Science.gov

Sample records for dna oxidative repair

  1. Oxidative DNA damage & repair: An introduction.

    PubMed

    Cadet, Jean; Davies, Kelvin J A

    2017-06-01

    This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Oxidatively induced DNA damage and its repair in cancer.

    PubMed

    Dizdaroglu, Miral

    2015-01-01

    Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.

  4. Inducible repair of oxidative DNA damage in Escherichia coli.

    PubMed

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  5. Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage

    PubMed Central

    Svilar, David; Goellner, Eva M.; Almeida, Karen H.

    2011-01-01

    Abstract Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage–induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease. Antioxid. Redox Signal. 14, 2491–2507. PMID:20649466

  6. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits.

    PubMed

    Wells, Peter G; McCallum, Gordon P; Lam, Kyla C H; Henderson, Jeffrey T; Ondovcik, Stephanie L

    2010-06-01

    Several teratogenic agents, including ionizing radiation and xenobiotics such as phenytoin, benzo[a]pyrene, thalidomide, and methamphetamine, can initiate the formation of reactive oxygen species (ROS) that oxidatively damage cellular macromolecules including DNA. Oxidative DNA damage, and particularly the most prevalent 8-oxoguanine lesion, may adversely affect development, likely via alterations in gene transcription rather than via a mutational mechanism. Contributions from oxidative DNA damage do not exclude roles for alternative mechanisms of initiation like receptor-mediated processes or the formation of covalent xenobiotic-macromolecular adducts, damage to other macromolecular targets like proteins and lipids, and other effects of ROS like altered signal transduction. Even in the absence of teratogen exposure, endogenous developmental oxidative stress can have embryopathic consequences in the absence of key pathways for detoxifying ROS or repairing DNA damage. Critical proteins in pathways for DNA damage detection/repair signaling, like p53 and ataxia telangiectasia mutated, and DNA repair itself, like oxoguanine glycosylase 1 and Cockayne syndrome B, can often, but not always, protect the embryo from ROS-initiating teratogens. Protection may be variably dependent upon such factors as the nature of the teratogen and its concentration within the embryo, the stage of development, the species, strain, gender, target tissue and cell type, among other factors.

  7. Oxidative Stress, DNA Repair and Prostate Cancer Risk

    DTIC Science & Technology

    2010-08-01

    progressed smoothly for all three specific aims. 15. SUBJECT TERMS microRNA ovarian cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... factors for prostate cancer are associated with elevated levels of ROS (advancing age, inflammation, androgen, high-fat diet), or decreased...TITLE: Oxidative Stress, DNA Repair and Prostate Cancer Risk PRINCIPAL INVESTIGATOR: Hua Zhao, Ph.D

  8. USP7/HAUSP stimulates repair of oxidative DNA lesions.

    PubMed

    Khoronenkova, Svetlana V; Dianova, Irina I; Parsons, Jason L; Dianov, Grigory L

    2011-04-01

    USP7 is involved in the cellular stress response by regulating Mdm2 and p53 protein levels following severe DNA damage. In addition to this, USP7 may also play a role in chromatin remodelling by direct deubiquitylation of histones, as well as indirectly by regulating the cellular levels of E3 ubiquitin ligases involved in histone ubiquitylation. Here, we provide new evidence that USP7 modulated chromatin remodelling is important for base excision repair of oxidative lesions. We show that transient USP7 siRNA knockdown did not change the levels or activity of base excision repair enzymes, but significantly reduced chromatin DNA accessibility and consequently the rate of repair of oxidative lesions.

  9. DNA damage, oxidative mutagen sensitivity, and repair of oxidative DNA damage in nonmelanoma skin cancer patients.

    PubMed

    Bendesky, Andrés; Michel, Alejandra; Sordo, Monserrat; Calderón-Aranda, Emma S; Acosta-Saavedra, Leonor C; Salazar, Ana M; Podoswa, Nancy; Ostrosky-Wegman, Patricia

    2006-08-01

    Nonmelanoma skin cancer (NMSC) is the most frequent type of cancer in humans. Exposure to UV radiation is a major risk factor for NMSC, and oxidative DNA damage, caused either by UV radiation itself or by other agents, may be involved in its induction. Increased sensitivity to oxidative damage and an altered DNA repair capacity (DRC) increase the risk of many types of cancer; however, sensitivity to oxidizing agents has not been evaluated for NMSC, and results regarding DRC in NMSC are inconclusive. In the present study, we evaluated DNA damage and repair in leukocytes from 41 NMSC patients and 45 controls. The Comet assay was used to measure basal and H(2)O(2)-induced DNA damage, as well as the DRC, while the cytokinesis-block micronucleus assay was used to measure the basal level of chromosome damage. Although basal DNA damage was higher for the controls than for the patients, this finding was mainly due to sampling more controls in the summer, which was associated with longer comet tails. In contrast, H(2)O(2)-induced DNA damage was significantly higher in cases than in controls, and this parameter was not influenced by the season of the year. The DRC for the H(2)O(2)-induced damage was similar for cases and controls and unrelated to seasonality. Finally, the frequency of binucleated lymphocytes with micronuclei was similar for cases and controls. The results of this study indicate that NMSC patients are distinguished from controls by an increased sensitivity to oxidative DNA damage.

  10. Pathophysiology of Bronchoconstriction: Role of Oxidatively Damaged DNA Repair

    PubMed Central

    Bacsi, Attila; Pan, Lang; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Purpose of review To provide an overview on the present understanding of roles of oxidative DNA damage repair in cell signaling underlying bronchoconstriction common to, but not restricted to various forms of asthma and chronic obstructive pulmonary disease Recent findings Bronchoconstriction is a tightening of smooth muscle surrounding the bronchi and bronchioles with consequent wheezing and shortness of breath. Key stimuli include air pollutants, viral infections, allergens, thermal and osmotic changes, and shear stress of mucosal epithelium, triggering a wide range of cellular, vascular and neural events. Although activation of nerve fibers, the role of G-proteins, protein kinases and Ca++, and molecular interaction within contracting filaments of muscle are well defined, the overarching mechanisms by which a wide range of stimuli initiate these events are not fully understood. Many, if not all, stimuli increase levels of reactive oxygen species (ROS), which are signaling and oxidatively modifying macromolecules, including DNA. The primary ROS target in DNA is guanine, and 8-oxoguanine is one of the most abundant base lesions. It is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair processes. The product, free 8-oxoG base, is bound by OGG1 with high affinity, and the complex then functions as an activator of small GTPases, triggering pathways for inducing gene expression and contraction of intracellular filaments in mast and smooth muscle cells. Summary Oxidative DNA damage repair-mediated cell activation signaling result in gene expression that “primes” the mucosal epithelium and submucosal tissues to generate mediators of airway smooth muscle contractions. PMID:26694039

  11. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair.

    PubMed

    Çağlayan, Melike; Wilson, Samuel H

    2015-11-01

    DNA lesions arise from many endogenous and environmental agents, and such lesions can promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER.

  12. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair

    PubMed Central

    Çağlayan, Melike; Wilson, Samuel H.

    2015-01-01

    DNA lesions arise from many endogenous and environmental agents, and they promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26596511

  13. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair

    PubMed Central

    çağlayan, Melike; Wilson, Samuel H.

    2015-01-01

    DNA lesions arise from many endogenous and environmental agents, and they promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5′-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26466358

  14. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress

    PubMed Central

    Sorrell, Melanie; Berman, Zachary

    2014-01-01

    To maintain genome stability, cells have evolved various DNA repair pathways to deal with oxidative DNA damage. DNA damage response (DDR) pathways, including ATM-Chk2 and ATR-Chk1 checkpoints, are also activated in oxidative stress to coordinate DNA repair, cell cycle progression, transcription, apoptosis, and senescence. Several studies demonstrate that DDR pathways can regulate DNA repair pathways. On the other hand, accumulating evidence suggests that DNA repair pathways may modulate DDR pathway activation as well. In this review, we summarize our current understanding of how various DNA repair and DDR pathways are activated in response to oxidative DNA damage primarily from studies in eukaryotes. In particular, we analyze the functional interplay between DNA repair and DDR pathways in oxidative stress. A better understanding of cellular response to oxidative stress may provide novel avenues of treating human diseases, such as cancer and neurodegenerative disorders. PMID:24947324

  15. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression.

    PubMed

    Czarny, Piotr; Wigner, Paulina; Galecki, Piotr; Sliwinski, Tomasz

    2017-06-29

    A growing body of evidence suggests that inflammation, mitochondrial dysfunction and oxidant-antioxidant imbalance may play a significant role in the development and progression of depression. Elevated levels of reactive oxygen and nitrogen species - a result of oxidant-antioxidant imbalance - may lead to increased damage of biomolecules, including DNA. This was confirmed in depressed patients in a research study conducted by our team and other scientists. 8-oxoguanine - a marker of oxidative DNA damage - was found in the patients' lymphocytes, urine and serum. These results were confirmed using a comet assay on lymphocytes. Furthermore, it was shown that the patients' cells repaired peroxide-induced DNA damage less efficiently than controls' cells and that some single nucleotide polymorphisms (SNP) of the genes involved in oxidative DNA damage repair may modulate the risk of depression. Lastly, less efficient DNA damage repair observed in the patients can be, at least partly, attributed to the presence of specific SNP variants, as it was revealed through a genotype-phenotype analysis. In conclusion, the available literature shows that both oxidative stress and less efficient DNA damage repair may lead to increased DNA damage in depressed patients. A similar mechanism may result in mitochondrial dysfunction, which is observed in depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. DNA damage in Fabry patients: An investigation of oxidative damage and repair.

    PubMed

    Biancini, Giovana Brondani; Moura, Dinara Jaqueline; Manini, Paula Regina; Faverzani, Jéssica Lamberty; Netto, Cristina Brinckmann Oliveira; Deon, Marion; Giugliani, Roberto; Saffi, Jenifer; Vargas, Carmen Regla

    2015-06-01

    Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels.

  17. Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage.

    PubMed

    Ding, Ning; Bonham, Emily M; Hannon, Brooke E; Amick, Thomas R; Baylin, Stephen B; O'Hagan, Heather M

    2016-06-01

    At sites of chronic inflammation, epithelial cells are exposed to high levels of reactive oxygen species and undergo cancer-associated DNA methylation changes, suggesting that inflammation may initiate epigenetic alterations. Previously, we demonstrated that oxidative damage causes epigenetic silencing proteins to become part of a large complex that is localized to GC-rich regions of the genome, including promoter CpG islands that are epigenetically silenced in cancer. However, whether these proteins were recruited directly to damaged DNA or during the DNA repair process was unknown. Here we demonstrate that the mismatch repair protein heterodimer MSH2-MSH6 participates in the oxidative damage-induced recruitment of DNA methyltransferase 1 (DNMT1) to chromatin. Hydrogen peroxide treatment induces the interaction of MSH2-MSH6 with DNMT1, suggesting that the recruitment is through a protein-protein interaction. Importantly, the reduction in transcription for genes with CpG island-containing promoters caused by oxidative damage is abrogated by knockdown of MSH6 and/or DNMT1. Our findings provide evidence that the role of DNMT1 at sites of oxidative damage is to reduce transcription, potentially preventing transcription from interfering with the repair process. This study uniquely brings together several factors that are known to contribute to colon cancer, namely inflammation, mismatch repair proteins, and epigenetic changes. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  18. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    PubMed

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment

  19. Involvement of oxidatively damaged DNA and repair in cancer development and aging

    PubMed Central

    Tudek, Barbara; Winczura, Alicja; Janik, Justyna; Siomek, Agnieszka; Foksinski, Marek; Oliński, Ryszard

    2010-01-01

    DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involvement of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively modified DNA bases may serve as a source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed several DNA repair mechanisms. The efficiency of oxidatively damaged DNA repair was frequently found to be decreased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particularly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing attention to the multiplicity of proteins with repair activities. PMID:20589166

  20. Elevated DNA Oxidation and DNA Repair Enzyme Expression in Brain White Matter in Major Depressive Disorder.

    PubMed

    Szebeni, Attila; Szebeni, Katalin; DiPeri, Timothy P; Johnson, Luke A; Stockmeier, Craig A; Crawford, Jessica D; Chandley, Michelle J; Hernandez, Liza J; Burgess, Katherine C; Brown, Russell W; Ordway, Gregory A

    2017-05-01

    Pathology of white matter in brains of patients with major depressive disorder (MDD) is well-documented, but the cellular and molecular basis of this pathology are poorly understood. Levels of DNA oxidation and gene expression of DNA damage repair enzymes were measured in Brodmann area 10 (BA10) and/or amygdala (uncinate fasciculus) white matter tissue from brains of MDD (n=10) and psychiatrically normal control donors (n=13). DNA oxidation was also measured in BA10 white matter of schizophrenia donors (n=10) and in prefrontal cortical white matter from control rats (n=8) and rats with repeated stress-induced anhedonia (n=8). DNA oxidation in BA10 white matter was robustly elevated in MDD as compared to control donors, with a smaller elevation occurring in schizophrenia donors. DNA oxidation levels in psychiatrically affected donors that died by suicide did not significantly differ from DNA oxidation levels in psychiatrically affected donors dying by other causes (non-suicide). Gene expression levels of two base excision repair enzymes, PARP1 and OGG1, were robustly elevated in oligodendrocytes laser captured from BA10 and amygdala white matter of MDD donors, with smaller but significant elevations of these gene expressions in astrocytes. In rats, repeated stress-induced anhedonia, as measured by a reduction in sucrose preference, was associated with increased DNA oxidation in white, but not gray, matter. Cellular residents of brain white matter demonstrate markers of oxidative damage in MDD. Medications that interfere with oxidative damage or pathways activated by oxidative damage have potential to improve treatment for MDD.

