Mishra, Manish; Kowluru, Renu A
2018-04-21
In the development of diabetic retinopathy, retinal mitochondria are dysfunctional, and mitochondrial DNA (mtDNA) is damaged with increased base mismatches and hypermethylated cytosines. DNA methylation is also a potential source of mutation, and in diabetes, the noncoding region, the displacement loop (D-loop), experiences more methylation and base mismatches than other regions of the mtDNA. Our aim was to investigate a possible crosstalk between mtDNA methylation and base mismatches in the development of diabetic retinopathy. The effect of inhibition of Dnmts (by 5-aza-2'-deoxycytidine or Dnmt1-siRNA) on glucose-induced mtDNA base mismatches was investigated in human retinal endothelial cells by surveyor endonuclease digestion and validated by Sanger sequencing. The role of deamination factors on increased base mismatches was determined in the cells genetically modulated for mitochondrial superoxide dismutase (Sod2) or cytidine-deaminase (APOBEC3A). The results were confirmed in an in vivo model using retinal microvasculature from diabetic mice overexpressing Sod2. Inhibition of DNA methylation, or regulation of cytosine deamination, significantly inhibited an increase in base mismatches at the D-loop and prevented mitochondrial dysfunction. Overexpression of Sod2 in mice also prevented diabetes-induced D-loop hypermethylation and increase in base mismatches. The crosstalk between DNA methylation and base mismatches continued even after termination of hyperglycemia, suggesting its role in the metabolic memory phenomenon associated with the progression of diabetic retinopathy. Inhibition of DNA methylation limits the availability of methylated cytosine for deamination, suggesting a crosstalk between DNA methylation and base mismatches. Thus, regulation of DNA methylation, or its deamination, should impede the development of diabetic retinopathy by preventing formation of base mismatches and mitochondrial dysfunction.
Regulation and function of DNA methylation in plants and animals
He, Xin-Jian; Chen, Taiping; Zhu, Jian-Kang
2011-01-01
DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review. PMID:21321601
Investigating the epigenetic effects of a prototype smoke-derived carcinogen in human cells.
Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P; Besaratinia, Ahmad
2010-05-12
Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease.
Investigating the Epigenetic Effects of a Prototype Smoke-Derived Carcinogen in Human Cells
Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P.; Besaratinia, Ahmad
2010-01-01
Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease. PMID:20485678
Detection of regional DNA methylation using DNA-graphene affinity interactions.
Haque, Md Hakimul; Gopalan, Vinod; Yadav, Sharda; Islam, Md Nazmul; Eftekhari, Ehsan; Li, Qin; Carrascosa, Laura G; Nguyen, Nam-Trung; Lam, Alfred K; Shiddiky, Muhammad J A
2017-01-15
We report a new method for the detection of regional DNA methylation using base-dependent affinity interaction (i.e., adsorption) of DNA with graphene. Due to the strongest adsorption affinity of guanine bases towards graphene, bisulfite-treated guanine-enriched methylated DNA leads to a larger amount of the adsorbed DNA on the graphene-modified electrodes in comparison to the adenine-enriched unmethylated DNA. The level of the methylation is quantified by monitoring the differential pulse voltammetric current as a function of the adsorbed DNA. The assay is sensitive to distinguish methylated and unmethylated DNA sequences at single CpG resolution by differentiating changes in DNA methylation as low as 5%. Furthermore, this method has been used to detect methylation levels in a collection of DNA samples taken from oesophageal cancer tissues. Copyright © 2016 Elsevier B.V. All rights reserved.
Methylated bases in mycoplasmal DNA.
Razin, A; Razin, S
1980-01-01
The DNAs of four Mycoplasma and one Acholeplasma species were found to contain methylated bases. All of the five species contained 6-methyladenine (m6Ade), the methylated base characteristic of prokaryotic DNA. The extent of methylation of adenine residues in the mycoplasmal DNA ranged from 0.2% in Mycoplasma capricolum to about 2% in Mycoplasma arginini and Mycoplasma hyorhinis with intermediate methylation values for Mycoplasma orale and Acholeplasma laidlawii DNAs. About 5.8% of the cytosine residues in M. hyorhinis DNA were methylated also. Analysis of cell culture DNA for the presence of m6Ade as a means for detection of contamination by mycoplasmas, and the phylogenetic implications of the finding of methylated bases in mycoplasmal DNAs are discussed. PMID:7433124
Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method
NASA Astrophysics Data System (ADS)
Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju
2015-10-01
DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers. Electronic supplementary information (ESI) available: Synthesis of CdSe/CdS/ZnS core/shell/shell QDs. Sequences of primers used for amplifying the promoter regions in bisulfate-modified DNA. Comparison of detected methylation levels in different gene promoters using the QD-based FRET method versus bisulfite pyrosequencing. Methylation levels of the RASSF1A gene in one pair of NT and cancer samples as indicated by pyrosequencing. Theoretical calculation of the Förster distance R0. See DOI: 10.1039/c5nr04956c
Collaborations between CpG sites in DNA methylation
NASA Astrophysics Data System (ADS)
Song, You; Ren, Honglei; Lei, Jinzhi
2017-08-01
DNA methylation patterns have profound impacts on genome stability, gene expression and development. The molecular base of DNA methylation patterns has long been focused at single CpG sites level. Here, we construct a kinetic model of DNA methylation with collaborations between CpG sites, from which a correlation function was established based on experimental data. The function consists of three parts that suggest three possible sources of the correlation: movement of enzymes along DNA, collaboration between DNA methylation and nucleosome modification, and global enzyme concentrations within a cell. Moreover, the collaboration strength between DNA methylation and nucleosome modification is universal for mouse early embryo cells. The obtained correlation function provides insightful understanding for the mechanisms of inheritance of DNA methylation patterns.
A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis
Down, Thomas A.; Rakyan, Vardhman K.; Turner, Daniel J.; Flicek, Paul; Li, Heng; Kulesha, Eugene; Gräf, Stefan; Johnson, Nathan; Herrero, Javier; Tomazou, Eleni M.; Thorne, Natalie P.; Bäckdahl, Liselotte; Herberth, Marlis; Howe, Kevin L.; Jackson, David K.; Miretti, Marcos M.; Marioni, John C.; Birney, Ewan; Hubbard, Tim J. P.; Durbin, Richard; Tavaré, Simon; Beck, Stephan
2009-01-01
DNA methylation is an indispensible epigenetic modification of mammalian genomes. Consequently there is great interest in strategies for genome-wide/whole-genome DNA methylation analysis, and immunoprecipitation-based methods have proven to be a powerful option. Such methods are rapidly shifting the bottleneck from data generation to data analysis, necessitating the development of better analytical tools. Until now, a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling has been the inability to estimate absolute methylation levels. Here we report the development of a novel cross-platform algorithm – Bayesian Tool for Methylation Analysis (Batman) – for analyzing Methylated DNA Immunoprecipitation (MeDIP) profiles generated using arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). The latter is an approach we have developed to elucidate the first high-resolution whole-genome DNA methylation profile (DNA methylome) of any mammalian genome. MeDIP-seq/MeDIP-chip combined with Batman represent robust, quantitative, and cost-effective functional genomic strategies for elucidating the function of DNA methylation. PMID:18612301
Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu
2015-01-01
DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.
Tost, Jörg
2016-01-01
DNA methylation is the most studied epigenetic modification, and altered DNA methylation patterns have been identified in cancer and more recently also in many other complex diseases. Furthermore, DNA methylation is influenced by a variety of environmental factors, and the analysis of DNA methylation patterns might allow deciphering previous exposure. Although a large number of techniques to study DNA methylation either genome-wide or at specific loci have been devised, they all are based on a limited number of principles for differentiating the methylation state, viz., methylation-specific/methylation-dependent restriction enzymes, antibodies or methyl-binding proteins, chemical-based enrichment, or bisulfite conversion. Second-generation sequencing has largely replaced microarrays as readout platform and is also becoming more popular for locus-specific DNA methylation analysis. In this chapter, the currently used methods for both genome-wide and locus-specific analysis of 5-methylcytosine and as its oxidative derivatives, such as 5-hydroxymethylcytosine, are reviewed in detail, and the advantages and limitations of each approach are discussed. Furthermore, emerging technologies avoiding PCR amplification and allowing a direct readout of DNA methylation are summarized, together with novel applications, such as the detection of DNA methylation in single cells or in circulating cell-free DNA.
Live-Cell Imaging of DNA Methylation Based on Synthetic-Molecule/Protein Hybrid Probe.
Kumar, Naresh; Hori, Yuichiro; Kikuchi, Kazuya
2018-06-04
The epigenetic modification of DNA involves the conversion of cytosine to 5-methylcytosine, also known as DNA methylation. DNA methylation is important in modulating gene expression and thus, regulating genome and cellular functions. Recent studies have shown that aberrations in DNA methylation are associated with various epigenetic disorders or diseases including cancer. This stimulates great interest in the development of methods that can detect and visualize DNA methylation. For instance, fluorescent proteins (FPs) in conjugation with methyl-CpG-binding domain (MBD) have been employed for live-cell imaging of DNA methylation. However, the FP-based approach showed fluorescence signals for both the DNA-bound and -unbound states and thus differentiation between these states is difficult. Synthetic-molecule/protein hybrid probes can provide an alternative to overcome this restriction. In this article, we discuss the synthetic-molecule/protein hybrid probe that we developed recently for live-cell imaging of DNA methylation, which exhibited fluorescence enhancement only after binding to methylated DNA. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DNA methylation-based age prediction from various tissues and body fluids
Jung, Sang-Eun; Shin, Kyoung-Jin; Lee, Hwan Young
2017-01-01
Aging is a natural and gradual process in human life. It is influenced by heredity, environment, lifestyle, and disease. DNA methylation varies with age, and the ability to predict the age of donor using DNA from evidence materials at a crime scene is of considerable value in forensic investigations. Recently, many studies have reported age prediction models based on DNA methylation from various tissues and body fluids. Those models seem to be very promising because of their high prediction accuracies. In this review, the changes of age-associated DNA methylation and the age prediction models for various tissues and body fluids were examined, and then the applicability of the DNA methylation-based age prediction method to the forensic investigations was discussed. This will improve the understandings about DNA methylation markers and their potential to be used as biomarkers in the forensic field, as well as the clinical field. PMID:28946940
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-06-01
Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.
A collaborative exercise on DNA methylation based body fluid typing.
Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young
2016-10-01
A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparisons of non-Gaussian statistical models in DNA methylation analysis.
Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun
2014-06-16
As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.
Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis
Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun
2014-01-01
As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687
Flanagan, James M; Wilson, Angela; Koo, Chail; Masrour, Nahal; Gallon, John; Loomis, Erick; Flower, Kirsty; Wilhelm-Benartzi, Charlotte; Hergovich, Alexander; Cunnea, Paula; Gabra, Hani; Braicu, Elena Ioana; Sehouli, Jalid; Darb-Esfahani, Silvia; Vanderstichele, Adriaan; Vergote, Ignace; Kreuzinger, Caroline; Castillo-Tong, Dan Cacsire; Wisman, G Bea A; Berns, Els Mjj; Siddiqui, Nadeem; Paul, James; Brown, Robert
2017-05-01
Purpose: DNA damage repair can lead to epigenetic changes. DNA mismatch repair proteins bind to platinum DNA adducts and at sites of DNA damage can recruit the DNA methylating enzyme DNMT1, resulting in aberrant methylation. We hypothesised that DNA damage repair during platinum-based chemotherapy may cause aberrant DNA methylation in normal tissues of patients such as blood. Experimental Design: We used Illumina 450k methylation arrays and bisulphite pyrosequencing to investigate methylation at presentation and relapse in blood DNA from patients with ovarian cancer enrolled in the SCOTROC1 trial ( n = 247) and in a cohort of ovarian tumor DNA samples collected at first relapse ( n = 46). We used an ovarian cancer cell line model to investigate the role of the DNA mismatch repair gene MLH1 in platinum-induced methylation changes. Results: Specific CpG methylation changes in blood at relapse are observed following platinum-based chemotherapy and are associated with patient survival, independent of other clinical factors [hazard ratio, 3.7; 95% confidence interval, 1.8-7.6, P = 2.8 × 10 -4 ]. Similar changes occur in ovarian tumors at relapse, also associated with patient survival (hazard ratio, 2.6; 95% confidence interval, 1.0-6.8, P = 0.048). Using an ovarian cancer cell line model, we demonstrate that functional mismatch repair increases the frequency of platinum-induced methylation. Conclusions: DNA methylation in blood at relapse following chemotherapy, and not at presentation, is informative regarding survival of patients with ovarian cancer. Functional DNA mismatch repair increases the frequency of DNA methylation changes induced by platinum. DNA methylation in blood following chemotherapy could provide a noninvasive means of monitoring patients' epigenetic responses to treatment without requiring a tumor biopsy. Clin Cancer Res; 23(9); 2213-22. ©2016 AACR . ©2016 American Association for Cancer Research.
Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).
Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J
2014-01-01
DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic DNA digestion.
Heritable DNA methylation marks associated with susceptibility to breast cancer.
Joo, Jihoon E; Dowty, James G; Milne, Roger L; Wong, Ee Ming; Dugué, Pierre-Antoine; English, Dallas; Hopper, John L; Goldgar, David E; Giles, Graham G; Southey, Melissa C
2018-02-28
Mendelian-like inheritance of germline DNA methylation in cancer susceptibility genes has been previously reported. We aimed to scan the genome for heritable methylation marks associated with breast cancer susceptibility by studying 25 Australian multiple-case breast cancer families. Here we report genome-wide DNA methylation measured in 210 peripheral blood DNA samples provided by family members using the Infinium HumanMethylation450. We develop and apply a new statistical method to identify heritable methylation marks based on complex segregation analysis. We estimate carrier probabilities for the 1000 most heritable methylation marks based on family structure, and we use Cox proportional hazards survival analysis to identify 24 methylation marks with corresponding carrier probabilities significantly associated with breast cancer. We replicate an association with breast cancer risk for four of the 24 marks using an independent nested case-control study. Here, we report a novel approach for identifying heritable DNA methylation marks associated with breast cancer risk.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-01-01
Aim: Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Materials & methods: Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter®. Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. Results: MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. Conclusion: MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas. PMID:27337298
Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing.
Li, Qing; Hermanson, Peter J; Springer, Nathan M
2018-01-01
DNA methylation plays an important role in the regulation of the expression of transposons and genes. Various methods have been developed to assay DNA methylation levels. Bisulfite sequencing is considered to be the "gold standard" for single-base resolution measurement of DNA methylation levels. Coupled with next-generation sequencing, whole-genome bisulfite sequencing (WGBS) allows DNA methylation to be evaluated at a genome-wide scale. Here, we described a protocol for WGBS in plant species with large genomes. This protocol has been successfully applied to assay genome-wide DNA methylation levels in maize and barley. This protocol has also been successfully coupled with sequence capture technology to assay DNA methylation levels in a targeted set of genomic regions.
Identifying DNA methylation in a nanochannel
NASA Astrophysics Data System (ADS)
Sun, Xiaoyin; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Rahong, Sakon; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu
2016-01-01
DNA methylation is a stable epigenetic modification, which is well known to be involved in gene expression regulation. In general, however, analyzing DNA methylation requires rather time consuming processes (24-96 h) via DNA replication and protein modification. Here we demonstrate a methodology to analyze DNA methylation at a single DNA molecule level without any protein modifications by measuring the contracted length and relaxation time of DNA within a nanochannel. Our methodology is based on the fact that methylation makes DNA molecules stiffer, resulting in a longer contracted length and a longer relaxation time (a slower contraction rate). The present methodology offers a promising way to identify DNA methylation without any protein modification at a single DNA molecule level within 2 h.
A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.
Baur, Brittany; Bozdag, Serdar
2016-01-01
DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.
Dedkov, V S
2009-01-01
The specificity of DNA-methyltransferase M.Bsc4I was defined in cellular lysate of Bacillus schlegelii 4. For this purpose, we used methylation sensitivity of restriction endonucleases, and also modeling of methylation. The modeling consisted in editing sequences of DNA using replacements of methylated bases and their complementary bases. The substratum DNA processed by M.Bsc4I also were used for studying sensitivity of some restriction endonucleases to methylation. Thus, it was shown that M.Bsc4I methylated 5'-Cm4CNNNNNNNGG-3' and the overlapped dcm-methylation blocked its activity. The offered approach can appear universal enough and simple for definition of specificity of DNA-methyltransferases.
Jia, Zhaofeng; Liang, Yujie; Ma, Bin; Xu, Xiao; Xiong, Jianyi; Duan, Li; Wang, Daping
2017-05-17
The dedifferentiation of hyaline chondrocytes into fibroblastic chondrocytes often accompanies monolayer expansion of chondrocytes in vitro. The global DNA methylation level of chondrocytes is considered to be a suitable biomarker for the loss of the chondrocyte phenotype. However, results based on different experimental methods can be inconsistent. Therefore, it is important to establish a precise, simple, and rapid method to quantify global DNA methylation levels during chondrocyte dedifferentiation. Current genome-wide methylation analysis techniques largely rely on bisulfite genomic sequencing. Due to DNA degradation during bisulfite conversion, these methods typically require a large sample volume. Other methods used to quantify global DNA methylation levels include high-performance liquid chromatography (HPLC). However, HPLC requires complete digestion of genomic DNA. Additionally, the prohibitively high cost of HPLC instruments limits HPLC's wider application. In this study, genomic DNA (gDNA) was extracted from human chondrocytes cultured with varying number of passages. The gDNA methylation level was detected using a methylation-specific dot blot assay. In this dot blot approach, a gDNA mixture containing the methylated DNA to be detected was spotted directly onto an N + membrane as a dot inside a previously drawn circular template pattern. Compared with other gel electrophoresis-based blotting approaches and other complex blotting procedures, the dot blot method saves significant time. In addition, dot blots can detect overall DNA methylation level using a commercially available 5-mC antibody. We found that the DNA methylation level differed between the monolayer subcultures, and therefore could play a key role in chondrocyte dedifferentiation. The 5-mC dot blot is a reliable, simple, and rapid method to detect the general DNA methylation level to evaluate chondrocyte phenotype.
Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.
Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui
2016-01-19
Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.
Transcription factors as readers and effectors of DNA methylation.
Zhu, Heng; Wang, Guohua; Qian, Jiang
2016-08-01
Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.
Transcription factors as readers and effectors of DNA methylation
Zhu, Heng; Wang, Guohua; Qian, Jiang
2017-01-01
Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease. PMID:27479905
Methylsorb: a simple method for quantifying DNA methylation using DNA-gold affinity interactions.
Sina, Abu Ali Ibn; Carrascosa, Laura G; Palanisamy, Ramkumar; Rauf, Sakandar; Shiddiky, Muhammad J A; Trau, Matt
2014-10-21
The analysis of DNA methylation is becoming increasingly important both in the clinic and also as a research tool to unravel key epigenetic molecular mechanisms in biology. Current methodologies for the quantification of regional DNA methylation (i.e., the average methylation over a region of DNA in the genome) are largely affected by comprehensive DNA sequencing methodologies which tend to be expensive, tedious, and time-consuming for many applications. Herein, we report an alternative DNA methylation detection method referred to as "Methylsorb", which is based on the inherent affinity of DNA bases to the gold surface (i.e., the trend of the affinity interactions is adenine > cytosine ≥ guanine > thymine).1 Since the degree of gold-DNA affinity interaction is highly sequence dependent, it provides a new capability to detect DNA methylation by simply monitoring the relative adsorption of bisulfite treated DNA sequences onto a gold chip. Because the selective physical adsorption of DNA fragments to gold enable a direct read-out of regional DNA methylation, the current requirement for DNA sequencing is obviated. To demonstrate the utility of this method, we present data on the regional methylation status of two CpG clusters located in the EN1 and MIR200B genes in MCF7 and MDA-MB-231 cells. The methylation status of these regions was obtained from the change in relative mass on gold surface with respect to relative adsorption of an unmethylated DNA source and this was detected using surface plasmon resonance (SPR) in a label-free and real-time manner. We anticipate that the simplicity of this method, combined with the high level of accuracy for identifying the methylation status of cytosines in DNA, could find broad application in biology and diagnostics.
White, Alexandra J; Chen, Jia; McCullough, Lauren E; Xu, Xinran; Cho, Yoon Hee; Teitelbaum, Susan L; Neugut, Alfred I; Terry, Mary Beth; Hibshoosh, Hanina; Santella, Regina M; Gammon, Marilie D
2015-12-01
Polycyclic aromatic hydrocarbon (PAH)-DNA adducts have been associated with breast cancer incidence. Aberrant changes in DNA methylation may be an early event in carcinogenesis. However, possible relations between PAH-DNA adducts, methylation, and breast cancer are unknown. The objectives of this study were to (1) assess associations between PAH-DNA adducts, and breast cancer, stratified by DNA methylation markers and (2) examine interactions between adducts and DNA methylation in association with breast cancer and tumor subtype. In a population-based case-control study, promoter methylation of 13 breast cancer-related genes was measured in tumor tissue (n = 765-851 cases). Blood DNA from breast cancer cases (n = 873) and controls (n = 941) was used to assess PAH-DNA adducts and global methylation. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CI); and the ratio of the OR (ROR) was used to assess heterogeneity. Women with detectable PAH-DNA adducts and methylated RARβ (ROR 2.69, 95% CI 1.02-7.12; p for interaction = 0.03) or APC (ROR 1.76, 95% CI 0.87-3.58; p for interaction = 0.09) genes were more likely to have hormone receptor-positive tumors than other subtypes. Interactions with other methylation markers were not apparent (p ≥ 0.10). The association between adducts and breast cancer did not vary by methylation status of the tumor nor did adducts associate with global methylation in the controls. Gene-specific methylation of RARβ, and perhaps APC, may interact with PAH-DNA adducts to increase risk of hormone receptor-positive breast cancer. There was little evidence that adducts were associated with or interacted with other methylation markers of interest.
USDA-ARS?s Scientific Manuscript database
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylat...
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096
Berry, Robert J.; Hao, Ling; Li, Zhu; Maneval, David; Yang, Thomas P.; Rasmussen, Sonja A.; Yang, Quanhe; Zhu, Jiang-Hui; Hu, Dale J.; Bailey, Lynn B.
2011-01-01
Folate is a source of one-carbons necessary for DNA methylation, a critical epigenetic modification necessary for genomic structure and function. The use of supplemental folic acid is widespread however; the potential influence on DNA methylation is unclear. We measured global DNA methylation using DNA extracted from samples from a population-based, double-blind randomized trial of folic acid supplementation (100, 400, 4000 µg per day) taken for 6 months; including a 3 month post-supplementation sample. We observed no changes in global DNA methylation in response to up to 4,000 µg/day for 6 months supplementation in DNA extracted from uncoagulated blood (approximates circulating blood). However, when DNA methylation was determined in coagulated samples from the same individuals at the same time, significant time, dose, and MTHFR genotype-dependent changes were observed. The baseline level of DNA methylation was the same for uncoagulated and coagulated samples; marked differences between sample types were observed only after intervention. In DNA from coagulated blood, DNA methylation decreased (−14%; P<0.001) after 1 month of supplementation and 3 months after supplement withdrawal, methylation decreased an additional 23% (P<0.001) with significant variation among individuals (max+17%; min-94%). Decreases in methylation of ≥25% (vs. <25%) after discontinuation of supplementation were strongly associated with genotype: MTHFR CC vs. TT (adjusted odds ratio [aOR] 12.9, 95%CI 6.4, 26.0). The unexpected difference in DNA methylation between DNA extracted from coagulated and uncoagulated samples in response to folic acid supplementation is an important finding for evaluating use of folic acid and investigating the potential effects of folic acid supplementation on coagulation. PMID:22163281
Microsphere-Based Multiplex Analysis of DNA Methylation in Acute Myeloid Leukemia
Wertheim, Gerald B.W.; Smith, Catherine; Figueroa, Maria E.; Kalos, Michael; Bagg, Adam; Carroll, Martin; Master, Stephen R.
2015-01-01
Aberrant regulation of DNA methylation is characteristic of cancer cells and clearly influences phenotypes of various malignancies. Despite clear correlations between DNA methylation and patient outcome, tests that directly measure multiple-locus DNA methylation are typically expensive and technically challenging. Previous studies have demonstrated that the prognosis of patients with acute myeloid leukemia can be predicted by the DNA methylation pattern of 18 loci. We have developed a novel strategy, termed microsphere HpaII tiny fragment enrichment by ligation-mediated PCR (MELP), to simultaneously analyze the DNA methylation pattern at these loci using methylation-specific DNA digestion, fluorescently labeled microspheres, and branched DNA hybridization. The method uses techniques that are inexpensive and easily performed in a molecular laboratory. MELP accurately reflects the methylation levels at each locus analyzed and segregates patients with acute myeloid leukemia into prognostic subgroups. Our results demonstrate the usefulness of MELP as a platform for simultaneous evaluation of DNA methylation of multiple loci. PMID:24373919
Electronic transport in methylated fragments of DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.
2015-11-16
We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.
Electronic transport in methylated fragments of DNA
NASA Astrophysics Data System (ADS)
de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.
2015-11-01
We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.
Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.
Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong
2017-10-15
Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
[Genome-scale sequence data processing and epigenetic analysis of DNA methylation].
Wang, Ting-Zhang; Shan, Gao; Xu, Jian-Hong; Xue, Qing-Zhong
2013-06-01
A new approach recently developed for detecting cytosine DNA methylation (mC) and analyzing the genome-scale DNA methylation profiling, is called BS-Seq which is based on bisulfite conversion of genomic DNA combined with next-generation sequencing. The method can not only provide an insight into the difference of genome-scale DNA methylation among different organisms, but also reveal the conservation of DNA methylation in all contexts and nucleotide preference for different genomic regions, including genes, exons, and repetitive DNA sequences. It will be helpful to under-stand the epigenetic impacts of cytosine DNA methylation on the regulation of gene expression and maintaining silence of repetitive sequences, such as transposable elements. In this paper, we introduce the preprocessing steps of DNA methylation data, by which cytosine (C) and guanine (G) in the reference sequence are transferred to thymine (T) and adenine (A), and cytosine in reads is transferred to thymine, respectively. We also comprehensively review the main content of the DNA methylation analysis on the genomic scale: (1) the cytosine methylation under the context of different sequences; (2) the distribution of genomic methylcytosine; (3) DNA methylation context and the preference for the nucleotides; (4) DNA- protein interaction sites of DNA methylation; (5) degree of methylation of cytosine in the different structural elements of genes. DNA methylation analysis technique provides a powerful tool for the epigenome study in human and other species, and genes and environment interaction, and founds the theoretical basis for further development of disease diagnostics and therapeutics in human.
DNA methylation aberrancies as a guide for surveillance and treatment of human cancers
Liang, Gangning; Weisenberger, Daniel J.
2017-01-01
ABSTRACT DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival. PMID:28358281
Sina, Abu Ali Ibn; Howell, Sidney; Carrascosa, Laura G; Rauf, Sakandar; Shiddiky, Muhammad J A; Trau, Matt
2014-11-07
We report a simple electrochemical method referred to as "eMethylsorb" for the detection of DNA methylation. The method relies on the base dependent affinity interaction of DNA with gold. The methylation status of DNA is quantified by monitoring the electrochemical current as a function of the relative adsorption level of bisulphite treated DNA samples onto a bare gold electrode. This method can successfully distinguish methylated and unmethylated epigenotypes at single CpG resolution.
[Applications of DNA methylation markers in forensic medicine].
Zhao, Gui-sen; Yang, Qing-en
2005-02-01
DNA methylation is a post-replication modification that is predominantly found in cytosines of the dinucleotide sequence CpG. Epigenetic information is stored in the distribution of the modified base 5-methylcytosine. DNA methylation profiles represent a more chemically and biologically stable source of molecular diagnostic information than RNA or most proteins. Recent advances attest to the great promise of DNA methylation markers as powerful future tools in the clinic. In the past decade, DNA methylation analysis has been revolutionized by two technological advances--bisulphite modification of DNA and methylation-specific polymerase chain reaction (MSP). The methylation pattern of human genome is space-time specific, sex-specific, parent-of-origin specific and disease specific, providing us an alternative way to solve forensic problems.
An epigenetic aging clock for dogs and wolves.
Thompson, Michael J; vonHoldt, Bridgett; Horvath, Steve; Pellegrini, Matteo
2017-03-28
Several articles describe highly accurate age estimation methods based on human DNA-methylation data. It is not yet known whether similar epigenetic aging clocks can be developed based on blood methylation data from canids. Using Reduced Representation Bisulfite Sequencing, we assessed blood DNA-methylation data from 46 domesticated dogs ( Canis familiaris ) and 62 wild gray wolves ( C. lupus ). By regressing chronological dog age on the resulting CpGs, we defined highly accurate multivariate age estimators for dogs (based on 41 CpGs), wolves (67 CpGs), and both combined (115 CpGs). Age related DNA methylation changes in canids implicate similar gene ontology categories as those observed in humans suggesting an evolutionarily conserved mechanism underlying age-related DNA methylation in mammals.
An epigenetic aging clock for dogs and wolves
Thompson, Michael J.; vonHoldt, Bridgett; Horvath, Steve; Pellegrini, Matteo
2017-01-01
Several articles describe highly accurate age estimation methods based on human DNA-methylation data. It is not yet known whether similar epigenetic aging clocks can be developed based on blood methylation data from canids. Using Reduced Representation Bisulfite Sequencing, we assessed blood DNA-methylation data from 46 domesticated dogs (Canis familiaris) and 62 wild gray wolves (C. lupus). By regressing chronological dog age on the resulting CpGs, we defined highly accurate multivariate age estimators for dogs (based on 41 CpGs), wolves (67 CpGs), and both combined (115 CpGs). Age related DNA methylation changes in canids implicate similar gene ontology categories as those observed in humans suggesting an evolutionarily conserved mechanism underlying age-related DNA methylation in mammals. PMID:28373601
Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya
2018-02-07
Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.
A DNA methylation map of human cancer at single base-pair resolution.
Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M
2017-10-05
Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination.
Pros and cons of methylation-based enrichment methods for ancient DNA.
Seguin-Orlando, Andaine; Gamba, Cristina; Der Sarkissian, Clio; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D; Lopez, Patricio; McDonald, H Gregory; Scott, Eric; Tikhonov, Alexei; Stafford, Thomas W; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic
2015-07-02
The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.
Pros and cons of methylation-based enrichment methods for ancient DNA
Seguin-Orlando, Andaine; Gamba, Cristina; Sarkissian, Clio Der; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D.; Lopez, Patricio; McDonald, H. Gregory; Scott, Eric; Tikhonov, Alexei; Stafford,, Thomas W.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic
2015-01-01
The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions. PMID:26134828
Methods of DNA methylation detection
NASA Technical Reports Server (NTRS)
Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)
2010-01-01
The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.
Gold, Marvin; Gefter, Malcolm; Hausmann, Rudolph; Hurwitz, Jerard
1966-01-01
The methylated bases of DNA are formed by the transfer of the methyl group from S-adenosylmethionine to a polynucleotide acceptor. This transfer is catalyzed by highly specific enzymes which recognize a limited number of available sites in the DNA. The mechanism for the recognition is presently unknown. In some instances, there is evidence that other cellular components, such as lipopolysaccharides, can influence the methylation reaction. Certain bacteriophages induce new methylases upon infection of their hosts. Phage T3 is unique in establishing an environment in which methylation of neither the phage nor the host nucleic acid can occur. By superinfecting T3-infected cells with other phages, the latter can be obtained with methyl-deficient DNA. Although a great deal is known about the enzymology of the methylation reaction, and there appears to be a strong correlation between the in vitro and in vivo reactions, studies in which DNA is either supermethylated or totally unmethylated have not yielded any insight as to what the possible function of the methylated bases may be. PMID:5338563
The role of cytosine methylation on charge transport through a DNA strand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Jianqing, E-mail: jqqi@uw.edu; Anantram, M. P., E-mail: anantmp@uw.edu; Govind, Niranjan, E-mail: niri.govind@pnnl.gov
Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance throughmore » the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.« less
The role of cytosine methylation on charge transport through a DNA strand
NASA Astrophysics Data System (ADS)
Qi, Jianqing; Govind, Niranjan; Anantram, M. P.
2015-09-01
Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.
Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions
Wu, Hao; Zhang, Yi
2014-01-01
Methylation of cytosines in the mammalian genome represents a key epigenetic modification and is dynamically regulated during development. Compelling evidence now suggests that dynamic regulation of DNA methylation is mainly achieved through a cyclic enzymatic cascade comprised of cytosine methylation, iterative oxidation of methyl group by TET dioxygenases, and restoration of unmodified cytosines by either replication-dependent dilution or DNA glycosylase-initiated base excision repair. In this review, we discuss the mechanism and function of DNA demethylation in mammalian genomes, focusing particularly on how developmental modulation of the cytosine-modifying pathway is coupled to active reversal of DNA methylation in diverse biological processes. PMID:24439369
Zou, Dong; Sun, Shixiang; Li, Rujiao; Liu, Jiang; Zhang, Jing; Zhang, Zhang
2015-01-01
DNA methylation plays crucial roles during embryonic development. Here we present MethBank (http://dnamethylome.org), a DNA methylome programming database that integrates the genome-wide single-base nucleotide methylomes of gametes and early embryos in different model organisms. Unlike extant relevant databases, MethBank incorporates the whole-genome single-base-resolution methylomes of gametes and early embryos at multiple different developmental stages in zebrafish and mouse. MethBank allows users to retrieve methylation levels, differentially methylated regions, CpG islands, gene expression profiles and genetic polymorphisms for a specific gene or genomic region. Moreover, it offers a methylome browser that is capable of visualizing high-resolution DNA methylation profiles as well as other related data in an interactive manner and thus is of great helpfulness for users to investigate methylation patterns and changes of gametes and early embryos at different developmental stages. Ongoing efforts are focused on incorporation of methylomes and related data from other organisms. Together, MethBank features integration and visualization of high-resolution DNA methylation data as well as other related data, enabling identification of potential DNA methylation signatures in different developmental stages and accordingly providing an important resource for the epigenetic and developmental studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Role of Cytosine Methylation on Charge Transport through a DNA Strand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Jianqing; Govind, Niranjan; Anantram, M. P.
Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modifi-cation remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. Specifically, we compare the results generated with the widely used B3LYP exchange-correlation (XC) functional and CAM-B3LYP based tuned range-separated hybrid density functional. We first analyze the effectmore » of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that with both functionals, the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and interstrand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital (HOMO) level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with both functionals. We also study the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. Our results suggest that the effect of the two different functionals is to alter the on-site energies of the DNA bases at the HOMO level, while the transport properties don't depend much on the two functionals.« less
Lou, Jianlin; Wang, Yu; Chen, Junqiang; Ju, Li; Yu, Min; Jiang, Zhaoqiang; Feng, Lingfang; Jin, Lingzhi; Zhang, Xing
2015-10-01
Several previous studies highlighted the potential epigenetic effects of Cr(VI), especially DNA methylation. However, few studies have compared the effects of Cr(VI) on DNA methylation profiles between soluble and particulate chromate in vitro. Accordingly, Illumina Infinium Human Methylation 450K BeadChip array was used to analyze DNA methylation profiles of human B lymphoblastoid cells exposed to potassium dichromate or lead chromate, and the cell viability was also studied. Array based DNA methylation analysis showed that the impacts of Cr(VI) on DNA methylation were limited, only about 40 differentially methylated CpG sites, with an overlap of 15CpG sites, were induced by both potassium dichromate and lead chromate. The results of mRNA expression showed that after Cr(VI) treatment, mRNA expression changes of four genes (TBL1Y, FZD5, IKZF2, and KIAA1949) were consistent with their DNA methylation alteration, but DNA methylation changes of other six genes did not correlate with mRNA expression. In conclusion, both of soluble and particulate Cr(VI) could induce a small amount of differentially methylated sites in human B lymphoblastoid cells, and the correlations between DNA methylation changes and mRNA expression varied between different genes. Copyright © 2015 Elsevier B.V. All rights reserved.
Nwaobi, Sinifunanya E.; Olsen, Michelle L.
2015-01-01
DNA methylation serves to regulate gene expression through the covalent attachment of a methyl group onto the C5 position of a cytosine in a cytosine-guanine dinucleotide. While DNA methylation provides long-lasting and stable changes in gene expression, patterns and levels of DNA methylation are also subject to change based on a variety of signals and stimuli. As such, DNA methylation functions as a powerful and dynamic regulator of gene expression. The study of neuroepigenetics has revealed a variety of physiological and pathological states that are associated with both global and gene-specific changes in DNA methylation. Specifically, striking correlations between changes in gene expression and DNA methylation exist in neuropsychiatric and neurodegenerative disorders, during synaptic plasticity, and following CNS injury. However, as the field of neuroepigenetics continues to expand its understanding of the role of DNA methylation in CNS physiology, delineating causal relationships in regards to changes in gene expression and DNA methylation are essential. Moreover, in regards to the larger field of neuroscience, the presence of vast region and cell-specific differences requires techniques that address these variances when studying the transcriptome, proteome, and epigenome. Here we describe FACS sorting of cortical astrocytes that allows for subsequent examination of a both RNA transcription and DNA methylation. Furthermore, we detail a technique to examine DNA methylation, methylation sensitive high resolution melt analysis (MS-HRMA) as well as a luciferase promoter assay. Through the use of these combined techniques one is able to not only explore correlative changes between DNA methylation and gene expression, but also directly assess if changes in the DNA methylation status of a given gene region are sufficient to affect transcriptional activity. PMID:26436772
Whole genome DNA methylation: beyond genes silencing.
Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati
2017-01-17
The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology.
Whole genome DNA methylation: beyond genes silencing
Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati
2017-01-01
The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology. PMID:27895318
Feasibility study of molecular memory device based on DNA using methylation to store information
NASA Astrophysics Data System (ADS)
Jiang, Liming; Qiu, Wanzhi; Al-Dirini, Feras; Hossain, Faruque M.; Evans, Robin; Skafidas, Efstratios
2016-07-01
DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibrium Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.
Optical biosensing strategies for DNA methylation analysis.
Nazmul Islam, Md; Yadav, Sharda; Hakimul Haque, Md; Munaz, Ahmed; Islam, Farhadul; Al Hossain, Md Shahriar; Gopalan, Vinod; Lam, Alfred K; Nguyen, Nam-Trung; Shiddiky, Muhammad J A
2017-06-15
DNA methylation is an epigenetic modification of DNA, where a methyl group is added at the fifth carbon of the cytosine base to form 5 methyl cytosine (5mC) without altering the DNA sequences. It plays important roles in regulating many cellular processes by modulating key genes expression. Alteration in DNA methylation patterns becomes particularly important in the aetiology of different diseases including cancers. Abnormal methylation pattern could contribute to the pathogenesis of cancer either by silencing key tumor suppressor genes or by activating oncogenes. Thus, DNA methylation biosensing can help in the better understanding of cancer prognosis and diagnosis and aid the development of therapies. Over the last few decades, a plethora of optical detection techniques have been developed for analyzing DNA methylation using fluorescence, Raman spectroscopy, surface plasmon resonance (SPR), electrochemiluminescence and colorimetric readouts. This paper aims to comprehensively review the optical strategies for DNA methylation detection. We also present an overview of the remaining challenges of optical strategies that still need to be focused along with the lesson learnt while working with these techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
Nie, Y C; Yu, L J; Guan, H; Zhao, Y; Rong, H B; Jiang, B W; Zhang, T
2017-06-01
As an important part of epigenetic marker, DNA methylation involves in the gene regulation and attracts a wide spread attention in biological auxology, geratology and oncology fields. In forensic science, because of the relative stable, heritable, abundant, and age-related characteristics, DNA methylation is considered to be a useful complement to the classic genetic markers for age-prediction, tissue-identification, and monozygotic twins' discrimination. Various methods for DNA methylation detection have been validated based on methylation sensitive restriction endonuclease, bisulfite modification and methylation-CpG binding protein. In recent years, it is reported that the third generation sequencing method can be used to detect DNA methylation. This paper aims to make a review on the detection method of DNA methylation and its applications in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine.
High-Throughput Analysis of Global DNA Methylation Using Methyl-Sensitive Digestion.
Shiratori, Hiromi; Feinweber, Carmen; Knothe, Claudia; Lötsch, Jörn; Thomas, Dominique; Geisslinger, Gerd; Parnham, Michael J; Resch, Eduard
2016-01-01
DNA methylation is a major regulatory process of gene transcription, and aberrant DNA methylation is associated with various diseases including cancer. Many compounds have been reported to modify DNA methylation states. Despite increasing interest in the clinical application of drugs with epigenetic effects, and the use of diagnostic markers for genome-wide hypomethylation in cancer, large-scale screening systems to measure the effects of drugs on DNA methylation are limited. In this study, we improved the previously established fluorescence polarization-based global DNA methylation assay so that it is more suitable for application to human genomic DNA. Our methyl-sensitive fluorescence polarization (MSFP) assay was highly repeatable (inter-assay coefficient of variation = 1.5%) and accurate (r2 = 0.99). According to signal linearity, only 50-80 ng human genomic DNA per reaction was necessary for the 384-well format. MSFP is a simple, rapid approach as all biochemical reactions and final detection can be performed in one well in a 384-well plate without purification steps in less than 3.5 hours. Furthermore, we demonstrated a significant correlation between MSFP and the LINE-1 pyrosequencing assay, a widely used global DNA methylation assay. MSFP can be applied for the pre-screening of compounds that influence global DNA methylation states and also for the diagnosis of certain types of cancer.
Kuan, Pei Fen; Chiang, Derek Y
2012-09-01
DNA methylation has emerged as an important hallmark of epigenetics. Numerous platforms including tiling arrays and next generation sequencing, and experimental protocols are available for profiling DNA methylation. Similar to other tiling array data, DNA methylation data shares the characteristics of inherent correlation structure among nearby probes. However, unlike gene expression or protein DNA binding data, the varying CpG density which gives rise to CpG island, shore and shelf definition provides exogenous information in detecting differential methylation. This article aims to introduce a robust testing and probe ranking procedure based on a nonhomogeneous hidden Markov model that incorporates the above-mentioned features for detecting differential methylation. We revisit the seminal work of Sun and Cai (2009, Journal of the Royal Statistical Society: Series B (Statistical Methodology)71, 393-424) and propose modeling the nonnull using a nonparametric symmetric distribution in two-sided hypothesis testing. We show that this model improves probe ranking and is robust to model misspecification based on extensive simulation studies. We further illustrate that our proposed framework achieves good operating characteristics as compared to commonly used methods in real DNA methylation data that aims to detect differential methylation sites. © 2012, The International Biometric Society.
A DNA methylation map of human cancer at single base-pair resolution
Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M
2017-01-01
Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination. PMID:28581523
Yamamoto, F; Yamamoto, M
2004-07-01
We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.
Yuan, Xiao-Long; Gao, Ning; Xing, Yan; Zhang, Hai-Bin; Zhang, Ai-Ling; Liu, Jing; He, Jin-Long; Xu, Yuan; Lin, Wen-Mian; Chen, Zan-Mou; Zhang, Hao; Zhang, Zhe; Li, Jia-Qi
2016-02-25
Substantial evidence has shown that DNA methylation regulates the initiation of ovarian and sexual maturation. Here, we investigated the genome-wide profile of DNA methylation in porcine ovaries at single-base resolution using reduced representation bisulfite sequencing. The biological variation was minimal among the three ovarian replicates. We found hypermethylation frequently occurred in regions with low gene abundance, while hypomethylation in regions with high gene abundance. The DNA methylation around transcriptional start sites was negatively correlated with their own CpG content. Additionally, the methylation level in the bodies of genes was higher than that in their 5' and 3' flanking regions. The DNA methylation pattern of the low CpG content promoter genes differed obviously from that of the high CpG content promoter genes. The DNA methylation level of the porcine ovary was higher than that of the porcine intestine. Analyses of the genome-wide DNA methylation in porcine ovaries would advance the knowledge and understanding of the porcine ovarian methylome.
An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.
Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin
2017-12-19
Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.
Electrochemical biosensing strategies for DNA methylation analysis.
Hossain, Tanvir; Mahmudunnabi, Golam; Masud, Mostafa Kamal; Islam, Md Nazmul; Ooi, Lezanne; Konstantinov, Konstantin; Hossain, Md Shahriar Al; Martinac, Boris; Alici, Gursel; Nguyen, Nam-Trung; Shiddiky, Muhammad J A
2017-08-15
DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field. Copyright © 2017 Elsevier B.V. All rights reserved.
Forensic DNA methylation profiling from evidence material for investigative leads
Lee, Hwan Young; Lee, Soong Deok; Shin, Kyoung-Jin
2016-01-01
DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials. [BMB Reports 2016; 49(7): 359-369] PMID:27099236
BECon: a tool for interpreting DNA methylation findings from blood in the context of brain.
Edgar, R D; Jones, M J; Meaney, M J; Turecki, G; Kobor, M S
2017-08-01
Tissue differences are one of the largest contributors to variability in the human DNA methylome. Despite the tissue-specific nature of DNA methylation, the inaccessibility of human brain samples necessitates the frequent use of surrogate tissues such as blood, in studies of associations between DNA methylation and brain function and health. Results from studies of surrogate tissues in humans are difficult to interpret in this context, as the connection between blood-brain DNA methylation is tenuous and not well-documented. Here, we aimed to provide a resource to the community to aid interpretation of blood-based DNA methylation results in the context of brain tissue. We used paired samples from 16 individuals from three brain regions and whole blood, run on the Illumina 450 K Human Methylation Array to quantify the concordance of DNA methylation between tissues. From these data, we have made available metrics on: the variability of cytosine-phosphate-guanine dinucleotides (CpGs) in our blood and brain samples, the concordance of CpGs between blood and brain, and estimations of how strongly a CpG is affected by cell composition in both blood and brain through the web application BECon (Blood-Brain Epigenetic Concordance; https://redgar598.shinyapps.io/BECon/). We anticipate that BECon will enable biological interpretation of blood-based human DNA methylation results, in the context of brain.
DNA Methylation Biomarkers: Cancer and Beyond
Mikeska, Thomas; Craig, Jeffrey M.
2014-01-01
Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease. PMID:25229548
DNA methylome of the 20-gigabase Norway spruce genome
Ausin, Israel; Feng, Suhua; Yu, Chaowei; Liu, Wanlu; Kuo, Hsuan Yu; Jacobsen, Elise L.; Zhai, Jixian; Gallego-Bartolome, Javier; Wang, Lin; Egertsdotter, Ulrika; Street, Nathaniel R.; Jacobsen, Steven E.; Wang, Haifeng
2016-01-01
DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns. PMID:27911846
Sahm, Felix; Schrimpf, Daniel; Stichel, Damian; Jones, David T W; Hielscher, Thomas; Schefzyk, Sebastian; Okonechnikov, Konstantin; Koelsche, Christian; Reuss, David E; Capper, David; Sturm, Dominik; Wirsching, Hans-Georg; Berghoff, Anna Sophie; Baumgarten, Peter; Kratz, Annekathrin; Huang, Kristin; Wefers, Annika K; Hovestadt, Volker; Sill, Martin; Ellis, Hayley P; Kurian, Kathreena M; Okuducu, Ali Fuat; Jungk, Christine; Drueschler, Katharina; Schick, Matthias; Bewerunge-Hudler, Melanie; Mawrin, Christian; Seiz-Rosenhagen, Marcel; Ketter, Ralf; Simon, Matthias; Westphal, Manfred; Lamszus, Katrin; Becker, Albert; Koch, Arend; Schittenhelm, Jens; Rushing, Elisabeth J; Collins, V Peter; Brehmer, Stefanie; Chavez, Lukas; Platten, Michael; Hänggi, Daniel; Unterberg, Andreas; Paulus, Werner; Wick, Wolfgang; Pfister, Stefan M; Mittelbronn, Michel; Preusser, Matthias; Herold-Mende, Christel; Weller, Michael; von Deimling, Andreas
2017-05-01
The WHO classification of brain tumours describes 15 subtypes of meningioma. Nine of these subtypes are allotted to WHO grade I, and three each to grade II and grade III. Grading is based solely on histology, with an absence of molecular markers. Although the existing classification and grading approach is of prognostic value, it harbours shortcomings such as ill-defined parameters for subtypes and grading criteria prone to arbitrary judgment. In this study, we aimed for a comprehensive characterisation of the entire molecular genetic landscape of meningioma to identify biologically and clinically relevant subgroups. In this multicentre, retrospective analysis, we investigated genome-wide DNA methylation patterns of meningiomas from ten European academic neuro-oncology centres to identify distinct methylation classes of meningiomas. The methylation classes were further characterised by DNA copy number analysis, mutational profiling, and RNA sequencing. Methylation classes were analysed for progression-free survival outcomes by the Kaplan-Meier method. The DNA methylation-based and WHO classification schema were compared using the Brier prediction score, analysed in an independent cohort with WHO grading, progression-free survival, and disease-specific survival data available, collected at the Medical University Vienna (Vienna, Austria), assessing methylation patterns with an alternative methylation chip. We retrospectively collected 497 meningiomas along with 309 samples of other extra-axial skull tumours that might histologically mimic meningioma variants. Unsupervised clustering of DNA methylation data clearly segregated all meningiomas from other skull tumours. We generated genome-wide DNA methylation profiles from all 497 meningioma samples. DNA methylation profiling distinguished six distinct clinically relevant methylation classes associated with typical mutational, cytogenetic, and gene expression patterns. Compared with WHO grading, classification by individual and combined methylation classes more accurately identifies patients at high risk of disease progression in tumours with WHO grade I histology, and patients at lower risk of recurrence among WHO grade II tumours (p=0·0096) from the Brier prediction test). We validated this finding in our independent cohort of 140 patients with meningioma. DNA methylation-based meningioma classification captures clinically more homogenous groups and has a higher power for predicting tumour recurrence and prognosis than the WHO classification. The approach presented here is potentially very useful for stratifying meningioma patients to observation-only or adjuvant treatment groups. We consider methylation-based tumour classification highly relevant for the future diagnosis and treatment of meningioma. German Cancer Aid, Else Kröner-Fresenius Foundation, and DKFZ/Heidelberg Institute of Personalized Oncology/Precision Oncology Program. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Ye; Chen, Muyan; Storey, Kenneth B; Sun, Lina; Yang, Hongsheng
2015-03-01
DNA methylation plays an important role in regulating transcriptional change in response to environmental stimuli. In the present study, DNA methylation levels of tissues of the sea cucumber Apostichopus japonicus were analyzed by the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique over three stages of the aestivation cycle. Overall, a total of 26,963 fragments were amplified including 9112 methylated fragments among four sea cucumber tissues using 18 pairs of selective primers. Results indicated an average DNA methylation level of 33.79% for A. japonicus. The incidence of DNA methylation was different across tissue types in the non-aestivation stage: intestine (30.16%), respiratory tree (27.61%), muscle (27.94%) and body wall (56.25%). Our results show that hypermethylation accompanied deep-aestivation in A. japonicus, which suggests that DNA methylation may have an important role in regulating global transcriptional suppression during aestivation. Further analysis indicated that the main DNA modification sites were focused on intestine and respiratory tree tissues and that full-methylation but not hemi-methylation levels exhibited significant increases in the deep-aestivation stage. Copyright © 2014 Elsevier Inc. All rights reserved.
MIRA: An R package for DNA methylation-based inference of regulatory activity.
Lawson, John T; Tomazou, Eleni M; Bock, Christoph; Sheffield, Nathan C
2018-03-01
DNA methylation contains information about the regulatory state of the cell. MIRA aggregates genome-scale DNA methylation data into a DNA methylation profile for independent region sets with shared biological annotation. Using this profile, MIRA infers and scores the collective regulatory activity for each region set. MIRA facilitates regulatory analysis in situations where classical regulatory assays would be difficult and allows public sources of open chromatin and protein binding regions to be leveraged for novel insight into the regulatory state of DNA methylation datasets. R package available on Bioconductor: http://bioconductor.org/packages/release/bioc/html/MIRA.html. nsheffield@virginia.edu.
Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays
2011-01-01
Background The processes that compose expression of a given gene are far more complex than previously thought presenting unprecedented conceptual and mechanistic challenges that require development of new tools. Chromatin structure, which is regulated by DNA methylation and histone modification, is at the center of gene regulation. Immunoprecipitations of chromatin (ChIP) and methylated DNA (MeDIP) represent a major achievement in this area that allow researchers to probe chromatin modifications as well as specific protein-DNA interactions in vivo and to estimate the density of proteins at specific sites genome-wide. Although a critical component of chromatin structure, DNA methylation has often been studied independently of other chromatin events and transcription. Results To allow simultaneous measurements of DNA methylation with other genomic processes, we developed and validated a simple and easy-to-use high throughput microplate-based platform for analysis of DNA methylation. Compared to the traditional beads-based MeDIP the microplate MeDIP was more sensitive and had lower non-specific binding. We integrated the MeDIP method with a microplate ChIP assay which allows measurements of both DNA methylation and histone marks at the same time, Matrix ChIP-MeDIP platform. We illustrated several applications of this platform to relate DNA methylation, with chromatin and transcription events at selected genes in cultured cells, human cancer and in a model of diabetic kidney disease. Conclusion The high throughput capacity of Matrix ChIP-MeDIP to profile tens and potentially hundreds of different genomic events at the same time as DNA methylation represents a powerful platform to explore complex genomic mechanism at selected genes in cultured cells and in whole tissues. In this regard, Matrix ChIP-MeDIP should be useful to complement genome-wide studies where the rich chromatin and transcription database resources provide fruitful foundation to pursue mechanistic, functional and diagnostic information at genes of interest in health and disease. PMID:22098709
The effects of cytosine methylation on general transcription factors
NASA Astrophysics Data System (ADS)
Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong
2016-07-01
DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.
Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi
2011-10-01
DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.
Wang, Yihan; Zhang, Jingyu; Xiao, Xingjun; Liu, Hongbo; Wang, Fang; Li, Song; Wen, Yanhua; Wei, Yanjun; Su, Jianzhong; Zhang, Yunming; Zhang, Yan
2016-03-07
As one of the most widely studied epigenetic modifications, DNA methylation has an important influence on human traits and cancers. Dynamic variations in DNA methylation have been reported in malignant neoplasm and aging; however, the mechanisms remain poorly understood. By constructing an age-associated and cancer-related weighted network (ACWN) based on the correlation of the methylation level and the protein-protein interaction, we found that DNA methylation changes associated with age were closely related to the occurrence of cancer. Additional analysis of 102 module genes mined from the ACWN revealed discrimination based on two main patterns. One pattern involved methylation levels that increased with aging and were higher in cancer patients compared with normal controls (HH pattern). The other pattern involved methylation levels that decreased with aging and were lower in cancer compared with normal (LL pattern). Upon incorporation with gene expression levels, 25 genes were filtered based on negative regulation by DNA methylation. These genes were regarded as potential cancer risk markers that were influenced by age in the process of carcinogenesis. Our results will facilitate further studies regarding the impact of the epigenetic effects of aging on diseases and will aid in the development of tailored cancer preventive strategies.
Wang, Yihan; Zhang, Jingyu; Xiao, Xingjun; Liu, Hongbo; Wang, Fang; Li, Song; Wen, Yanhua; Wei, Yanjun; Su, Jianzhong; Zhang, Yunming; Zhang, Yan
2016-01-01
As one of the most widely studied epigenetic modifications, DNA methylation has an important influence on human traits and cancers. Dynamic variations in DNA methylation have been reported in malignant neoplasm and aging; however, the mechanisms remain poorly understood. By constructing an age-associated and cancer-related weighted network (ACWN) based on the correlation of the methylation level and the protein-protein interaction, we found that DNA methylation changes associated with age were closely related to the occurrence of cancer. Additional analysis of 102 module genes mined from the ACWN revealed discrimination based on two main patterns. One pattern involved methylation levels that increased with aging and were higher in cancer patients compared with normal controls (HH pattern). The other pattern involved methylation levels that decreased with aging and were lower in cancer compared with normal (LL pattern). Upon incorporation with gene expression levels, 25 genes were filtered based on negative regulation by DNA methylation. These genes were regarded as potential cancer risk markers that were influenced by age in the process of carcinogenesis. Our results will facilitate further studies regarding the impact of the epigenetic effects of aging on diseases and will aid in the development of tailored cancer preventive strategies. PMID:26949191
Methylation-sensitive enrichment of minor DNA alleles using a double-strand DNA-specific nuclease.
Liu, Yibin; Song, Chen; Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Makrigiorgos, G Mike
2017-04-07
Aberrant methylation changes, often present in a minor allelic fraction in clinical samples such as plasma-circulating DNA (cfDNA), are potentially powerful prognostic and predictive biomarkers in human disease including cancer. We report on a novel, highly-multiplexed approach to facilitate analysis of clinically useful methylation changes in minor DNA populations. Methylation Specific Nuclease-assisted Minor-allele Enrichment (MS-NaME) employs a double-strand-specific DNA nuclease (DSN) to remove excess DNA with normal methylation patterns. The technique utilizes oligonucleotide-probes that direct DSN activity to multiple targets in bisulfite-treated DNA, simultaneously. Oligonucleotide probes targeting unmethylated sequences generate local double stranded regions resulting to digestion of unmethylated targets, and leaving methylated targets intact; and vice versa. Subsequent amplification of the targeted regions results in enrichment of the targeted methylated or unmethylated minority-epigenetic-alleles. We validate MS-NaME by demonstrating enrichment of RARb2, ATM, MGMT and GSTP1 promoters in multiplexed MS-NaME reactions (177-plex) using dilutions of methylated/unmethylated DNA and in DNA from clinical lung cancer samples and matched normal tissue. MS-NaME is a highly scalable single-step approach performed at the genomic DNA level in solution that combines with most downstream detection technologies including Sanger sequencing, methylation-sensitive-high-resolution melting (MS-HRM) and methylation-specific-Taqman-based-digital-PCR (digital Methylight) to boost detection of low-level aberrant methylation-changes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Epigenetic Pattern on the Human Y Chromosome Is Evolutionarily Conserved
Meng, Hao; Agbagwa, Ikechukwu O.; Wang, Ling-Xiang; Wang, Yingzhi; Yan, Shi; Ren, Shancheng; Sun, Yinghao; Pei, Gang; Liu, Xin; Liu, Jiang; Jin, Li; Li, Hui; Sun, Yingli
2016-01-01
DNA methylation plays an important role for mammalian development. However, it is unclear whether the DNA methylation pattern is evolutionarily conserved. The Y chromosome serves as a powerful tool for the study of human evolution because it is transferred between males. In this study, based on deep-rooted pedigrees and the latest Y chromosome phylogenetic tree, we performed epigenetic pattern analysis of the Y chromosome from 72 donors. By comparing their respective DNA methylation level, we found that the DNA methylation pattern on the Y chromosome was stable among family members and haplogroups. Interestingly, two haplogroup-specific methylation sites were found, which were both genotype-dependent. Moreover, the African and Asian samples also had similar DNA methylation pattern with a remote divergence time. Our findings indicated that the DNA methylation pattern on the Y chromosome was conservative during human male history. PMID:26760298
How-Kit, Alexandre; Dejeux, Emelyne; Dousset, Bertrand; Renault, Victor; Baudry, Marion; Terris, Benoit; Tost, Jörg
2015-01-01
Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.
