-07-01

    accompanied by DNA ligase I activation via DNA-dependent protein kinase (DNA-PK) mediated phosphorylation, and is retarded in the presence of a poly (ADP...ATCC No. HB 11726). Bovine DNA ligase I monoclonal antibody was a kind gift from Dr. Tomas Lindahl of the Imperial Cancer Research Fund, UK...metabolic 33P labeling of DNA ligase in HEK and other cells: The experimental and control cells were washed with 37oC saline and then exposed to 1 mM HD

  16. DD-ligases as a potential target for antibiotics: past, present and future.

    PubMed

    Tytgat, I; Colacino, E; Tulkens, P M; Poupaert, J H; Prévost, M; Van Bambeke, F

    2009-01-01

    DD-ligases catalyze the synthesis of the D-Ala-D-Ala and D-Ala-D-Ser dipeptides or the D Ala-D-Lac depsipeptide in an early step of peptidoglycan synthesis. Their function is essential for bacterial growth and specific to bacteria, making them attractive targets for the development of novel antibiotics. This review examines the biochemical and structural features of these enzymes and presents the main families of inhibitors described so far. Over the last 20 years, 7 structures of DD-ligases have been solved by X-ray crystallography, giving a detailed view of the general topology of the active site and of the residues in the catalytic pocket that play a central role in substrate recognition. This has paved the way to the rational design of inhibitors, which can be classified as (i) analogues of substrates, (ii) analogues of the product of the reaction, (iii) analogues of the transition state, and (iv) original scaffolds discovered by screening or by rational computer-aided design. The three first strategies have led to molecules that are polar by nature and have therefore poor access to their cytosolic target. The fourth one is potentially most promising as it yields more diverse structures. The most active molecules show affinity constants in the microM range, but microbiological evaluation remains scarce (typical MIC 1-8 mg/L for the tested compounds). These data strongly suggest targeting DD-ligases is a promising approach for discovery of new antibiotics. Future research should, however, aim at finding more potent inhibitors endowed with the appropriate pharmacokinetic properties that ensure access to their intracellular target.

  17. Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation

    PubMed Central

    Ordonez, Heather; Uson, Maria Loressa; Shuman, Stewart

    2014-01-01

    This study unveils Mycobacterium smegmatis DinB2 as the founder of a clade of Y-family DNA polymerase that is naturally adept at incorporating ribonucleotides by virtue of a leucine in lieu of a canonical aromatic steric gate. DinB2 efficiently scavenges limiting dNTP and rNTP substrates in the presence of manganese. DinB2's sugar selectivity factor, gauged by rates of manganese-dependent dNMP versus rNMP addition, is 2.7- to 3.8-fold. DinB2 embeds ribonucleotides during DNA synthesis when rCTP and dCTP are at equimolar concentration. DinB2 can incorporate at least 16 consecutive ribonucleotides. In magnesium, DinB2 has a 26- to 78-fold lower affinity for rNTPs than dNTPs, but only a 2.6- to 6-fold differential in rates of deoxy versus ribo addition (kpol). Two other M. smegmatis Y-family polymerases, DinB1 and DinB3, are characterized here as template-dependent DNA polymerases that discriminate strongly against ribonucleotides, a property that, in the case of DinB1, correlates with its aromatic steric gate side chain. We speculate that the unique ability of DinB2 to utilize rNTPs might allow for DNA repair with a ‘ribo patch’ when dNTPs are limiting. Phylogenetic analysis reveals DinB2-like polymerases, with leucine, isoleucine or valine steric gates, in many taxa of the phylum Actinobacteria. PMID:25200080

  18. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

    SciTech Connect

    Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Izum, Tadahide; Arvai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi, Kenichi; Cunningham, Richard P.; Mitra, Sankar; Tainer, John A.

    2013-03-22

    Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg(2+) and a 0.92 Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.

  19. Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein

    PubMed Central

    Yuan, Ying; Britton, Sébastien; Delteil, Christine; Coates, Julia; Jackson, Stephen P.; Barboule, Nadia; Frit, Philippe; Calsou, Patrick

    2015-01-01

    In humans, DNA double-strand breaks (DSBs) are repaired by two mutually-exclusive mechanisms, homologous recombination or end-joining. Among end-joining mechanisms, the main process is classical non-homologous end-joining (C-NHEJ) which relies on Ku binding to DNA ends and DNA Ligase IV (Lig4)-mediated ligation. Mostly under Ku- or Lig4-defective conditions, an alternative end-joining process (A-EJ) can operate and exhibits a trend toward microhomology usage at the break junction. Homologous recombination relies on an initial MRN-dependent nucleolytic degradation of one strand at DNA ends. This process, named DNA resection generates 3′ single-stranded tails necessary for homologous pairing with the sister chromatid. While it is believed from the current literature that the balance between joining and recombination processes at DSBs ends is mainly dependent on the initiation of resection, it has also been shown that MRN activity can generate short single-stranded DNA oligonucleotides (ssO) that may also be implicated in repair regulation. Here, we evaluate the effect of ssO on end-joining at DSB sites both in vitro and in cells. We report that under both conditions, ssO inhibit C-NHEJ through binding to Ku and favor repair by the Lig4-independent microhomology-mediated A-EJ process. PMID:26350212

  20. Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners.

    PubMed

    O'Connor, Hazel F; Lyon, Nancy; Leung, Justin W; Agarwal, Poonam; Swaim, Caleb D; Miller, Kyle M; Huibregtse, Jon M

    2015-12-01

    We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ubiquitin-Activated Interaction Traps) are E3-ubiquitin fusion proteins and, in an E1- and E2-dependent manner, the C-terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co-purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester-linked lariat intermediate or through an E2 thioester intermediate, and both WT and active-site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double-strand break repair. Using the RNF168 UBAIT, we identify H2AZ--a histone protein involved in DNA repair--as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.

  1. Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen.

    PubMed

    Unk, Ildiko; Hajdú, Ildikó; Fátyol, Károly; Szakál, Barnabás; Blastyák, András; Bermudez, Vladimir; Hurwitz, Jerard; Prakash, Louise; Prakash, Satya; Haracska, Lajos

    2006-11-28

    Human SHPRH gene is located at the 6q24 chromosomal region, and loss of heterozygosity in this region is seen in a wide variety of cancers. SHPRH is a member of the SWI/SNF family of ATPases/helicases, and it possesses a C(3)HC(4) RING motif characteristic of ubiquitin ligase proteins. In both of these features, SHPRH resembles the yeast Rad5 protein, which, together with Mms2-Ubc13, promotes replication through DNA lesions via an error-free postreplicational repair pathway. Genetic evidence in yeast has indicated a role for Rad5 as a ubiquitin ligase in mediating the Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Here we show that SHPRH is a functional homolog of Rad5. Similar to Rad5, SHPRH physically interacts with the Rad6-Rad18 and Mms2-Ubc13 complexes, and we show that SHPRH protein is a ubiquitin ligase indispensable for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Based on these observations, we predict a role for SHPRH in promoting error-free replication through DNA lesions. Such a role for SHPRH is consistent with the observation that this gene is mutated in a number of cancer cell lines, including those from melanomas and ovarian cancers, which raises the strong possibility that SHPRH function is an important deterrent to mutagenesis and carcinogenesis in humans.

  2. A Self-Replicating Ligase Ribozyme

    NASA Technical Reports Server (NTRS)

    Paul, Natasha; Joyce, Gerald F.

    2002-01-01

    A self-replicating molecule directs the covalent assembly of component molecules to form a product that is of identical composition to the parent. When the newly formed product also is able to direct the assembly of product molecules, the self-replicating system can be termed autocatalytic. A self-replicating system was developed based on a ribozyme that catalyzes the assembly of additional copies of Itself through an RNA-catalyzed RNA ligation reaction. The R3C ligase ribozyme was redesigned so that it would ligate two substrates to generate an exact copy of itself, which then would behave in a similar manner. This self-replicating system depends on the catalytic nature of the RNA for the generation of copies. A linear dependence was observed between the initial rate of formation of new copies and the starting concentration of ribozyme, consistent with exponential growth. The autocatalytic rate constant was 0.011 per min, whereas the initial rate of reaction in the absence of pre-existing ribozyme was only 3.3 x 10(exp -11) M per min. Exponential growth was limited, however, because newly formed ribozyme molecules had greater difficulty forming a productive complex with the two substrates. Further optimization of the system may lead to the sustained exponential growth of ribozymes that undergo self-replication.

  3. A conserved RAD6-MDM2 ubiquitin ligase machinery targets histone chaperone ASF1A in tumorigenesis.

    PubMed

    Wang, Chen; Chang, Jian-Feng; Yan, Hongli; Wang, Da-Liang; Liu, Yan; Jing, Yuanya; Zhang, Meng; Men, Yu-Long; Lu, Dongdong; Yang, Xiao-Mei; Chen, Su; Sun, Fang-Lin

    2015-10-06

    Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.

  4. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination.

    PubMed

    Qiao, Huanyu; Prasada Rao, H B D; Yang, Ye; Fong, Jared H; Cloutier, Jeffrey M; Deacon, Dekker C; Nagel, Kathryn E; Swartz, Rebecca K; Strong, Edward; Holloway, J Kim; Cohen, Paula E; Schimenti, John; Ward, Jeremy; Hunter, Neil

    2014-02-01

    Crossover recombination facilitates the accurate segregation of homologous chromosomes during meiosis. In mammals, poorly characterized regulatory processes ensure that every pair of chromosomes obtains at least one crossover, even though most recombination sites yield non-crossovers. Designation of crossovers involves selective localization of the SUMO ligase RNF212 to a minority of recombination sites, where it stabilizes pertinent factors such as MutSγ (ref. 4). Here we show that the ubiquitin ligase HEI10 (also called CCNB1IP1) is essential for this crossover/non-crossover differentiation process. In HEI10-deficient mice, RNF212 localizes to most recombination sites, and dissociation of both RNF212 and MutSγ from chromosomes is blocked. Consequently, recombination is impeded, and crossing over fails. In wild-type mice, HEI10 accumulates at designated crossover sites, suggesting that it also has a late role in implementing crossing over. As with RNF212, dosage sensitivity for HEI10 indicates that it is a limiting factor for crossing over. We suggest that SUMO and ubiquitin have antagonistic roles during meiotic recombination that are balanced to effect differential stabilization of recombination factors at crossover and non-crossover sites.

  5. Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator

    PubMed Central

    Zhuang, Min; Guan, Shenheng; Wang, Haopeng; Burlingame, Alma L.; Wells, James A.

    2012-01-01

    SUMMARY Inhibitors of Apoptosis Proteins (IAPs) are guardian ubiquitin ligases that keep classic pro-apoptotic proteins in check. Systematic identification of additional IAP substrates is challenged by the heterogeneity and sheer number of ubiquitinated proteins (>5000). Here we report a powerful catalytic tagging tool, the NEDDylator, which fuses a NEDD8 E2 conjugating enzyme, Ubc12, to the ubiquitin ligase, XIAP or cIAP1. This permits transfer of the rare ubiquitin homolog NEDD8 to the ubiquitin E3 substrates allowing them to be efficiently purified for LC/MS/MS identification. We have identified >50 potential IAP substrates of both cytosolic and mitochondrial origin that bear hallmark N-terminal IAP binding motifs. These substrates include the recently discovered protein phosphatase, PGAM5, which we show is proteolytically processed, accumulates in cytosol during apoptosis, and sensitizes cells to death. These studies reveal mechanisms and antagonistic partners for specific IAPs, and provide a powerful technology for labeling binding partners in transient protein-protein complexes. PMID:23201124

  6. Feasibility of a DNA-Based Combinatorial Array Recognition Surface (CARS) in a Polyacrylamide Gel Matrix

    DTIC Science & Technology

    2007-12-12

    the phosphate backbone. wherever p.·J.Ttial hybrids naturally occur, via Taq DNA ligase (16). Ligation may not have been entirely necessary for the...CARS libraries, noncontiguous pieces can be ligaled togclher willi Taq DNA ligase . The lOp half o(lhe figure iIIu51Tates Ihe appearance o( a I-D CARS...cluding dideoxynucleotides. were from a "Si lver Sequence" kit purchased from Promega Corporation (Madison. WI). ThermliS aquaticus (Taq) DNA ligase was

  7. Interpretation of DNA vibration modes: IV--A single-helical approach to assign the phosphate-backbone contribution to the vibrational spectra in A and B conformations.