  1. Impact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair

    PubMed Central

    Crespan, Emmanuele; Furrer, Antonia; Rösinger, Marcel; Bertoletti, Federica; Mentegari, Elisa; Chiapparini, Giulia; Imhof, Ralph; Ziegler, Nathalie; Sturla, Shana J.; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2016-01-01

    Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols β and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol β, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol β- and λ-deficient cell extracts suggest that Pol β levels can greatly affect rNMP incorporation opposite oxidative DNA lesions. PMID:26917111

  2. Oxidative Stress, DNA Repair, and Prostate Cancer Risk

    DTIC Science & Technology

    2011-08-01

    have concluded that DRC is not a risk factor for prostate cancer microRNA prostate cancer Hua.Zhao@RoswellPark.org Table of Contents...known and suspected risk factors for prostate cancer are associated with elevated levels of reactive oxygen species (ROS) (advancing age, inflammation...association between DNA repair capacity and prostate cancer risk might be due to the fact of using surrogate tissues , not the target tissues . In this study

  3. CUX2 protein functions as an accessory factor in the repair of oxidative DNA damage.

    PubMed

    Pal, Ranjana; Ramdzan, Zubaidah M; Kaur, Simran; Duquette, Philippe M; Marcotte, Richard; Leduy, Lam; Davoudi, Sayeh; Lamarche-Vane, Nathalie; Iulianella, Angelo; Nepveu, Alain

    2015-09-11

    CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer.

    PubMed

    Caramori, Gaetano; Adcock, Ian M; Casolari, Paolo; Ito, Kazuhiro; Jazrawi, Elen; Tsaprouni, Loukia; Villetti, Gino; Civelli, Maurizio; Carnini, Chiara; Chung, Kian Fan; Barnes, Peter J; Papi, Alberto

    2011-06-01

    Chronic obstructive pulmonary disease (COPD) is characterised by oxidative stress and increased risk of lung carcinoma. Oxidative stress causes DNA damage which can be repaired by DNA-dependent protein kinase complex. To investigate DNA damage/repair balance and DNA-dependent protein kinase complex in COPD lung and in an animal model of smoking-induced lung damage and to evaluate the effects of oxidative stress on Ku expression and function in human bronchial epithelial cells. Protein expression was quantified using immunohistochemistry and/or western blotting. DNA damage/repair was measured using colorimetric assays. 8-OH-dG, a marker of oxidant-induced DNA damage, was statistically significantly increased in the peripheral lung of smokers (with and without COPD) compared with non-smokers, while the number of apurinic/apyrimidinic (AP) sites (DNA damage and repair) was increased in smokers compared with non-smokers (p = 0.0012) and patients with COPD (p < 0.0148). Nuclear expression of Ku86, but not of DNA-PKcs, phospho-DNA-PKcs, Ku70 or γ-H2AFX, was reduced in bronchiolar epithelial cells from patients with COPD compared with normal smokers and non-smokers (p < 0.039). Loss of Ku86 expression was also observed in a smoking mouse model (p < 0.012) and prevented by antioxidants. Oxidants reduced (p < 0.0112) Ku86 expression in human bronchial epithelial cells and Ku86 knock down modified AP sites in response to oxidative stress. Ineffective DNA repair rather than strand breakage per se accounts for the reduced AP sites observed in COPD and this is correlated with a selective decrease of the expression of Ku86 in the bronchiolar epithelium. DNA damage/repair imbalance may contribute to increased risk of lung carcinoma in COPD.

  5. When DNA repair goes wrong: BER-generated DNA-protein crosslinks to oxidative lesions.

    PubMed

    Quiñones, Jason Luis; Demple, Bruce

    2016-08-01

    Free radicals generate an array of DNA lesions affecting all parts of the molecule. The damage to deoxyribose receives less attention than base damage, even though the former accounts for ∼20% of the total. Oxidative deoxyribose fragments (e.g., 3'-phosphoglycolate esters) are removed by the Ape1 AP endonuclease and other enzymes in mammalian cells to enable DNA repair synthesis. Oxidized abasic sites are initially incised by Ape1, thus recruiting these lesions into base excision repair (BER) pathways. Lesions such as 2-deoxypentos-4-ulose can be removed by conventional (single-nucleotide) BER, which proceeds through a covalent Schiff base intermediate with DNA polymerase β (Polβ) that is resolved by hydrolysis. In contrast, the lesion 2-deoxyribonolactone (dL) must be processed by multinucleotide ("long-patch") BER: attempted repair via the single-nucleotide pathway leads to a dead-end, covalent complex with Polβ cross- linked to the DNA by an amide bond. We recently detected these stable DNA-protein crosslinks (DPC) between Polβ and dL in intact cells. The features of the DPC formation in vivo are exactly in keeping with the mechanistic properties seen in vitro: Polβ-DPC are formed by oxidative agents in line with their ability to form the dL lesion; they are not formed by non-oxidative agents; DPC formation absolutely requires the active-site lysine-72 that attacks the 5'-deoxyribose; and DPC formation depends on Ape1 to incise the dL lesion first. The Polβ-DPC are rapidly processed in vivo, the signal disappearing with a half-life of 15-30min in both mouse and human cells. This removal is blocked by inhibiting the proteasome, which leads to the accumulation of ubiquitin associated with the Polβ-DPC. While other proteins (e.g., topoisomerases) also form DPC under these conditions, 60-70% of the trapped ubiquitin depends on Polβ. The mechanism of ubiquitin targeting to Polβ-DPC, the subsequent processing of the expected 5'-peptidyl-dL, and the

  6. Genetic polymorphisms in DNA repair and oxidative stress pathways associated with malignant melanoma susceptibility.

    PubMed

    Ibarrola-Villava, Maider; Peña-Chilet, Maria; Fernandez, Lara P; Aviles, Jose A; Mayor, Matias; Martin-Gonzalez, Manuel; Gomez-Fernandez, Cristina; Casado, Beatriz; Lazaro, Pablo; Lluch, Ana; Benitez, Javier; Lozoya, Rafael; Boldo, Enrique; Pizarro, Angel; Martinez-Cadenas, Conrado; Ribas, Gloria

    2011-11-01

    Base excision repair (BER) and nucleotide excision repair (NER) pathways eliminate a wide variety of DNA damage, including UV photoproducts. The ability of each individual to repair DNA damage following different causes might explain at least in part the variability in cancer susceptibility. Moreover, inflammatory response to UV exposure may further contribute to skin carcinogenesis by oxidative stress mechanisms. Single nucleotide polymorphisms in genes encoding various DNA-repair enzymes and oxidative stress factors may be candidate low-penetrance variants with a role in susceptibility to different cancers, particularly in those with aetiologies linked to environmental exposure, such as malignant melanoma (MM). In this case-control study, 684 Spanish sporadic MM patients and 406 cancer-free control subjects were included and the role of 46 polymorphisms belonging to 16 BER and NER genes as well as 11 genes involved in oxidative stress processes were investigated. One polymorphism was identified to be individually associated with MM in the Spanish population. The variant was found in the NOS1 oxidative stress gene (rs2682826; p-value=0.01). These results suggest a putative role of oxidative stress processes in the genetic predisposition to melanoma. To the authors' knowledge, this is the largest DNA repair-related SNP study in melanoma risk conducted in the Spanish population up to now. Furthermore, it also represents a comprehensive genetic study of several oxidative stress polymorphisms tested in relation to MM susceptibility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Water extracts of tree Hypericum sps. protect DNA from oxidative and alkylating damage and enhance DNA repair in colon cells.

    PubMed

    Ramos, Alice A; Marques, Filipe; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2013-01-01

    Diet may induce colon carcinogenesis through oxidative or alkylating DNA damage. However, diet may also contain anticarcinogenic compounds that contribute to cancer prevention. DNA damage prevention and/or induction of repair are two important mechanisms involved in cancer chemoprevention by dietary compounds. Hypericum sps. are widely used in traditional medicine to prepare infusions due to their beneficial digestive and neurologic effects. In this study, we investigated the potential of water extracts from three Hypericum sps. and some of their main phenolic compounds to prevent and repair oxidative and alkylating DNA damage in colon cells. The results showed that water extracts of Hypericum perforatum, Hypericum androsaemum, Hypericum undulatum, quercetin and rutin have protective effect against oxidative DNA damage in HT29 cells. Protective effect was also observed against alkylating DNA damage induced by methyl-methanesulfonate, except for H. androsaemum. With regard to alkylating damage repair H. perforatum, H. androsaemum and chlorogenic acid increased repair of alkylating DNA damage by base excision repair pathway. No effect was observed on nucleotide excision repair pathway. Antigenotoxic effects of Hypericum sps. may contribute to colon cancer prevention and the high amount of phenolic compounds present in Hypericum sps. play an important role in DNA protective effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair.

    PubMed

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott; Scheibye-Knudsen, Morten; Desler, Claus; Hickson, Ian D; Bohr, Vilhelm A

    2014-04-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy.

  9. Oxidative stress-induced CREB upregulation promotes DNA damage repair prior to neuronal cell death protection.

    PubMed

    Pregi, Nicolás; Belluscio, Laura María; Berardino, Bruno Gabriel; Castillo, Daniela Susana; Cánepa, Eduardo Tomás

    2017-01-01

    cAMP response element-binding (CREB) protein is a cellular transcription factor that mediates responses to different physiological and pathological signals. Using a model of human neuronal cells we demonstrate herein, that CREB is phosphorylated after oxidative stress induced by hydrogen peroxide. This phosphorylation is largely independent of PKA and of the canonical phosphoacceptor site at ser-133, and is accompanied by an upregulation of CREB expression at both mRNA and protein levels. In accordance with previous data, we show that CREB upregulation promotes cell survival and that its silencing results in an increment of apoptosis after oxidative stress. Interestingly, we also found that CREB promotes DNA repair after treatment with hydrogen peroxide. Using a cDNA microarray we found that CREB is responsible for the regulation of many genes involved in DNA repair and cell survival after oxidative injury. In summary, the neuroprotective effect mediated by CREB appears to follow three essential steps following oxidative injury. First, the upregulation of CREB expression that allows sufficient level of activated and phosphorylated protein is the primordial event that promotes the induction of genes of the DNA Damage Response. Then and when the DNA repair is effective, CREB induces detoxification and survival genes. This kinetics seems to be important to completely resolve oxidative-induced neuronal damages.

  10. Base excision repair of oxidative DNA damage: from mechanism to disease

    PubMed Central

    Whitaker, Amy M.; Schaich, Matthew A.; Smith, Mallory S.; Flynn, Tony S.; Freudenthal, Bret. D.

    2017-01-01

    Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes. PMID:28199214

  11. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways.

    PubMed

    Machado-Silva, Alice; Cerqueira, Paula Gonçalves; Grazielle-Silva, Viviane; Gadelha, Fernanda Ramos; Peloso, Eduardo de Figueiredo; Teixeira, Santuza Maria Ribeiro; Machado, Carlos Renato

    2016-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is an obligatory intracellular parasite with a digenetic life cycle. Due to the variety of host environments, it faces several sources of oxidative stress. In addition to reactive oxygen species (ROS) produced by its own metabolism, T. cruzi must deal with high ROS levels generated as part of the host's immune responses. Hence, the conclusion that T. cruzi has limited ability to deal with ROS (based on the lack of a few enzymes involved with oxidative stress responses) seems somewhat paradoxical. Actually, to withstand such variable sources of oxidative stress, T. cruzi has developed complex defence mechanisms. This includes ROS detoxification pathways that are distinct from the ones in the mammalian host, DNA repair pathways and specialized polymerases, which not only protect its genome from the resulting oxidative damage but also contribute to the generation of genetic diversity within the parasite population. Recent studies on T. cruzi's DNA repair pathways as mismatch repair (MMR) and GO system suggested that, besides a role associated with DNA repair, some proteins of these pathways may also be involved in signalling oxidative damage. Recent data also suggested that an oxidative environment might be beneficial for parasite survival within the host cell as it contributes to iron mobilization from the host's intracellular storages. Besides contributing to the understanding of basic aspects of T. cruzi biology, these studies are highly relevant since oxidative stress pathways are part of the poorly understood mechanisms behind the mode of action of drugs currently used against this parasite. By unveiling new peculiar aspects of T. cruzi biology, emerging data on DNA repair pathways and other antioxidant defences from this parasite have revealed potential new targets for a much needed boost in drug development efforts towards a better treatment for Chagas disease. Copyright © 2015. Published by Elsevier B.V.