Friso, Simonetta; Choi, Sang-Woon; Girelli, Domenico; Mason, Joel B.; Dolnikowski, Gregory G.; Bagley, Pamela J.; Olivieri, Oliviero; Jacques, Paul F.; Rosenberg, Irwin H.; Corrocher, Roberto; Selhub, Jacob
2002-01-01
DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/μg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status. PMID:11929966
Leontiou, Chrysanthia A.; Hadjidaniel, Michael D.; Mina, Petros; Antoniou, Pavlos; Ioannides, Marios; Patsalis, Philippos C.
2015-01-01
Introduction Epigenetic alterations, including DNA methylation, play an important role in the regulation of gene expression. Several methods exist for evaluating DNA methylation, but bisulfite sequencing remains the gold standard by which base-pair resolution of CpG methylation is achieved. The challenge of the method is that the desired outcome (conversion of unmethylated cytosines) positively correlates with the undesired side effects (DNA degradation and inappropriate conversion), thus several commercial kits try to adjust a balance between the two. The aim of this study was to compare the performance of four bisulfite conversion kits [Premium Bisulfite kit (Diagenode), EpiTect Bisulfite kit (Qiagen), MethylEdge Bisulfite Conversion System (Promega) and BisulFlash DNA Modification kit (Epigentek)] regarding conversion efficiency, DNA degradation and conversion specificity. Methods Performance was tested by combining fully methylated and fully unmethylated λ-DNA controls in a series of spikes by means of Sanger sequencing (0%, 25%, 50% and 100% methylated spikes) and Next-Generation Sequencing (0%, 3%, 5%, 7%, 10%, 25%, 50% and 100% methylated spikes). We also studied the methylation status of two of our previously published differentially methylated regions (DMRs) at base resolution by using spikes of chorionic villus sample in whole blood. Results The kits studied showed different but comparable results regarding DNA degradation, conversion efficiency and conversion specificity. However, the best performance was observed with the MethylEdge Bisulfite Conversion System (Promega) followed by the Premium Bisulfite kit (Diagenode). The DMRs, EP6 and EP10, were confirmed to be hypermethylated in the CVS and hypomethylated in whole blood. Conclusion Our findings indicate that the MethylEdge Bisulfite Conversion System (Promega) was shown to have the best performance among the kits. In addition, the methylation level of two of our DMRs, EP6 and EP10, was confirmed. Finally, we showed that bisulfite amplicon sequencing is a suitable approach for methylation analysis of targeted regions. PMID:26247357
Leontiou, Chrysanthia A; Hadjidaniel, Michael D; Mina, Petros; Antoniou, Pavlos; Ioannides, Marios; Patsalis, Philippos C
2015-01-01
Epigenetic alterations, including DNA methylation, play an important role in the regulation of gene expression. Several methods exist for evaluating DNA methylation, but bisulfite sequencing remains the gold standard by which base-pair resolution of CpG methylation is achieved. The challenge of the method is that the desired outcome (conversion of unmethylated cytosines) positively correlates with the undesired side effects (DNA degradation and inappropriate conversion), thus several commercial kits try to adjust a balance between the two. The aim of this study was to compare the performance of four bisulfite conversion kits [Premium Bisulfite kit (Diagenode), EpiTect Bisulfite kit (Qiagen), MethylEdge Bisulfite Conversion System (Promega) and BisulFlash DNA Modification kit (Epigentek)] regarding conversion efficiency, DNA degradation and conversion specificity. Performance was tested by combining fully methylated and fully unmethylated λ-DNA controls in a series of spikes by means of Sanger sequencing (0%, 25%, 50% and 100% methylated spikes) and Next-Generation Sequencing (0%, 3%, 5%, 7%, 10%, 25%, 50% and 100% methylated spikes). We also studied the methylation status of two of our previously published differentially methylated regions (DMRs) at base resolution by using spikes of chorionic villus sample in whole blood. The kits studied showed different but comparable results regarding DNA degradation, conversion efficiency and conversion specificity. However, the best performance was observed with the MethylEdge Bisulfite Conversion System (Promega) followed by the Premium Bisulfite kit (Diagenode). The DMRs, EP6 and EP10, were confirmed to be hypermethylated in the CVS and hypomethylated in whole blood. Our findings indicate that the MethylEdge Bisulfite Conversion System (Promega) was shown to have the best performance among the kits. In addition, the methylation level of two of our DMRs, EP6 and EP10, was confirmed. Finally, we showed that bisulfite amplicon sequencing is a suitable approach for methylation analysis of targeted regions.
Maghbooli, Z; Hossein-Nezhad, A; Larijani, B; Pasalar, P; Keshtkar, A A
2015-08-01
The aim of this study was to investigate the relationship between inter-individual global DNA methylation and diabetes predisposing factors. The 5-methyl cytosine content was assessed by reverse phase high pressure liquid chromatography (RP-HPLC) of peripheral blood leukocytes obtained from 178 type 2 diabetes patients to determine individual global DNA methylation status. There was a positive significant correlation between diabetes duration and DNA methylation levels (P=0.002) with increasing levels of DNA methylation associated with age (P=0.047). There was no significant correlation between DNA methylation levels and HbA1c (P=0.15). No significant differences were observed between patients with and without diabetes predisposing factors including: hypertension (P=0.772), dyslipidemia (P=0.617), insulin resistance (homeostatic model assessment index) (P=0.156) and obesity (P=0.609). As such, the duration of diabetes (>10 years) was the most important predictor of global DNA methylation levels in diabetic patients after adjusting for age and sex (P=0.023). Our findings indicate that chronic hyperglycemic exposure plays an independent role in global DNA methylation levels in type 2 diabetes patients.
De novo DNA methylation during monkey pre-implantation embryogenesis.
Gao, Fei; Niu, Yuyu; Sun, Yi Eve; Lu, Hanlin; Chen, Yongchang; Li, Siguang; Kang, Yu; Luo, Yuping; Si, Chenyang; Yu, Juehua; Li, Chang; Sun, Nianqin; Si, Wei; Wang, Hong; Ji, Weizhi; Tan, Tao
2017-04-01
Critical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period. By the 8-cell stage, remethylation becomes more pronounced than demethylation, resulting in an increase in global DNA methylation. Promoters of genes associated with oxidative phosphorylation are preferentially remethylated at the 8-cell stage, suggesting that this mode of energy metabolism may not be favored. Unlike in rodents, X chromosome inactivation is not observed during monkey pre-implantation development. Our study provides the first comprehensive illustration of the 'wax and wane' phases of DNA methylation dynamics. Most importantly, our DNA methyltransferase loss-of-function analysis indicates that DNA methylation influences early monkey embryogenesis.
De novo DNA methylation during monkey pre-implantation embryogenesis
Gao, Fei; Niu, Yuyu; Sun, Yi Eve; Lu, Hanlin; Chen, Yongchang; Li, Siguang; Kang, Yu; Luo, Yuping; Si, Chenyang; Yu, Juehua; Li, Chang; Sun, Nianqin; Si, Wei; Wang, Hong; Ji, Weizhi; Tan, Tao
2017-01-01
Critical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period. By the 8-cell stage, remethylation becomes more pronounced than demethylation, resulting in an increase in global DNA methylation. Promoters of genes associated with oxidative phosphorylation are preferentially remethylated at the 8-cell stage, suggesting that this mode of energy metabolism may not be favored. Unlike in rodents, X chromosome inactivation is not observed during monkey pre-implantation development. Our study provides the first comprehensive illustration of the 'wax and wane' phases of DNA methylation dynamics. Most importantly, our DNA methyltransferase loss-of-function analysis indicates that DNA methylation influences early monkey embryogenesis. PMID:28233770
Feasibility study of molecular memory device based on DNA using methylation to store information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Liming; Al-Dirini, Feras; Center for Neural Engineering
DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibriummore » Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.« less
Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha
2017-08-31
Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.
MethLAB: a graphical user interface package for the analysis of array-based DNA methylation data.
Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K; Conneely, Karen N
2012-03-01
Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data.
DNA methylation detection based on difference of base content
NASA Astrophysics Data System (ADS)
Sato, Shinobu; Ohtsuka, Keiichi; Honda, Satoshi; Sato, Yusuke; Takenaka, Shigeori
2016-04-01
Methylation frequently occurs in cytosines of CpG sites to regulate gene expression. The identification of aberrant methylation of certain genes is important for cancer marker analysis. The aim of this study was to determine the methylation frequency in DNA samples of unknown length and/or concentration. Unmethylated cytosine is known to be converted to thymine following bisulfite treatment and subsequent PCR. For this reason, the AT content in DNA increases with an increasing number of methylation sites. In this study, the fluorescein-carrying bis-acridinyl peptide (FKA) molecule was used for the detection of methylation frequency. FKA contains fluorescein and two acridine moieties, which together allow for the determination of the AT content of double-stranded DNA fragments. Methylated and unmethylated human genomes were subjected to bisulfide treatment and subsequent PCR using primers specific for the CFTR, CDH4, DBC1, and NPY genes. The AT content in the resulting PCR products was estimated by FKA, and AT content estimations were found to be in good agreement with those determined by DNA sequencing. This newly developed method may be useful for determining methylation frequencies of many PCR products by measuring the fluorescence in samples excited at two different wavelengths.
Identifying DNA Methylation Biomarkers for Non-Endoscopic Detection of Barrett’s Esophagus
Moinova, Helen R.; LaFramboise, Thomas; Lutterbaugh, James D.; Chandar, Apoorva Krishna; Dumot, John; Faulx, Ashley; Brock, Wendy; De la Cruz Cabrera, Omar; Guda, Kishore; Barnholtz-Sloan, Jill S.; Iyer, Prasad G.; Canto, Marcia I.; Wang, Jean S.; Shaheen, Nicholas J.; Thota, Prashanti N.; Willis, Joseph E.; Chak, Amitabh; Markowitz, Sanford D.
2018-01-01
We report a biomarker-based non-endoscopic method for detecting Barrett’s esophagus (BE), based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma (EAC). Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve (AUC)=0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals, who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 minutes. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE. PMID:29343623
Huh, Iksoo; Wu, Xin; Park, Taesung; Yi, Soojin V
2017-07-21
DNA methylation is one of the most extensively studied epigenetic modifications of genomic DNA. In recent years, sequencing of bisulfite-converted DNA, particularly via next-generation sequencing technologies, has become a widely popular method to study DNA methylation. This method can be readily applied to a variety of species, dramatically expanding the scope of DNA methylation studies beyond the traditionally studied human and mouse systems. In parallel to the increasing wealth of genomic methylation profiles, many statistical tools have been developed to detect differentially methylated loci (DMLs) or differentially methylated regions (DMRs) between biological conditions. We discuss and summarize several key properties of currently available tools to detect DMLs and DMRs from sequencing of bisulfite-converted DNA. However, the majority of the statistical tools developed for DML/DMR analyses have been validated using only mammalian data sets, and less priority has been placed on the analyses of invertebrate or plant DNA methylation data. We demonstrate that genomic methylation profiles of non-mammalian species are often highly distinct from those of mammalian species using examples of honey bees and humans. We then discuss how such differences in data properties may affect statistical analyses. Based on these differences, we provide three specific recommendations to improve the power and accuracy of DML and DMR analyses of invertebrate data when using currently available statistical tools. These considerations should facilitate systematic and robust analyses of DNA methylation from diverse species, thus advancing our understanding of DNA methylation. © The Author 2017. Published by Oxford University Press.
Su, Chang; Wang, Chao; He, Lin; Yang, Chuanping; Wang, Yucheng
2014-01-01
DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch) by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees. PMID:25514241
Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Oikawa, Ritsuko; Toyota, Minoru; Yamamoto, Masakazu; Kokudo, Norihiro; Tanaka, Shinji; Arii, Shigeki; Yotsuyanagi, Hiroshi; Koike, Kazuhiko; Itoh, Fumio
2015-01-01
Integration of DNA viruses into the human genome plays an important role in various types of tumors, including hepatitis B virus (HBV)–related hepatocellular carcinoma. However, the molecular details and clinical impact of HBV integration on either human or HBV epigenomes are unknown. Here, we show that methylation of the integrated HBV DNA is related to the methylation status of the flanking human genome. We developed a next-generation sequencing-based method for structural methylation analysis of integrated viral genomes (denoted G-NaVI). This method is a novel approach that enables enrichment of viral fragments for sequencing using unique baits based on the sequence of the HBV genome. We detected integrated HBV sequences in the genome of the PLC/PRF/5 cell line and found variable levels of methylation within the integrated HBV genomes. Allele-specific methylation analysis revealed that the HBV genome often became significantly methylated when integrated into highly methylated host sites. After integration into unmethylated human genome regions such as promoters, however, the HBV DNA remains unmethylated and may eventually play an important role in tumorigenesis. The observed dynamic changes in DNA methylation of the host and viral genomes may functionally affect the biological behavior of HBV. These findings may impact public health given that millions of people worldwide are carriers of HBV. We also believe our assay will be a powerful tool to increase our understanding of the various types of DNA virus-associated tumorigenesis. PMID:25653310
The Influence of Metabolic Syndrome and Sex on the DNA Methylome in Schizophrenia
Lines, Brittany N.
2018-01-01
Introduction The mechanism by which metabolic syndrome occurs in schizophrenia is not completely known; however, previous work suggests that changes in DNA methylation may be involved which is further influenced by sex. Within this study, the DNA methylome was profiled to identify altered methylation associated with metabolic syndrome in a schizophrenia population on atypical antipsychotics. Methods Peripheral blood from schizophrenia subjects was utilized for DNA methylation analyses. Discovery analyses (n = 96) were performed using an epigenome-wide analysis on the Illumina HumanMethylation450K BeadChip based on metabolic syndrome diagnosis. A secondary discovery analysis was conducted based on sex. The top hits from the discovery analyses were assessed in an additional validation set (n = 166) using site-specific methylation pyrosequencing. Results A significant increase in CDH22 gene methylation in subjects with metabolic syndrome was identified in the overall sample. Additionally, differential methylation was found within the MAP3K13 gene in females and the CCDC8 gene within males. Significant differences in methylation were again observed for the CDH22 and MAP3K13 genes, but not CCDC8, in the validation sample set. Conclusions This study provides preliminary evidence that DNA methylation may be associated with metabolic syndrome and sex in schizophrenia. PMID:29850476
Wang, Po; Chen, Hanbin; Tian, Jiuying; Dai, Zong; Zou, Xiaoyong
2013-07-15
An efficient electrochemical approach for the evaluation of DNA methylation level was proposed according to the oxidation signal of DNA bases at an overoxidized polypyrrole (PPyox) directed multiwalled carbon nanotubes (MWNTs) film modified glassy carbon electrode (GCE). The PPyox/MWNTs/GCE exhibited remarkable electrocatalytic activities towards the oxidation of DNA bases due to the advantages of wide potential window, large effective surface area, and excellent antifouling property. As a result, all purine and pyrimidine bases of guanine (G), adenine (A), thymine (T), cytosine (C) and 5-methylcytosine (5-mC) exhibited well identified oxidation peaks at the PPyox/MWNTs/GCE. The direct potential resolution between 5-mC and C was obtained to be 180 mV, which was large enough for their signal recognition and accurate detection in mixture. In particular, the signal interference from T, a great challenge in exploring DNA methylation, was successfully eliminated by an innovative strategy, which was developed based on the stoichiometric relationship between purine and pyrimidine bases in DNA molecular structure. The proposed method was effectively applied to the rapid detection of DNA methylation status in real sample within 45 min with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.
Gu, Junchen; Stevens, Michael; Xing, Xiaoyun; Li, Daofeng; Zhang, Bo; Payton, Jacqueline E; Oltz, Eugene M; Jarvis, James N; Jiang, Kaiyu; Cicero, Theodore; Costello, Joseph F; Wang, Ting
2016-04-07
DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types. Copyright © 2016 Gu et al.
What triggers differential DNA methylation of genes and TEs: contribution of body methylation?
Inagaki, S; Kakutani, T
2012-01-01
Transposable elements (TEs) are epigenetically silenced with extensive DNA methylation. The silent epigenetic marks should, however, be excluded from active genes. By genetic approaches, we study mechanisms to remove the heterochromatin marks from transcribed genes. Based on our observations on control of TE transcription, we propose a possible trigger for the TE-specific accumulation of DNA methylation. A critical difference between TEs and genes could be their responses to the DNA methylation in the internal part of transcribed regions. When their internal region is methylated, genes are still transcribed, but TEs could be silenced, which may reflect the obligatory position of every critical cis-acting element within the TE itself. This initial difference of TEs and genes will be amplified by positive feedback loops to stabilize active or silent states. Thus, the mechanisms to accumulate heterochromatin marks within transcribed regions could provide a trigger to induce differential DNA methylation between genes and TEs.
Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae
2011-07-01
Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.
Kristensen, Lasse S; Wojdacz, Tomasz K; Thestrup, Britta B; Wiuf, Carsten; Hager, Henrik; Hansen, Lise Lotte
2009-12-21
The High Resolution Melting (HRM) technology has recently been introduced as a rapid and robust analysis tool for the detection of DNA methylation. The methylation status of multiple tumor suppressor genes may serve as biomarkers for early cancer diagnostics, for prediction of prognosis and for prediction of response to treatment. Therefore, it is important that methodologies for detection of DNA methylation continue to evolve. Sensitive Melting Analysis after Real Time - Methylation Specific PCR (SMART-MSP) and Methylation Sensitive - High Resolution Melting (MS-HRM) are two methods for single locus DNA methylation detection based on HRM. Here, we have assessed the quality of DNA extracted from up to 30 years old Formalin Fixed Paraffin Embedded (FFPE) tissue for DNA methylation analysis using SMART-MSP and MS-HRM. The quality assessment was performed on DNA extracted from 54 Non-Small Cell Lung Cancer (NSCLC) samples derived from FFPE tissue, collected over 30 years and grouped into five years intervals. For each sample, the methylation levels of the CDKN2A (p16) and RARB promoters were estimated using SMART-MSP and MS-HRM assays designed to assess the methylation status of the same CpG positions. This allowed for a direct comparison of the methylation levels estimated by the two methods for each sample. CDKN2A promoter methylation levels were successfully determined by SMART-MSP and MS-HRM in all 54 samples. Identical methylation estimates were obtained by the two methods in 46 of the samples. The methylation levels of the RARB promoter were successfully determined by SMART-MSP in all samples. When using MS-HRM to assess RARB methylation five samples failed to amplify and 15 samples showed a melting profile characteristic for heterogeneous methylation. Twenty-seven of the remaining 34 samples, for which the methylation level could be estimated, gave the same result as observed when using SMART-MSP. MS-HRM and SMART-MSP can be successfully used for single locus methylation studies using DNA derived from up to 30 years old FFPE tissue. Furthermore, it can be expected that MS-HRM and SMART-MSP will provide similar methylation estimates when assays are designed to analyze the same CpG positions.
Tammen, Stephanie A; Liu, Zhenhua; Friso, Simonetta
2015-01-01
BACKGROUND/OBJECTIVES Previous studies have indicated that when compared to young mice, old mice have lower global DNA methylation and higher p16 promoter methylation in colonic mucosa, which is a common finding in colon cancer. It is also known that a Western-style diet (WSD) high in fat and calories, and low in calcium, vitamin D, fiber, methionine and choline (based on the AIN 76A diet) is tumorigenic in colons of mice. Because DNA methylation is modifiable by diet, we investigate whether a WSD disrupts DNA methylation patterns, creating a tumorigenic environment. SUBJECTVIES/METHODS We investigated the effects of a WSD and aging on global and p16 promoter DNA methylation in the colon. Two month old male C57BL/6 mice were fed either a WSD or a control diet (AIN76A) for 6, 12 or 17 months. Global DNA methylation, p16 promoter methylation and p16 expression were determined by LC/MS, methyl-specific PCR and real time RT-PCR, respectively. RESULTS The WSD group demonstrated significantly decreased global DNA methylation compared with the control at 17 months (4.05 vs 4.31%, P = 0.019). While both diets did not change global DNA methylation over time, mice fed the WSD had lower global methylation relative to controls when comparing all animals (4.13 vs 4.30%, P = 0.0005). There was an increase in p16 promoter methylation from 6 to 17 months in both diet groups (P < 0.05) but no differences were observed between diet groups. Expression of p16 increased with age in both control and WSD groups. CONCLUSIONS In this model a WSD reduces global DNA methylation, whereas aging itself has no affect. Although the epigenetic effect of aging was not strong enough to alter global DNA methylation, changes in promoter-specific methylation and gene expression occurred with aging regardless of diet, demonstrating the complexity of epigenetic patterns. PMID:26244073
Nilsen, Frances M; Parrott, Benjamin B; Bowden, John A; Kassim, Brittany L; Somerville, Stephen E; Bryan, Teresa A; Bryan, Colleen E; Lange, Ted R; Delaney, J Patrick; Brunell, Arnold M; Long, Stephen E; Guillette, Louis J
2016-03-01
Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida's north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different "treatments" of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics. Published by Elsevier B.V.
Sun, Hokeun; Wang, Shuang
2013-05-30
The matched case-control designs are commonly used to control for potential confounding factors in genetic epidemiology studies especially epigenetic studies with DNA methylation. Compared with unmatched case-control studies with high-dimensional genomic or epigenetic data, there have been few variable selection methods for matched sets. In an earlier paper, we proposed the penalized logistic regression model for the analysis of unmatched DNA methylation data using a network-based penalty. However, for popularly applied matched designs in epigenetic studies that compare DNA methylation between tumor and adjacent non-tumor tissues or between pre-treatment and post-treatment conditions, applying ordinary logistic regression ignoring matching is known to bring serious bias in estimation. In this paper, we developed a penalized conditional logistic model using the network-based penalty that encourages a grouping effect of (1) linked Cytosine-phosphate-Guanine (CpG) sites within a gene or (2) linked genes within a genetic pathway for analysis of matched DNA methylation data. In our simulation studies, we demonstrated the superiority of using conditional logistic model over unconditional logistic model in high-dimensional variable selection problems for matched case-control data. We further investigated the benefits of utilizing biological group or graph information for matched case-control data. We applied the proposed method to a genome-wide DNA methylation study on hepatocellular carcinoma (HCC) where we investigated the DNA methylation levels of tumor and adjacent non-tumor tissues from HCC patients by using the Illumina Infinium HumanMethylation27 Beadchip. Several new CpG sites and genes known to be related to HCC were identified but were missed by the standard method in the original paper. Copyright © 2012 John Wiley & Sons, Ltd.
Gene-Specific Demethylation as Targeted Therapy in MDS
2016-07-01
methylation remain elusive. This proposal builds on our recent discovery of a novel class of RNAs , the DiRs or DNMT1-interacting RNAs , involved in...cell type-specific DNA methylation patterns. Based on these findings, we hypothesize that DNA methylation changes can be corrected by RNAs . We aim to...aberrant DNA methylation remain elusive. This proposal builds on our recent discovery of a novel class of RNAs , the DiRs or DNMT1-interacting RNAs
Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C
2017-10-18
Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.
Glöckner, Sabine C; Dhir, Mashaal; Yi, Joo Mi; McGarvey, Kelly E; Van Neste, Leander; Louwagie, Joost; Chan, Timothy A; Kleeberger, Wolfram; de Bruïne, Adriaan P; Smits, Kim M; Khalid-de Bakker, Carolina A J; Jonkers, Daisy M A E; Stockbrügger, Reinhold W; Meijer, Gerrit A; Oort, Frank A; Iacobuzio-Donahue, Christine; Bierau, Katja; Herman, James G; Baylin, Stephen B; Van Engeland, Manon; Schuebel, Kornel E; Ahuja, Nita
2009-06-01
We have used a gene expression array-based strategy to identify the methylation of tissue factor pathway inhibitor 2 (TFPI2), a potential tumor suppressor gene, as a frequent event in human colorectal cancers (CRC). TFPI2 belongs to the recently described group of embryonic cell Polycomb group (PcG)-marked genes that may be predisposed to aberrant DNA methylation in early stages of colorectal carcinogenesis. Aberrant methylation of TFPI2 was detected in almost all CRC adenomas (97%, n = 56) and stages I to IV CRCs (99%, n = 115). We further explored the potential of TFPI2 as a biomarker for the early detection of CRC using stool DNA-based assays in patients with nonmetastatic CRC and average-risk noncancer controls who were candidates for screening. TFPI2 methylation was detected in stool DNA from stage I to III CRC patients with a sensitivity of 76% to 89% and a specificity of 79% to 93%. Detection of TFPI2 methylation in stool DNA may act as a useful adjunct to the noninvasive strategies for screening of CRCs in the future.
DNA methylation-based variation between human populations.
Kader, Farzeen; Ghai, Meenu
2017-02-01
Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.
Wen, Yanhua; Wei, Yanjun; Zhang, Shumei; Li, Song; Liu, Hongbo; Wang, Fang; Zhao, Yue; Zhang, Dongwei; Zhang, Yan
2017-05-01
Tumour heterogeneity describes the coexistence of divergent tumour cell clones within tumours, which is often caused by underlying epigenetic changes. DNA methylation is commonly regarded as a significant regulator that differs across cells and tissues. In this study, we comprehensively reviewed research progress on estimating of tumour heterogeneity. Bioinformatics-based analysis of DNA methylation has revealed the evolutionary relationships between breast cancer cell lines and tissues. Further analysis of the DNA methylation profiles in 33 breast cancer-related cell lines identified cell line-specific methylation patterns. Next, we reviewed the computational methods in inferring clonal evolution of tumours from different perspectives and then proposed a deconvolution strategy for modelling cell subclonal populations dynamics in breast cancer tissues based on DNA methylation. Further analysis of simulated cancer tissues and real cell lines revealed that this approach exhibits satisfactory performance and relative stability in estimating the composition and proportions of cellular subpopulations. The application of this strategy to breast cancer individuals of the Cancer Genome Atlas's identified different cellular subpopulations with distinct molecular phenotypes. Moreover, the current and potential future applications of this deconvolution strategy to clinical breast cancer research are discussed, and emphasis was placed on the DNA methylation-based recognition of intra-tumour heterogeneity. The wide use of these methods for estimating heterogeneity to further clinical cohorts will improve our understanding of neoplastic progression and the design of therapeutic interventions for treating breast cancer and other malignancies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Global DNA hypomethylation in peripheral blood mononuclear cells as a biomarker of cancer risk.
Friso, Simonetta; Udali, Silvia; Guarini, Patrizia; Pellegrini, Camilla; Pattini, Patrizia; Moruzzi, Sara; Girelli, Domenico; Pizzolo, Francesca; Martinelli, Nicola; Corrocher, Roberto; Olivieri, Oliviero; Choi, Sang-Woon
2013-03-01
Global DNA hypomethylation is an early molecular event in carcinogenesis. Whether methylation measured in peripheral blood mononuclear cells (PBMCs) DNA is a clinically reliable biomarker for early detection or cancer risk assessment is to be established. From an original sample-set of 753 male and female adults (ages 64.8 ± 7.3 years), PBMCs DNA methylation was measured in 68 subjects with history of cancer at time of enrollment and 62 who developed cancer during follow-up. Age- and sex-matched controls for prevalent and incident cancer cases (n = 68 and 58, respectively) were also selected. Global DNA methylation was assessed by liquid chromatography/mass spectrometry (LC/MS). Methylenetetrahydrofolate reductase (MTHFR) 677C>T genotype and plasma folate concentrations were also determined for the known gene-nutrient interaction affecting DNA methylation. Cancer subjects had significantly lower PBMCs-DNA methylation than controls [4.39 (95% confidence intervals (CI), 4.25-4.53) vs. 5.13 (95% CI, 5.03-5.21) %mCyt/(mCyt+Cyt); P < 0.0001]. A DNA methylation threshold of 4.74% clearly categorized patients with cancer from controls so that those with DNA methylation less than 4.74% showed an increased prevalence of cancer than those with higher levels (91.5% vs. 19%; P < 0.001). Subjects with cancer at follow-up had, already at enrollment, reduced DNA methylation as compared with controls [4.34 (95% CI, 4.24-4.51) vs. 5.08 (95% CI, 5.05-5.22) %mCyt/(mCyt+Cyt); P < 0.0001]. Moreover, MTHFR677C>T genotype and folate interact for determining DNA methylation, so that MTHFR677TT carriers with low folate had the lowest DNA methylation and concordantly showed a higher prevalence of cancer history (OR, 7.04; 95% CI, 1.52-32.63; P = 0.013). Genomic PBMCs-DNA methylation may be a useful epigenetic biomarker for early detection and cancer risk estimation. This study identifies a threshold for PBMCs-DNA methylation to detect cancer-affected from cancer-free subjects and an at-risk condition for cancer based on genomic DNA methylation and MTHFR677C>T-folate status. ©2012 AACR.
Sadeh, Naomi; Spielberg, Jeffrey M.; Logue, Mark W.; Wolf, Erika J.; Smith, Alicia K.; Lusk, Joanna; Hayes, Jasmeet P.; Sperbeck, Emily; Milberg, William P.; McGlinchey, Regina E.; Salat, David H.; Carter, Weleetka C.; Stone, Annjanette; Schichman, Steven A.; Humphries, Donald E.; Miller, Mark W.
2015-01-01
Methylation of the SKA2 gene has recently been identified as a promising biomarker of suicide risk. Based on this finding, we examined associations between SKA2 methylation, cortical thickness, and psychiatric phenotypes linked to suicide in trauma-exposed veterans. 200 trauma-exposed white non-Hispanic veterans of the recent conflicts in Iraq and Afghanistan (91% male) underwent clinical assessment and had blood drawn for genotyping and methylation analysis. 145 participants also had neuroimaging data available. Based on previous research, we examined DNA methylation at the CpG locus cg13989295 as well as DNA methylation adjusted for genotype at the methylation-associated SNP (rs7208505) in relationship to whole-brain cortical thickness, posttraumatic stress disorder symptoms (PTSD), and depression symptoms. Whole-brain vertex-wise analyses identified three clusters in prefrontal cortex that were associated with genotype-adjusted SKA2 DNA methylation (methylationadj). Specifically, DNA methylationadj was associated with bilateral reductions of cortical thickness in frontal pole and superior frontal gyrus, and similar effects were found in the right orbitofrontal cortex and right inferior frontal gyrus. PTSD symptom severity was positively correlated with SKA2 DNA methylationadj and negatively correlated with cortical thickness in these regions. Mediation analyses showed a significant indirect effect of PTSD on cortical thickness via SKA2 methylation status. Results suggest that DNA methylationadj of SKA2 in blood indexes stress-related psychiatric phenotypes and neurobiology, pointing to its potential value as a biomarker of stress exposure and susceptibility. PMID:26324104
Pence, Matthew G; Choi, Jeong-Yun; Egli, Martin; Guengerich, F Peter
2010-12-24
O(6)-methylguanine (O(6)-methylG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, even physiological ones (e.g. S-adenosylmethionine). The efficiency of a truncated, catalytic DNA polymerase ι core enzyme was determined for nucleoside triphosphate incorporation opposite O(6)-methylG, using steady-state kinetic analyses. The results presented here corroborate previous work from this laboratory using full-length pol ι, which showed that dTTP incorporation occurs with high efficiency opposite O(6)-methylG. Misincorporation of dTTP opposite O(6)-methylG occurred with ∼6-fold higher efficiency than incorporation of dCTP. Crystal structures of the truncated form of pol ι with O(6)-methylG as the template base and incoming dCTP or dTTP were solved and showed that O(6)-methylG is rotated into the syn conformation in the pol ι active site and that dTTP misincorporation by pol ι is the result of Hoogsteen base pairing with the adduct. Both dCTP and dTTP base paired with the Hoogsteen edge of O(6)-methylG. A single, short hydrogen bond formed between the N3 atom of dTTP and the N7 atom of O(6)-methylG. Protonation of the N3 atom of dCTP and bifurcation of the N3 hydrogen between the N7 and O(6) atoms of O(6)-methylG allow base pairing of the lesion with dCTP. We conclude that differences in the Hoogsteen hydrogen bonding between nucleotides is the main factor in the preferential selectivity of dTTP opposite O(6)-methylG by human pol ι, in contrast to the mispairing modes observed previously for O(6)-methylG in the structures of the model DNA polymerases Sulfolobus solfataricus Dpo4 and Bacillus stearothermophilus DNA polymerase I.
Li, Wanzhen; Wang, Yulong; Zhu, Jianyu; Wang, Zhangxun; Tang, Guiliang; Huang, Bo
2017-03-01
Conidia and mycelia are two important developmental stages in the asexual life cycle of entomopathogenic fungus Metarhizium. Despite the crucial role that DNA methylation plays in many biological processes, its role in regulation of gene expression and development in fungi is not yet fully understood. We performed genome-wide analysis of DNA methylation patterns of an M. robertsii strain with single base pair resolution. Specifically, we examined for changes in methylation patterns between the conidia and mycelia stages. The results showed that approximately 0.38 % of cytosines are methylated in conidia, which is lower than the DNA methylation level (0.42 %) in mycelia. We found that DNA methylation undergoes genome-wide reprogramming during fungal development in M. robertsii. 132 differentially methylated regions (DMRs), which were mostly distributed in gene regions, were identified. KEGG analysis revealed that the DMR-associated genes belong to metabolic pathways. Intriguingly, in contrast to most other eukaryotes, promoter activities in M. robertsii seemed differentially modulated by DNA methylation levels. We found that transcription tended to be enhanced in genes with moderate promoter methylation, while gene expression was decreased in genes with high or low promoter methylation. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic.
Gonzalez-Cortes, Tania; Recio-Vega, Rogelio; Lantz, Robert Clark; Chau, Binh T
2017-08-15
Several novel mechanistic findings regarding to arsenic's pathogenesis has been reported and some of them suggest that the etiology of some arsenic induced diseases are due in part to heritable changes to the genome via epigenetic processes such as DNA methylation, histone maintenance, and mRNA expression. Recently, we reported that arsenic exposure during in utero and early life was associated with impairment in the lung function and abnormal receptor for advanced glycation endproducts (RAGE), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) sputum levels. Based on our results and the reported arsenic impacts on DNA methylation, we designed this study in our cohort of children exposed in utero and early childhood to arsenic with the aim to associate DNA methylation of MMP9, TIMP1 and RAGE genes with its protein sputum levels and with urinary and toenail arsenic levels. The results disclosed hypermethylation in MMP9 promotor region in the most exposed children; and an increase in the RAGE sputum levels among children with the mid methylation level; there were also positive associations between MMP9 DNA methylation with arsenic toenail concentrations; RAGE DNA methylation with iAs, and %DMA; and finally between TIMP1 DNA methylation with the first arsenic methylation. A negative correlation between MMP9 sputum levels with its DNA methylation was registered. In conclusion, arsenic levels were positive associated with the DNA methylation of extracellular matrix remodeling genes;, which in turn could modifies the biological process in which they are involved causing or predisposing to lung diseases. Copyright © 2017. Published by Elsevier Inc.
Zandarashvili, Levani; White, Mark A; Esadze, Alexandre; Iwahara, Junji
2015-07-08
The inducible transcription factor Egr-1 binds specifically to 9-bp target sequences containing two CpG sites that can potentially be methylated at four cytosine bases. Although it appears that complete CpG methylation would make an unfavorable steric clash in the previous crystal structures of the complexes with unmethylated or partially methylated DNA, our affinity data suggest that DNA recognition by Egr-1 is insensitive to CpG methylation. We have determined, at a 1.4-Å resolution, the crystal structure of the Egr-1 zinc-finger complex with completely methylated target DNA. Structural comparison of the three different methylation states reveals why Egr-1 can recognize the target sequences regardless of CpG methylation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
DNA methylome signature in rheumatoid arthritis.
Nakano, Kazuhisa; Whitaker, John W; Boyle, David L; Wang, Wei; Firestein, Gary S
2013-01-01
Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed. Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini-Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern. Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.
Zheng, Xiaoguo; Li, Zhenhua; Wang, Guishuan; Li, Zhengzheng; Liang, Ajuan; Wang, Hanshu; Dai, Yubing; Huang, Xingxu; Chen, Xuejin; Ma, Yuanwu; Sun, Fei
2017-01-01
DNA methylation is the major focus of studies on paternal epigenetic inheritance in mammals, but most previous studies about inheritable DNA methylation changes are passively induced by environmental factors. However, it is unclear whether the active changes mediated by variations in DNA methyltransferase activity are heritable. Here, we established human-derived DNMT3A (hDNMT3A) transgenic rats to study the effect of hDNMT3A overexpression on the DNA methylation pattern of rat sperm and to investigate whether this actively altered DNA methylation status is inheritable. Our results revealed that hDNMT3A was overexpressed in the testis of transgenic rats and induced genome-wide alterations in the DNA methylation pattern of rat sperm. Among 5438 reliable loci identified with 64 primer-pair combinations using a methylation-sensitive amplification polymorphism method, 28.01% showed altered amplified band types. Among these amplicons altered loci, 68.42% showed an altered DNA methylation status in the offspring of transgenic rats compared with wild-type rats. Further analysis based on loci which had identical DNA methylation status in all three biological replicates revealed that overexpression of hDNMT3A in paternal testis induced hypermethylation in sperm of both genotype-negative and genotype-positive offspring. Among the differentially methylated loci, 34.26% occurred in both positive and negative offspring of transgenic rats, indicating intergenerational inheritance of active DNA methylation changes in the absence of hDNM3A transmission. Furthermore, 75.07% of the inheritable loci were hyper-methylated while the remaining were hypomethylated. Distribution analysis revealed that the DNA methylation variations mainly occurred in introns and intergenic regions. Functional analysis revealed that genes related to differentially methylated loci were involved in a wide range of functions. Finally, this study demonstrated that active DNA methylation changes induced by hDNMT3A expression were intergenerationally inherited by offspring without transmission of the transgene, which provided evidence for the transmission of active endogenous-factors-induced epigenetic variations. PMID:29312436
NASA Astrophysics Data System (ADS)
Shanak, Siba; Helms, Volkhard
2014-12-01
Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.
Shanak, Siba; Helms, Volkhard
2014-12-14
Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.
Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.
Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre
2012-01-01
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.
Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.
2013-08-30
We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns.more » However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.« less
A pooling-based approach to mapping genetic variants associated with DNA methylation
Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.; McEwen, Lisa M.; Kobor, Michael S.; Fraser, Hunter B.
2015-01-01
DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a truly genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. We found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data. PMID:25910490
A pooling-based approach to mapping genetic variants associated with DNA methylation
Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.; ...
2015-04-24
DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a trulymore » genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. Here we found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data.« less
DNA methylation-based reclassification of olfactory neuroblastoma.
Capper, David; Engel, Nils W; Stichel, Damian; Lechner, Matt; Glöss, Stefanie; Schmid, Simone; Koelsche, Christian; Schrimpf, Daniel; Niesen, Judith; Wefers, Annika K; Jones, David T W; Sill, Martin; Weigert, Oliver; Ligon, Keith L; Olar, Adriana; Koch, Arend; Forster, Martin; Moran, Sebastian; Tirado, Oscar M; Sáinz-Japeado, Miguel; Mora, Jaume; Esteller, Manel; Alonso, Javier; Del Muro, Xavier Garcia; Paulus, Werner; Felsberg, Jörg; Reifenberger, Guido; Glatzel, Markus; Frank, Stephan; Monoranu, Camelia M; Lund, Valerie J; von Deimling, Andreas; Pfister, Stefan; Buslei, Rolf; Ribbat-Idel, Julika; Perner, Sven; Gudziol, Volker; Meinhardt, Matthias; Schüller, Ulrich
2018-05-05
Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1-4, 8-10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of tumors. Expression of cytokeratin, chromogranin A, the mutational status of IDH2 as well as DNA methylation patterns may greatly aid in the precise classification of ONB.
Li, Qian-Nan; Guo, Lei; Hou, Yi; Ou, Xiang-Hong; Liu, Zhonghua; Sun, Qing-Yuan
2018-06-22
Polycystic ovary syndrome (PCOS), a familial aggregation disease that causes anovulation in women, has well-recognised characteristics, two of which are hyperinsulinaemia and hyperandrogenaemia. To determine whether the DNA methylation status is altered in oocytes by high insulin and androgen levels, we generated a mouse model with hyperinsulinaemia and hyperandrogenaemia by injection of insulin and human chorionic gonadotrophin and investigated DNA methylation changes through single-cell level whole genome bisulphite sequencing. Our results showed that hyperinsulinaemia and hyperandrogenaemia had no significant effects on the global DNA methylation profile and different functional regions of genes, but did alter methylation status of some genes, which were significantly enriched in 17 gene ontology (GO) terms (P<0.05) by GO analysis. Among differently methylated genes, some were related to the occurrence of PCOS. Based on our results, we suggest that hyperinsulinaemia and hyperandrogenaemia may cause changes in some DNA methylation loci in oocytes.
Baubec, Tuncay; Pecinka, Ales; Rozhon, Wilfried; Mittelsten Scheid, Ortrun
2009-01-01
Covalent modification by methylation of cytosine residues represents an important epigenetic hallmark. While sequence analysis after bisulphite conversion allows correlative analyses with single-base resolution, functional analysis by interference with DNA methylation is less precise, due to the complexity of methylation enzymes and their targets. A cytidine analogue, 5-azacytidine, is frequently used as an inhibitor of DNA methyltransferases, but its rapid degradation in aqueous solution is problematic for culture periods of longer than a few hours. Application of zebularine, a more stable cytidine analogue with a similar mode of action that is successfully used as a methylation inhibitor in Neurospora and mammalian tumour cell lines, can significantly reduce DNA methylation in plants in a dose-dependent and transient manner independent of sequence context. Demethylation is connected with transcriptional reactivation and partial decondensation of heterochromatin. Zebularine represents a promising new and versatile tool for investigating the role of DNA methylation in plants with regard to transcriptional control, maintenance and formation of (hetero-) chromatin. PMID:18826433
Mastoraki, Sophia; Strati, Areti; Tzanikou, Eleni; Chimonidou, Maria; Politaki, Eleni; Voutsina, Alexandra; Psyrri, Amanda; Georgoulias, Vassilis; Lianidou, Evi
2018-03-15
Purpose: Liquid biopsy provides real-time monitoring of tumor evolution and response to therapy through analysis of circulating tumor cells (CTCs) and plasma-circulating tumor DNA (ctDNA). ESR1 epigenetic silencing potentially affects response to endocrine treatment. We evaluated ESR1 methylation in CTCs and paired plasma ctDNA. We evaluated ESR1 methylation in CTCs and paired plasma ctDNA as a potential biomarker for response to everolimus/exemestane treatment. Experimental Design: A highly sensitive and specific real-time MSP assay for ESR1 methylation was developed and validated in (i) 65 primary breast tumors formalin-fixed paraffin-embedded (FFPE), (ii) EpCAM + CTC fractions (122 patients and 30 healthy donors; HD), (iii) plasma ctDNA (108 patients and 30HD), and (iv) in CTCs (CellSearch) and in paired plasma ctDNA for 58 patients with breast cancer. ESR1 methylation status was investigated in CTCs isolated from serial peripheral blood samples of 19 patients with ER + /HER2 - advanced breast cancer receiving everolimus/exemestane. Results: ESR1 methylation was detected in: (i) 25/65 (38.5%) FFPEs, (ii) EpCAM + CTC fractions : 26/112 (23.3%) patients and 1/30 (3.3%) HD, and (iii) plasma ctDNA: 8/108 (7.4%) patients and 1/30 (3.3%) HD. ESR1 methylation was highly concordant in 58 paired DNA samples, isolated from CTCs (CellSearch) and corresponding plasma. In serial peripheral blood samples of patients treated with everolimus/exemestane, ESR1 methylation was observed in 10/36 (27.8%) CTC-positive samples, and was associated with lack of response to treatment ( P = 0.023, Fisher exact test). Conclusions: We report for the first time the detection of ESR1 methylation in CTCs and a high concordance with paired plasma ctDNA. ESR1 methylation in CTCs was associated with lack of response to everolimus/exemestane regimen. ESR1 methylation should be further evaluated as a potential liquid biopsy-based biomarker. Clin Cancer Res; 24(6); 1500-10. ©2017 AACR . ©2017 American Association for Cancer Research.
Bondurant, Amy E; Huang, Zhiqing; Whitaker, Regina S; Simel, Lauren R; Berchuck, Andrew; Murphy, Susan K
2011-12-01
Detection of cell free tumor-specific DNA methylation has been proposed as a potentially useful noninvasive mechanism to detect malignancies, including ovarian cancer, and to monitor response to treatment. However, there are few easily implemented quantitative approaches available for DNA methylation analysis. Our objectives were to develop an absolute quantitative method for detection of DNA methylation using RASSF1A, a known target of promoter methylation in ovarian cancer, and test the ability to detect RASSF1A methylation in tumors and serum specimens of women with ovarian cancer. Bisulfite modified DNAs were subjected to real time PCR using nondiscriminatory PCR primers and a probe with sequence containing a single CpG site, theoretically able to capture the methylation status of that CpG for every allele within a given specimen. Input DNA was normalized to ACTB levels detected simultaneously by assay multiplexing. Methylation levels were established by comparison to results obtained from universally methylated DNA. The assay was able to detect one methylated RASSF1A allele in 100,000 unmethylated alleles. RASSF1A was methylated in 54 of 106 (51%) invasive serous ovarian cancers analyzed and methylation status was concordant in 20/20 matched preoperative serum-tumor pairs. Serial serum specimens taken over the course of treatment for 8 of 9 patients showed fluctuations in RASSF1A methylation concomitant with disease status. This novel assay provides a real-time PCR-based method for absolute quantitation of DNA methylation. Our results support feasibility of monitoring RASSF1A methylation from serum samples taken over the course of treatment from women with ovarian cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
Tissue Specific and Hormonal Regulation of Gene Expression
1997-08-01
interference assays were performed. These assays identify DNA bases that, when modified, interfere with the binding of the nuclear factor to the hCRH promoter...thymidine residues. The DNA bases that when modified affected the binding of the protein are noted with arrows, and their location in the hCRH...indicated. B. Methylation interference. The fragments were partially methylated using dimethyl sulfate. The DNA bases that when modified affected the
Gallardo-Gómez, María; Moran, Sebastian; Páez de la Cadena, María; Martínez-Zorzano, Vicenta Soledad; Rodríguez-Berrocal, Francisco Javier; Rodríguez-Girondo, Mar; Esteller, Manel; Cubiella, Joaquín; Bujanda, Luis; Castells, Antoni; Balaguer, Francesc; Jover, Rodrigo; De Chiara, Loretta
2018-01-01
Colorectal cancer is the fourth cause of cancer-related deaths worldwide, though detection at early stages associates with good prognosis. Thus, there is a clear demand for novel non-invasive tests for the early detection of colorectal cancer and premalignant advanced adenomas, to be used in population-wide screening programs. Aberrant DNA methylation detected in liquid biopsies, such as serum circulating cell-free DNA (cfDNA), is a promising source of non-invasive biomarkers. This study aimed to assess the feasibility of using cfDNA pooled samples to identify potential serum methylation biomarkers for the detection of advanced colorectal neoplasia (colorectal cancer or advanced adenomas) using microarray-based technology. cfDNA was extracted from serum samples from 20 individuals with no colorectal findings, 20 patients with advanced adenomas, and 20 patients with colorectal cancer (stages I and II). Two pooled samples were prepared for each pathological group using equal amounts of cfDNA from 10 individuals, sex-, age-, and recruitment hospital-matched. We measured the methylation levels of 866,836 CpG positions across the genome using the MethylationEPIC array. Pooled serum cfDNA methylation data meets the quality requirements. The proportion of detected CpG in all pools (> 99% with detection p value < 0.01) exceeded Illumina Infinium methylation data quality metrics of the number of sites detected. The differential methylation analysis revealed 1384 CpG sites (5% false discovery rate) with at least 10% difference in the methylation level between no colorectal findings controls and advanced neoplasia, the majority of which were hypomethylated. Unsupervised clustering showed that cfDNA methylation patterns can distinguish advanced neoplasia from healthy controls, as well as separate tumor tissue from healthy mucosa in an independent dataset. We also observed that advanced adenomas and stage I/II colorectal cancer methylation profiles, grouped as advanced neoplasia, are largely homogenous and clustered close together. This preliminary study shows the viability of microarray-based methylation biomarker discovery using pooled serum cfDNA samples as an alternative approach to tissue specimens. Our strategy sets an open door for deciphering new non-invasive biomarkers not only for colorectal cancer detection, but also for other types of cancers.
Reduced representation bisulphite sequencing of the cattle genome reveals DNA methylation patterns
USDA-ARS?s Scientific Manuscript database
Using reduced representation bisulphite sequencing (RRBS), we obtained the first single-base-resolution maps of bovine DNA methylation in ten somatic tissues. In total, we observed 1,868,049 cytosines in the CG-enriched regions. Similar to the methylation patterns in other species, the CG context wa...
Daugaard, Iben; Kjeldsen, Tina E; Hager, Henrik; Hansen, Lise Lotte; Wojdacz, Tomasz K
2015-12-01
Readily accessible formalin-fixed paraffin embedded (FFPE) tissues are a highly valuable source of genetic material for molecular analyses in both research and in vitro diagnostics but frequently genetic material in those samples is highly degraded. With locus-specific methylation changes being widely investigated for use as biomarkers in various aspects of clinical disease management, we aimed to evaluate to what extent standard laboratory procedures can approximate the quality of the DNA extracted from FFPE samples prior to methylation analyses. DNA quality in 107 FFPE non-small cell lung cancer (NSCLC) samples was evaluated using spectrophotometry and gel electrophoresis. Subsequently, the quality assessment results were correlated with the results of locus specific methylation assessment with methylation sensitive high resolution melting (MS-HRM). The correlation of template quality with PCR amplification performance and HRM based methylation detection indicated a significant influence of DNA quality on PCR amplification but not on methylation assessment. In conclusion, standard laboratory procedures fairly well approximate DNA degradation of FFPE samples and DNA degradation does not seem to considerably affect locus-specific methylation assessment by MS-HRM. Copyright © 2015 Elsevier Inc. All rights reserved.
Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Duncan, Elizabeth J.; Parry, Matthew F.; Weeks, Robert J.; Morison, Ian M.
2015-01-01
The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript. PMID:26612583
Forensic DNA methylation profiling from minimal traces: How low can we go?
Naue, Jana; Hoefsloot, Huub C J; Kloosterman, Ate D; Verschure, Pernette J
2018-03-01
Analysis of human DNA methylation (DNAm) can provide additional investigative leads in crime cases, e.g. the type of tissue or body fluid, the chronological age of an individual, and differentiation between identical twins. In contrast to the genetic profile, the DNAm level is not the same in every cell. At the single cell level, DNAm represents a binary event at a defined CpG site (methylated versus non-methylated). The DNAm level from a DNA extract however represents the average level of methylation of the CpG of interest of all molecules in the forensic sample. The variance of DNAm levels between replicates is often attributed to technological issues, i.e. degradation of DNA due to bisulfite treatment, preferential amplification of DNA, and amplification failure. On the other hand, we show that stochastic variations can lead to gross fluctuation in the analysis of methylation levels in samples with low DNA levels. This stochasticity in DNAm results is relevant since low DNA amounts (1pg - 1ng) is rather the norm than the exception when analyzing forensic DNA samples. This study describes a conceptual analysis of DNAm profiling and its dependence on the amount of input DNA. We took a close look at the variation of DNAm analysis due to DNA input and its consequences for different DNAm-based forensic applications. As can be expected, the 95%-confidence interval of measured DNAm becomes narrower with increasing amounts of DNA. We compared this aspect for two different DNAm-based forensic applications: body fluid identification and chronological age determination. Our study shows that DNA amount should be well considered when using DNAm for forensic applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Feng, Sheng Jun; Liu, Xue Song; Tao, Hua; Tan, Shang Kun; Chu, Shan Shan; Oono, Youko; Zhang, Xian Duo; Chen, Jian; Yang, Zhi Min
2016-12-01
We report genome-wide single-base resolution maps of methylated cytosines and transcriptome change in Cd-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between Cd-exposed and Cd-free rice genomes. There are 2320 non-redundant differentially methylated regions detected in the genome. RNA sequencing revealed 2092 DNA methylation-modified genes differentially expressed under Cd exposure. More genes were found hypermethylated than those hypomethylated in CG, CHH and CHG (where H is A, C or T) contexts in upstream, gene body and downstream regions. Many of the genes were involved in stress response, metal transport and transcription factors. Most of the DNA methylation-modified genes were transcriptionally altered under Cd stress. A subset of loss of function mutants defective in DNA methylation and histone modification activities was used to identify transcript abundance of selected genes. Compared with wide type, mutation of MET1 and DRM2 resulted in general lower transcript levels of the genes under Cd stress. Transcripts of OsIRO2, OsPR1b and Os09g02214 in drm2 were significantly reduced. A commonly used DNA methylation inhibitor 5-azacytidine was employed to investigate whether DNA demethylation affected physiological consequences. 5-azacytidine provision decreased general DNA methylation levels of selected genes, but promoted growth of rice seedlings and Cd accumulation in rice plant. © 2016 John Wiley & Sons Ltd.
Winnowing DNA for Rare Sequences: Highly Specific Sequence and Methylation Based Enrichment
Thompson, Jason D.; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre
2012-01-01
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue. PMID:22355378
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy
Barhoumi, Aoune; Halas, Naomi J.
2013-01-01
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics. PMID:24427449
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.
Barhoumi, Aoune; Halas, Naomi J
2011-12-15
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.
Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K
2012-01-01
Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data. PMID:22430798
Hatt, Lotte; Aagaard, Mads M; Bach, Cathrine; Graakjaer, Jesper; Sommer, Steffen; Agerholm, Inge E; Kølvraa, Steen; Bojesen, Anders
2016-01-01
Methylation-based non-invasive prenatal testing of fetal aneuploidies is an alternative method that could possibly improve fetal aneuploidy diagnosis, especially for trisomy 13(T13) and trisomy 18(T18). Our aim was to study the methylation landscape in placenta DNA from trisomy 13, 18 and 21 pregnancies in an attempt to find trisomy-specific methylation differences better suited for non-invasive prenatal diagnosis. We have conducted high-resolution methylation specific bead chip microarray analyses assessing more than 450,000 CpGs analyzing placentas from 12 T21 pregnancies, 12 T18 pregnancies and 6 T13 pregnancies. We have compared the methylation landscape of the trisomic placentas to the methylation landscape from normal placental DNA and to maternal blood cell DNA. Comparing trisomic placentas to normal placentas we identified 217 and 219 differentially methylated CpGs for CVS T18 and CVS T13, respectively (delta β>0.2, FDR<0.05), but only three differentially methylated CpGs for T21. However, the methylation differences was only modest (delta β<0.4), making them less suitable as diagnostic markers. Gene ontology enrichment analysis revealed that the gene set connected to theT18 differentially methylated CpGs was highly enriched for GO terms related to"DNA binding" and "transcription factor binding" coupled to the RNA polymerase II transcription. In the gene set connected to the T13 differentially methylated CpGs we found no significant enrichments.
Hatt, Lotte; Aagaard, Mads M.; Bach, Cathrine; Graakjaer, Jesper; Sommer, Steffen; Agerholm, Inge E.; Bojesen, Anders
2016-01-01
Methylation-based non-invasive prenatal testing of fetal aneuploidies is an alternative method that could possibly improve fetal aneuploidy diagnosis, especially for trisomy 13(T13) and trisomy 18(T18). Our aim was to study the methylation landscape in placenta DNA from trisomy 13, 18 and 21 pregnancies in an attempt to find trisomy–specific methylation differences better suited for non-invasive prenatal diagnosis. We have conducted high-resolution methylation specific bead chip microarray analyses assessing more than 450,000 CpGs analyzing placentas from 12 T21 pregnancies, 12 T18 pregnancies and 6 T13 pregnancies. We have compared the methylation landscape of the trisomic placentas to the methylation landscape from normal placental DNA and to maternal blood cell DNA. Comparing trisomic placentas to normal placentas we identified 217 and 219 differentially methylated CpGs for CVS T18 and CVS T13, respectively (delta β>0.2, FDR<0.05), but only three differentially methylated CpGs for T21. However, the methylation differences was only modest (delta β<0.4), making them less suitable as diagnostic markers. Gene ontology enrichment analysis revealed that the gene set connected to theT18 differentially methylated CpGs was highly enriched for GO terms related to”DNA binding” and “transcription factor binding” coupled to the RNA polymerase II transcription. In the gene set connected to the T13 differentially methylated CpGs we found no significant enrichments. PMID:27490343
Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster.
Panikar, Chitra S; Rajpathak, Shriram N; Abhyankar, Varada; Deshmukh, Saniya; Deobagkar, Deepti D
2015-12-01
Drosophila melanogaster lacks DNMT1/DNMT3 based methylation machinery. Despite recent reports confirming the presence of low DNA methylation in Drosophila; little is known about the methyltransferase. Therefore, in this study, we have aimed to investigate the possible functioning of DNA methyltransferase in Drosophila. The 14 K oligo microarray slide was incubated with native cell extract from adult Drosophila to check the presence of the methyltransferase activity. After incubation under appropriate conditions, the methylated oligo sequences were identified by the binding of anti 5-methylcytosine monoclonal antibody. The antibody bound to the methylated oligos was detected using Cy3 labeled secondary antibody. Methylation sensitive restriction enzyme mediated PCR was used to assess the methylation at a few selected loci identified on the array. It could be seen that a few of the total oligos got methylated under the assay conditions. Analysis of methylated oligo sequences provides evidence for the presence of de novo methyltransferase activity and allows identification of its sequence specificity in adult Drosophila. With the help of methylation sensitive enzymes we could detect presence of CpC methylation in the selected genomic regions. This study reports presence of an active DNA methyltransferase in adult Drosophila, which exhibits sequence specificity confirmed by presence of asymmetric methylation at corresponding sites in the genomic DNA. It also provides an innovative approach to investigate methylation specificity of a native methyltransferase.
Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C
2007-09-01
The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.
Xie, Yuan; Zhou, Jian Jiang; Zhao, Yan; Zhang, Ting; Mei, Liu Zheng
2017-07-01
The aim of this study was to evaluate the correlation between H. pylori infection and global DNA methylation, as well as the methylation levels of the gastrin promoters. We constructed a eukaryotic expression vector, pcDNA3.1::cagA, and transfected it into GES-1 gastric mucosal cells and SGC-7901 gastric cancer cells. Both cell lines were infected with the H. pylori/CagA + strain NCTC11637. Then, we detected global DNA methylation by capture and detection antibodies, followed by colorimetric quantification. The methylation levels of the gastrin promoter were evaluated by base-specific cleavage and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In H. pylori/CagA + -infected GES-1 and SGC-7901 cells, the methylation levels of genomic DNA decreased by 49.4% and 18.8%, and in GES-1 and SGC-7901 cells transfected with pcDNA3.1::cagA, the methylation levels of genomic DNA decreased by 17.05% and 25.6%, respectively. Among 24 methylation sites detected in the gastrin promoter region, the methylation levels of 9 CpG sites were significantly decreased in H. pylori/CagA+-infected and pcDNA3.1:: cagA-transfected cells in comparison to corresponding control cells. These results indicate that H. pylori/CagA + decreases the methylation of the genome and the gastrin promoter at some CpG sites in gastric mucosal and gastric cancer cells. Copyright © 2017. Published by Elsevier Ltd.