    PubMed

    Letellier, R; Ghomi, M; Taillandier, E

    1989-02-01

    A calculated approach based on the Higgs method for assigning the vibration modes of an infinite helicoidal polymeric chain has been performed on the basis of a reliable valence force field. The calculated results allowed the phosphate-backbone marker modes of the A and B forms, to be interpreted. In the dynamic models used, the bases have been omitted and no interchain interaction was considered. The calculation can also interprete quite satisfactorily the characteristic Raman peaks and infrared bands in the 1250-700 cm-1 spectral region arising from the sugar or sugar-phosphate association and reproduce their evolution upon the B----A DNA conformational transition. They clearly show that the phosphate-backbone modes in the above mentioned spectral region constitute the optical branches of the phonon dispersion curves with no detectable variation in the first Brillouin-zone.

  8. CREB SUMOylation by the E3 ligase PIAS1 enhances spatial memory.

    PubMed

    Chen, Yan-Chu; Hsu, Wei-Lun; Ma, Yun-Li; Tai, Derek J C; Lee, Eminy H Y

    2014-07-16

    cAMP-responsive element binding protein (CREB) phosphorylation and signaling plays an important role in long-term memory formation, but other posttranslational modifications of CREB are less known. Here, we found that CREB1Δ, the short isoform of CREB, could be sumoylated by the small ubiquitin-like modifier (SUMO) E3 ligase protein inhibitor of activated STAT1 (PIAS1) at Lys271 and Lys290 and PIAS1 SUMOylation of CREB1Δ increased the expression level of CREB1Δ. CREB1Δ could also be sumoylated by other PIAS family proteins, but not by the E3 ligases RanBP2 and Pc2 or by the E2 ligase Ubc9. Furthermore, water maze training increased the level of endogenous CREB SUMOylation in rat CA1 neurons determined by in vitro SUMOylation assay, but this effect was not observed in other brain areas. Moreover, transduction of Lenti-CREBWT to rat CA1 area facilitated, whereas transduction of Lenti-CREB double sumo-mutant (CREBK271RK290R) impaired, spatial learning and memory performance. Transduction of Lenti-CREBWT-SUMO1 fusion vector to rat CA1 area showed a more significant effect in enhancing spatial learning and memory and CREB SUMOylation. Lenti-CREBWT transduction increased, whereas Lenti-CREBK271RK290R transduction decreased, CREB DNA binding to the brain-derived neurotrophic factor (bdnf) promoter and decreased bdnf mRNA expression. Knock-down of PIAS1 expression in CA1 area by PIAS1 siRNA transfection impaired spatial learning and memory and decreased endogenous CREB SUMOylation. In addition, CREB SUMOylation was CREB phosphorylation dependent and lasted longer. Therefore, CREB phosphorylation may be responsible for signal transduction during the early phase of long-term memory formation, whereas CREB SUMOylation sustains long-term memory.

  9. The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination.

    PubMed

    Cubillos-Rojas, Monica; Schneider, Taiane; Hadjebi, Ouadah; Pedrazza, Leonardo; de Oliveira, Jarbas Rodrigues; Langa, Francina; Guénet, Jean-Louis; Duran, Joan; de Anta, Josep Maria; Alcántara, Soledad; Ruiz, Rocio; Pérez-Villegas, Eva María; Aguilar-Montilla, Francisco J; Carrión, Ángel M; Armengol, Jose Angel; Baple, Emma; Crosby, Andrew H; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-08-30

    A mutation in the HERC2 gene has been linked to a severe neurodevelopmental disorder with similarities to the Angelman syndrome. This gene codifies a protein with ubiquitin ligase activity that regulates the activity of tumor protein p53 and is involved in important cellular processes such as DNA repair, cell cycle, cancer, and iron metabolism. Despite the critical role of HERC2 in these physiological and pathological processes, little is known about its relevance in vivo. Here, we described a mouse with targeted inactivation of the Herc2 gene. Homozygous mice were not viable. Distinct from other ubiquitin ligases that interact with p53, such as MDM2 or MDM4, p53 depletion did not rescue the lethality of homozygous mice. The HERC2 protein levels were reduced by approximately one-half in heterozygous mice. Consequently, HERC2 activities, including ubiquitin ligase and stimulation of p53 activity, were lower in heterozygous mice. A decrease in HERC2 activities was also observed in human skin fibroblasts from individuals with an Angelman-like syndrome that express an unstable mutant protein of HERC2. Behavioural analysis of heterozygous mice identified an impaired motor synchronization with normal neuromuscular function. This effect was not observed in p53 knockout mice, indicating that a mechanism independent of p53 activity is involved. Morphological analysis showed the presence of HERC2 in Purkinje cells and a specific loss of these neurons in the cerebella of heterozygous mice. In these animals, an increase of autophagosomes and lysosomes was observed. Our findings establish a crucial role of HERC2 in embryonic development and motor coordination.

  10. The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination

    PubMed Central

    Cubillos-Rojas, Monica; Schneider, Taiane; Hadjebi, Ouadah; Pedrazza, Leonardo; de Oliveira, Jarbas Rodrigues; Langa, Francina; Guénet, Jean-Louis; Duran, Joan; de Anta, Josep Maria; Alcántara, Soledad; Ruiz, Rocio; Pérez-Villegas, Eva María; Aguilar, Francisco J.; Carrión, Ángel M.; Armengol, Jose Angel; Baple, Emma; Crosby, Andrew H.; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-01-01

    A mutation in the HERC2 gene has been linked to a severe neurodevelopmental disorder with similarities to the Angelman syndrome. This gene codifies a protein with ubiquitin ligase activity that regulates the activity of tumor protein p53 and is involved in important cellular processes such as DNA repair, cell cycle, cancer, and iron metabolism. Despite the critical role of HERC2 in these physiological and pathological processes, little is known about its relevance in vivo. Here, we described a mouse with targeted inactivation of the Herc2 gene. Homozygous mice were not viable. Distinct from other ubiquitin ligases that interact with p53, such as MDM2 or MDM4, p53 depletion did not rescue the lethality of homozygous mice. The HERC2 protein levels were reduced by approximately one-half in heterozygous mice. Consequently, HERC2 activities, including ubiquitin ligase and stimulation of p53 activity, were lower in heterozygous mice. A decrease in HERC2 activities was also observed in human skin fibroblasts from individuals with an Angelman-like syndrome that express an unstable mutant protein of HERC2. Behavioural analysis of heterozygous mice identified an impaired motor synchronization with normal neuromuscular function. This effect was not observed in p53 knockout mice, indicating that a mechanism independent of p53 activity is involved. Morphological analysis showed the presence of HERC2 in Purkinje cells and a specific loss of these neurons in the cerebella of heterozygous mice. In these animals, an increase of autophagosomes and lysosomes was observed. Our findings establish a crucial role of HERC2 in embryonic development and motor coordination. PMID:27528230

  11. Molecular Cloning of the Bovine Liver ADPRT cDNA

    DTIC Science & Technology

    1988-12-13

    of the DNA was - 0.5 micrograms. The 209 bp fragment from SV40 was mixed with pUC19 DNA in equal amounts and ligated ovenight at 12*C using T4 DNA ... ligase . The ligation mixture was used to transform Ecoli JM109 (1). Transformanrs were selected on LB plates cont- aining X-gal + FF0 + ampicillin (1

  12. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair

    PubMed Central

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-01-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs—c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142—XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells. PMID:25941166

  13. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development.

    PubMed

    Orii, Kenji E; Lee, Youngsoo; Kondo, Naomi; McKinnon, Peter J

    2006-06-27

    The repair of DNA double-strand breaks (DSBs) occurs via nonhomologous end-joining (NHEJ) or homologous recombination (HR). These mechanistically distinct pathways are critical for maintenance of genomic integrity and organismal survival. Although inactivation of either pathway leads to embryonic lethality, here we show selective requirements for each DNA DSB repair pathway at different stages of mammalian nervous system development. DNA damage-induced apoptosis resulting from inactivation of HR (Xrcc2 deficiency) only occurred in proliferating neural precursor cells, whereas disruption of NHEJ (DNA ligase IV deficiency) mainly affected differentiating cells at later developmental stages. Therefore, these data suggest that NHEJ is dispensable for a substantial portion of early development because DSB repair during this period utilizes HR. Moreover, DNA damage-induced apoptosis required the ataxia telangiectasia mutated (Atm) kinase after disruption of NHEJ, but not HR, during neurogenesis. However, embryonic lethality arising from disruption of either repair pathway was rescued by loss of p53 and resulted in specific tumor types reflective of the particular DSB repair pathway inactivated. Thus, these data reveal distinct tissue- and cell-type requirements for each DNA DSB repair pathway during neural development and provide insights for understanding the contributions of DNA DSB responses to disease.

  14. Overview of post Cohen-Boyer methods for single segment cloning and for multisegment DNA assembly.

    PubMed

    Sands, Bryan; Brent, Roger

    2016-01-01

    In 1973, Cohen and coworkers published a foundational paper describing the cloning of DNA fragments into plasmid vectors. In it, they used DNA segments made by digestion with restriction enzymes and joined these in vitro with DNA ligase. These methods established working recombinant DNA technology and enabled the immediate start of the biotechnology industry. Since then, "classical" recombinant DNA technology using restriction enzymes and DNA ligase has matured. At the same time, researchers have developed numerous ways to generate large, complex, multisegment DNA constructions that offer advantages over classical techniques. Here, we provide an overview of "post-Cohen-Boyer" techniques used for cloning single segments into vectors (T/A, Topo cloning, Gateway and Recombineering) and for multisegment DNA assembly (Biobricks, Golden Gate, Gibson, Yeast homologous recombination in vivo, and Ligase Cycling Reaction). We compare and contrast these methods and also discuss issues that researchers should consider before choosing a particular multisegment DNA assembly method.

  15. Overview of post Cohen-Boyer methods for single segment cloning and for multisegment DNA assembly

    PubMed Central

    Sands, Bryan; Brent, Roger

    2016-01-01

    In 1973, Cohen and coworkers published a foundational paper describing the cloning of DNA fragments into plasmid vectors. In it, they used DNA segments made by digestion with restriction enzymes and joined these in vitro with DNA ligase. These methods established working recombinant DNA technology and enabled the immediate start of the biotechnology industry. Since then, “classical” recombinant DNA technology using restriction enzymes and DNA ligase has matured. At the same time, researchers have developed numerous ways to generate large, complex, multisegment DNA constructions that offer advantages over classical techniques. Here, we provide an overview of “post-Cohen-Boyer” techniques used for cloning single segments into vectors (T/A, Topo cloning, Gateway and Recombineering) and for multisegment DNA assembly (Biobricks, Golden Gate, Gibson, Yeast homologous recombination in vivo, and Ligase Cycling Reaction). We compare and contrast these methods and also discuss issues that researchers should consider before choosing a particular multisegment DNA assembly method. PMID:27152131

  16. In Vitro Activity of AZD0914, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor, against Clinically Relevant Gram-Positive and Fastidious Gram-Negative Pathogens

    PubMed Central

    Huband, Michael D.; Hackel, Meredith; de Jonge, Boudewijn L. M.; Sahm, Daniel F.; Bradford, Patricia A.