  12. The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1.

    PubMed

    Das, Aditi; Boldogh, Istvan; Lee, Jae Wan; Harrigan, Jeanine A; Hegde, Muralidhar L; Piotrowski, Jason; de Souza Pinto, Nadja; Ramos, William; Greenberg, Marc M; Hazra, Tapas K; Mitra, Sankar; Bohr, Vilhelm A

    2007-09-07

    The mammalian DNA glycosylase, NEIL1, specific for repair of oxidatively damaged bases in the genome via the base excision repair pathway, is activated by reactive oxygen species and prevents toxicity due to radiation. We show here that the Werner syndrome protein (WRN), a member of the RecQ family of DNA helicases, associates with NEIL1 in the early damage-sensing step of base excision repair. WRN stimulates NEIL1 in excision of oxidative lesions from bubble DNA substrates. The binary interaction between NEIL1 and WRN (K(D) = 60 nM) involves C-terminal residues 288-349 of NEIL1 and the RecQ C-terminal (RQC) region of WRN, and is independent of the helicase activity WRN. Exposure to oxidative stress enhances the NEIL-WRN association concomitant with their strong nuclear co-localization. WRN-depleted cells accumulate some prototypical oxidized bases (e.g. 8-oxoguanine, FapyG, and FapyA) indicating a physiological function of WRN in oxidative damage repair in mammalian genomes. Interestingly, WRN deficiency does not have an additive effect on in vivo damage accumulation in NEIL1 knockdown cells suggesting that WRN participates in the same repair pathway as NEIL1.

  13. Enzymatic MPG DNA repair assays for two different oxidative DNA lesions reveal associations with increased lung cancer risk

    PubMed Central

    Leitner-Dagan, Yael; Sevilya, Ziv; Pinchev, Mila; Kremer, Ran; Elinger, Dalia; Rennert, Hedy S.; Schechtman, Edna; Freedman, Laurence; Rennert, Gad; Paz-Elizur, Tamar

    2014-01-01

    DNA repair is a major mechanism for minimizing mutations and reducing cancer risk. Here, we present the development of reproducible and specific enzymatic assays for methylpurine DNA glycosylase (MPG) repairing the oxidative lesions 1,N6-ethenoadenine (εA) and hypoxanthine (Hx) in peripheral blood mononuclear cells protein extracts. Association of these DNA repair activities with lung cancer was determined using conditional logistic regression with specimens from a population-based case–control study with 96 lung cancer cases and 96 matched control subjects. The mean MPG-εA in case patients was 15.8 units/μg protein (95% CI 15.3–16.3), significantly higher than in control subjects—15.1 (14.6–15.5), *P = 0.011. The adjusted odds ratio for lung cancer associated with a one SD increase in MPG-εA activity (2.48 units) was significantly bigger than 1 (OR = 1.6, 95% CI = 1.1–2.4; *P = 0.013). When activity of OGG1, a different DNA repair enzyme for oxidative damage, was included in the model, the estimated odds ratio/SD for a combined MPG-εA-OGG1 score was 2.6 (95% CI 1.6–4.2) *P = 0.0001, higher than the odds ratio for each single assay. The MPG enzyme activity assays described provide robust functional risk biomarkers, with increased MPG-εA activity being associated with increased lung cancer risk, similar to the behavior of MPG-Hx. This underscores the notion that imbalances in DNA repair, including high DNA repair, usually perceived as beneficial, can cause cancer risk. Such DNA repair risk biomarkers may be useful for risk assessment of lung cancer and perhaps other cancer types, and for early detection techniques such as low-dose CT. PMID:25355292

  14. Estimating the effect of human base excision repair protein variants on the repair of oxidative DNA base damage.

    PubMed

    Sokhansanj, Bahrad A; Wilson, David M

    2006-05-01

    Epidemiologic studies have revealed a complex association between human genetic variance and cancer risk. Quantitative biological modeling based on experimental data can play a critical role in interpreting the effect of genetic variation on biochemical pathways relevant to cancer development and progression. Defects in human DNA base excision repair (BER) proteins can reduce cellular tolerance to oxidative DNA base damage caused by endogenous and exogenous sources, such as exposure to toxins and ionizing radiation. If not repaired, DNA base damage leads to cell dysfunction and mutagenesis, consequently leading to cancer, disease, and aging. Population screens have identified numerous single-nucleotide polymorphism variants in many BER proteins and some have been purified and found to exhibit mild kinetic defects. Epidemiologic studies have led to conflicting conclusions on the association between single-nucleotide polymorphism variants in BER proteins and cancer risk. Using experimental data for cellular concentration and the kinetics of normal and variant BER proteins, we apply a previously developed and tested human BER pathway model to (i) estimate the effect of mild variants on BER of abasic sites and 8-oxoguanine, a prominent oxidative DNA base modification, (ii) identify ranges of variation associated with substantial BER capacity loss, and (iii) reveal nonintuitive consequences of multiple simultaneous variants. Our findings support previous work suggesting that mild BER variants have a minimal effect on pathway capacity whereas more severe defects and simultaneous variation in several BER proteins can lead to inefficient repair and potentially deleterious consequences of cellular damage.

  15. Estimation of oxidative DNA damage in man from urinary excretion of repair products.

    PubMed

    Loft, S; Poulsen, H E

    1998-01-01

    DNA is constantly damaged and repaired in living cells. The repair products of the oxidative DNA lesions, i.e. oxidised nucleosides and bases, are poor substrates for the enzymes involved in nucleotide synthesis, are fairly water soluble, and generally excreted into the urine without further metabolism. Among the possible products, 8-oxo-2'-deoxyguanosine, 8-oxoguanine, thymine glycol, thymidine glycol and, 5-hydroxymethyluracil have so far been identified in urine. It should be emphasised that the excretion of the repair products in urine represents the average rate of damage in the total body whereas the level of oxidised bases in nuclear DNA is a concentration measurement in that specific tissue/cells in the moment of sampling. The rate of oxidative DNA modifications has been studied in humans by means of the repair products as urinary biomarkers, particularly with respect to 8-oxo-2'-deoxyguanosine. The data obtained so far indicate that the important determinants of the oxidative damage rate include tobacco smoking, oxygen consumption and some inflammatory diseases whereas diet composition, energy restriction and antioxidant supplements have but a minimal influence, possibly with the exception of yet unidentified phytochemicals, e.g. from cruciferous vegetables. The data are consistent with the experimentally based notion that oxidative DNA damage is an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still warranted. In the future the use of biomarkers may provide this evidence and allow further investigations on the qualitative and quantitative importance of oxidative DNA modification and carcinogenesis in man, as well as elucidate possible preventive measures.

  16. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    PubMed

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  17. Hippocampal adult neurogenesis is maintained by Neil3-dependent repair of oxidative DNA lesions in neural progenitor cells.

    PubMed

    Regnell, Christine Elisabeth; Hildrestrand, Gunn Annette; Sejersted, Yngve; Medin, Tirill; Moldestad, Olve; Rolseth, Veslemøy; Krokeide, Silje Zandstra; Suganthan, Rajikala; Luna, Luisa; Bjørås, Magnar; Bergersen, Linda H

    2012-09-27

    Accumulation of oxidative DNA damage has been proposed as a potential cause of age-related cognitive decline. The major pathway for removal of oxidative DNA base lesions is base excision repair, which is initiated by DNA glycosylases. In mice, Neil3 is the main DNA glycosylase for repair of hydantoin lesions in single-stranded DNA of neural stem/progenitor cells, promoting neurogenesis. Adult neurogenesis is crucial for maintenance of hippocampus-dependent functions involved in behavior. Herein, behavioral studies reveal learning and memory deficits and reduced anxiety-like behavior in Neil3(-/-) mice. Neural stem/progenitor cells from aged Neil3(-/-) mice show impaired proliferative capacity and reduced DNA repair activity. Furthermore, hippocampal neurons in Neil3(-/-) mice display synaptic irregularities. It appears that Neil3-dependent repair of oxidative DNA damage in neural stem/progenitor cells is required for maintenance of adult neurogenesis to counteract the age-associated deterioration of cognitive performance.

  18. Oxidative DNA damage background estimated by a system model of base excision repair

    SciTech Connect

    Sokhansanj, B A; Wilson, III, D M

    2004-05-13

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  19. Oxidative DNA damage background estimated by a system model of base excision repair.

    PubMed

    Sokhansanj, Bahrad A; Wilson, David M

    2004-08-01

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level, based on measuring 8-oxoguanine lesions as a biomarker, have led to estimates that vary over three to four orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our findings show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  20. DNA damage signalling barrier, oxidative stress and treatment-relevant DNA repair factor alterations during progression of human prostate cancer.

    PubMed

    Kurfurstova, Daniela; Bartkova, Jirina; Vrtel, Radek; Mickova, Alena; Burdova, Alena; Majera, Dusana; Mistrik, Martin; Kral, Milan; Santer, Frederic R; Bouchal, Jan; Bartek, Jiri

    2016-06-01

    The DNA damage checkpoints provide an anti-cancer barrier in diverse tumour types, however this concept has remained unexplored in prostate cancer (CaP). Furthermore, targeting DNA repair defects by PARP1 inhibitors (PARPi) as a cancer treatment strategy is emerging yet requires suitable predictive biomarkers. To address these issues, we performed immunohistochemical analysis of multiple markers of DNA damage signalling, oxidative stress, DNA repair and cell cycle control pathways during progression of human prostate disease from benign hyperplasia, through intraepithelial neoplasia to CaP, complemented by genetic analyses of TMPRSS2-ERG rearrangement and NQO1, an anti-oxidant factor and p53 protector. The DNA damage checkpoint barrier (γH2AX, pATM, p53) mechanism was activated during CaP tumorigenesis, albeit less and with delayed culmination compared to other cancers, possibly reflecting lower replication stress (slow proliferation despite cases of Rb loss and cyclin D1 overexpression) and progressive loss of ATM activator NKX3.1. Oxidative stress (8-oxoguanine lesions) and NQO1 increased during disease progression. NQO1 genotypes of 390 men did not indicate predisposition to CaP, yet loss of NQO1 in CaP suggested potential progression-opposing tumour suppressor role. TMPRSS2-ERG rearrangement and PTEN loss, events sensitizing to PARPi, occurred frequently along with heterogeneous loss of DNA repair factors 53BP1, JMJD1C and Rev7 (all studied here for the first time in CaP) whose defects may cause resistance to PARPi. Overall, our results reveal an unorthodox DNA damage checkpoint barrier scenario in CaP tumorigenesis, and provide novel insights into oxidative stress and DNA repair, with implications for biomarker guidance of future targeted therapy of CaP.

  1. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    SciTech Connect

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-12-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by {approx} 1.3 fold in the nuclear protein extracts (NE) and {approx} 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was {approx} 1.5 fold higher, whereas in the MEs it was {approx} 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of

  2. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    PubMed Central

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-01-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2’-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ~1.3 fold in the nuclear protein extracts (NE) and ~1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ~1.5 fold higher, whereas in the MEs it was ~1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative DNA lesions

  3. Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics.

    PubMed

    Dizdaroglu, Miral; Coskun, Erdem; Jaruga, Pawel

    Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy. Published by Elsevier B.V.

  4. Dynamic monitoring of oxidative DNA double-strand break and repair in cardiomyocytes.

    PubMed

    Ye, Bo; Hou, Ning; Xiao, Lu; Xu, Yifan; Xu, Haodong; Li, Faqian

    2016-01-01

    DNA double-strand breaks (DSBs) are most dangerous lesions. To determine whether oxidative stress can induce DSBs and how they are repaired in cardiomyocytes (CMs), cultured neonatal rat CMs were treated with different doses of H2O2 and followed for up to 72 h for monitoring the spatiotemporal dynamics of DNA repair protein assembly/disassembly at DSB foci. The protein levels and foci numbers of histone H2AX phosphorylated at serine 139 (γ-H2AX) increased proportionally to 50, 100, and 200 μmol/L H2O2 after 30 min treatment. When H2O2 was at or above 400 μmol/L, γ-H2AX became predominantly pannuclear. After 30 min, 200 μmol/L of H2O2 treatment, γ-H2AX levels were highest within the first hour and then gradually declined during the recovery and returned to basal levels at 48 h. Among DNA damage transducer kinases, ataxia telangiectasia mutated (ATM) was significantly activated by H2O2 in contrast to mild activation of ATR (ATM and Rad3-related). A DSB binding protein, p53 binding protein 1, formed distinct nuclear foci that colocalized with γ-H2AX foci and phosphorylated ATM. Our findings indicate that DSBs can be induced by H2O2 and ATM is the main kinase to mediate DSB repair in CMs. Therefore, monitoring DSB repair can assess oxidative injury and response in CMs.

  5. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair

    PubMed Central

    Zhu, Chenxu; Lu, Lining; Zhang, Jun; Yue, Zongwei; Song, Jinghui; Zong, Shuai; Liu, Menghao; Stovicek, Olivia; Gao, Yi Qin; Yi, Chengqi

    2016-01-01

    NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)—a preferred substrate—for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction. PMID:27354518

  6. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  7. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques.