Physical Localization and DNA Methylation of 45S rRNA Gene Loci in Jatropha curcas L.
Gong, Zhiyun; Xue, Chao; Zhang, Mingliang; Guo, Rui; Zhou, Yong; Shi, Guoxin
2013-01-01
In eukaryotes, 45S rRNA genes are arranged in tandem arrays of repeat units, and not all copies are transcribed during mitosis. DNA methylation is considered to be an epigenetic marker for rDNA activation. Here, we established a clear and accurate karyogram for Jatropha curcas L. The chromosomal formula was found to be 2n = 2x = 22 = 12m+10sm. We found that the 45S rDNA loci were located at the termini of chromosomes 7 and 9 in J. curcas. The distribution of 45S rDNA has no significant difference in J. curcas from different sources. Based on the hybridization signal patterns, there were two forms of rDNA - dispersed and condensed. The dispersed type of signals appeared during interphase and prophase, while the condensed types appeared during different stages of mitosis. DNA methylation analysis showed that when 45S rDNA stronger signals were dispersed and connected to the nucleolus, DNA methylation levels were lower at interphase and prophase. However, when the 45S rDNA loci were condensed, especially during metaphase, they showed different forms of DNA methylation. PMID:24386362
Transient Delivery of Adenosine as a Novel Therapy to Prevent Epileptogenesis
2013-08-01
rats characterized by the development of SRS triggered by systemic kainic acid–induced (KA-induced) status epilepticus (SE) (Figure 3A). Using...to modulate DNA methylation status , have not been studied to date. Based on ADO’s role as an obligatory end product of DNA methylation, we...1E). Together, these findings show that modulating ADO tone either directly or via modulation of ADK expression can affect DNA methylation status in
Ahmed, Ikhlak; Sarazin, Alexis; Bowler, Chris; Colot, Vincent; Quesneville, Hadi
2011-09-01
Transposable elements (TEs) and their relics play major roles in genome evolution. However, mobilization of TEs is usually deleterious and strongly repressed. In plants and mammals, this repression is typically associated with DNA methylation, but the relationship between this epigenetic mark and TE sequences has not been investigated systematically. Here, we present an improved annotation of TE sequences and use it to analyze genome-wide DNA methylation maps obtained at single-nucleotide resolution in Arabidopsis. We show that although the majority of TE sequences are methylated, ∼26% are not. Moreover, a significant fraction of TE sequences densely methylated at CG, CHG and CHH sites (where H = A, T or C) have no or few matching small interfering RNA (siRNAs) and are therefore unlikely to be targeted by the RNA-directed DNA methylation (RdDM) machinery. We provide evidence that these TE sequences acquire DNA methylation through spreading from adjacent siRNA-targeted regions. Further, we show that although both methylated and unmethylated TE sequences located in euchromatin tend to be more abundant closer to genes, this trend is least pronounced for methylated, siRNA-targeted TE sequences located 5' to genes. Based on these and other findings, we propose that spreading of DNA methylation through promoter regions explains at least in part the negative impact of siRNA-targeted TE sequences on neighboring gene expression.
Kim, Mi-Kyung; Lee, In-Ho; Lee, Ki-Heon; Lee, Yoo Kyung; So, Kyeong A; Hong, Sung Ran; Hwang, Chang-Sun; Kee, Mee-Kyung; Rhee, Jee Eun; Kang, Chun; Hur, Soo Young; Park, Jong Sup; Kim, Tae-Jin
2016-03-01
DNA methylation has been shown to be a potential biomarker for early cancer detection. The aim of this study was to evaluate DNA methylation profiles according to liquid-based Pap (LBP) test results and to assess their diagnostic value in a Korean population. A total of 205 patients with various Papanicolaou test results were enrolled to this study (negative, 26; atypical squamous cells of undetermined significance, 39; low grade squamous intraepithelial lesion, 44; high grade squamous intraepithelial lesion (HSIL), 48; and cancer, 48). DNA methylation analysis of four genes, ADCYAP1, PAX1, MAL, and CADM1, was performed on residual cervical cells from LBP samples using a quantitative bisulfite pyrosequencing method. To evaluate the diagnostic performance of the four methylated genes for cancer detection, receiver operating characteristic (ROC) curves were drawn. Sensitivities and specificities were also tested at cutoffs determined from the ROC curves. Cervical cancer cells showed dramatically increased methylation levels for the four genes analyzed. ADCYAP1 and PAX1 also trended toward elevated methylation levels in HSIL samples, although the levels were much lower than those in cancer cells. The sensitivities of methylated ADCYAP1, PAX1, MAL, and CADM1 for the detection of cancer were 79.2%, 75.0%, 70.8%, and 52.1%, and the specificities were 92.0%, 94.0%, 94.7%, and 94.0%, respectively. Methylated ADCYAP1 and PAX1 demonstrated relatively better discriminatory ability than did methylated MAL and CADM1 (area under the curves 0.911 and 0.916 vs. 0.854 and 0.756, respectively). DNA methylation status, especially in the ADCYAP1 and PAX1 genes, showed relatively good specificity, ranging from 90% to 94%. The possible additive and complementary roles of DNA methylation testing with respect to conventional cervical cancer screening programs will need to be validated in prospective population-based studies.
Lee, Ki-Heon; So, Kyeong A; Hong, Sung Ran; Hwang, Chang-Sun; Kee, Mee-Kyung; Rhee, Jee Eun; Kang, Chun; Hur, Soo Young; Park, Jong Sup
2016-01-01
Objective DNA methylation has been shown to be a potential biomarker for early cancer detection. The aim of this study was to evaluate DNA methylation profiles according to liquid-based Pap (LBP) test results and to assess their diagnostic value in a Korean population. Methods A total of 205 patients with various Papanicolaou test results were enrolled to this study (negative, 26; atypical squamous cells of undetermined significance, 39; low grade squamous intraepithelial lesion, 44; high grade squamous intraepithelial lesion (HSIL), 48; and cancer, 48). DNA methylation analysis of four genes, ADCYAP1, PAX1, MAL, and CADM1, was performed on residual cervical cells from LBP samples using a quantitative bisulfite pyrosequencing method. To evaluate the diagnostic performance of the four methylated genes for cancer detection, receiver operating characteristic (ROC) curves were drawn. Sensitivities and specificities were also tested at cutoffs determined from the ROC curves. Results Cervical cancer cells showed dramatically increased methylation levels for the four genes analyzed. ADCYAP1 and PAX1 also trended toward elevated methylation levels in HSIL samples, although the levels were much lower than those in cancer cells. The sensitivities of methylated ADCYAP1, PAX1, MAL, and CADM1 for the detection of cancer were 79.2%, 75.0%, 70.8%, and 52.1%, and the specificities were 92.0%, 94.0%, 94.7%, and 94.0%, respectively. Methylated ADCYAP1 and PAX1 demonstrated relatively better discriminatory ability than did methylated MAL and CADM1 (area under the curves 0.911 and 0.916 vs. 0.854 and 0.756, respectively). Conclusion DNA methylation status, especially in the ADCYAP1 and PAX1 genes, showed relatively good specificity, ranging from 90% to 94%. The possible additive and complementary roles of DNA methylation testing with respect to conventional cervical cancer screening programs will need to be validated in prospective population-based studies. PMID:26768780
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pence, Matthew G.; Choi, Jeong-Yun; Egli, Martin
2012-03-15
O{sup 6}-Methylguanine (O{sup 6}-methylG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, even physiological ones (e.g. S-adenosylmethionine). The efficiency of a truncated, catalytic DNA polymerase L core enzyme was determined for nucleoside triphosphate incorporation opposite O{sup 6}-methylG, using steady-state kinetic analyses. The results presented here corroborate previous work from this laboratory using full-length pol L, which showed that dTTP incorporation occurs with high efficiency opposite O{sup 6}-methylG. Misincorporation of dTTP opposite O{sup 6}-methylG occurred with {approx}6-fold higher efficiency than incorporation of dCTP. Crystal structures of the truncated form of pol L with O{sup 6}-methylG asmore » the template base and incoming dCTP or dTTP were solved and showed that O{sup 6}-methylG is rotated into the syn conformation in the pol L active site and that dTTP misincorporation by pol L is the result of Hoogsteen base pairing with the adduct. Both dCTP and dTTP base paired with the Hoogsteen edge of O{sup 6}-methylG. A single, short hydrogen bond formed between the N3 atom of dTTP and the N7 atom of O{sup 6}-methylG. Protonation of the N3 atom of dCTP and bifurcation of the N3 hydrogen between the N7 and O{sup 6} atoms of O{sup 6}-methylG allow base pairing of the lesion with dCTP. We conclude that differences in the Hoogsteen hydrogen bonding between nucleotides is the main factor in the preferential selectivity of dTTP opposite O{sup 6}-methylG by human pol L, in contrast to the mispairing modes observed previously for O{sup 6}-methylG in the structures of the model DNA polymerases Sulfolobus solfataricus Dpo4 and Bacillus stearothermophilus DNA polymerase I.« less
Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya
2017-01-01
Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed. PMID:28440489
Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya
2017-06-01
Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed.
Changes in Liver Cell DNA Methylation Status in Diabetic Mice Affect Its FT-IR Characteristics
Vidal, Benedicto de Campos; Ghiraldini, Flávia Gerelli; Mello, Maria Luiza S.
2014-01-01
Background Lower levels of cytosine methylation have been found in the liver cell DNA from non-obese diabetic (NOD) mice under hyperglycemic conditions. Because the Fourier transform-infrared (FT-IR) profiles of dry DNA samples are differently affected by DNA base composition, single-stranded form and histone binding, it is expected that the methylation status in the DNA could also affect its FT-IR profile. Methodology/Principal Findings The DNA FT-IR signatures obtained from the liver cell nuclei of hyperglycemic and normoglycemic NOD mice of the same age were compared. Dried DNA samples were examined in an IR microspectroscope equipped with an all-reflecting objective (ARO) and adequate software. Conclusions/Significance Changes in DNA cytosine methylation levels induced by hyperglycemia in mouse liver cells produced changes in the respective DNA FT-IR profiles, revealing modifications to the vibrational intensities and frequencies of several chemical markers, including νas –CH3 stretching vibrations in the 5-methylcytosine methyl group. A smaller band area reflecting lower energy absorbed in the DNA was found in the hyperglycemic mice and assumed to be related to the lower levels of –CH3 groups. Other spectral differences were found at 1700–1500 cm−1 and in the fingerprint region, and a slight change in the DNA conformation at the lower DNA methylation levels was suggested for the hyperglycemic mice. The changes that affect cytosine methylation levels certainly affect the DNA-protein interactions and, consequently, gene expression in liver cells from the hyperglycemic NOD mice. PMID:25019512
Forensic individual age estimation with DNA: From initial approaches to methylation tests.
Freire-Aradas, A; Phillips, C; Lareu, M V
2017-07-01
Individual age estimation is a key factor in forensic science analysis that can provide very useful information applicable to criminal, legal, and anthropological investigations. Forensic age inference was initially based on morphological inspection or radiography and only later began to adopt molecular approaches. However, a lack of accuracy or technical problems hampered the introduction of these DNA-based methodologies in casework analysis. A turning point occurred when the epigenetic signature of DNA methylation was observed to gradually change during an individual´s lifespan. In the last four years, the number of publications reporting DNA methylation age-correlated changes has gradually risen and the forensic community now has a range of age methylation tests applicable to forensic casework. Most forensic age predictor models have been developed based on blood DNA samples, but additional tissues are now also being explored. This review assesses the most widely adopted genes harboring methylation sites, detection technologies, statistical age-predictive analyses, and potential causes of variation in age estimates. Despite the need for further work to improve predictive accuracy and establishing a broader range of tissues for which tests can analyze the most appropriate methylation sites, several forensic age predictors have now been reported that provide consistency in their prediction accuracies (predictive error of ±4 years); this makes them compelling tools with the potential to contribute key information to help guide criminal investigations. Copyright © 2017 Central Police University.
Kanchanaketu, T; Sangduen, N; Toojinda, T; Hongtrakul, V
2012-04-13
Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.
Matsushita, Junya; Okamura, Kazuyuki; Nakabayashi, Kazuhiko; Suzuki, Takehiro; Horibe, Yu; Kawai, Tomoko; Sakurai, Toshihiro; Yamashita, Satoshi; Higami, Yoshikazu; Ichihara, Gaku; Hata, Kenichiro; Nohara, Keiko
2018-03-22
C3H mice have been frequently used in cancer studies as animal models of spontaneous liver tumors and chemically induced hepatocellular carcinoma (HCC). Epigenetic modifications, including DNA methylation, are among pivotal control mechanisms of gene expression leading to carcinogenesis. Although information on somatic mutations in liver tumors of C3H mice is available, epigenetic aspects are yet to be clarified. We performed next generation sequencing-based analysis of DNA methylation and microarray analysis of gene expression to explore genes regulated by DNA methylation in spontaneous liver tumors of C3H mice. Overlaying these data, we selected cancer-related genes whose expressions are inversely correlated with DNA methylation levels in the associated differentially methylated regions (DMRs) located around transcription start sites (TSSs) (promoter DMRs). We further assessed mutuality of the selected genes for expression and DNA methylation in human HCC using the Cancer Genome Atlas (TCGA) database. We obtained data on genome-wide DNA methylation profiles in the normal and tumor livers of C3H mice. We identified promoter DMRs of genes which are reported to be related to cancer and whose expressions are inversely correlated with the DNA methylation, including Mst1r, Slpi and Extl1. The association between DNA methylation and gene expression was confirmed using a DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) in Hepa1c1c7 cells and Hepa1-6 cells. Overexpression of Mst1r in Hepa1c1c7 cells illuminated a novel downstream pathway via IL-33 upregulation. Database search indicated that gene expressions of Mst1r and Slpi are upregulated and the TSS upstream regions are hypomethylated also in human HCC. These results suggest that DMRs, including those of Mst1r and Slpi, are involved in liver tumorigenesis in C3H mice, and also possibly in human HCC. Our study clarified genome wide DNA methylation landscape of C3H mice. The data provide useful information for further epigenetic studies of mice models of HCC. The present study particularly proposed novel DNA methylation-regulated pathways for Mst1r and Slpi, which may be applied not only to mouse HCC but also to human HCC.
Kageyama, Shinji; Shinmura, Kazuya; Yamamoto, Hiroko; Goto, Masanori; Suzuki, Koichi; Tanioka, Fumihiko; Tsuneyoshi, Toshihiro; Sugimura, Haruhiko
2008-04-01
The PCR-based DNA fingerprinting method called the methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis is used for genome-wide scanning of methylation status. In this study, we developed a method of fluorescence-labeled MS-AFLP (FL-MS-AFLP) analysis by applying a fluorescence-labeled primer and fluorescence-detecting electrophoresis apparatus to the existing method of MS-AFLP analysis. The FL-MS-AFLP analysis enables quantitative evaluation of more than 350 random CpG loci per run. It was shown to allow evaluation of the differences in methylation level of blood DNA of gastric cancer patients and evaluation of hypermethylation and hypomethylation in DNA from gastric cancer tissue in comparison with adjacent non-cancerous tissue.
Li, Zhiguang; Dai, Hongzheng; Martos, Suzanne N; Xu, Beisi; Gao, Yang; Li, Teng; Zhu, Guangjing; Schones, Dustin E; Wang, Zhibin
2015-06-02
DNA methylation patterns are initiated by de novo DNA methyltransferases DNMT3a/3b adding methyl groups to CG dinucleotides in the hypomethylated genome of early embryos. These patterns are faithfully maintained by DNMT1 during DNA replication to ensure epigenetic inheritance across generations. However, this two-step model is based on limited data. We generated base-resolution DNA methylomes for a series of DNMT knockout embryonic stem cells, with deep coverage at highly repetitive elements. We show that DNMT1 and DNMT3a/3b activities work complementarily and simultaneously to establish symmetric CG methylation and CHH (H = A, T or C) methylation. DNMT3a/3b can add methyl groups to daughter strands after each cycle of DNA replication. We also observe an unexpected division of labor between DNMT1 and DNMT3a/3b in suppressing retrotransposon long terminal repeats and long interspersed elements, respectively. Our data suggest that mammalian cells use a specific CG density threshold to predetermine methylation levels in wild-type cells and the magnitude of methylation reduction in DNMT knockout cells. Only genes with low CG density can be induced or, surprisingly, suppressed in the hypomethylated genome. Lastly, we do not find any association between gene body methylation and transcriptional activity. We show the concerted actions of DNMT enzymes in the establishment and maintenance of methylation patterns. The finding of distinct roles of DNMT1-dependent and -independent methylation patterns in genome stability and regulation of transcription provides new insights for understanding germ cell development, neuronal diversity, and transgenerational epigenetic inheritance and will help to develop next-generation DNMT inhibitors.
Woo, Hae Dong; Kim, Jeongseon
2012-01-01
Good biomarkers for early detection of cancer lead to better prognosis. However, harvesting tumor tissue is invasive and cannot be routinely performed. Global DNA methylation of peripheral blood leukocyte DNA was evaluated as a biomarker for cancer risk. We performed a meta-analysis to estimate overall cancer risk according to global DNA hypomethylation levels among studies with various cancer types and analytical methods used to measure DNA methylation. Studies were systemically searched via PubMed with no language limitation up to July 2011. Summary estimates were calculated using a fixed effects model. The subgroup analyses by experimental methods to determine DNA methylation level were performed due to heterogeneity within the selected studies (p<0.001, I(2): 80%). Heterogeneity was not found in the subgroup of %5-mC (p = 0.393, I(2): 0%) and LINE-1 used same target sequence (p = 0.097, I(2): 49%), whereas considerable variance remained in LINE-1 (p<0.001, I(2): 80%) and bladder cancer studies (p = 0.016, I(2): 76%). These results suggest that experimental methods used to quantify global DNA methylation levels are important factors in the association study between hypomethylation levels and cancer risk. Overall, cancer risks of the group with the lowest DNA methylation levels were significantly higher compared to the group with the highest methylation levels [OR (95% CI): 1.48 (1.28-1.70)]. Global DNA hypomethylation in peripheral blood leukocytes may be a suitable biomarker for cancer risk. However, the association between global DNA methylation and cancer risk may be different based on experimental methods, and region of DNA targeted for measuring global hypomethylation levels as well as the cancer type. Therefore, it is important to select a precise and accurate surrogate marker for global DNA methylation levels in the association studies between global DNA methylation levels in peripheral leukocyte and cancer risk.
Brown, William M
2015-12-01
Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). Gene ontology (ie, gene product elucidation)/meta-analysis. 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. CRD42014009800. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.
Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A
2015-08-15
Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.
Unique cell-type-specific patterns of DNA methylation in the root meristem.
Kawakatsu, Taiji; Stuart, Tim; Valdes, Manuel; Breakfield, Natalie; Schmitz, Robert J; Nery, Joseph R; Urich, Mark A; Han, Xinwei; Lister, Ryan; Benfey, Philip N; Ecker, Joseph R
2016-04-29
DNA methylation is an epigenetic modification that differs between plant organs and tissues, but the extent of variation between cell types is not known. Here, we report single-base-resolution whole-genome DNA methylomes, mRNA transcriptomes and small RNA transcriptomes for six cell populations covering the major cell types of the Arabidopsis root meristem. We identify widespread cell-type-specific patterns of DNA methylation, especially in the CHH sequence context, where H is A, C or T. The genome of the columella root cap is the most highly methylated Arabidopsis cell characterized so far. It is hypermethylated within transposable elements (TEs), accompanied by increased abundance of transcripts encoding RNA-directed DNA methylation (RdDM) pathway components and 24-nt small RNAs (smRNAs). The absence of the nucleosome remodeller DECREASED DNA METHYLATION 1 (DDM1), required for maintenance of DNA methylation, and low abundance of histone transcripts involved in heterochromatin formation suggests that a loss of heterochromatin may occur in the columella, thus allowing access of RdDM factors to the whole genome, and producing an excess of 24-nt smRNAs in this tissue. Together, these maps provide new insights into the epigenomic diversity that exists between distinct plant somatic cell types.
High-Resolution Analysis of Cytosine Methylation in Ancient DNA
Cropley, Jennifer E.; Cooper, Alan; Suter, Catherine M.
2012-01-01
Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution. PMID:22276161
Herrmann, Alexander; Haake, Andrea; Ammerpohl, Ole; Martin-Guerrero, Idoia; Szafranski, Karol; Stemshorn, Kathryn; Nothnagel, Michael; Kotsopoulos, Steve K; Richter, Julia; Warner, Jason; Olson, Jeff; Link, Darren R; Schreiber, Stefan; Krawczak, Michael; Platzer, Matthias; Nürnberg, Peter; Siebert, Reiner; Hampe, Jochen
2011-01-01
Cytosine methylation provides an epigenetic level of cellular plasticity that is important for development, differentiation and cancerogenesis. We adopted microdroplet PCR to bisulfite treated target DNA in combination with second generation sequencing to simultaneously assess DNA sequence and methylation. We show measurement of methylation status in a wide range of target sequences (total 34 kb) with an average coverage of 95% (median 100%) and good correlation to the opposite strand (rho = 0.96) and to pyrosequencing (rho = 0.87). Data from lymphoma and colorectal cancer samples for SNRPN (imprinted gene), FGF6 (demethylated in the cancer samples) and HS3ST2 (methylated in the cancer samples) serve as a proof of principle showing the integration of SNP data and phased DNA-methylation information into "hepitypes" and thus the analysis of DNA methylation phylogeny in the somatic evolution of cancer.
Nakamura, Ryohei; Uno, Ayako; Kumagai, Masahiko; Fukushima, Hiroto S.; Morishita, Shinichi; Takeda, Hiroyuki
2017-01-01
The heavily methylated vertebrate genomes are punctuated by stretches of poorly methylated DNA sequences that usually mark gene regulatory regions. It is known that the methylation state of these regions confers transcriptional control over their associated genes. Given its governance on the transcriptome, cellular functions and identity, genome-wide DNA methylation pattern is tightly regulated and evidently predefined. However, how is the methylation pattern determined in vivo remains enigmatic. Based on in silico and in vitro evidence, recent studies proposed that the regional hypomethylated state is primarily determined by local DNA sequence, e.g., high CpG density and presence of specific transcription factor binding sites. Nonetheless, the dependency of DNA methylation on nucleotide sequence has not been carefully validated in vertebrates in vivo. Herein, with the use of medaka (Oryzias latipes) as a model, the sequence dependency of DNA methylation was intensively tested in vivo. Our statistical modeling confirmed the strong statistical association between nucleotide sequence pattern and methylation state in the medaka genome. However, by manipulating the methylation state of a number of genomic sequences and reintegrating them into medaka embryos, we demonstrated that artificially conferred DNA methylation states were predominantly and robustly maintained in vivo, regardless of their sequences and endogenous states. This feature was also observed in the medaka transgene that had passed across generations. Thus, despite the observed statistical association, nucleotide sequence was unable to autonomously determine its own methylation state in medaka in vivo. Our results apparently argue against the notion of the governance on the DNA methylation by nucleotide sequence, but instead suggest the involvement of other epigenetic factors in defining and maintaining the DNA methylation landscape. Further investigation in other vertebrate models in vivo will be needed for the generalization of our observations made in medaka. PMID:29267279
Banlaki, Zsofia; Cimarelli, Giulia; Viranyi, Zsofia; Kubinyi, Eniko; Sasvari-Szekely, Maria; Ronai, Zsolt
2017-06-01
A growing body of evidence highlights the relationship between epigenetics, especially DNA methylation, and population divergence as well as speciation. However, little is known about how general the phenomenon of epigenetics-wise separation of different populations is, or whether population assignment is, possible based on solely epigenetic marks. In the present study, we compared DNA methylation profiles between four different canine populations: three domestic dog breeds and their ancestor the gray wolf. Altogether, 79 CpG sites constituting the 65 so-called CpG units located in the promoter regions of genes affecting behavioral and temperamental traits (COMT, HTR1A, MAOA, OXTR, SLC6A4, TPH1, WFS1)-regions putatively targeted during domestication and breed selection. Methylation status of buccal cells was assessed using EpiTYPER technology. Significant inter-population methylation differences were found in 52.3% of all CpG units investigated. DNA methylation profile-based hierarchical cluster analysis indicated an unambiguous segregation of wolf from domestic dog. In addition, one of the three dog breeds (Golden Retriever) investigated also formed a separate, autonomous group. The findings support that population segregation is interrelated with shifts in DNA methylation patterns, at least in putative selection target regions, and also imply that epigenetic profiles could provide a sufficient basis for population assignment of individuals.
Sharp, Gemma C; Arathimos, Ryan; Reese, Sarah E; Page, Christian M; Felix, Janine; Küpers, Leanne K; Rifas-Shiman, Sheryl L; Liu, Chunyu; Burrows, Kimberley; Zhao, Shanshan; Magnus, Maria C; Duijts, Liesbeth; Corpeleijn, Eva; DeMeo, Dawn L; Litonjua, Augusto; Baccarelli, Andrea; Hivert, Marie-France; Oken, Emily; Snieder, Harold; Jaddoe, Vincent; Nystad, Wenche; London, Stephanie J; Relton, Caroline L; Zuccolo, Luisa
2018-01-01
Aim: Alcohol consumption during pregnancy is sometimes associated with adverse outcomes in offspring, potentially mediated by epigenetic modifications. We aimed to investigate genome-wide DNA methylation in cord blood of newborns exposed to alcohol in utero. Materials & methods: We meta-analyzed information from six population-based birth cohorts within the Pregnancy and Childhood Epigenetics consortium. Results: We found no strong evidence of association at either individual CpGs or across larger regions of the genome. Conclusion: Our findings suggest no association between maternal alcohol consumption and offspring cord blood DNA methylation. This is in stark contrast to the multiple strong associations previous studies have found for maternal smoking, which is similarly socially patterned. However, it is possible that a combination of a larger sample size, higher doses, different timings of exposure, exploration of a different tissue and a more global assessment of genomic DNA methylation might show evidence of association. PMID:29172695
Giri, Anil K; Bharadwaj, Soham; Banerjee, Priyanka; Chakraborty, Shraddha; Parekatt, Vaisak; Rajashekar, Donaka; Tomar, Abhishek; Ravindran, Aarthi; Basu, Analabha; Tandon, Nikhil; Bharadwaj, Dwaipayan
2017-06-01
Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.
Novel Insights into DNA Methylation Features in Spermatozoa: Stability and Peculiarities
Sayols, Sergi; Chianese, Chiara; Giachini, Claudia; Heyn, Holger; Esteller, Manel
2012-01-01
Data about the entire sperm DNA methylome are limited to two sperm donors whereas studies dealing with a greater number of subjects focused only on a few genes or were based on low resolution arrays. This implies that information about what we can consider as a normal sperm DNA methylome and whether it is stable among different normozoospermic individuals is still missing. The definition of the DNA methylation profile of normozoospermic men, the entity of inter-individual variability and the epigenetic characterization of quality-fractioned sperm subpopulations in the same subject (intra-individual variability) are relevant for a better understanding of pathological conditions. We addressed these questions by using the high resolution Infinium 450K methylation array and compared normal sperm DNA methylomes against somatic and cancer cells. Our study, based on the largest number of subjects (n = 8) ever considered for such a large number of CpGs (n = 487,517), provided clear evidence for i) a highly conserved DNA methylation profile among normozoospermic subjects; ii) a stable sperm DNA methylation pattern in different quality-fractioned sperm populations of the same individual. The latter finding is particularly relevant if we consider that different quality fractioned sperm subpopulations show differences in their structural features, metabolic and genomic profiles. We demonstrate, for the first time, that DNA methylation in normozoospermic men remains highly uniform regardless the quality of sperm subpopulations. In addition, our analysis provided both confirmatory and novel data concerning the sperm DNA methylome, including its peculiar features in respect to somatic and cancer cells. Our description about a highly polarized sperm DNA methylation profile, the clearly distinct genomic and functional organization of hypo- versus hypermethylated loci as well as the association of histone-enriched hypomethylated loci with embryonic development, which we now extended also to hypomethylated piRNAs-linked genes, provides solid basis for future basic and clinical research. PMID:23071498
Margison, G P; Kleihues, P
1975-01-01
The alkylation of purine bases in DNA of several rat tissues was determined during weekly injections (10 mg/kg) of N-[3H]methyl-N-nitrosourea, a dose schedule known to selectively induce tumours of the nervous system. Each group of animals was killed 1 week after the final injection, and the DNA hydrolysates were analysed by chromatography on Sephadex G-10. After five weekly applications, O6-methylguanine had accumulated in brain DNA to an extent which greatly exceeded that in kidney, spleen and intestine. In the liver, the final O6-methylguanine concentration was less than 1% of that in brain. Between the first and the fifth injection, the O6-methylguanine/7-methylguanine ratio in cerebral DNA increased from 0.28 to 0.68. In addition, 3-methylguanine was found to accumulate in brain DNA whereas in the other organs no significant quantities of this base were detectable. The results are compatible with the hypothesis that O6-alkylation of guanine in DNA plays a major role in the induction of tumours by N-methyl-N-nitrosourea and related carcinogens. The kinetics of the increase of O6-methylguanine in cerebral DNA suggest that there is no major cell fraction in the brain which is capable of excising chemically methylated bases from DNA. This repair deficiency could be a determining factor in the selective induction of nervous-system tumours by N-methyl-N-nitrosourea and other neuro-oncogenic compounds. PMID:1200992
NASA Astrophysics Data System (ADS)
Yang, Bo; Wu, R. R.; Rodgers, M. T.
2015-09-01
(CCG)n•(CGG)n trinucleotide repeats have been found to be associated with fragile X syndrome, the most widespread inherited cause of mental retardation in humans. The (CCG)n•(CGG)n repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of noncanonical proton-bound dimers of cytosine (C+•C). Halogenated cytosine residues are one form of DNA damage that may be important in altering the structure and stability of DNA or DNA-protein interactions and, hence, regulate gene expression. Previously, we investigated the effects of 5-halogenation and 1-methylation of cytosine on the base-pairing energies (BPEs) using threshold collision-induced dissociation (TCID) techniques. In the present study, we extend our work to include proton-bound homo- and heterodimers of cytosine, 1-methyl-5-fluorocytosine, and 1-methyl-5-bromocytosine. All modifications examined here are found to produce a decrease in the BPEs. However, the BPEs of all of the proton-bound dimers examined significantly exceed those of Watson-Crick G•C, neutral C•C base pairs, and various methylated variants such that DNA i-motif conformations should still be preserved in the presence of these modifications. The proton affinities (PAs) of the halogenated cytosines are also obtained from the experimental data by competitive analysis of the primary dissociation pathways that occur in parallel for the proton-bound heterodimers. 5-Halogenation leads to a decrease in the N3 PA of cytosine, whereas 1-methylation leads to an increase in the N3 PA. Thus, the 1-methyl-5-halocytosines exhibit PAs that are intermediate.
MethPrimer: designing primers for methylation PCRs.
Li, Long-Cheng; Dahiya, Rajvir
2002-11-01
DNA methylation is an epigenetic mechanism of gene regulation. Bisulfite- conversion-based PCR methods, such as bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP), remain the most commonly used techniques for methylation mapping. Existing primer design programs developed for standard PCR cannot handle primer design for bisulfite-conversion-based PCRs due to changes in DNA sequence context caused by bisulfite treatment and many special constraints both on the primers and the region to be amplified for such experiments. Therefore, the present study was designed to develop a program for such applications. MethPrimer, based on Primer 3, is a program for designing PCR primers for methylation mapping. It first takes a DNA sequence as its input and searches the sequence for potential CpG islands. Primers are then picked around the predicted CpG islands or around regions specified by users. MethPrimer can design primers for BSP and MSP. Results of primer selection are delivered through a web browser in text and in graphic view.
Li, Zibo; Guo, Xinwu; Tang, Lili; Peng, Limin; Chen, Ming; Luo, Xipeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Xia, Kun; Wang, Jun
2016-10-01
Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients' plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.
Gopal, J; Yebra, M J; Bhagwat, A S
1994-01-01
The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework. Images PMID:7971279
Pulverer, Walter; Hofner, Manuela; Preusser, Matthias; Dirnberger, Elisabeth; Hainfellner, Johannes A; Weinhaeusel, Andreas
2014-01-01
MGMT promoter methylation is associated with favorable prognosis and chemosensitivity in glioblastoma multiforme (GBM), especially in elderly patients. We aimed to develop a simple methylation-sensitive restriction enzyme (MSRE)-based quantitative PCR (qPCR) assay, allowing the quantification of MGMT promoter methylation. DNA was extracted from non-neoplastic brain (n = 24) and GBM samples (n = 20) upon 3 different sample conservation conditions (-80 °C, formalin-fixed and paraffin-embedded (FFPE); RCL2-fixed). We evaluated the suitability of each fixation method with respect to the MSRE-coupled qPCR methylation analyses. Methylation data were validated by MALDITOF. qPCR was used for evaluation of alternative tissue conservation procedures. DNA from FFPE tissue failed reliable testing; DNA from both RCL2-fixed and fresh frozen tissues performed equally well and was further used for validation of the quantitative MGMT methylation assay (limit of detection (LOD): 19.58 pg), using individual's undigested sample DNA for calibration. MGMT methylation analysis in non-neoplastic brain identified a background methylation of 0.10 ± 11% which we used for defining a cut-off of 0.32% for patient stratification. Of GBM patients 9 were MGMT methylationpositive (range: 0.56 - 91.95%), and 11 tested negative. MALDI-TOF measurements resulted in a concordant classification of 94% of GBM samples in comparison to qPCR. The presented methodology allows quantitative MGMT promoter methylation analyses. An amount of 200 ng DNA is sufficient for triplicate analyses including control reactions and individual calibration curves, thus excluding any DNA qualityderived bias. The combination of RCL2-fixation and quantitative methylation analyses improves pathological routine examination when histological and molecular analyses on limited amounts of tumor samples are necessary for patient stratification.
Barat, Ana; Ruskin, Heather J; Byrne, Annette T; Prehn, Jochen H M
2015-11-23
Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.
Barat, Ana; Ruskin, Heather J.; Byrne, Annette T.; Prehn, Jochen H. M.
2015-01-01
Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype. PMID:27600244
Structure of the MLL CXXC domain – DNA complex and its functional role in MLL-AF9 leukemia
Cierpicki, Tomasz; Risner, Laurie E.; Grembecka, Jolanta; Lukasik, Stephen M.; Popovic, Relja; Omonkowska, Monika; Shultis, David S.; Zeleznik-Le, Nancy J.; Bushweller, John H.
2010-01-01
MLL (Mixed Lineage Leukemia) is the target of chromosomal translocations which cause leukemias with poor prognosis. All leukemogenic MLL fusion proteins retain the CXXC domain which binds to nonmethylated CpG DNA. We present the solution structure of the MLL CXXC domain in complex with DNA, showing for the first time how the CXXC domain distinguishes nonmethylated from methylated CpG DNA. Based on the structure, we designed point mutations which disrupt DNA binding. Introduction of these mutations into MLL-AF9 results in increased DNA methylation of specific CpG nucleotides in Hoxa9, increased H3K9 methylation, decreased expression of Hoxa9 locus transcripts, loss of immortalization potential, and inability to induce leukemia in mice. These results establish that DNA binding by the CXXC domain and protection against DNA methylation is essential for MLL fusion leukemia. They also provide support for this interaction as a potential target for therapeutic intervention. PMID:20010842
Expression of exogenous DNA methyltransferases: application in molecular and cell biology.
Dyachenko, O V; Tarlachkov, S V; Marinitch, D V; Shevchuk, T V; Buryanov, Y I
2014-02-01
DNA methyltransferases might be used as powerful tools for studies in molecular and cell biology due to their ability to recognize and modify nitrogen bases in specific sequences of the genome. Methylation of the eukaryotic genome using exogenous DNA methyltransferases appears to be a promising approach for studies on chromatin structure. Currently, the development of new methods for targeted methylation of specific genetic loci using DNA methyltransferases fused with DNA-binding proteins is especially interesting. In the present review, expression of exogenous DNA methyltransferase for purposes of in vivo analysis of the functional chromatin structure along with investigation of the functional role of DNA methylation in cell processes are discussed, as well as future prospects for application of DNA methyltransferases in epigenetic therapy and in plant selection.
Identification of Differentially Methylated Sites with Weak Methylation Effects
Tran, Hong; Zhu, Hongxiao; Wu, Xiaowei; Kim, Gunjune; Clarke, Christopher R.; Larose, Hailey; Haak, David C.; Westwood, James H.; Zhang, Liqing
2018-01-01
Deoxyribonucleic acid (DNA) methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs) among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM) was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ) twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same concepts, with the only difference being how methylation information across the genome is summarized. If methylation levels are determined by grouping neighboring cytosine sites, then they are DMRs; if methylation levels are calculated based on single cytosines, they are DMCs. PMID:29419727
Li, Xia; Wang, Yibaina; Zhang, Zuoming; Yao, Xiaoping; Ge, Jie; Zhao, Yashuang
2013-11-01
CpG island methylation in the promoter regions of the DNA mismatch repair gene mutator L homologue 1 ( MLH1 ) and DNA repair gene O 6 -methylguanine-DNA methyltransferase ( MGMT ) genes has been shown to occur in the leukocytes of peripheral blood and colorectal tissue. However, it is unclear whether the methylation levels in the blood leukocytes and colorectal tissue are correlated. The present study analyzed and compared the levels of MGMT and MLH1 gene methylation in the leukocytes of peripheral blood and colorectal tissues obtained from patients with colorectal cancer (CRC). The methylation levels of MGMT and MLH1 were examined using methylation-sensitive high-resolution melting (MS-HRM) analysis. A total of 44 patients with CRC were selected based on the MLH1 and MGMT gene methylation levels in the leukocytes of the peripheral blood. Corresponding colorectal tumor and normal tissues were obtained from each patient and the DNA methylation levels were determined. The correlation coefficients were evaluated using Spearman's rank test. Agreement was determined by generalized κ-statistics. Spearman's rank correlation coefficients (r) for the methylation levels of the MGMT and MLH1 genes in the leukocytes of the peripheral blood and normal colorectal tissue were 0.475 and 0.362, respectively (P=0.001 and 0.016, respectively). The agreement of the MGMT and MLH1 gene methylation levels in the leukocytes of the peripheral blood and normal colorectal tissue were graded as fair and poor (κ=0.299 and 0.126, respectively). The methylation levels of MGMT and MLH1 were moderately and weakly correlated between the patient-matched leukocytes and the normal colorectal tissue, respectively. Blood-derived DNA methylation measurements may not always represent the levels of normal colorectal tissue methylation.
Turan, Tolga; Kalantari, Mina; Cuschieri, Kate; Cubie, Heather A; Skomedal, Hanne; Bernard, Hans-Ulrich
2007-04-25
The L1 gene of human papillomavirus-18 (HPV-18) is consistently hypermethylated in cervical carcinomas, but frequently hypo- or unmethylated in exfoliated cells from asymptomatic patients. In precancerous lesions, L1 is sporadically hypermethylated, correlating with the severity of the neoplasia. In order to explore the potential of using L1 methylation as a workable biomarker for carcinogenic progression of HPV-18 infections in routinely taken samples, our aim was to develop methylation-detection techniques that were sensitive and rapid without being overly complex technically. Therein, we developed a methylation-specific PCR (MSP) through the design of primer sets that specifically amplify either methylated or unmethylated HPV-18 L1 DNA within bisulfite-modified sample DNA. Amplification of unmethylated and in vitro methylated HPV-18 DNA by MSP resulted in 2500 copies of either of the two L1 DNA species being detected, a satisfactory sensitivity considering that bisulfite treatment leads to the fragmentation of about 99% of sample DNA. The primers proved specific and did not generate false positive results at concentrations exceeding the lowest limit of detection by a factor of 400. DNA from carcinomas yielded PCR signals only with the methylation-specific primers, and not with primers specific for unmethylated L1 genes. The inverse result was obtained with DNA from precursor lesions that contained only hypomethylated DNA. High-grade precursor lesions and carcinomas that contained hyper- as well as hypomethylated L1 DNA yielded PCR signals with both primers. By developing a fluorescence based real-time PCR, we quantitatively analyzed samples with in vitro methylated and unmethylated L1 DNA, and could distinguish clinical samples with hyper- and hypomethylated DNA or mixtures of both DNAs. The methylation-specific and real-time PCR techniques permitted efficient HPV-18 L1 methylation analyses and open the door for larger-scale clinical studies where the utility of methylation status to predict the progression of HPV-18 infection and HPV-18 associated lesions is assessed.
Wen, Xianyu; Jeong, Seorin; Kim, Younghoon; Bae, Jeong Mo; Cho, Nam Yun; Kim, Jung Ho; Kang, Gyeong Hoon
2017-01-01
Formalin-fixed, paraffin-embedded (FFPE) tissues are important resources for profiling DNA methylation changes and for studying a variety of diseases. However, formalin fixation introduces inter-strand crosslinking, which might cause incomplete bisulfite conversion of unmethylated cytosines, which might lead to falsely elevated measurements of methylation levels in pyrosequencing assays. Long interspersed nucleotide element-1 (LINE-1) is a major constituent of repetitive transposable DNA elements, and its methylation is referred to correlates with global DNA methylation. To identify whether formalin fixation might impact the measured values of methylation in LINE-1 repetitive elements and whether prolonged heat-induced denaturation of DNA might reduce the artificial increases in measured values caused by formalin fixation, we analyzed paired fresh-frozen (FF) and FFPE xenograft tissue samples for their methylation levels in LINE-1 using a pyrosequencing assay. To further confirm the effect of a heating step in the measurement of LINE-1 or single gene methylation levels, we analyzed FFPE tissue samples of gastric cancer and colorectal cancer for their methylation status in LINE-1 and eight single genes, respectively. Formalin fixation led to an increase in the measured values of LINE-1 methylation regardless of the duration of fixation. Prolonged heating of the DNA at 95 °C for 30 min before bisulfite conversion was found (1) to decrease the discrepancy in the measured values between the paired FF and FFPE tissue samples, (2) to decrease the standard deviation of the measured value of LINE-1 methylation levels in FFPE tissue samples of gastric cancer, and (3) to improve the performance in the measurement of single gene methylation levels in FFPE tissue samples of colorectal cancer. Formalin fixation leads to artificial increases in the measured values of LINE-1 methylation, and the application of prolonged heating of DNA samples decreases the discrepancy in the measured values of LINE-1 methylation between paired FF and FFPE tissue samples. The application of prolonged heating of DNA samples improves bisulfite conversion-based measurement of LINE-1 or single gene methylation levels in FFPE tissue samples.
Shiwa, Yuh; Hachiya, Tsuyoshi; Furukawa, Ryohei; Ohmomo, Hideki; Ono, Kanako; Kudo, Hisaaki; Hata, Jun; Hozawa, Atsushi; Iwasaki, Motoki; Matsuda, Koichi; Minegishi, Naoko; Satoh, Mamoru; Tanno, Kozo; Yamaji, Taiki; Wakai, Kenji; Hitomi, Jiro; Kiyohara, Yutaka; Kubo, Michiaki; Tanaka, Hideo; Tsugane, Shoichiro; Yamamoto, Masayuki; Sobue, Kenji; Shimizu, Atsushi
2016-01-01
Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS) using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03) when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50) when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λadjusted = 1.14) by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12–1.45) and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λadjusted = 1.00–1.17). These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models. PMID:26799745
Shiwa, Yuh; Hachiya, Tsuyoshi; Furukawa, Ryohei; Ohmomo, Hideki; Ono, Kanako; Kudo, Hisaaki; Hata, Jun; Hozawa, Atsushi; Iwasaki, Motoki; Matsuda, Koichi; Minegishi, Naoko; Satoh, Mamoru; Tanno, Kozo; Yamaji, Taiki; Wakai, Kenji; Hitomi, Jiro; Kiyohara, Yutaka; Kubo, Michiaki; Tanaka, Hideo; Tsugane, Shoichiro; Yamamoto, Masayuki; Sobue, Kenji; Shimizu, Atsushi
2016-01-01
Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS) using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03) when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50) when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λ adjusted = 1.14) by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12-1.45) and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λ adjusted = 1.00-1.17). These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models.
Glöckner, Sabine C.; Dhir, Mashaal; Yi, Joo Mi; McGarvey, Kelly E.; Van Neste, Leander; Louwagie, Joost; Chan, Timothy A.; Kleeberger, Wolfram; de Bruïne, Adriaan P.; Smits, Kim M.; Khalid-de Bakker, Carolina A.J.; Jonkers, Daisy M.A.E.; Stockbrügger, Reinhold W.; Meijer, Gerrit A.; Oort, Frank A.; Iacobuzio-Donahue, Christine; Bierau, Katja; Herman, James G.; Baylin, Stephen B.; Van Engeland, Manon; Schuebel, Kornel E.; Ahuja, Nita
2011-01-01
We have used a gene expression array–based strategy to identify the methylation of tissue factor pathway inhibitor 2 (TFPI2), a potential tumor suppressor gene, as a frequent event in human colorectal cancers (CRC). TFPI2 belongs to the recently described group of embryonic cell Polycomb group (PcG)–marked genes that may be predisposed to aberrant DNA methylation in early stages of colorectal carcinogenesis. Aberrant methylation of TFPI2 was detected in almost all CRC adenomas (97%, n = 56) and stages I to IV CRCs (99%, n = 115). We further explored the potential of TFPI2 as a biomarker for the early detection of CRC using stool DNA–based assays in patients with nonmetastatic CRC and average-risk noncancer controls who were candidates for screening. TFPI2 methylation was detected in stool DNA from stage I to III CRC patients with a sensitivity of 76% to 89% and a specificity of 79% to 93%. Detection of TFPI2 methylation in stool DNA may act as a useful adjunct to the noninvasive strategies for screening of CRCs in the future. PMID:19435926
Microarray-based DNA methylation study of Ewing's sarcoma of the bone.
Park, Hye-Rim; Jung, Woon-Won; Kim, Hyun-Sook; Park, Yong-Koo
2014-10-01
Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing's sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing's sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing's sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing's sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10 , OSM , APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing's sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing's sarcoma.
Microarray-based DNA methylation study of Ewing’s sarcoma of the bone
PARK, HYE-RIM; JUNG, WOON-WON; KIM, HYUN-SOOK; PARK, YONG-KOO
2014-01-01
Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing’s sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing’s sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing’s sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing’s sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10, OSM, APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing’s sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing’s sarcoma. PMID:25202378
Profile analysis and prediction of tissue-specific CpG island methylation classes
2009-01-01
Background The computational prediction of DNA methylation has become an important topic in the recent years due to its role in the epigenetic control of normal and cancer-related processes. While previous prediction approaches focused merely on differences between methylated and unmethylated DNA sequences, recent experimental results have shown the presence of much more complex patterns of methylation across tissues and time in the human genome. These patterns are only partially described by a binary model of DNA methylation. In this work we propose a novel approach, based on profile analysis of tissue-specific methylation that uncovers significant differences in the sequences of CpG islands (CGIs) that predispose them to a tissue- specific methylation pattern. Results We defined CGI methylation profiles that separate not only between constitutively methylated and unmethylated CGIs, but also identify CGIs showing a differential degree of methylation across tissues and cell-types or a lack of methylation exclusively in sperm. These profiles are clearly distinguished by a number of CGI attributes including their evolutionary conservation, their significance, as well as the evolutionary evidence of prior methylation. Additionally, we assess profile functionality with respect to the different compartments of protein coding genes and their possible use in the prediction of DNA methylation. Conclusion Our approach provides new insights into the biological features that determine if a CGI has a functional role in the epigenetic control of gene expression and the features associated with CGI methylation susceptibility. Moreover, we show that the ability to predict CGI methylation is based primarily on the quality of the biological information used and the relationships uncovered between different sources of knowledge. The strategy presented here is able to predict, besides the constitutively methylated and unmethylated classes, two more tissue specific methylation classes conserving the accuracy provided by leading binary methylation classification methods. PMID:19383127
Liu, Zhaojun; Zhou, Jing; Gu, Liankun; Deng, Dajun
2016-08-30
Methylation changes of CpG islands can be determined using PCR-based assays. However, the exact impact of the amount of input templates (TAIT) on DNA methylation analysis has not been previously recognized. Using COL2A1 gene as an input reference, TAIT difference between human tissues with methylation-positive and -negative detection was calculated for two representative genes GFRA1 and P16. Results revealed that TAIT in GFRA1 methylation-positive frozen samples (n = 332) was significantly higher than the methylation-negative ones (n = 44) (P < 0.001). Similar difference was found in P16 methylation analysis. The TAIT-related effect was also observed in methylation-specific PCR (MSP) and denatured high performance liquid chromatography (DHPLC) analysis. Further study showed that the minimum TAIT for a successful MethyLight PCR reaction should be ≥ 9.4 ng (CtCOL2A1 ≤ 29.3), when the cutoff value of the methylated-GFRA1 proportion for methylation-positive detection was set at 1.6%. After TAIT of the methylation non-informative frozen samples (n = 94; CtCOL2A1 > 29.3) was increased above the minimum TAIT, the methylation-positive rate increased from 72.3% to 95.7% for GFRA1 and 26.6% to 54.3% for P16, respectively (Ps < 0.001). Similar results were observed in the FFPE samples. In conclusion, TAIT critically affects results of various PCR-based DNA methylation analyses. Characterization of the minimum TAIT for target CpG islands is essential to avoid false-negative results.
Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng
2016-01-22
The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named "DeepMethyl" to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.
Corruption of the intra-gene DNA methylation architecture is a hallmark of cancer.
Bartlett, Thomas E; Zaikin, Alexey; Olhede, Sofia C; West, James; Teschendorff, Andrew E; Widschwendter, Martin
2013-01-01
Epigenetic processes--including DNA methylation--are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test [Formula: see text] in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers.
Feliciello, Isidoro; Parazajder, Josip; Akrap, Ivana; Ugarković, Durđica
2013-05-01
DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.
Repurposing the CRISPR-Cas9 system for targeted DNA methylation.
Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka
2016-07-08
Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co-expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DNA methylation in inflammatory genes among children with obstructive sleep apnea.
Kim, Jinkwan; Bhattacharjee, Rakesh; Khalyfa, Abdelnaby; Kheirandish-Gozal, Leila; Capdevila, Oscar Sans; Wang, Yang; Gozal, David
2012-02-01
Pediatric obstructive sleep apnea (OSA) leads to multiple end-organ morbidities that are mediated by the cumulative burden of oxidative stress and inflammation. Because not all children with OSA exhibit increased systemic inflammation, genetic and environmental factors may be affecting patterns of DNA methylation in genes subserving inflammatory functions. DNA from matched children with OSA with and without high levels of high-sensitivity C-reactive protein (hsCRP) were assessed for DNA methylation levels of 24 inflammatory-related genes. Primer-based polymerase chain reaction assays in a case-control setting involving 47 OSA cases and 31 control subjects were conducted to confirm the findings; hsCRP and myeloid-related protein (MRP) 8/14 levels were also assayed. Forkhead box P3 (FOXP3) and interferon regulatory factor 1 (IRF1) showed higher methylation in six children with OSA and high hsCRP levels compared with matched children with OSA and low hsCRP levels (P < 0.05). In the case-control cohort, children with OSA and high CRP levels had higher log FOXP3 DNA methylation levels compared with children with OSA and low CRP levels and control subjects. IRF1 did not exhibit significant differences. FOXP3 DNA methylation levels correlated with hsCRP and MRP 8/14 levels and with apnea-hypopnea index (AHI), BMI z score, and apolipoprotein B levels. A stepwise multiple regression model showed that AHI was independently associated with FOXP3 DNA methylation levels (P < 0.03). The FOXP3 gene, which regulates expression of T regulatory lymphocytes, is more likely to display increased methylation among children with OSA who exhibit increased systemic inflammatory responses. Thus, epigenetic modifications may constitute an important determinant of inflammatory phenotype in OSA, and FOXP3 DNA methylation levels may provide a potential biomarker for end-organ vulnerability.
Traumatic stress and accelerated DNA methylation age: A meta-analysis.
Wolf, Erika J; Maniates, Hannah; Nugent, Nicole; Maihofer, Adam X; Armstrong, Don; Ratanatharathorn, Andrew; Ashley-Koch, Allison E; Garrett, Melanie; Kimbrel, Nathan A; Lori, Adriana; Va Mid-Atlantic Mirecc Workgroup; Aiello, Allison E; Baker, Dewleen G; Beckham, Jean C; Boks, Marco P; Galea, Sandro; Geuze, Elbert; Hauser, Michael A; Kessler, Ronald C; Koenen, Karestan C; Miller, Mark W; Ressler, Kerry J; Risbrough, Victoria; Rutten, Bart P F; Stein, Murray B; Ursano, Robert J; Vermetten, Eric; Vinkers, Christiaan H; Uddin, Monica; Smith, Alicia K; Nievergelt, Caroline M; Logue, Mark W
2018-06-01
Recent studies examining the association between posttraumatic stress disorder (PTSD) and accelerated aging, as defined by DNA methylation-based estimates of cellular age that exceed chronological age, have yielded mixed results. We conducted a meta-analysis of trauma exposure and PTSD diagnosis and symptom severity in association with accelerated DNA methylation age using data from 9 cohorts contributing to the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (combined N = 2186). Associations between demographic and cellular variables and accelerated DNA methylation age were also examined, as was the moderating influence of demographic variables. Meta-analysis of regression coefficients from contributing cohorts revealed that childhood trauma exposure (when measured with the Childhood Trauma Questionnaire) and lifetime PTSD severity evidenced significant, albeit small, meta-analytic associations with accelerated DNA methylation age (ps = 0.028 and 0.016, respectively). Sex, CD4T cell proportions, and natural killer cell proportions were also significantly associated with accelerated DNA methylation age (all ps < 0.02). PTSD diagnosis and lifetime trauma exposure were not associated with advanced DNA methylation age. There was no evidence of moderation of the trauma or PTSD variables by demographic factors. Results suggest that traumatic stress is associated with advanced epigenetic age and raise the possibility that cells integral to immune system maintenance and responsivity play a role in this. This study highlights the need for additional research into the biological mechanisms linking traumatic stress to accelerated DNA methylation age and the importance of furthering our understanding of the neurobiological and health consequences of PTSD. Published by Elsevier Ltd.
msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.
Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James
2018-02-01
Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).
Chango, Abalo; Abdennebi-Najar, Latifa; Tessier, Frederic; Ferré, Séverine; Do, Sergio; Guéant, Jean-Louis; Nicolas, Jean Pierre; Willequet, Francis
2006-10-20
Relative levels of DNA hypermethylation were quantified in DS individuals using a new method based on a combination of methylation-sensitive arbitrarily primed polymerase chain reaction (MS-AP-PCR) and quantification of DNA fragments with the Agilent 2100 bioanalyzer. Four of the DS individuals had low plasma total homocysteine (tHcy) level (4.3 +/- 0.3 micromol/l) and 4 other had high-tHcy level (14.1 +/- 0.9 micromol/l). Eight healthy control individuals were matched to the DS cases for age, sex, and tHcy levels. We have identified and quantified six hypermethylated fragments. Their sizes ranged from 230-bp to 700-bp. In cases and controls, low-tHcy did not affect methylation level of identified fragments, mean methylation values were 68.0 +/- 39.7% and 52.1 +/- 40.3%, respectively. DNA methylation in DS individuals did not change significantly (59.7+/-34.5%) in response to high-tHcy level in contrast to controls (23.4 +/- 17.7%, P = 0.02). Further, the quantitative MS-AP-PCR using this microfludic system is a useful method for determining differential genomic DNA methylation.
Grasso, Chiara; Trevisan, Morena; Fiano, Valentina; Tarallo, Valentina; De Marco, Laura; Sacerdote, Carlotta; Richiardi, Lorenzo; Merletti, Franco; Gillio-Tos, Anna
2016-01-01
Pyrosequencing has emerged as an alternative method of nucleic acid sequencing, well suited for many applications which aim to characterize single nucleotide polymorphisms, mutations, microbial types and CpG methylation in the target DNA. The commercially available pyrosequencing systems can harbor two different types of software which allow analysis in AQ or CpG mode, respectively, both widely employed for DNA methylation analysis. Aim of the study was to assess the performance for DNA methylation analysis at CpG sites of the two pyrosequencing software which allow analysis in AQ or CpG mode, respectively. Despite CpG mode having been specifically generated for CpG methylation quantification, many investigations on this topic have been carried out with AQ mode. As proof of equivalent performance of the two software for this type of analysis is not available, the focus of this paper was to evaluate if the two modes currently used for CpG methylation assessment by pyrosequencing may give overlapping results. We compared the performance of the two software in quantifying DNA methylation in the promoter of selected genes (GSTP1, MGMT, LINE-1) by testing two case series which include DNA from paraffin embedded prostate cancer tissues (PC study, N = 36) and DNA from blood fractions of healthy people (DD study, N = 28), respectively. We found discrepancy in the two pyrosequencing software-based quality assignment of DNA methylation assays. Compared to the software for analysis in the AQ mode, less permissive criteria are supported by the Pyro Q-CpG software, which enables analysis in CpG mode. CpG mode warns the operators about potential unsatisfactory performance of the assay and ensures a more accurate quantitative evaluation of DNA methylation at CpG sites. The implementation of CpG mode is strongly advisable in order to improve the reliability of the methylation analysis results achievable by pyrosequencing.
MethBank 3.0: a database of DNA methylomes across a variety of species.