    2015-01-01

    AZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed the in vitro activity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter against Staphylococcus aureus (n = 11,680), coagulase-negative staphylococci (n = 1,923), streptococci (n = 4,380), and Moraxella catarrhalis (n = 145), 0.5 mg/liter against Staphylococcus lugdunensis (n = 120) and Haemophilus influenzae (n = 352), 1 mg/liter against Enterococcus faecalis (n = 1,241), and 2 mg/liter against Haemophilus parainfluenzae (n = 70). The activity against Enterococcus faecium was more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producing Haemophilus spp., and M. catarrhalis. Based on these in vitro findings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species. PMID:26195518

  17. Bacteria-host relationship: ubiquitin ligases as weapons of invasion

    PubMed Central

    Maculins, Timurs; Fiskin, Evgenij; Bhogaraju, Sagar; Dikic, Ivan

    2016-01-01

    Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets. PMID:26964724

  18. In Vivo Biotinylation of Bacterial Magnetic Particles by a Truncated Form of Escherichia coli Biotin Ligase and Biotin Acceptor Peptide ▿

    PubMed Central

    Maeda, Yoshiaki; Yoshino, Tomoko; Matsunaga, Tadashi

    2010-01-01

    Escherichia coli biotin ligase can attach biotin molecules to a lysine residue of biotin acceptor peptide (BAP), and biotinylation of particular BAP-fused proteins in cells was carried out by coexpression of E. coli biotin ligase (in vivo biotinylation). This in vivo biotinylation technology has been applied for protein purification, analysis of protein localization, and protein-protein interaction in eukaryotic cells, while such studies have not been reported in bacterial cells. In this study, in vivo biotinylation of bacterial magnetic particles (BacMPs) synthesized by Magnetospirillum magneticum AMB-1 was attempted by heterologous expression of E. coli biotin ligase. To biotinylate BacMPs in vivo, BAP was fused to a BacMP surface protein, Mms13, and E. coli biotin ligase was simultaneously expressed in the truncated form lacking the DNA-binding domain. This truncation-based approach permitted the growth of AMB-1 transformants when biotin ligase was heterologously expressed. In vivo biotinylation of BAP on BacMPs was confirmed using an alkaline phosphatase-conjugated antibiotin antibody. The biotinylated BAP-displaying BacMPs were then exposed to streptavidin by simple mixing. The streptavidin-binding capacity of BacMPs biotinylated in vivo was 35-fold greater than that of BacMPs biotinylated in vitro, where BAP-displaying BacMPs purified from bacterial cells were biotinylated by being mixed with E. coli biotin ligase. This study describes not only a simple method to produce biotinylated nanomagnetic particles but also a possible expansion of in vivo biotinylation technology for bacterial investigation. PMID:20622127

  19. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases

    PubMed Central

    Zhou, Weihua; Wei, Wenyi; Sun, Yi

    2013-01-01

    The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases. PMID:23528706

  20. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2)*

    PubMed Central

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J.; Schmidt, Wolfgang

    2015-01-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)1 and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  1. High sensitivity EndoV mutation scanning through real-time ligase proofreading.

    PubMed

    Pincas, Hanna; Pingle, Maneesh R; Huang, Jianmin; Lao, Kaiqin; Paty, Philip B; Friedman, Alan M; Barany, Francis

    2004-10-28

    The ability to associate mutations in cancer genes with the disease and its subtypes is critical for understanding oncogenesis and identifying biomarkers for clinical diagnosis. A two-step mutation scanning method that sequentially used endonuclease V (EndoV) to nick at mismatches and DNA ligase to reseal incorrectly or nonspecifically nicked sites was previously developed in our laboratory. Herein we report an optimized single-step assay that enables ligase to proofread EndoV cleavage in real-time under a compromise between buffer conditions. Real-time proofreading results in a dramatic reduction of background cleavage. A universal PCR strategy that employs both unlabeled gene-specific primers and labeled universal primers, allows for multiplexed gene amplification and precludes amplification of primer dimers. Internally labeled PCR primers eliminate EndoV cleavage at the 5' terminus, enabling high-throughput capillary electrophoresis readout. Furthermore, signal intensity is increased and artifacts are reduced by generating heteroduplexes containing only one of the two possible mismatches (e.g. either A/C or G/T). The single-step assay improves sensitivity to 1:50 and 1:100 (mutant:wild type) for unknown mutations in the p53 and K-ras genes, respectively, opening prospects as an early detection tool.

  2. Detection and Quantification of MicroRNAs by Ligase-Assisted Sandwich Hybridization on a Microarray.

    PubMed

    Iizuka, Ryo; Ueno, Taro; Funatsu, Takashi

    2016-01-01

    Extracellular microRNAs (miRNAs) in body fluids have been identified as promising biomarkers for different human diseases. The high-throughput, multiplexed detection and quantification of these miRNAs are highly beneficial for the rapid and accurate diagnosis of diseases. Here, we developed a simple and convenient microarray-based technique, named ligase-assisted sandwich hybridization (LASH), for the detection and quantification of miRNAs. The LASH assay involves the hybridization of capture and detection probe pairs with the target miRNA to form a double-stranded structure which is then nick-sealed by T4 DNA ligase. Using this assay, we successfully demonstrated the multiplexed detection and quantification of different miRNAs in total RNA samples derived from blood obtained within 3 h. Here, we provide a detailed protocol for the LASH assay to detect a specific miRNA, as a model for the detection and quantification of extracellular miRNAs.

  3. RING finger ubiquitin-protein isopeptide ligase Nrdp1/FLRF regulates parkin stability and activity.

    PubMed

    Zhong, Ling; Tan, Ying; Zhou, An; Yu, Qingming; Zhou, Jianhua

    2005-03-11

    Parkin is a ubiquitin-protein isopeptide ligase. It has been suggested that loss of function in parkin causes accumulation and aggregation of its substrates, leading to death of dopaminergic neurons in Parkinson disease. Using the yeast two-hybrid screen, we isolated a RING finger protein that interacted with the N terminus of parkin in a Drosophila cDNA library. Interaction between human parkin and the mammalian RING finger protein homologue Nrdp1/FLRF, a ubiquitin-protein isopeptide ligase that ubiquitinates ErbB3 and ErbB4, was validated by in vitro binding assay, co-immunoprecipitation, and immunofluorescence co-localization. Significantly, pulse-chase experiments showed that cotransfection of Nrdp1 and parkin reduced the half-life of parkin from 5 to 2.5 h. Consistent with these findings, we further observed that degradation of CDCrel-1, a parkin substrate, was facilitated by overexpression of parkin protein. However, co-transfection of Nrdp1 with parkin reversed the effects of parkin on CDCrel-1 degradation. We conclude that Nrdp1 is a parkin modifier that accelerates degradation of parkin, resulting in a reduction of parkin activity.

  4. SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis.

    PubMed

    Ishida, Takashi; Fujiwara, Sumire; Miura, Kenji; Stacey, Nicola; Yoshimura, Mika; Schneider, Katja; Adachi, Sumiko; Minamisawa, Kazunori; Umeda, Masaaki; Sugimoto, Keiko

    2009-08-01

    Endoreduplication involves a doubling of chromosomal DNA without corresponding cell division. In plants, many cell types transit from the mitotic cycle to the endoreduplication cycle or endocycle, and this transition is often coupled with the initiation of cell expansion and differentiation. Although a number of cell cycle regulators implicated in endocycle onset have been identified, it is still largely unknown how this transition is developmentally regulated at the whole organ level. Here, we report that a nuclear-localized SUMO E3 ligase, HIGH PLOIDY2 (HPY2), functions as a repressor of endocycle onset in Arabidopsis thaliana meristems. Loss of HPY2 results in a premature transition from the mitotic cycle to the endocycle, leading to severe dwarfism with defective meristems. HPY2 possesses an SP-RING domain characteristic of MMS21-type SUMO E3 ligases, and we show that the conserved residues within this domain are required for the in vivo and in vitro function of HPY2. HPY2 is predominantly expressed in proliferating cells of root meristems and it functions downstream of meristem patterning transcription factors PLETHORA1 (PLT1) and PLT2. These results establish that HPY2-mediated sumoylation modulates the cell cycle progression and meristem development in the PLT-dependent signaling pathway.

  5. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  6. Regulation of Parkin E3 ubiquitin ligase activity.

    PubMed

    Walden, Helen; Martinez-Torres, R Julio

    2012-09-01

    Parkin is an E3 ubiquitin ligase mutated in autosomal recessive juvenile Parkinson's disease. In addition, it is a putative tumour suppressor, and has roles outside its enzymatic activity. It is critical for mitochondrial clearance through mitophagy, and is an essential protein in most eukaryotes. As such, it is a tightly controlled protein, regulated through an array of external interactions with multiple proteins, posttranslational modifications including phosphorylation and S-nitrosylation, and self-regulation through internal associations. In this review, we highlight some of the recent studies into Parkin regulation and discuss future challenges for gaining a full molecular understanding of the regulation of Parkin E3 ligase activity.

  7. Ovarian Cancer Stage IV

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Ovarian Cancer Stage IV Add to My Pictures View /Download : ... 1200x1335 View Download Large: 2400x2670 View Download Title: Ovarian Cancer Stage IV Description: Drawing of stage IV shows ...

  8. Direct role for proliferating cell nuclear antigen in substrate recognition by the E3 ubiquitin ligase CRL4Cdt2.

    PubMed

    Havens, Courtney G; Shobnam, Nadia; Guarino, Estrella; Centore, Richard C; Zou, Lee; Kearsey, Stephen E; Walter, Johannes C

    2012-03-30

    The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4(Cdt2) substrates contain a "PIP degron," which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4(Cdt2) for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4(Cdt2) substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4(Cdt2) recruitment to chromatin. Our data show that the interaction of CRL4(Cdt2) with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions.

  9. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis

    PubMed Central

    Zhang, M; Zhu, X; Zhang, Y; Cai, Y; Chen, J; Sivaprakasam, S; Gurav, A; Pi, W; Makala, L; Wu, J; Pace, B; Tuan-Lo, D; Ganapathy, V; Singh, N; Li, H

    2015-01-01

    The Ufm1 conjugation system is a novel ubiquitin-like modification system, consisting of Ufm1, Uba5 (E1), Ufc1 (E2) and poorly characterized E3 ligase(s). RCAD/Ufl1 (also known as KIAA0776, NLBP and Maxer) was reported to function as a Ufm1 E3 ligase in ufmylation (Ufm1-mediated conjugation) of DDRGK1 and ASC1 proteins. It has also been implicated in estrogen receptor signaling, unfolded protein response (UPR) and neurodegeneration, yet its physiological function remains completely unknown. In this study, we report that RCAD/Ufl1 is essential for embryonic development, hematopoietic stem cell (HSC) survival and erythroid differentiation. Both germ-line and somatic deletion of RCAD/Ufl1 impaired hematopoietic development, resulting in severe anemia, cytopenia and ultimately animal death. Depletion of RCAD/Ufl1 caused elevated endoplasmic reticulum stress and evoked UPR in bone marrow cells. In addition, loss of RCAD/Ufl1 blocked autophagic degradation, increased mitochondrial mass and reactive oxygen species, and led to DNA damage response, p53 activation and enhanced cell death of HSCs. Collectively, our study provides the first genetic evidence for the indispensable role of RCAD/Ufl1 in murine hematopoiesis and development. The finding of RCAD/Ufl1 as a key regulator of cellular stress response sheds a light into the role of a novel protein network including RCAD/Ufl1 and its associated proteins in regulating cellular homeostasis. PMID:25952549

  10. Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions

    PubMed Central

    Medina-Medina, Ixaura; García-Beltrán, Paola; de la Mora-de la Mora, Ignacio; Oria-Hernández, Jesús; Millot, Guy; Fahraeus, Robin; Reyes-Vivas, Horacio; Sampedro, José G.