    PubMed

    Dizdaroglu, M; Coskun, E; Jaruga, P

    2015-05-01

    Oxidatively induced damage caused by free radicals and other DNA-damaging agents generate a plethora of products in the DNA of living organisms. There is mounting evidence for the involvement of this type of damage in the etiology of numerous diseases including carcinogenesis. For a thorough understanding of the mechanisms, cellular repair, and biological consequences of DNA damage, accurate measurement of resulting products must be achieved. There are various analytical techniques, with their own advantages and drawbacks, which can be used for this purpose. Mass spectrometric techniques with isotope dilution, which include gas chromatography (GC) and liquid chromatography (LC), provide structural elucidation of products and ascertain accurate quantification, which are absolutely necessary for reliable measurement. Both gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), in single or tandem versions, have been used for the measurement of numerous DNA products such as sugar and base lesions, 8,5'-cyclopurine-2'-deoxynucleosides, base-base tandem lesions, and DNA-protein crosslinks, in vitro and in vivo. This article reviews these techniques and their applications in the measurement of oxidatively induced DNA damage and its repair.

  8. Involvement of DNA polymerase beta in repairing oxidative damages induced by antitumor drug adriamycin

    SciTech Connect

    Liu Shukun; Wu Mei; Zhang Zunzhen

    2010-08-01

    Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here, cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.

  9. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1.

    PubMed

    Rhee, David B; Ghosh, Avik; Lu, Jian; Bohr, Vilhelm A; Liu, Yie

    2011-01-02

    Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major contributing factor. 7,8-Dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non-telomeric double-stranded substrates. In addition, telomere repeat binding factors TRF1 and TRF2 do not impair OGG1 incision activity. Yet, 8-oxodG in some telomere structures (e.g., fork-opening, 3'-overhang, and D-loop) were less effectively excised by OGG1, depending upon its position in these substrates. Collectively, our data indicate that the sequence context of telomere repeats and certain telomere configurations may contribute to telomere vulnerability to oxidative DNA damage processing.

  10. Enzymatic MPG DNA repair assays for two different oxidative DNA lesions reveal associations with increased lung cancer risk.

    PubMed

    Leitner-Dagan, Yael; Sevilya, Ziv; Pinchev, Mila; Kremer, Ran; Elinger, Dalia; Rennert, Hedy S; Schechtman, Edna; Freedman, Laurence; Rennert, Gad; Livneh, Zvi; Paz-Elizur, Tamar

    2014-12-01

    DNA repair is a major mechanism for minimizing mutations and reducing cancer risk. Here, we present the development of reproducible and specific enzymatic assays for methylpurine DNA glycosylase (MPG) repairing the oxidative lesions 1,N6-ethenoadenine (εA) and hypoxanthine (Hx) in peripheral blood mononuclear cells protein extracts. Association of these DNA repair activities with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects. The mean MPG-εA in case patients was 15.8 units/μg protein (95% CI 15.3-16.3), significantly higher than in control subjects-15.1 (14.6-15.5), *P = 0.011. The adjusted odds ratio for lung cancer associated with a one SD increase in MPG-εA activity (2.48 units) was significantly bigger than 1 (OR = 1.6, 95% CI = 1.1-2.4; *P = 0.013). When activity of OGG1, a different DNA repair enzyme for oxidative damage, was included in the model, the estimated odds ratio/SD for a combined MPG-εA-OGG1 score was 2.6 (95% CI 1.6-4.2) *P = 0.0001, higher than the odds ratio for each single assay. The MPG enzyme activity assays described provide robust functional risk biomarkers, with increased MPG-εA activity being associated with increased lung cancer risk, similar to the behavior of MPG-Hx. This underscores the notion that imbalances in DNA repair, including high DNA repair, usually perceived as beneficial, can cause cancer risk. Such DNA repair risk biomarkers may be useful for risk assessment of lung cancer and perhaps other cancer types, and for early detection techniques such as low-dose CT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Base and Nucleotide Excision Repair of Oxidatively Generated Guanine Lesions in DNA.

    PubMed

    Shafirovich, Vladimir; Kropachev, Konstantin; Anderson, Thomas; Liu, Zhi; Kolbanovskiy, Marina; Martin, Brooke D; Sugden, Kent; Shim, Yoonjung; Chen, Xuejing; Min, Jung-Hyun; Geacintov, Nicholas E

    2016-03-04

    The well known biomarker of oxidative stress, 8-oxo-7,8-dihydroguanine, is more susceptible to further oxidation than the parent guanine base and can be oxidatively transformed to the genotoxic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) lesions. Incubation of 135-mer duplexes with single Sp or Gh lesions in human cell extracts yields a characteristic nucleotide excision repair (NER)-induced ladder of short dual incision oligonucleotide fragments in addition to base excision repair (BER) incision products. The ladders were not observed when NER was inhibited either by mouse monoclonal antibody (5F12) to human XPA or in XPC(-/-) fibroblast cell extracts. However, normal NER activity appeared when the XPC(-/-) cell extracts were complemented with XPC-RAD23B proteins. The Sp and Gh lesions are excellent substrates of both BER and NER. In contrast, 5-guanidino-4-nitroimidazole, a product of the oxidation of guanine in DNA by peroxynitrite, is an excellent substrate of BER only. In the case of mouse embryonic fibroblasts, BER of the Sp lesion is strongly reduced in NEIL1(-/-) relative to NEIL1(+/+) extracts. In summary, in human cell extracts, BER and NER activities co-exist and excise Gh and Sp DNA lesions, suggesting that the relative NER/BER product ratios may depend on competitive BER and NER protein binding to these lesions.

  12. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG.

    PubMed

    Leipold, M D; Muller, J G; Burrows, C J; David, S S

    2000-12-05

    An intriguing feature of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is that it is highly reactive toward further oxidation. Indeed, OG has been shown to be a "hot spot" for oxidative damage and susceptible to oxidation by a variety of cellular oxidants. Recent work has identified two new DNA lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), resulting from one-electron oxidation of OG. The presence of Gh and Sp lesions in DNA templates has been shown to result in misinsertion of G and A by DNA polymerases, and therefore, both are potentially mutagenic DNA lesions. The base excision repair (BER) glycosylases Fpg and MutY serve to prevent mutations associated with OG in Escherichia coli, and therefore, we have investigated the ability of these two enzymes to process DNA duplex substrates containing the further oxidized OG lesions, Gh and Sp. The Fpg protein, which removes OG and a variety of other oxidized purine base lesions, was found to remove Gh and Sp efficiently opposite all four of the natural DNA bases. The intrinsic rate of damaged base excision by Fpg was measured under single-turnover conditions and was found to be highly dependent upon the identity of the base opposite the OG, Gh, or Sp lesion; as expected, OG is removed more readily from an OG:C- than an OG:A-containing substrate. However, when adenine is paired with Gh or Sp, the rate of removal of these damaged lesions by Fpg was significantly increased relative to the rate of removal of OG from an OG:A mismatch. The adenine glycosylase MutY, which removes misincorporated A residues from OG:A mismatches, is unable to remove A paired with Gh or Sp. Thus, the activity of Fpg on Gh and Sp lesions may dramatically influence their mutagenic potential. This work suggests that, in addition to OG, oxidative products resulting from further oxidation of OG should be considered when evaluating oxidative DNA damage and its associated effects on DNA mutagenesis.

  13. Role of DNA repair enzymes in the cellular resistance to oxidative stress.

    PubMed

    Laval, J

    1996-01-01

    Oxidative stress occurs in cells when the equilibrium between prooxidant and antioxidant species is broken in favor of the prooxidant state. It is due to reactive oxygen species (ROS) generated either by the cellular metabolism such as phagocytosis, mitochondrial respiration, xenobiotic detoxification, or by exogenous factors such as ionizing radiation or chemical compounds performing red-ox reactions. Some ROS are extremely reactive and interact with all the macromolecules including lipids, nucleic acids and proteins. Cells have numerous defence systems to counteract the deleterious effects of ROS. Proteins and small molecules specifically eliminate ROS when they are formed. There are three species of superoxyde dismutases which transform the superoxyde anion O2- in hydrogen peroxyde H2O2 which in turn will be destroyed by peroxysomal catalase or by various peroxydases. There are numerous small molecules in the cell such as glutathion, alpha-tocopherol, vitamines A and C, melanine, etc. which are antioxydant molecules. ROS escaping destruction generate various lesions in DNA such as base modifications, degradation products of deoxyribose, chain breaks. These various lesions have been characterized and it is possible to quantitate them in the DNA of cells which have been irradiated or treated by free radical generating systems. The biological properties of the bases modified by ROS have been established. For example C8-hydroxyguanine (8-oxoG) is promutagenic since, if present in DNA during replication, it leads to incorporation of dAMP residues, leading to transversion mutation (GC-->TA). Purines whose imidazole ring is opened (Fapy residues) are stops for the DNA polymerase during DNA replication and are therefore potentially lethal lesions for the cell. Oxidized pyrimidines have comparable coding properties. Efficient DNA repair mechanisms remove these oxidized bases. In Escherichia coli cells, endonuclease III (NTH protein) and endonuclease VIII (NEI protein

  14. O-GlcNAcylation of 8-Oxoguanine DNA Glycosylase (Ogg1) Impairs Oxidative Mitochondrial DNA Lesion Repair in Diabetic Hearts.

    PubMed

    Cividini, Federico; Scott, Brian T; Dai, Anzhi; Han, Wenlong; Suarez, Jorge; Diaz-Juarez, Julieta; Diemer, Tanja; Casteel, Darren E; Dillmann, Wolfgang H

    2016-12-16

    mtDNA damage in cardiac myocytes resulting from increased oxidative stress is emerging as an important factor in the pathogenesis of diabetic cardiomyopathy. A prevalent lesion that occurs in mtDNA damage is the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which can cause mutations when not repaired properly by 8-oxoguanine DNA glycosylase (Ogg1). Although the mtDNA repair machinery has been described in cardiac myocytes, the regulation of this repair has been incompletely investigated. Here we report that the hearts of type 1 diabetic mice, despite having increased Ogg1 protein levels, had significantly lower Ogg1 activity than the hearts of control, non-type 1 diabetic mice. In diabetic hearts, we further observed increased levels of 8-OHdG and an increased amount of mtDNA damage. Interestingly, Ogg1 was found to be highly O-GlcNAcylated in diabetic mice compared with controls. In vitro experiments demonstrated that O-GlcNAcylation inhibits Ogg1 activity, which could explain the mtDNA lesion accumulation observed in vivo Reducing Ogg1 O-GlcNAcylation in vivo by introducing a dominant negative O-GlcNAc transferase mutant (F460A) restored Ogg1 enzymatic activity and, consequently, reduced 8-OHdG and mtDNA damage despite the adverse hyperglycemic milieu. Taken together, our results implicate hyperglycemia-induced O-GlcNAcylation of Ogg1 in increased mtDNA damage and, therefore, provide a new plausible biochemical mechanism for diabetic cardiomyopathy.

  15. Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase

    SciTech Connect

    Yi, Chengqi; Jia, Guifang; Hou, Guanhua; Dai, Qing; Zhang, Wen; Zheng, Guanqun; Jian, Xing; Yang, Cai-Guang; Cui, Qiang; He, Chuan

    2010-11-19

    Mononuclear iron-containing oxygenases conduct a diverse variety of oxidation functions in biology, including the oxidative demethylation of methylated nucleic acids and histones. Escherichia coli AlkB is the first such enzyme that was discovered to repair methylated nucleic acids, which are otherwise cytotoxic and/or mutagenic. AlkB human homologues are known to play pivotal roles in various processes. Here we present structural characterization of oxidation intermediates for these demethylases. Using a chemical cross-linking strategy, complexes of AlkB-double stranded DNA (dsDNA) containing 1,N{sup 6}-etheno adenine ({var_epsilon}A), N{sup 3}-methyl thymine (3-meT) and N{sup 3}-methyl cytosine (3-meC) are stabilized and crystallized, respectively. Exposing these crystals, grown under anaerobic conditions containing iron(II) and {alpha}-ketoglutarate ({alpha}KG), to dioxygen initiates oxidation in crystallo. Glycol (from {var_epsilon}A) and hemiaminal (from 3-meT) intermediates are captured; a zwitterionic intermediate (from 3-meC) is also proposed, based on crystallographic observations and computational analysis. The observation of these unprecedented intermediates provides direct support for the oxidative demethylation mechanism for these demethylases. This study also depicts a general mechanistic view of how a methyl group is oxidatively removed from different biological substrates.

  16. Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference.

    PubMed

    Bennett, Geoffrey R; Peters, Ryan; Wang, Xiao-hong; Hanne, Jeungphill; Sobol, Robert W; Bundschuh, Ralf; Fishel, Richard; Yoder, Kristine E

    2014-01-01

    Host base excision repair (BER) proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1) and mutY homolog (MYH) as well as DNA polymerase beta (Polβ). While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polβ null cell lines complemented with active site point mutants of Polβ. A DNA synthesis defective mutant, but not a 5'dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggested Polβ DNA synthesis activity is not necessary while 5'dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level.