Li, Rujiao; Liang, Fang; Li, Mengwei; Zou, Dong; Sun, Shixiang; Zhao, Yongbing; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Zhang, Zhang
2018-01-04
MethBank (http://bigd.big.ac.cn/methbank) is a database that integrates high-quality DNA methylomes across a variety of species and provides an interactive browser for visualization of methylation data. Here, we present an updated implementation of MethBank (version 3.0) by incorporating more DNA methylomes from multiple species and equipping with more enhanced functionalities for data annotation and more friendly web interfaces for data presentation, search and visualization. MethBank 3.0 features large-scale integration of high-quality methylomes, involving 34 consensus reference methylomes derived from a large number of human samples, 336 single-base resolution methylomes from different developmental stages and/or tissues of five plants, and 18 single-base resolution methylomes from gametes and early embryos at multiple stages of two animals. Additionally, it is enhanced by improving the functionalities for data annotation, which accordingly enables systematic identification of methylation sites closely associated with age, sites with constant methylation levels across different ages, differentially methylated promoters, age-specific differentially methylated cytosines/regions, and methylated CpG islands. Moreover, MethBank provides tools to estimate human methylation age online and to identify differentially methylated promoters, respectively. Taken together, MethBank is upgraded with significant improvements and advances over the previous version, which is of great help for deciphering DNA methylation regulatory mechanisms for epigenetic studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gim, Jeong-An; Hong, Chang Pyo; Kim, Dae-Soo; Moon, Jae-Woo; Choi, Yuri; Eo, Jungwoo; Kwon, Yun-Jeong; Lee, Ja-Rang; Jung, Yi-Deun; Bae, Jin-Han; Choi, Bong-Hwan; Ko, Junsu; Song, Sanghoon; Ahn, Kung; Ha, Hong-Seok; Yang, Young Mok; Lee, Hak-Kyo; Park, Kyung-Do; Do, Kyoung-Tag; Han, Kyudong; Yi, Joo Mi; Cha, Hee-Jae; Ayarpadikannan, Selvam; Cho, Byung-Wook; Bhak, Jong; Kim, Heui-Soo
2015-01-01
Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits. PMID:25666347
Methylation-Sensitive High Resolution Melting (MS-HRM).
Hussmann, Dianna; Hansen, Lise Lotte
2018-01-01
Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.
Wyhs, Nicolas; Walker, David; Giovinazzo, Hugh; Yegnasubramanian, Srinivasan; Nelson, William G
2014-08-01
Methylated DNA binding proteins such as Methyl-CpG Binding Domain Protein 2 (MBD2) can transduce DNA methylation alterations into a repressive signal by recruiting transcriptional co-repressor complexes. Interfering with MBD2 could lead to reactivation of tumor suppressor genes and therefore represents an attractive strategy for epigenetic therapy. We developed and compared fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET)-based high-throughput screening (HTS) assays to identify small-molecule inhibitors of the interaction between the methyl binding domain of MBD2 (MBD2-MBD) and methylated DNA. Although both assays performed well in 96-well format, the TR-FRET assay (Z' factor = 0.58) emerged as a superior screening strategy compared with FP (Z' factor = 0.08) when evaluated in an HTS 384-well plate format. Using TR-FRET, we screened the Sigma LOPAC library for MBD2-MBD inhibitors and identified four compounds that also validated in a dose-response series. This included two known DNA intercalators (mitoxantrone and idarubicin) among two other inhibitory compounds (NF449 and aurintricarboxylic acid). All four compounds also inhibited the binding of SP-1, a transcription factor with a GC-rich binding sequence, to a methylated oligonucleotide, demonstrating that the activity was nonspecific. Our results provide proof of principle for using TR-FRET-based HTS to identify small-molecule inhibitors of MBD2 and other DNA-protein interactions. © 2014 Society for Laboratory Automation and Screening.
Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes
Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu
2014-01-01
It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342
Tejaswi, Somapangu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Shivaraj
2016-11-01
Novel benzothiazole Schiff bases L 1 [1-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl) naphthalen-2-ol], L 2 [3-((4,6-difluorobenzo[d]thiazol-2-ylimino) methyl)benzene-1,2-diol], L 3 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-5-methoxyphenol], L 4 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol] and their binary Cu(II) complexes were synthesized. The structures of all the compounds have been discussed on the basis of elemental analysis, FT-IR, NMR, UV-Visible, ESI-Mass, TGA, ESR, SEM, powder XRD and magnetic moments. Based on the analytical and spectral data a square planar geometry has been assigned to all complexes in which the Schiff bases act as monobasic bidentate ligands, coordinating through the azomethine nitrogen and phenolic oxygen atom. DNA binding ability of these complexes was studied on CT-DNA by using UV-Vis absorption, fluorescence and viscometry. DNA cleavage ability of the complexes was examined on pBR322 DNA by using gel electrophoresis method. All the DNA binding studies reveal that they are good intercalators. The bioefficacy of the ligands and their complexes was examined against the growth of bacteria and fungi in vitro to evaluate their antimicrobial potential. The screening data revealed that the complexes showed more antimicrobial activity than the corresponding free ligands.
Brocato, Jason; Costa, Max
2013-07-01
DNA methylation plays an intricate role in the regulation of gene expression and events that compromise the integrity of the methylome may potentially contribute to disease development. DNA methylation is a reversible and regulatory modification that elicits a cascade of events leading to chromatin condensation and gene silencing. In general, normal cells are characterized by gene-specific hypomethylation and global hypermethylation, while cancer cells portray a reverse profile to this norm. The unique methylome displayed in cancer cells is induced after exposure to carcinogenic metals such as nickel, arsenic, cadmium, and chromium (VI). These metals alter the DNA methylation profile by provoking both hyper- and hypo-methylation events. The metal-stimulated deviations to the methylome are possible mechanisms for metal-induced carcinogenesis and may provide potential biomarkers for cancer detection. Development of therapies based on the cancer methylome requires further research including human studies that supply results with larger impact and higher human relevance.
Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma
NASA Astrophysics Data System (ADS)
Xu, Rui-Hua; Wei, Wei; Krawczyk, Michal; Wang, Wenqiu; Luo, Huiyan; Flagg, Ken; Yi, Shaohua; Shi, William; Quan, Qingli; Li, Kang; Zheng, Lianghong; Zhang, Heng; Caughey, Bennett A.; Zhao, Qi; Hou, Jiayi; Zhang, Runze; Xu, Yanxin; Cai, Huimin; Li, Gen; Hou, Rui; Zhong, Zheng; Lin, Danni; Fu, Xin; Zhu, Jie; Duan, Yaou; Yu, Meixing; Ying, Binwu; Zhang, Wengeng; Wang, Juan; Zhang, Edward; Zhang, Charlotte; Li, Oulan; Guo, Rongping; Carter, Hannah; Zhu, Jian-Kang; Hao, Xiaoke; Zhang, Kang
2017-11-01
An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive `liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.
Purification and characterization of rice DNA methyltransferase.
Teerawanichpan, Prapapan; Krittanai, Palika; Chauvatcharin, Nopmanee; Narangajavana, Jarunya
2009-08-01
Epigenetic modification is essential for normal development and plays important roles in gene regulation in higher plants. Multiple factors interact to regulate the establishment and maintenance of DNA methylation in plant genome. We had previously cloned and characterized DNA methyltransferase (DNA MTase) gene homologues (OsMET1) from rice. In this present study, determination of DNA MTase activity in different cellular compartments showed that DNA MTase was enriched in nuclei and the activity was remarkably increased during imbibing dry seeds. We had optimized the purification technique for DNA MTase enzyme from shoots of 10-day-old rice seedlings using the three successive chromatographic columns. The Econo-Pac Q, the Hitrap-Heparin and the Superdex-200 columns yielded a protein fraction of a specific activity of 29, 298 and 800 purification folds, compared to the original nuclear extract, respectively. The purified protein preferred hemi-methylated DNA substrate, suggesting the maintenance activity of methylation. The native rice DNA MTase was approximately 160-170 kDa and exhibited a broad pH optimum in the range of 7.6 and 8.0. The enzyme kinetics and inhibitory effects by methyl donor analogs, base analogs, cations, and cationic amines on rice DNA MTase were examined. Global cytosine methylation status of rice genome during development and in various tissue culture systems were monitored and the results suggested that the cytosine methylation level is not directly correlated with the DNA MTase activity. The purification and characterization of rice DNA MTase enzyme are expected to enhance our understanding of this enzyme function and their possible contributions in Gramineae plant development.
Evolution of DNA Methylation across Insects
Vogel, Kevin J.; Moore, Allen J.; Schmitz, Robert J.
2017-01-01
DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. PMID:28025279
Methylation of zebularine investigated using density functional theory calculations.
Selvam, Lalitha; Chen, Fang Fang; Wang, Feng
2011-07-30
Deoxyribonucleic acid (DNA) methylation is an epigenetic phenomenon, which adds methyl groups into DNA. This study reveals methylation of a nucleoside antibiotic drug 1-(β-D-ribofuranosyl)-2-pyrimidinone (zebularine or zeb) with respect to its methylated analog, 1-(β-D-ribofuranosyl)-5-methyl-2-pyrimidinone (d5) using density functional theory calculations in valence electronic space. Very similar infrared spectra suggest that zeb and d5 do not differ by types of the chemical bonds, but distinctly different Raman spectra of the nucleoside pair reveal that the impact caused by methylation of zeb can be significant. Further valence orbital-based information details on valence electronic structural changes caused by methylation of zebularine. Frontier orbitals in momentum space and position space of the molecules respond differently to methylation. Based on the additional methyl electron density concentration in d5, orbitals affected by the methyl moiety are classified into primary and secondary contributors. Primary methyl contributions include MO8 (57a), MO18 (47a), and MO37 (28a) of d5, which concentrates on methyl and the base moieties, suggest certain connection to their Frontier orbitals. The primary and secondary methyl affected orbitals provide useful information on chemical bonding mechanism of the methylation in zebularine. Copyright © 2011 Wiley Periodicals, Inc.
The integration of epigenetics and genetics in nutrition research for CVD risk factors.
Ma, Yiyi; Ordovas, Jose M
2017-08-01
There is increasing evidence documenting gene-by-environment (G × E) interactions for CVD related traits. However, the underlying mechanisms are still unclear. DNA methylation may represent one of such potential mechanisms. The objective of this review paper is to summarise the current evidence supporting the interplay among DNA methylation, genetic variants, and environmental factors, specifically (1) the association between SNP and DNA methylation; (2) the role that DNA methylation plays in G × E interactions. The current evidence supports the notion that genotype-dependent methylation may account, in part, for the mechanisms underlying observed G × E interactions in loci such as APOE, IL6 and ATP-binding cassette A1. However, these findings should be validated using intervention studies with high level of scientific evidence. The ultimate goal is to apply the knowledge and the technology generated by this research towards genetically based strategies for the development of personalised nutrition and medicine.
A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis
Huang, Chao-Feng; Miki, Daisuke; Tang, Kai; Zhou, Hao-Ran; Zheng, Zhimin; Chen, Wei; Ma, Ze-Yang; Yang, Lan; Zhang, Heng; Liu, Renyi; He, Xin-Jian; Zhu, Jian-Kang
2013-01-01
Cytosine DNA methylation is a stable epigenetic mark that is frequently associated with the silencing of genes and transposable elements (TEs). In Arabidopsis, the establishment of DNA methylation is through the RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification and characterization of RDM16, a new factor in the RdDM pathway. Mutation of RDM16 reduced the DNA methylation levels and partially released the silencing of a reporter gene as well as some endogenous genomic loci in the DNA demethylase ros1-1 mutant background. The rdm16 mutant had morphological defects and was hypersensitive to salt stress and abscisic acid (ABA). Map-based cloning and complementation test led to the identification of RDM16, which encodes a pre-mRNA-splicing factor 3, a component of the U4/U6 snRNP. RNA-seq analysis showed that 308 intron retention events occurred in rdm16, confirming that RDM16 is involved in pre-mRNA splicing in planta. RNA-seq and mRNA expression analysis also revealed that the RDM16 mutation did not affect the pre-mRNA splicing of known RdDM genes, suggesting that RDM16 might be directly involved in RdDM. Small RNA expression analysis on loci showing RDM16-dependent DNA methylation suggested that unlike the previously reported putative splicing factor mutants, rdm16 did not affect small RNA levels; instead, the rdm16 mutation caused a decrease in the levels of Pol V transcripts. ChIP assays revealed that RDM16 was enriched at some Pol V target loci. Our results suggest that RDM16 regulates DNA methylation through influencing Pol V transcript levels. Finally, our genome-wide DNA methylation analysis indicated that RDM16 regulates the overall methylation of TEs and gene-surrounding regions, and preferentially targets Pol IV-dependent DNA methylation loci and the ROS1 target loci. Our work thus contributes to the understanding of RdDM and its interactions with active DNA demethylation. PMID:24068953
DNA motifs associated with aberrant CpG island methylation.
Feltus, F Alex; Lee, Eva K; Costello, Joseph F; Plass, Christoph; Vertino, Paula M
2006-05-01
Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.
Pangeson, Tanapat; Sanguansermsri, Phanchana; Sanguansermsri, Torpong; Seeratanachot, Teerapat; Suwanakhon, Narutchala; Srikummool, Metawee; Kaewkong, Worasak; Mahingsa, Khwanruedee
2017-01-01
In the wild-type allele, DNA methylation levels of 10 consecutive CpG sites adjacent to the upstream 5′-breakpoint of α-thalassemia Southeast Asian (SEA) deletion are not different between placenta and leukocytes. However, no previous study has reported the map of DNA methylation in the SEA allele. This report aims to show that the SEA mutation is associated with DNA methylation changes, resulting in differential methylation between placenta and leukocytes. Methylation-sensitive high-resolution analysis was used to compare DNA methylation among placenta, leukocytes, and unmethylated control DNA. The result indicates that the DNA methylation between placenta and leukocyte DNA is different and shows that the CpG status of both is not fully unmethylated. Mapping of individual CpG sites was performed by targeted bisulfite sequencing. The DNA methylation level of the 10 consecutive CpG sites was different between placenta and leukocyte DNA. When the 10th CpG of the mutation allele was considered as a hallmark for comparing DNA methylation level, it was totally different from the unmethylated 10th CpG of the wild-type allele. Finally, the distinct DNA methylation patterns between both DNA were extracted. In total, 24 patterns were found in leukocyte samples and 9 patterns were found in placenta samples. This report shows that the large deletion is associated with DNA methylation change. In further studies for clinical application, the distinct DNA methylation pattern might be a potential marker for detecting cell-free fetal DNA. PMID:29162979
Mastan, Shaik G; Rathore, Mangal S; Bhatt, Vacha D; Chikara, J; Ghosh, A
2014-12-01
We investigated DNA methylation and polymorphism in the methylated DNA using AFLP based methylation-sensitive amplification polymorphism (MS-AFLP) markers in ecotypes of Jatropha curcas L. growing in similar and different geo-ecological conditions. Three ecotypes growing in different geo-ecological conditions with environmental heterogeneity (Group-1) and five ecotypes growing in similar environmental conditions (Group-2) were assessed. In ecotypes growing in group-1, 44.32 % DNA was methylated and of which 93.59 % DNA was polymorphic. While in group-2, 32.27 % DNA was methylated, of which 51.64 % DNA was polymorphic. In site 1 and site 2 of group-1, overall methylation was 18.94 and 22.44 % respectively with difference of 3.5 %, while overall polymorphism was 41.14 and 39.23 % with a difference of 1.91 %. In site 1 and site 2 of group-2, overall methylation was 24.68 and 24.18 % respectively with difference of 0.5 %, while overall polymorphism was 12.19 and 12.65 % with a difference of 0.46 %. The difference of methylation percentage and percentage of methylation polymorphism throughout the genome of J. curcas at site 1 and 2 of group-1 is higher than that of J. curcas at site 1 and 2 of group-2. These results correlated the physico-chemical properties of soil at these sites. The variations of physico-chemical properties of soil at Chorwadla (site 1 in group-1 and site 2 in group-2) compared to the soil at Brahmapur (site 2 in group-1) is higher than that of soil at Neswad (site 1 in group-2). The study suggests that these homologous nucleotide sequences probably play important role in ecotype adaptation to environmental heterogeneity by creating epiallelic variations hence in evolution of ecotypes/clines or forms of species showing phenotypic/genotypic differences in different geographical areas.
ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage
McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg
2005-01-01
Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions. PMID:15933716
ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage.
McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg
2005-07-06
Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions.
Wang, Yao; Jadhav, Rohit Ramakant; Liu, Joseph; Wilson, Desiree; Chen, Yidong; Thompson, Ian M; Troyer, Dean A; Hernandez, Javier; Shi, Huidong; Leach, Robin J; Huang, Tim H-M; Jin, Victor X
2016-02-29
Aberrant DNA methylation at promoters is often linked to tumorigenesis. But many aspects of DNA methylation remain unexplored, including the individual roles of distal and gene body methylation, as well as their collaborative roles with promoter methylation. Here we performed a MBD-seq analysis on prostate specimens classified into low, high, and very high risk group based on Gleason score and TNM stages. We identified gene sets with differential methylation regions (DMRs) in Distal, TSS, gene body and TES. To understand the collaborative roles, TSS was compared with the other three DMRs, resulted in 12 groups of genes with collaborative differential methylation patterns (CDMPs). We found several groups of genes that show opposite methylation patterns in Distal and Genic regions compared to TSS region, and in general they are differentially expressed genes (DEGs) in tumors in TCGA RNA-seq data. IPA (Ingenuity Pathway Analysis) reveals AR/TP53 signaling network to be a major signaling pathway, and survival analysis indicates genes subsets significantly associated with prostate cancer recurrence. Our results suggest that DNA methylation in Distal and Genic regions also plays critical roles in contributing to prostate tumorigenesis, and may act either positively or negatively with TSSs to alter gene regulation in tumors.
Eichten, Steven R; Springer, Nathan M
2015-01-01
DNA methylation is a chromatin modification that is sometimes associated with epigenetic regulation of gene expression. As DNA methylation can be reversible at some loci, it is possible that methylation patterns may change within an organism that is subjected to environmental stress. In order to assess the effects of abiotic stress on DNA methylation patterns in maize (Zea mays), seeding plants were subjected to heat, cold, and UV stress treatments. Tissue was later collected from individual adult plants that had been subjected to stress or control treatments and used to perform DNA methylation profiling to determine whether there were consistent changes in DNA methylation triggered by specific stress treatments. DNA methylation profiling was performed by immunoprecipitation of methylated DNA followed by microarray hybridization to allow for quantitative estimates of DNA methylation abundance throughout the low-copy portion of the maize genome. By comparing the DNA methylation profiles of each individual plant to the average of the control plants it was possible to identify regions of the genome with variable DNA methylation. However, we did not find evidence of consistent DNA methylation changes resulting from the stress treatments used in this study. Instead, the data suggest that there is a low-rate of stochastic variation that is present in both control and stressed plants.
Aberrantly methylated DNA as a biomarker in breast cancer.
Kristiansen, Søren; Jørgensen, Lars M; Guldberg, Per; Sölétormos, György
2013-01-01
Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.
DNA methylation in insects: on the brink of the epigenomic era.
Glastad, K M; Hunt, Brendan G; Yi, S V; Goodisman, M A D
2011-10-01
DNA methylation plays an important role in gene regulation in animals. However, the evolution and function of DNA methylation has only recently emerged as the subject of widespread study in insects. In this review we profile the known distribution of DNA methylation systems across insect taxa and synthesize functional inferences from studies of DNA methylation in insects and vertebrates. Unlike vertebrate genomes, which tend to be globally methylated, DNA methylation is primarily targeted to genes in insects. Nevertheless, mounting evidence suggests that a specialized role exists for genic methylation in the regulation of transcription, and possibly mRNA splicing, in both insects and mammals. Investigations in several insect taxa further reveal that DNA methylation is preferentially targeted to ubiquitously expressed genes and may play a key role in the regulation of phenotypic plasticity. We suggest that insects are particularly amenable to advancing our understanding of the biological functions of DNA methylation, because insects are evolutionarily diverse, display several lineage-specific losses of DNA methylation and possess tractable patterns of DNA methylation in moderately sized genomes. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
Evolution of DNA Methylation across Insects.
Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J
2017-03-01
DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Controlling DNA methylation: many roads to one modification.
Freitag, Michael; Selker, Eric U
2005-04-01
Genetic, biochemical and cytological studies on DNA methylation in several eukaryotic organisms have resulted in leaps of understanding in the past three years. Discoveries of mechanistic links between DNA methylation and histone methylation, and between these processes and RNA interference (RNAi) machineries have reinvigorated the field. The details of the connections between DNA methylation, histone modifications and RNA silencing remain to be elucidated, but it is already clear that no single pathway accounts for all DNA methylation found in eukaryotes. Rather, different taxa use one or more of several general mechanisms to control methylation. Despite recent progress, classic questions remain, including: What are the signals for DNA methylation? Are "de novo" and "maintenance" methylation truly separate processes? How is DNA methylation regulated?
Marsh, Adam G.; Cottrell, Matthew T.; Goldman, Morton F.
2016-01-01
Epigenetics is a rapidly developing field focused on deciphering chemical fingerprints that accumulate on human genomes over time. As the nascent idea of precision medicine expands to encompass epigenetic signatures of diagnostic and prognostic relevance, there is a need for methodologies that provide high-throughput DNA methylation profiling measurements. Here we report a novel quantification methodology for computationally reconstructing site-specific CpG methylation status from next generation sequencing (NGS) data using methyl-sensitive restriction endonucleases (MSRE). An integrated pipeline efficiently incorporates raw NGS metrics into a statistical discrimination platform to identify functional linkages between shifts in epigenetic DNA methylation and disease phenotypes in samples being analyzed. In this pilot proof-of-concept study we quantify and compare DNA methylation in blood serum of individuals with Parkinson's Disease relative to matched healthy blood profiles. Even with a small study of only six samples, a high degree of statistical discrimination was achieved based on CpG methylation profiles between groups, with 1008 statistically different CpG sites (p < 0.0025, after false discovery rate correction). A methylation load calculation was used to assess higher order impacts of methylation shifts on genes and pathways and most notably identified FGF3, FGF8, HTT, KMTA5, MIR8073, and YWHAG as differentially methylated genes with high relevance to Parkinson's Disease and neurodegeneration (based on PubMed literature citations). Of these, KMTA5 is a histone methyl-transferase gene and HTT is Huntington Disease Protein or Huntingtin, for which there are well established neurodegenerative impacts. The future need for precision diagnostics now requires more tools for exploring epigenetic processes that may be linked to cellular dysfunction and subsequent disease progression. PMID:27853465
Pardo, Carolina E; Carr, Ian M; Hoffman, Christopher J; Darst, Russell P; Markham, Alexander F; Bonthron, David T; Kladde, Michael P
2011-01-01
Bisulfite sequencing is a widely-used technique for examining cytosine DNA methylation at nucleotide resolution along single DNA strands. Probing with cytosine DNA methyltransferases followed by bisulfite sequencing (MAPit) is an effective technique for mapping protein-DNA interactions. Here, MAPit methylation footprinting with M.CviPI, a GC methyltransferase we previously cloned and characterized, was used to probe hMLH1 chromatin in HCT116 and RKO colorectal cancer cells. Because M.CviPI-probed samples contain both CG and GC methylation, we developed a versatile, visually-intuitive program, called MethylViewer, for evaluating the bisulfite sequencing results. Uniquely, MethylViewer can simultaneously query cytosine methylation status in bisulfite-converted sequences at as many as four different user-defined motifs, e.g. CG, GC, etc., including motifs with degenerate bases. Data can also be exported for statistical analysis and as publication-quality images. Analysis of hMLH1 MAPit data with MethylViewer showed that endogenous CG methylation and accessible GC sites were both mapped on single molecules at high resolution. Disruption of positioned nucleosomes on single molecules of the PHO5 promoter was detected in budding yeast using M.CviPII, increasing the number of enzymes available for probing protein-DNA interactions. MethylViewer provides an integrated solution for primer design and rapid, accurate and detailed analysis of bisulfite sequencing or MAPit datasets from virtually any biological or biochemical system.
A tag-based approach for high-throughput analysis of CCWGG methylation.
Denisova, Oksana V; Chernov, Andrei V; Koledachkina, Tatyana Y; Matvienko, Nicholas I
2007-10-15
Non-CpG methylation occurring in the context of CNG sequences is found in plants at a large number of genomic loci. However, there is still little information available about non-CpG methylation in mammals. Efficient methods that would allow detection of scarcely localized methylated sites in small quantities of DNA are required to elucidate the biological role of non-CpG methylation in both plants and animals. In this study, we tested a new whole genome approach to identify sites of CCWGG methylation (W is A or T), a particular case of CNG methylation, in genomic DNA. This technique is based on digestion of DNAs with methylation-sensitive restriction endonucleases EcoRII-C and AjnI. Short DNAs flanking methylated CCWGG sites (tags) are selectively purified and assembled in tandem arrays of up to nine tags. This allows high-throughput sequencing of tags, identification of flanking regions, and their exact positions in the genome. In this study, we tested specificity and efficiency of the approach.
Daneshpour, Maryam; Moradi, Leila Syed; Izadi, Pantea; Omidfar, Kobra
2016-03-15
The alterations in DNA methylation pattern have been identified as one of the most frequent molecular phenomenon in human cancers. The RASSF1A tumor suppressor gene was shown to be often inactivated by hypermethylation of its promoter region. In the present study, a novel chip format sandwich electrochemical genosensor has been developed for the analysis of gene-specific methylation using Fe3O4/N-trimethyl chitosan/gold (Fe3O4/TMC/Au) nanocomposite as tracing tag to label DNA probe and polythiophene (PT) as immobilization platform of sensing element. However, no attempt has yet been made to conjugate DNA probe to Fe3O4/TMC/Au nanocomposite as electrochemical label for strip-based genosensing. Cyclic voltammetric (CV) analysis indicated that modification procedure was well performed. Differential pulse voltammetry (DPV) was employed for quantitative assessment of RASSF1A DNA promoter methylation. The electrochemical measurements accomplished using non-specific DNA fragments mixed with samples, revealed the high specificity and selectivity in methylation analysis by means of this DNA nanobiosensor. With the linear range of concentration from 1 × 10(-14)M to 5 × 10(-9)M and the detection limit of 2 × 10(-15)M, this new strategy has shown such a promising application to be used for universal analysis of any DNA sequence. Copyright © 2015 Elsevier B.V. All rights reserved.
Guillemin, Claire; Vitaro, Frank; Côté, Sylvana M.; Hallett, Michael; Tremblay, Richard E.; Szyf, Moshe
2014-01-01
Background Chronic physical aggression (CPA) is characterized by frequent use of physical aggression from early childhood to adolescence. Observed in approximately 5% of males, CPA is associated with early childhood adverse environments and long-term negative consequences. Alterations in DNA methylation, a covalent modification of DNA that regulates genome function, have been associated with early childhood adversity. Aims To test the hypothesis that a trajectory of chronic physical aggression during childhood is associated with a distinct DNA methylation profile during adulthood. Methods We analyzed genome-wide promoter DNA methylation profiles of T cells from two groups of adult males assessed annually for frequency of physical aggression between 6 and 15 years of age: a group with CPA and a control group. Methylation profiles covering the promoter regions of 20 000 genes and 400 microRNAs were generated using MeDIP followed by hybridization to microarrays. Results In total, 448 distinct gene promoters were differentially methylated in CPA. Functionally, many of these genes have previously been shown to play a role in aggression and were enriched in biological pathways affected by behavior. Their locations in the genome tended to form clusters spanning millions of bases in the genome. Conclusions This study provides evidence of clustered and genome-wide variation in promoter DNA methylation in young adults that associates with a history of chronic physical aggression from 6 to 15 years of age. However, longitudinal studies of methylation during early childhood will be necessary to determine if and how this methylation variation in T cells DNA plays a role in early development of chronic physical aggression. PMID:24691403
Kolarova, Julia; Tangen, Imke; Bens, Susanne; Gillessen-Kaesbach, Gabriele; Gutwein, Jana; Kautza, Monika; Rydzanicz, Malgorzata; Stephani, Ulrich; Siebert, Reiner; Ammerpohl, Ole; Caliebe, Almuth
2015-08-01
Despite recent progress in molecular karyotyping and clinical sequencing the cause of intellectual disability in a considerable subset of individuals affected by this phenotype remains elusive. As intellectual disability is also a feature of various imprinting disorders and some monogenic forms of intellectual disability are caused by epigenetic modifiers we hypothesized that changes in DNA methylation might be associated with or even causative in some cases of intellectual disability. Therefore, we performed a DNA methylation analysis of peripheral blood samples from 82 patients with intellectual disability and additional features using the HumanMethylation450 BeadChip. The findings were compared to that of 19 normal controls. Differentially methylated loci were validated by bisulfite pyrosequencing. On a global level, we failed to detect a robust DNA methylation signature segregating individuals with intellectual disability from controls. Using an individual approach, we identified 157 regions showing individual DNA methylation changes in at least one patient. These correlated to 107 genes including genes linked to conditions associated with intellectual disability, namely COLEC11, SHANK2, GLI2 and KCNQ2, as well as imprinted genes like FAM50B and MEG3. The latter was suggestive of an undiagnosed Temple syndrome which could be confirmed by diagnostic tests. Subsequent in-depth analysis of imprinted loci revealed DNA methylation changes at additional imprinted loci, i.e. PPIEL, IGF2R, MEG8 and MCTS2/HM13, in up to five patients. Our findings indicate that imprinting disorders are rare but probably under-diagnosed in patients with intellectual disability and moreover point to DNA methylation changes as potential alternative means to identify deregulated genes involved in the pathogenesis of intellectual disability. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng
2016-01-01
The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.
DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation.
Elhamamsy, Amr Rafat
2016-07-01
DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X-chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Souren, Nicole Y P; Lutsik, Pavlo; Gasparoni, Gilles; Tierling, Sascha; Gries, Jasmin; Riemenschneider, Matthias; Fryns, Jean-Pierre; Derom, Catherine; Zeegers, Maurice P; Walter, Jörn
2013-05-26
Low birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intra-uterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. To address this, we acquire genome-wide DNA methylation profiles from saliva DNA in a unique cohort of 17 monozygotic monochorionic female twins very discordant for birth weight. We examine if adverse prenatal growth conditions experienced by the smaller co-twins lead to long-lasting DNA methylation changes. Overall, co-twins show very similar genome-wide DNA methylation profiles. Since observed differences are almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3,153 are differentially methylated between the heavy and light co-twins at nominal significance, of which 45 show sensible absolute mean β-value differences. Deep bisulfite sequencing of eight such loci reveals that differences remain in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicates no significant intra-pair differences. Severe intra-uterine growth differences observed within these monozygotic twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies.
Genetic and DNA Methylation Changes in Cotton (Gossypium) Genotypes and Tissues
Osabe, Kenji; Clement, Jenny D.; Bedon, Frank; Pettolino, Filomena A.; Ziolkowski, Lisa; Llewellyn, Danny J.; Finnegan, E. Jean; Wilson, Iain W.
2014-01-01
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP. PMID:24465864
Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues.
Osabe, Kenji; Clement, Jenny D; Bedon, Frank; Pettolino, Filomena A; Ziolkowski, Lisa; Llewellyn, Danny J; Finnegan, E Jean; Wilson, Iain W
2014-01-01
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.
Duman, Elif Aysimi; Kriaucionis, Skirmantas; Dunn, John J; Hatchwell, Eli
2015-05-01
Variations in DNA methylation have been implicated in a number of disorders. Changes in global DNA methylation levels have long been associated with various types of cancer. One of the recently described methods for determining global DNA methylation levels is the LUminometric Methylation Assay (LUMA), which utilizes methylation sensitive and insensitive restriction endonucleases and pyrosequencing technology for quantification. Here we provide evidence suggesting that the global methylation level reported by LUMA is affected by the integrity of the DNA being analyzed. The less intact the DNA, the lower the global methylation levels reported by LUMA. In order to overcome this problem, we propose the use of undigested DNA alongside digested samples. Finally, we demonstrate that this results in a more accurate assessment of global DNA methylation levels.
Gomes, Marcus Vinícius de Matos; Manfredo, Marcelo Henrique; Toffoli, Leandro Vaz; Castro-Alves, Daniellen Christine; do Nascimento, Lucas Magnoni; da Silva, Wyllian Rafael; Kashimoto, Roberto Kiyoshi; Rodrigues, Gelson Marcos; Estrada, Viviane Batista; Andraus, Rodrigo Antonio; Pelosi, Gislaine Garcia
2016-09-01
The use of light emitting diodes (LED) as a therapeutic resource for wound healing has increased over the last years; however, little is still known about the molecular pathways associated to LED exposure. In the present study, we verified the effects of LED therapy on DNA methylation and expression of the DNA methyltransferase (Dnmt) genes, Dnmt1 and Dnmt3a, in an in vivo model of epithelial wound healing. Male Wistar rats were submitted to epithelial excision in the dorsal region and subsequently distributed within the experimental groups: group 1, animals that received irradiation of 0.8 J/cm(2) of LED (604 nm); group 2, animals that received 1.6 J/cm(2) of LED (604 nm); control (CTL), animals not submitted to therapeutic intervention. LED applications were performed during 7 days, and tissues from the periphery of the wound area were obtained for molecular analysis. The Image-J software was used for analysis of the wound area. DNA methylation was evaluated by ELISA-based method and gene expressions were quantified by real-time PCR. Decrease on global DNA methylation profile was observed in all experimental groups (CTL, 1, and 2) revealing the participation of DNA methylation in the healing process. Significant decrease in the wound area accompanied by increase in the Dnmt3a expression was associated to group 2. Based on our findings, we propose that DNA methylation is an important molecular mechanism associated to wound healing and that irradiation with 1.6 J/cm(2) of LED evokes an increase in the expression of the Dnmt3a that might associates to the efficiency of the epithelial wound healing.
DNA methylation alterations in response to pesticide exposure in vitro
Zhang, Xiao; Wallace, Andrew D.; Du, Pan; Kibbe, Warren A.; Jafari, Nadereh; Xie, Hehuang; Lin, Simon; Baccarelli, Andrea; Soares, Marcelo Bento; Hou, Lifang
2013-01-01
Although pesticides are subject to extensive carcinogenicity testing before regulatory approval, pesticide exposure has repeatedly been associated with various cancers. This suggests that pesticides may cause cancer via non-mutagenicity mechanisms. The present study provides evidence to support the hypothesis that pesticide-induced cancer may be mediated in part by epigenetic mechanisms. We examined whether exposure to 7 commonly used pesticides (i.e., fonofos, parathion, terbufos, chlorpyrifos, diazinon, malathion, and phorate) induces DNA methylation alterations in vitro. We conducted genome-wide DNA methylation analyses on DNA samples obtained from the human hematopoietic K562 cell line exposed to ethanol (control) and several OPs using the Illumina Infinium HumanMethylation27 BeadChip. Bayesian-adjusted t-tests were used to identify differentially methylated gene promoter CpG sites. In this report, we present our results on three pesticides (fonofos, parathion, and terbufos) that clustered together based on principle component analysis and hierarchical clustering. These three pesticides induced similar methylation changes in the promoter regions of 712 genes, while also exhibiting their own OP-specific methylation alterations. Functional analysis of methylation changes specific to each OP, or common to all three OPs, revealed that differential methylation was associated with numerous genes that are involved in carcinogenesis-related processes. Our results provide experimental evidence that pesticides may modify gene promoter DNA methylation levels, suggesting that epigenetic mechanisms may contribute to pesticide-induced carcinogenesis. Further studies in other cell types and human samples are required, as well as determining the impact of these methylation changes on gene expression. PMID:22847954
Ponomaryova, Anastasia A; Rykova, Elena Yu; Cherdyntseva, Nadezda V; Skvortsova, Tatiana E; Dobrodeev, Alexey Yu; Zav'yalov, Alexander A; Bryzgalov, Leonid O; Tuzikov, Sergey A; Vlassov, Valentin V; Laktionov, Pavel P
2013-09-01
To date, aberrant DNA methylation has been shown to be one of the most common and early causes of malignant cell transformation and tumors of different localizations, including lung cancer. Cancer cell-specific methylated DNA has been found in the blood of cancer patients, indicating that cell-free DNA circulating in the blood (cirDNA) is a convenient tumor-associated DNA marker that can be used as a minimally invasive diagnostic test. In the current study, we investigated the methylation status in blood samples of 32 healthy donors and 60 lung cancer patients before and after treatment with neoadjuvant chemotherapy followed by total tumor resection. Using quantitative methylation-specific PCR, we found that the index of methylation (IM), calculated as IM = 100 × [copy number of methylated/(copy number of methylated + unmethylated gene)], for the RASSF1A and RARB2 genes in the cirDNA isolated from blood plasma and cell-surface-bound cirDNA was elevated 2- to 3-fold in lung cancer patients compared with healthy donors. Random forest classification tree model based on these variables combined (RARB2 and RASSF1A IM in both plasma and cell-surface-bound cirDNA) lead to NSCLC patients' and healthy subjects' differentiation with 87% sensitivity and 75% specificity. An association of increased IM values with an advanced stage of non-small-cell lung cancer was found for RARB2 but not for RASSF1A. Chemotherapy and total tumor resection resulted in a significant decrease in the IM for RARB2 and RASSF1A, in both cirDNA fractions, comparable to the IM level of healthy subjects. Importantly, a rise in the IM for RARB2 was detected in patients within the follow-up period, which manifested in disease relapse at 9 months, confirmed with instrumental and pathologic methods. Our data indicate that quantitative analysis of the methylation status of the RARB2 and RASSF1A tumor suppressor genes in both cirDNA fractions is a useful tool for lung cancer diagnostics, evaluation of cancer treatment efficiency and post-treatment monitoring. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue.
Devall, Matthew; Smith, Rebecca G; Jeffries, Aaron; Hannon, Eilis; Davies, Matthew N; Schalkwyk, Leonard; Mill, Jonathan; Weedon, Michael; Lunnon, Katie
2017-01-01
DNA methylation is an important epigenetic mechanism involved in gene regulation, with alterations in DNA methylation in the nuclear genome being linked to numerous complex diseases. Mitochondrial DNA methylation is a phenomenon that is receiving ever-increasing interest, particularly in diseases characterized by mitochondrial dysfunction; however, most studies have been limited to the investigation of specific target regions. Analyses spanning the entire mitochondrial genome have been limited, potentially due to the amount of input DNA required. Further, mitochondrial genetic studies have been previously confounded by nuclear-mitochondrial pseudogenes. Methylated DNA Immunoprecipitation Sequencing is a technique widely used to profile DNA methylation across the nuclear genome; however, reads mapped to mitochondrial DNA are often discarded. Here, we have developed an approach to control for nuclear-mitochondrial pseudogenes within Methylated DNA Immunoprecipitation Sequencing data. We highlight the utility of this approach in identifying differences in mitochondrial DNA methylation across regions of the human brain and pre-mortem blood. We were able to correlate mitochondrial DNA methylation patterns between the cortex, cerebellum and blood. We identified 74 nominally significant differentially methylated regions ( p < 0.05) in the mitochondrial genome, between anatomically separate cortical regions and the cerebellum in matched samples ( N = 3 matched donors). Further analysis identified eight significant differentially methylated regions between the total cortex and cerebellum after correcting for multiple testing. Using unsupervised hierarchical clustering analysis of the mitochondrial DNA methylome, we were able to identify tissue-specific patterns of mitochondrial DNA methylation between blood, cerebellum and cortex. Our study represents a comprehensive analysis of the mitochondrial methylome using pre-existing Methylated DNA Immunoprecipitation Sequencing data to identify brain region-specific patterns of mitochondrial DNA methylation.
A DNA 3′-phosphatase functions in active DNA demethylation in Arabidopsis
Martínez-Macías, María Isabel; Qian, Weiqiang; Miki, Daisuke; Pontes, Olga; Liu, Yunhua; Tang, Kai; Liu, Renyi; Morales-Ruiz, Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa; Zhu, Jian-Kang
2012-01-01
SUMMARY DNA methylation is an important epigenetic mark established by the combined actions of methylation and demethylation reactions. Plants use a base excision repair pathway for active DNA demethylation. After 5-methylcytosine removal, the Arabidopsis DNA glycosylase/lyase ROS1 incises the DNA backbone and part of the product has a single-nucleotide gap flanked by 3′- and 5′-phosphate termini. Here we show that the DNA phosphatase ZDP removes the blocking 3′-phosphate, allowing subsequent DNA polymerization and ligation steps needed to complete the repair reactions. ZDP and ROS1 interact in vitro and co-localize in vivo in nucleoplasmic foci. Extracts from zdp mutant plants are unable to complete DNA demethylation in vitro, and the mutations cause DNA hypermethylation and transcriptional silencing of a reporter gene. Genome-wide methylation analysis in zdp mutant plants identified hundreds of hypermethylated endogenous loci. Our results show that ZDP functions downstream of ROS1 in one branch of the active DNA demethylation pathway. PMID:22325353
McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C
2011-07-01
DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (p<0.05). Blood-derived DNA methylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates.
Albalat, Ricard; Martí-Solans, Josep; Cañestro, Cristian
2012-03-01
In vertebrates, DNA methylation is an epigenetic mechanism that modulates gene transcription, and plays crucial roles during development, cell fate maintenance, germ cell pluripotency and inheritable genome imprinting. DNA methylation might also play a role as a genome defense mechanism against the mutational activity derived from transposon mobility. In contrast to the heavily methylated genomes in vertebrates, most genomes in invertebrates are poorly or just moderately methylated, and the function of DNA methylation remains unclear. Here, we review the DNA methylation system in the cephalochordate amphioxus, which belongs to the most basally divergent group of our own phylum, the chordates. First, surveys of the amphioxus genome database reveal the presence of the DNA methylation machinery, DNA methyltransferases and methyl-CpG-binding domain proteins. Second, comparative genomics and analyses of conserved synteny between amphioxus and vertebrates provide robust evidence that the DNA methylation machinery of amphioxus represents the ancestral toolkit of chordates, and that its expansion in vertebrates was originated by the two rounds of whole-genome duplication that occurred in stem vertebrates. Third, in silico analysis of CpGo/e ratios throughout the amphioxus genome suggests a bimodal distribution of DNA methylation, consistent with a mosaic pattern comprising domains of methylated DNA interspersed with domains of unmethylated DNA, similar to the situation described in ascidians, but radically different to the globally methylated vertebrate genomes. Finally, we discuss potential roles of the DNA methylation system in amphioxus in the context of chordate genome evolution and the origin of vertebrates.
Fonteneau, M; Filliol, D; Anglard, P; Befort, K; Romieu, P; Zwiller, J
2017-03-01
DNA methylation is a major epigenetic process which regulates the accessibility of genes to the transcriptional machinery. In the present study, we investigated whether modifying the global DNA methylation pattern in the brain would alter cocaine intake by rats, using the cocaine self-administration test. The data indicate that treatment of rats with the DNA methyltransferase inhibitors 5-aza-2'-deoxycytidine (dAZA) and zebularine enhanced the reinforcing properties of cocaine. To obtain some insights about the underlying neurobiological mechanisms, a genome-wide methylation analysis was undertaken in the prefrontal cortex of rats self-administering cocaine and treated with or without dAZA. The study identified nearly 189 000 differentially methylated regions (DMRs), about half of them were located inside gene bodies, while only 9% of DMRs were found in the promoter regions of genes. About 99% of methylation changes occurred outside CpG islands. Gene expression studies confirmed the inverse correlation usually observed between increased methylation and transcriptional activation when methylation occurs in the gene promoter. This inverse correlation was not observed when methylation took place inside gene bodies. Using the literature-based Ingenuity Pathway Analysis, we explored how the differentially methylated genes were related. The analysis showed that increase in cocaine intake by rats in response to DNA methyltransferase inhibitors underlies plasticity mechanisms which mainly concern axonal growth and synaptogenesis as well as spine remodeling. Together with the Akt/PI3K pathway, the Rho-GTPase family was found to be involved in the plasticity underlying the effect of dAZA on the observed behavioral changes. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Zackay, Arie; Steinhoff, Christine
2010-12-15
Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org.
2010-01-01
Background Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. Findings MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. Conclusions The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org. PMID:21159174
Lu, Yi Chen; Feng, Sheng Jun; Zhang, Jing Jing; Luo, Fang; Zhang, Shuang; Yang, Hong
2016-01-01
Atrazine (ATR) is a pesticide widely used for controlling weeds for crop production. Crop contamination with ATR negatively affects crop growth and development. This study presents the first genome-wide single-base-resolution maps of DNA methylation in ATR-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between the ATR-exposed and ATR-free (control) rice. Most of DNA methyltransferases, histone methyltransferases and DNA demethylase were differentially regulated by ATR. We found more genes hypermethylated than those hypomethylated in the regions of upstream, genebody and downstream under ATR exposure. A stringent group of 674 genes (p < 0.05, two-fold change) with a strong preference of differential expression in ATR-exposed rice was identified. Some of the genes were identified in a subset of loss of function mutants defective in DNA methylation/demethylation. Provision of 5-azacytidine (AZA, inhibitor of DNA methylation) promoted the rice growth and reduced ATR content. By UPLC/Q-TOF-MS/MS, 8 degraded products and 9 conjugates of ATR in AZA-treated rice were characterized. Two of them has been newly identified in this study. Our data show that ATR-induced changes in DNA methylation marks are possibly involved in an epigenetic mechanism associated with activation of specific genes responsible for ATR degradation and detoxification. PMID:26739616
Rijlaarsdam, Jolien; Pappa, Irene; Walton, Esther; Bakermans-Kranenburg, Marian J.; Mileva-Seitz, Viara R.; Rippe, Ralph C.A.; Roza, Sabine J.; Jaddoe, Vincent W.V.; Verhulst, Frank C.; Felix, Janine F.; Cecil, Charlotte A.M.; Relton, Caroline L.; Gaunt, Tom R.; McArdle, Wendy; Mill, Jonathan; Barker, Edward D.; Tiemeier, Henning; van IJzendoorn, Marinus H.
2016-01-01
ABSTRACT Prenatal maternal stress exposure has been associated with neonatal differential DNA methylation. However, the available evidence in humans is largely based on candidate gene methylation studies, where only a few CpG sites were evaluated. The aim of this study was to examine the association between prenatal exposure to maternal stress and offspring genome-wide cord blood methylation using different methods. First, we conducted a meta-analysis and follow-up pathway analyses. Second, we used novel region discovery methods [i.e., differentially methylated regions (DMRs) analyses]. To this end, we used data from two independent population-based studies, the Generation R Study (n = 912) and the Avon Longitudinal Study of Parents and Children (ALSPAC, n = 828), to (i) measure genome-wide DNA methylation in cord blood and (ii) extract a prenatal maternal stress composite. The meta-analysis (ntotal = 1,740) revealed no epigenome-wide (meta P <1.00e-07) associations of prenatal maternal stress exposure with neonatal differential DNA methylation. Follow-up analyses of the top hits derived from our epigenome-wide meta-analysis (meta P <1.00e-04) indicated an over-representation of the methyltransferase activity pathway. We identified no Bonferroni-corrected (P <1.00e-06) DMRs associated with prenatal maternal stress exposure. Combining data from two independent population-based samples in an epigenome-wide meta-analysis, the current study indicates that there are no large effects of prenatal maternal stress exposure on neonatal DNA methylation. Such replication efforts are essential in the search for robust associations, whether derived from candidate gene methylation or epigenome-wide studies. PMID:26889969
Taylor, C; Ford, K; Connolly, B A; Hornby, D P
1993-01-01
The cloning and overexpression of the MspI DNA methyltransferase as a functional fusion with glutathione S-transferase is described. The fusion enzyme retains full biological activity and has been used to investigate the interaction of substrates and inhibitors with MspI DNA methyltransferase. The fusion enzyme has been purified to homogeneity in a single step on GSH-agarose and is free from contaminating exonuclease activity. The enzyme can be photolabelled with S-adenosyl-L-methionine and the level of incorporation of label is enhanced by the presence of a nonspecific DNA duplex. In the presence of a cognate oligodeoxynucleotide, no photolabelling was observed since methyl transfer occurs instead. The inclusion of a mechanism-based inhibitor of C-5 deoxycytidine DNA methylation (an oligodeoxynucleotide containing the base 2-pyrimidinone-1-beta-D-2'-deoxyribofuranoside in the position of the deoxycytidine to which methyl addition occurs), which is thought to form a covalent interaction with the reactive cysteine of such enzymes, led to an enhancement of S-adenosyl-L-methionine photolabelling which suggests that, in contrast with results obtained with EcoRII DNA methyltransferase [Som and Friedman (1991) J. Biol. Chem. 266, 2937-2945], methylcysteine is not the photolabelled product. The implications of the results obtained with this mechanism-based inhibitor are discussed with respect to other C-5-specific DNA methyltransferases. Gel-retardation assays in the presence of cognate oligodeoxynucleotides that contain the reactive pyrimidinone base in place of the deoxycytidine target base are described. These demonstrate that most probably a stable covalent bond is formed between the methyltransferase and this oligodeoxynucleotide. However, the alternative of extremely tight non-covalent binding cannot be rigorously excluded. Furthermore, the results from these experiments indicate that the reaction mechanism proceeds in a manner similar to that of HhaI DNA methyltransferase with sequence-specific DNA binding being followed by addition of S-adenosyl-L-methionine and concomitant isomerization of the ternary complex leading to methyl transfer. S-Adenosyl-L-homocysteine appears to inhibit the reaction pathway as a result of either competition with the methyl donor and potentiation of a high-affinity interaction between the enzyme and DNA in an abortive ternary complex or through an allosteric interaction. Images Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 PMID:8484730
Wang, Xiaokang; Li, Qi; Yuan, Wei; Cao, Zhendong; Qi, Bei; Kumar, Suresh; Li, Yan; Qian, Weiqiang
2016-05-19
DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis.
Wang, Xiaokang; Li, Qi; Yuan, Wei; Cao, Zhendong; Qi, Bei; Kumar, Suresh; Li, Yan; Qian, Weiqiang
2016-01-01
DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis. PMID:27193999
Regulatory link between DNA methylation and active demethylation in Arabidopsis
Lei, Mingguang; Zhang, Huiming; Julian, Russell; Tang, Kai; Xie, Shaojun; Zhu, Jian-Kang
2015-01-01
De novo DNA methylation through the RNA-directed DNA methylation (RdDM) pathway and active DNA demethylation play important roles in controlling genome-wide DNA methylation patterns in plants. Little is known about how cells manage the balance between DNA methylation and active demethylation activities. Here, we report the identification of a unique RdDM target sequence, where DNA methylation is required for maintaining proper active DNA demethylation of the Arabidopsis genome. In a genetic screen for cellular antisilencing factors, we isolated several REPRESSOR OF SILENCING 1 (ros1) mutant alleles, as well as many RdDM mutants, which showed drastically reduced ROS1 gene expression and, consequently, transcriptional silencing of two reporter genes. A helitron transposon element (TE) in the ROS1 gene promoter negatively controls ROS1 expression, whereas DNA methylation of an RdDM target sequence between ROS1 5′ UTR and the promoter TE region antagonizes this helitron TE in regulating ROS1 expression. This RdDM target sequence is also targeted by ROS1, and defective DNA demethylation in loss-of-function ros1 mutant alleles causes DNA hypermethylation of this sequence and concomitantly causes increased ROS1 expression. Our results suggest that this sequence in the ROS1 promoter region serves as a DNA methylation monitoring sequence (MEMS) that senses DNA methylation and active DNA demethylation activities. Therefore, the ROS1 promoter functions like a thermostat (i.e., methylstat) to sense DNA methylation levels and regulates DNA methylation by controlling ROS1 expression. PMID:25733903
DNA Methylation and Demethylation in Plant Immunity.
Deleris, A; Halter, T; Navarro, L
2016-08-04
Detection of plant and animal pathogens triggers a massive transcriptional reprogramming, which is directed by chromatin-based processes, and ultimately results in antimicrobial immunity. Although the implication of histone modifications in orchestrating biotic stress-induced transcriptional reprogramming has been well characterized, very little was known, until recently, about the role of DNA methylation and demethylation in this process. In this review, we summarize recent findings on the dynamics and biological relevance of DNA methylation and demethylation in plant immunity against nonviral pathogens. In particular, we report the implications of these epigenetic regulatory processes in the transcriptional and co-transcriptional control of immune-responsive genes and discuss their relevance in fine-tuning antimicrobial immune responses. Finally, we discuss the possible yet elusive role of DNA methylation and demethylation in systemic immune responses, transgenerational immune priming, and de novo epiallelism, which could be adaptive.
Direct detection of methylation in genomic DNA
Bart, A.; van Passel, M. W. J.; van Amsterdam, K.; van der Ende, A.
2005-01-01
The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene expression. Three types of methylated nucleobases are known: N6-methyladenine, 5-methylcytosine and N4-methylcytosine. The aim of this study was to develop a method to detect all three types of DNA methylation in complete genomic DNA. It was previously shown that N6-methyladenine and 5-methylcytosine in plasmid and viral DNA can be detected by intersequence trace comparison of methylated and unmethylated DNA. We extended this method to include N4-methylcytosine detection in both in vitro and in vivo methylated DNA. Furthermore, application of intersequence trace comparison was extended to bacterial genomic DNA. Finally, we present evidence that intrasequence comparison suffices to detect methylated sites in genomic DNA. In conclusion, we present a method to detect all three natural types of DNA methylation in bacterial genomic DNA. This provides the possibility to define the complete methylome of any prokaryote. PMID:16091626
DNA methylation: the future of crime scene investigation?
Gršković, Branka; Zrnec, Dario; Vicković, Sanja; Popović, Maja; Mršić, Gordan
2013-07-01
Proper detection and subsequent analysis of biological evidence is crucial for crime scene reconstruction. The number of different criminal acts is increasing rapidly. Therefore, forensic geneticists are constantly on the battlefield, trying hard to find solutions how to solve them. One of the essential defensive lines in the fight against the invasion of crime is relying on DNA methylation. In this review, the role of DNA methylation in body fluid identification and other DNA methylation applications are discussed. Among other applications of DNA methylation, age determination of the donor of biological evidence, analysis of the parent-of-origin specific DNA methylation markers at imprinted loci for parentage testing and personal identification, differentiation between monozygotic twins due to their different DNA methylation patterns, artificial DNA detection and analyses of DNA methylation patterns in the promoter regions of circadian clock genes are the most important ones. Nevertheless, there are still a lot of open chapters in DNA methylation research that need to be closed before its final implementation in routine forensic casework.
DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta
Kwon, Seulgi; Park, Da Hye; Kim, Tae Wan; Kang, Deok Gyeong; Yu, Go Eun; Kim, Il-Suk; Park, Hwa Chun; Ha, Jeongim; Kim, Chul Wook
2017-01-01
Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows. PMID:28880934
Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei
2016-12-15
An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Nested methylation-specific polymerase chain reaction cancer detection method
Belinsky, Steven A [Albuquerque, NM; Palmisano, William A [Edgewood, NM
2007-05-08
A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.
Dinh, Thanh Theresa; Gao, Lei; Liu, Xigang; Li, Dongming; Li, Shengben; Zhao, Yuanyuan; O'Leary, Michael; Le, Brandon; Schmitz, Robert J; Manavella, Pablo A; Manavella, Pablo; Li, Shaofang; Weigel, Detlef; Pontes, Olga; Ecker, Joseph R; Chen, Xuemei
2014-07-01
RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1α (TOP1α) was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.
Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng
2016-02-01
DNA methylation is an important epigenetic mechanism that could be responsive to environmental changes indicating a potential role in natural selection and adaption. In order to evaluate an evolutionary role of DNA methylation, it is essential to first gain a better insight into inheritability. To address this question, this study investigated DNA methylation variation from parents to offspring in the Pacific oyster Crassostrea gigas using fluorescent-labeled methylation-sensitive amplified polymorphism (F-MSAP) analysis. Most of parental methylated loci were stably transmitted to offspring segregating following Medelian expectation. However, methylated loci deviated more often than non-methylated loci and offspring showed a few de novo methylated loci indicating DNA methylation changes from parents to offspring. Interestingly, some male-specific methylated loci were found in this study which might help to explore sex determination in oyster. Despite environmental stimuli, genomic stresses such as polyploidization also can induce methylation changes. This study also compared global DNA methylation level and individual methylated loci between diploid and triploid oysters. Results showed no difference in global methylation state but a few ploidy-specific loci were detected. DNA methylation variation during polyploidization was less than autonomous methylation variation from parents to offspring.
NASA Astrophysics Data System (ADS)
Yusufaly, Tahir; Olson, Wilma; Li, Yun
2014-03-01
Van der Waals density functional theory is integrated with analysis of a non-redundant set of protein-DNA crystal structures from the Nucleic Acid Database to study the stacking energetics of CG:CG base-pair steps, specifically the role of cytosine 5-methylation. Principal component analysis of the steps reveals the dominant collective motions to correspond to a tensile ``opening'' mode and two shear ``sliding'' and ``tearing'' modes in the orthogonal plane. The stacking interactions of the methyl groups are observed to globally inhibit CG:CG step overtwisting while simultaneously softening the modes locally via potential energy modulations that create metastable states. The results have implications for the epigenetic control of DNA mechanics.
Bisarro Dos Reis, Mariana; Barros-Filho, Mateus Camargo; Marchi, Fábio Albuquerque; Beltrami, Caroline Moraes; Kuasne, Hellen; Pinto, Clóvis Antônio Lopes; Ambatipudi, Srikant; Herceg, Zdenko; Kowalski, Luiz Paulo; Rogatto, Silvia Regina
2017-11-01
Even though the majority of well-differentiated thyroid carcinoma (WDTC) is indolent, a number of cases display an aggressive behavior. Cumulative evidence suggests that the deregulation of DNA methylation has the potential to point out molecular markers associated with worse prognosis. To identify a prognostic epigenetic signature in thyroid cancer. Genome-wide DNA methylation assays (450k platform, Illumina) were performed in a cohort of 50 nonneoplastic thyroid tissues (NTs), 17 benign thyroid lesions (BTLs), and 74 thyroid carcinomas (60 papillary, 8 follicular, 2 Hürthle cell, 1 poorly differentiated, and 3 anaplastic). A prognostic classifier for WDTC was developed via diagonal linear discriminant analysis. The results were compared with The Cancer Genome Atlas (TCGA) database. A specific epigenetic profile was detected according to each histological subtype. BTLs and follicular carcinomas showed a greater number of methylated CpG in comparison with NTs, whereas hypomethylation was predominant in papillary and undifferentiated carcinomas. A prognostic classifier based on 21 DNA methylation probes was able to predict poor outcome in patients with WDTC (sensitivity 63%, specificity 92% for internal data; sensitivity 64%, specificity 88% for TCGA data). High-risk score based on the classifier was considered an independent factor of poor outcome (Cox regression, P < 0.001). The methylation profile of thyroid lesions exhibited a specific signature according to the histological subtype. A meaningful algorithm composed of 21 probes was capable of predicting the recurrence in WDTC. Copyright © 2017 Endocrine Society
Hysolli, Eriona; Tanaka, Yoshiaki; Su, Juan; Kim, Kun-Yong; Zhong, Tianyu; Janknecht, Ralf; Zhou, Xiao-Ling; Geng, Lin; Qiu, Caihong; Pan, Xinghua; Jung, Yong-Wook; Cheng, Jijun; Lu, Jun; Zhong, Mei; Weissman, Sherman M; Park, In-Hyun
2016-07-12
Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs) have been shown to be highly similar to embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata.
Fraga, Mario F; Rodríguez, Roberto; Cañal, Maria Jesús
2002-08-01
In animals, DNA methylation is related to gene silencing during ontogenic development. Little is known about DNA methylation in plants, although occasional changes in the DNA methylation state of specific gene promoters have been reported in angiosperms during some developmental processes. We found large differences in the extent of DNA methylation between meristematic areas of juvenile and mature Pinus radiata D. Don. trees, whereas differences in the extent of DNA methylation between differentiated tissues of juvenile and mature trees were small. In meristematic areas, there was a gradual decrease in extent of DNA methylation as the degree of reinvigoration increased. The observed changes in extent of DNA methylation during aging and reinvigoration indicate that reinvigoration could be a consequence of epigenetic modifications opposite in direction to those that occur during aging.