    2016-01-01

    HDM2 and HDMX are key negative regulatory factors of the p53 tumor suppressor under normal conditions by promoting its degradation or preventing its trans activity, respectively. It has more recently been shown that both proteins can also act as positive regulators of p53 after DNA damage. This involves phosphorylation by ATM on serine residues HDM2(S395) and HDMX(S403), promoting their respective interaction with the p53 mRNA. However, the underlying molecular mechanisms of how these phosphorylation events switch HDM2 and HDMX from negative to positive regulators of p53 is not known. Our results show that these phosphorylation events reside within intrinsically disordered domains and change the conformation of the proteins. The modifications promote the exposition of N-terminal interfaces that support the formation of a new HDMX-HDM2 heterodimer independent of the C-terminal RING-RING interaction. The E3 ubiquitin ligase activity of this complex toward p53 is prevented by the p53 mRNA ligand but, interestingly, does not affect the capacity to ubiquitinate HDMX and HDM2. These results show how ATM-mediated modifications of HDMX and HDM2 switch HDM2 E3 ubiquitin ligase activity away from p53 but toward HDMX and itself and illustrate how the substrate specificity of HDM2 E3 ligase activity is regulated. PMID:27215386

  11. Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions.

    PubMed

    Medina-Medina, Ixaura; García-Beltrán, Paola; de la Mora-de la Mora, Ignacio; Oria-Hernández, Jesús; Millot, Guy; Fahraeus, Robin; Reyes-Vivas, Horacio; Sampedro, José G; Olivares-Illana, Vanesa

    2016-08-15

    HDM2 and HDMX are key negative regulatory factors of the p53 tumor suppressor under normal conditions by promoting its degradation or preventing its trans activity, respectively. It has more recently been shown that both proteins can also act as positive regulators of p53 after DNA damage. This involves phosphorylation by ATM on serine residues HDM2(S395) and HDMX(S403), promoting their respective interaction with the p53 mRNA. However, the underlying molecular mechanisms of how these phosphorylation events switch HDM2 and HDMX from negative to positive regulators of p53 is not known. Our results show that these phosphorylation events reside within intrinsically disordered domains and change the conformation of the proteins. The modifications promote the exposition of N-terminal interfaces that support the formation of a new HDMX-HDM2 heterodimer independent of the C-terminal RING-RING interaction. The E3 ubiquitin ligase activity of this complex toward p53 is prevented by the p53 mRNA ligand but, interestingly, does not affect the capacity to ubiquitinate HDMX and HDM2. These results show how ATM-mediated modifications of HDMX and HDM2 switch HDM2 E3 ubiquitin ligase activity away from p53 but toward HDMX and itself and illustrate how the substrate specificity of HDM2 E3 ligase activity is regulated.

  12. Ubiquitylation-dependent oligomerization regulates activity of Nedd4 ligases.

    PubMed

    Attali, Ilan; Tobelaim, William Sam; Persaud, Avinash; Motamedchaboki, Khatereh; Simpson-Lavy, Kobi J; Mashahreh, Bayan; Levin-Kravets, Olga; Keren-Kaplan, Tal; Pilzer, Inbar; Kupiec, Martin; Wiener, Reuven; Wolf, Dieter A; Rotin, Daniela; Prag, Gali

    2017-02-15

    Ubiquitylation controls protein function and degradation. Therefore, ubiquitin ligases need to be tightly controlled. We discovered an evolutionarily conserved allosteric restraint mechanism for Nedd4 ligases and demonstrated its function with diverse substrates: the yeast soluble proteins Rpn10 and Rvs167, and the human receptor tyrosine kinase FGFR1 and cardiac IKS potassium channel. We found that a potential trimerization interface is structurally blocked by the HECT domain α1-helix, which further undergoes ubiquitylation on a conserved lysine residue. Genetic, bioinformatics, biochemical and biophysical data show that attraction between this α1-conjugated ubiquitin and the HECT ubiquitin-binding patch pulls the α1-helix out of the interface, thereby promoting trimerization. Strikingly, trimerization renders the ligase inactive. Arginine substitution of the ubiquitylated lysine impairs this inactivation mechanism and results in unrestrained FGFR1 ubiquitylation in cells. Similarly, electrophysiological data and TIRF microscopy show that NEDD4 unrestrained mutant constitutively downregulates the IKS channel, thus confirming the functional importance of E3-ligase autoinhibition.

  13. Cullin E3 Ligase Activity Is Required for Myoblast Differentiation.

    PubMed

    Blondelle, Jordan; Shapiro, Paige; Domenighetti, Andrea A; Lange, Stephan

    2017-04-07

    The role of cullin E3-ubiquitin ligases for muscle homeostasis is best known during muscle atrophy, as the cullin-1 substrate adaptor atrogin-1 is among the most well-characterized muscle atrogins. We investigated whether cullin activity was also crucial during terminal myoblast differentiation and aggregation of acetylcholine receptors for the establishment of neuromuscular junctions in vitro. The activity of cullin E3-ligases is modulated through post-translational modification with the small ubiquitin-like modifier nedd8. Using either the Nae1 inhibitor MLN4924 (Pevonedistat) or siRNA against nedd8 in early or late stages of differentiation on C2C12 myoblasts, and primary satellite cells from mouse and human, we show that cullin E3-ligase activity is necessary for each step of the muscle cell differentiation program in vitro. We further investigate known transcriptional repressors for terminal muscle differentiation, namely ZBTB38, Bhlhe41, and Id1. Due to their identified roles for terminal muscle differentiation, we hypothesize that the accumulation of these potential cullin E3-ligase substrates may be partially responsible for the observed phenotype. MLN4924 is currently undergoing clinical trials in cancer patients, and our experiments highlight concerns on the homeostasis and regenerative capacity of muscles in these patients who often experience cachexia.

  14. Bovine Papillomavirus Replicative Helicase E1 Is a Target of the Ubiquitin Ligase APC

    PubMed Central

    Mechali, Francisca; Hsu, Chiung-Yueh; Castro, Anna; Lorca, Thierry; Bonne-Andrea, Catherine

    2004-01-01

    The papillomavirus E1 replicative helicase is essential for replication and maintenance of extrachromosomal viral genomes in infected cells. We previously found that the bovine papillomavirus E1 protein is a substrate of the ubiquitin-dependent proteolytic pathway. Here we show that E1 is targeted for degradation by the anaphase-promoting complex (APC). Inhibition of APC activity by the specific inhibitor Emi1 or point mutations in the D-box and KEN-box motifs of E1 stabilize the protein and increase viral DNA replication in both a cell-free system and in living cells. These findings involve APC as the ubiquitin ligase that controls E1 levels to maintain a constant low copy number of the viral genome during latent infection. PMID:14963168

  15. Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2

    PubMed Central

    Mikawa, Takumi; Maruyama, Takeshi; Okamoto, Koji; Nakagama, Hitoshi; Lleonart, Matilde E.; Tsusaka, Takeshi; Hori, Kousuke; Murakami, Itsuo; Izumi, Taisuke; Takaori-Kondo, Akifumi; Yokode, Masayuki; Peters, Gordon; Beach, David

    2014-01-01

    Despite the well-documented clinical significance of the Warburg effect, it remains unclear how the aggressive glycolytic rates of tumor cells might contribute to other hallmarks of cancer, such as bypass of senescence. Here, we report that, during oncogene- or DNA damage–induced senescence, Pak1-mediated phosphorylation of phosphoglycerate mutase (PGAM) predisposes the glycolytic enzyme to ubiquitin-mediated degradation. We identify Mdm2 as a direct binding partner and ubiquitin ligase for PGAM in cultured cells and in vitro. Mutations in PGAM and Mdm2 that abrogate ubiquitination of PGAM restored the proliferative potential of primary cells under stress conditions and promoted neoplastic transformation. We propose that Mdm2, a downstream effector of p53, attenuates the Warburg effect via ubiquitination and degradation of PGAM. PMID:24567357

  16. Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2.

    PubMed

    Mikawa, Takumi; Maruyama, Takeshi; Okamoto, Koji; Nakagama, Hitoshi; Lleonart, Matilde E; Tsusaka, Takeshi; Hori, Kousuke; Murakami, Itsuo; Izumi, Taisuke; Takaori-Kondo, Akifumi; Yokode, Masayuki; Peters, Gordon; Beach, David; Kondoh, Hiroshi

    2014-03-03

    Despite the well-documented clinical significance of the Warburg effect, it remains unclear how the aggressive glycolytic rates of tumor cells might contribute to other hallmarks of cancer, such as bypass of senescence. Here, we report that, during oncogene- or DNA damage-induced senescence, Pak1-mediated phosphorylation of phosphoglycerate mutase (PGAM) predisposes the glycolytic enzyme to ubiquitin-mediated degradation. We identify Mdm2 as a direct binding partner and ubiquitin ligase for PGAM in cultured cells and in vitro. Mutations in PGAM and Mdm2 that abrogate ubiquitination of PGAM restored the proliferative potential of primary cells under stress conditions and promoted neoplastic transformation. We propose that Mdm2, a downstream effector of p53, attenuates the Warburg effect via ubiquitination and degradation of PGAM.

  17. CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism

    PubMed Central

    Schmid-Burgk, Jonathan L.; Höning, Klara; Ebert, Thomas S.; Hornung, Veit

    2016-01-01

    The site-specific insertion of heterologous genetic material into genomes provides a powerful means to study gene function. Here we describe a modular system entitled CRISPaint (CRISPR-assisted insertion tagging) that allows precise and efficient integration of large heterologous DNA cassettes into eukaryotic genomes. CRISPaint makes use of the CRISPR-Cas9 system to introduce a double-strand break (DSB) at a user-defined genomic location. A universal donor DNA, optionally provided as minicircle DNA, is cleaved simultaneously to be integrated at the genomic DSB, while processing the donor plasmid at three possible positions allows flexible reading-frame selection. Applying this system allows to create C-terminal tag fusions of endogenously encoded proteins in human cells with high efficiencies. Knocking out known DSB repair components reveals that site-specific insertion is completely dependent on canonical NHEJ (DNA-PKcs, XLF and ligase-4). A large repertoire of modular donor vectors renders CRISPaint compatible with a wide array of applications. PMID:27465542

  18. The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels

    PubMed Central

    Chen, Yi-An; Peng, Yi-Jheng; Hu, Meng-Chun; Huang, Jing-Jia; Chien, Yun-Chia; Wu, June-Tai; Chen, Tsung-Yu; Tang, Chih-Yung

    2015-01-01

    Voltage-gated CLC-1 chloride channels play a critical role in controlling the membrane excitability of skeletal muscles. Mutations in human CLC-1 channels have been linked to the hereditary muscle disorder myotonia congenita. We have previously demonstrated that disease-associated CLC-1 A531V mutant protein may fail to pass the endoplasmic reticulum quality control system and display enhanced protein degradation as well as defective membrane trafficking. Currently the molecular basis of protein degradation for CLC-1 channels is virtually unknown. Here we aim to identify the E3 ubiquitin ligase of CLC-1 channels. The protein abundance of CLC-1 was notably enhanced in the presence of MLN4924, a specific inhibitor of cullin-RING E3 ligases. Subsequent investigation with dominant-negative constructs against specific subtypes of cullin-RING E3 ligases suggested that CLC-1 seemed to serve as the substrate for cullin 4A (CUL4A) and 4B (CUL4B). Biochemical examinations further indicated that CUL4A/B, damage-specific DNA binding protein 1 (DDB1), and cereblon (CRBN) appeared to co-exist in the same protein complex with CLC-1. Moreover, suppression of CUL4A/B E3 ligase activity significantly enhanced the functional expression of the A531V mutant. Our data are consistent with the idea that the CUL4A/B-DDB1-CRBN complex catalyses the polyubiquitination and thus controls the degradation of CLC-1 channels. PMID:26021757

  19. The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels.

    PubMed

    Chen, Yi-An; Peng, Yi-Jheng; Hu, Meng-Chun; Huang, Jing-Jia; Chien, Yun-Chia; Wu, June-Tai; Chen, Tsung-Yu; Tang, Chih-Yung

    2015-05-29

    Voltage-gated CLC-1 chloride channels play a critical role in controlling the membrane excitability of skeletal muscles. Mutations in human CLC-1 channels have been linked to the hereditary muscle disorder myotonia congenita. We have previously demonstrated that disease-associated CLC-1 A531V mutant protein may fail to pass the endoplasmic reticulum quality control system and display enhanced protein degradation as well as defective membrane trafficking. Currently the molecular basis of protein degradation for CLC-1 channels is virtually unknown. Here we aim to identify the E3 ubiquitin ligase of CLC-1 channels. The protein abundance of CLC-1 was notably enhanced in the presence of MLN4924, a specific inhibitor of cullin-RING E3 ligases. Subsequent investigation with dominant-negative constructs against specific subtypes of cullin-RING E3 ligases suggested that CLC-1 seemed to serve as the substrate for cullin 4A (CUL4A) and 4B (CUL4B). Biochemical examinations further indicated that CUL4A/B, damage-specific DNA binding protein 1 (DDB1), and cereblon (CRBN) appeared to co-exist in the same protein complex with CLC-1. Moreover, suppression of CUL4A/B E3 ligase activity significantly enhanced the functional expression of the A531V mutant. Our data are consistent with the idea that the CUL4A/B-DDB1-CRBN complex catalyses the polyubiquitination and thus controls the degradation of CLC-1 channels.