  17. Repair of DNA damaged by ionizing radiation and other oxidative agents in yeast and human

    SciTech Connect

    Louise Prakash

    2000-01-15

    Treatment of cells with oxidative DNA damaging agents such as ionizing radiation and hydrogen peroxide produces .OH radicals which attack DNA, producing single strand breaks and double strand breaks that have a 3'-blocked terminus with a phosphoglycolate or a phosphate group attached to the 3'-terminus. While DNA strand breaks with 3'-blocked termini are the hallmark of oxidative DNA damage, the mechanisms by which such blocked 3'-termini are removed in eukaryotes remain poorly understood. The goals of this project were to identify the various genes that function in cleaning the blocked 3'-ends from DNA strand breaks generated by treatments with ionizing radiation and hydrogen peroxide, to purify the proteins encoded by these genes and to characterize their biochemical activities, and to determine the biological consequences when such damage is not repaired. Because of the high degree of conservation of DNA repair proteins between yeast and humans, and because of the ease of genetic manipulations, initial studies were to be carried out in Saccharomyces cerevisiae. The homologous genes and proteins would then be studied in humans. One aspect of our proposed research was to purify the Apn2 protein from yeast cells and to examine its AP endonuclease and 3'-phosphodiesterase activities. Apn2-like proteins have been identified in eukaryotes other than yeast, including humans, and these proteins form a distinct subfamily within the ExoIII/Ape1/Apn2 family of proteins. We purified the Apn2 protein from yeast and showed that it is a class II AP endonuclease. (Class II AP endonucleases cleave the phosphodiester backbone on the 5'-side of the AP site and produce a 3'-OH group and a 5'-baseless deoxyribose 5'-phosphate residue). Yeast Apn2 and its orthologs in higher eukaryotes differ from E. coli ExoIII and human Ape1 in possessing a C terminus that is absent from the ExoIII/Ape1 subfamily. We found that deletion of the carboxyl-terminus of yeast Apn2 protein does not affect

  18. Repair of DNA damaged by ionizing radiation and other oxidative agents in yeast and human

    SciTech Connect

    Louisek Prakash

    2000-01-15

    OAK B202 Treatment of cells with oxidative DNA damaging agents such as ionizing radiation and hydrogen peroxide produces .OH radicals which attack DNA, producing single strand breaks and double strand breaks that have a 3'-blocked terminus with a phosphoglycolate or a phosphate group attached to the 3'-terminus. While DNA strand breaks with 3'-blocked termini are the hallmark of oxidative DNA damage, the mechanisms by which such blocked 3'-termini are removed in eukaryotes remain poorly understood. The goals of this project were to identify the various genes that function in cleaning the blocked 3'ends from DNA strand breaks generated by treatments with ionizing radiation and hydrogen peroxide, to purify the proteins encoded by these genes and to characterize their biochemical activities, and to determine the biological consequences when such damage is not repaired. Because of the high degree of conservation of DNA repair proteins between yeast and humans, and because of the ease of genetic manipulations, initial studies were to be carried out in Saccharomyces cerevisiae. The homologous genes and proteins would then be studied in humans. One aspect of our proposed research was to purify the Apn2 protein from yeast cells and to examine its AP endonuclease and 3'-phosphodiesterase activities. Apn2-like proteins have been identified in eukaryotes other than yeast, including humans, and these proteins form a distinct subfamily within the ExoIII/Ape1/Apn2 family of proteins. We purified the Apn2 protein from yeast and showed that it is a class II AP endonuclease. (Class II AP endonucleases cleave the phosphodiester backbone on the 5'-side of the AP site and produce a 3'-OH group and a 5'-baseless deoxyribose 5'-phosphate residue). Yeast Apn2 and its orthologs in higher eukaryotes differ from E. coli ExoIII and human Ape1 in possessing a C terminus that is absent from the ExoIII/Ape1 subfamily. We found that deletion of the carboxyl-terminus of yeast Apn2 protein does

  19. DNA excision repair at telomeres.

    PubMed

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-12-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    PubMed Central

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  1. DNA Repair Deficiency in Neurodegeneration

    PubMed Central

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A.; Stevnsner, Tinna

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington’s disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. PMID:21550379

  2. Tai chi improves oxidative stress response and DNA damage/repair in young sedentary females.

    PubMed

    Huang, Xing-Yu; Eungpinichpong, Wichai; Silsirivanit, Atit; Nakmareong, Saowanee; Wu, Xiu-Hua

    2014-06-01

    [Purpose] This study was to examine the effects of 12 weeks of Tai Chi (TC) exercise on antioxidant capacity, and DNA damage/repair in young females who did not perform regular physical exercise. [Subjects and Methods] Ten female students from a Chinese university voluntarily participated in this program. All of them practiced the 24-form simplified Tai Chi, 5 times weekly, for 12 weeks. Plasma levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), glutathione (GSH), hydroxyl radical inhibiting capacity (OH·-IC), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and 8-oxoguanine DNA glycosylase (OGG1) were measured at 0, 8, and 12 weeks. Heart rate (HR) was monitored during the last set of the training session at 4, 8, and 12 weeks. [Results] Plasma SOD and OH·-IC levels were increased at 8 and 12 weeks compared to the baseline (0 weeks). Gpx and GSH levels did not change significantly throughout the study period. The plasma MDA level was decreased significantly at 8 weeks but not at 12 weeks compared to the baseline value. While the plasma 8-OHdG level did not change throughout the study period, the plasma OGG1 level was significantly increased at 8 and 12 weeks compared to the baseline value. [Conclusion] TC practice for 12 weeks efficiently improved the oxidative stress response in young females who did not perform regular physical exercise. The TC exercise also increased the DNA repairing capacity.

  3. Measuring oxidative damage to DNA and its repair with the comet assay.

    PubMed

    Collins, Andrew R

    2014-02-01

    Single cell gel electrophoresis, or the comet assay, was devised as a sensitive method for detecting DNA strand breaks, at the level of individual cells. A simple modification, incorporating a digestion of DNA with a lesion-specific endonuclease, makes it possible to measure oxidised bases. With the inclusion of formamidopyrimidine DNA glycosylase to recognise oxidised purines, or Nth (endonuclease III) to detect oxidised pyrimidines, the comet assay has been used extensively in human biomonitoring to monitor oxidative stress, usually in peripheral blood mononuclear cells. There is evidence to suggest that the enzymic approach is more accurate than chromatographic methods, when applied to low background levels of base oxidation. However, there are potential problems of over-estimation (because the enzymes are not completely specific) or under-estimation (failure to detect lesions that are close together). Attempts have been made to improve the inter-laboratory reproducibility of the comet assay. In addition to measuring DNA damage, the assay can be used to monitor the cellular or in vitro repair of strand breaks or oxidised bases. It also has applications in assessing the antioxidant status of cells. In its various forms, the comet assay is now an invaluable tool in human biomonitoring and genotoxicity testing. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Oxidative stress induces DNA damage and inhibits the repair of DNA lesions induced by N-acetoxy-2-acetylaminofluorene in human peripheral mononuclear leukocytes.

    PubMed

    Pero, R W; Anderson, M W; Doyle, G A; Anna, C H; Romagna, F; Markowitz, M; Bryngelsson, C

    1990-08-01

    Human mononuclear leukocytes were exposed to prooxidants such as H2O2, phorbol-12-myristate-13-acetate, and 4-nitroquinoline-N-oxide, and the effects on induction of DNA damage and repair were evaluated. ADP ribosylation was activated by prooxidant exposure and the response was bimodal with peaks of activation occurring at about 30 min and 4-5 h. Other evidence for prooxidant-induced DNA damage was provided by nucleoid sedimentation assays. Unscheduled DNA synthesis (UDS) was only slightly induced by prooxidant exposure which suggested that either the DNA lesions were repaired by a short patch mechanism involving little UDS, or the repair process was inhibited by prooxidant exposures, or some combination of both. This point was clarified by the fact that the repair of DNA lesions induced by N-acetoxy-2-acetylaminofluorene, an inducer of large patch DNA repair, was inhibited in a dose-dependent manner by exposure to H2O2 and the inhibition was dependent on ADP ribosylation. In contrast, the repair of DNA strand breaks induced by prooxidant exposures as identified above were complete within about 8 h and the repair was independent of ADP ribosylation. Both ADP ribosylation and N-acetoxy-2-acetylaminofluorene-induced UDS were shown to be up- and down-regulated by the redox state of human mononuclear leukocytes indicating a unique mechanism of cellular control over DNA repair.

  5. The catalytic subunit of DNA-dependent protein kinase is required for cellular resistance to oxidative stress independent of DNA double-strand break repair.

    PubMed

    Li, Mengxia; Lin, Yu-Fen; Palchik, Guillermo A; Matsunaga, Shinji; Wang, Dong; Chen, Benjamin P C

    2014-11-01

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. Whereas ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the nonhomologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in the oxidative stress response and could be activated directly in vitro on hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double-strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs-deficient, but not Ligase 4-deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a noncanonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS buildup independently of its function in DSB repair.

  6. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair

    PubMed Central

    Fleming, Aaron M.; Ding, Yun; Burrows, Cynthia J.

    2017-01-01

    Reactive oxygen species (ROS) have emerged as important cellular-signaling agents for cellular survival. Herein, we demonstrate that ROS-mediated oxidation of DNA to yield 8-oxo-7,8-dihydroguanine (OG) in gene promoters is a signaling agent for gene activation. Enhanced gene expression occurs when OG is formed in guanine-rich, potential G-quadruplex–forming sequences (PQS) in promoter-coding strands, initiating base excision repair (BER) by 8-oxoguanine DNA glycosylase (OGG1), yielding an abasic site (AP). The AP enables melting of the duplex to unmask the PQS, adopting a G-quadruplex fold in which apurinic/apyrimidinic endonuclease 1 (APE1) binds, but inefficiently cleaves, the AP for activation of vascular endothelial growth factor (VEGF) or endonuclease III-like protein 1 (NTHL1) genes. These details were mapped via synthesis of OG and AP analogs at single-nucleotide precision within the promoter of a luciferase reporter system. The reporters were analyzed in human and mouse cells while selectively knocking out or down critical BER proteins to identify the impact on luciferase expression. Identification of the oxidatively modified DNA base OG to guide BER activity in a gene promoter and impact cellular phenotype ascribes an epigenetic role to OG. PMID:28143930

  7. Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse.

    PubMed

    Martínez-Alfaro, Minerva; Cárabez-Trejo, Alfonso; Gallegos-Corona, Marco-Antonio; Pedraza-Aboytes, Gustavo; Hernández-Chan, Nancy Georgina; Leo-Amador, Guillermo Enrique

    2010-04-01

    Humans can come into contact with thinner by occupational exposure or by intentional inhalation abuse. Numerous studies of workers for genotoxic effects of thinner exposure have yielded conflicting results, perhaps because co-exposure to variable other compounds cannot be avoided in workplace exposure studies. In contrast, there is no data concerning the genotoxic effects of intentional inhalation abuse. The aim of this project was to examine the genotoxic effects of thinner inhalation in an animal model of thinner abuse (rats exposed to 3000 ppm toluene, a high solvent concentration over a very short, 15 min time period, twice a day for 6 weeks). The data presented here provides evidence that thinner inhalation in our experimental conditions is able to induce weight loss, lung abnormalities and oxidative stress. This oxidative stress induces oxidative DNA damage that is not a characteristic feature of genotoxic damage. No significant difference in DNA damage and DNA repair (biomarkers of genotoxicity) in lymphocytes from thinner-treated and control rats was found. Lead treatment was used as a positive control in these assays. Finally, bone marrow was evaluated as a biomarker of cellular alteration associated with thinner inhalation. The observed absence of hemopoietic and genetic toxicity could be explained in part by the absence of benzene, the only carcinogenic component of thinner; however, benzene is no longer a common component of thinner. In conclusion, thinner did not cause genotoxic effects in an experimental model of intentional abuse despite the fact that thinner inhalation induces oxidative stress. (c) 2009 John Wiley & Sons, Ltd.

  8. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation

    PubMed Central

    Yu, Zheng-Cheng; Huang, Yi-Fu; Shieh, Sheau-Yann

    2016-01-01

    Human Mps1 (hMps1) is a protein kinase essential for mitotic checkpoints and the DNA damage response. Here, we present new evidence that hMps1 also participates in the repair of oxidative DNA lesions and cell survival through the MDM2-H2B axis. In response to oxidative stress, hMps1 phosphorylates MDM2, which in turn promotes histone H2B ubiquitination and chromatin decompaction. These events facilitate oxidative DNA damage repair and ATR-CHK1, but not ATM-CHK2 signaling. Depletion of hMps1 or MDM2 compromised H2B ubiquitination, DNA repair and cell survival. The impairment could be rescued by re-expression of WT but not the phospho-deficient MDM2 mutant, supporting the involvement of hMps1-dependent MDM2 phosphorylation in the oxidative stress response. In line with these findings, localization of RPA and base excision repair proteins to damage foci also requires MDM2 and hMps1. Significantly, like MDM2, hMps1 is upregulated in human sarcoma, suggesting high hMps1 and MDM2 expression may be beneficial for tumors constantly challenged by an oxidative micro-environment. Our study therefore identified an hMps1-MDM2-H2B signaling axis that likely plays a relevant role in tumor progression. PMID:26531827

  9. Rat MYH, a glycosylase for repair of oxidatively damaged DNA, has brain-specific isoforms that localize to neuronal mitochondria.