Fischer, Alexandra; Gaedicke, Sonja; Frank, Jan; Döring, Frank; Rimbach, Gerald
2010-10-01
The aim of the present study was to determine the effects of a 6-month dietary vitamin E (VE) deficiency on DNA methylation and gene expression in rat liver. Two enzymes, 5-α-steroid reductase type 1 (SRD5A1) and the regulatory subunit of γ-glutamylcysteinyl synthetase (GCLM), which are differentially expressed on the mRNA level, were analysed for promoter methylation in putative cytosine-phospho-guanine (CpG) island regions located at the 5' end using base-specific cleavage and matrix-assisted laser desorption ionisation time-of-flight MS. A twofold increase in the mRNA level of SRD5A1 gene and a twofold decrease in the mRNA level of GCLM gene in VE-deficient animals were not associated with different CpG methylation of the analysed promoter region. Furthermore, global DNA methylation was not significantly different in these two groups. Thus, the present results indicate that the VE-induced regulation of SRD5A1 and GCLM in rat liver is not directly mediated by changes in promoter DNA methylation.
Li, Dongming; Palanca, Ana Marie S; Won, So Youn; Gao, Lei; Feng, Ying; Vashisht, Ajay A; Liu, Li; Zhao, Yuanyuan; Liu, Xigang; Wu, Xiuyun; Li, Shaofang; Le, Brandon; Kim, Yun Ju; Yang, Guodong; Li, Shengben; Liu, Jinyuan; Wohlschlegel, James A; Guo, Hongwei; Mo, Beixin; Chen, Xuemei; Law, Julie A
2017-01-01
DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing. DOI: http://dx.doi.org/10.7554/eLife.19893.001 PMID:28452714
Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer.
Kim, Jung H; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Robinson, Daniel; Kalyana-Sundaram, Shanker; Huang, Christina; Shankar, Sunita; Jing, Xiaojun; Iyer, Matthew; Hu, Ming; Sam, Lee; Grasso, Catherine; Maher, Christopher A; Palanisamy, Nallasivam; Mehra, Rohit; Kominsky, Hal D; Siddiqui, Javed; Yu, Jindan; Qin, Zhaohui S; Chinnaiyan, Arul M
2011-07-01
Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 × 10(-16)). We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.
A non-heme iron-mediated chemical demethylation in DNA and RNA.
Yi, Chengqi; Yang, Cai-Guang; He, Chuan
2009-04-21
DNA methylation is arguably one of the most important chemical signals in biology. However, aberrant DNA methylation can lead to cytotoxic or mutagenic consequences. A DNA repair protein in Escherichia coli, AlkB, corrects some of the unwanted methylations of DNA bases by a unique oxidative demethylation in which the methyl carbon is liberated as formaldehyde. The enzyme also repairs exocyclic DNA lesions--that is, derivatives in which the base is augmented with an additional heterocyclic subunit--by a similar mechanism. Two proteins in humans that are homologous to AlkB, ABH2 and ABH3, repair the same spectrum of lesions; another human homologue of AlkB, FTO, is linked to obesity. In this Account, we describe our studies of AlkB, ABH2, and ABH3, including our development of a general strategy to trap homogeneous protein-DNA complexes through active-site disulfide cross-linking. AlkB uses a non-heme mononuclear iron(II) and the cofactors 2-ketoglutarate (2KG) and dioxygen to effect oxidative demethylation of the DNA base lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG), and 3-methylthymine (3-meT). ABH3, like AlkB, works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA. Conversely, ABH2 primarily repairs lesions in double-stranded DNA (dsDNA); it is the main housekeeping enzyme that protects the mammalian genome from 1-meA base damage. The AlkB-family proteins have moderate affinities for their substrates and bind DNA in a non-sequence-specific manner. Knowing that these proteins flip the damaged base out from the duplex DNA and insert it into the active site for further processing, we first engineered a disulfide cross-link in the active site to stabilize the Michaelis complex. Based on the detailed structural information afforded by the active-site cross-linked structures, we can readily install a cross-link away from the active site to obtain the native-like structures of these complexes. The crystal structures show a distinct base-flipping feature in AlkB and establish ABH2 as a dsDNA repair protein. They also provide a molecular framework for understanding the demethylation reaction catalyzed by these proteins and help to explain their substrate preferences. The chemical cross-linking method demonstrated here can be applied to trap other labile protein-DNA interactions and can serve as a general strategy for exploring the structural and functional aspects of base-flipping proteins.
DNA Methylation and Cancer Diagnosis
Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme
2013-01-01
DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296
Phutikanit, Nawapen; Suwimonteerabutr, Junpen; Harrison, Dion; D'Occhio, Michael; Carroll, Bernie; Techakumphu, Mongkol
2010-03-05
The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic and enzyme treated DNA samples were used as templates in an arbitrarily primed-PCR assay with 30 sets of single short oligonucleotide primer. The PCR products were separated on silver stained denaturing polyacrylamide gels. Three types of PCR markers; digestion resistant-, digestion sensitive-, and digestion dependent markers, were analyzed based on the presence/absence polymorphism of the markers between the two templates. Approximately 1,000 PCR markers per sample were produced from 27 sets of primer and most of them (>90%) were digestion resistant markers. The highest percentage of digestion resistant markers was found in leukocytic DNA (94.8%) and the lowest in fibroblastic DNA (92.3%, P < or = 0.05). Spermatozoa contained a higher number of digestion sensitive markers when compared with the others (3.6% vs. 2.2% and 2.6% in leukocytes and fibroblasts respectively, P < or = 0.05). The powerfulness of the AMP PCR assay was the generation of methylation-associated markers without any prior knowledge of the genomic sequence. The data obtained from different primers provided an overview of genome wide DNA methylation content in different cell types. By using this technique, we found that DNA methylation profile is tissue-specific. Male germ cells were hypomethylated at the HpaII locations when compared with somatic cells, while the chromatin of the well-characterized somatic cells was heavily methylated when compared with that of the versatile somatic cells.
Sakaki, Mizuho; Ebihara, Yukiko; Okamura, Kohji; Nakabayashi, Kazuhiko; Igarashi, Arisa; Matsumoto, Kenji; Hata, Kenichiro; Kobayashi, Yoshiro
2017-01-01
Cellular senescence is classified into two groups: replicative and premature senescence. Gene expression and epigenetic changes are reported to differ between these two groups and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research; however, their epigenetic profiles are still not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicatively senescent, ras-induced senescent (RIS), and non-permissive temperature-induced senescent SVts8 cells, using gene expression and DNA methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The altered DNA methylation patterns were observed in replicatively senescent cells, but not in prematurely senescent cells. Interestingly, hypomethylated CpG sites detected on non-CpG island regions (“open sea”) were enriched in immune response-related genes that had non-CpG island promoters. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that differentially expressed 867 genes, including cell cycle- and immune response-related genes, were associated with DNA methylation changes in CpG sites close to the transcription start sites (TSSs). Furthermore, several miRNAs regulated in part through DNA methylation were found to affect the expression of their targeted genes. Taken together, these results indicate that the epigenetic changes of DNA methylation regulate the expression of a certain portion of genes and partly contribute to the introduction and establishment of replicative senescence. PMID:28158250
Canovas, Sebastian; Ross, Pablo J; Kelsey, Gavin; Coy, Pilar
2017-11-01
DNA methylation can be considered a component of epigenetic memory with a critical role during embryo development, and which undergoes dramatic reprogramming after fertilization. Though it has been a focus of research for many years, the reprogramming mechanism is still not fully understood. Recent results suggest that absence of maintenance at DNA replication is a major factor, and that there is an unexpected role for TET3-mediated oxidation of 5mC to 5hmC in guarding against de novo methylation. Base-resolution and genome-wide profiling methods are enabling more comprehensive assessments of the extent to which ART might impair DNA methylation reprogramming, and which sequence elements are most vulnerable. Indeed, as we also review here, studies showing the effect of culture media, ovarian stimulation or embryo transfer on the methylation pattern of embryos emphasize the need to face ART-associated defects and search for strategies to mitigate adverse effects on the health of ART-derived children. © 2017 WILEY Periodicals, Inc.
Harris, R. Alan; Wang, Ting; Coarfa, Cristian; Nagarajan, Raman P.; Hong, Chibo; Downey, Sara L.; Johnson, Brett E.; Fouse, Shaun D.; Delaney, Allen; Zhao, Yongjun; Olshen, Adam; Ballinger, Tracy; Zhou, Xin; Forsberg, Kevin J.; Gu, Junchen; Echipare, Lorigail; O’Geen, Henriette; Lister, Ryan; Pelizzola, Mattia; Xi, Yuanxin; Epstein, Charles B.; Bernstein, Bradley E.; Hawkins, R. David; Ren, Bing; Chung, Wen-Yu; Gu, Hongcang; Bock, Christoph; Gnirke, Andreas; Zhang, Michael Q.; Haussler, David; Ecker, Joseph; Li, Wei; Farnham, Peggy J.; Waterland, Robert A.; Meissner, Alexander; Marra, Marco A.; Hirst, Martin; Milosavljevic, Aleksandar; Costello, Joseph F.
2010-01-01
Sequencing-based DNA methylation profiling methods are comprehensive and, as accuracy and affordability improve, will increasingly supplant microarrays for genome-scale analyses. Here, four sequencing-based methodologies were applied to biological replicates of human embryonic stem cells to compare their CpG coverage genome-wide and in transposons, resolution, cost, concordance and its relationship with CpG density and genomic context. The two bisulfite methods reached concordance of 82% for CpG methylation levels and 99% for non-CpG cytosine methylation levels. Using binary methylation calls, two enrichment methods were 99% concordant, while regions assessed by all four methods were 97% concordant. To achieve comprehensive methylome coverage while reducing cost, an approach integrating two complementary methods was examined. The integrative methylome profile along with histone methylation, RNA, and SNP profiles derived from the sequence reads allowed genome-wide assessment of allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression. PMID:20852635
Liu, Guohong; Weston, Christopher Q; Pham, Long K; Waltz, Shannon; Barnes, Helen; King, Paula; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn
2016-01-01
We describe continuing work to develop restriction endonucleases as tools to enrich targeted genomes of interest from diverse populations. Two approaches were developed in parallel to segregate genomic DNA based on cytosine methylation. First, the methyl-sensitive endonuclease HpaII was used to bind non-CG methylated DNA. Second, a truncated fragment of McrB was used to bind CpG methylated DNA. Enrichment levels of microbial genomes can exceed 100-fold with HpaII allowing improved genomic detection and coverage of otherwise trace microbial genomes from sputum. Additionally, we observe interesting enrichment results that correlate with the methylation states not only of bacteria, but of fungi, viruses, a protist and plants. The methods presented here offer promise for testing biological samples for pathogens and global analysis of population methylomes.
Scala, Giovanni; Affinito, Ornella; Palumbo, Domenico; Florio, Ermanno; Monticelli, Antonella; Miele, Gennaro; Chiariotti, Lorenzo; Cocozza, Sergio
2016-11-25
CpG sites in an individual molecule may exist in a binary state (methylated or unmethylated) and each individual DNA molecule, containing a certain number of CpGs, is a combination of these states defining an epihaplotype. Classic quantification based approaches to study DNA methylation are intrinsically unable to fully represent the complexity of the underlying methylation substrate. Epihaplotype based approaches, on the other hand, allow methylation profiles of cell populations to be studied at the single molecule level. For such investigations, next-generation sequencing techniques can be used, both for quantitative and for epihaplotype analysis. Currently available tools for methylation analysis lack output formats that explicitly report CpG methylation profiles at the single molecule level and that have suited statistical tools for their interpretation. Here we present ampliMethProfiler, a python-based pipeline for the extraction and statistical epihaplotype analysis of amplicons from targeted deep bisulfite sequencing of multiple DNA regions. ampliMethProfiler tool provides an easy and user friendly way to extract and analyze the epihaplotype composition of reads from targeted bisulfite sequencing experiments. ampliMethProfiler is written in python language and requires a local installation of BLAST and (optionally) QIIME tools. It can be run on Linux and OS X platforms. The software is open source and freely available at http://amplimethprofiler.sourceforge.net .
Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola
Provataris, Panagiotis; Meusemann, Karen; Niehuis, Oliver; Grath, Sonja; Misof, Bernhard
2018-01-01
Abstract It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects. PMID:29697817
NASA Astrophysics Data System (ADS)
Alvarez, Jose; Massey, Steven; Kalitsov, Alan; Velev, Julian
Nanopore sequencing via transverse current has emerged as a competitive candidate for mapping DNA methylation without needed bisulfite-treatment, fluorescent tag, or PCR amplification. By eliminating the error producing amplification step, long read lengths become feasible, which greatly simplifies the assembly process and reduces the time and the cost inherent in current technologies. However, due to the large error rates of nanopore sequencing, single base resolution has not been reached. A very important source of noise is the intrinsic structural noise in the electric signature of the nucleotide arising from the influence of neighboring nucleotides. In this work we perform calculations of the tunneling current through DNA molecules in nanopores using the non-equilibrium electron transport method within an effective multi-orbital tight-binding model derived from first-principles calculations. We develop a base-calling algorithm accounting for the correlations of the current through neighboring bases, which in principle can reduce the error rate below any desired precision. Using this method we show that we can clearly distinguish DNA methylation and other base modifications based on the reading of the tunneling current.
Savio, Andrea J; Mrkonjic, Miralem; Lemire, Mathieu; Gallinger, Steven; Knight, Julia A; Bapat, Bharat
2017-01-01
Colorectal cancers (CRCs) undergo distinct genetic and epigenetic alterations. Expression of mutL homolog 1 ( MLH1 ), a mismatch repair gene that corrects DNA replication errors, is lost in up to 15% of sporadic tumours due to mutation or, more commonly, due to DNA methylation of its promoter CpG island. A single nucleotide polymorphism (SNP) in the CpG island of MLH1 ( MLH1 -93G>A or rs1800734) is associated with CpG island hypermethylation and decreased MLH1 expression in CRC tumours. Further, in peripheral blood mononuclear cell (PBMC) DNA of both CRC cases and non-cancer controls, the variant allele of rs1800734 is associated with hypomethylation at the MLH1 shore, a region upstream of its CpG island that is less dense in CpG sites . To determine whether this genotype-epigenotype association is present in other tissue types, including colorectal tumours, we assessed DNA methylation in matched normal colorectal tissue, tumour, and PBMC DNA from 349 population-based CRC cases recruited from the Ontario Familial Colorectal Cancer Registry. Using the semi-quantitative real-time PCR-based MethyLight assay, MLH1 shore methylation was significantly higher in tumour tissue than normal colon or PBMCs ( P < 0.01). When shore methylation levels were stratified by SNP genotype, normal colorectal DNA and PBMC DNA were significantly hypomethylated in association with variant SNP genotype ( P < 0.05). However, this association was lost in tumour DNA. Among distinct stages of CRC, metastatic stage IV CRC tumours incurred significant hypomethylation compared to stage I-III cases, irrespective of genotype status. Shore methylation of MLH1 was not associated with MSI status or promoter CpG island hypermethylation, regardless of genotype. To confirm these results, bisulfite sequencing was performed in matched tumour and normal colorectal specimens from six CRC cases, including two cases per genotype (wildtype, heterozygous, and homozygous variant). Bisulfite sequencing results corroborated the methylation patterns found by MethyLight, with significant hypomethylation in normal colorectal tissue of variant SNP allele carriers. These results indicate that the normal tissue types tested (colorectum and PBMC) experience dynamic genotype-associated epigenetic alterations at the MLH1 shore, whereas tumour DNA incurs aberrant hypermethylation compared to normal DNA.
Wojtczyk-Miaskowska, Anita; Presler, Malgorzata; Michajlowski, Jerzy; Matuszewski, Marcin; Schlichtholz, Beata
2017-01-01
This study investigated the gene expression and DNA methylation of selected DNA repair genes (MBD4, TDG, MLH1, MLH3) and DNMT1 in human bladder cancer in the context of pathophysiological and prognostic significance. To determine the relationship between the gene expression pattern, global methylation and promoter methylation status, we performed real-time PCR to quantify the mRNA of selected genes in 50 samples of bladder cancer and adjacent non-cancerous tissue. The methylation status was analyzed by methylation-specific polymerase chain reaction (MSP) or digestion of genomic DNA with a methylation-sensitive restriction enzyme and PCR with gene-specific primers (MSRE-PCR). The global DNA methylation level was measured using the antibody-based 5-mC detection method. The relative levels of mRNA for MBD4, MLH3, and MLH1 were decreased in 28% (14/50), 34% (17/50) and 36% (18/50) of tumor samples, respectively. The MBD4 mRNA expression was decreased in 46% of non-muscle invasive tumors (Ta/T1) compared with 11% found in muscle invasive tumors (T2-T4) (P<0.003). Analysis of mRNA expression for TDG did not show any significant differences between Ta/T1 and T2-T4 tumors. The frequency of increased DNMT1 mRNA expression was higher in T2-T4 (52%) comparing to Ta/T1 (16%). The overall methylation rates in tumor tissue were 18% for MBD4, 25% for MLH1 and there was no evidence of MLH3 promoter methylation. High grade tumors had significantly lower levels of global DNA methylation (P=0.04). There was a significant association between shorter survival and increased expression of DNMT1 mRNA (P=0.002), decreased expression of MLH1 mRNA (P=0.032) and the presence of MLH1 promoter methylation (P=0.006). This study highlights the importance of DNA repair pathways and provides the first evidence of the role of MBD4 and MLH3 in bladder cancer. In addition, our findings suggest that DNMT1 mRNA and MLH1 mRNA expression, as well as the status of MLH1 promoter methylation, are attractive prognostic markers in this pathology. © 2017 The Author(s). Published by S. Karger AG, Basel.
Zhang, Qingzhu; Wang, Dong; Lang, Zhaobo; He, Li; Yang, Lan; Zeng, Liang; Li, Yanqiang; Zhao, Cheng; Huang, Huan; Zhang, Heng; Zhang, Huiming; Zhu, Jian-Kang
2016-01-01
DNA methylation is a conserved epigenetic mark in plants and many animals. How parental alleles interact in progeny to influence the epigenome is poorly understood. We analyzed the DNA methylomes of Arabidopsis Col and C24 ecotypes, and their hybrid progeny. Hybrids displayed nonadditive DNA methylation levels, termed methylation interactions, throughout the genome. Approximately 2,500 methylation interactions occurred at regions where parental DNA methylation levels are similar, whereas almost 1,000 were at differentially methylated regions in parents. Methylation interactions were characterized by an abundance of 24-nt small interfering RNAs. Furthermore, dysfunction of the RNA-directed DNA methylation pathway abolished methylation interactions but did not affect the increased biomass observed in hybrid progeny. Methylation interactions correlated with altered genetic variation within the genome, suggesting that they may play a role in genome evolution. PMID:27382183
DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes. PMID:22016810
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.
2013-01-01
Background Low birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intra-uterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. To address this, we acquire genome-wide DNA methylation profiles from saliva DNA in a unique cohort of 17 monozygotic monochorionic female twins very discordant for birth weight. We examine if adverse prenatal growth conditions experienced by the smaller co-twins lead to long-lasting DNA methylation changes. Results Overall, co-twins show very similar genome-wide DNA methylation profiles. Since observed differences are almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3,153 are differentially methylated between the heavy and light co-twins at nominal significance, of which 45 show sensible absolute mean β-value differences. Deep bisulfite sequencing of eight such loci reveals that differences remain in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicates no significant intra-pair differences. Conclusions Severe intra-uterine growth differences observed within these monozygotic twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies. PMID:23706164
Yu, Lei; Chibnik, Lori B; Srivastava, Gyan P; Pochet, Nathalie; Yang, Jingyun; Xu, Jishu; Kozubek, James; Obholzer, Nikolaus; Leurgans, Sue E; Schneider, Julie A; Meissner, Alexander; De Jager, Philip L; Bennett, David A
2015-01-01
Recent large-scale genome-wide association studies have discovered several genetic variants associated with Alzheimer disease (AD); however, the extent to which DNA methylation in these AD loci contributes to the disease susceptibility remains unknown. To examine the association of brain DNA methylation in 28 reported AD loci with AD pathologies. Ongoing community-based clinical pathological cohort studies of aging and dementia (the Religious Orders Study and the Rush Memory and Aging Project) among 740 autopsied participants 66.0 to 108.3 years old. DNA methylation levels at individual CpG sites generated from dorsolateral prefrontal cortex tissue using a bead assay. Pathological diagnosis of AD by National Institute on Aging-Reagan criteria following a standard postmortem examination. Overall, 447 participants (60.4%) met the criteria for pathological diagnosis of AD. Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 was associated with pathological AD. The association was robustly retained after replacing the binary trait of pathological AD with 2 quantitative and molecular specific hallmarks of AD, namely, Aβ load and paired helical filament tau tangle density. Furthermore, RNA expression of transcripts of SORL1 and ABCA7 was associated with paired helical filament tau tangle density, and the expression of BIN1 was associated with Aβ load. Brain DNA methylation in multiple AD loci is associated with AD pathologies. The results provide further evidence that disruption of DNA methylation is involved in the pathological process of AD.
Salas, Lucas A; Bustamante, Mariona; Gonzalez, Juan R; Gracia-Lavedan, Esther; Moreno, Victor; Kogevinas, Manolis; Villanueva, Cristina M
2015-01-01
Trihalomethanes (THM) are undesired disinfection byproducts (DBPs) formed during water treatment. Mice exposed to DBPs showed global DNA hypomethylation and c-myc and c-jun gene-specific hypomethylation, while evidence of epigenetic effects in humans is scarce. We explored the association between lifetime THM exposure and DNA methylation through an epigenome-wide association study. We selected 138 population-based controls from a case-control study of colorectal cancer conducted in Barcelona, Spain, exposed to average lifetime THM levels ≤85 μg/L vs. >85 μg/L (N = 68 and N = 70, respectively). Mean age of participants was 70 years, and 54% were male. Average lifetime THM level in the exposure groups was 64 and 130 µg/L, respectively. DNA was extracted from whole blood and was bisulphite converted to measure DNA methylation levels using the Illumina HumanMethylation450 BeadChip. Data preprocessing was performed using RnBeads. Methylation was compared between exposure groups using empirical Bayes moderated linear regression for CpG sites and Gaussian kernel for CpG regions. ConsensusPathDB was used for gene set enrichment. Statistically significant differences in methylation between exposure groups was found in 140 CpG sites and 30 gene-related regions, after false discovery rate <0.05 and adjustment for age, sex, methylation first principal component, and blood cell proportion. The annotated genes were localized to several cancer pathways. Among them, 29 CpGs had methylation levels associated with THM levels (|Δβ|≥0.05) located in 11 genes associated with cancer in other studies. Our results suggest that THM exposure may affect DNA methylation in genes related to tumors, including colorectal and bladder cancers. Future confirmation studies are required. PMID:26039576
Genome-Wide Negative Feedback Drives Transgenerational DNA Methylation Dynamics in Arabidopsis
Kassam, Mohamed; Duvernois-Berthet, Evelyne; Cortijo, Sandra; Takashima, Kazuya; Saze, Hidetoshi; Toyoda, Atsushi; Fujiyama, Asao; Colot, Vincent; Kakutani, Tetsuji
2015-01-01
Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3’ regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome. PMID:25902052
Divergence, differential methylation and interspersion of melon satellite DNA sequences.
Shmookler Reis, R; Timmis, J N; Ingle, J
1981-01-01
Melon (Cucumis melo) satellite DNA consists of two components, Q and S, each with a buoyant density in CsCl of 1.707 g/ml, but differing by 9 degrees C in "melting" temperature. These physical properties appear to be in contradiction, since both depend on G + C content. In order to resolve this anomaly, base compositions were directly determined for isolated fractions. the low-"melting" component S contains 41.8% G + C, with 6% of C present as 5-methylcytosine, whereas Q DNA contains 54% G + C, with 41% of C methylated. Analyses of restriction site loss agreed well with the direct determinations of methylation and divergence, and indicated some clustering of methylated sites in Q DNA. Analysis of restricted main-band DNA by hydridization with RNA complementary to Q satellite DNA ("Southern transfer") showed satellite Q tandem arrays interspersed in DNA of main-band density. Sequence divergence and extent of methylation did not appear to depend on whether a repeat array was present as satellite or interspersed in main-band DNA. Hydridization in situ indicated considerable heterogeneity in the genomic proportion of the Q-DNA sequences in melon fruit nuclei, implying over- and under-representation consistent with extensive unequal recombination in satellite Q tandem arrays. The cucumber, Cucumis sativus, contains less than 8% as much Q-homologous DNA per genome as the melon, suggesting rapid evolutionary gain or loss of these tandem repeat sequences. Images Fig. 2. PLATE 1 Fig. 4. Fig. 10. PMID:6172117
NASA Astrophysics Data System (ADS)
Moreland, Blythe; Oman, Kenji; Curfman, John; Yan, Pearlly; Bundschuh, Ralf
Methyl-binding domain (MBD) protein pulldown experiments have been a valuable tool in measuring the levels of methylated CpG dinucleotides. Due to the frequent use of this technique, high-throughput sequencing data sets are available that allow a detailed quantitative characterization of the underlying interaction between methylated DNA and MBD proteins. Analyzing such data sets, we first found that two such proteins cannot bind closer to each other than 2 bp, consistent with structural models of the DNA-protein interaction. Second, the large amount of sequencing data allowed us to find rather weak but nevertheless clearly statistically significant sequence preferences for several bases around the required CpG. These results demonstrate that pulldown sequencing is a high-precision tool in characterizing DNA-protein interactions. This material is based upon work supported by the National Science Foundation under Grant No. DMR-1410172.
Ueno, Hitomi; Okita, Hajime; Akimoto, Shingo; Kobayashi, Kenichiro; Nakabayashi, Kazuhiko; Hata, Kenichiro; Fujimoto, Junichiro; Hata, Jun-Ichi; Fukuzawa, Masahiro; Kiyokawa, Nobutaka
2013-01-01
A number of specific, distinct neoplastic entities occur in the pediatric kidney, including Wilms' tumor, clear cell sarcoma of the kidney (CCSK), congenital mesoblastic nephroma (CMN), rhabdoid tumor of the kidney (RTK), and the Ewing's sarcoma family of tumors (ESFT). By employing DNA methylation profiling using Illumina Infinium HumanMethylation27, we analyzed the epigenetic characteristics of the sarcomas including CCSK, RTK, and ESFT in comparison with those of the non-neoplastic kidney (NK), and these tumors exhibited distinct DNA methylation profiles in a tumor-type-specific manner. CCSK is the most frequently hypermethylated, but least frequently hypomethylated, at CpG sites among these sarcomas, and exhibited 490 hypermethylated and 46 hypomethylated CpG sites in compared with NK. We further validated the results by MassARRAY, and revealed that a combination of four genes was sufficient for the DNA methylation profile-based differentiation of these tumors by clustering analysis. Furthermore, THBS1 CpG sites were found to be specifically hypermethylated in CCSK and, thus, the DNA methylation status of these THBS1 sites alone was sufficient for the distinction of CCSK from other pediatric renal tumors, including Wilms' tumor and CMN. Moreover, combined bisulfite restriction analysis could be applied for the detection of hypermethylation of a THBS1 CpG site. Besides the biological significance in the pathogenesis, the DNA methylation profile should be useful for the differential diagnosis of pediatric renal tumors.
Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng
2018-01-01
DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P < 0.05 and more than 5.96% genes presented very strong correlation (R T4 > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.
Kim, Nam-Soo; Im, Min-Ji; Nkongolo, Kabwe
2016-08-01
Red maple (Acer rubum), a common deciduous tree species in Northern Ontario, has shown resistance to soil metal contamination. Previous reports have indicated that this plant does not accumulate metals in its tissue. However, low level of nickel and copper corresponding to the bioavailable levels in contaminated soils in Northern Ontario causes severe physiological damages. No differentiation between metal-contaminated and uncontaminated populations has been reported based on genetic analyses. The main objective of this study was to assess whether DNA methylation is involved in A. rubrum adaptation to soil metal contamination. Global cytosine and methylation-sensitive amplified polymorphism (MSAP) analyses were carried out in A. rubrum populations from metal-contaminated and uncontaminated sites. The global modified cytosine ratios in genomic DNA revealed a significant decrease in cytosine methylation in genotypes from a metal-contaminated site compared to uncontaminated populations. Other genotypes from a different metal-contaminated site within the same region appear to be recalcitrant to metal-induced DNA alterations even ≥30 years of tree life exposure to nickel and copper. MSAP analysis showed a high level of polymorphisms in both uncontaminated (77%) and metal-contaminated (72%) populations. Overall, 205 CCGG loci were identified in which 127 were methylated in either outer or inner cytosine. No differentiation among populations was established based on several genetic parameters tested. The variations for nonmethylated and methylated loci were compared by analysis of molecular variance (AMOVA). For methylated loci, molecular variance among and within populations was 1.5% and 13.2%, respectively. These values were low (0.6% for among populations and 5.8% for within populations) for unmethylated loci. Metal contamination is seen to affect methylation of cytosine residues in CCGG motifs in the A. rubrum populations that were analyzed.
DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).
Zakrzewski, Falk; Schmidt, Martin; Van Lijsebettens, Mieke; Schmidt, Thomas
2017-06-01
The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome-wide cytosine methylation in the sugar beet genome was studied in leaves and leaf-derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome-wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Function and Evolution of DNA Methylation in Nasonia vitripennis
Wang, Xu; Wheeler, David; Avery, Amanda; Rago, Alfredo; Choi, Jeong-Hyeon; Colbourne, John K.; Clark, Andrew G.; Werren, John H.
2013-01-01
The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation across the genome is accomplished using bisulfite sequencing of adult females from a highly inbred line. One-third of genes show extensive methylation over the gene body, yet methylated DNA is not found in non-coding regions and rarely in transposons. Methylated genes occur in small clusters across the genome. Methylation demarcates exon-intron boundaries, with elevated levels over exons, primarily in the 5′ regions of genes. It is also elevated near the sites of translational initiation and termination, with reduced levels in 5′ and 3′ UTRs. Methylated genes have higher median expression levels and lower expression variation across development stages than non-methylated genes. There is no difference in frequency of differential splicing between methylated and non-methylated genes, and as yet no established role for methylation in regulating alternative splicing in Nasonia. Phylogenetic comparisons indicate that many genes maintain methylation status across long evolutionary time scales. Nasonia methylated genes are more likely to be conserved in insects, but even those that are not conserved show broader expression across development than comparable non-methylated genes. Finally, examination of duplicated genes shows that those paralogs that have lost methylation in the Nasonia lineage following gene duplication evolve more rapidly, show decreased median expression levels, and increased specialization in expression across development. Methylation of Nasonia genes signals constitutive transcription across developmental stages, whereas non-methylated genes show more dynamic developmental expression patterns. We speculate that loss of methylation may result in increased developmental specialization in evolution and acquisition of methylation may lead to broader constitutive expression. PMID:24130511
EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos
Auclair, Ghislain; Borgel, Julie; Sanz, Lionel A.; Vallet, Judith; Guibert, Sylvain; Dumas, Michael; Cavelier, Patricia; Girardot, Michael; Forné, Thierry; Feil, Robert; Weber, Michael
2016-01-01
The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2−/− embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development. PMID:26576615
Brocato, Jason; Costa, Max
2013-01-01
DNA methylation plays an intricate role in the regulation of gene expression and events that compromise the integrity of the methylome may potentially contribute to disease development. DNA methylation is a reversible and regulatory modification that elicits a cascade of events leading to chromatin condensation and gene silencing. In general, normal cells are characterized by gene-specific hypomethylation and global hypermethylation, while cancer cells portray a reverse profile to this norm. The unique methylome displayed in cancer cells is induced after exposure to carcinogenic metals such as nickel, arsenic, cadmium, and chromium (VI). These metals alter the DNA methylation profile by provoking both hyper- and hypomethylation events. The metal-stimulated deviations to the methylome are possible mechanisms for metal-induced carcinogenesis and may provide potential biomarkers for cancer detection. Development of therapies based on the cancer methylome requires further research including human studies that supply results with larger impact and higher human relevance. PMID:23844698
Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh
2017-03-09
It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.
Xue, Qingwang; Lv, Yanqin; Xu, Shuling; Zhang, Yuanfu; Wang, Lei; Li, Rui; Yue, Qiaoli; Li, Haibo; Gu, Xiaohong; Zhang, Shuqiu; Liu, Jifeng
2015-04-15
Site-specific identification of DNA methylation and assay of MTase activity are imperative for determining specific cancer types, provide insights into the mechanism of gene repression, and develop novel drugs to treat methylation-related diseases. Herein, we developed a highly sensitive fluorescence assay of DNA methyltransferase by methylation-sensitive cleavage-based primer generation exponential isothermal amplification (PG-EXPA) coupled with supramolecular fluorescent Zinc(II)-protoporphyrin IX (ZnPPIX)/G-quadruplex. In the presence of DNA adenine methylation (Dam) MTase, the methylation-responsive sequence of hairpin probe is methylated and cleaved by the methylation-sensitive restriction endonuclease Dpn I. The cleaved hairpin probe then functions as a signal primer to initiate the exponential isothermal amplification reaction (EXPAR) by hybridizing with a unimolecular DNA containing three functional domains as the amplification template, producing a large number of G-quadruplex nanostructures by utilizing polymerases and nicking enzymes as mechanical activators. The G-quadruplex nanostructures act as host for ZnPPIX that lead to supramolecular complexes ZnPPIX/G-quadruplex, which provides optical labels for amplified fluorescence detection of Dam MTase. While in the absence of Dam MTase, neither methylation/cleavage nor PG-EXPA reaction can be initiated and no fluorescence signal is observed. The proposed method exhibits a wide dynamic range from 0.0002 to 20U/mL and an extremely low detection limit of 8.6×10(-5)U/mL, which is superior to most conventional approaches for the MTase assay. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in a complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of massively parallel sequencing for forensic DNA methylation profiling.
Richards, Rebecca; Patel, Jayshree; Stevenson, Kate; Harbison, SallyAnn
2018-05-11
Epigenetics is an emerging area of interest in forensic science. DNA methylation, a type of epigenetic modification, can be applied to chronological age estimation, identical twin differentiation and body fluid identification. However, there is not yet an agreed, established methodology for targeted detection and analysis of DNA methylation markers in forensic research. Recently a massively parallel sequencing-based approach has been suggested. The use of massively parallel sequencing is well established in clinical epigenetics and is emerging as a new technology in the forensic field. This review investigates the potential benefits, limitations and considerations of this technique for the analysis of DNA methylation in a forensic context. The importance of a robust protocol, regardless of the methodology used, that minimises potential sources of bias is highlighted. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Genome-scale analysis of aberrant DNA methylation in colorectal cancer
Hinoue, Toshinori; Weisenberger, Daniel J.; Lange, Christopher P.E.; Shen, Hui; Byun, Hyang-Min; Van Den Berg, David; Malik, Simeen; Pan, Fei; Noushmehr, Houtan; van Dijk, Cornelis M.; Tollenaar, Rob A.E.M.; Laird, Peter W.
2012-01-01
Colorectal cancer (CRC) is a heterogeneous disease in which unique subtypes are characterized by distinct genetic and epigenetic alterations. Here we performed comprehensive genome-scale DNA methylation profiling of 125 colorectal tumors and 29 adjacent normal tissues. We identified four DNA methylation–based subgroups of CRC using model-based cluster analyses. Each subtype shows characteristic genetic and clinical features, indicating that they represent biologically distinct subgroups. A CIMP-high (CIMP-H) subgroup, which exhibits an exceptionally high frequency of cancer-specific DNA hypermethylation, is strongly associated with MLH1 DNA hypermethylation and the BRAFV600E mutation. A CIMP-low (CIMP-L) subgroup is enriched for KRAS mutations and characterized by DNA hypermethylation of a subset of CIMP-H-associated markers rather than a unique group of CpG islands. Non-CIMP tumors are separated into two distinct clusters. One non-CIMP subgroup is distinguished by a significantly higher frequency of TP53 mutations and frequent occurrence in the distal colon, while the tumors that belong to the fourth group exhibit a low frequency of both cancer-specific DNA hypermethylation and gene mutations and are significantly enriched for rectal tumors. Furthermore, we identified 112 genes that were down-regulated more than twofold in CIMP-H tumors together with promoter DNA hypermethylation. These represent ∼7% of genes that acquired promoter DNA methylation in CIMP-H tumors. Intriguingly, 48/112 genes were also transcriptionally down-regulated in non-CIMP subgroups, but this was not attributable to promoter DNA hypermethylation. Together, we identified four distinct DNA methylation subgroups of CRC and provided novel insight regarding the role of CIMP-specific DNA hypermethylation in gene silencing. PMID:21659424
Fish, Trevor J; Benninghoff, Abby D
2017-11-01
Polycyclic aromatic hydrocarbons (PAHs) comprise an important class of environmental pollutants that are known to cause lung cancer in animals and are suspected lung carcinogens in humans. Moreover, evidence from cell-based studies points to PAHs as modulators of the epigenome. The objective of this work was to assess patterns of genome-wide DNA methylation in lung tissues of adult offspring initiated in utero with the transplacental PAH carcinogens dibenzo [def,p]chrysene (DBC) or benzo [a]pyrene (BaP). Genome-wide methylation patterns for normal (not exposed), normal adjacent and lung tumor tissues obtained from adult offspring were determined using methylated DNA immunoprecipitation (MeDIP) with the NimbleGen mouse DNA methylation CpG island array. Lung tumor incidence in 45-week old mice initiated with BaP was 32%, much lower than that of the DBC-exposed offspring at 96%. Also, male offspring appeared more susceptible to BaP as compared to females. Distinct patterns of DNA methylation were associated with non-exposed, normal adjacent and adenocarcinoma lung tissues, as determined by principal components, hierarchical clustering and gene ontology analyses. From these methylation profiles, a set of genes of interest was identified that includes potential important targets for epigenetic modification during the process of lung tumorigenesis in animals exposed to environmental PAHs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tobacco Smoking Leads to Extensive Genome-Wide Changes in DNA Methylation
Zeilinger, Sonja; Kühnel, Brigitte; Klopp, Norman; Baurecht, Hansjörg; Kleinschmidt, Anja; Gieger, Christian; Weidinger, Stephan; Lattka, Eva; Adamski, Jerzy; Peters, Annette; Strauch, Konstantin
2013-01-01
Environmental factors such as tobacco smoking may have long-lasting effects on DNA methylation patterns, which might lead to changes in gene expression and in a broader context to the development or progression of various diseases. We conducted an epigenome-wide association study (EWAs) comparing current, former and never smokers from 1793 participants of the population-based KORA F4 panel, with replication in 479 participants from the KORA F3 panel, carried out by the 450K BeadChip with genomic DNA obtained from whole blood. We observed wide-spread differences in the degree of site-specific methylation (with p-values ranging from 9.31E-08 to 2.54E-182) as a function of tobacco smoking in each of the 22 autosomes, with the percent of variance explained by smoking ranging from 1.31 to 41.02. Depending on cessation time and pack-years, methylation levels in former smokers were found to be close to the ones seen in never smokers. In addition, methylation-specific protein binding patterns were observed for cg05575921 within AHRR, which had the highest level of detectable changes in DNA methylation associated with tobacco smoking (–24.40% methylation; p = 2.54E-182), suggesting a regulatory role for gene expression. The results of our study confirm the broad effect of tobacco smoking on the human organism, but also show that quitting tobacco smoking presumably allows regaining the DNA methylation state of never smokers. PMID:23691101
Tobacco smoking leads to extensive genome-wide changes in DNA methylation.
Zeilinger, Sonja; Kühnel, Brigitte; Klopp, Norman; Baurecht, Hansjörg; Kleinschmidt, Anja; Gieger, Christian; Weidinger, Stephan; Lattka, Eva; Adamski, Jerzy; Peters, Annette; Strauch, Konstantin; Waldenberger, Melanie; Illig, Thomas
2013-01-01
Environmental factors such as tobacco smoking may have long-lasting effects on DNA methylation patterns, which might lead to changes in gene expression and in a broader context to the development or progression of various diseases. We conducted an epigenome-wide association study (EWAs) comparing current, former and never smokers from 1793 participants of the population-based KORA F4 panel, with replication in 479 participants from the KORA F3 panel, carried out by the 450K BeadChip with genomic DNA obtained from whole blood. We observed wide-spread differences in the degree of site-specific methylation (with p-values ranging from 9.31E-08 to 2.54E-182) as a function of tobacco smoking in each of the 22 autosomes, with the percent of variance explained by smoking ranging from 1.31 to 41.02. Depending on cessation time and pack-years, methylation levels in former smokers were found to be close to the ones seen in never smokers. In addition, methylation-specific protein binding patterns were observed for cg05575921 within AHRR, which had the highest level of detectable changes in DNA methylation associated with tobacco smoking (-24.40% methylation; p = 2.54E-182), suggesting a regulatory role for gene expression. The results of our study confirm the broad effect of tobacco smoking on the human organism, but also show that quitting tobacco smoking presumably allows regaining the DNA methylation state of never smokers.
Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi
2017-01-01
Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were “DNA methylation-sensitive” genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A. The other half were “DNA methylation-resistant” genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site. PMID:28903418
Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi
2017-08-15
Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were "DNA methylation-sensitive" genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A . The other half were "DNA methylation-resistant" genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site.
Genome-Scale Screen for DNA Methylation-Based Detection Markers for Ovarian Cancer
Houshdaran, Sahar; Shen, Hui; Widschwendter, Martin; Daxenbichler, Günter; Long, Tiffany; Marth, Christian; Laird-Offringa, Ite A.; Press, Michael F.; Dubeau, Louis; Siegmund, Kimberly D.; Wu, Anna H.; Groshen, Susan; Chandavarkar, Uma; Roman, Lynda D.; Berchuck, Andrew; Pearce, Celeste L.; Laird, Peter W.
2011-01-01
Background The identification of sensitive biomarkers for the detection of ovarian cancer is of high clinical relevance for early detection and/or monitoring of disease recurrence. We developed a systematic multi-step biomarker discovery and verification strategy to identify candidate DNA methylation markers for the blood-based detection of ovarian cancer. Methodology/Principal Findings We used the Illumina Infinium platform to analyze the DNA methylation status of 27,578 CpG sites in 41 ovarian tumors. We employed a marker selection strategy that emphasized sensitivity by requiring consistency of methylation across tumors, while achieving specificity by excluding markers with methylation in control leukocyte or serum DNA. Our verification strategy involved testing the ability of identified markers to monitor disease burden in serially collected serum samples from ovarian cancer patients who had undergone surgical tumor resection compared to CA-125 levels. We identified one marker, IFFO1 promoter methylation (IFFO1-M), that is frequently methylated in ovarian tumors and that is rarely detected in the blood of normal controls. When tested in 127 serially collected sera from ovarian cancer patients, IFFO1-M showed post-resection kinetics significantly correlated with serum CA-125 measurements in six out of 16 patients. Conclusions/Significance We implemented an effective marker screening and verification strategy, leading to the identification of IFFO1-M as a blood-based candidate marker for sensitive detection of ovarian cancer. Serum levels of IFFO1-M displayed post-resection kinetics consistent with a reflection of disease burden. We anticipate that IFFO1-M and other candidate markers emerging from this marker development pipeline may provide disease detection capabilities that complement existing biomarkers. PMID:22163280
DNA methylation dynamics during in vivo differentiation of blood and skin stem cells
Bock, Christoph; Beerman, Isabel; Lien, Wen-Hui; Smith, Zachary D.; Gu, Hongcang; Boyle, Patrick; Gnirke, Andreas; Fuchs, Elaine; Rossi, Derrick J.; Meissner, Alexander
2012-01-01
DNA methylation is a mechanism of epigenetic regulation that is common to all vertebrates. Functional studies underscore its relevance for tissue homeostasis, but the global dynamics of DNA methylation during in vivo differentiation remain underexplored. Here we report high-resolution DNA methylation maps of adult stem cell differentiation in mouse, focusing on 19 purified cell populations of the blood and skin lineages. DNA methylation changes were locus-specific and relatively modest in magnitude. They frequently overlapped with lineage-associated transcription factors and their binding sites, suggesting that DNA methylation may protect cells from aberrant transcription factor activation. DNA methylation and gene expression provided complementary information, and combining the two enabled us to infer the cellular differentiation hierarchy of the blood lineage directly from genomic data. In summary, these results demonstrate that in vivo differentiation of adult stem cells is associated with small but informative changes in the genomic distribution of DNA methylation. PMID:22841485
Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer
Marzese, Diego M.; Hoon, Dave S.B.
2015-01-01
DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping were recently developed and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers. PMID:25797072
Bonello, Nicolas; Sampson, James; Burn, John; Wilson, Ian J; McGrown, Gail; Margison, Geoff P; Thorncroft, Mary; Crossbie, Philip; Povey, Andrew C; Santibanez-Koref, Mauro; Walters, Kevin
2013-11-07
We exploit model-based Bayesian inference methodologies to analyse lung tumour-derived methylation data from a CpG island in the O6-methylguanine-DNA methyltransferase (MGMT) promoter. Interest is in modelling the changes in methylation patterns in a CpG island in the first exon of the promoter during lung tumour development. We propose four competils of methylation state propagation based on two mechanisms. The first is the location-dependence mechanism in which the probability of a gain or loss of methylation at a CpG within the promoter depends upon its location in the CpG sequence. The second mechanism is that of neighbour-dependence in which gain or loss of methylation at a CpG depends upon the methylation status of the immediately preceding CpG. Our data comprises the methylation status at 12 CpGs near the 5' end of the CpG island in two lung tumour samples for both alleles of a nearby polymorphism. We use approximate Bayesian computation, a computationally intensive rejection-sampling algorithm to infer model parameters and compare models without the need to evaluate the likelihood function. We compare the four proposed models using two criteria: the approximate Bayes factors and the distribution of the Euclidean distance between the summary statistics of the observed and simulated datasets. Our model-based analysis demonstrates compelling evidence for both location and neighbour dependence in the process of aberrant DNA methylation of this MGMT promoter CpG island in lung tumours. We find equivocal evidence to support the hypothesis that the methylation patterns of the two alleles evolve independently. © 2013 Published by Elsevier Ltd. All rights reserved.
Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S.
2016-01-01
Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region. PMID:26657508
Singhal, Sandeep K; Usmani, Nawaid; Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S; Kovalchuk, Olga; Parliament, Matthew
2016-01-19
Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.
Arachidonic and oleic acid exert distinct effects on the DNA methylome
Silva-Martínez, Guillermo A.; Rodríguez-Ríos, Dalia; Alvarado-Caudillo, Yolanda; Vaquero, Alejandro; Esteller, Manel; Carmona, F. Javier; Moran, Sebastian; Nielsen, Finn C.; Wickström-Lindholm, Marie; Wrobel, Katarzyna; Wrobel, Kazimierz; Barbosa-Sabanero, Gloria; Zaina, Silvio; Lund, Gertrud
2016-01-01
ABSTRACT Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1–200 μM range, respectively, with a maximal differential response at the 100 μM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to β-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts. PMID:27088456
Jelinek, Jaroslav; Liang, Shoudan; Lu, Yue; He, Rong; Ramagli, Louis S.; Shpall, Elizabeth J.; Estecio, Marcos R.H.; Issa, Jean-Pierre J.
2012-01-01
Genome wide analysis of DNA methylation provides important information in a variety of diseases, including cancer. Here, we describe a simple method, Digital Restriction Enzyme Analysis of Methylation (DREAM), based on next generation sequencing analysis of methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and XmaI enzymes. DREAM provides information on 150,000 unique CpG sites, of which 39,000 are in CpG islands and 30,000 are at transcription start sites of 13,000 RefSeq genes. We analyzed DNA methylation in healthy white blood cells and found methylation patterns to be remarkably uniform. Inter individual differences > 30% were observed only at 227 of 28,331 (0.8%) of autosomal CpG sites. Similarly, > 30% differences were observed at only 59 sites when we comparing the cord and adult blood. These conserved methylation patterns contrasted with extensive changes affecting 18–40% of CpG sites in a patient with acute myeloid leukemia and in two leukemia cell lines. The method is cost effective, quantitative (r2 = 0.93 when compared with bisulfite pyrosequencing) and reproducible (r2 = 0.997). Using 100-fold coverage, DREAM can detect differences in methylation greater than 10% or 30% with a false positive rate below 0.05 or 0.001, respectively. DREAM can be useful in quantifying epigenetic effects of environment and nutrition, correlating developmental epigenetic variation with phenotypes, understanding epigenetics of cancer and chronic diseases, measuring the effects of drugs on DNA methylation or deriving new biological insights into mammalian genomes. PMID:23075513
Suehiro, Yutaka; Hashimoto, Shinichi; Higaki, Shingo; Fujii, Ikuei; Suzuki, Chieko; Hoshida, Tomomi; Matsumoto, Toshihiko; Yamaoka, Yuko; Takami, Taro; Sakaida, Isao; Yamasaki, Takahiro
2018-03-30
Although methylated TWIST1 is a biomarker of colorectal neoplasia, its detection from serum samples is very difficult by conventional bisulfite-based methylation assays. Therefore, we have developed a new methylation assay that enables counting of even one copy of a methylated gene in a small DNA sample amount without DNA bisulfite treatment. We performed this study to evaluate the sensitivity and specificity of serum DNA testing by the new methylation assay in combination with and without the fecal immunochemical test for hemoglobin for the detection of colorectal neoplasia. This study comprised 113 patients with colorectal neoplasia and 25 control individuals. For the new methylation assay, DNA was treated in two stages with methylation-sensitive restriction enzymes, followed by measurement of copy numbers of hTERT and methylated TWIST1 by multiplex droplet digital PCR. The fecal immunochemical test had a sensitivity of 8.0% for non-advanced adenoma, 24.3% for advanced adenoma, and 44.4% for colorectal cancer, and a specificity of 88.0%. The new assay had a sensitivity of 36.0% for non-advanced adenoma, 30.0% for advanced adenoma, and 44.4% for colorectal cancer, and a specificity of 92.0%. Combination of the both tests increased the sensitivity to 40.0%, 45.7%, and 72.2% for the detection of non-advanced adenoma, advanced adenoma, and colorectal cancer, respectively, and resulted in a specificity of 84.0%. Combination of both tests may provide an alternative screening strategy for colorectal neoplasia including potentially precancerous lesions and colorectal cancer.
Sun, Yueying; Sun, Yuanyuan; Tian, Weimin; Liu, Chenghui; Gao, Kejian; Li, Zhengping
2018-02-07
Sensitive and accurate detection of site-specific DNA methylation is of critical significance for early diagnosis of human diseases, especially cancers. Herein, for the first time we employ a novel methylation-dependent restriction endonuclease GlaI to detect site-specific DNA methylation in a highly specific and sensitive way by coupling with isothermal exponential amplification reaction (EXPAR). GlaI can only cut the methylated target site with excellent selectivity but leave the unmethylated DNA intact. Then the newly exposed end fragments of methylated DNA can trigger EXPAR for highly efficient signal amplification while the intact unmethylated DNA will not initiate EXPAR at all. As such, only the methylated DNA is quantitatively and faithfully reflected by the real-time fluorescence signal of the GlaI-EXPAR system, and the potential false positive interference from unmethylated DNA can be effectively eliminated. Therefore, by integrating the unique features of GlaI for highly specific methylation discrimination and EXPAR for rapid and powerful signal amplification, the elegant GlaI-EXPAR assay allows the direct quantification of methylated DNA with ultrahigh sensitivity and accuracy. The detection limit of methylated DNA target has been pushed down to the aM level and the whole detection process of GlaI-EXPAR can be accomplished within a short time of 2 h. More importantly, ultrahigh specificity is achieved and as low as 0.01% methylated DNA can be clearly identified in the presence of a large excess of unmethylated DNA. This GlaI-EXPAR is also demonstrated to be capable of determining site-specific DNA methylations in real genomic DNA samples. Sharing the distinct advantages of ultrahigh sensitivity, outstanding specificity and facile operation, this new GlaI-EXPAR strategy may provide a robust and reliable platform for the detection of site-specific DNA methylations with low abundances.
Methionine increases BDNF DNA methylation and improves memory in epilepsy.
Parrish, R Ryley; Buckingham, Susan C; Mascia, Katherine L; Johnson, Jarvis J; Matyjasik, Michal M; Lockhart, Roxanne M; Lubin, Farah D
2015-04-01
Temporal lobe epilepsy (TLE) patients exhibit signs of memory impairments even when seizures are pharmacologically controlled. Surprisingly, the underlying molecular mechanisms involved in TLE-associated memory impairments remain elusive. Memory consolidation requires epigenetic transcriptional regulation of genes in the hippocampus; therefore, we aimed to determine how epigenetic DNA methylation mechanisms affect learning-induced transcription of memory-permissive genes in the epileptic hippocampus. Using the kainate rodent model of TLE and focusing on the brain-derived neurotrophic factor (Bdnf) gene as a candidate of DNA methylation-mediated transcription, we analyzed DNA methylation levels in epileptic rats following learning. After detection of aberrant DNA methylation at the Bdnf gene, we investigated functional effects of altered DNA methylation on hippocampus-dependent memory formation in our TLE rodent model. We found that behaviorally driven BdnfDNA methylation was associated with hippocampus-dependent memory deficits. Bisulfite sequencing revealed that decreased BdnfDNA methylation levels strongly correlated with abnormally high levels of BdnfmRNA in the epileptic hippocampus during memory consolidation. Methyl supplementation via methionine (Met) increased BdnfDNA methylation and reduced BdnfmRNA levels in the epileptic hippocampus during memory consolidation. Met administration reduced interictal spike activity, increased theta rhythm power, and reversed memory deficits in epileptic animals. The rescue effect of Met treatment on learning-induced BdnfDNA methylation, Bdnf gene expression, and hippocampus-dependent memory, were attenuated by DNA methyltransferase blockade. Our findings suggest that manipulation of DNA methylation in the epileptic hippocampus should be considered as a viable treatment option to ameliorate memory impairments associated with TLE.
Crystal structure of MboIIA methyltransferase.
Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej
2003-09-15
DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.
The Control Region of Mitochondrial DNA Shows an Unusual CpG and Non-CpG Methylation Pattern
Bellizzi, Dina; D'Aquila, Patrizia; Scafone, Teresa; Giordano, Marco; Riso, Vincenzo; Riccio, Andrea; Passarino, Giuseppe
2013-01-01
DNA methylation is a common epigenetic modification of the mammalian genome. Conflicting data regarding the possible presence of methylated cytosines within mitochondrial DNA (mtDNA) have been reported. To clarify this point, we analysed the methylation status of mtDNA control region (D-loop) on human and murine DNA samples from blood and cultured cells by bisulphite sequencing and methylated/hydroxymethylated DNA immunoprecipitation assays. We found methylated and hydroxymethylated cytosines in the L-strand of all samples analysed. MtDNA methylation particularly occurs within non-C-phosphate-G (non-CpG) nucleotides, mainly in the promoter region of the heavy strand and in conserved sequence blocks, suggesting its involvement in regulating mtDNA replication and/or transcription. We observed DNA methyltransferases within the mitochondria, but the inactivation of Dnmt1, Dnmt3a, and Dnmt3b in mouse embryonic stem (ES) cells results in a reduction of the CpG methylation, while the non-CpG methylation shows to be not affected. This suggests that D-loop epigenetic modification is only partially established by these enzymes. Our data show that DNA methylation occurs in the mtDNA control region of mammals, not only at symmetrical CpG dinucleotides, typical of nuclear genome, but in a peculiar non-CpG pattern previously reported for plants and fungi. The molecular mechanisms responsible for this pattern remain an open question. PMID:23804556
Coluccio, Andrea; Ecco, Gabriela; Duc, Julien; Offner, Sandra; Turelli, Priscilla; Trono, Didier
2018-02-26
The KZFP/KAP1 (KRAB zinc finger proteins/KRAB-associated protein 1) system plays a central role in repressing transposable elements (TEs) and maintaining parent-of-origin DNA methylation at imprinting control regions (ICRs) during the wave of genome-wide reprogramming that precedes implantation. In naïve murine embryonic stem cells (mESCs), the genome is maintained highly hypomethylated by a combination of TET-mediated active demethylation and lack of de novo methylation, yet KAP1 is tethered by sequence-specific KZFPs to ICRs and TEs where it recruits histone and DNA methyltransferases to impose heterochromatin formation and DNA methylation. Here, upon removing either KAP1 or the cognate KZFP, we observed rapid TET2-dependent accumulation of 5hmC at both ICRs and TEs. In the absence of the KZFP/KAP1 complex, ICRs lost heterochromatic histone marks and underwent both active and passive DNA demethylation. For KAP1-bound TEs, 5mC hydroxylation correlated with transcriptional reactivation. Using RNA-seq, we further compared the expression profiles of TEs upon Kap1 removal in wild-type, Dnmt and Tet triple knockout mESCs. While we found that KAP1 represents the main effector of TEs repression in all three settings, we could additionally identify specific groups of TEs further controlled by DNA methylation. Furthermore, we observed that in the absence of TET proteins, activation upon Kap1 depletion was blunted for some TE integrants and increased for others. Our results indicate that the KZFP/KAP1 complex maintains heterochromatin and DNA methylation at ICRs and TEs in naïve embryonic stem cells partly by protecting these loci from TET-mediated demethylation. Our study further unveils an unsuspected level of complexity in the transcriptional control of the endovirome by demonstrating often integrant-specific differential influences of histone-based heterochromatin modifications, DNA methylation and 5mC oxidation in regulating TEs expression.
Movahedi, Ali; Zhang, Jiaxin; Sun, Weibo; Mohammadi, Kourosh; Almasi Zadeh Yaghuti, Amir; Wei, Hui; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang
2018-06-01
Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA). Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Herrera, Carlos M; Alonso, Conchita; Medrano, Mónica; Pérez, Ricardo; Bazaga, Pilar
2018-04-01
The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants. © 2018 Botanical Society of America.
Spectroscopic studies of STZ-induced methylated-DNA in both in vivo and in vitro conditions
NASA Astrophysics Data System (ADS)
Bathaie, S. Z.; Sedghgoo, F.; Jafarnejad, A.; Farzami, B.; Khayatian, M.