  20. NIRF, a Novel Ubiquitin Ligase, Inhibits Hepatitis B Virus Replication Through Effect on HBV Core Protein and H3 Histones.

    PubMed

    Qian, Guanhua; Hu, Bin; Zhou, Danlin; Xuan, Yanyan; Bai, Lu; Duan, Changzhu

    2015-05-01

    Np95/ICBP90-like RING finger protein (NIRF), a novel E3 ubiquitin ligase, has been shown to interact with HBc and promote its degradation. This study investigated the effects of NIRF on replication of hepatitis B virus (HBV) and the mechanisms. We have shown that NIRF inhibits replication of HBV DNA and secretion of HBsAg and HBeAg in HepG2 cells transfected with pAAV-HBV1.3. NIRF also inhibits the replication and secretion of HBV in a mouse model that expressed HBV. NIRF reduces acetylation of HBV cccDNA-bound H3 histones. These results showed that NIRF is involved in the HBV replication cycle not only through direct interaction with HBc but also reduces acetylation of HBV cccDNA-bound H3 histones.

  1. Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV

    SciTech Connect

    Dzuba, V. A.; Safronova, U. I.; Johnson, W. R.

    2003-09-01

    To address the shortage of experimental data for electron spectra of triply ionized rare-earth elements we have calculated energy levels and lifetimes of 4f{sup n+1} and 4f{sup n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration-interaction methods. To control the accuracy of our calculations we also performed similar calculations for Pr III, Nd III, and Sm III, for which experimental data are available. The results are important, in particular, for physics of magnetic garnets.

  2. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    SciTech Connect

    Tumbale, Percy; Williams, Jessica S.; Schellenberg, Matthew J.; Kunkel, Thomas A.; Williams, R. Scott

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  3. Cinnamate:CoA Ligase Initiates the Biosynthesis of a Benzoate-Derived Xanthone Phytoalexin in Hypericum calycinum Cell Cultures1[W][OA

    PubMed Central

    Gaid, Mariam M.; Sircar, Debabrata; Müller, Andreas; Beuerle, Till; Liu, Benye; Ernst, Ludger; Hänsch, Robert; Beerhues, Ludger

    2012-01-01

    Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg2+ and K+ at optimum concentrations of 2.5 and 100 mm, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages. PMID:22992510

  4. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  5. TRIM proteins as RING finger E3 ubiquitin ligases.

    PubMed

    Ikeda, Kazuhiro; Inoue, Satoshi

    2012-01-01

    The tripartite motif(TRIM) proteins harboring the RING finger, B-box and coiled-coil (RBCC) domain motifs form a large protein family. The members of this family are involved in various biological processes, including growth, differentiation, apoptosis and transcription and also in diseases and oncogenesis. Recent studies have revealed that TRIM proteins play key roles in innate antiviral immunity. An accumulating body of evidence has demonstrated that some TRIM proteins function as E3 ubiquitin ligases in specific ubiquitin-mediated protein degradation pathways; however, the precise mechanisms underlying this function have not been fully elucidated. In this chapter, we focus on the TRIM family of proteins specially with regard to E3 ligase.

  6. Signaling-mediated control of ubiquitin ligases in endocytosis.

    PubMed

    Polo, Simona

    2012-03-15

    Ubiquitin-dependent regulation of endocytosis plays an important part in the control of signal transduction, and a critical issue in the understanding of signal transduction therefore relates to regulation of ubiquitination in the endocytic pathway. We discuss here what is known of the mechanisms by which signaling controls the activity of the ubiquitin ligases that specifically recognize the targets of ubiquitination on the endocytic pathway, and suggest alternative mechanisms that deserve experimental investigation.

  7. Cullin E3 Ligases and Their Rewiring by Viral Factors

    PubMed Central

    Mahon, Cathal; Krogan, Nevan J.; Craik, Charles S.; Pick, Elah

    2014-01-01

    The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity. PMID:25314029

  8. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  9. Plant Enzymes but Not Agrobacterium VirD2 Mediate T-DNA Ligation In Vitro

    PubMed Central

    Ziemienowicz, Alicja; Tinland, Bruno; Bryant, John; Gloeckler, Veronique; Hohn, Barbara

    2000-01-01

    Agrobacterium tumefaciens, a gram-negative soil bacterium, transfers DNA to many plant species. In the plant cell, the transferred DNA (T-DNA) is integrated into the genome. An in vitro ligation-integration assay has been designed to investigate the mechanism of T-DNA ligation and the factors involved in this process. The VirD2 protein, which is produced in Agrobacterium and is covalently attached to T-DNA, did not, under our assay conditions, ligate T-DNA to a model target sequence in vitro. We tested whether plant extracts could ligate T-DNA to target oligonucleotides in our test system. The in vitro ligation-integration reaction did indeed take place in the presence of plant extracts. This reaction was inhibited by dTTP, indicating involvement of a plant DNA ligase. We found that prokaryotic DNA ligases could substitute for plant extracts in this reaction. Ligation of the VirD2-bound oligonucleotide to the target sequence mediated by T4 DNA ligase was less efficient than ligation of a free oligonucleotide to the target. T-DNA ligation mediated by a plant enzyme(s) or T4 DNA ligase requires ATP. PMID:10938108

  10. Itch WW Domains Inhibit Its E3 Ubiquitin Ligase Activity by Blocking E2-E3 Ligase Trans-thiolation.

    PubMed

    Riling, Christopher; Kamadurai, Hari; Kumar, Suresh; O'Leary, Claire E; Wu, Kuen-Phon; Manion, Erica E; Ying, Mingjie; Schulman, Brenda A; Oliver, Paula M

    2015-09-25

    Nedd4-family E3 ubiquitin ligases regulate an array of biologic processes. Autoinhibition maintains these catalytic ligases in an inactive state through several mechanisms. However, although some Nedd4 family members are activated by binding to Nedd4 family-interacting proteins (Ndfips), how binding activates E3 function remains unclear. Our data reveal how these two regulatory processes are linked functionally. In the absence of Ndfip1, the Nedd4 family member Itch can bind an E2 but cannot accept ubiquitin onto its catalytic cysteine. This is because Itch is autoinhibited by an intramolecular interaction between its HECT (homologous to the E6-AP carboxy terminus domain) and two central WW domains. Ndfip1 binds these WW domains to release the HECT, allowing trans-thiolation and Itch catalytic activity. This molecular switch also regulates the closely related family member WWP2. Importantly, multiple PY motifs are required for Ndfip1 to activate Itch, functionally distinguishing Ndfips from single PY-containing substrates. These data establish a novel mechanism for control of the function of a subfamily of Nedd4 E3 ligases at the level of E2-E3 trans-thiolation.

  11. IV treatment at home

    MedlinePlus

    ... venous catheter - home; Port - home; PICC line - home; Infusion therapy - home; Home health care - IV treatment ... is given quickly, all at once. A slow infusion, which means the medicine is given slowly over ...

  12. GCF Mark IV development

    NASA Technical Reports Server (NTRS)

    Mortensen, L. O.

    1982-01-01

    The Mark IV ground communication facility (GCF) as it is implemented to support the network consolidation program is reviewed. Changes in the GCF are made in the area of increased capacity. Common carrier circuits are the medium for data transfer. The message multiplexing in the Mark IV era differs from the Mark III era, in that all multiplexing is done in a GCF computer under GCF software control, which is similar to the multiplexing currently done in the high speed data subsystem.

  13. Ubiquitylation of Rad51d Mediated by E3 Ligase Rnf138 Promotes the Homologous Recombination Repair Pathway

    PubMed Central

    Han, Deqiang; Liang, Junbo; Lu, Yalan; Xu, Longchang; Miao, Shiying; Lu, Lin-Yu; Song, Wei; Wang, Linfang

    2016-01-01

    Ubiquitylation has an important role as a signal transducer that regulates protein function, subcellular localization, or stability during the DNA damage response. In this study, we show that Ring domain E3 ubiquitin ligases RNF138 is recruited to DNA damage site quickly. And the recruitment is mediated through its Zinc finger domains. We further confirm that RNF138 is phosphorylated by ATM at Ser124. However, the phosphorylation was dispensable for recruitment to the DNA damage site. Our findings also indicate that RAD51 assembly at DSB sites following irradiation is dramatically affected in RNF138-deficient cells. Hence, RNF138 is likely involved in regulating homologous recombination repair pathway. Consistently, efficiency of homologous recombination decreased observably in RNF138-depleted cells. In addition, RNF138-deficient cell is hypersensitive to DNA damage insults, such as IR and MMS. And the comet assay confirmed that RNF138 directly participated in DNA damage repair. Moreover, we find that RAD51D directly interacted with RNF138. And the recruitment of RAD51D to DNA damage site is delayed and unstable in RNF138-depleted cells. Taken together, these results suggest that RNF138 promotes the homologous recombination repair pathway. PMID:27195665

  14. Arabidopsis SUMO E3 ligase AtMMS21 regulates root meristem development

    PubMed Central

    Zhang, Shengchun; Qi, Yanli

    2010-01-01

    The small ubiquitin modifier (SUMO) conjugation/deconjugation is an important regulatory progress in plant development and responses to abiotic stresses. However, much less is known about the roles of sumoylation in plant root development. Cytokinin and auxin play crucial roles in determining the balance between cell proliferation and cell differentiation in Arabidopsis roots. The SUMO E3 ligase AtMMS21 is a homologue of human NSE2/MMS21, which modulates DNA damage and DNA repair in human cells. This addendum summarizes our recent paper on the AtMMS21 mediating cytokinin signaling to regulate the root meristem cell proliferation. The mms21-1 roots had reduced responses to exogenous cytokinins and decreased expression of the cytokinin-induced genes ARR3, ARR4, ARR5 and ARR7, compared with the wild type. Furthermore, the expression of CRE1 and ARR1, which are both the receptor and positive regulator of cytokinin signaling, was also reduced in the mms21-1 mutant plants. PMID:20592809

  15. Analysis of Genes, Transcripts, and Proteins via DNA Ligation

    NASA Astrophysics Data System (ADS)

    Conze, Tim; Shetye, Alysha; Tanaka, Yuki; Gu, Jijuan; Larsson, Chatarina; Göransson, Jenny; Tavoosidana, Gholamreza; Söderberg, Ola; Nilsson, Mats; Landegren, Ulf

    2009-07-01

    Analytical reactions in which short DNA strands are used in combination with DNA ligases have proven useful for measuring, decoding, and locating most classes of macromolecules. Given the need to accumulate large amounts of precise molecular information from biological systems in research and in diagnostics, ligation reactions will continue to offer valuable strategies for advanced analytical reactions. Here, we provide a basis for further development of methods by reviewing the history of analytical ligation reactions, discussing the properties of ligation reactions that render them suitable for engineering novel assays, describing a wide range of successful ligase-based assays, and briefly considering future directions.