    PubMed

    Englander, Ella W; Hu, Zhaoyong; Sharma, Abha; Lee, Heung-Man; Wu, Zhao-Hui; Greeley, George H

    2002-12-01

    Mitochondrial genomes are exposed to a heavy load of reactive oxygen species (ROS) that damage DNA. Since in neurons, mitochondrial DNA integrity must be maintained over the entire mammalian life span, neuronal mitochondria most likely repair oxidatively damaged DNA. We show that the Escherichia coli MutY DNA glycosylase homolog (MYH) in rat (rMYH) involved in repair of oxidative damage is abundantly expressed in the rat brain, with isoforms that are exclusive to brain tissue. Confocal microscopy and western analyses reveal localization of rMYH in neuronal mitochondria. To assess involvement of MYH in the neuronal response to oxidative DNA damage, we used a rat model of respiratory hypoxia, in which acutely reduced blood oxygenation leads to generation of superoxide, and formation and subsequent removal of 8-hydroxy-2'-deoxyguanosine (8OHdG). Removal of 8OHdG is accompanied by a spatial increase in rMYH immunoreactivity in the brain and an increase in levels of one of the three mitochondrial MYH isoforms, suggesting that inducible and non-inducible MYH isoforms exist in the brain. The mitochondrial localization of oxidative DNA damage repair enzymes in neurons may represent a specialized neuronal mechanism that safeguards mitochondrial genomes in the face of routine and accidental exposures to heavy loads of injurious ROS.

  10. Structure/Function Analysis of DNA-glycosylases That Repair Oxidized Purines and Pyrimidines and the Influence of Surrounding DNA Sequence on Their Interactions

    SciTech Connect

    Wallace, Susan S.

    2005-08-22

    The overall goal of this project was to elucidate the structure/function relationships between oxidized DNA bases and the DNA repair enzymes that recognize and remove them. The NMR solution structure of formamidopyrimidine DNA glycosylase (Fpg) that recognizes oxidized DNA purines was to be determined. Furthermore, the solution structures of DNA molecules containing specific lesions recognized by Fpg was to be determined in sequence contexts that either facilitate or hinder this recognition. These objectives were in keeping with the long-term goals of the Principal Investigator's laboratory, that is, to understand the basic mechanisms that underpin base excision repair processing of oxidative DNA lesions and to elucidate the interactions of unrepaired lesions with DNA polymerases. The results of these two DNA transactions can ultimately determine the fate of the cell. These objectives were also in keeping with the goals of our collaborator, Dr. Michael Kennedy, who is studying the repair and recognition of damaged DNA. Overall the goals of this project were congruent with those of the Department of Energy's Health Effects and Life Sciences Research Program, especially to the Structural Biology, the Human Genome and the Health Effects Programs. The mission of the latter Program includes understanding the biological effects and consequences of DNA damages produced by toxic agents in the many DOE waste sites so that cleanup can be accomplished in a safe, effective and timely manner.

  11. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.

    PubMed

    Van Meter, Michael; Simon, Matthew; Tombline, Gregory; May, Alfred; Morello, Timothy D; Hubbard, Basil P; Bredbenner, Katie; Park, Rosa; Sinclair, David A; Bohr, Vilhelm A; Gorbunova, Vera; Seluanov, Andrei

    2016-09-06

    The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  12. Overexpression of PCNA Attenuates Oxidative Stress-Caused Delay of Gap-Filling during Repair of UV-Induced DNA Damage

    PubMed Central

    Wang, Yi-Hsiang

    2017-01-01

    UVC irradiation-caused DNA lesions are repaired in mammalian cells solely by nucleotide excision repair (NER), which consists of sequential events including initial damage recognition, dual incision of damage site, gap-filling, and ligation. We have previously shown that gap-filling during the repair of UV-induced DNA lesions may be delayed by a subsequent treatment of oxidants or prooxidants such as hydrogen peroxide, flavonoids, and colcemid. We considered the delay as a result of competition for limiting protein/enzyme factor(s) during repair synthesis between NER and base excision repair (BER) induced by the oxidative chemicals. In this report, using colcemid as oxidative stress inducer, we showed that colcemid-caused delay of gap-filling during the repair of UV-induced DNA lesions was attenuated by overexpression of PCNA but not ligase-I. PCNA knockdown, as expected, delayed the gap-filling of NER but also impaired the repair of oxidative DNA damage. Fen-1 knockdown, however, did not affect the repair of oxidative DNA damage, suggesting repair of oxidative DNA damage is not of long patch BER. Furthermore, overexpression of XRCC1 delayed the gap-filling, and presumably increase of XRCC1 pulls PCNA away from gap-filling of NER for BER, consistent with our hypothesis that delay of gap-filling of NER attributes the competition between NER and BER. PMID:28116145

  13. Antagonistic role of tea against sodium arsenite-induced oxidative DNA damage and inhibition of DNA repair in Swiss albino mice.

    PubMed

    Sinha, Dona; Roy, Madhumita

    2011-01-01

    Arsenic (As) contamination in groundwater is of increasing health concern in West Bengal, India. Arsenic has been associated with various human cancers, but the precise mechanism of its co-carcinogenic action is not clearly elucidated. Oxidative stress and defective repair mechanisms may promote accumulation of mutations and may be a stepping stone for carcinogenesis. Prevention of arsenic-induced oxidative stress and repair inhibition may reduce the chances of initiation of cancer. Tea polyphenols are reported to have excellent chemopreventive properties against cancer. This study aimed to elucidate the role of tea against arsenic-induced formation of 8-hydroxy-2'-deoxyguanosine (8OHdG) and arsenic-suppressed DNA repair in Swiss albino mice. Both green and black tea gave fruitful results in the reduction of 8OHdG and 8-oxoguanine DNA glycosylase (OGG1) in Swiss albino mice administered sodium arsenite (As III). DNA repair enzymes--such as PARP1, DNA β-polymerase, XRCC1, DNA ligase III, DNA protein kinase (catalytic subunit), XRCC 4, DNA ligase IV, and DNA topoisomerase IIβ--were induced by the phytochemicals at both the protein and genetic levels. Thus, tea polyphenols may prove effective in treating arsenic-induced carcinogenesis.

  14. Assessment of primary, oxidative and excision repaired DNA damage in hospital personnel handling antineoplastic drugs.

    PubMed

    Villarini, Milena; Dominici, Luca; Piccinini, Renza; Fatigoni, Cristina; Ambrogi, Maura; Curti, Gianluca; Morucci, Piero; Muzi, Giacomo; Monarca, Silvano; Moretti, Massimo

    2011-05-01

    The International Agency for Research on Cancer has classified several antineoplastic drugs in Group 1 (human carcinogens), among which chlorambucil, cyclophosphamide (CP) and tamoxifen, Group 2A (probable human carcinogens), among which cisplatin, etoposide, N-ethyl- and N-methyl-N-nitrosourea, and Group 2B (possible human carcinogens), among which bleomycins, merphalan and mitomycin C. The widespread use of these mutagenic/carcinogenic drugs in the treatment of cancer has led to anxiety about possible genotoxic hazards to medical personnel handling these drugs. The aim of the present study was to evaluate work environment contamination by antineoplastic drugs in a hospital in Central Italy and to assess the genotoxic risks associated with antineoplastic drug handling. The study group comprised 52 exposed subjects and 52 controls. Environmental contamination was assessed by taking wipe samples from different surfaces in preparation and administration rooms and nonwoven swabs were used as pads for the surrogate evaluation of dermal exposure, 5-fluorouracil and cytarabine were chosen as markers of exposure to antineoplastic drugs in the working environment. The actual exposure to antineoplastic drugs was evaluated by determining the urinary excretion of CP. The extent of primary, oxidative and excision repaired DNA damage was measured in peripheral blood leukocytes with the alkaline comet assay. To evaluate the role, if any, of genetic variants in the extent of genotoxic effects related to antineoplastic drug occupational exposure, the study subjects were genotyped for GSTM1, GSTT1, GSTP1 and TP53 polymorphisms. Primary DNA damage significantly increased in leukocytes of exposed nurses compared to controls. The use of personal protective equipment (i.e. gloves and/mask) was associated with a decrease in the extent of primary DNA damage.

  15. Relationship between Caffeine and Levels of DNA Repair and Oxidative Stress in Women with and without a BRCA1 Mutation.

    PubMed

    Nikitina, Dina; Chen, Zhou; Vallis, Katherine; Poll, Aletta; Ainsworth, Peter; Narod, Steven A; Kotsopoulos, Joanne

    2015-01-01

    Coffee consumption has been associated with a reduction in breast cancer risk among women with a BRCA1 mutation. The objective of this study was to evaluate whether major contributors of caffeine intake are associated with a reduction in DNA damage and/or oxidative stress in women with and without a BRCA1 mutation. Coffee, tea, soda and total caffeine consumption was collected by a dietary history questionnaire, and DNA repair capacity in lymphocytes was assessed by the comet assay (tail moments), micronucleus test (per 1,000 binucleated cells) and analysis of γ-H2AX staining (nuclear foci). The thiobarbituric acid-malondialdehyde and DTNB assays were used to estimate serum lipid peroxidation (µmol/l) and protein oxidation (µmol/l), respectively. Among all women, high levels of caffeine and caffeinated coffee intake were associated with significantly lower levels of micronuclei (138.50 vs. 97.67, p = 0.04, and 138.12 vs. 97.70, p = 0.04). There was no significant relationship between caffeine, coffee, tea and soda intake and the other markers of DNA repair capacity and oxidative stress among all women and in analyses stratified by BRCA1 mutation status. The chemopreventive effects of coffee and/or caffeine may be associated with improved capacity to efficiently repair DNA damage. © 2015 S. Karger AG, Basel.

  16. In vitro Repair of Oxidative DNA Damage by Human Nucleotide Excision Repair System: Possible Explanation for Neurodegeneration in Xeroderma Pigmentosum Patients

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Bessho, Tadayoshi; Kung, Hsiang Chuan; Bolton, Philip H.; Sancar, Aziz

    1997-08-01

    Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

  17. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins.

  18. Oxidative DNA modifications.

    PubMed

    Poulsen, Henrik E

    2005-07-01

    Oxidative DNA modifications are frequent in mammalian DNA and have been suggested an important mechanism in carcinogenesis, diabetes and ageing. The foundations for this suggestion are: Evidence for the importance of oxidative DNA modifications in cancer development is: high levels of oxidative lesions in cancer tissue; highly conserved and specific DNA repair systems targeting oxidative lesions; high levels of oxidative DNA lesions in oxidative DNA repair knock-out animals; defective repair of oxidative lesions in cancer-prone progeria syndromes; reduced cancer incidence in populations with high dietary antioxidant intake; and increased oxidative stress to DNA in tobacco smokers. Conflicting evidence for a relation between oxidative stress to DNA and cancer is: disagreement about the true levels and occurrence of the oxidative lesions in vivo; failure to identify the localization of oxidative lesions in important genes, e.g. tumor suppressor and oncogenes; lack of evidence that the oxidative lesions induce mutations in vivo; no cancer development in animals knocked-out for specific DNA repair enzymes in spite of high tissue levels of oxidative lesions; and unchanged cancer rates after antioxidant interventions in large clinical controlled and randomized trials. The rate of DNA oxidation has been estimated from urinary excretion of repair products and it is evident that if these lesions were not repaired, a large part of DNA would be oxidized to a degree not compatible with living. The methodologies by which oxidative DNA modifications are measured cover a wide and different range, advantages and disadvantages will be presented. One particular problem is artificial oxidation, and methods to prevent such artifacts will be presented together with results from a large interlaboratory standardization program. The methodology by which the lesions can be measured is complicated and prone to artifacts during DNA isolation, digestion, derivatization and maybe even during

  19. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    PubMed

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages*

    PubMed Central

    Cannan, Wendy J.; Tsang, Betty P.; Wallace, Susan S.; Pederson, David S.

    2014-01-01

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. PMID:24891506

  1. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder

    PubMed Central

    Czarny, Piotr; Kwiatkowski, Dominik; Toma, Monika; Gałecki, Piotr; Orzechowska, Agata; Bobińska, Kinga; Bielecka-Kowalska, Anna; Szemraj, Janusz; Berk, Michael; Anderson, George; Śliwiński, Tomasz

    2016-01-01

    Background Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. Material/Methods Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). Results We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. Conclusions The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease. PMID:27866211

  2. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder.

    PubMed

    Czarny, Piotr; Kwiatkowski, Dominik; Toma, Monika; Gałecki, Piotr; Orzechowska, Agata; Bobińska, Kinga; Bielecka-Kowalska, Anna; Szemraj, Janusz; Berk, Michael; Anderson, George; Śliwiński, Tomasz

    2016-11-20

    BACKGROUND Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. MATERIAL AND METHODS Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). RESULTS We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. CONCLUSIONS The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease.

  3. In vivo treatment with aflatoxin B1 increases DNA oxidation, base excision repair activity and 8-oxoguanine DNA glycosylase 1 levels in mouse lung.