2008-12-01
Alkylating agents after formation of DNA adduct not only posses their harmful role on living cells but also can transfer this information to the next generation. Different techniques have been introduced to study the alkylated DNA, most of which are specific and designed for investigation of specific target DNA. But the exact differences between spectroscopic and functional properties of alkylated DNA are not seen in the literature. In the present study DNA was methylated using streptozotocin (STZ) by both in vitro and in vivo protocols, then methylated-DNA was investigated by various techniques. Our results show that (1) the binding of ethidium bromide as an intercalating dye decreases to methylated-DNA in comparison with normal DNA, (2) CD spectra of methylated-DNA show changes including a decrease in the positive band at 275 nm and a shift from 258 nm crossover to a longer wavelength, which is caused by reduction of water around it, due to the presence of additional hydrophobic methyl groups, (3) the stability of methylated-DNA against DTAB as a denaturant is decreased and (4) the enzyme-like activity of methylated-DNA in an electron transfer reaction is reduced. In conclusion, additional methyl groups not only protrude water around DNA, but also cause the loss of hydrogen bonding, loosening of conformation, preventing desired interactions and thus normal function of DNA.
Wippermann, Anna; Noll, Thomas
2017-09-20
Chinese hamster ovary (CHO) cells account for the production of the majority of biopharmaceutical molecules - however, the molecular basis for their versatile properties is not entirely understood yet and the underlying cellular processes need to be characterized in detail. One such process that is supposed to contribute significantly to CHO cell phenotype is methylation of DNA at cytosine residues. DNA methylation was shown to be involved in several central biological processes in humans and to contribute to diseases like cancer. Early studies of DNA methylation in CHO mostly focused on methylation of single recombinant genes and promoters and proved a correlation between DNA methylation status and recombinant gene expression or production stability. More recent publications utilized the CHO genomic and transcriptomic data available since 2011 and provided first insights into the CHO DNA methylation landscape and DNA methylation changes in response to effector molecules or culture conditions. Generally, further genome-wide studies of DNA methylation in CHO will be required to shed light on the relevance of this process regarding biopharmaceuticals production and might, e.g., address a potential link between CHO cell metabolism and DNA methylation or provide novel targets for rational cell line engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
Reynolds, Lindsay M.; Lohman, Kurt; Pittman, Gary S.; Barr, R. Graham; Chi, Gloria C.; Kaufman, Joel; Wan, Ma; Bell, Douglas A.; Blaha, Michael J.; Rodriguez, Carlos J.; Liu, Yongmei
2017-01-01
ABSTRACT Alterations in DNA methylation and gene expression in blood leukocytes are potential biomarkers of harm and mediators of the deleterious effects of tobacco exposure. However, methodological issues, including the use of self-reported smoking status and mixed cell types have made previously identified alterations in DNA methylation and gene expression difficult to interpret. In this study, we examined associations of tobacco exposure with DNA methylation and gene expression, utilizing a biomarker of tobacco exposure (urine cotinine) and CD14+ purified monocyte samples from 934 participants of the community-based Multi-Ethnic Study of Atherosclerosis (MESA). Urine cotinine levels were measured using an immunoassay. DNA methylation and gene expression were measured with microarrays. Multivariate linear regression was used to test for associations adjusting for age, sex, race/ethnicity, education, and study site. Urine cotinine levels were associated with methylation of 176 CpGs [false discovery rate (FDR)<0.01]. Four CpGs not previously identified by studies of non-purified blood samples nominally replicated (P value<0.05) with plasma cotinine-associated methylation in 128 independent monocyte samples. Urine cotinine levels associated with expression of 12 genes (FDR<0.01), including increased expression of P2RY6 (Beta ± standard error = 0.078 ± 0.008, P = 1.99 × 10−22), a gene previously identified to be involved in the release of pro-inflammatory cytokines. No cotinine-associated (FDR<0.01) methylation profiles significantly (FDR<0.01) correlated with cotinine-associated (FDR<0.01) gene expression profiles. In conclusion, our findings i) identify potential monocyte-specific smoking-associated methylation patterns and ii) suggest that alterations in methylation may not be a main mechanism regulating gene expression in monocytes in response to cigarette smoking. PMID:29166816
Next Generation Epigenetic Detection Technique: Identifying Methylated DNA using Graphene Nanopore
NASA Astrophysics Data System (ADS)
Ahmed, Towfiq; Haraldsen, Jason T.; Zhu, Jian-Xin; Balatsky, A. V.
2014-03-01
DNA methylation plays a pivotal role in the genetic evolution of both embryonic and adult cells.Unusual methylation on CPG islands are identified as the prime causes for silencing the tumor suppressant genes. Early detection of such methylation can diagnose the potentially harmful oncogenic evolution of cells, and provide a promising guideline for cancer prevention.We propose a detection technique and calculate the transport current through punctured graphene as the cytosine and methylated cytosine translocate through the nanopore. We also calculate the transport properties for uracil and cyano-cytosine to compare. Our calculations of transmission, current and tunneling conductance show distinct signatures in their spectrum for each molecular type. Our theoretical study provides a next generation detection technique for identifying DNA methylation using graphene based nanopore device. This work was supported by U.S. DOE Office of Basic Energy Sciences, and by VR 621-2012-2983 and ERC 321031-DM. This work was, in part, supported by the Center for Integrated Nanotechnologies, a U.S. DOE BES user facility.
In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse
Morselli, Marco; Pastor, William A; Montanini, Barbara; Nee, Kevin; Ferrari, Roberto; Fu, Kai; Bonora, Giancarlo; Rubbi, Liudmilla; Clark, Amander T; Ottonello, Simone; Jacobsen, Steven E; Pellegrini, Matteo
2015-01-01
Methylation of cytosines (5meC) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here, we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine DNMT3B. Our data demonstrate that DNMT3B and H3K4 methylation are mutually exclusive and that DNMT3B is co-localized with H3K36 methylated regions. In support of this observation, DNA methylation analysis in yeast strains without Set1 and Set2 shows an increase of relative 5meC levels at the transcription start site and a decrease in the gene-body, respectively. We extend our observation to the murine male germline, where H3K4me3 is strongly anti-correlated while H3K36me3 correlates with accelerated DNA methylation. These results show the importance of H3K36 methylation for gene-body DNA methylation in vivo. DOI: http://dx.doi.org/10.7554/eLife.06205.001 PMID:25848745
Dynamic DNA methylation reconfiguration during seed development and germination.
Kawakatsu, Taiji; Nery, Joseph R; Castanon, Rosa; Ecker, Joseph R
2017-09-15
Unlike animals, plants can pause their life cycle as dormant seeds. In both plants and animals, DNA methylation is involved in the regulation of gene expression and genome integrity. In animals, reprogramming erases and re-establishes DNA methylation during development. However, knowledge of reprogramming or reconfiguration in plants has been limited to pollen and the central cell. To better understand epigenetic reconfiguration in the embryo, which forms the plant body, we compared time-series methylomes of dry and germinating seeds to publicly available seed development methylomes. Time-series whole genome bisulfite sequencing reveals extensive gain of CHH methylation during seed development and drastic loss of CHH methylation during germination. These dynamic changes in methylation mainly occur within transposable elements. Active DNA methylation during seed development depends on both RNA-directed DNA methylation and heterochromatin formation pathways, whereas global demethylation during germination occurs in a passive manner. However, an active DNA demethylation pathway is initiated during late seed development. This study provides new insights into dynamic DNA methylation reprogramming events during seed development and germination and suggests possible mechanisms of regulation. The observed sequential methylation/demethylation cycle suggests an important role of DNA methylation in seed dormancy.
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved
Long, Hannah K.; King, Hamish W.; Patient, Roger K.; Odom, Duncan T.; Klose, Robert J.
2016-01-01
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945
Ferry, Laure; Fournier, Alexandra; Tsusaka, Takeshi; Adelmant, Guillaume; Shimazu, Tadahiro; Matano, Shohei; Kirsh, Olivier; Amouroux, Rachel; Dohmae, Naoshi; Suzuki, Takehiro; Filion, Guillaume J; Deng, Wen; de Dieuleveult, Maud; Fritsch, Lauriane; Kudithipudi, Srikanth; Jeltsch, Albert; Leonhardt, Heinrich; Hajkova, Petra; Marto, Jarrod A; Arita, Kyohei; Shinkai, Yoichi; Defossez, Pierre-Antoine
2017-08-17
DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.
Dou, Lingling; Jia, Xiaoyun; Wei, Hengling; Fan, Shuli; Wang, Hantao; Guo, Yaning; Duan, Shan; Pang, Chaoyou; Yu, Shuxun
2017-01-01
DNA methylation is an important epigenetic modification regulating gene expression, genomic imprinting, transposon silencing and chromatin structure in plants and plays an important role in leaf senescence. However, the DNA methylation pattern during Gossypium hirsutum L. cotyledon senescence is poorly understood. In this study, global DNA methylation patterns were compared between two cotyledon development stages, young (J1) and senescence (J2), using methylated DNA immunoprecipitation (MeDIP-Seq). Methylated cytosine occurred mostly in repeat elements, especially LTR/Gypsy in both J1 and J2. When comparing J1 against J2, there were 1222 down-methylated genes and 623 up-methylated genes. Methylated genes were significantly enriched in carbohydrate metabolism, biosynthesis of other secondary metabolites and amino acid metabolism pathways. The global DNA methylation level decreased from J1 to J2, especially in gene promoters, transcriptional termination regions and regions around CpG islands. We further investigated the expression patterns of 9 DNA methyltransferase-associated genes and 2 DNA demethyltransferase-associated genes from young to senescent cotyledons, which were down-regulated during cotyledon development. In this paper, we first reported that senescent cotton cotyledons exhibited lower DNA methylation levels, primarily due to decreased DNA methyltransferase activity and which also play important role in regulating secondary metabolite process. PMID:28715427
Epigenetic stability, adaptability, and reversibility in human embryonic stem cells
Tompkins, Joshua D.; Hall, Christine; Chen, Vincent Chang-yi; Li, Arthur Xuejun; Wu, Xiwei; Hsu, David; Couture, Larry A.; Riggs, Arthur D.
2012-01-01
The stability of human embryonic stem cells (hESCs) is of critical importance for both experimental and clinical applications. We find that as an initial response to altered culture conditions, hESCs change their transcription profile for hundreds of genes and their DNA methylation profiles for several genes outside the core pluripotency network. After adaption to conditions of feeder-free defined and/or xeno-free culture systems, expression and DNA methylation profiles are quite stable for additional passaging. However, upon reversion to the original feeder-based culture conditions, numerous transcription changes are not reversible. Similarly, although the majority of DNA methylation changes are reversible, highlighting the plasticity of DNA methylation, a few are persistent. Collectively, this indicates these cells harbor a memory of culture history. For culture-induced DNA methylation changes, we also note an intriguing correlation: hypomethylation of regions 500–2440 bp upstream of promoters correlates with decreased expression, opposite to that commonly seen at promoter-proximal regions. Lastly, changes in regulation of G-coupled protein receptor pathways provide a partial explanation for many of the unique transcriptional changes observed during hESC adaptation and reverse adaptation. PMID:22802633
Global changes in DNA methylation in Alzheimer's disease peripheral blood mononuclear cells.
Di Francesco, Andrea; Arosio, Beatrice; Falconi, Anastasia; Micioni Di Bonaventura, Maria Vittoria; Karimi, Mohsen; Mari, Daniela; Casati, Martina; Maccarrone, Mauro; D'Addario, Claudio
2015-03-01
Changes in epigenetic marks may help explain the late onset of Alzheimer's disease (AD). In this study we measured genome-wide DNA methylation by luminometric methylation assay, a quantitative measurement of genome-wide DNA methylation, on DNA isolated from peripheral blood mononuclear cells of 37 subjects with late-onset AD (LOAD) and 44 healthy controls (CT). We found an increase in global DNA methylation in LOAD subjects compared to CT (p=0.0122), associated with worse cognitive performances (p=0.0002). DNA hypermethylation in LOAD group was paralleled by higher DNA methyltransferase 1 (DNMT1) gene expression and protein levels. When data were stratified on the basis of the APOE polymorphisms, higher DNA methylation levels were associated with the presence of APOE ε4 allele (p=0.0043) in the global population. Among the APOE ε3 carriers, a significant increase of DNA methylation was still observed in LOAD patients compared to healthy controls (p=0.05). Our data suggest global DNA methylation in peripheral samples as a useful marker for screening individuals at risk of developing AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Can 5-methylcytosine analogues with extended alkyl side chains guide DNA methylation?
Kotandeniya, D; Seiler, C L; Fernandez, J; Pujari, S S; Curwick, L; Murphy, K; Wickramaratne, S; Yan, S; Murphy, D; Sham, Yuk Y; Tretyakova, N Y
2018-01-25
5-Methylcytosine ( Me C) is an endogenous modification of DNA that plays a crucial role in DNA-protein interactions, chromatin structure, epigenetic regulation, and DNA repair. Me C is produced via enzymatic methylation of the C-5 position of cytosine by DNA-methyltransferases (DNMT) which use S-adenosylmethionine (SAM) as a cofactor. Hemimethylated CG dinucleotides generated as a result of DNA replication are specifically recognized and methylated by maintenance DNA methyltransferase 1 (DNMT1). The accuracy of DNMT1-mediated methylation is essential for preserving tissue-specific DNA methylation and thus gene expression patterns. In the present study, we synthesized DNA duplexes containing MeC analogues with modified C-5 side chains and examined their ability to guide cytosine methylation by the human DNMT1 protein. We found that the ability of 5-alkylcytosines to direct cytosine methylation decreased with increased alkyl chain length and rigidity (methyl > ethyl > propyl ∼ vinyl). Molecular modeling studies indicated that this loss of activity may be caused by the distorted geometry of the DNA-protein complex in the presence of unnatural alkylcytosines.
Tang, Qiuqiong; Holland-Letz, Tim; Slynko, Alla; Cuk, Katarina; Marme, Frederik; Schott, Sarah; Heil, Jörg; Qu, Bin; Golatta, Michael; Bewerunge-Hudler, Melanie; Sutter, Christian; Surowy, Harald; Wappenschmidt, Barbara; Schmutzler, Rita; Hoth, Markus; Bugert, Peter; Bartram, Claus R; Sohn, Christof; Schneeweiss, Andreas; Yang, Rongxi; Burwinkel, Barbara
2016-09-27
DNA methylation changes in peripheral blood DNA have been shown to be associated with solid tumors. We sought to identify methylation alterations in whole blood DNA that are associated with breast cancer (BC). Epigenome-wide DNA methylation profiling on blood DNA from BC cases and healthy controls was performed by applying Infinium HumanMethylation450K BeadChips. Promising CpG sites were selected and validated in three independent larger sample cohorts via MassARRAY EpiTyper assays. CpG sites located in three genes (cg06418238 in RPTOR, cg00736299 in MGRN1 and cg27466532 in RAPSN), which showed significant hypomethylation in BC patients compared to healthy controls in the discovery cohort (p < 1.00 x 10-6) were selected and successfully validated in three independent cohorts (validation I, n =211; validation II, n=378; validation III, n=520). The observed methylation differences are likely not cell-type specific, as the differences were only seen in whole blood, but not in specific sub cell-types of leucocytes. Moreover, we observed in quartile analysis that women in the lower methylation quartiles of these three loci had higher ORs than women in the higher quartiles. The combined AUC of three loci was 0.79 (95%CI 0.73-0.85) in validation cohort I, and was 0.60 (95%CI 0.54-0.66) and 0.62 (95%CI 0.57-0.67) in validation cohort II and III, respectively. Our study suggests that hypomethylation of CpG sites in RPTOR, MGRN1 and RAPSN in blood is associated with BC and might serve as blood-based marker supplements for BC if these could be verified in prospective studies.
Howard, Timothy D; Hsu, Fang-Chi; Chen, Haiying; Quandt, Sara A; Talton, Jennifer W; Summers, Phillip; Arcury, Thomas A
2016-10-01
The occupational risk to farmworkers, particularly chronic exposure to pesticides, is an acknowledged environmental and work-related health problem. Epigenetics has recently been shown to contribute to a number of complex diseases and traits, including measures of cognitive function and preclinical neurodegenerative disease. We sought to determine whether changes in DNA methylation existed between farmworker and non-farmworker populations and to identify the genes most likely involved in those changes. Eighty-three farmworkers and 60 non-farmworkers were selected from PACE4, a community-based, participatory research project comparing occupational exposures between immigrant Latino farmworker and non-farmworker manual workers. Measurements of DNA methylation were performed with the Infinium HumanMethylation450 BeadChip, at the beginning and end of the 2012 growing season. Bonferroni adjustment was used to identify significant findings (p = 1.03 × 10(-7), based on 485,000 tested methylation sites), although less stringent criteria (i.e., p ≤ 1 × 10(-6)) were used to identify sites of interest. Expression quantitative trait locus (eQTL) databases were used to help identify the most likely functional genes for each associated methylation site. Methylation at 36 CpG sites, located in or near 72 genes, differed between the two groups (p ≤ 1 × 10(-6)). The difference between the two groups was generally due to an increase in methylation in the farmworkers and a slight decrease in methylation in the non-farmworkers. Enrichment was observed in several biological pathways, including those involved in the immune response, as well as growth hormone signaling, role of BRCA1 in DNA damage response, p70S6K signaling, and PI3K signaling in B lymphocytes. We identified considerable changes in DNA methylation at 36 CpG sites over the growing season that differed between farmworkers and non-farmworkers. Dominant pathways included immune-related (HLA) processes, as well as a number of diverse biological systems. Further studies are necessary to determine which exposures or behaviors are responsible for the observed changes, and whether these changes eventually lead to disease-related phenotypes in this population.
Understanding the relationship between DNA methylation and histone lysine methylation☆
Rose, Nathan R.; Klose, Robert J.
2014-01-01
DNA methylation acts as an epigenetic modification in vertebrate DNA. Recently it has become clear that the DNA and histone lysine methylation systems are highly interrelated and rely mechanistically on each other for normal chromatin function in vivo. Here we examine some of the functional links between these systems, with a particular focus on several recent discoveries suggesting how lysine methylation may help to target DNA methylation during development, and vice versa. In addition, the emerging role of non-methylated DNA found in CpG islands in defining histone lysine methylation profiles at gene regulatory elements will be discussed in the context of gene regulation. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. PMID:24560929
Bae, Sajin; Ulrich, Cornelia M; Bailey, Lynn B; Malysheva, Olga; Brown, Elissa C; Maneval, David R; Neuhouser, Marian L; Cheng, Ting-Yuan David; Miller, Joshua W; Zheng, Yingye; Xiao, Liren; Hou, Lifang; Song, Xiaoling; Buck, Katharina; Beresford, Shirley A A; Caudill, Marie A
2014-03-01
DNA methylation is an epigenetic mechanism that regulates gene expression and can be modified by one-carbon nutrients. The objective of this study was to investigate the impact of folic acid (FA) fortification of the US food supply on leukocyte global DNA methylation and the relationship between DNA methylation, red blood cell (RBC) folate, and other one-carbon biomarkers among postmenopausal women enrolled in the Women's Health Initiative Observational Study. We selected 408 women from the highest and lowest tertiles of RBC folate distribution matching on age and timing of the baseline blood draw, which spanned the pre- (1994-1995), peri- (1996-1997), or post-fortification (1998) periods. Global DNA methylation was assessed by liquid chromatography-tandem mass spectrometry and expressed as a percentage of total cytosine. We observed an interaction (P = 0.02) between fortification period and RBC folate in relation to DNA methylation. Women with higher (vs. lower) RBC folate had higher mean DNA methylation (5.12 vs. 4.99%; P = 0.05) in the pre-fortification period, but lower (4.95 vs. 5.16%; P = 0.03) DNA methylation in the post-fortification period. We also observed significant correlations between one-carbon biomarkers and DNA methylation in the pre-fortification period, but not in the peri- or post-fortification period. The correlation between plasma homocysteine and DNA methylation was reversed from an inverse relationship during the pre-fortification period to a positive relationship during the post-fortification period. Our data suggest that (1) during FA fortification, higher RBC folate status is associated with a reduction in leukocyte global DNA methylation among postmenopausal women and; (2) the relationship between one-carbon biomarkers and global DNA methylation is dependent on folate availability.
Densely ionizing radiation affects DNA methylation of selective LINE-1 elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prior, Sara; Miousse, Isabelle R.
Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promotermore » type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.« less
Epigenetic Patterns of PTSD: DNA Methylation in Serum of OIF/OEF Service Members
2009-03-01
DNA methylation patterns in cytokines in soldiers prior to OIF or OEF deployment; serum derived DNA is being used. PTSD cases with existing serum...having an outpatient record with a primary diagnosis of PTSD, based on ICD-9 codes; an appropriate control group was identified. For each PTSD case ... cases and controls and between pre- and post-deployments of each group. We will also measure levels of these specific cytokines using an ELISA
Curcumin modulates DNA methylation in colorectal cancer cells.
Link, Alexander; Balaguer, Francesc; Shen, Yan; Lozano, Juan Jose; Leung, Hon-Chiu E; Boland, C Richard; Goel, Ajay
2013-01-01
Recent evidence suggests that several dietary polyphenols may exert their chemopreventive effect through epigenetic modifications. Curcumin is one of the most widely studied dietary chemopreventive agents for colon cancer prevention, however, its effects on epigenetic alterations, particularly DNA methylation, remain unclear. Using systematic genome-wide approaches, we aimed to elucidate the effect of curcumin on DNA methylation alterations in colorectal cancer cells. To evaluate the effect of curcumin on DNA methylation, three CRC cell lines, HCT116, HT29 and RKO, were treated with curcumin. 5-aza-2'-deoxycytidine (5-aza-CdR) and trichostatin A treated cells were used as positive and negative controls for DNA methylation changes, respectively. Methylation status of LINE-1 repeat elements, DNA promoter methylation microarrays and gene expression arrays were used to assess global methylation and gene expression changes. Validation was performed using independent microarrays, quantitative bisulfite pyrosequencing, and qPCR. As expected, genome-wide methylation microarrays revealed significant DNA hypomethylation in 5-aza-CdR-treated cells (mean β-values of 0.12), however, non-significant changes in mean β-values were observed in curcumin-treated cells. In comparison to mock-treated cells, curcumin-induced DNA methylation alterations occurred in a time-dependent manner. In contrast to the generalized, non-specific global hypomethylation observed with 5-aza-CdR, curcumin treatment resulted in methylation changes at selected, partially-methylated loci, instead of fully-methylated CpG sites. DNA methylation alterations were supported by corresponding changes in gene expression at both up- and down-regulated genes in various CRC cell lines. Our data provide previously unrecognized evidence for curcumin-mediated DNA methylation alterations as a potential mechanism of colon cancer chemoprevention. In contrast to non-specific global hypomethylation induced by 5-aza-CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical.
Curcumin Modulates DNA Methylation in Colorectal Cancer Cells
Link, Alexander; Balaguer, Francesc; Shen, Yan; Lozano, Juan Jose; Leung, Hon-Chiu E.; Boland, C. Richard; Goel, Ajay
2013-01-01
Aim Recent evidence suggests that several dietary polyphenols may exert their chemopreventive effect through epigenetic modifications. Curcumin is one of the most widely studied dietary chemopreventive agents for colon cancer prevention, however, its effects on epigenetic alterations, particularly DNA methylation, remain unclear. Using systematic genome-wide approaches, we aimed to elucidate the effect of curcumin on DNA methylation alterations in colorectal cancer cells. Materials and Methods To evaluate the effect of curcumin on DNA methylation, three CRC cell lines, HCT116, HT29 and RKO, were treated with curcumin. 5-aza-2′-deoxycytidine (5-aza-CdR) and trichostatin A treated cells were used as positive and negative controls for DNA methylation changes, respectively. Methylation status of LINE-1 repeat elements, DNA promoter methylation microarrays and gene expression arrays were used to assess global methylation and gene expression changes. Validation was performed using independent microarrays, quantitative bisulfite pyrosequencing, and qPCR. Results As expected, genome-wide methylation microarrays revealed significant DNA hypomethylation in 5-aza-CdR-treated cells (mean β-values of 0.12), however, non-significant changes in mean β-values were observed in curcumin-treated cells. In comparison to mock-treated cells, curcumin-induced DNA methylation alterations occurred in a time-dependent manner. In contrast to the generalized, non-specific global hypomethylation observed with 5-aza-CdR, curcumin treatment resulted in methylation changes at selected, partially-methylated loci, instead of fully-methylated CpG sites. DNA methylation alterations were supported by corresponding changes in gene expression at both up- and down-regulated genes in various CRC cell lines. Conclusions Our data provide previously unrecognized evidence for curcumin-mediated DNA methylation alterations as a potential mechanism of colon cancer chemoprevention. In contrast to non-specific global hypomethylation induced by 5-aza-CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical. PMID:23460897
Nicoletti, Carolina Ferreira; Nonino, Carla Barbosa; de Oliveira, Bruno Affonso Parenti; Pinhel, Marcela Augusta de Souza; Mansego, Maria Luisa; Milagro, Fermin Ignacio; Zulet, Maria Angeles; Martinez, José Alfredo
2016-03-01
Weight loss can be influenced by genetic factors and epigenetic mechanisms that participate in the regulation of body weight. This study aimed to investigate whether the weight loss induced by two different obesity treatments (energy restriction or bariatric surgery) may affect global DNA methylation (LINE-1) and hydroxymethylation profile, as well as the methylation patterns in inflammatory genes. This study encompassed women from three differents groups: 1. control group (n = 9), normal weight individuals; 2. energy restriction group (n = 22), obese patients following an energy-restricted Mediterranean-based dietary treatment (RESMENA); and 3. bariatric surgery group (n = 14), obese patients underwent a hypocaloric diet followed by bariatric surgery. Anthropometric measurements and 12-h fasting blood samples were collected before the interventions and after 6 months. Lipid and glucose biomarkers, global hydroxymethylation (by ELISA), LINE-1, SERPINE-1, and IL-6 (by MS-HRM) methylation levels were assessed in all participants. Baseline LINE-1 methylation was associated with serum glucose levels whereas baseline hydroxymethylation was associated with BMI, waist circumference, total cholesterol, and triglycerides. LINE-1 and SERPINE-1 methylation levels did not change after weight loss, whereas IL-6 methylation increased after energy restriction and decreased in the bariatric surgery group. An association between SERPINE-1 methylation and weight loss responses was found. Global DNA methylation and hydroxymethylation might be biomarkers for obesity and associated comorbidities. Depending on the obesity treatment (diet or surgery), the DNA methylation patterns behave differently. Baseline SERPINE-1 methylation may be a predictor of weight loss values after bariatric surgery.
Prediction of gestational age based on genome-wide differentially methylated regions.
Bohlin, J; Håberg, S E; Magnus, P; Reese, S E; Gjessing, H K; Magnus, M C; Parr, C L; Page, C M; London, S J; Nystad, W
2016-10-07
We explored the association between gestational age and cord blood DNA methylation at birth and whether DNA methylation could be effective in predicting gestational age due to limitations with the presently used methods. We used data from the Norwegian Mother and Child Birth Cohort study (MoBa) with Illumina HumanMethylation450 data measured for 1753 newborns in two batches: MoBa 1, n = 1068; and MoBa 2, n = 685. Gestational age was computed using both ultrasound and the last menstrual period. We evaluated associations between DNA methylation and gestational age and developed a statistical model for predicting gestational age using MoBa 1 for training and MoBa 2 for predictions. The prediction model was additionally used to compare ultrasound and last menstrual period-based gestational age predictions. Furthermore, both CpGs and associated genes detected in the training models were compared to those detected in a published prediction model for chronological age. There were 5474 CpGs associated with ultrasound gestational age after adjustment for a set of covariates, including estimated cell type proportions, and Bonferroni-correction for multiple testing. Our model predicted ultrasound gestational age more accurately than it predicted last menstrual period gestational age. DNA methylation at birth appears to be a good predictor of gestational age. Ultrasound gestational age is more strongly associated with methylation than last menstrual period gestational age. The CpGs linked with our gestational age prediction model, and their associated genes, differed substantially from the corresponding CpGs and genes associated with a chronological age prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belinsky, Steven A; Palmisano, William A
A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection ofmore » lung and other cancers.« less
MethHC: a database of DNA methylation and gene expression in human cancer.
Huang, Wei-Yun; Hsu, Sheng-Da; Huang, Hsi-Yuan; Sun, Yi-Ming; Chou, Chih-Hung; Weng, Shun-Long; Huang, Hsien-Da
2015-01-01
We present MethHC (http://MethHC.mbc.nctu.edu.tw), a database comprising a systematic integration of a large collection of DNA methylation data and mRNA/microRNA expression profiles in human cancer. DNA methylation is an important epigenetic regulator of gene transcription, and genes with high levels of DNA methylation in their promoter regions are transcriptionally silent. Increasing numbers of DNA methylation and mRNA/microRNA expression profiles are being published in different public repositories. These data can help researchers to identify epigenetic patterns that are important for carcinogenesis. MethHC integrates data such as DNA methylation, mRNA expression, DNA methylation of microRNA gene and microRNA expression to identify correlations between DNA methylation and mRNA/microRNA expression from TCGA (The Cancer Genome Atlas), which includes 18 human cancers in more than 6000 samples, 6548 microarrays and 12 567 RNA sequencing data. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Garner, Justine L; Niles, Kirsten M; McGraw, Serge; Yeh, Jonathan R; Cushnie, Duncan W; Hermo, Louis; Nagano, Makoto C; Trasler, Jacquetta M
2013-11-01
Little is known about the conditions contributing to the stability of DNA methylation patterns in male germ cells. Altered folate pathway enzyme activity and methyl donor supply are two clinically significant factors that can affect the methylation of DNA. 5,10-Methylenetetrahydrofolate reductase (MTHFR) is a key folate pathway enzyme involved in providing methyl groups from dietary folate for DNA methylation. Mice heterozygous for a targeted mutation in the Mthfr gene (Mthfr(+/-)) are a good model for humans homozygous for the MTHFR 677C>T polymorphism, which is found in 10% of the population and is associated with decreased MTHFR activity and infertility. High-dose folic acid is administered as an empirical treatment for male infertility. Here, we examined MTHFR expression in developing male germ cells and evaluated DNA methylation patterns and effects of a range of methionine concentrations in spermatogonia from Mthfr(+/-) as compared to wild-type, Mthfr(+/+) mice. MTHFR was expressed in prospermatogonia and spermatogonia at times of DNA methylation acquisition in the male germline; its expression was also found in early spermatocytes and Sertoli cells. DNA methylation patterns were similar at imprinted genes and intergenic sites across chromosome 9 in neonatal Mthfr(+/+) and Mthfr(+/-) spermatogonia. Using spermatogonia from Mthfr(+/+) and Mthfr(+/-) mice in the spermatogonial stem cell (SSC) culture system, we examined the stability of DNA methylation patterns and determined effects of low or high methionine concentrations. No differences were detected between early and late passages, suggesting that DNA methylation patterns are generally stable in culture. Twenty-fold normal concentrations of methionine resulted in an overall increase in the levels of DNA methylation across chromosome 9, suggesting that DNA methylation can be perturbed in culture. Mthfr(+/-) cells showed a significantly increased variance of DNA methylation at multiple loci across chromosome 9 compared to Mthfr(+/+) cells when cultured with 0.25- to 2-fold normal methionine concentrations. Taken together, our results indicate that DNA methylation patterns in undifferentiated spermatogonia, including SSCs, are relatively stable in culture over time under conditions of altered methionine and MTHFR levels.
Keller, Thomas E; Han, Priscilla; Yi, Soojin V
2016-04-01
Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Human active X-specific DNA methylation events showing stability across time and tissues
Joo, Jihoon Eric; Novakovic, Boris; Cruickshank, Mark; Doyle, Lex W; Craig, Jeffrey M; Saffery, Richard
2014-01-01
The phenomenon of X chromosome inactivation in female mammals is well characterised and remains the archetypal example of dosage compensation via monoallelic expression. The temporal series of events that culminates in inactive X-specific gene silencing by DNA methylation has revealed a ‘patchwork' of gene inactivation along the chromosome, with approximately 15% of genes escaping. Such genes are therefore potentially subject to sex-specific imbalance between males and females. Aside from XIST, the non-coding RNA on the X chromosome destined to be inactivated, very little is known about the extent of loci that may be selectively silenced on the active X chromosome (Xa). Using longitudinal array-based DNA methylation profiling of two human tissues, we have identified specific and widespread active X-specific DNA methylation showing stability over time and across tissues of disparate origin. Our panel of X-chromosome loci subject to methylation on Xa reflects a potentially novel mechanism for controlling female-specific X inactivation and sex-specific dimorphisms in humans. Further work is needed to investigate these phenomena. PMID:24713664
Kolarova, Julia; Ammerpohl, Ole; Gutwein, Jana; Welzel, Maik; Baus, Inka; Riepe, Felix G; Eggermann, Thomas; Caliebe, Almuth; Holterhus, Paul-Martin; Siebert, Reiner; Bens, Susanne
2015-01-01
Treatment with recombinant human growth hormone (rhGH) has been consistently reported to induce transcriptional changes in various human tissues including peripheral blood. For other hormones it has been shown that the induction of such transcriptional effects is conferred or at least accompanied by DNA-methylation changes. To analyse effects of short term rhGH treatment on the DNA-methylome we investigated a total of 24 patients at baseline and after 4-day rhGH stimulation. We performed array-based DNA-methylation profiling of paired peripheral blood mononuclear cell samples followed by targeted validation using bisulfite pyrosequencing. Unsupervised analysis of DNA-methylation in this short-term treated cohort revealed clustering according to individuals rather than treatment. Supervised analysis identified 239 CpGs as significantly differentially methylated between baseline and rhGH-stimulated samples (p<0.0001, unadjusted paired t-test), which nevertheless did not retain significance after adjustment for multiple testing. An individualized evaluation strategy led to the identification of 2350 CpG and 3 CpH sites showing methylation differences of at least 10% in more than 2 of the 24 analyzed sample pairs. To investigate the long term effects of rhGH treatment on the DNA-methylome, we analyzed peripheral blood cells from an independent cohort of 36 rhGH treated children born small for gestational age (SGA) as compared to 18 untreated controls. Median treatment interval was 33 months. In line with the groupwise comparison in the short-term treated cohort no differentially methylated targets reached the level of significance in the long-term treated cohort. We identified marked intra-individual responses of DNA-methylation to short-term rhGH treatment. These responses seem to be predominately associated with immunologic functions and show considerable inter-individual heterogeneity. The latter is likely the cause for the lack of a rhGH induced homogeneous DNA-methylation signature after short- and long-term treatment, which nevertheless is well in line with generally assumed safety of rhGH treatment.
Peraza-Echeverria, S; Herrera-Valencia, V A.; Kay, A -J.
2001-07-01
The extent of DNA methylation polymorphisms was evaluated in micropropagated banana (Musa AAA cv. 'Grand Naine') derived from either the vegetative apex of the sucker or the floral apex of the male inflorescence using the methylation-sensitive amplification polymorphism (MSAP) technique. In all, 465 fragments, each representing a recognition site cleaved by either or both of the isoschizomers were amplified using eight combinations of primers. A total of 107 sites (23%) were found to be methylated at cytosine in the genome of micropropagated banana plants. In plants micropropagated from the male inflorescence explant 14 (3%) DNA methylation events were polymorphic, while plants micropropagated from the sucker explant produced 8 (1.7%) polymorphisms. No DNA methylation polymorphisms were detected in conventionally propagated banana plants. These results demonstrated the usefulness of MSAP to detect DNA methylation events in micropropagated banana plants and indicate that DNA methylation polymorphisms are associated with micropropagation.
Lai, Q Q; Liu, M D; Gu, C C; Nie, H G; Xu, X J; Li, Z H; Yang, Z; Huang, S M
2016-02-21
Evaluating DNA methyltransferase (MTase) activity has received considerable attention due to its significance in the fields of early cancer clinical diagnostics and drug discovery. Herein, we proposed a novel label-free fluorescence method for MTase activity assay by coupling double-stranded DNA (dsDNA)-templated copper nanoparticles (CuNPs) with an endonuclease-assisted signal transduction system. In this strategy, dsDNA molecules were first methylated by DNA adenine methylation (Dam) MTase and then cleaved by the methylation-sensitive restriction endonuclease DpnI. The cleaved DNA fragments could not act as efficient templates for the formation of fluorescent CuNPs and thus no fluorescence signal was produced. Under optimized experimental conditions, the developed strategy exhibited a sensitive fluorescence response to Dam MTase activity. This strategy was also demonstrated to provide an excellent platform to the inhibitor screening for Dam MTase. These results demonstrated the great potential for the practical applications of the proposed strategy for Dam MTase activity assay.
Argos, Maria; Chen, Lin; Jasmine, Farzana; Tong, Lin; Pierce, Brandon L.; Roy, Shantanu; Paul-Brutus, Rachelle; Gamble, Mary V.; Harper, Kristin N.; Parvez, Faruque; Rahman, Mahfuzar; Rakibuz-Zaman, Muhammad; Slavkovich, Vesna; Baron, John A.; Graziano, Joseph H.; Kibriya, Muhammad G.
2014-01-01
Background: Inorganic arsenic is one of the most common naturally occurring contaminants found in the environment. Arsenic is associated with a number of health outcomes, with epigenetic modification suggested as a potential mechanism of toxicity. Objective: Among a sample of 400 adult participants, we evaluated the association between arsenic exposure, as measured by blood and urinary total arsenic concentrations, and epigenome-wide white blood cell DNA methylation. Methods: We used linear regression models to examine the associations between arsenic exposure and methylation at each CpG site, adjusted for sex, age, and batch. Differentially methylated loci were subsequently examined in relation to corresponding gene expression for functional evidence of gene regulation. Results: In adjusted analyses, we observed four differentially methylated CpG sites with urinary total arsenic concentration and three differentially methylated CpG sites with blood arsenic concentration, based on the Bonferroni-corrected significance threshold of p < 1 × 10–7. Methylation of PLA2G2C (probe cg04605617) was the most significantly associated locus in relation to both urinary (p = 3.40 × 10–11) and blood arsenic concentrations (p = 1.48 × 10–11). Three additional novel methylation loci—SQSTM1 (cg01225779), SLC4A4 (cg06121226), and IGH (cg13651690)—were also significantly associated with arsenic exposure. Further, there was evidence of methylation-related gene regulation based on gene expression for a subset of differentially methylated loci. Conclusions: We observed significant associations between arsenic exposure and gene-specific differential white blood cell DNA methylation, suggesting that epigenetic modifications may be an important pathway underlying arsenic toxicity. The specific differentially methylated loci identified may inform potential pathways for future interventions. Citation: Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV, Harper KN, Parvez F, Rahman M, Rakibuz-Zaman M, Slavkovich V, Baron JA, Graziano JH, Kibriya MG, Ahsan H. 2015. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ Health Perspect 123:64–71; http://dx.doi.org/10.1289/ehp.1307884 PMID:25325195
Wang, Wensheng; Zhao, Xiuqin; Pan, Yajiao; Zhu, Linghua; Fu, Binying; Li, Zhikang
2011-09-20
DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development. Copyright © 2011. Published by Elsevier Ltd.
Quantification of Global DNA Methylation Levels by Mass Spectrometry.
Fernandez, Agustin F; Valledor, Luis; Vallejo, Fernando; Cañal, Maria Jesús; Fraga, Mario F
2018-01-01
Global DNA methylation was classically considered the relative percentage of 5-methylcysine (5mC) with respect to total cytosine (C). Early approaches were based on the use of high-performance separation technologies and UV detection. However, the recent development of protocols using mass spectrometry for the detection has increased sensibility and permitted the precise identification of peak compounds based on their molecular masses. This allows work to be conducted with much less genomic DNA starting material and also to quantify 5-hydroxymethyl-cytosine (5hmC), a recently identified form of methylated cytosine that could play an important role in active DNA demethylation. Here, we describe the protocol that we currently use in our laboratory to analyze 5mC and 5hmC by mass spectrometry. The protocol, which is based on the method originally developed by Le and colleagues using Ultra Performance Liquid Chromatography (UPLC) and mass spectrometry (triple Quadrupole (QqQ)) detection, allows for the rapid and accurate quantification of relative global 5mC and 5hmC levels starting from just 1 μg of genomic DNA, which allows for the rapid and accurate quantification of relative global 5mC and 5hmC levels.
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.
Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J
2016-08-19
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Quantitative profiling of CpG island methylation in human stool for colorectal cancer detection.
Elliott, Giles O; Johnson, Ian T; Scarll, Jane; Dainty, Jack; Williams, Elizabeth A; Garg, D; Coupe, Amanda; Bradburn, David M; Mathers, John C; Belshaw, Nigel J
2013-01-01
The aims of this study were to investigate the use of quantitative CGI methylation data from stool DNA to classify colon cancer patients and to relate stool CGI methylation levels to those found in corresponding tissue samples. We applied a quantitative methylation-specific PCR assay to determine CGI methylation levels of six genes, previously shown to be aberrantly methylated during colorectal carcinogenesis. Assays were performed on DNA from biopsies of "normal" mucosa and stool samples from 57 patients classified as disease-free, adenoma, or cancer by endoscopy, and in tumour tissue from cancer patients. Additionally, CGI methylation was analysed in stool DNA from an asymptomatic population of individuals covering a broad age range (mean = 47 ± 24 years) CGI methylation levels in stool DNA were significantly higher than in DNA from macroscopically normal mucosa, and a significant correlation between stool and mucosa was observed for ESR1 only. Multivariate statistical analyses using the methylation levels of each CGI in stool DNA as a continuous variable revealed a highly significant (p = 0.003) classification of cancer vs. non-cancer (adenoma + disease-free) patients (sensitivity = 65 %, specificity = 81 %). CGI methylation profiling of stool DNA successfully identified patients with cancer despite the methylation status of CGIs in stool DNA not generally reflecting those in DNA from the colonic mucosa.
Links between DNA methylation and nucleosome occupancy in the human genome.
Collings, Clayton K; Anderson, John N
2017-01-01
DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin.
Suzuki, Takehiro; Yamashita, Satoshi; Ushijima, Toshikazu; Takumi, Shota; Sano, Tomoharu; Michikawa, Takehiro; Nohara, Keiko
2013-12-01
Inorganic arsenic is known to be a human carcinogen. Previous studies have reported that DNA methylation changes are involved in arsenic-induced carcinogenesis, therefore, DNA methylation changes that are specific to arsenic-induced tumors would be useful to distinguish tumors induced by arsenic from tumors caused by other factors and to dissect arsenic carcinogenesis. Previous studies have shown that gestational arsenic exposure of C3H mice, which tend to spontaneously develop liver tumors, increases the incidence of tumors in male offspring. In this study we used the same experimental protocol as in those previous studies and searched for DNA regions where methylation status was specifically altered in the liver tumors of arsenic-exposed offspring by using methylated DNA immunoprecipitation-CpG island microarrays. The methylation levels of the DNA regions selected were measured by quantitative methylation-specific PCR and bisulfite sequencing. The results of this study clarified a number of regions where DNA methylation status was altered in the liver tumors in the C3H mice compared to normal liver tissues. Among such regions, we showed that a gene body region of the oncogene Fosb underwent alteration in DNA methylation by gestational arsenic exposure. We also showed that Fosb expression significantly increased corresponding to the DNA methylation level of the gene body in the arsenic-exposed group. These findings suggest that the DNA methylation status can be used to identify tumors increased by gestational arsenic exposure. © 2013 Japanese Cancer Association.
Detection of Methylated Circulating DNA as Noninvasive Biomarkers for Breast Cancer Diagnosis
Cheuk, Isabella Wai Yin; Shin, Vivian Yvonne
2017-01-01
Internationally, breast cancer is the most common female cancer, and is induced by a combination of environmental, genetic, and epigenetic risk factors. Despite the advancement of imaging techniques, invasive sampling of breast epithelial cells is the only definitive diagnostic procedure for patients with breast cancer. To date, molecular biomarkers with high sensitivity and specificity for the screening and early detection of breast cancer are lacking. Recent evidence suggests that the detection of methylated circulating cell-free DNA in the peripheral blood of patients with cancer may be a promising quantitative and noninvasive method for cancer diagnosis. Methylation detection based on a multi-gene panel, rather than on the methylation status of a single gene, may be used to increase the sensitivity and specificity of breast cancer screening. In this review, the results of 14 relevant studies, investigating the efficacy of cell-free DNA methylation screening for breast cancer diagnosis, have been summarized. The genetic risk factors for breast cancer, the methods used for breast cancer detection, and the techniques and limitations related to the detection of cell-free DNA methylation status, have also been reviewed and discussed. From this review, we conclude that the analysis of peripheral blood or other samples to detect differentially methylated cell-free DNA is a promising technique for use in clinical settings, and may improve the sensitivity of screening for both, early detection and disease relapse, and thus improve the future prognosis of patients with breast cancer. PMID:28382090
A DNA methylation fingerprint of 1628 human samples
Fernandez, Agustin F.; Assenov, Yassen; Martin-Subero, Jose Ignacio; Balint, Balazs; Siebert, Reiner; Taniguchi, Hiroaki; Yamamoto, Hiroyuki; Hidalgo, Manuel; Tan, Aik-Choon; Galm, Oliver; Ferrer, Isidre; Sanchez-Cespedes, Montse; Villanueva, Alberto; Carmona, Javier; Sanchez-Mut, Jose V.; Berdasco, Maria; Moreno, Victor; Capella, Gabriel; Monk, David; Ballestar, Esteban; Ropero, Santiago; Martinez, Ramon; Sanchez-Carbayo, Marta; Prosper, Felipe; Agirre, Xabier; Fraga, Mario F.; Graña, Osvaldo; Perez-Jurado, Luis; Mora, Jaume; Puig, Susana; Prat, Jaime; Badimon, Lina; Puca, Annibale A.; Meltzer, Stephen J.; Lengauer, Thomas; Bridgewater, John; Bock, Christoph; Esteller, Manel
2012-01-01
Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases. PMID:21613409
Adjakly, Mawussi; Bosviel, Rémy; Rabiau, Nadège; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique
2011-12-01
DNA hypermethylation is an epigenetic mechanism which induces silencing of tumor-suppressor genes in prostate cancer. Many studies have reported that specific components of food plants like soy phytoestrogens may have protective effects against prostate carcinogenesis or progression. Genistein and daidzein, the major phytoestrogens, have been reported to have the ability to reverse DNA hypermethylation in cancer cell lines. The aim of this study was to investigate the potential demethylating effects of these two soy compounds on BRCA1, GSTP1, EPHB2 and BRCA2 promoter genes. Prostate cell lines DU-145 and PC-3 were treated with genistein 40 µM, daidzein 110 µM, budesonide (methylating agent) 2 µM and 5-azacytidine (demethylating agent) 2 µM. In these two human prostate cancer cell lines we performed methylation quantification by using Methyl Profiler DNA methylation analysis. This technique is based on a methylation-specific digestion followed by quantitative PCR. We analyzed the corresponding protein expression by western blotting. Soy phytoestrogens induced a demethylation of all promoter regions studied except for BRCA2, which is not methylated in control cell lines. An increase in their protein expression was also demonstrated by western blot analysis and corroborated the potential demethylating effect of soy phytoestrogens. This study showed that the soy phytoestrogens, genistein and daidzein, induce a decrease of methylation of BRCA1, GSTP1 and EPHB2 promoters. Therefore, soy phytoestrogens may have a protective effect on prostate cancer. However, more studies are needed in order to understand the mechanism by which genistein and daidzein have an inhibiting action on DNA methylation.
Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B
2016-09-06
The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.
Levine, A Joan; Phipps, Amanda I; Baron, John A; Buchanan, Daniel D; Ahnen, Dennis J; Cohen, Stacey A; Lindor, Noralane M; Newcomb, Polly A; Rosty, Christophe; Haile, Robert W; Laird, Peter W; Weisenberger, Daniel J
2016-01-01
The CpG island methylator phenotype (CIMP) is a major molecular pathway in colorectal cancer. Approximately 25% to 60% of CIMP tumors are microsatellite unstable (MSI-H) due to DNA hypermethylation of the MLH1 gene promoter. Our aim was to determine if the distributions of clinicopathologic factors in CIMP-positive tumors with MLH1 DNA methylation differed from those in CIMP-positive tumors without DNA methylation of MLH1. We assessed the associations between age, sex, tumor-site, MSI status BRAF and KRAS mutations, and family colorectal cancer history with MLH1 methylation status in a large population-based sample of CIMP-positive colorectal cancers defined by a 5-marker panel using unconditional logistic regression to assess the odds of MLH1 methylation by study variables. Subjects with CIMP-positive tumors without MLH1 methylation were significantly younger, more likely to be male, and more likely to have distal colon or rectal primaries and the MSI-L phenotype. CIMP-positive MLH1-unmethylated tumors were significantly less likely than CIMP-positive MLH1-methylated tumors to harbor a BRAF V600E mutation and significantly more likely to harbor a KRAS mutation. MLH1 methylation was associated with significantly better overall survival (HR, 0.50; 95% confidence interval, 0.31-0.82). These data suggest that MLH1 methylation in CIMP-positive tumors is not a completely random event and implies that there are environmental or genetic determinants that modify the probability that MLH1 will become methylated during CIMP pathogenesis. MLH1 DNA methylation status should be taken into account in etiologic studies. ©2015 American Association for Cancer Research.
Levine, A. Joan; Phipps, Amanda I.; Baron, John A.; Buchanan, Daniel D.; Ahnen, Dennis J.; Cohen, Stacey A.; Lindor, Noralane M.; Newcomb, Polly A.; Rosty, Christophe; Haile, Robert W.; Laird, Peter W.; Weisenberger, Daniel J.
2015-01-01
Background The CpG Island Methylator Phenotype (CIMP) is a major molecular pathway in colorectal cancer (CRC). Approximately 25% to 60% of CIMP tumors are microsatellite unstable (MSI-H) due to DNA hypermethylation of the MLH1 gene promoter. Our aim was to determine if the distributions of clinicopathologic factors in CIMP-positive tumors with MLH1 DNA methylation differed from those in CIMP-positive tumors without DNA methylation of MLH1. Methods We assessed the associations between age, sex, tumor-site, MSI status BRAF and KRAS mutations and family CRC history with MLH1 methylation status in a large population-based sample of CIMP-positive CRCs defined by a 5-marker panel using unconditional logistic regression to assess the odds of MLH1 methylation by study variables. Results Subjects with CIMP-positive tumors without MLH1 methylation were significantly younger, more likely to be male, more likely to have distal colon or rectal primaries and the MSI-L phenotype. CIMP-positive MLH1-unmethylated tumors were significantly less likely than CIMP-positive MLH1-methylated tumors to harbor a BRAF V600E mutation and significantly more likely to harbor a KRAS mutation. MLH1 methylation was associated with significantly better overall survival (HR=0.50; 95% Confidence Interval (0.31, 0.82)). Conclusions These data suggest that MLH1 methylation in CIMP-positive tumors is not a completely random event and implies that there are environmental or genetic determinants that modify the probability that MLH1 will become methylated during CIMP pathogenesis. Impact MLH1 DNA methylation status should be taken into account in etiologic studies. PMID:26512054
Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue
Geybels, Milan S.; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A.; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L.
2016-01-01
Background Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. Methods The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. Results In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value <0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for ten genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. Conclusions This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. PMID:26383847
Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue.
Geybels, Milan S; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L
2015-12-01
Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. © 2015 Wiley Periodicals, Inc.
Xu, Jiawei; Bao, Xiao; Peng, Zhaofeng; Wang, Linlin; Du, Linqing; Niu, Wenbin; Sun, Yingpu
2016-05-10
Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS' and controls' granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS' and controls' granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls'. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology.
Maternal DNA hypomethylation and congenital heart defects
Chowdhury, Shimul; Cleves, Mario A.; MacLeod, Stewart L.; James, S. Jill; Zhao, Weizhi; Hobbs, Charlotte A.
2011-01-01
Background Congenital heart defects (CHDs) are among the most prevalent and serious of birth defects. Multiple maternal factors are thought to contribute to CHD development including folate intake. Maternal DNA methylation, which is dependent on folate metabolism, may impact the risk of CHDs. Objective Our study was designed to determine whether maternal long interspersed nucleotide elements-1 (LINE-1) DNA hypomethylation is associated with increased occurrence of non-syndromic CHDs and whether maternal folate-dependent metabolites are correlated with DNA methylation status. Design Using a case-control study design, we measured global DNA methylation status among mothers whose pregnancies were affected by non-syndromic CHDs (n=180) and mothers of unaffected pregnancies (n=187). Methylation of LINE-1 was used as a surrogate marker of global DNA methylation status. The association between DNA methylation and CHD risk was determined while adjusting for selected lifestyle factors. Results LINE-1 DNA methylation was significantly lower in cases compared with controls (p=0.049). After covariate adjustments, a significant difference between cases and controls remained (p=0.010). Among women with LINE-1 methylation in the lowest decile of DNA methylation, the estimated risk of having a CHD-affected pregnancy was almost twice that of women in all other deciles (OR=1.91; 95% CI: 1.03, 3.58). Conclusions Our findings indicate that maternal LINE-1 DNA hypomethylation is associated with an increased risk of CHDs. Future studies investigating the association between maternal DNA methylation patterns and CHDs should be pursued. PMID:21254366
Smith, Rick W A; Monroe, Cara; Bolnick, Deborah A
2015-01-01
While cytosine methylation has been widely studied in extant populations, relatively few studies have analyzed methylation in ancient DNA. Most existing studies of epigenetic marks in ancient DNA have inferred patterns of methylation in highly degraded samples using post-mortem damage to cytosines as a proxy for cytosine methylation levels. However, this approach limits the inference of methylation compared with direct bisulfite sequencing, the current gold standard for analyzing cytosine methylation at single nucleotide resolution. In this study, we used direct bisulfite sequencing to assess cytosine methylation in ancient DNA from the skeletal remains of 30 Native Americans ranging in age from approximately 230 to 4500 years before present. Unmethylated cytosines were converted to uracils by treatment with sodium bisulfite, bisulfite products of a CpG-rich retrotransposon were pyrosequenced, and C-to-T ratios were quantified for a single CpG position. We found that cytosine methylation is readily recoverable from most samples, given adequate preservation of endogenous nuclear DNA. In addition, our results indicate that the precision of cytosine methylation estimates is inversely correlated with aDNA preservation, such that samples of low DNA concentration show higher variability in measures of percent methylation than samples of high DNA concentration. In particular, samples in this study with a DNA concentration above 0.015 ng/μL generated the most consistent measures of cytosine methylation. This study presents evidence of cytosine methylation in a large collection of ancient human remains, and indicates that it is possible to analyze epigenetic patterns in ancient populations using direct bisulfite sequencing approaches.
Garcia-Closas, Montserrat; Davis, Sean; Meltzer, Paul; Lissowska, Jolanta; Horne, Hisani N.; Sherman, Mark E.; Lee, Maxwell
2015-01-01
Identification of prognostic gene expression signatures may enable improved decisions about management of breast cancer. To identify a prognostic signature for breast cancer, we performed DNA methylation profiling and identified methylation markers that were associated with expression of ER, PR, HER2, CK5/6 and EGFR proteins. Methylation markers that were correlated with corresponding mRNA expression levels were identified using 208 invasive tumors from a population-based case-control study conducted in Poland. Using this approach, we defined the Methylation Expression Index (MEI) signature that was based on a weighted sum of mRNA levels of 57 genes. Classification of cases as low or high MEI scores were related to survival using Cox regression models. In the Polish study, women with ER-positive low MEI cancers had reduced survival at a median of 5.20 years of follow-up, HR=2.85 95%CI=1.25-6.47. Low MEI was also related to decreased survival in four independent datasets totaling over 2500 ER-positive breast cancers. These results suggest that integrated analysis of tumor expression markers, DNA methylation, and mRNA data can be an important approach for identifying breast cancer prognostic signatures. Prospective assessment of MEI along with other prognostic signatures should be evaluated in future studies. PMID:25773928
Genome-wide association between DNA methylation and alternative splicing in an invertebrate
2012-01-01
Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution. PMID:22978521
Altered LINE-1 Methylation in Mothers of Children with Down Syndrome
Babić Božović, Ivana; Stanković, Aleksandra; Živković, Maja; Vraneković, Jadranka; Kapović, Miljenko; Brajenović-Milić, Bojana
2015-01-01
Down syndrome (DS, also known as trisomy 21) most often results from chromosomal nondisjunction during oogenesis. Numerous studies sustain a causal link between global DNA hypomethylation and genetic instability. It has been suggested that DNA hypomethylation might affect the structure and dynamics of chromatin regions that are critical for chromosome stability and segregation, thus favouring chromosomal nondisjunction during meiosis. Maternal global DNA hypomethylation has not yet been analyzed as a potential risk factor for chromosome 21 nondisjunction. This study aimed to asses the risk for DS in association with maternal global DNA methylation and the impact of endogenous and exogenous factors that reportedly influence DNA methylation status. Global DNA methylation was analyzed in peripheral blood lymphocytes by quantifying LINE-1 methylation using the MethyLight method. Levels of global DNA methylation were significantly lower among mothers of children with maternally derived trisomy 21 than among control mothers (P = 0.000). The combination of MTHFR C677T genotype and diet significantly influenced global DNA methylation (R2 = 4.5%, P = 0.046). The lowest values of global DNA methylation were observed in mothers with MTHFR 677 CT+TT genotype and low dietary folate. Although our findings revealed an association between maternal global DNA hypomethylation and trisomy 21 of maternal origin, further progress and final conclusions regarding the role of global DNA methylation and the occurrence of trisomy 21 are facing major challenges. PMID:26017139
Whole DNA methylome profiling in mice exposed to secondhand smoke.
Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad
2012-11-01
Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease.
BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing
Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph
2011-01-01
Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797
Base-Resolution Analysis of DNA Methylation Patterns Downstream of Dnmt3a in Mouse Naïve B Cells.
Duncan, Christopher G; Kondilis-Mangum, Hrisavgi D; Grimm, Sara A; Bushel, Pierre R; Chrysovergis, Kaliopi; Roberts, John D; Tyson, Frederick L; Merrick, B Alex; Wade, Paul A
2018-03-02
The DNA methyltransferase, Dnmt3a , is dynamically regulated throughout mammalian B cell development and upon activation by antigenic stimulation. Dnmt3a inactivation in hematopoietic stem cells has been shown to drive B cell-related malignancies, including chronic lymphocytic leukemia, and associates with specific DNA methylation patterns in transformed cells. However, while it is clear that inactivation of Dnmt3a in hematopoietic stem cells has profound functional effects, the consequences of Dnmt3a inactivation in cells of the B lineage are unclear. To assess whether loss of Dnmt3a at the earliest stages of B cell development lead to DNA methylation defects that might impair function, we selectively inactivated Dnmt3a early in mouse B cell development and then utilized whole genome bisulfite sequencing to generate base-resolution profiles of Dnmt3a +/+ and Dnmt3a -/- naïve splenic B cells. Overall, we find that global methylation patterns are largely consistent between Dnmt3a +/+ and Dnmt3a -/- naïve B cells, indicating a minimal functional effect of DNMT3A in mature B cells. However, loss of Dnmt3a induced 449 focal DNA methylation changes, dominated by loss-of-methylation events. Regions found to be hypomethylated in Dnmt3a -/- naïve splenic B cells were enriched in gene bodies of transcripts expressed in B cells, a fraction of which are implicated in B cell-related disease. Overall, the results from this study suggest that factors other than Dnmt3a are the major drivers for methylome maintenance in B cell development. Copyright © 2018 Duncan et al.