  16. Alternative end-joining pathway(s): bricolage at DNA breaks.

    PubMed

    Frit, Philippe; Barboule, Nadia; Yuan, Ying; Gomez, Dennis; Calsou, Patrick

    2014-05-01

    To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years.

  17. Low-molecular-weight DNA replication intermediates in Escherichia coli: mechanism of formation and strand specificity.

    PubMed

    Amado, Luciana; Kuzminov, Andrei

    2013-11-15

    Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.

  18. Recombination of the GFP gene to the BFP gene using a man-made site-selective DNA cutter.

    PubMed

    Kitamura, Yoshihito; Mori, Satoshi; Chen, Wen; Sumaoka, Jun; Komiyama, Makoto

    2006-01-01

    By using the recently developed man-made DNA cutter [a combination of Ce(IV)/EDTA and two DNA additives], green fluorescent protein (GFP) was converted to closely related blue fluorescent protein (BFP). The phosphodiester linkages at T196-A200 in the sense strand of GFP were hydrolyzed by the cutter, and the A1-T196 fragment in the product was selectively connected with the downstream fragment (C197-A720) of BFP by T4 DNA ligase. This recombination changed three codons in the GFP gene (TGC at 196-198, TAT at 199-201, and ACC at 502-504) to TCT, CAT, and ATC in BFP, and accordingly three amino acids in GFP (Cys65, Tyr66, and Thr167) were altered to Ser65, His66, and Ile167. The recombinant gene was successfully expressed in Escherichia coli and emitted blue fluorescence, confirming the absence of undesired side reactions (mutation, deletion, insertion, depurination, etc.) in the DNA manipulation.

  19. Non-homologous end joining: Common interaction sites and exchange of multiple factors in the DNA repair process.

    PubMed

    Rulten, Stuart L; Grundy, Gabrielle J

    2017-03-01

    Non-homologous end-joining (NHEJ) is the dominant means of repairing chromosomal DNA double strand breaks (DSBs), and is essential in human cells. Fifteen or more proteins can be involved in the detection, signalling, synapsis, end-processing and ligation events required to repair a DSB, and must be assembled in the confined space around the DNA ends. We review here a number of interaction points between the core NHEJ components (Ku70, Ku80, DNA-PKcs, XRCC4 and Ligase IV) and accessory factors such as kinases, phosphatases, polymerases and structural proteins. Conserved protein-protein interaction sites such as Ku-binding motifs (KBMs), XLF-like motifs (XLMs), FHA and BRCT domains illustrate that different proteins compete for the same binding sites on the core machinery, and must be spatially and temporally regulated. We discuss how post-translational modifications such as phosphorylation, ADP-ribosylation and ubiquitinylation may regulate sequential steps in the NHEJ pathway or control repair at different types of DNA breaks.

  20. In Vitro Selection of Optimal DNA Substrates for Ligation by a Water-Soluble Carbodiimide

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1994-01-01

    We have used in vitro selection to investigate the sequence requirements for efficient template-directed ligation of oligonucleotides at 0 deg C using a water-soluble carbodiimide as condensing agent. We find that only 2 bp at each side of the ligation junction are needed. We also studied chemical ligation of substrate ensembles that we have previously selected as optimal by RNA ligase or by DNA ligase. As anticipated, we find that substrates selected with DNA ligase ligate efficiently with a chemical ligating agent, and vice versa. Substrates selected using RNA ligase are not ligated by the chemical condensing agent and vice versa. The implications of these results for prebiotic chemistry are discussed.

  1. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    SciTech Connect

    Miao, Min; Zhu, Yunye; Qiao, Maiju; Tang, Xiaofeng; Zhao, Wei; Xiao, Fangming; Liu, Yongsheng

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  2. Non-homologous end-joining protein expression screen from radiosensitive cancer patients yields a novel DNA double strand break repair phenotype

    PubMed Central

    Goh, Su Kak; McKay, Jeremy N.; Chao, Michael; McKay, Timothy M.

    2017-01-01

    Background Clinical radiosensitivity is a significant impediment to tumour control and cure, in that it restricts the total doses which can safely be delivered to the whole radiotherapy population, within the tissue tolerance of potentially radiosensitive (RS) individuals. Understanding its causes could lead to personalization of radiotherapy. Methods We screened tissues from a unique bank of RS cancer patients for expression defects in major DNA double-strand break repair proteins, using Western blot analysis and subsequently reverse-transcriptase polymerase chain reaction and pulsed-field gel electrophoresis. Results We hypothesized that abnormalities in expression of these proteins may explain the radiosensitivity of some of our cancer patients. The cells from one patient showed a reproducibly consistent expression reduction in two complex-forming DNA double-strand break repair protein components (DNA Ligase IV and XRCC4). We also showed a corresponding reduction in both gene products at the mRNA level. Additionally, the mRNA inducibility by ionizing radiation was increased for one of the proteins in the patient’s cells. We confirmed the likely functional significance of the non-homologous end-joining (NHEJ) expression abnormalities with a DNA double strand break (DNA DSB) repair assay. Conclusions We have identified a novel biological phenotype linked to clinical radiosensitivity. This is important in that very few molecular defects are known in human radiotherapy subjects. Such knowledge may contribute to the understanding of radiation response mechanisms in cancer patients and to personalization of radiotherapy. PMID:28361061

  3. Cullin-RING Ligases as Attractive Anti-cancer Targets

    PubMed Central

    Zhao, Yongchao; Sun, Yi

    2014-01-01

    The ubiquitin-proteasome system (UPS) promotes the timely degradation of short-lived proteins with key regulatory roles in a vast array of biological processes, such as cell cycle progression, oncogenesis and genome integrity. Thus, abnormal regulation of UPS disrupts the protein homeostasis and causes many human diseases, particularly cancer. Indeed, the FDA approval of bortezomib, the first class of general proteasome inhibitor, for the treatment of multiple myeloma, demonstrated that the UPS can be an attractive anti-cancer target. However, normal cell toxicity associated with bortezomib, resulting from global inhibition of protein degradation, promotes the focus of drug discovery efforts on targeting enzymes upstream of the proteasome for better specificity. E3 ubiquitin ligases, particularly those known to be activated in human cancer, become an attractive choice. Cullin-RING Ligases (CRLs) with multiple components are the largest family of E3 ubiquitin ligases and are responsible for ubiquitination of ~20% of cellular proteins degraded through UPS. Activity of CRLs is dynamically regulated and requires the RING component and cullin neddylation. In this review, we will introduce the UPS and CRL E3s and discuss the biological processes regulated by each of eight CRLs through substrate degradation. We will further discuss how cullin neddylation controls CRL activity, and how CRLs are being validated as the attractive cancer targets by abrogating the RING component through genetic means and by inhibiting cullin neddylation via MLN4924, a small molecule indirect inhibitor of CRLs, currently in several Phase I clinical trials. Finally, we will discuss current efforts and future perspectives on the development of additional inhibitors of CRLs by targeting E2 and/or E3 of cullin neddylation and CRL-mediated ubiquitination as potential anti-cancer agents. PMID:23151137

  4. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  5. Interactions with DCAF1 and DDB1 in the CRL4 E3 ubiquitin ligase are required for Vpr-mediated G2 arrest

    PubMed Central

    2014-01-01

    Background HIV-1 Vpr-mediated G2 cell cycle arrest is dependent on the interaction of Vpr with an E3 ubiquitin ligase that contains damage-specific DNA binding protein 1 (DDB1), Cullin 4A (Cul4A), DDB1 and Cul4-associated factor 1 (DCAF1), and Rbx1. Vpr is thought to associate directly with DCAF1 in the E3 ubiquitin ligase complex although the exact interaction pattern of the proteins in the complex is not completely defined. The Vpr of SIVagm induces G2 arrest of cognate African Green Monkey (AGM) cells but not human cells. The molecular mechanism by which SIVagm Vpr exhibits its species-specific function remained unknown. Methods Physical interaction of proteins in the E3 ubiquitin ligase complex was assessed by co-immunoprecipitation followed by western blotting. In addition, co-localization of the proteins in cells was investigated by confocal microscopy. The cell cycle was analyzed by propidium iodide staining and flow cytometry. DNA damage response elicited by Vpr was evaluated by detecting phosphorylation of H2AX, a marker for DNA damage response. Results We show that RNAi knock-down of DCAF1 prevented the co-immunoprecipitation of DDB1 with HIV-1 Vpr while DDB1 knock-down did not influence the binding of Vpr to DCAF1. HIV-1 Vpr mutants with a L64P or a R90K mutation maintained the ability to associate with DCAF1 but did not appear to be in a complex with DDB1. SIVagm Vpr associated with AGM DCAF1 and DDB1 while, in human cells, it binds to human DCAF1 but hardly binds to human DDB1, resulting in the reduced activation of H2AX. Conclusions The identification of Vpr mutants which associate with DCAF1 but only poorly with DDB1 suggests that DCAF1 is necessary but the simple binding of Vpr to DCAF1 is not sufficient for the Vpr association with DDB1-containing E3 ligase complex. Vpr may interact both with DCAF1 and DDB1 in the E3 ligase complex. Alternatively, the interaction of Vpr and DCAF1 may induce a conformational change in DCAF1 or Vpr that promotes the

  6. Chlorovirus Skp1-Binding Ankyrin Repeat Protein Interplay and Mimicry of Cellular Ubiquitin Ligase Machinery

    PubMed Central

    Noel, Eric A.; Kang, Ming; Adamec, Jiri; Oyler, George A.