    PubMed

    Guindon-Kezis, Katherine A; Mulder, Jeanne E; Massey, Thomas E

    2014-07-03

    Carcinogenicity of the mycotoxin aflatoxin B1 (AFB1), which is produced by Aspergillus fungi, is associated with bioactivation of AFB1 to AFB1-8,9-exo-epoxide and formation of DNA adducts. However, AFB1 also causes 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung DNA, suggesting that oxidative DNA damage may also contribute to AFB1 carcinogenicity. The oxidative DNA damage 5-hydroxy-2'-deoxycytidine (5-OHdC) may also contribute to AFB1 carcinogenicity. The objective of the present study was to determine the effect of treatment of mice with AFB1 on pulmonary and hepatic: 8-OHdG and 5-OHdC levels; base excision repair (BER, which repairs oxidative DNA damage) activities; and on levels of 8-oxoguanine DNA glycosylase (OGG1, the rate-limiting enzyme in the BER of 8-OHdG). Female A/J mice were treated with vehicle (dimethyl sulfoxide) or 50 mg/kg AFB1 ip. Oxidative DNA damage was measured using HPLC with electrochemical detection, BER activity was assessed using an in vitro assay that employs a substrate plasmid DNA with 8-OHdG lesions, and OGG1 protein levels were determined by immunoblotting. Two hours post treatment, AFB1 increased 8-OHdG levels in mouse lung DNA by approximately 69% relative to control (p<0.05), but did not alter 8-OHdG levels in liver or 5-OHdC levels in lung or liver (p>0.05). AFB1 treatment also increased BER activity in mouse lung by approximately 87% (p<0.05) but did not affect hepatic BER activity (p>0.05). Levels of OGG1 immunoreactive protein were increased in both lung (20%) and liver (60%) (p<0.05). These results are consistent with oxidative DNA damage contributing to the carcinogenicity of AFB1 in this model.

  4. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment.

    PubMed

    Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet

    2017-01-01

    DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM10 exposure showed that PM10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m(3) in benzo[b]fluoranthene content of PM10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM10-associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016

  5. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease.

    PubMed

    Silva, Aderbal R T; Santos, Ana Cecília Feio; Farfel, Jose M; Grinberg, Lea T; Ferretti, Renata E L; Campos, Antonio Hugo Jose Froes Marques; Cunha, Isabela Werneck; Begnami, Maria Dirlei; Rocha, Rafael M; Carraro, Dirce M; de Bragança Pereira, Carlos Alberto; Jacob-Filho, Wilson; Brentani, Helena

    2014-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline associated with a featured neuropathology (neuritic plaques and neurofibrillary tangles). Several studies have implicated oxidative damage to DNA, DNA repair, and altered cell-cycle regulation in addition to cell death in AD post-mitotic neurons. However, there is a lack of studies that systematically assess those biological processes in patients with AD neuropathology but with no evidence of cognitive impairment. We evaluated markers of oxidative DNA damage (8-OHdG, H2AX), DNA repair (p53, BRCA1, PTEN), and cell-cycle (Cdk1, Cdk4, Cdk5, Cyclin B1, Cyclin D1, p27Kip1, phospho-Rb and E2F1) through immunohistochemistry and cell death through TUNEL in autopsy hippocampal tissue samples arrayed in a tissue microarray (TMA) composed of three groups: I) "clinical-pathological AD" (CP-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and clinical dementia (CDR ≥ 2, IQCODE>3.8); II) "pathological AD" (P-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and without cognitive impairment (CDR 0, IQCODE<3.2); and III) "normal aging" (N)--subjects without neuropathological AD (Braak ≤ II and CERAD 0 or A) and with normal cognitive function (CDR 0, IQCODE<3.2). Our results show that high levels of oxidative DNA damage are present in all groups. However, significant reductions in DNA repair and cell-cycle inhibition markers and increases in cell-cycle progression and cell death markers in subjects with CP-AD were detected when compared to both P-AD and N groups, whereas there were no significant differences in the studied markers between P-AD individuals and N subjects. This study indicates that, even in the setting of pathological AD, healthy cognition may be associated with a preserved repair to DNA damage, cell-cycle regulation, and cell death in post-mitotic neurons.

  6. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage

    PubMed Central

    Yang, Yang; Durando, Michael; Smith-Roe, Stephanie L.; Sproul, Chris; Greenwalt, Alicia M.; Kaufmann, William; Oh, Sehyun; Hendrickson, Eric A.; Vaziri, Cyrus

    2013-01-01

    The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H2O2-induced DNA damage. UVC and H2O2 treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G0, G1 and S-phase. Rad18 was important for repressing H2O2-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G1, indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H2O2-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H2O2-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G1. In contrast with G1-synchronized cultures, S-phase cells were H2O2-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G1 (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase. PMID:23295675

  7. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats.

    PubMed

    He, Meixia; Xing, Shihui; Yang, Bo; Zhao, Liqun; Hua, Haiying; Liang, Zhijian; Zhou, Wenliang; Zeng, Jinsheng; Pei, Zhong

    2007-11-21

    Oxidative DNA damage has been proposed to be a major contributor to focal cerebral ischemic injury. However, little is known about the role of oxidative DNA damage in remote damage secondary to the primary infarction. In the present study, we investigated oxidative damage within the ventroposterior nucleus (VPN) after distal middle cerebral artery occlusion (MCAO) in hypertensive rats. We also examined the possible protective effect of ebselen, one glutathione peroxidase mimic, on delayed degeneration in the VPN after distal MCAO. Neuronal damage in the ipsilateral VPN was examined by Nissl staining. Oxidative DNA damage and base repair enzyme activity were assessed by analyzing immunoreactivity of 8-hydroxy-2'-deoxyguanosine (8-ohdG) and 8-oxoguanine DNA glycosylase (OGG1), respectively. The number of intact neurons in the ipsilateral VPN decreased by 52% compared to the contralateral side in ischemia group 2 weeks after distal cerebral cortical infarction. The immunoreactivity of 8-ohdG significantly increased while OGG1 immunoreactivity significantly decreased in the ipsilateral VPN 2 weeks after distal cortical infarction (all p<0.01). Compared with vehicle treatment, ebselen significantly attenuated the neuron loss, ameliorated ischemia-induced increase in 8-ohdG level as well as decrease in OGG1 level within the ipsilateral VPN (all p<0.01). OGG1 was further demonstrated to mainly express in neurons. These findings strongly suggest that oxidative DNA damage may be involved in the delayed neuronal death in the VPN region following distal MCAO. Furthermore, ebselen protects against the delayed damage in the VPN when given at 24 h following distal MCAO.

  8. A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair

    PubMed Central

    Ranes, Michael; Boeing, Stefan; Wang, Yuming; Wienholz, Franziska; Menoni, Hervé; Walker, Jane; Encheva, Vesela; Chakravarty, Probir; Mari, Pierre-Olivier; Stewart, Aengus; Giglia-Mari, Giuseppina; Snijders, Ambrosius P.; Vermeulen, Wim; Svejstrup, Jesper Q.

    2016-01-01

    Cockayne syndrome B (CSB), best known for its role in transcription-coupled nucleotide excision repair (TC-NER), contains a ubiquitin-binding domain (UBD), but the functional connection between protein ubiquitylation and this UBD remains unclear. Here, we show that CSB is regulated via site-specific ubiquitylation. Mass spectrometry analysis of CSB identified lysine (K) 991 as a ubiquitylation site. Intriguingly, mutation of this residue (K991R) does not affect CSB's catalytic activity or protein stability, but greatly affects genome stability, even in the absence of induced DNA damage. Moreover, cells expressing CSB K991R are sensitive to oxidative DNA damage, but proficient for TC-NER. K991 becomes ubiquitylated upon oxidative DNA damage, and while CSB K991R is recruited normally to such damage, it fails to dissociate in a timely manner, suggesting a requirement for K991 ubiquitylation in CSB activation. Interestingly, deletion of CSB's UBD gives rise to oxidative damage sensitivity as well, while CSB ΔUBD and CSB K991R affects expression of overlapping groups of genes, further indicating a functional connection. Together, these results shed new light on the regulation of CSB, with K991R representing an important separation-of-function-mutation in this multi-functional protein. PMID:27060134

  9. Oxidative stress, DNA damage and repair in carcinogenesis: have we established a connection?

    PubMed

    Georgakilas, Alexandros G

    2012-12-31

    The production of a plethora of reactive oxygen and nitrogen species in the cell and tissues as the result of endogenous or exogenous mechanisms and interaction of our cells with the environment define the so called 'oxidative load'. The final balance between the oxidatively-induced stress and the various cellular defense mechanisms draw the picture on the landscape of oxidative injury and biological consequences. In this Special Issue, I have compiled a synthesis of concise reviews by leading experts in their fields. The articles focus on the current status and advances in the various pathways leading to the production of high oxidative stress, DNA damage and its processing in human cells and tissues. Significant mechanistic insights are offered as well as connections with biological and clinical significance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. DNA repair in ischemic acute kidney injury.

    PubMed

    Pressly, Jeffrey D; Park, Frank

    2017-04-01

    Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury leading to an induction of oxidative stress, cellular dysfunction, and loss of renal function. DNA damage, including oxidative base modifications and physical DNA strand breaks, is a consequence of renal IRI. Like many other organs in the body, a redundant and highly conserved set of endogenous repair pathways have evolved to selectively recognize the various types of cellular DNA damage and combat its negative effects on cell viability. Severe damage to the DNA, however, can trigger cell death and elimination of the injured tubular epithelial cells. In this minireview, we summarize the state of the current field of DNA damage and repair in the kidney and provide some expected and, in some cases, unexpected effects of IRI on DNA damage and repair in the kidney. These findings may be applicable to other forms of acute kidney injury and could provide new opportunities for renal research.

  11. PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2.

    PubMed

    Chakraborti, Soumyananda; Chakraborty, Samik; Saha, Shilpi; Manna, Argha; Banerjee, Shruti; Adhikary, Arghya; Sarwar, Shamila; Hazra, Tapas K; Das, Tanya; Chakrabarti, Pinak

    2017-02-01

    We find that PEG functionalized ZnO nanoparticles (NP) have anticancer properties primarily because of ROS generation. Detailed investigation revealed two consequences depending on the level of ROS - either DNA damage repair or apoptosis - in a time-dependent manner. At early hours of treatment, NP promote NEIL2-mediated DNA repair process to counteract low ROS-induced DNA damage. However, at late hours these NP produce high level of ROS that inhibits DNA repair process, thereby directing the cell towards apoptosis. Mechanistically at low ROS conditions, transcription factor Sp1 binds to the NEIL2 promoter and facilitates its transcription for triggering a 'fight-back mechanism' thereby resisting cancer cell apoptosis. In contrast, as ROS increase during later hours, Sp1 undergoes oxidative degradation that decreases its availability for binding to the promoter thereby down-regulating NEIL2 and impairing the repair mechanism. Under such conditions, the cells strategically switch to the p53-dependent apoptosis.

  12. Collaborative effects of Photobacterium CuZn superoxide dismutase (SODs) and human AP endonuclease in DNA repair and SOD-deficient Escherichia coli under oxidative stress.

    PubMed

    Kim, Young Gon

    2004-01-15

    The defenses against free radical damage include specialized repair enzymes that correct oxidative damage in DNA and detoxification systems such as superoxide dismutases (SODs). These defenses may be coordinated genetically as global responses. We hypothesized that the expression of SOD and DNA repair genes would inhibit DNA damage under oxidative stress. Therefore, protection of Escherichia coli mutants deficient in SOD and DNA repair genes (sod-, xth-, and nfo-) was demonstrated by transforming the mutant strain with a plasmid pYK9 that encoded Photobacterium leiognathi CuZnSOD and human AP endonuclease. The results show that survival rates were increased in sod+ xth- nfo+ cells compared with sod- xth- ape-, sod- xth- ape-, and sod+ xth- ape- cells under oxidative stress generated with 0.1 mM paraquat or 3 mM H2O2. The data suggest that, at the least, SOD and DNA repair enzymes may collaborate on protection and repair of damaged DNA. Additionally, both enzymes are required for protection against free radicals.

  13. DNA Repair by Reversal of DNA Damage

    PubMed Central

    Yi, Chengqi; He, Chuan

    2013-01-01

    Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology. PMID:23284047

  14. Repair activity of oxidatively damaged DNA and telomere length in human lung epithelial cells after exposure to multi-walled carbon nanotubes.