Variation in the DNA methylation pattern of expressed and nonexpressed genes in chicken.
Cooper, D N; Errington, L H; Clayton, R M
1983-01-01
Using methyl-sensitive and -insensitive restriction enzymes, Hpa II and Msp I, the methylation status of various chicken genes was examined in different tissues and developmental stages. Tissue-specific differences in methylation were found for the delta-crystallin, beta-tubulin, G3PDH, rDNA, and actin genes but not for the histone genes. Developmental decreases in methylation were noted for the delta-crystallin and actin genes in chicken kidney between embryo and adult. Since most of the sequences examined were housekeeping genes, transcriptional differences are apparently not a necessary accompaniment to changes in DNA methylation at the CpG sites examined. The only exception is sperm DNA where the delta-crystallin, beta-tubulin, and actin genes are highly methylated and almost certainly not transcribed. However the G3PDH genes are no more highly methylated in sperm than in other somatic tissues. Many sequences homologous to the rDNA and histone probes used are unmethylated in all tissues examined including sperm, but a methylated rDNA subfraction is more heavily methylated in sperm than in other tissues. We speculate as to the significance of these differences in sperm DNA methylation in the light of possible requirements for early gene activation and the probable deleterious mutagenic effects of heavy methylation within coding sequences.
The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis
Glastad, Karl M.; Gokhale, Kaustubh; Liebig, Jürgen; Goodisman, Michael A. D.
2016-01-01
Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects. We used replicated bisulfite-sequencing to investigate patterns of DNA methylation in both sexes and among castes of Z. nevadensis. We discovered that Z. nevadensis displayed some of the highest levels of DNA methylation found in insects. We also found strong differences in methylation between castes. Methylated genes tended to be uniformly and highly expressed demonstrating the antiquity of associations between intragenic methylation and gene expression. Differentially methylated genes were more likely to be alternatively spliced than not differentially methylated genes, and possessed considerable enrichment for development-associated functions. We further observed strong overrepresentation of multiple transcription factor binding sites and miRNA profiles associated with differential methylation, providing new insights into the possible function of DNA methylation. Overall, our results show that DNA methylation is widespread and associated with caste differences in termites. More generally, this study provides insights into the function of DNA methylation and the success of insect societies. PMID:27848993
Analysis of Chromatin Regulators Reveals Specific Features of Rice DNA Methylation Pathways.
Tan, Feng; Zhou, Chao; Zhou, Qiangwei; Zhou, Shaoli; Yang, Wenjing; Zhao, Yu; Li, Guoliang; Zhou, Dao-Xiu
2016-07-01
Plant DNA methylation that occurs at CG, CHG, and CHH sites (H = A, C, or T) is a hallmark of the repression of repetitive sequences and transposable elements (TEs). The rice (Oryza sativa) genome contains about 40% repetitive sequence and TEs and displays specific patterns of genome-wide DNA methylation. The mechanism responsible for the specific methylation patterns is unclear. Here, we analyzed the function of OsDDM1 (Deficient in DNA Methylation 1) and OsDRM2 (Deficient in DNA Methylation 1) in genome-wide DNA methylation, TE repression, small RNA accumulation, and gene expression. We show that OsDDM1 is essential for high levels of methylation at CHG and, to a lesser extent, CG sites in heterochromatic regions and also is required for CHH methylation that mainly locates in the genic regions of the genome. In addition to a large member of TEs, loss of OsDDM1 leads to hypomethylation and up-regulation of many protein-coding genes, producing very severe growth phenotypes at the initial generation. Importantly, we show that OsDRM2 mutation results in a nearly complete loss of CHH methylation and derepression of mainly small TE-associated genes and that OsDDM1 is involved in facilitating OsDRM2-mediated CHH methylation. Thus, the function of OsDDM1 and OsDRM2 defines distinct DNA methylation pathways in the bulk of DNA methylation of the genome, which is possibly related to the dispersed heterochromatin across chromosomes in rice and suggests that DNA methylation mechanisms may vary among different plant species. © 2016 American Society of Plant Biologists. All Rights Reserved.
A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks
Patel, Dinshaw J.
2016-01-01
SUMMARY This article outlines the protein modules that target methylated lysine histone marks and 5mC DNA marks, and the molecular principles underlying recognition. The article focuses on the structural basis underlying readout of isolated marks by single reader molecules, as well as multivalent readout of multiple marks by linked reader cassettes at the histone tail and nucleosome level. Additional topics addressed include the role of histone mimics, cross talk between histone marks, technological developments at the genome-wide level, advances using chemical biology approaches, the linkage between histone and DNA methylation, the role for regulatory lncRNAs, and the promise of chromatin-based therapeutic modalities. PMID:26931326
Relton, Caroline L; Davey Smith, George
2012-01-01
The burgeoning interest in the field of epigenetics has precipitated the need to develop approaches to strengthen causal inference when considering the role of epigenetic mediators of environmental exposures on disease risk. Epigenetic markers, like any other molecular biomarker, are vulnerable to confounding and reverse causation. Here, we present a strategy, based on the well-established framework of Mendelian randomization, to interrogate the causal relationships between exposure, DNA methylation and outcome. The two-step approach first uses a genetic proxy for the exposure of interest to assess the causal relationship between exposure and methylation. A second step then utilizes a genetic proxy for DNA methylation to interrogate the causal relationship between DNA methylation and outcome. The rationale, origins, methodology, advantages and limitations of this novel strategy are presented. PMID:22422451
Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.
2012-01-01
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637
Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet
2017-01-01
DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Folate and DNA Methylation: A Review of Molecular Mechanisms and the Evidence for Folate's Role2
Yang, Thomas P.; Berry, Robert J; Bailey, Lynn B.
2012-01-01
ABSTRACT DNA methylation is an epigenetic modification critical to normal genome regulation and development. The vitamin folate is a key source of the one carbon group used to methylate DNA. Because normal mammalian development is dependent on DNA methylation, there is enormous interest in assessing the potential for changes in folate intake to modulate DNA methylation both as a biomarker for folate status and as a mechanistic link to developmental disorders and chronic diseases including cancer. This review highlights the role of DNA methylation in normal genome function, how it can be altered, and the evidence of the role of folate/folic acid in these processes. PMID:22332098
Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H
2018-01-01
The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.
Inferring genome-wide interplay landscape between DNA methylation and transcriptional regulation.
Tang, Binhua; Wang, Xin
2015-01-01
DNA methylation and transcriptional regulation play important roles in cancer cell development and differentiation processes. Based on the currently available cell line profiling information from the ENCODE Consortium, we propose a Bayesian inference model to infer and construct genome-wide interaction landscape between DNA methylation and transcriptional regulation, which sheds light on the underlying complex functional mechanisms important within the human cancer and disease context. For the first time, we select all the currently available cell lines (>=20) and transcription factors (>=80) profiling information from the ENCODE Consortium portal. Through the integration of those genome-wide profiling sources, our genome-wide analysis detects multiple functional loci of interest, and indicates that DNA methylation is cell- and region-specific, due to the interplay mechanisms with transcription regulatory activities. We validate our analysis results with the corresponding RNA-sequencing technique for those detected genomic loci. Our results provide novel and meaningful insights for the interplay mechanisms of transcriptional regulation and gene expression for the human cancer and disease studies.
MethylMix 2.0: an R package for identifying DNA methylation genes. | Office of Cancer Genomics
DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes.
Chimonidou, Maria; Strati, Areti; Malamos, Nikos; Kouneli, Sophia; Georgoulias, Vassilis; Lianidou, Evi
2017-01-01
Circulating Tumour Cells (CTCs) and circulating tumour DNA (ctDNA) represent a non-invasive liquid biopsy approach for the follow-up and therapy management of cancer patients. We evaluated whether DNA methylation status in CTCs and ctDNA is comparable and whether it reflects the status of primary tumours. We compared the methylation status of three genes, SOX17, CST6 and BRMS1 in primary tumours, corresponding CTCs and ctDNA in 153 breast cancer patients and healthy individuals, by using real time methylation specific PCR. We report a clear association between the EpCAM-positive CTC-fraction and ctDNA for SOX17 promoter methylation both for patients with early (P = 0.001) and metastatic breast cancer (P = 0.046) but not for CST6 and BRMS1. In early breast cancer, SOX17 promoter methylation in the EpCAM-positive CTC-fraction was associated with CK-19 mRNA expression (P = 0.006) and worse overall survival (OS) (P = 0.044). In the metastatic setting SOX17 promoter methylation in ctDNA was highly correlated with CK-19 (P = 0.04) and worse OS (Ρ = 0.016). SOX17 methylation status in CTCs and ctDNA was comparable and was associated with CK-19 expression but was not reflecting the status of primary tumours in breast cancer. DNA methylation analysis of SOX17 in CTCs and matched ctDNA provides significant prognostic value. PMID:29069768
Chimonidou, Maria; Strati, Areti; Malamos, Nikos; Kouneli, Sophia; Georgoulias, Vassilis; Lianidou, Evi
2017-09-22
Circulating Tumour Cells (CTCs) and circulating tumour DNA (ctDNA) represent a non-invasive liquid biopsy approach for the follow-up and therapy management of cancer patients. We evaluated whether DNA methylation status in CTCs and ctDNA is comparable and whether it reflects the status of primary tumours. We compared the methylation status of three genes, SOX17, CST6 and BRMS1 in primary tumours, corresponding CTCs and ctDNA in 153 breast cancer patients and healthy individuals, by using real time methylation specific PCR. We report a clear association between the EpCAM-positive CTC-fraction and ctDNA for SOX17 promoter methylation both for patients with early ( P = 0.001) and metastatic breast cancer ( P = 0.046) but not for CST6 and BRMS1. In early breast cancer, SOX17 promoter methylation in the EpCAM-positive CTC-fraction was associated with CK-19 mRNA expression ( P = 0.006) and worse overall survival (OS) ( P = 0.044). In the metastatic setting SOX17 promoter methylation in ctDNA was highly correlated with CK-19 ( P = 0.04) and worse OS ( Ρ = 0.016). SOX17 methylation status in CTCs and ctDNA was comparable and was associated with CK-19 expression but was not reflecting the status of primary tumours in breast cancer. DNA methylation analysis of SOX17 in CTCs and matched ctDNA provides significant prognostic value.
On the presence and role of human gene-body DNA methylation
Jjingo, Daudi; Conley, Andrew B.; Yi, Soojin V.; Lunyak, Victoria V.; Jordan, I. King
2012-01-01
DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription, which is inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes. PMID:22577155
NASA Astrophysics Data System (ADS)
Weiner, Susan A.; Galbraith, David A.; Adams, Dean C.; Valenzuela, Nicole; Noll, Fernando B.; Grozinger, Christina M.; Toth, Amy L.
2013-08-01
DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences.
Extensive sequence-influenced DNA methylation polymorphism in the human genome
2010-01-01
Background Epigenetic polymorphisms are a potential source of human diversity, but their frequency and relationship to genetic polymorphisms are unclear. DNA methylation, an epigenetic mark that is a covalent modification of the DNA itself, plays an important role in the regulation of gene expression. Most studies of DNA methylation in mammalian cells have focused on CpG methylation present in CpG islands (areas of concentrated CpGs often found near promoters), but there are also interesting patterns of CpG methylation found outside of CpG islands. Results We compared DNA methylation patterns on both alleles between many pairs (and larger groups) of related and unrelated individuals. Direct observation and simulation experiments revealed that around 10% of common single nucleotide polymorphisms (SNPs) reside in regions with differences in the propensity for local DNA methylation between the two alleles. We further showed that for the most common form of SNP, a polymorphism at a CpG dinucleotide, the presence of the CpG at the SNP positively affected local DNA methylation in cis. Conclusions Taken together with the known effect of DNA methylation on mutation rate, our results suggest an interesting interdependence between genetics and epigenetics underlying diversity in the human genome. PMID:20497546
Lee, Jinhee; Yoshida, Wataru; Abe, Koichi; Nakabayashi, Kazuhiko; Wakeda, Hironobu; Hata, Kenichiro; Marquette, Christophe A; Blum, Loïc J; Sode, Koji; Ikebukuro, Kazunori
2017-07-15
DNA methylation level at a certain gene region is considered as a new type of biomarker for diagnosis and its miniaturized and rapid detection system is required for diagnosis. Here we have developed a simple electrochemical detection system for DNA methylation using methyl CpG-binding domain (MBD) and a glucose dehydrogenase (GDH)-fused zinc finger protein. This analytical system consists of three steps: (1) methylated DNA collection by MBD, (2) PCR amplification of a target genomic region among collected methylated DNA, and (3) electrochemical detection of the PCR products using a GDH-fused zinc finger protein. With this system, we have successfully measured the methylation levels at the promoter region of the androgen receptor gene in 10 6 copies of genomic DNA extracted from PC3 and TSU-PR1 cancer cell lines. Since no sequence analysis or enzymatic digestion is required for this detection system, DNA methylation levels can be measured within 3h with a simple procedure. Copyright © 2016 Elsevier B.V. All rights reserved.
Radhakrishnan, Srihari; Literman, Robert; Mizoguchi, Beatriz; Valenzuela, Nicole
2017-01-01
DNA methylation alters gene expression but not DNA sequence and mediates some cases of phenotypic plasticity. Temperature-dependent sex determination (TSD) epitomizes phenotypic plasticity where environmental temperature drives embryonic sexual fate, as occurs commonly in turtles. Importantly, the temperature-specific transcription of two genes underlying gonadal differentiation is known to be induced by differential methylation in TSD fish, turtle and alligator. Yet, how extensive is the link between DNA methylation and TSD remains unclear. Here we test for broad differences in genome-wide DNA methylation between male and female hatchling gonads of the TSD painted turtle Chrysemys picta using methyl DNA immunoprecipitation sequencing, to identify differentially methylated candidates for future study. We also examine the genome-wide nCpG distribution (which affects DNA methylation) in painted turtles and test for historic methylation in genes regulating vertebrate gonadogenesis. Turtle global methylation was consistent with other vertebrates (57% of the genome, 78% of all CpG dinucleotides). Numerous genes predicted to regulate turtle gonadogenesis exhibited sex-specific methylation and were proximal to methylated repeats. nCpG distribution predicted actual turtle DNA methylation and was bimodal in gene promoters (as other vertebrates) and introns (unlike other vertebrates). Differentially methylated genes, including regulators of sexual development, had lower nCpG content indicative of higher historic methylation. Ours is the first evidence suggesting that sexually dimorphic DNA methylation is pervasive in turtle gonads (perhaps mediated by repeat methylation) and that it targets numerous regulators of gonadal development, consistent with the hypothesis that it may regulate thermosensitive transcription in TSD vertebrates. However, further research during embryogenesis will help test this hypothesis and the alternative that instead, most differential methylation observed in hatchlings is the by-product of sexual differentiation and not its cause.
Variation of DNA Methylome of Zebrafish Cells under Cold Pressure
Xu, Qiongqiong; Luo, Juntao; Shi, Yingdi; Li, Xiaoxia; Yan, Xiaonan; Zhang, Junfang
2016-01-01
DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure. PMID:27494266
Folate, colorectal cancer and the involvement of DNA methylation.
Williams, Elizabeth A
2012-11-01
Diet is a major factor in the aetiology of colorectal cancer (CRC). Epidemiological evidence suggests that folate confers a modest protection against CRC risk. However, the relationship is complex, and evidence from human intervention trials and animal studies suggests that a high-dose of folic acid supplementation may enhance the risk of colorectal carcinogenesis in certain circumstances. The molecular mechanisms underlying the apparent dual modulatory effect of folate on colorectal carcinogenesis are not fully understood. Folate is central to C1 metabolism and is needed for both DNA synthesis and DNA methylation, providing plausible biological mechanisms through which folate could modulate cancer risk. Aberrant DNA methylation is an early event in colorectal carcinogenesis and is typically associated with the transcriptional silencing of tumour suppressor genes. Folate is required for the production of S-adenosyl methionine, which serves as a methyl donor for DNA methylation events; thereby folate availability is proposed to modulate DNA methylation status. The evidence for an effect of folate on DNA methylation in the human colon is limited, but a modulation of DNA methylation in response to folate has been demonstrated. More research is required to clarify the optimum intake of folate for CRC prevention and to elucidate the effect of folate availability on DNA methylation and the associated impact on CRC biology.
Crystal structure of MboIIA methyltransferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipiuk, J.; Walsh, M. A.; Joachimiak, A.
2003-09-15
DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules inmore » the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.« less
Deciphering the Epigenetic Code: An Overview of DNA Methylation Analysis Methods
Umer, Muhammad
2013-01-01
Abstract Significance: Methylation of cytosine in DNA is linked with gene regulation, and this has profound implications in development, normal biology, and disease conditions in many eukaryotic organisms. A wide range of methods and approaches exist for its identification, quantification, and mapping within the genome. While the earliest approaches were nonspecific and were at best useful for quantification of total methylated cytosines in the chunk of DNA, this field has seen considerable progress and development over the past decades. Recent Advances: Methods for DNA methylation analysis differ in their coverage and sensitivity, and the method of choice depends on the intended application and desired level of information. Potential results include global methyl cytosine content, degree of methylation at specific loci, or genome-wide methylation maps. Introduction of more advanced approaches to DNA methylation analysis, such as microarray platforms and massively parallel sequencing, has brought us closer to unveiling the whole methylome. Critical Issues: Sensitive quantification of DNA methylation from degraded and minute quantities of DNA and high-throughput DNA methylation mapping of single cells still remain a challenge. Future Directions: Developments in DNA sequencing technologies as well as the methods for identification and mapping of 5-hydroxymethylcytosine are expected to augment our current understanding of epigenomics. Here we present an overview of methodologies available for DNA methylation analysis with special focus on recent developments in genome-wide and high-throughput methods. While the application focus relates to cancer research, the methods are equally relevant to broader issues of epigenetics and redox science in this special forum. Antioxid. Redox Signal. 18, 1972–1986. PMID:23121567
DNA methylation of amino acid transporter genes in the human placenta.
Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K
2017-12-01
Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.
Ulrich, Cornelia M; Toriola, Adetunji T; Koepl, Lisel M; Sandifer, Tracy; Poole, Elizabeth M; Duggan, Catherine; McTiernan, Anne; Issa, Jean-Pierre J
2012-09-01
DNA methylation is an epigenetic modification essential for the regulation of gene expression that has been implicated in many diseases, including cancer. Few studies have investigated the wide range of potential predictors of global DNA methylation, including biomarkers. Here, we investigated associations between DNA methylation and dietary factors, sex-steroid hormones, metabolic, lipid, inflammation, immune and one-carbon biomarkers. Data and baseline biomarker measurements were obtained from 173 overweight/obese postmenopausal women. Global DNA methylation in lymphocyte DNA was measured using the pyrosequencing assay for LINE-1 repeats. We used correlations and linear regression analyses to investigate associations between continuous data and DNA methylation, while t-tests were used for categorical data. Secondary analyses stratified by serum folate levels and multivitamin use were also conducted. There was little variability in LINE-1 methylation (66.3-79.5%). Mean LINE-1 methylation was significantly higher among women with elevated glucose levels. Mean LINE-1 methylation was also higher among women with high CD4+/CD8+ ratio, and lower among women with elevated vitamin B6, but neither reached statistical significance. In analyses stratified by folate status, DNA methylation was negatively associated with sex hormone concentrations (estrone, estradiol, testosterone and sex hormone binding globulin) among women with low serum folate levels (n = 53). Conversely, among women with high serum folate levels (n = 53), DNA methylation was positively associated with several immune markers (CD4/CD8 ratio, NK1656/lymphocytes and IgA). Results from this screening suggest that global DNA methylation is generally stable, with differential associations for sex hormones and immune markers depending on one-carbon status.
Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin
2016-08-24
A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.
Colorimetric determination of DNase I activity with a DNA-methyl green substrate.
Sinicropi, D; Baker, D L; Prince, W S; Shiffer, K; Shak, S
1994-11-01
A simple, high throughput, and precise assay was developed for quantification of deoxyribonuclease I (DNase; IUB 3.1.21.1) activity. The method was adapted from the procedure devised by Kurnick which employs a substrate comprised of highly polymerized native DNA complexed with methyl green. Hydrolysis of the DNA produced unbound methyl green and a decrease in the absorbance of the solution at 620 nm. By adjusting the time and temperature of the reaction, the assay permits quantification of DNase activity over a wide concentration range (0.4 to 8900 ng/ml). Samples and standards were added to the substrate in microtiter plates and were incubated for 1-24 h at 25-37 degrees C to achieve the desired assay range. The DNase activity of the samples was interpolated from a standard curve generated with Pulmozyme recombinant human deoxyribonuclease I (rhDNase). Interassay precision was less than 12% CV and recovery was within 100 +/- 11%. Activity determination by the DNA-methyl green method correlated well with that determined by the widely used "hyperchromicity" method originated by Kunitz, which is based on the increase in absorbance at 260 nm upon hydrolysis of DNA. The DNA-methyl green assay was simpler and more versatile than the hyperchromicity method and was used to characterize the activity of rhDNase and DNase isolated from human urine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp
DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR.more » Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.« less
Honda, Shinji; Bicocca, Vincent T.; Gessaman, Jordan D.; Rountree, Michael R.; Yokoyama, Ayumi; Yu, Eun Y.; Selker, Jeanne M. L.; Selker, Eric U.
2016-01-01
DNA methylation, heterochromatin protein 1 (HP1), histone H3 lysine 9 (H3K9) methylation, histone deacetylation, and highly repeated sequences are prototypical heterochromatic features, but their interrelationships are not fully understood. Prior work showed that H3K9 methylation directs DNA methylation and histone deacetylation via HP1 in Neurospora crassa and that the histone deacetylase complex HCHC is required for proper DNA methylation. The complex consists of the chromodomain proteins HP1 and chromodomain protein 2 (CDP-2), the histone deacetylase HDA-1, and the AT-hook motif protein CDP-2/HDA-1–associated protein (CHAP). We show that the complex is required for proper chromosome segregation, dissect its function, and characterize interactions among its components. Our analyses revealed the existence of an HP1-based DNA methylation pathway independent of its chromodomain. The pathway partially depends on CHAP but not on the CDP-2 chromodomain. CDP-2 serves as a bridge between the recognition of H3K9 trimethylation (H3K9me3) by HP1 and the histone deacetylase activity of HDA-1. CHAP is also critical for HDA-1 localization to heterochromatin. Specifically, the CHAP zinc finger interacts directly with the HDA-1 argonaute-binding protein 2 (Arb2) domain, and the CHAP AT-hook motifs recognize heterochromatic regions by binding to AT-rich DNA. Our data shed light on the interrelationships among the prototypical heterochromatic features and support a model in which dual recognition by the HP1 chromodomain and the CHAP AT-hooks are required for proper heterochromatin formation. PMID:27681634
Jin, Fei; Li, Xiao; Wang, Zuoguang; Liu, Ya; Liu, Jielin; Sun, Dongdong; Jin, Yongxin; Wang, Shiqi; Wen, Shaojun; Wei, Yongxiang
2018-06-07
Mitofusin 2 (Mfn2), a gene that negatively regulates the proliferation of vascular smooth muscle cells (VSMCs), is expressed at low levels in the VSMCs of hypertensive patients. DNA methylation can inhibit gene expression. The purpose of this study was to investigate the relationship between Mfn2 methylation and essential hypertension (EH). After bioinformatics analysis, five EH patients and five normal control (NC) subjects were selected for methylation chip screening. Then, bisulfite DNA sequencing was used to analyze the methylation status of differentially methylated fragments of Mfn2 in 40 EH patients and 36 NC subjects. Mfn2 mRNA expression in the blood was detected by RT-qPCR. There were three CpG islands in the full length Mfn2 DNA sequence and some transcription factor binding sites in these regions, including Sp1, Ap2, GATA box, NF-κB, etc. The chip screening showed that only the third CpG island had a significantly high degree of methylation. Subsequent verification experiments found that the EH group had a significantly lower C base rate of methylation than the NC group (2.5% vs. 44.44%, P < 0.0001), but a similar CpG methylation rate (P > 0.05). RT-qPCR detection showed that the level of Mfn2 mRNA expression was significantly lower in the EH group than in the NC group (P = 0.013). Further association analysis showed that the level of Mfn2 methylation was associated with systolic blood pressure and diastolic blood pressure (r = -0.902, r = -0.713, respectively) but not the other indexes. The DNA methylation level of Mfn2 was significantly lower in hypertensive patients than in control subjects, which may be an independent risk factor for EH.
Leung, Danny; Du, Tingting; Wagner, Ulrich; Xie, Wei; Lee, Ah Young; Goyal, Preeti; Li, Yujing; Szulwach, Keith E; Jin, Peng; Lorincz, Matthew C; Ren, Bing
2014-05-06
During mammalian development, DNA methylation patterns need to be reset in primordial germ cells (PGCs) and preimplantation embryos. However, many LTR retrotransposons and imprinted genes are impervious to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that a subset of such genomic regions are resistant to widespread erasure of DNA methylation in mouse embryonic stem cells (mESCs) lacking the de novo DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b. Intriguingly, these loci are enriched for H3K9me3 in mESCs, implicating this mark in DNA methylation homeostasis. Indeed, deletion of the H3K9 methyltransferase SET domain bifurcated 1 (Setdb1) results in reduced H3K9me3 and DNA methylation levels at specific loci, concomitant with increased 5-hydroxymethylation (5hmC) and ten-eleven translocation 1 binding. Taken together, these data reveal that Setdb1 promotes the persistence of DNA methylation in mESCs, likely reflecting one mechanism by which DNA methylation is maintained at LTR retrotransposons and imprinted genes during developmental stages when DNA methylation is reprogrammed.
DNA methylation of ESR-1 and N-33 in colorectal mucosa of patients with ulcerative colitis (UC).
Arasaradnam, Ramesh P; Khoo, Kevin; Bradburn, Mike; Mathers, John C; Kelly, Seamus B
2010-07-01
Epigenetic marking such as DNA methylation influence gene transcription and chromosomal stability and may also be affected by environmental exposures. Few studies exist on alteration in DNA methylation profiles (genomic and gene specific methylation) in patients with Ulcerative Colitis (UC) and no studies exist that assess its relationship with lifestyle exposures. The methylation level of both ESR-1 and N-33 genes were significantly higher in UC subjects compared with controls (7.9% vs. 5.9%; p = 0.015 and 66% vs. 9.3%; p < 0.001 respectively). There was no detectable difference in global DNA methylation between patients with UC and age and sex matched controls. No associations between indices of DNA methylation and anthropometric measures or smoking patterns were detected. To assess genomic methylation and promoter methylation of the ESR-1 (oestrogen receptor-1) and N-33 (tumor suppressor candidate-3) genes in the macroscopically normal mucosa of UC patients as well as to investigate effects of anthropometric and lifestyle exposures on DNA methylation. Sixty eight subjects were recruited (24 UC and 44 age and sex matched controls). Colorectal mucosal biopsies were obtained and DNA was extracted. Genomic DNA methylation was quantified using the tritium-labelled cytosine extension assay (3[H] dCTP) while gene specific methylation was quantified using the COBRA method. For the first time, we have shown increased methylation in the promoter regions of the putative tumor suppressor gene N-33 in macroscopically normal mucosa of patients with UC. In addition, we have confirmed that methylation of ESR-1 promoter is higher in UC patients compared with age and sex matched controls. These findings suggest that inactivation through methylation of the putative tumor suppressor genes N-33 and ESR-1 may not be associated with colorectal carcinogenesis in UC.
Identification of tissue-specific cell death using methylation patterns of circulating DNA
Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval
2016-01-01
Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580
Molecular characterization of late stomal recurrence following total laryngectomy.
Stephen, Josena K; Symal, Mausumi; Chen, Kang Mei; Ghanem, Tamer; Deeb, Robert; Shah, Veena; Havard, Shaleta; Worsham, Maria J
2011-03-01
The goal was to determine recurrent or second primary status for late stomal malignancies, 16 and 17 years post-total laryngectomy in two laryngeal squamous cell carcinoma (LSCC) patients, based on DNA methylation signatures and HPV typing. Adopting a literature review based definition of late stomal recurrences as new primaries at the site of the stoma or neopharynx occurring >5 years after total laryngectomy, we employed a multi-gene candidate approach to examine promoter methylation in 24 tumor suppressor genes and PCR-based assays for HPV status offered additional insights into whether the late stomal tumors post-total laryngectomy were related or not. The primary tumor for Patient 1 was negative for HPV but had aberrant hypermethylation of APC, MLH1 and BRCA1. The stomal biopsy 17-years later showed presence of HPV-16 without any methylated genes. In Patient 2, HPV-11 and promoter methylation of APC identified in the primary tumor was also observed in the stomal malignancy 16 years post-total laryngectomy. Additional information provided by molecular typing for HPV and methylation markers underscored Patient 1's and 2's late stomal presentation as most likely a second primary and recurrence, respectively. DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable marker. Molecular marks to discern genetic heterogeneity or relatedness of stomal malignancies several years post-total laryngectomy can provide clues to their status as either second primaries or likely recurrences. Our results support the hypothesis that a subset of stomal recurrences after total laryngectomy represents second primary tumors.
Li-Byarlay, Hongmei; Li, Yang; Stroud, Hume; Feng, Suhua; Newman, Thomas C.; Kaneda, Megan; Hou, Kirk K.; Worley, Kim C.; Elsik, Christine G.; Wickline, Samuel A.; Jacobsen, Steven E.; Ma, Jian; Robinson, Gene E.
2013-01-01
Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing. PMID:23852726
Li, Yanwei; Ding, Xianlong; Wang, Xuan; He, Tingting; Zhang, Hao; Yang, Longshu; Wang, Tanliu; Chen, Linfeng; Gai, Junyi; Yang, Shouping
2017-08-10
DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.
Genetic Control of the Secondary Modification of Deoxyribonucleic Acid in Escherichia coli1
Mamelak, Linda; Boyer, Herbert W.
1970-01-01
The wild-type restriction and modification alleles of Escherichia coli K-12 and B were found to have no measurable effect on the patterns of methylated bases in the deoxyribonucleic acid (DNA) of these strains. The genetic region controlling the methylation of cytosine in E. coli K-12 was mapped close to his, and the presence or absence of this gene in E. coli B or E. coli K had no effect on the restriction and modification properties of these strains. Thus, only a few of the methylated bases in the DNA of these strains are involved in host modification, and the biological role of the remainder remains obscure. PMID:4919756
Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study.
Soubry, Adelheid; Guo, Lisa; Huang, Zhiqing; Hoyo, Cathrine; Romanus, Stephanie; Price, Thomas; Murphy, Susan K
2016-01-01
Epigenetic reprogramming in mammalian gametes resets methylation marks that regulate monoallelic expression of imprinted genes. In males, this involves erasure of the maternal methylation marks and establishment of paternal-specific methylation to appropriately guide normal development. The degree to which exogenous factors influence the fidelity of methylation reprogramming is unknown. We previously found an association between paternal obesity and altered DNA methylation in umbilical cord blood, suggesting that the father's endocrine, nutritional, or lifestyle status could potentiate intergenerational heritable epigenetic abnormalities. In these analyses, we examine the relationship between male overweight/obesity and DNA methylation status of imprinted gene regulatory regions in the gametes. Linear regression models were used to compare sperm DNA methylation percentages, quantified by bisulfite pyrosequencing, at 12 differentially methylated regions (DMRs) from 23 overweight/obese and 44 normal weight men. Our study population included 69 volunteers from The Influence of the Environment on Gametic Epigenetic Reprogramming (TIEGER) study, based in NC, USA. After adjusting for age and fertility patient status, semen from overweight or obese men had significantly lower methylation percentages at the MEG3 (β = -1.99; SE = 0.84; p = 0.02), NDN (β = -1.10; SE = 0.47; p = 0.02), SNRPN (β = -0.65; SE = 0.27; p = 0.02), and SGCE/PEG10 (β = -2.5; SE = 1.01; p = 0.01) DMRs. Our data further suggest a slight increase in DNA methylation at the MEG3-IG DMR (β = +1.22; SE = 0.59; p = 0.04) and H19 DMR (β = +1.37; SE = 0.62; p = 0.03) in sperm of overweight/obese men. Our data support that male overweight/obesity status is traceable in the sperm epigenome. Further research is needed to understand the effect of such changes and the point of origin of DNA methylation differences between lean and overweight/obese men. Together with our earlier reports on paternal obesity and epigenetic shifts in the offspring, our studies set the groundwork for future studies investigating male gametic methylation aberrations due to paternal lifestyle factors such as obesity.
Involvement of DNA methylation in memory processing in the honey bee.
Lockett, Gabrielle A; Helliwell, Paul; Maleszka, Ryszard
2010-08-23
DNA methylation, an important and evolutionarily conserved epigenetic mechanism, is implicated in learning and memory processes in vertebrates, but its role in behaviour in invertebrates is unknown. We examined the role of DNA methylation in memory in the honey bee using an appetitive Pavlovian olfactory discrimination task, and by assessing the expression of DNA methyltransferase3, a key driver of epigenetic reprogramming. Here we report that DNA methyltransferase inhibition reduces acquisition retention and alters the extinction depending on treatment time, and DNA methyltransferase3 is upregulated after training. Our findings add to the understanding of epigenetic mechanisms in learning and memory, extending known roles of DNA methylation to appetitive and extinction memory, and for the first time implicate DNA methylation in memory in invertebrates.
Whole DNA methylome profiling in mice exposed to secondhand smoke
Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad
2012-01-01
Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease. PMID:23051858
Aparicio, Ana; North, Brittany; Barske, Lindsey; Wang, Xuemei; Bollati, Valentina; Weisenberger, Daniel; Yoo, Christine; Tannir, Nizar; Horne, Erin; Groshen, Susan; Jones, Peter; Yang, Allen; Issa, Jean-Pierre
2009-04-01
Multiple clinical trials are investigating the use of the DNA methylation inhibitors azacitidine and decitabine for the treatment of solid tumors. Clinical trials in hematological malignancies have shown that optimal activity does not occur at their maximum tolerated doses but selection of an optimal biological dose and schedule for use in solid tumor patients is hampered by the difficulty of obtaining tumor tissue to measure their activity. Here we investigate the feasibility of using plasma DNA to measure the demethylating activity of the DNA methylation inhibitors in patients with solid tumors. We compared four methods to measure LINE-1 and MAGE-A1 promoter methylation in T24 and HCT116 cancer cells treated with decitabine treatment and selected Pyrosequencing for its greater reproducibility and higher signal to noise ratio. We then obtained DNA from plasma, peripheral blood mononuclear cells, buccal mucosa cells and saliva from ten patients with metastatic solid tumors at two different time points, without any intervening treatment. DNA methylation measurements were not significantly different between time point 1 and time point 2 in patient samples. We conclude that measurement of LINE-1 methylation in DNA extracted from the plasma of patients with advanced solid tumors, using Pyrosequencing, is feasible and has low within patient variability. Ongoing studies will determine whether changes in LINE-1 methylation in plasma DNA occur as a result of treatment with DNA methylation inhibitors and parallel changes in tumor tissue DNA.
Rochtus, Anne; Izzi, Benedetta; Vangeel, Elise; Louwette, Sophie; Wittevrongel, Christine; Lambrechts, Diether; Moreau, Yves; Winand, Raf; Verpoorten, Carla; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen
2015-01-01
Neural tube defects (NTDs) are common birth defects of complex etiology. Though family- and population-based studies have confirmed a genetic component, the responsible genes for NTDs are still largely unknown. Based on the hypothesis that folic acid prevents NTDs by stimulating methylation reactions, epigenetic factors, such as DNA methylation, are predicted to be involved in NTDs. Homeobox (HOX) genes play a role in spinal cord development and are tightly regulated in a spatiotemporal and collinear manner, partly by epigenetic modifications. We have quantified DNA methylation for the different HOX genes by subtracting values from a genome-wide methylation analysis using leukocyte DNA from 10 myelomeningocele (MMC) patients and 6 healthy controls. From the 1575 CpGs profiled for the 4 HOX clusters, 26 CpGs were differentially methylated (P-value < 0.05; β-difference > 0.05) between MMC patients and controls. Seventy-seven percent of these CpGs were located in the HOXA and HOXB clusters, with the most profound difference for 3 CpGs within the HOXB7 gene body. A validation case-control study including 83 MMC patients and 30 unrelated healthy controls confirmed a significant association between MMC and HOXB7 hypomethylation (-14.4%; 95% CI: 11.9–16.9%; P-value < 0.0001) independent of the MTHFR 667C>T genotype. Significant HOXB7 hypomethylation was also present in 12 unaffected siblings, each related to a MMC patient, suggestive of an epigenetic change induced by the mother. The inclusion of a neural tube formation model using zebrafish showed that Hoxb7a overexpression but not depletion resulted in deformed body axes with dysmorphic neural tube formation. Our results implicate HOXB7 hypomethylation as risk factor for NTDs and highlight the importance for future genome-wide DNA methylation analyses without preselecting candidate pathways. PMID:25565354
Karsli-Ceppioglu, Seher; Ngollo, Marjolaine; Adjakly, Mawussi; Dagdemir, Aslihan; Judes, Gaëlle; Lebert, André; Boiteux, Jean-Paul; Penault-LLorca, Frédérique; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique
2015-04-01
In prostate cancer, DNA methylation is significantly associated with tumor initiation, progression, and metastasis. Previous studies have suggested that soy phytoestrogens might regulate DNA methylation at individual candidate gene loci and that they play a crucial role as potential therapeutic agents for prostate cancer. The purpose of our study was to examine the modulation effects of phytoestrogens on a genome-wide scale in regards to DNA methylation in prostate cancer. Prostate cancer cell lines DU-145 and LNCaP were treated with 40 μM of genistein and 110 μM of daidzein. DNMT inhibitor 5-azacytidine (2 μM) and the methylating agent budesonide (2 μM) were used to compare their demethylation/methylation effects with phytoestrogens. The regulatory effects of phytoestrogens on DNA methylation were analyzed by using a methyl-DNA immunoprecipitation method coupled with Human DNA Methylation Microarrays (MeDIP-chip). We observed that the methylation profiles of 58 genes were altered by genistein and daidzein treatments in DU-145 and LNCaP prostate cancer cells. In addition, the methylation frequencies of the MAD1L1, TRAF7, KDM4B, and hTERT genes were remarkably modified by genistein treatment. Our results suggest that the modulation effects of phytoestrogens on DNA methylation essentially lead to inhibition of cell growth and induction of apoptosis. Genome-wide methylation profiling reported here suggests that epigenetic regulation mechanisms and, by extension, epigenetics-driven novel therapeutic candidates warrant further consideration in future "omics" studies of prostate cancer.
MMASS: an optimized array-based method for assessing CpG island methylation.
Ibrahim, Ashraf E K; Thorne, Natalie P; Baird, Katie; Barbosa-Morais, Nuno L; Tavaré, Simon; Collins, V Peter; Wyllie, Andrew H; Arends, Mark J; Brenton, James D
2006-01-01
We describe an optimized microarray method for identifying genome-wide CpG island methylation called microarray-based methylation assessment of single samples (MMASS) which directly compares methylated to unmethylated sequences within a single sample. To improve previous methods we used bioinformatic analysis to predict an optimized combination of methylation-sensitive enzymes that had the highest utility for CpG-island probes and different methods to produce unmethylated representations of test DNA for more sensitive detection of differential methylation by hybridization. Subtraction or methylation-dependent digestion with McrBC was used with optimized (MMASS-v2) or previously described (MMASS-v1, MMASS-sub) methylation-sensitive enzyme combinations and compared with a published McrBC method. Comparison was performed using DNA from the cell line HCT116. We show that the distribution of methylation microarray data is inherently skewed and requires exogenous spiked controls for normalization and that analysis of digestion of methylated and unmethylated control sequences together with linear fit models of replicate data showed superior statistical power for the MMASS-v2 method. Comparison with previous methylation data for HCT116 and validation of CpG islands from PXMP4, SFRP2, DCC, RARB and TSEN2 confirmed the accuracy of MMASS-v2 results. The MMASS-v2 method offers improved sensitivity and statistical power for high-throughput microarray identification of differential methylation.
In Situ Analysis of DNA Methylation in Plants.
Kathiria, Palak; Kovalchuk, Igor
2017-01-01
Epigenetic regulation in the plant genome is associated with the determination of expression patterns of various genes. Methylation of DNA at cytosine residues is one of the mechanisms of epigenetic regulation and has been a subject of various studies. Various techniques have been developed to analyze DNA methylation, most of which involve isolation of chromatin from cells and further in vitro studies. Limited techniques are available for in situ study of DNA methylation in plants. Here, we present such an in situ method for DNA methylation analysis which has high sensitivity and good reproducibility.
DNA methylation regulates neurophysiological spatial representation in memory formation
Roth, Eric D.; Roth, Tania L.; Money, Kelli M.; SenGupta, Sonda; Eason, Dawn E.; Sweatt, J. David
2015-01-01
Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation. PMID:25960947
Guo, Hongshan; Zhu, Ping; Guo, Fan; Li, Xianlong; Wu, Xinglong; Fan, Xiaoying; Wen, Lu; Tang, Fuchou
2015-05-01
The heterogeneity of DNA methylation within a population of cells necessitates DNA methylome profiling at single-cell resolution. Recently, we developed a single-cell reduced-representation bisulfite sequencing (scRRBS) technique in which we modified the original RRBS method by integrating all the experimental steps before PCR amplification into a single-tube reaction. These modifications enable scRRBS to provide digitized methylation information on ∼1 million CpG sites within an individual diploid mouse or human cell at single-base resolution. Compared with the single-cell bisulfite sequencing (scBS) technique, scRRBS covers fewer CpG sites, but it provides better coverage for CpG islands (CGIs), which are likely to be the most informative elements for DNA methylation. The entire procedure takes ∼3 weeks, and it requires strong molecular biology skills.
Sha, A H; Lin, X H; Huang, J B; Zhang, D P
2005-07-01
DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. The rice cultivar Wase Aikoku 3 becomes resistant to the blight pathogen Xanthomonas oryzae pv. oryzae at the adult stage. Using methylation-sensitive amplified polymorphism (MSAP) analysis, we compared the patterns of cytosine methylation in seedlings and adult plants of the rice cultivar Wase Aikoku 3 that had been inoculated with the pathogen Xanthomonas oryzae pv. oryzae, subjected to mock inoculation or left untreated. In all, 2000 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using 60 pairs of selective primers. A total of 380 sites were found to be methylated. Of these, 45 showed differential cytosine methylation among the seedlings and adult plants subjected to different treatments, and overall levels of methylation were higher in adult plants than in seedlings. All polymorphic fragments were sequenced, and six showed homology to genes that code for products of known function. Northern analysis of three fragments indicated that their expression varied with methylation pattern, with hypermethylation being correlated with repression of transcription, as expected. The results suggest that significant differences in cytosine methylation exist between seedlings and adult plants, and that hypermethylation or hypomethylation of specific genes may be involved in the development of adult plant resistance (APR) in rice plants.
Alonso, Sergio; Suzuki, Koichi; Yamamoto, Fumiichiro; Perucho, Manuel
2018-01-01
Somatic, and in a minor scale also germ line, epigenetic aberrations are fundamental to carcinogenesis, cancer progression, and tumor phenotype. DNA methylation is the most extensively studied and arguably the best understood epigenetic mechanisms that become altered in cancer. Both somatic loss of methylation (hypomethylation) and gain of methylation (hypermethylation) are found in the genome of malignant cells. In general, the cancer cell epigenome is globally hypomethylated, while some regions-typically gene-associated CpG islands-become hypermethylated. Given the profound impact that DNA methylation exerts on the transcriptional profile and genomic stability of cancer cells, its characterization is essential to fully understand the complexity of cancer biology, improve tumor classification, and ultimately advance cancer patient management and treatment. A plethora of methods have been devised to analyze and quantify DNA methylation alterations. Several of the early-developed methods relied on the use of methylation-sensitive restriction enzymes, whose activity depends on the methylation status of their recognition sequences. Among these techniques, methylation-sensitive amplification length polymorphism (MS-AFLP) was developed in the early 2000s, and successfully adapted from its original gel electrophoresis fingerprinting format to a microarray format that notably increased its throughput and allowed the quantification of the methylation changes. This array-based platform interrogates over 9500 independent loci putatively amplified by the MS-AFLP technique, corresponding to the NotI sites mapped throughout the human genome.
Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact.
Mansouri, Larry; Wierzbinska, Justyna Anna; Plass, Christoph; Rosenquist, Richard
2018-02-07
Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field. Copyright © 2018 Elsevier Ltd. All rights reserved.
Exploratory analysis of ERCC2 DNA methylation in survival among pediatric medulloblastoma patients.
Banfield, Emilyn; Brown, Austin L; Peckham, Erin C; Rednam, Surya P; Murray, Jeffrey; Okcu, M Fatih; Mitchell, Laura E; Chintagumpala, Murali M; Lau, Ching C; Scheurer, Michael E; Lupo, Philip J
2016-10-01
Medulloblastoma is the most frequent malignant pediatric brain tumor. While survival rates have improved due to multimodal treatment including cisplatin-based chemotherapy, there are few prognostic factors for adverse treatment outcomes. Notably, genes involved in the nucleotide excision repair pathway, including ERCC2, have been implicated in cisplatin sensitivity in other cancers. Therefore, this study evaluated the role of ERCC2 DNA methylation profiles on pediatric medulloblastoma survival. The study population included 71 medulloblastoma patients (age <18years at diagnosis) and recruited from Texas Children's Cancer Center between 2004 and 2009. DNA methylation profiles were generated from peripheral blood samples using the Illumina Infinium Human Methylation 450 Beadchip. Sixteen ERCC2-associated CpG sites were evaluated in this analysis. Multivariable regression models were used to determine the adjusted association between DNA methylation and survival. Cox regression and Kaplan-Meier curves were used to compare 5-year overall survival between hyper- and hypo-methylation at each CpG site. In total, 12.7% (n=9) of the patient population died within five years of diagnosis. In our population, methylation of the cg02257300 probe (Hazard Ratio=9.33; 95% Confidence Interval: 1.17-74.64) was associated with death (log-rank p=0.01). This association remained suggestive after correcting for multiple comparisons (FDR p<0.2). No other ERCC2-associated CpG site was associated with survival in this population of pediatric medulloblastoma patients. These findings provide the first evidence that DNA methylation within the promoter region of the ERCC2 gene may be associated with survival in pediatric medulloblastoma. If confirmed in future studies, this information may lead to improved risk stratification or promote the development of novel, targeted therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chernov, Andrei V; Reyes, Leticia; Xu, Zhenkang; Gonzalez, Beatriz; Golovko, Georgiy; Peterson, Scott; Perucho, Manuel; Fofanov, Yuriy; Strongin, Alex Y
2015-01-01
Aberrant DNA methylation is frequently observed in disease, including many cancer types, yet the underlying mechanisms remain unclear. Because germline and somatic mutations in the genes that are responsible for DNA methylation are infrequent in malignancies, additional mechanisms must be considered. Mycoplasmas spp., including Mycoplasma hyorhinis, efficiently colonize human cells and may serve as a vehicle for delivery of enzymatically active microbial proteins into the intracellular milieu. Here, we performed, for the first time, genome-wide and individual gene mapping of methylation marks generated by the M. hyorhinis CG- and GATC-specific DNA cytosine methyltransferases (MTases) in human cells. Our results demonstrated that, upon expression in human cells, MTases readily translocated to the cell nucleus. In the nucleus, MTases selectively and efficiently methylated the host genome at the DNA sequence sites free from pre-existing endogenous methylation, including those in a variety of cancer-associated genes. We also established that mycoplasma is widespread in colorectal cancers, suggesting that either the infection contributed to malignancy onset or, alternatively, that tumors provide a favorable environment for mycoplasma growth. In the human genome, ∼11% of GATC sites overlap with CGs (e.g., CGATmCG); therefore, the methylated status of these sites can be perpetuated by human DNMT1. Based on these results, we now suggest that the GATC-specific methylation represents a novel type of infection-specific epigenetic mark that originates in human cells with a previous exposure to infection. Overall, our findings unveil an entirely new panorama of interactions between the human microbiome and epigenome with a potential impact in disease etiology. PMID:25695131
Studies on the Mechanism of Action of Hydrazine-Induced Methylation of DNA Guanne
1984-10-03
potent methylating agent , diazomethane (-CH -N+-N). Several in vivo studies were carried out to determine the role of aldehydes in the alkylation of DNA...methylating agent available to interact with DNA. If such a mechanism occurs, it may explain why disulfiram appears to inhibit the alkylation of DNA...a much slower/poorer alkylating agent for DNA. Effect of the 1-Carbon Pool on DNA Methylation in Hydrazine Toxicity: In Vitro In vitro studies were
Pandey, Ram Vinay; Pulverer, Walter; Kallmeyer, Rainer; Beikircher, Gabriel; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas
2016-01-01
Bisulfite (BS) conversion-based and methylation-sensitive restriction enzyme (MSRE)-based PCR methods have been the most commonly used techniques for locus-specific DNA methylation analysis. However, both methods have advantages and limitations. Thus, an integrated approach would be extremely useful to quantify the DNA methylation status successfully with great sensitivity and specificity. Designing specific and optimized primers for target regions is the most critical and challenging step in obtaining the adequate DNA methylation results using PCR-based methods. Currently, no integrated, optimized, and high-throughput methylation-specific primer design software methods are available for both BS- and MSRE-based methods. Therefore an integrated, powerful, and easy-to-use methylation-specific primer design pipeline with great accuracy and success rate will be very useful. We have developed a new web-based pipeline, called MSP-HTPrimer, to design primers pairs for MSP, BSP, pyrosequencing, COBRA, and MSRE assays on both genomic strands. First, our pipeline converts all target sequences into bisulfite-treated templates for both forward and reverse strand and designs all possible primer pairs, followed by filtering for single nucleotide polymorphisms (SNPs) and known repeat regions. Next, each primer pairs are annotated with the upstream and downstream RefSeq genes, CpG island, and cut sites (for COBRA and MSRE). Finally, MSP-HTPrimer selects specific primers from both strands based on custom and user-defined hierarchical selection criteria. MSP-HTPrimer produces a primer pair summary output table in TXT and HTML format for display and UCSC custom tracks for resulting primer pairs in GTF format. MSP-HTPrimer is an integrated, web-based, and high-throughput pipeline and has no limitation on the number and size of target sequences and designs MSP, BSP, pyrosequencing, COBRA, and MSRE assays. It is the only pipeline, which automatically designs primers on both genomic strands to increase the success rate. It is a standalone web-based pipeline, which is fully configured within a virtual machine and thus can be readily used without any configuration. We have experimentally validated primer pairs designed by our pipeline and shown a very high success rate of primer pairs: out of 66 BSP primer pairs, 63 were successfully validated without any further optimization step and using the same qPCR conditions. The MSP-HTPrimer pipeline is freely available from http://sourceforge.net/p/msp-htprimer.
Synthesis and characterization of DNA minor groove binding alkylating agents.
Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry
2013-01-18
Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.
Genome-wide Mapping Reveals Conservation of Promoter DNA Methylation Following Chicken Domestication
Li, Qinghe; Wang, Yuanyuan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Ning
2015-01-01
It is well-known that environment influences DNA methylation, however, the extent of heritable DNA methylation variation following animal domestication remains largely unknown. Using meDIP-chip we mapped the promoter methylomes for 23,316 genes in muscle tissues of ancestral and domestic chickens. We systematically examined the variation of promoter DNA methylation in terms of different breeds, differentially expressed genes, SNPs and genes undergo genetic selection sweeps. While considerable changes in DNA sequence and gene expression programs were prevalent, we found that the inter-strain DNA methylation patterns were highly conserved in promoter region between the wild and domestic chicken breeds. Our data suggests a global preservation of DNA methylation between the wild and domestic chicken breeds in either a genome-wide or locus-specific scale in chick muscle tissues. PMID:25735894
Rönn, Tina; Volkov, Petr; Davegårdh, Cajsa; Dayeh, Tasnim; Hall, Elin; Olsson, Anders H.; Nilsson, Emma; Tornberg, Åsa; Dekker Nitert, Marloes; Eriksson, Karl-Fredrik; Jones, Helena A.; Groop, Leif; Ling, Charlotte
2013-01-01
Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism. PMID:23825961
Ponomaryova, A A; Cherdyntseva, N V; Bondar, A A; Dobrodeev, A Y; Zavyalov, A A; Tuzikov, S A; Vlassov, V V; Choinzonov, E L; Laktionov, P P; Rykova, E Y
2017-01-01
Malignant cell transformation is accompanied with abnormal DNA methylation, such as the hypermethylation of certain gene promoters and hypomethylation of retrotransposons. In particular, the hypomethylation of the human-specific family of LINE-1 retrotransposons was observed in lung cancer tissues. It is also known that the circulating DNA (cirDNA) of blood plasma and cell-surface-bound circulating DNA (csb-cirDNA) of cancer patients accumulate tumor-specific aberrantly methylated DNA fragments, which are currently considered to be valuable cancer markers. This work compares LINE-1 retrotransposon methylation patterns in cirDNA of 16 lung cancer patients before and after treatment. CirDNA was isolated from blood plasma, and csb-cirDNA fractions were obtained by successive elution with EDTA-containing phosphate buffered saline and trypsin. Concentrations of methylated LINE-1 region 1 copies (LINE-1-met) were assayed by real-time methylation-specific PCR. LINE-1 methylation levels were normalized to the concentration of LINE-1 region 2, which was independent of the methylation status (LINE-1-Ind). The concentrations of LINE-1-met and LINE-1-Ind in csb-cirDNA of lung cancer patients exhibited correlations before treatment (r = 0.54), after chemotherapy (r = 0.72), and after surgery (r = 0.83) (P < 0.05, Spearman rank test). In the total group of patients, the level of LINE-1 methylation (determined as the LINE-1-met/LINE-1-Ind ratio) was shown to increase significantly during the follow-up after chemotherapy (P < 0.05, paired t test) and after surgery compared to the level of methylation before treatment (P < 0.05, paired t test). The revealed association between the level of LINE-1 methylation and the effect of antitumor therapy was more pronounced in squamous cell lung cancer than in adenocarcinoma (P < 0.05 and P > 0.05, respectively). These results suggest a need for the further investigation of dynamic changes in levels of LINE-1 methylation depending on the antitumor therapy.
Aging effects on DNA methylation modules in human brain and blood tissue
2012-01-01
Background Several recent studies reported aging effects on DNA methylation levels of individual CpG dinucleotides. But it is not yet known whether aging-related consensus modules, in the form of clusters of correlated CpG markers, can be found that are present in multiple human tissues. Such a module could facilitate the understanding of aging effects on multiple tissues. Results We therefore employed weighted correlation network analysis of 2,442 Illumina DNA methylation arrays from brain and blood tissues, which enabled the identification of an age-related co-methylation module. Module preservation analysis confirmed that this module can also be found in diverse independent data sets. Biological evaluation showed that module membership is associated with Polycomb group target occupancy counts, CpG island status and autosomal chromosome location. Functional enrichment analysis revealed that the aging-related consensus module comprises genes that are involved in nervous system development, neuron differentiation and neurogenesis, and that it contains promoter CpGs of genes known to be down-regulated in early Alzheimer's disease. A comparison with a standard, non-module based meta-analysis revealed that selecting CpGs based on module membership leads to significantly increased gene ontology enrichment, thus demonstrating that studying aging effects via consensus network analysis enhances the biological insights gained. Conclusions Overall, our analysis revealed a robustly defined age-related co-methylation module that is present in multiple human tissues, including blood and brain. We conclude that blood is a promising surrogate for brain tissue when studying the effects of age on DNA methylation profiles. PMID:23034122
Äijö, Tarmo; Yue, Xiaojing; Rao, Anjana; Lähdesmäki, Harri
2016-01-01
Motivation: 5-methylcytosine (5mC) is a widely studied epigenetic modification of DNA. The ten-eleven translocation (TET) dioxygenases oxidize 5mC into oxidized methylcytosines (oxi-mCs): 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). DNA methylation modifications have multiple functions. For example, 5mC is shown to be associated with diseases and oxi-mC species are reported to have a role in active DNA demethylation through 5mC oxidation and DNA repair, among others, but the detailed mechanisms are poorly understood. Bisulphite sequencing and its various derivatives can be used to gain information about all methylation modifications at single nucleotide resolution. Analysis of bisulphite based sequencing data is complicated due to the convoluted read-outs and experiment-specific variation in biochemistry. Moreover, statistical analysis is often complicated by various confounding effects. How to analyse 5mC and oxi-mC data sets with arbitrary and complex experimental designs is an open and important problem. Results: We propose the first method to quantify oxi-mC species with arbitrary covariate structures from bisulphite based sequencing data. Our probabilistic modeling framework combines a previously proposed hierarchical generative model for oxi-mC-seq data and a general linear model component to account for confounding effects. We show that our method provides accurate methylation level estimates and accurate detection of differential methylation when compared with existing methods. Analysis of novel and published data gave insights into to the demethylation of the forkhead box P3 (Foxp3) locus during the induced T regulatory cell differentiation. We also demonstrate how our covariate model accurately predicts methylation levels of the Foxp3 locus. Collectively, LuxGLM method improves the analysis of DNA methylation modifications, particularly for oxi-mC species. Availability and Implementation: An implementation of the proposed method is available under MIT license at https://github.org/tare/LuxGLM/ Contact: taijo@simonsfoundation.org or harri.lahdesmaki@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27587669
Aberrant DNA methylation patterns in diabetic nephropathy
2014-01-01
Background The aim of this study was to evaluate whether global levels of DNA methylation status were associated with albuminuria and progression of diabetic nephropathy in a case-control study of 123 patients with type 2 diabetes- 53 patients with albuminuria and 70 patients without albuminuria. Methods The 5-methyl cytosine content was assessed by reverse phase high pressure liquid chromatography (RP-HPLC) of peripheral blood mononuclear cells to determine individual global DNA methylation status in two groups. Results Global DNA methylation levels were significantly higher in patients with albuminuria compared with those in normal range of albuminuria (p = 0.01). There were significant differences in global levels of DNA methylation in relation to albuminuria (p = 0.028) and an interesting pattern of increasing global levels of DNA methylation in terms of albuminuria severity. In patients with micro- and macro albuminuria, we found no significant correlations between global DNA methylation levels and duration of diabetes (p > 0.05). In both sub groups, there were not significant differences between global DNA methylation levels with good and poor glycaemic control (p > 0.05). In addition, in patients with albuminuria, no differences in DNA methylation levels were observed between patients with and without other risk factors including age, gender, hypertension, dyslipidaemia and obesity. Conclusions These data may be helpful in further studies to develop novel biomarkers and new strategies for clinical care of patients at risk of diabetic nephropathy. PMID:25028646
Mayol, Gemma; Martín-Subero, José I.; Ríos, José; Queiros, Ana; Kulis, Marta; Suñol, Mariona; Esteller, Manel; Gómez, Soledad; Garcia, Idoia; de Torres, Carmen; Rodríguez, Eva; Galván, Patricia; Mora, Jaume; Lavarino, Cinzia
2012-01-01
Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation. PMID:23144874
DNA methylation dynamics during early plant life.