    2014-01-01

    ABSTRACT The ubiquitin-proteasome system is targeted by many viruses that have evolved strategies to redirect host ubiquitination machinery. Members of the genus Chlorovirus are proposed to share an ancestral lineage with a broader group of related viruses, nucleo-cytoplasmic large DNA viruses (NCLDV). Chloroviruses encode an Skp1 homolog and ankyrin repeat (ANK) proteins. Several chlorovirus-encoded ANK repeats contain C-terminal domains characteristic of cellular F-boxes or related NCLDV chordopox PRANC (pox protein repeats of ankyrin at C-terminal) domains. These observations suggested that this unique combination of Skp1 and ANK repeat proteins might form complexes analogous to the cellular Skp1-Cul1-F-box (SCF) ubiquitin ligase complex. We identified two ANK proteins from the prototypic chlorovirus Paramecium bursaria chlorella virus-1 (PBCV-1) that functioned as binding partners for the virus-encoded Skp1, proteins A682L and A607R. These ANK proteins had a C-terminal Skp1 interactional motif that functioned similarly to cellular F-box domains. A C-terminal motif of ANK protein A682L binds Skp1 proteins from widely divergent species. Yeast two-hybrid analyses using serial domain deletion constructs confirmed the C-terminal localization of the Skp1 interactional motif in PBCV-1 A682L. ANK protein A607R represents an ANK family with one member present in all 41 sequenced chloroviruses. A comprehensive phylogenetic analysis of these related ANK and viral Skp1 proteins suggested partnered function tailored to the host alga or common ancestral heritage. Here, we show protein-protein interaction between corresponding family clusters of virus-encoded ANK and Skp1 proteins from three chlorovirus types. Collectively, our results indicate that chloroviruses have evolved complementing Skp1 and ANK proteins that mimic cellular SCF-associated proteins. IMPORTANCE Viruses have evolved ways to direct ubiquitination events in order to create environments conducive to their

  7. The Ubiquitin Ligase Itch and Ubiquitination Regulate BFRF1-Mediated Nuclear Envelope Modification for Epstein-Barr Virus Maturation

    PubMed Central

    Lee, Chung-Pei; Liu, Guan-Ting; Kung, Hsiu-Ni; Liu, Po-Ting; Liao, Yen-Tzu; Chow, Lu-Ping; Chang, Ling-Shih; Chang, Yu-Hsin; Chang, Chou-Wei; Shu, Wen-Chi; Angers, Annie; Farina, Antonella; Tsai, Ching-Hwa; Bouamr, Fadila

    2016-01-01

    ABSTRACT The cellular endosomal sorting complex required for transport (ESCRT) was recently found to mediate important morphogenesis processes at the nuclear envelope (NE). We previously showed that the Epstein-Barr virus (EBV) BFRF1 protein recruits the ESCRT-associated protein Alix to modulate NE structure and promote EBV nuclear egress. Here, we uncover new cellular factors and mechanisms involved in this process. BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. BFRF1 is ubiquitinated, and elimination of possible ubiquitination by either lysine mutations or fusion of a deubiquitinase hampers NE-derived vesicle formation and virus maturation. While it interacts with multiple Nedd4-like ubiquitin ligases, BFRF1 preferentially binds Itch ligase. We show that Itch associates with Alix and BFRF1 and is required for BFRF1-induced NE vesicle formation. Our data demonstrate that Itch, ubiquitin, and Alix control the BFRF1-mediated modulation of the NE and EBV maturation, uncovering novel regulatory mechanisms of nuclear egress of viral nucleocapsids. IMPORTANCE The nuclear envelope (NE) of eukaryotic cells not only serves as a transverse scaffold for cellular processes, but also as a natural barrier for most DNA viruses that assemble their nucleocapsids in the nucleus. Previously, we showed that the cellular endosomal sorting complex required for transport (ESCRT) machinery is required for the nuclear egress of EBV. Here, we further report the molecular interplay among viral BFRF1, the ESCRT adaptor Alix, and the ubiquitin ligase Itch. We found that BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. The lysine residues and the ubiquitination of BFRF1 regulate the formation of BFRF1-induced NE-derived vesicles and EBV maturation. During the process, a ubiquitin ligase, Itch, preferably associates with BFRF1 and is required for BFRF1-induced NE vesicle formation. Therefore, our data indicate that Itch

  8. The Membrane Associated RING-CH Proteins: A Family of E3 Ligases with Diverse Roles through the Cell

    PubMed Central

    Means, Robert E.

    2014-01-01

    Since the discovery that conjugation of ubiquitin to proteins can drive proteolytic degradation, ubiquitination has been shown to perform a diverse range of functions in the cell. It plays an important role in endocytosis, signal transduction, trafficking of vesicles inside the cell, and even DNA repair. The process of ubiquitination-mediated control has turned out to be remarkably complex, involving a diverse array of proteins and many levels of control. This review focuses on a family of structurally related E3 ligases termed the membrane-associated RING-CH (MARCH) ubiquitin ligases, which were originally discovered as structural homologs to the virals E3s, K3, and K5 from Kaposi's sarcoma-associated herpesvirus (KSHV). These proteins contain a catalytic RING-CH finger and are typically membrane-bound, with some having up to 14 putative transmembrane domains. Despite several lines of evidence showing that the MARCH proteins play a complex and essential role in several cellular processes, this family remains understudied. PMID:27419207

  9. Dual roles of F123 in protein homodimerization and inhibitor binding to biotin protein ligase from Staphylococcus aureus.

    PubMed

    Soares da Costa, Tatiana P; Yap, Min Y; Perugini, Matthew A; Wallace, John C; Abell, Andrew D; Wilce, Matthew C J; Polyak, Steven W; Booker, Grant W

    2014-01-01

    Protein biotinylation is catalysed by biotin protein ligase (BPL). The most characterized BPL is from Escherichia coli where it functions as both a biotin ligase and a homodimeric transcriptional repressor. Here we investigated another bifunctional BPL from the clinically important Staphylococcus aureus (SaBPL). Unliganded SaBPL (apo) exists in a dimer-monomer equilibrium at low micromolar concentrations - a stark contrast to E. coli BPL (EcBPL) that is monomeric under the same conditions. EMSA and SAXS analysis demonstrated that dimeric apo SaBPL adopted a conformation that was competent to bind DNA and necessary for it to function as a transcription factor. The SaBPL dimer-monomer dissociation constant was 5.8-fold tighter when binding the inhibitor biotin acetylene, but unchanged with biotin. F123, located in the dimer interface, was critical for homodimerization. Inhibition studies together with surface plasmon resonance analyses revealed a strong correlation between inhibitor potency and slow dissociation kinetics. A 24-fold difference in Ki values for these two enzymes was explained by differences in enzyme:inhibitor dissociation rates. Substitution of F123 in SaBPL and its equivalent in EcBPL altered both inhibitor potency and dissociation. Hence, F123 in SaBPL has novel roles in both protein dimerization and ligand-binding that have not been reported in EcBPL.

  10. Endonuclease IV (nfo) mutant of Escherichia coli.

    PubMed Central

    Cunningham, R P; Saporito, S M; Spitzer, S G; Weiss, B

    1986-01-01

    A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested. Images PMID:2430946

  11. Signal-induced disassembly of the SCF ubiquitin ligase complex by Cdc48/p97

    PubMed Central

    Yen, James L.; Flick, Karin; Papagiannis, Christie V.; Mathur, Radhika; Tyrrell, An; Ouni, Ikram; Kaake, Robyn M.; Huang, Lan; Kaiser, Peter

    2012-01-01

    Summary A large group of E3 ubiquitin ligases is formed by the multisubunit SCF complex, whose core complex (Rbx1/Cul1-Cdc53/Skp1) binds one of many substrate recruiting F-box proteins to form an array of SCF ligases with diverse substrate specificities. It has long been thought that ubiquitylation by SCF ligases is regulated at the level of substrate binding. Here we describe an alternative mechanism of SCF regulation by active dissociation of the F-box subunit. We show that cadmium stress induces selective recruitment of the AAA+ ATPase Cdc48/p97 to catalyze dissociation of the F-box subunit from the yeast SCFMet30 ligase to block substrate ubiquitylation and trigger downstream events. Our results not only provide an additional layer of ubiquitin ligase regulation but also suggest that targeted, signal-dependent dissociation of multisubunit enzyme complexes is an important mechanism in control of enzyme function. PMID:23000173

  12. A design principle underlying the paradoxical roles of E3 ubiquitin ligases

    PubMed Central

    Lee, Daewon; Kim, Minjin; Cho, Kwang-Hyun

    2014-01-01

    E3 ubiquitin ligases are important cellular components that determine the specificity of proteolysis in the ubiquitin-proteasome system. However, an increasing number of studies have indicated that E3 ubiquitin ligases also participate in transcription. Intrigued by the apparently paradoxical functions of E3 ubiquitin ligases in both proteolysis and transcriptional activation, we investigated the underlying design principles using mathematical modeling. We found that the antagonistic functions integrated in E3 ubiquitin ligases can prevent any undesirable sustained activation of downstream genes when E3 ubiquitin ligases are destabilized by unexpected perturbations. Interestingly, this design principle of the system is similar to the operational principle of a safety interlock device in engineering systems, which prevents a system from abnormal operation unless stability is guaranteed. PMID:24994517

  13. Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing.

    PubMed

    Upadhyay, Arun; Amanullah, Ayeman; Chhangani, Deepak; Mishra, Ribhav; Mishra, Amit

    2015-11-01

    Efficient and regular performance of Ubiquitin Proteasome System and Autophagy continuously eliminate deleterious accumulation of nonnative protiens. In cellular quality control system, E3 ubiquitin ligases are significant employees for defense mechanism against abnormal toxic proteins. Few findings indicate that lack of functions of E3 ubiquitin ligases can be a causative factor of neurodevelopmental disorders, neurodegeneration, cancer and ageing. However, the detailed molecular pathomechanism implying E3 ubiquitin ligases in cellular functions in multifactorial disease conditions are not well understood. This article systematically represents the unique characteristics, molecular nature, and recent developments in the knowledge of neurobiological functions of few crucial E3 ubiquitin ligases. Here, we review recent literature on the roles of E6-AP, HRD1 and ITCH E3 ubiquitin ligases in the neuro-pathobiological mechanisms, with precise focus on the processes of neurodegeneration, and thereby propose new lines of potential targets for therapeutic interventions.

  14. A design principle underlying the paradoxical roles of E3 ubiquitin ligases

    NASA Astrophysics Data System (ADS)

    Lee, Daewon; Kim, Minjin; Cho, Kwang-Hyun

    2014-07-01

    E3 ubiquitin ligases are important cellular components that determine the specificity of proteolysis in the ubiquitin-proteasome system. However, an increasing number of studies have indicated that E3 ubiquitin ligases also participate in transcription. Intrigued by the apparently paradoxical functions of E3 ubiquitin ligases in both proteolysis and transcriptional activation, we investigated the underlying design principles using mathematical modeling. We found that the antagonistic functions integrated in E3 ubiquitin ligases can prevent any undesirable sustained activation of downstream genes when E3 ubiquitin ligases are destabilized by unexpected perturbations. Interestingly, this design principle of the system is similar to the operational principle of a safety interlock device in engineering systems, which prevents a system from abnormal operation unless stability is guaranteed.

  15. Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in eukaryotic histone H3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BirA ligase, a prokaryotic ortholog of human holocarboxylase synthetase (HCS), is known to biotinylate proteins. Here, we tested the hypothesis that BirA ligase may also catalyze biotinylation of eukaryotic histones. If so, this would render recombinant BirA ligase a useful surrogate for HCS in stud...

  16. Multisite clickable modification of proteins using lipoic acid ligase.

    PubMed

    Plaks, Joseph G; Falatach, Rebecca; Kastantin, Mark; Berberich, Jason A; Kaar, Joel L

    2015-06-17

    Approaches that allow bioorthogonal and, in turn, site-specific chemical modification of proteins present considerable opportunities for modulating protein activity and stability. However, the development of such approaches that enable site-selective modification of proteins at multiple positions, including internal sites within a protein, has remained elusive. To overcome this void, we have developed an enzymatic approach for multisite clickable modification based on the incorporation of azide moieties in proteins using lipoic acid ligase (LplA). The ligation of azide moieties to the model protein, green fluorescent protein (GFP), at the N-terminus and two internal sites using lipoic acid ligase was shown to proceed efficiently with near-complete conversion. Modification of the ligated azide groups with poly(ethylene glycol) (PEG), α-d-mannopyranoside, and palmitic acid resulted in highly homogeneous populations of protein-polymer, protein-sugar, and protein-fatty acid conjugates. The homogeneity of the conjugates was confirmed by mass spectrometry (MALDI-TOF) and SDS-PAGE electrophoresis. In the case of PEG attachment, which involved the use of strain-promoted azide-alkyne click chemistry, the conjugation reaction resulted in highly homogeneous PEG-GFP conjugates in less than 30 min. As further demonstration of the utility of this approach, ligated GFP was also covalently immobilized on alkyne-terminated self-assembled monolayers. These results underscore the potential of this approach for, among other applications, site-specific multipoint protein PEGylation, glycosylation, fatty acid modification, and protein immobilization.

  17. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  18. SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis.

    PubMed Central

    Willems, A R; Goh, T; Taylor, L; Chernushevich, I; Shevchenko, A; Tyers, M

    1999-01-01

    Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis. PMID:10582239

  19. SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis.

    PubMed

    Willems, A R; Goh, T; Taylor, L; Chernushevich, I; Shevchenko, A; Tyers, M

    1999-09-29

    Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis.

  20. Molecular underpinnings of Aprataxin RNA/DNA deadenylase function and dysfunction in neurological disease.

    PubMed

    Schellenberg, Matthew J; Tumbale, Percy P; Williams, R Scott

    2015-03-01

    Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions act as molecular checkpoint for DNA damage and create 5'-adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA single strand break repair (SSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase "proofreader" to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1.

  1. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis

    PubMed Central

    Li, Mengmeng; Li, Yihao; Zhao, Junyi; Liu, Hai; Jia, Shenghua; Li, Jie; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2016-01-01

    The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level. PMID:27228205

  2. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas

    PubMed Central

    Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz

    2016-01-01

    Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909

  3. Monitoring the Bending Stiffness of DNA

    NASA Astrophysics Data System (ADS)

    Yuan, Chongli; Lou, Xiongwen; Rhoades, Elizabeth; Chen, Huimin; Archer, Lynden

    2007-03-01

    In eukaryotic cells, the accessibility of genomic sequences provides an inherent regulation mechanism for gene expression through variations in bending stiffness encoded by the nucleic acid sequence. Cyclization of dsDNA is the prevailing method for determining DNA bending stiffness. Recent cyclization data for short dsDNA raises several fundamental questions about the soundness of the cyclization method, particularly in cases where the probability of highly bent DNA conformations is low. We herein evaluate the role of T4 DNA ligase in the cyclization reaction by inserting an environmental sensitive base analogue, 2-amino purine, to the DNA molecule. By monitoring the 2-AP fluorescence under standard cyclization conditions, it is found that in addition to trapping highly-bent cyclic DNA conformations, T4 DNA ligase enhances the apparent base pair flip out rate, thus exaggerating the measured flexibility. This result is further confirmed using fluorescence anisotropy experiments. We show that fluorescence resonance energy transfer (FRET) measurements on suitably labeled dsDNA provides an alternative approach for quantifying the bending stiffness of short fragments. DNA bending stiffness results obtained using FRET are compared with literature values.

  4. PLATO IV Accountancy Index.

    ERIC Educational Resources Information Center

    Pondy, Dorothy, Comp.

    The catalog was compiled to assist instructors in planning community college and university curricula using the 48 computer-assisted accountancy lessons available on PLATO IV (Programmed Logic for Automatic Teaching Operation) for first semester accounting courses. It contains information on lesson access, lists of acceptable abbreviations for…

  5. IVS Technology Coordinator Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan

    2013-01-01

    This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.

  6. The PLATO IV Architecture.

    ERIC Educational Resources Information Center

    Stifle, Jack

    The PLATO IV computer-based instructional system consists of a large scale centrally located CDC 6400 computer and a large number of remote student terminals. This is a brief and general description of the proposed input/output hardware necessary to interface the student terminals with the computer's central processing unit (CPU) using available…

  7. Little Jiffy, Mark IV

    ERIC Educational Resources Information Center

    Kaiser, Henry F.; Rice, John

    1974-01-01

    In this paper three changes and one new development for the method of exploratory factor analysis (a second generation Little Jiffy) developed by Kaiser are described. Following this short description a step-by-step computer algorithm of the revised method, dubbed Little Jiffy, Mark IV is presented. (MP)

  8. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new

  9. Genetics Home Reference: succinate-CoA ligase deficiency

    MedlinePlus

    ... use. Mitochondria each contain a small amount of DNA, known as mitochondrial DNA or mtDNA, which is essential for the normal ... producing and maintaining the building blocks of mitochondrial DNA . Mutations in either the SUCLA2 or SUCLG1 gene ...

  10. Molecular Underpinnings of Aprataxin RNA/DNA Deadenylase Function and Dysfunction in Neurological Disease

    PubMed Central

    Williams, R. Scott

    2015-01-01

    Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions create 5’–adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA base excision repair (BER), double strand break repair (DSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase “proofreader” to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1. PMID:25637650

  11. Cloning and characterization of a novel CoA-ligase gene from Penicillium chrysogenum.

    PubMed

    Yu, Zhou-Liang; Liu, Jing; Wang, Fu-Qiang; Dai, Meng; Zhao, Bao-Hua; He, Jian-Gong; Zhang, Hua

    2011-05-01

    A novel phenylacetic acid (PAA)-induced CoA-ligase-encoding gene, designated as phlC, has been cloned from penicillin-producing fungus Penicillium chrysogenum. The open reading frame of phlC cDNA was 1671 bp and encoded a 556 amino acid residues protein with the consensus AMP binding site and a peroxisomal targeting signal 1 on its C terminus. The deduced amino acid sequence showed 37% and 38% identity with characterized P. chrysogenum Phl and PhlB protein, respectively. Functional recombinant PhlC protein was overexpressed in Escherichia coli. The purified recombinant enzyme was capable to convert PAA into its corresponding CoA ester with a specific activity of 129.5 ± 3.026 pmol/min per mg protein. Similar to Phl and PhlB, PhlC displayed broad substrate spectrum and showed higher activities to medium- and long-chain fatty acids. The catalytic properties of PhlC have been determined and compared to those of Phl and PhlB.

  12. Regulating the Regulators: Recent Revelations in the Control of E3 Ubiquitin Ligases*

    PubMed Central

    Vittal, Vinayak; Stewart, Mikaela D.; Brzovic, Peter S.; Klevit, Rachel E.

    2015-01-01

    Since its discovery as a post-translational signal for protein degradation, our understanding of ubiquitin (Ub) has vastly evolved. Today, we recognize that the role of Ub signaling is expansive and encompasses diverse processes including cell division, the DNA damage response, cellular immune signaling, and even organismal development. With such a wide range of functions comes a wide range of regulatory mechanisms that control the activity of the ubiquitylation machinery. Ub attachment to substrates occurs through the sequential action of three classes of enzymes, E1s, E2s, and E3s. In humans, there are 2 E1s, ∼35 E2s, and hundreds of E3s that work to attach Ub to thousands of cellular substrates. Regulation of ubiquitylation can occur at each stage of the stepwise Ub transfer process, and substrates can also impact their own modification. Recent studies have revealed elegant mechanisms that have evolved to control the activity of the enzymes involved. In this minireview, we highlight recent discoveries that define some of the various mechanisms by which the activities of E3-Ub ligases are regulated. PMID:26187467

  13. Structural analysis of human FANCL, the E3 ligase in the Fanconi anemia pathway.

    PubMed

    Hodson, Charlotte; Cole, Ambrose R; Lewis, Laurence P C; Miles, Jennifer A; Purkiss, Andrew; Walden, Helen

    2011-09-16

    The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand cross-links. At the heart of this pathway is the monoubiquitination of the FANCI-FANCD2 (ID) complex by the multiprotein "core complex" containing the E3 ubiquitin ligase FANCL. Vertebrate organisms have the eight-protein core complex, whereas invertebrates apparently do not. We report here the structure of the central domain of human FANCL in comparison with the recently solved Drosophila melanogaster FANCL. Our data represent the first structural detail into the catalytic core of the human system and reveal that the central fold of FANCL is conserved between species. However, there are macromolecular differences between the FANCL proteins that may account for the apparent distinctions in core complex requirements between the vertebrate and invertebrate FA pathways. In addition, we characterize the binding of human FANCL with its partners, Ube2t, FANCD2, and FANCI. Mutational analysis reveals which residues are required for substrate binding, and we also show the domain required for E2 binding.

  14. FLI-1 functionally interacts with PIASxalpha, a member of the PIAS E3 SUMO ligase family.

    PubMed

    van den Akker, Emile; Ano, Sabine; Shih, Hsiu-Ming; Wang, Ling-Chi; Pironin, Martine; Palvimo, Jorma J; Kotaja, Noora; Kirsh, Olivier; Dejean, Anne; Ghysdael, Jacques

    2005-11-11

    FLI-1 is a transcription factor of the ETS family that is involved in several developmental processes and that becomes oncogenic when overexpressed or mutated. As the functional regulators of FLI-1 are largely unknown, we performed a yeast two-hybrid screen with FLI-1 and identified the SUMO E3 ligase PIASxalpha/ARIP3 as a novel in vitro and in vivo binding partner of FLI-1. This interaction involved the ETS domain of FLI-1 and required the integrity of the SAP domain of PIASxalpha/ARIP3. SUMO-1 and Ubc9, the ubiquitin carrier protein component in the sumoylation pathway, were also identified as interactors of FLI-1. Both PIASxalpha/ARIP3 and the closely related PIASxbeta isoform specifically enhanced sumoylation of FLI-1 at Lys(67), located in its N-terminal activation domain. PIASxalpha/ARIP3 relocalized the normally nuclear but diffusely distributed FLI-1 protein to PIASxalpha nuclear bodies and repressed FLI-1 transcriptional activation as assessed using different ETS-binding site-dependent promoters and different cell systems. PIASxalpha repressive activity was independent of sumoylation and did not result from inhibition of FLI-1 DNA-binding activity. Analysis of the properties of a series of ARIP3 mutants showed that the repressive properties of PIASxalpha/ARIP3 require its physical interaction with FLI-1, identifying PIASxalpha as a novel corepressor of FLI-1.

  15. Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum.

    PubMed

    Gao, Shuai; Yu, Hai-Na; Xu, Rui-Xue; Cheng, Ai-Xia; Lou, Hong-Xiang

    2015-03-01

    Plant phenylpropanoids represent a large group of secondary metabolites which have played an important role in terrestrial plant life, beginning with the evolution of land plants from primitive green algae. 4-Coumarate: coenzyme A ligase (4CL) is a provider of activated thioester substrates within the phenylpropanoid synthesis pathway. Although 4CLs have been extensively characterized in angiosperm, gymnosperm and moss species, little is known of their functions in liverworts. Here, a 4CL homolog (designated as Pa4CL1) was isolated from the liverwort species Plagiochasma appendiculatum. The full-length cDNA sequence of Pa4CL1 contains 1644bp and is predicted to encode a protein with 547amino acids. The gene products were 40-50% identical with 4CL sequences reported in public databases. The recombinant protein was heterologously expressed in Escherichia coli and exhibited a high level of 4CL activity, catalyzing formation of hydroxycinnamate-CoA thioesters by a two-step reaction mechanism from corresponding hydroxycinnamic acids. Kinetic analysis indicated that the most favorable substrate for Pa4CL1 is p-coumaric acid. The transcription of Pa4CL1 was induced when P. appendiculatum thallus was treated with either salicylic acid or methyl jasmonate.

  16. Targeting abnormal DNA double strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias

    PubMed Central

    Tobin, Lisa A.; Robert, Carine; Rapoport, Aaron P.; Gojo, Ivana; Baer, Maria R.; Tomkinson, Alan E.; Rassool, Feyruz V.

    2013-01-01

    Resistance to imatinib (IM) and other BCR-ABL1 tyrosine kinase inhibitors (TKI)s is an increasing problem in leukemias caused by expression of BCR-ABL1. Since chronic myeloid leukemia (CML) cell lines expressing BCR-ABL1 utilize an alternative non-homologous end-joining pathway (ALT NHEJ) to repair DNA double strand breaks (DSB)s, we asked whether this repair pathway is a novel therapeutic target in TKI-resistant disease. Notably, the steady state levels of two ALT NHEJ proteins, poly-(ADP-ribose) polymerase 1 (PARP1) and DNA ligase IIIα were increased in the BCR-ABL1-positive CML cell line K562 and, to a greater extent, in its imatinib resistant (IMR) derivative. Incubation of these cell lines with a combination of DNA ligase and PARP inhibitors inhibited ALT NHEJ and selectively decreased survival with the effect being greater in the IMR derivative. Similar results were obtained with TKI-resistant derivatives of two hematopoietic cell lines that had been engineered to stably express BCR-ABL1. Together our results show th