Bouyer, Daniel; Kramdi, Amira; Kassam, Mohamed; Heese, Maren; Schnittger, Arp; Roudier, François; Colot, Vincent
2017-09-25
Cytosine methylation is crucial for gene regulation and silencing of transposable elements in mammals and plants. While this epigenetic mark is extensively reprogrammed in the germline and early embryos of mammals, the extent to which DNA methylation is reset between generations in plants remains largely unknown. Using Arabidopsis as a model, we uncovered distinct DNA methylation dynamics over transposable element sequences during the early stages of plant development. Specifically, transposable elements and their relics show invariably high methylation at CG sites but increasing methylation at CHG and CHH sites. This non-CG methylation culminates in mature embryos, where it reaches saturation for a large fraction of methylated CHH sites, compared to the typical 10-20% methylation level observed in seedlings or adult plants. Moreover, the increase in CHH methylation during embryogenesis matches the hypomethylated state in the early endosperm. Finally, we show that interfering with the embryo-to-seedling transition results in the persistence of high CHH methylation levels after germination, specifically over sequences that are targeted by the RNA-directed DNA methylation (RdDM) machinery. Our findings indicate the absence of extensive resetting of DNA methylation patterns during early plant life and point instead to an important role of RdDM in reinforcing DNA methylation of transposable element sequences in every cell of the mature embryo. Furthermore, we provide evidence that this elevated RdDM activity is a specific property of embryogenesis.
Maternal Methyl-Group Donor Intake and Global DNA (Hydroxy)Methylation before and during Pregnancy
Pauwels, Sara; Duca, Radu Corneliu; Devlieger, Roland; Freson, Kathleen; Straetmans, Dany; Van Herck, Erik; Huybrechts, Inge; Koppen, Gurdun; Godderis, Lode
2016-01-01
It is still unclear to which extent methyl-group intake during pregnancy can affect maternal global DNA (hydroxyl)methylation. Pregnancy methylation profiling and its link with methyl-group intake in a healthy population could enhance our understanding of the development of pregnancy related disorders. One hundred forty-eight women were enrolled in the MANOE (MAternal Nutrition and Offspring’s Epigenome) study. Thiry-four women were enrolled before pregnancy and 116 during the first trimester of pregnancy. Global DNA (hydroxy)methylation in blood using LC-MS/MS and dietary methyl-group intake (methionine, folate, betaine, and choline) using a food-frequency questionnaire were estimated pre-pregnancy, during each trimester, and at delivery. Global DNA (hydroxy)methylation levels were highest pre-pregnancy and at weeks 18–22 of pregnancy. We observed a positive relation between folic acid and global DNA methylation (p = 0.04) and hydroxymethylation (p = 0.04). A high intake of methionine pre-pregnancy and in the first trimester showed lower (hydroxy)methylation percentage in weeks 11–13 and weeks 18–22, respectively. Choline and betaine intake in the first weeks was negatively associated with hydroxymethylation. Women with a high intake of these three methyl groups in the second and third trimester showed higher hyrdoxymethylation/methylation levels in the third trimester. To conclude, a time trend in DNA (hydroxy)methylation was found and women with higher methyl-group intake showed higher methylation in the third trimester, and not in earlier phases of pregnancy. PMID:27509522
Maternal Methyl-Group Donor Intake and Global DNA (Hydroxy)Methylation before and during Pregnancy.
Pauwels, Sara; Duca, Radu Corneliu; Devlieger, Roland; Freson, Kathleen; Straetmans, Dany; Van Herck, Erik; Huybrechts, Inge; Koppen, Gurdun; Godderis, Lode
2016-08-06
It is still unclear to which extent methyl-group intake during pregnancy can affect maternal global DNA (hydroxyl)methylation. Pregnancy methylation profiling and its link with methyl-group intake in a healthy population could enhance our understanding of the development of pregnancy related disorders. One hundred forty-eight women were enrolled in the MANOE (MAternal Nutrition and Offspring's Epigenome) study. Thiry-four women were enrolled before pregnancy and 116 during the first trimester of pregnancy. Global DNA (hydroxy)methylation in blood using LC-MS/MS and dietary methyl-group intake (methionine, folate, betaine, and choline) using a food-frequency questionnaire were estimated pre-pregnancy, during each trimester, and at delivery. Global DNA (hydroxy)methylation levels were highest pre-pregnancy and at weeks 18-22 of pregnancy. We observed a positive relation between folic acid and global DNA methylation (p = 0.04) and hydroxymethylation (p = 0.04). A high intake of methionine pre-pregnancy and in the first trimester showed lower (hydroxy)methylation percentage in weeks 11-13 and weeks 18-22, respectively. Choline and betaine intake in the first weeks was negatively associated with hydroxymethylation. Women with a high intake of these three methyl groups in the second and third trimester showed higher hyrdoxymethylation/methylation levels in the third trimester. To conclude, a time trend in DNA (hydroxy)methylation was found and women with higher methyl-group intake showed higher methylation in the third trimester, and not in earlier phases of pregnancy.
Identification of body fluid-specific DNA methylation markers for use in forensic science.
Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung
2014-11-01
DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kemme, Catherine A.; Marquez, Rolando; Luu, Ross H.
2017-01-01
Abstract Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stopped-flow fluorescence method, we examined the kinetic impact of DNA methylation of decoys on the search process of the Egr-1 zinc-finger protein. We analyzed its association with an unmethylated target site on fluorescence-labeled DNA in the presence of competitor DNA duplexes, including Egr-1 decoys. DNA methylation of decoys alone did not affect target search kinetics. In the presence of the MeCP2 methyl-CpG-binding domain (MBD), however, DNA methylation of decoys substantially (∼10-30-fold) accelerated the target search process of the Egr-1 zinc-finger protein. This acceleration did not occur when the target was also methylated. These results suggest that when decoys are methylated, MBD proteins can block them and thereby allow Egr-1 to avoid sequestration in non-functional locations. This effect may occur in vivo for DNA methylation outside CpG islands (CGIs) and could facilitate localization of some transcription factors within regulatory CGIs, where DNA methylation is rare. PMID:28486614
Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting
2017-09-12
Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.
Epigenetic Variation in Monozygotic Twins: A Genome-Wide Analysis of DNA Methylation in Buccal Cells
van Dongen, Jenny; Ehli, Erik A.; Slieker, Roderick C.; Bartels, Meike; Weber, Zachary M.; Davies, Gareth E.; Slagboom, P. Eline; Heijmans, Bastiaan T.; Boomsma, Dorret I.
2014-01-01
DNA methylation is one of the most extensively studied epigenetic marks in humans. Yet, it is largely unknown what causes variation in DNA methylation between individuals. The comparison of DNA methylation profiles of monozygotic (MZ) twins offers a unique experimental design to examine the extent to which such variation is related to individual-specific environmental influences and stochastic events or to familial factors (DNA sequence and shared environment). We measured genome-wide DNA methylation in buccal samples from ten MZ pairs (age 8–19) using the Illumina 450k array and examined twin correlations for methylation level at 420,921 CpGs after QC. After selecting CpGs showing the most variation in the methylation level between subjects, the mean genome-wide correlation (rho) was 0.54. The correlation was higher, on average, for CpGs within CpG islands (CGIs), compared to CGI shores, shelves and non-CGI regions, particularly at hypomethylated CpGs. This finding suggests that individual-specific environmental and stochastic influences account for more variation in DNA methylation in CpG-poor regions. Our findings also indicate that it is worthwhile to examine heritable and shared environmental influences on buccal DNA methylation in larger studies that also include dizygotic twins. PMID:24802513
Triplex-mediated analysis of cytosine methylation at CpA sites in DNA.
Johannsen, Marie W; Gerrard, Simon R; Melvin, Tracy; Brown, Tom
2014-01-18
Modified triplex-forming oligonucleotides distinguish 5-methyl cytosine from unmethylated cytosine in DNA duplexes by differences in triplex melting temperatures. The discrimination is sequence-specific; dramatic differences in stabilisation are seen for CpA methylation, whereas CpG methylation is not detected. This direct detection of DNA methylation constitutes a new approach for epigenetic analysis.
Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao
2015-01-01
Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma. PMID:25971279
Densely ionizing radiation affects DNA methylation of selective LINE-1 elements1
Prior, Sara; Miousse, Isabelle R.; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R.; Allen, Antiño R.; Raber, Jacob; Tackett, Alan J.; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor
2016-01-01
Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. PMID:27419368
Cai, Jinquan; Chen, Jing; Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao
2015-07-20
Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma.
Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a.
Deplus, Rachel; Blanchon, Loïc; Rajavelu, Arumugam; Boukaba, Abdelhalim; Defrance, Matthieu; Luciani, Judith; Rothé, Françoise; Dedeurwaerder, Sarah; Denis, Hélène; Brinkman, Arie B; Simmer, Femke; Müller, Fabian; Bertin, Benjamin; Berdasco, Maria; Putmans, Pascale; Calonne, Emilie; Litchfield, David W; de Launoit, Yvan; Jurkowski, Tomasz P; Stunnenberg, Hendrik G; Bock, Christoph; Sotiriou, Christos; Fraga, Mario F; Esteller, Manel; Jeltsch, Albert; Fuks, François
2014-08-07
DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat
Williams, Ben P.; Pignatta, Daniela; Henikoff, Steven; Gehring, Mary
2015-01-01
Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. PMID:25826366
Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks.
Paukku, Y; Hill, G
2011-05-12
Electron affinities, ionization potentials, and redox potentials for DNA bases, base pairs, and N-methylated derivatives are computed at the DFT/M06-2X/6-31++G(d,p) level of theory. Redox properties of a guanine-guanine stack model are explored as well. Reduction and oxidation potentials are in good agreement with the experimental ones. Electron affinities of base pairs were found to be negative. Methylation of canonical bases affects the ionization potentials the most. Base pair formation and base stacking lower ionization potentials by 0.3 eV. Pairing of guanine with the 5-methylcytosine does not seem to influence the redox properties of this base pair much.
Quantitative DNA Methylation Profiling in Cancer.
Ammerpohl, Ole; Haake, Andrea; Kolarova, Julia; Siebert, Reiner
2016-01-01
Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.
The Epigenomic Landscape of Prokaryotes
Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.; ...
2016-02-12
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less
The Epigenomic Landscape of Prokaryotes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less
Effects of DNA Methylation and Chromatin State on Rates of Molecular Evolution in Insects.
Glastad, Karl M; Goodisman, Michael A D; Yi, Soojin V; Hunt, Brendan G
2015-12-04
Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system. We found that DNA methylation was positively correlated with the synonymous substitution rate in C. floridanus, suggesting a key effect of DNA methylation on patterns of gene evolution. However, our data suggest the link between DNA methylation and elevated rates of synonymous substitution was explained, in large part, by the targeting of DNA methylation to genes with signatures of transcriptionally active chromatin, rather than the mutational effect of DNA methylation itself. This phenomenon may be explained by an elevated mutation rate for genes residing in transcriptionally active chromatin, or by increased structural constraints on genes in inactive chromatin. This result highlights the importance of chromatin structure as the primary epigenetic driver of genome evolution in insects. Overall, our study demonstrates how different epigenetic systems contribute to variation in the rates of coding sequence evolution. Copyright © 2016 Glastad et al.
Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation
Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Shiwa, Yuh; Ono, Kanako; Suzuki, Sadafumi; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Shimizu, Atsushi
2016-01-01
Cytosine methylation at CpG dinucleotides is an epigenetic mechanism that affects the gene expression profiles responsible for the functional differences in various cells and tissues. Although gene expression patterns are dynamically altered in response to various stimuli, the intraindividual dynamics of DNA methylation in human cells are yet to be fully understood. Here, we investigated the extent to which DNA methylation contributes to the dynamics of gene expression by collecting 24 blood samples from two individuals over a period of 3 months. Transcriptome and methylome association analyses revealed that only ~2% of dynamic changes in gene expression could be explained by the intraindividual variation of DNA methylation levels in peripheral blood mononuclear cells and purified monocytes. These results showed that DNA methylation levels remain stable for at least several months, suggesting that disease-associated DNA methylation markers are useful for estimating the risk of disease manifestation. PMID:27192970
Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F
2017-09-26
Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.
Current trends in electrochemical sensing and biosensing of DNA methylation.
Krejcova, Ludmila; Richtera, Lukas; Hynek, David; Labuda, Jan; Adam, Vojtech
2017-11-15
DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Chouliaras, Leonidas; Pishva, Ehsan; Haapakoski, Rita; Zsoldos, Eniko; Mahmood, Abda; Filippini, Nicola; Burrage, Joe; Mill, Jonathan; Kivimäki, Mika; Lunnon, Katie; Ebmeier, Klaus P
2018-05-01
The present study investigated the link between peripheral DNA methylation (DNAm), cognitive impairment and brain aging. We tested the association between blood genome-wide DNAm profiles using the Illumina 450K arrays, cognitive dysfunction and brain MRI measures in selected participants of the Whitehall II imaging sub-study. Eight differentially methylated regions were associated with cognitive impairment. Accelerated aging based on the Hannum epigenetic clock was associated with mean diffusivity and global fractional anisotropy. We also identified modules of co-methylated loci associated with white matter hyperintensities. These co-methylation modules were enriched among pathways relevant to β-amyloid processing and glutamatergic signaling. Our data support the notion that blood DNAm changes may have utility as a biomarker for cognitive dysfunction and brain aging.
Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees
Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles
2015-01-01
DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238
Martin, Christiana; Cho, Young-Eun; Kim, Hyungsuk; Yun, Sijung; Kanefsky, Rebekah; Lee, Hyunhwa; Mysliwiec, Vincent; Cashion, Ann; Gill, Jessica
2018-05-01
Military personnel experience posttraumatic stress disorder (PTSD), which is associated with differential DNA methylation across the whole genome. However, the relationship between these DNA methylation patterns and clinically relevant increases in PTSD severity is not yet clearly understood. The purpose of this study was to identify differences in DNA methylation associated with PTSD symptoms and investigate DNA methylation changes related to increases in the severity of PTSD in military personnel. In this pilot study, a cross-sectional comparison was made between military personnel with PTSD (n = 8) and combat-matched controls without PTSD (n = 6). Symptom measures were obtained, and genome-wide DNA methylation was measured using methylated DNA immunoprecipitation (MeDIP-seq) from whole blood samples at baseline and 3 months later. A longitudinal comparison measured DNA methylation changes in military personnel with clinically relevant increases in PTSD symptoms between time points (PTSD onset) and compared methylation patterns to controls with no clinical changes in PTSD. In military personnel with elevated PTSD symptoms 3 months following baseline, 119 genes exhibited reduced methylation and 8 genes exhibited increased methylation. Genes with reduced methylation in the PTSD-onset group relate to the canonical pathways of netrin signaling, Wnt/Ca + pathway, and axonal guidance signaling. These gene pathways relate to neurological disorders, and the current findings suggest that these epigenetic changes potentially relate to PTSD symptomology. This study provides some novel insights into the role of epigenetic changes in PTSD symptoms and the progression of PTSD symptoms in military personnel.
McKernan, Kevin J.; Spangler, Jessica; Zhang, Lei; Tadigotla, Vasisht; McLaughlin, Stephen; Warner, Jason; Zare, Amir; Boles, Richard G.
2014-01-01
We have developed a PCR method, coined Déjà vu PCR, that utilizes six nucleotides in PCR with two methyl specific restriction enzymes that respectively digest these additional nucleotides. Use of this enzyme-and-nucleotide combination enables what we term a “DNA diode”, where DNA can advance in a laboratory in only one direction and cannot feedback into upstream assays. Here we describe aspects of this method that enable consecutive amplification with the introduction of a 5th and 6th base while simultaneously providing methylation dependent mitochondrial DNA enrichment. These additional nucleotides enable a novel DNA decontamination technique that generates ephemeral and easy to decontaminate DNA. PMID:24788618
Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.
Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong
2018-02-01
Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.
Toxicological effects of benzo[a]pyrene on DNA methylation of whole genome in ICR mice.
Zhao, L; Zhang, S; An, X; Tan, W; Pang, D; Ouyang, H
2015-10-30
It has been well known that alterations in DNA methylation - an important regulator of gene transcription - lead to cancer. Therefore a change in the level of DNA methylation of whole genome has been considered as a biomarker of carcinogenesis. Previously, a large number of experimental results in genetic toxicology have showed that benzo[a]pyrene could cause DNA mutation and fragmentation. However, there was little to no studies on alterations in DNA methylation of genome directly result from exposure to benzo[a]pyrene. In this paper, possible mechanisms of alterations in whole genomic DNA methylation by benzo[a]pyrene were investigated using ICR mice after benzo[a]pyrene exposure. The blood, liver, pancreas, skin, lung and bladder of ICR mice were removed and checked after a fixed time interval (6 hours) of benzo[a]pyrene exposure, and whole genomic DNA methylation level was determined by high performance liquid chromatography (HPLC). The results exhibited tissue specificity, that is, the level of whole genomic DNA methylation decreases significantly in blood and liver, rather than pancreas, lung, skin and bladder of ICR mice. This study investigated the direct relationship between aberrant DNA methylation level and benzo[a]pyrene exposure, which might be helpful to clarify the toxicological mechanism of benzo[a]pyrene in epigenetic perspectives.
Methylation pattern of fish lymphocystis disease virus DNA.
Wagner, H; Simon, D; Werner, E; Gelderblom, H; Darai, C; Flügel, R M
1985-03-01
The content and distribution of 5-methylcytosine in DNA from fish lymphocystis disease virus was analyzed by high-pressure liquid chromatography, nearest-neighbor analysis, and with restriction endonucleases. We found that 22% of all C residues were methylated, including methylation of the following dinucleotide sequences: CpG to 75%, CpC to ca. 1%, and CpA to 2 to 5%. Comparison of relative digestion of viral DNA with MspI and HpaII indicated that CCGG sequences were almost completely methylated at the inner C. The degree of methylation of GCGC was much lower. The methylation pattern of fish lymphocystis disease virus DNA differed from that of the host cell DNA.
Methylation pattern of fish lymphocystis disease virus DNA.
Wagner, H; Simon, D; Werner, E; Gelderblom, H; Darai, C; Flügel, R M
1985-01-01
The content and distribution of 5-methylcytosine in DNA from fish lymphocystis disease virus was analyzed by high-pressure liquid chromatography, nearest-neighbor analysis, and with restriction endonucleases. We found that 22% of all C residues were methylated, including methylation of the following dinucleotide sequences: CpG to 75%, CpC to ca. 1%, and CpA to 2 to 5%. Comparison of relative digestion of viral DNA with MspI and HpaII indicated that CCGG sequences were almost completely methylated at the inner C. The degree of methylation of GCGC was much lower. The methylation pattern of fish lymphocystis disease virus DNA differed from that of the host cell DNA. Images PMID:3973962
Parrish, R Ryley; Day, Jeremy J; Lubin, Farah D
2012-07-01
DNA methylation is an epigenetic modification that is essential for the development and mature function of the central nervous system. Due to the relevance of this modification to the transcriptional control of gene expression, it is often necessary to examine changes in DNA methylation patterns with both gene and single-nucleotide resolution. Here, we describe an in-depth basic protocol for direct bisulfite sequencing of DNA isolated from brain tissue, which will permit direct assessment of methylation status at individual genes as well as individual cytosine molecules/nucleotides within a genomic region. This method yields analysis of DNA methylation patterns that is robust, accurate, and reproducible, thereby allowing insights into the role of alterations in DNA methylation in brain tissue.
Genetic and epigenetic status of triple exotic consanguinity cotton introgression lines.
He, S P; Sun, J L; Du, X M
2011-10-03
Introgression lines are some of the most important germplasm for breeding applications and other research conducted on cotton crops. The DNA methylation level among 10 introgression lines of cotton (Gossypium hirsutum) and three exotic parental species (G. arboreum, G. thurberi and G. barbadense) were assessed by methylation-sensitive amplified polymorphism (MSAP) technology. The methylation level in the introgression lines ranged from 33.3 to 51.5%. However, the lines PD0111 and PD0113 had the lowest methylation level (34.6 and 33.3%, respectively) due to demethylation of most non-coding sequences. Amplified fragment length polymorphism (AFLP) was used to evaluate the genetic polymorphism in the cotton introgression lines. A high degree of polymorphism was observed in all introgression lines (mean 47.2%) based on AFLP and MSAP analyses. This confirmed the effects of genetic improvement on cotton introgression lines. The low methylation varieties, PD0111 and PD0113 (introgression lines), clustered outside of the introgression lines based on MSAP data, which was incongruent with an AFLP-based dendrogram. This phenomenon could be caused by environmental changes or introgression of exotic DNA fragments.
Hassler, Melanie R; Pulverer, Walter; Lakshminarasimhan, Ranjani; Redl, Elisa; Hacker, Julia; Garland, Gavin D; Merkel, Olaf; Schiefer, Ana-Iris; Simonitsch-Klupp, Ingrid; Kenner, Lukas; Weisenberger, Daniel J; Weinhaeusel, Andreas; Turner, Suzanne D; Egger, Gerda
2016-10-04
Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK-) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK- ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.).
Wang, Yifeng; Lin, Haiyan; Tong, Xiaohong; Hou, Yuxuan; Chang, Yuxiao; Zhang, Jian
2017-11-01
DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhou, Huiqing; Kimsey, Isaac J.; Nikolova, Evgenia N.; Sathyamoorthy, Bharathwaj; Grazioli, Gianmarc; McSally, James; Bai, Tianyu; Wunderlich, Christoph H.; Kreutz, Christoph; Andricioaei, Ioan; Al-Hashimi, Hashim M.
2016-01-01
The B-DNA double helix can dynamically accommodate G–C and A–T base pairs in either Watson-Crick or Hoogsteen configurations. Here, we show that G–C+ and A–U Hoogsteen base pairs are strongly disfavored in A-RNA. As a result, N1-methyl adenosine and N1-methyl guanosine, which occur in DNA as a form of alkylation damage, and in RNA as a posttranscriptional modification, have dramatically different consequences. They create G–C+ and A–U Hoogsteen base pairs in duplex DNA that maintain the structural integrity of the double helix, but block base pairing all together and induce local duplex melting in RNA, providing a mechanism for potently disrupting RNA structure through posttranscriptional modifications. The markedly different propensities to form Hoogsteen base pairs in B-DNA and A-RNA may help meet the opposing requirements of maintaining genome stability on one hand, and dynamically modulating the structure of the epitranscriptome on the other. PMID:27478929
Differential DNA methylation and transcription profiles in date palm roots exposed to salinity
Al-Harrasi, Ibtisam; Al-Yahyai, Rashid
2018-01-01
As a salt-adaptive plant, the date palm (Phoenix dactylifera L.) requires a suitable mechanism to adapt to the stress of saline soils. There is growing evidence that DNA methylation plays an important role in regulating gene expression in response to abiotic stresses, including salinity. Thus, the present study sought to examine the differential methylation status that occurs in the date palm genome when plants are exposed to salinity, and to identify salinity responsive genes that are regulated by DNA methylation. To achieve these, whole-genome bisulfite sequencing (WGBS) was employed and mRNA was sequenced from salinity-treated and untreated roots. The WGBS analysis included 324,987,795 and 317,056,091 total reads of the control and the salinity-treated samples, respectively. The analysis covered about 81% of the total genomic DNA with about 40% of mapping efficiency of the sequenced reads and an average read depth of 17-fold coverage per DNA strand, and with a bisulfite conversion rate of around 99%. The level of methylation within the differentially methylated regions (DMRs) was significantly (p < 0.05, FDR ≤ 0.05) increased in response to salinity specifically at the mCHG and mCHH sequence contexts. Consistently, the mass spectrometry and the enzyme-linked immunosorbent assay (ELISA) showed that there was a significant (p < 0.05) increase in the global DNA methylation in response to salinity. mRNA sequencing revealed the presence of 6,405 differentially regulated genes with a significant value (p < 0.001, FDR ≤ 0.05) in response to salinity. Integration of high-resolution methylome and transcriptome analyses revealed a negative correlation between mCG methylation located within the promoters and the gene expression, while a positive correlation was noticed between mCHG/mCHH methylation rations and gene expression specifically when plants grew under control conditions. Therefore, the methylome and transcriptome relationships vary based on the methylated sequence context, the methylated region within the gene, the protein-coding ability of the gene, and the salinity treatment. These results provide insights into interplay among DNA methylation and gene expression, and highlight the effect of salinity on the nature of this relationship, which may involve other genetic and epigenetic players under salt stress conditions. The results obtained from this project provide the first draft map of the differential methylome and transcriptome of date palm when exposed to an abiotic stress. PMID:29352281
Differential DNA methylation and transcription profiles in date palm roots exposed to salinity.
Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W
2018-01-01
As a salt-adaptive plant, the date palm (Phoenix dactylifera L.) requires a suitable mechanism to adapt to the stress of saline soils. There is growing evidence that DNA methylation plays an important role in regulating gene expression in response to abiotic stresses, including salinity. Thus, the present study sought to examine the differential methylation status that occurs in the date palm genome when plants are exposed to salinity, and to identify salinity responsive genes that are regulated by DNA methylation. To achieve these, whole-genome bisulfite sequencing (WGBS) was employed and mRNA was sequenced from salinity-treated and untreated roots. The WGBS analysis included 324,987,795 and 317,056,091 total reads of the control and the salinity-treated samples, respectively. The analysis covered about 81% of the total genomic DNA with about 40% of mapping efficiency of the sequenced reads and an average read depth of 17-fold coverage per DNA strand, and with a bisulfite conversion rate of around 99%. The level of methylation within the differentially methylated regions (DMRs) was significantly (p < 0.05, FDR ≤ 0.05) increased in response to salinity specifically at the mCHG and mCHH sequence contexts. Consistently, the mass spectrometry and the enzyme-linked immunosorbent assay (ELISA) showed that there was a significant (p < 0.05) increase in the global DNA methylation in response to salinity. mRNA sequencing revealed the presence of 6,405 differentially regulated genes with a significant value (p < 0.001, FDR ≤ 0.05) in response to salinity. Integration of high-resolution methylome and transcriptome analyses revealed a negative correlation between mCG methylation located within the promoters and the gene expression, while a positive correlation was noticed between mCHG/mCHH methylation rations and gene expression specifically when plants grew under control conditions. Therefore, the methylome and transcriptome relationships vary based on the methylated sequence context, the methylated region within the gene, the protein-coding ability of the gene, and the salinity treatment. These results provide insights into interplay among DNA methylation and gene expression, and highlight the effect of salinity on the nature of this relationship, which may involve other genetic and epigenetic players under salt stress conditions. The results obtained from this project provide the first draft map of the differential methylome and transcriptome of date palm when exposed to an abiotic stress.
2012-01-01
Background Lactic acid bacteria (LAB) play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. Results Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 109 colony forming units/μg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. Conclusions Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional structural instability or mutagenesis during E. coli propagation is excluded. The results of our study provide new genetic tools for L. plantarum which will allow fast, forward and systems based genetic engineering of this species. PMID:23098256
A Novel Approach to Assay DNA Methylation in Prostate Cancer
2017-12-01
concordant with repression or activation of those nearby genes.15 More recently, a series of chromosome conformation capture (3C)-based approaches ...AWARD NUMBER: W81XWH-13-1-0319 TITLE: A Novel Approach to Assay DNA Methylation in Prostate Cancer PRINCIPAL INVESTIGATOR: Jindan Yu...Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No
Guilleret, Isabelle; Losi, Lorena; Chelbi, Sonia T; Fonda, Sergio; Bougel, Stéphanie; Saponaro, Sara; Gozzi, Gaia; Alberti, Loredana; Braunschweig, Richard; Benhattar, Jean
2016-10-14
Most types of cancer cells are characterized by aberrant methylation of promoter genes. In this study, we described a rapid, reproducible, and relatively inexpensive approach allowing the detection of multiple human methylated promoter genes from many tissue samples, without the need of bisulfite conversion. The Methylation Ligation-dependent Macroarray (MLM), an array-based analysis, was designed in order to measure methylation levels of 58 genes previously described as putative biomarkers of cancer. The performance of the design was proven by screening the methylation profile of DNA from esophageal cell lines, as well as microdissected formalin-fixed and paraffin-embedded (FFPE) tissues from esophageal adenocarcinoma (EAC). Using the MLM approach, we identified 32 (55%) hypermethylated promoters in EAC, and not or rarely methylated in normal tissues. Among them, 21promoters were found aberrantly methylated in more than half of tumors. Moreover, seven of them (ADAMTS18, APC, DKK2, FOXL2, GPX3, TIMP3 and WIF1) were found aberrantly methylated in all or almost all the tumor samples, suggesting an important role for these genes in EAC. In addition, dysregulation of the Wnt pathway with hypermethylation of several Wnt antagonist genes was frequently observed. MLM revealed a homogeneous pattern of methylation for a majority of tumors which were associated with an advanced stage at presentation and a poor prognosis. Interestingly, the few tumors presenting less methylation changes had a lower pathological stage. In conclusion, this study demonstrated the feasibility and accuracy of MLM for DNA methylation profiling of FFPE tissue samples. Copyright © 2016 Elsevier Inc. All rights reserved.
Anton, Brian P; Mongodin, Emmanuel F; Agrawal, Sonia; Fomenkov, Alexey; Byrd, Devon R; Roberts, Richard J; Raleigh, Elisabeth A
2015-01-01
We report the complete sequence of ER2796, a laboratory strain of Escherichia coli K-12 that is completely defective in DNA methylation. Because of its lack of any native methylation, it is extremely useful as a host into which heterologous DNA methyltransferase genes can be cloned and the recognition sequences of their products deduced by Pacific Biosciences Single-Molecule Real Time (SMRT) sequencing. The genome was itself sequenced from a long-insert library using the SMRT platform, resulting in a single closed contig devoid of methylated bases. Comparison with K-12 MG1655, the first E. coli K-12 strain to be sequenced, shows an essentially co-linear relationship with no major rearrangements despite many generations of laboratory manipulation. The comparison revealed a total of 41 insertions and deletions, and 228 single base pair substitutions. In addition, the long-read approach facilitated the surprising discovery of four gene conversion events, three involving rRNA operons and one between two cryptic prophages. Such events thus contribute both to genomic homogenization and to bacteriophage diversification. As one of relatively few laboratory strains of E. coli to be sequenced, the genome also reveals the sequence changes underlying a number of classical mutant alleles including those affecting the various native DNA methylation systems.
Anton, Brian P.; Mongodin, Emmanuel F.; Agrawal, Sonia; Fomenkov, Alexey; Byrd, Devon R.; Roberts, Richard J.; Raleigh, Elisabeth A.
2015-01-01
We report the complete sequence of ER2796, a laboratory strain of Escherichia coli K-12 that is completely defective in DNA methylation. Because of its lack of any native methylation, it is extremely useful as a host into which heterologous DNA methyltransferase genes can be cloned and the recognition sequences of their products deduced by Pacific Biosciences Single-Molecule Real Time (SMRT) sequencing. The genome was itself sequenced from a long-insert library using the SMRT platform, resulting in a single closed contig devoid of methylated bases. Comparison with K-12 MG1655, the first E. coli K-12 strain to be sequenced, shows an essentially co-linear relationship with no major rearrangements despite many generations of laboratory manipulation. The comparison revealed a total of 41 insertions and deletions, and 228 single base pair substitutions. In addition, the long-read approach facilitated the surprising discovery of four gene conversion events, three involving rRNA operons and one between two cryptic prophages. Such events thus contribute both to genomic homogenization and to bacteriophage diversification. As one of relatively few laboratory strains of E. coli to be sequenced, the genome also reveals the sequence changes underlying a number of classical mutant alleles including those affecting the various native DNA methylation systems. PMID:26010885
Wang, Yongming; Lin, Xiuyun; Dong, Bo; Wang, Yingdian; Liu, Bao
2004-01-01
RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeat) fingerprinting on HpaII/MspI-digested genomic DNA of nine elite japonica rice cultivars implies inter-cultivar DNA methylation polymorphism. Using both DNA fragments isolated from RAPD or ISSR gels and selected low-copy sequences as probes, methylation-sensitive Southern blot analysis confirms the existence of extensive DNA methylation polymorphism in both genes and DNA repeats among the rice cultivars. The cultivar-specific methylation patterns are stably maintained, and can be used as reliable molecular markers. Transcriptional analysis of four selected sequences (RdRP, AC9, HSP90 and MMR) on leaves and roots from normal and 5-azacytidine-treated seedlings of three representative cultivars shows an association between the transcriptional activity of one of the genes, the mismatch repair (MMR) gene, and its CG methylation patterns.
Sexton-Oates, Alexandra; Carmody, Jake; Ekinci, Elif I.; Dwyer, Karen M.; Saffery, Richard
2018-01-01
Aim To characterise the genomic DNA (gDNA) yield from urine and quality of derived methylation data generated from the widely used Illuminia Infinium MethylationEPIC (HM850K) platform and compare this with buffy coat samples. Background DNA methylation is the most widely studied epigenetic mark and variations in DNA methylation profile have been implicated in diabetes which affects approximately 415 million people worldwide. Methods QIAamp Viral RNA Mini Kit and QIAamp DNA micro kit were used to extract DNA from frozen and fresh urine samples as well as increasing volumes of fresh urine. Matched buffy coats to the frozen urine were also obtained and DNA was extracted from the buffy coats using the QIAamp DNA Mini Kit. Genomic DNA of greater concentration than 20μg/ml were used for methylation analysis using the HM850K array. Results Irrespective of extraction technique or the use of fresh versus frozen urine samples, limited genomic DNA was obtained using a starting sample volume of 5ml (0–0.86μg/mL). In order to optimize the yield, we increased starting volumes to 50ml fresh urine, which yielded only 0–9.66μg/mL A different kit, QIAamp DNA Micro Kit, was trialled in six fresh urine samples and ten frozen urine samples with inadequate DNA yields from 0–17.7μg/mL and 0–1.6μg/mL respectively. Sufficient genomic DNA was obtained from only 4 of the initial 41 frozen urine samples (10%) for DNA methylation profiling. In comparison, all four buffy coat samples (100%) provided sufficient genomic DNA. Conclusion High quality data can be obtained provided a sufficient yield of genomic DNA is isolated. Despite optimizing various extraction methodologies, the modest amount of genomic DNA derived from urine, may limit the generalisability of this approach for the identification of DNA methylation biomarkers of chronic diabetic kidney disease. PMID:29462136
Lecamwasam, Ashani; Sexton-Oates, Alexandra; Carmody, Jake; Ekinci, Elif I; Dwyer, Karen M; Saffery, Richard
2018-01-01
To characterise the genomic DNA (gDNA) yield from urine and quality of derived methylation data generated from the widely used Illuminia Infinium MethylationEPIC (HM850K) platform and compare this with buffy coat samples. DNA methylation is the most widely studied epigenetic mark and variations in DNA methylation profile have been implicated in diabetes which affects approximately 415 million people worldwide. QIAamp Viral RNA Mini Kit and QIAamp DNA micro kit were used to extract DNA from frozen and fresh urine samples as well as increasing volumes of fresh urine. Matched buffy coats to the frozen urine were also obtained and DNA was extracted from the buffy coats using the QIAamp DNA Mini Kit. Genomic DNA of greater concentration than 20μg/ml were used for methylation analysis using the HM850K array. Irrespective of extraction technique or the use of fresh versus frozen urine samples, limited genomic DNA was obtained using a starting sample volume of 5ml (0-0.86μg/mL). In order to optimize the yield, we increased starting volumes to 50ml fresh urine, which yielded only 0-9.66μg/mL A different kit, QIAamp DNA Micro Kit, was trialled in six fresh urine samples and ten frozen urine samples with inadequate DNA yields from 0-17.7μg/mL and 0-1.6μg/mL respectively. Sufficient genomic DNA was obtained from only 4 of the initial 41 frozen urine samples (10%) for DNA methylation profiling. In comparison, all four buffy coat samples (100%) provided sufficient genomic DNA. High quality data can be obtained provided a sufficient yield of genomic DNA is isolated. Despite optimizing various extraction methodologies, the modest amount of genomic DNA derived from urine, may limit the generalisability of this approach for the identification of DNA methylation biomarkers of chronic diabetic kidney disease.
Plasticity of DNA methylation and gene expression under zinc deficiency in Arabidopsis roots.
Chen, Xiaochao; Schönberger, Brigitte; Menz, Jochen; Ludewig, Uwe
2018-05-25
DNA methylation is a heritable chromatin modification that maintains chromosome stability, regulates transposon silencing and appears to be involved in gene expression in response to environmental conditions. Environmental stress alters DNA methylation patterns that are correlated with gene expression differences. Here, genome-wide differential DNA-methylation was identified upon prolonged Zn deficiency, leading to hypo- and hyper-methylated chromosomal regions. Preferential CpG methylation changes occurred in gene promoters and gene bodies, but did not overlap with transcriptional start sites. Methylation changes were also prominent in transposable elements. By contrast, non-CG methylation differences were exclusively found in promoters of protein coding genes and in transposable elements. Strongly Zn deficiency-induced genes and their promoters were mostly non-methylated, irrespective of Zn supply. Differential DNA methylation in the CpG and CHG, but not in the CHH context, was found close to a few up-regulated Zn-deficiency genes. However, the transcriptional Zn-deficiency response in roots appeared little correlated with associated DNA methylation changes in promoters or gene bodies. Furthermore, under Zn deficiency, developmental defects were identified in an Arabidopsis mutant lacking non-CpG methylation. The root methylome thus responds specifically to a micro-nutrient deficiency and is important for efficient Zn utilization at low availability, but the relationship of differential methylation and differentially expressed genes is surprisingly poor.
Ingouff, Mathieu; Selles, Benjamin; Michaud, Caroline; Vu, Thiet M; Berger, Frédéric; Schorn, Andrea J; Autran, Daphné; Van Durme, Matthias; Nowack, Moritz K; Martienssen, Robert A; Grimanelli, Daniel
2017-01-01
Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabidopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells. © 2017 Ingouff et al.; Published by Cold Spring Harbor Laboratory Press.
Ingouff, Mathieu; Selles, Benjamin; Michaud, Caroline; Vu, Thiet M.; Berger, Frédéric; Schorn, Andrea J.; Autran, Daphné; Van Durme, Matthias; Nowack, Moritz K.; Martienssen, Robert A.; Grimanelli, Daniel
2017-01-01
Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabidopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells. PMID:28115468
Kirtikar, D. M.; Goldthwait, D. A.
1974-01-01
Endonuclease II (deoxyribonucleate oligonucleotidohydrolase, EC 3.1.4.30) of Escherichia coli has been shown to break phosphodiester bonds in alkylated DNA and depurinated DNA. The hypothesis that depurination is a step in the mechanism of the reaction with alkylated DNA is supported by in vitro experiments with DNA reacted with N-methyl-N-nitrosourea. Endonuclease II releases O6-methylguanine and 3-methyladenine, but not 7-methylguanine, from DNA that has been methylated by the carcinogen N-methyl-N-nitrosourea. PMID:4600266
Tenayuca, John; Cousins, Kimberley; Yang, Shumei; Zhang, Lubo
2017-01-01
Cytosine methylation at CpG dinucleotides is a chief mechanism in epigenetic modification of gene expression patterns. Previous studies demonstrated that increased CpG methylation of Sp1 sites at -268 and -346 of protein kinase C ε promoter repressed the gene expression. The present study investigated the impact of CpG methylation on the Sp1 binding via molecular modeling and electrophoretic mobility shift assay. Each of the Sp1 sites contain two CpGs. Methylation of either CpG lowered the binding affinity of Sp1, whereas methylation of both CpGs produced a greater decrease in the binding affinity. Computation of van der Waals (VDW) energy of Sp1 in complex with the Sp1 sites demonstrated increased VDW values from one to two sites of CpG methylation. Molecular modeling indicated that single CpG methylation caused underwinding of the DNA fragment, with the phosphate groups at C1, C4 and C5 reoriented from their original positions. Methylation of both CpGs pinched the minor groove and increased the helical twist concomitant with a shallow, hydrophobic major groove. Additionally, double methylation eliminated hydrogen bonds on recognition helix residues located at positions -1 and 1, which were essential for interaction with O6/N7 of G-bases. Bonding from linker residues Arg565, Lys595 and Lys596 were also reduced. Methylation of single or both CpGs significantly affected hydrogen bonding from all three Sp1 DNA binding domains, demonstrating that the consequences of cytosine modification extend beyond the neighboring nucleotides. The results indicate that cytosine methylation causes subtle structural alterations in Sp1 binding sites consequently resulting in inhibition of side chain interactions critical for specific base recognition and reduction of the binding affinity of Sp1. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility.
Urdinguio, Rocío G; Bayón, Gustavo F; Dmitrijeva, Marija; Toraño, Estela G; Bravo, Cristina; Fraga, Mario F; Bassas, Lluís; Larriba, Sara; Fernández, Agustín F
2015-05-01
Are there DNA methylation alterations in sperm that could explain the reduced biological fertility of male partners from couples with unexplained infertility? DNA methylation patterns, not only at specific loci but also at Alu Yb8 repetitive sequences, are altered in infertile individuals compared with fertile controls. Aberrant DNA methylation of sperm has been associated with human male infertility in patients demonstrating either deficiencies in the process of spermatogenesis or low semen quality. Case and control prospective study. This study compares 46 sperm samples obtained from 17 normospermic fertile men and 29 normospermic infertile patients. Illumina Infinium HD Human Methylation 450K arrays were used to identify genomic regions showing differences in sperm DNA methylation patterns between five fertile and seven infertile individuals. Additionally, global DNA methylation of sperm was measured using the Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek) in 14 samples, and DNA methylation at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4) measured by bisulfite pyrosequencing in 44 sperm samples. A sperm-specific DNA methylation pattern was obtained by comparing the sperm methylomes with the DNA methylomes of differentiated somatic cells using data obtained from methylation arrays (Illumina 450 K) of blood, neural and glial cells deposited in public databases. In this study we conduct, for the first time, a genome-wide study to identify alterations of sperm DNA methylation in individuals with unexplained infertility that may account for the differences in their biological fertility compared with fertile individuals. We have identified 2752 CpGs showing aberrant DNA methylation patterns, and more importantly, these differentially methylated CpGs were significantly associated with CpG sites which are specifically methylated in sperm when compared with somatic cells. We also found statistically significant (P < 0.001) associations between DNA hypomethylation and regions corresponding to those which, in somatic cells, are enriched in the repressive histone mark H3K9me3, and between DNA hypermethylation and regions enriched in H3K4me1 and CTCF, suggesting that the relationship between chromatin context and aberrant DNA methylation of sperm in infertile men could be locus-dependent. Finally, we also show that DNA methylation patterns, not only at specific loci but also at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4), were lower in sperm than in somatic cells. Interestingly, sperm samples at Alu Yb8 repetitive sequences of infertile patients showed significantly lower DNA methylation levels than controls. Our results are descriptive and further studies would be needed to elucidate the functional effects of aberrant DNA methylation on male fertility. Overall, our data suggest that aberrant sperm DNA methylation might contribute to fertility impairment in couples with unexplained infertility and they provide a promising basis for future research. This work has been financially supported by Fundación Cientifica de la AECC (to R.G.U.); IUOPA (to G.F.B.); FICYT (to E.G.T.); the Spanish National Research Council (CSIC; 200820I172 to M.F.F.); Fundación Ramón Areces (to M.F.F); the Plan Nacional de I+D+I 2008-2011/2013-2016/FEDER (PI11/01728 to AF.F., PI12/01080 to M.F.F. and PI12/00361 to S.L.); the PN de I+D+I 2008-20011 and the Generalitat de Catalunya (2009SGR01490). A.F.F. is sponsored by ISCIII-Subdirección General de Evaluación y Fomento de la Investigación (CP11/00131). S.L. is sponsored by the Researchers Stabilization Program from the Spanish National Health System (CES09/020). The IUOPA is supported by the Obra Social Cajastur, Spain. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Smith, Jennifer A; Zhao, Wei; Wang, Xu; Ratliff, Scott M; Mukherjee, Bhramar; Kardia, Sharon L R; Liu, Yongmei; Roux, Ava V Diez; Needham, Belinda L
2017-08-01
Living in a disadvantaged neighborhood is associated with poor health outcomes even after accounting for individual-level socioeconomic factors. The chronic stress of unfavorable neighborhood conditions may lead to dysregulation of the stress reactivity and inflammatory pathways, potentially mediated through epigenetic mechanisms such as DNA methylation. We used multi-level models to examine the relationship between 2 neighborhood conditions and methylation levels of 18 genes related to stress reactivity and inflammation in purified monocytes from 1,226 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), a population-based sample of US adults. Neighborhood socioeconomic disadvantage, a summary of 16 census-based metrics, was associated with DNA methylation [False discovery rate (FDR) q-value ≤ 0.1] in 2 out of 7 stress-related genes evaluated (CRF, SLC6A4) and 2 out of 11 inflammation-related genes (F8, TLR1). Neighborhood social environment, a summary measure of aesthetic quality, safety, and social cohesion, was associated with methylation in 4 of the 7 stress-related genes (AVP, BDNF, FKBP5, SLC6A4) and 7 of the 11 inflammation-related genes (CCL1, CD1D, F8, KLRG1, NLRP12, SLAMF7, TLR1). High socioeconomic disadvantage and worse social environment were primarily associated with increased methylation. In 5 genes with significant associations between neighborhood and methylation (FKBP5, CD1D, F8, KLRG1, NLRP12), methylation was associated with gene expression of at least one transcript. These results demonstrate that multiple dimensions of neighborhood context may influence methylation levels and subsequent gene expression of stress- and inflammation-related genes, even after accounting for individual socioeconomic factors. Further elucidating the molecular mechanisms underlying these relationships will be important for understanding the etiology of health disparities.
Proton magnetic resonance studies of ultraviolet-irradiated apurinic acid
Rahn, Ronald O.; Schleich, Thomas
1974-01-01
In apurinic acid, a single-stranded polydeoxyribonucleotide easily obtained upon depurination of DNA, the proton resonances arising from thymine and cytosine are readily observable in aqueous solution of 25°C. Two methyl thymine resonances, centered at 1.88 ppm and separated by 0.045 ppm, are observed. We attribute the downfield methyl resonance to thymines with no pyrimidine nearest neighbors and the upfield methyl resonance to thymines having pyrimidine neighbors in the 3′ and/or 5′ positions. Upon ultraviolet irradiation, the upfield methyl and thymine H-6 resonances decrease in amplitude and two methyl resoances appear at 1.63 and 1.52 ppm, corresponding, respectively, to cytosine-thymine and thymine-thymine cyclobutane dimers. Photoreversal eliminates these two minor methyl resonances from the pmr spectrum. We conclude that apurinic acid provides a suitable model system for pmr studies of chemically modified pyrimidine bases in DNA. PMID:10793730
Alonso, Conchita; Pérez, Ricardo; Bazaga, Pilar; Medrano, Mónica; Herrera, Carlos M
2016-01-01
Methylation of DNA cytosines affects whether transposons are silenced and genes are expressed, and is a major epigenetic mechanism whereby plants respond to environmental change. Analyses of methylation-sensitive amplification polymorphism (MS-AFLP or MSAP) have been often used to assess methyl-cytosine changes in response to stress treatments and, more recently, in ecological studies of wild plant populations. MSAP technique does not require a sequenced reference genome and provides many anonymous loci randomly distributed over the genome for which the methylation status can be ascertained. Scoring of MSAP data, however, is not straightforward, and efforts are still required to standardize this step to make use of the potential to distinguish between methylation at different nucleotide contexts. Furthermore, it is not known how accurately MSAP infers genome-wide cytosine methylation levels in plants. Here, we analyse the relationship between MSAP results and the percentage of global cytosine methylation in genomic DNA obtained by HPLC analysis. A screening of literature revealed that methylation of cytosines at cleavage sites assayed by MSAP was greater than genome-wide estimates obtained by HPLC, and percentages of methylation at different nucleotide contexts varied within and across species. Concurrent HPLC and MSAP analyses of DNA from 200 individuals of the perennial herb Helleborus foetidus confirmed that methyl-cytosine was more frequent in CCGG contexts than in the genome as a whole. In this species, global methylation was unrelated to methylation at the inner CG site. We suggest that global HPLC and context-specific MSAP methylation estimates provide complementary information whose combination can improve our current understanding of methylation-based epigenetic processes in nonmodel plants. © 2015 John Wiley & Sons Ltd.
Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia
USDA-ARS?s Scientific Manuscript database
TET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocyti...
Targeting DNA methylation to the genome.
Lo, Patrick C H
2014-01-01
Proving direct relationships between DNA alterations and phenotypes is challenging. For epigenetics researchers, linking DNA methylation with human disease is no exception. But Patrick Lo looks at how two researchers are developing new methods to try to trace the road from DNA methylation to human biology.
The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer.
Long, Mark D; Smiraglia, Dominic J; Campbell, Moray J
2017-02-14
The process of DNA CpG methylation has been extensively investigated for over 50 years and revealed associations between changing methylation status of CpG islands and gene expression. As a result, DNA CpG methylation is implicated in the control of gene expression in developmental and homeostasis processes, as well as being a cancer-driver mechanism. The development of genome-wide technologies and sophisticated statistical analytical approaches has ushered in an era of widespread analyses, for example in the cancer arena, of the relationships between altered DNA CpG methylation, gene expression, and tumor status. The remarkable increase in the volume of such genomic data, for example, through investigators from the Cancer Genome Atlas (TCGA), has allowed dissection of the relationships between DNA CpG methylation density and distribution, gene expression, and tumor outcome. In this manner, it is now possible to test that the genome-wide correlations are measurable between changes in DNA CpG methylation and gene expression. Perhaps surprisingly is that these associations can only be detected for hundreds, but not thousands, of genes, and the direction of the correlations are both positive and negative. This, perhaps, suggests that CpG methylation events in cancer systems can act as disease drivers but the effects are possibly more restricted than suspected. Additionally, the positive and negative correlations suggest direct and indirect events and an incomplete understanding. Within the prostate cancer TCGA cohort, we examined the relationships between expression of genes that control DNA methylation, known targets of DNA methylation and tumor status. This revealed that genes that control the synthesis of S -adenosyl-l-methionine (SAM) associate with altered expression of DNA methylation targets in a subset of aggressive tumors.
Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer.
Qiu, Wei; Lin, Jun; Zhu, Yichen; Zhang, Jian; Zeng, Liping; Su, Ming; Tian, Ye
2017-01-01
Genomic DNA methylation plays an important role in both the occurrence and development of bladder cancer. Kaempferol (Kae), a natural flavonoid that is present in many fruits and vegetables, exhibits potent anti-cancer effects in bladder cancer. Similar to other flavonoids, Kae possesses a flavan nucleus in its structure. This structure was reported to inhibit DNA methylation by suppressing DNA methyltransferases (DNMTs). However, whether Kae can inhibit DNA methylation remains unclear. Nude mice bearing bladder cancer were treated with Kae for 31 days. The genomic DNA was extracted from xenografts and the methylation changes was determined using an Illumina Infinium HumanMethylation 450 BeadChip Array. The ubiquitination was detected using immuno-precipitation assay. Our data indicated that Kae modulated DNA methylation in bladder cancer, inducing 103 differential DNA methylation positions (dDMPs) associated with genes (50 hyper-methylated and 53 hypo-methylated). DNA methylation is mostly relied on the levels of DNMTs. We observed that Kae specifically inhibited the protein levels of DNMT3B without altering the expression of DNMT1 or DNMT3A. However, Kae did not downregulate the transcription of DNMT3B. Interestingly, we observed that Kae induced a premature degradation of DNMT3B by inhibiting protein synthesis with cycloheximide (CHX). By blocking proteasome with MG132, we observed that Kae induced an increased ubiquitination of DNMT3B. These results suggested that Kae could induce the degradation of DNMT3B through ubiquitin-proteasome pathway. Our data indicated that Kae is a novel DNMT3B inhibitor, which may promote the degradation of DNMT3B in bladder cancer. © 2017 The Author(s)Published by S. Karger AG, Basel.
Search for methylation-sensitive amplification polymorphisms in mutant figs.
Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S
2013-07-08
Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.
Zebrafish as a model to study the role of DNA methylation in environmental toxicology.
Kamstra, Jorke H; Aleström, Peter; Kooter, Jan M; Legler, Juliette
2015-11-01
Environmental epigenetics is a rapidly growing field which studies the effects of environmental factors such as nutrition, stress, and exposure to compounds on epigenetic gene regulation. Recent studies have shown that exposure to toxicants in vertebrates is associated with changes in DNA methylation, a major epigenetic mechanism affecting gene transcription. Zebra fish, a well-known model in toxicology and developmental biology, are emerging as a model species in environmental epigenetics despite their evolutionary distance to rodents and humans. In this review, recent insights in DNA methylation during zebra fish development are discussed and compared to mammalian models in order to evaluate zebra fish as a model to study the role of DNA methylation in environmental toxicology. Differences exist in DNA methylation reprogramming during early development, whereas in later developmental stages, tissue distribution of both 5-methylcytosine and 5-hydroxymethylcytosine seems more conserved between species, as well as basic DNA (de)methylation mechanisms. All DNA methyl transferases identified so far in mammals are present in zebra fish, as well as a number of major demethylation pathways. However, zebra fish appear to lack some methylation pathways present in mammals, such as parental imprinting. Several studies report effects on DNA methylation in zebra fish following exposure to environmental contaminants, such as arsenic, benzo[a]pyrene, and tris(1,3-dichloro-2-propyl)phosphate. Though more research is needed to examine heritable effects of contaminant exposure on DNA methylation, recent data suggests the usefulness of the zebra fish as a model in environmental epigenetics.
Chen, Youdinghuan; Marotti, Jonathan D; Jenson, Erik G; Onega, Tracy L; Johnson, Kevin C; Christensen, Brock C
2017-08-01
The utility and reliability of assessing molecular biomarkers for translational applications on pre-operative core biopsy specimens assume consistency of molecular profiles with larger surgical specimens. Whether DNA methylation in ductal carcinoma in situ (DCIS), measured in core biopsy and surgical specimens are similar, remains unclear. Here, we compared genome-scale DNA methylation measured in matched core biopsy and surgical specimens from DCIS, including specific DNA methylation biomarkers of subsequent invasive cancer. DNA was extracted from guided 2mm cores of formalin fixed paraffin embedded (FFPE) specimens, bisulfite-modified, and measured on the Illumina HumanMethylation450 BeadChip. DNA methylation profiles of core biopsies exhibited high concordance with matched surgical specimens. Within-subject variability in DNA methylation was significantly lower than between-subject variability (all P<2.20E-16). In 641 CpGs whose methylation was related with increased hazard of invasive breast cancer, lower within-subject than between-subject variability was observed in 92.3% of the study participants (P<0.05). Between patient-matched core biopsy and surgical specimens, <0.6% of CpGs measured had changes in median DNA methylation >15%, and a pathway analysis of these CpGs indicated enrichment for genes related with wound healing. Our results indicate that DNA methylation measured in core biopsies are representative of the matched surgical specimens and suggest that DCIS biomarkers measured in core biopsies can inform clinical decision-making. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Gene-Specific DNA Methylation Changes Predict Remission in Patients with ANCA-Associated Vasculitis
Jones, Britta E.; Yang, Jiajin; Muthigi, Akhil; Hogan, Susan L.; Hu, Yichun; Starmer, Joshua; Henderson, Candace D.; Poulton, Caroline J.; Brant, Elizabeth J.; Pendergraft, William F.; Jennette, J. Charles; Falk, Ronald J.
2017-01-01
ANCA-associated vasculitis is an autoimmune condition characterized by vascular inflammation and organ damage. Pharmacologically induced remission of this condition is complicated by relapses. Potential triggers of relapse are immunologic challenges and environmental insults, both of which associate with changes in epigenetic silencing modifications. Altered histone modifications implicated in gene silencing associate with aberrant autoantigen expression. To establish a link between DNA methylation, a model epigenetic gene silencing modification, and autoantigen gene expression and disease status in ANCA-associated vasculitis, we measured gene-specific DNA methylation of the autoantigen genes myeloperoxidase (MPO) and proteinase 3 (PRTN3) in leukocytes of patients with ANCA-associated vasculitis observed longitudinally (n=82) and of healthy controls (n=32). Patients with active disease demonstrated hypomethylation of MPO and PRTN3 and increased expression of the autoantigens; in remission, DNA methylation generally increased. Longitudinal analysis revealed that patients with ANCA-associated vasculitis could be divided into two groups, on the basis of whether DNA methylation increased or decreased from active disease to remission. In patients with increased DNA methylation, MPO and PRTN3 expression correlated with DNA methylation. Kaplan–Meier estimate of relapse revealed patients with increased DNA methylation at the PRTN3 promoter had a significantly greater probability of a relapse-free period (P<0.001), independent of ANCA serotype. Patients with decreased DNA methylation at the PRTN3 promoter had a greater risk of relapse (hazard ratio, 4.55; 95% confidence interval, 2.09 to 9.91). Thus, changes in the DNA methylation status of the PRTN3 promoter may predict the likelihood of stable remission and explain autoantigen gene regulation. PMID:27821628
Single-tube analysis of DNA methylation with silica superparamagnetic beads.
Bailey, Vasudev J; Zhang, Yi; Keeley, Brian P; Yin, Chao; Pelosky, Kristen L; Brock, Malcolm; Baylin, Stephen B; Herman, James G; Wang, Tza-Huei
2010-06-01
DNA promoter methylation is a signature for the silencing of tumor suppressor genes. Most widely used methods to detect DNA methylation involve 3 separate, independent processes: DNA extraction, bisulfite conversion, and methylation detection via a PCR method, such as methylation-specific PCR (MSP). This method includes many disconnected steps with associated losses of material, potentially reducing the analytical sensitivity required for analysis of challenging clinical samples. Methylation on beads (MOB) is a new technique that integrates DNA extraction, bisulfite conversion, and PCR in a single tube via the use of silica superparamagnetic beads (SSBs) as a common DNA carrier for facilitating cell debris removal and buffer exchange throughout the entire process. In addition, PCR buffer is used to directly elute bisulfite-treated DNA from SSBs for subsequent target amplifications. The diagnostic sensitivity of MOB was evaluated by methylation analysis of the CDKN2A [cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4); also known as p16(INK4a)] promoter in serum DNA of lung cancer patients and compared with that of conventional methods. Methylation analysis consisting of DNA extraction followed by bisulfite conversion and MSP was successfully carried out within 9 h in a single tube. The median pre-PCR DNA yield was 6.61-fold higher with the MOB technique than with conventional techniques. Furthermore, MOB increased the diagnostic sensitivity in our analysis of the CDKN2A promoter in patient serum by successfully detecting methylation in 74% of cancer patients, vs the 45% detection rate obtained with conventional techniques. The MOB technique successfully combined 3 processes into a single tube, thereby allowing ease in handling and an increased detection throughput. The increased pre-PCR yield in MOB allowed efficient, diagnostically sensitive methylation detection.