    PubMed

    Borghini, Andrea; Roursgaard, Martin; Andreassi, Maria Grazia; Kermanizadeh, Ali; Møller, Peter

    2017-01-01

    One type of carbon nanotubes (CNTs) (MWCNT-7, from Mitsui) has been classified as probably carcinogenic to humans, however insufficient data does not warrant the same classification for other types of CNTs. Experimental data indicate that CNT exposure can result in oxidative stress and DNA damage in cultured cells, whereas these materials appear to induce low or no mutagenicity. Therefore, the present study aimed to investigate whether in vitro exposure of cultured airway epithelial cells (A549) to multi-walled CNTs (MWCNTs) could increase the DNA repair activity of oxidatively damaged DNA and drive the cells toward replicative senescence, assessed by attrition of telomeres. To investigate this, H2O2 and KBrO3 were used to induce DNA damage in the cells and the effect of pre-exposure to MWCNT tested for a change in repair activity inside the cells or in the extract of treated cells. The effect of MWCNT exposure on telomere length was investigated for concentration and time response. We report a significantly increased repair activity in A549 cells exposed to MWCNTs compared to non-exposed cells, suggesting that DNA repair activity may be influenced by exposure to MWCNTs. The telomere length was decreased at times longer than 24h, but this decrease was not concentration dependent. The results suggest that the seemingly low mutagenicity of CNTs in cultured cells may be associated with an increased DNA repair activity and a replicative senescence, which may counteract the manifestation of DNA lesions to mutations.

  15. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and anticancer drug effectiveness

    PubMed Central

    McAdam, Elizabeth; Brem, Reto; Karran, Peter

    2016-01-01

    The relationship between sun exposure and non-melanoma skin cancer risk is well established. Solar ultraviolet radiation (UV; wavelengths 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 mn) component of solar UV radiation increases skin cancer risk is not understood. We demonstrate here that the contribution of UVA to the effects of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the cells’ susceptibility to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. Statement of implication: Since NER is both a defence against cancer a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative-stress has implications for both cancer risk and for the effectiveness of anticancer therapy. PMID:27106867

  16. Antioxidant and DNA Repair Stimulating Effect of Extracts from Transformed and Normal Roots of Rhaponticum carthamoides against Induced Oxidative Stress and DNA Damage in CHO Cells

    PubMed Central

    Skała, Ewa; Sitarek, Przemysław; Różalski, Marek; Krajewska, Urszula; Szemraj, Janusz; Wysokińska, Halina; Śliwiński, Tomasz

    2016-01-01

    Rhaponticum carthamoides has a long tradition of use in Siberian folk medicine. The roots and rhizomes of this species are used in various dietary supplements or nutraceutical preparations to increase energy level or eliminate physical weakness. This is the first report to reveal the protective and DNA repair stimulating abilities of R. carthamoides root extracts in Chinese hamster ovary (CHO) cells exposed to an oxidative agent. Both transformed root extract (TR extract) and extract of soil-grown plant roots (NR extract) may be responsible for stimulating CHO cells to repair oxidatively induced DNA damage, but CHO cells stimulated with extract from the transformed roots demonstrated significantly stronger properties than cells treated with the soil-grown plant root extract. These differences in biological activity may be attributed to the differences in the content of phenolic compounds in these root extracts. Preincubation of the CHO cells with TR and NR extracts showed an increase in gene expression and protein levels of catalase (CAT) and superoxide dismutase (SOD2). R. carthamoides may possess antioxidant properties that protect CHO cells against oxidative stress. PMID:27034736

  17. Mismatch repair in heteroduplex DNA.

    PubMed Central

    Wildenberg, J; Meselson, M

    1975-01-01

    DNA with base pair mismatches was prepared by annealing mixtures of genetically marked DNA from bacteriophage lambda. This heteroduplex DNA was used to transfect bacteria under conditions minimizing recombination. Genetic analysis of the progeny phages indicates that: (i) Mismatch repair occurs, usually giving rise to a DNA molecule with one chain with the genotype arising from repair and one parental chain. (ii) The frequency of repair of a given mismatch to wild type depends on the marker, ranging from 3 to 20%. (iii) Excision tracts may extend several hundred nucleotides but are usually shorter than about 2000 nucleotides. (iv) In Rec-mediated bacteriophage crosses, recombination of markers closer than about 10-3 nucleotide pairs frequently occurs by mismatch repair within heteroduplex DNA. (V) The average amount of heteroduplex DNA formed in a Rec-mediated recombination event is a few thousand nucleotide pairs. PMID:1094458

  18. Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production.

    PubMed

    Suman, Shubhankar; Rodriguez, Olga C; Winters, Thomas A; Fornace, Albert J; Albanese, Chris; Datta, Kamal

    2013-08-01

    Despite recent epidemiological evidences linking radiation exposure and a number of human ailments including cancer, mechanistic understanding of how radiation inflicts long-term changes in cerebral cortex, which regulates important neuronal functions, remains obscure. The current study dissects molecular events relevant to pathology in cerebral cortex of 6 to 8 weeks old female C57BL/6J mice two and twelve months after exposure to a γ radiation dose (2 Gy) commonly employed in fractionated radiotherapy. For a comparative study, effects of 1.6 Gy heavy ion 56Fe radiation on cerebral cortex were also investigated, which has implications for space exploration. Radiation exposure was associated with increased chronic oxidative stress, oxidative DNA damage, lipid peroxidation, and apoptosis. These results when considered with decreased cortical thickness, activation of cell-cycle arrest pathway, and inhibition of DNA double strand break repair factors led us to conclude to our knowledge for the first time that radiation caused aging-like pathology in cerebral cortical cells and changes after heavy ion radiation were more pronounced than γ radiation.

  19. DNA repair in cultured keratinocytes

    SciTech Connect

    Liu, S.C.; Parsons, S.; Hanawalt, P.C.

    1983-07-01

    Most of our understanding of DNA repair mechanisms in human cells has come from the study of these processes in cultured fibroblasts. The unique properties of keratinocytes and their pattern of terminal differentiation led us to a comparative examination of their DNA repair properties. The relative repair capabilities of the basal cells and the differentiated epidermal keratinocytes as well as possible correlations of DNA repair capacity with respect to age of the donor have been examined. In addition, since portions of human skin are chronically exposed to sunlight, the repair response to ultraviolet (UV) irradiation (254 nm) when the cells are conditioned by chronic low-level UV irradiation has been assessed. The comparative studies of DNA repair in keratinocytes from infant and aged donors have revealed no significant age-related differences for repair of UV-induced damage to DNA. Sublethal UV conditioning of cells from infant skin had no appreciable effect on either the repair or normal replication response to higher, challenge doses of UVL. However, such conditioning resulted in attenuated repair in keratinocytes from adult skin after UV doses above 25 J/m2. In addition, a surprising enhancement in replication was seen in conditioned cells from adult following challenge UV doses.

  20. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    SciTech Connect

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  1. OXIDATIVE DNA DAMAGE AND REPAIR IN RATS TREATED WITH POTASSIUM BROMATE AND A MIXTUE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Oxidative DNA Damage and Repair in Rats Treated with Potassium Bromate and a Mixture of Drinking Water Disinfection By-Products

    Public drinking water treated with chemical disint'ectants contains a complex mixture of disinfection by-products (D BPs). There is a need for m...

  2. Rethinking transcription coupled DNA repair.

    PubMed

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  4. 7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1

    PubMed Central

    Kim, Ki Cheon; Lee, In Kyung; Kang, Kyoung Ah; Cha, Ji Won; Cho, Suk Ju; Na, Soo Young; Chae, Sungwook; Kim, Hye Sun; Hyun, Jin Won

    2013-01-01

    The modified guanine base 8-oxoguanine (8-oxoG) is abundantly produced by oxidative stress, can contribute to carcinogenesis, and can be removed from DNA by 8-oxoguanine DNA glycosylase-1 (OGG1), which acts as an 8-oxoG glycosylase and endonuclease. This study investigated the mechanism by which 7,8-dihydroxyflavone (DHF) inhibits oxidative stress-induced 8-oxoG formation in hamster lung fibroblasts (V79-4). DHF significantly reduced the amount of 8-oxoG induced by hydrogen peroxide (H2O2) and elevated the levels of OGG1 mRNA and protein. DHF increased the binding of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response element sequences in the upstream promoter region of OGG1. Moreover, DHF increased the nuclear levels of Nrf2, small Maf proteins, and the Nrf2/small Maf complex, all of which are decreased by H2O2 treatment. Likewise, the level of phosphorylated Akt, which activates Nrf2, was decreased by H2O2 treatment but restored by DHF treatment. The levels of OGG1 and nuclear translocation of Nrf2 protein were decreased upon treatment with PI3K inhibitor or Akt inhibitor, and DHF treatment did not restore OGG1 and nuclear Nrf2 levels in these inhibitor-treated cells. Furthermore, PI3K and Akt inhibitors abolished the protective effects of DHF in cells undergoing oxidative stress. These data indicate that DHF induces OGG1 expression via the PI3K-Akt pathway and protects cells against oxidative DNA base damage by activating DNA repair systems. PMID:24151624

  5. 7,8-Dihydroxyflavone suppresses oxidative stress-induced base modification in DNA via induction of the repair enzyme 8-oxoguanine DNA glycosylase-1.

    PubMed

    Kim, Ki Cheon; Lee, In Kyung; Kang, Kyoung Ah; Cha, Ji Won; Cho, Suk Ju; Na, Soo Young; Chae, Sungwook; Kim, Hye Sun; Kim, Suhkmann; Hyun, Jin Won

    2013-01-01

    The modified guanine base 8-oxoguanine (8-oxoG) is abundantly produced by oxidative stress, can contribute to carcinogenesis, and can be removed from DNA by 8-oxoguanine DNA glycosylase-1 (OGG1), which acts as an 8-oxoG glycosylase and endonuclease. This study investigated the mechanism by which 7,8-dihydroxyflavone (DHF) inhibits oxidative stress-induced 8-oxoG formation in hamster lung fibroblasts (V79-4). DHF significantly reduced the amount of 8-oxoG induced by hydrogen peroxide (H₂O₂) and elevated the levels of OGG1 mRNA and protein. DHF increased the binding of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response element sequences in the upstream promoter region of OGG1. Moreover, DHF increased the nuclear levels of Nrf2, small Maf proteins, and the Nrf2/small Maf complex, all of which are decreased by H₂O₂ treatment. Likewise, the level of phosphorylated Akt, which activates Nrf2, was decreased by H₂O₂ treatment but restored by DHF treatment. The levels of OGG1 and nuclear translocation of Nrf2 protein were decreased upon treatment with PI3K inhibitor or Akt inhibitor, and DHF treatment did not restore OGG1 and nuclear Nrf2 levels in these inhibitor-treated cells. Furthermore, PI3K and Akt inhibitors abolished the protective effects of DHF in cells undergoing oxidative stress. These data indicate that DHF induces OGG1 expression via the PI3K-Akt pathway and protects cells against oxidative DNA base damage by activating DNA repair systems.

  6. Antibiotic Resistance in Pseudomonas aeruginosa Strains with Increased Mutation Frequency Due to Inactivation of the DNA Oxidative Repair System▿

    PubMed Central

    Mandsberg, L. F.; Ciofu, O.; Kirkby, N.; Christiansen, L. E.; Poulsen, H. E.; Høiby, N.

    2009-01-01

    The chronic Pseudomonas aeruginosa infection of the lungs of cystic fibrosis (CF) patients is characterized by the biofilm mode of growth and chronic inflammation dominated by polymorphonuclear leukocytes (PMNs). A high percentage of P. aeruginosa strains show high frequencies of mutations (hypermutators [HP]). P. aeruginosa is exposed to oxygen radicals, both those generated by its own metabolism and especially those released by a large number of PMNs in response to the chronic CF lung infection. Our work therefore focused on the role of the DNA oxidative repair system in the development of HP and antibiotic resistance. We have constructed and characterized mutT, mutY, and mutM mutants in P. aeruginosa strain PAO1. The mutT and mutY mutants showed 28- and 7.5-fold increases in mutation frequencies, respectively, over that for PAO1. These mutators had more oxidative DNA damage (higher levels of 7,8-dihydro-8-oxodeoxyguanosine) than PAO1 after exposure to PMNs, and they developed resistance to antibiotics more frequently. The mechanisms of resistance were increased β-lactamase production and overexpression of the MexCD-OprJ efflux-pump. Mutations in either the mutT or the mutY gene were found in resistant HP clinical isolates from patients with CF, and complementation with wild-type genes reverted the phenotype. In conclusion, oxidative stress might be involved in the development of resistance to antibiotics. We therefore suggest the possible use of antioxidants for CF patients to prevent the development of antibiotic resistance. PMID:19332676

  7. Repair-Resistant DNA Lesions

    PubMed Central

    2017-01-01

    The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance. PMID:28750166

  8. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  9. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages.

  10. Aging processes, DNA damage, and repair.

    PubMed

    Gilchrest, B A; Bohr, V A

    1997-04-01

    The second triennial FASEB Summer Research Conference on "Clonal Senescence and Differentiation" (August 17-22, 1996) focused on the interrelationships between aging processes and DNA damage and repair. The attendees represented a cross section of senior and junior investigators working in fields ranging from classic cellular gerontology to yeast and nematode models of aging to basic mechanisms of DNA damage and repair. The meeting opened with a keynote address by Dr. Bruce Ames that emphasized the documented relationships between oxidative damage, cancer, and aging. This was followed by eight platform sessions, one poster discussion, one featured presentation, and an after-dinner address. The following sections highlight the key points discussed.

  11. DNA Damage, DNA Repair, Aging, and Neurodegeneration.

    PubMed

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L; Bohr, Vilhelm A

    2015-09-18

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span.

  12. DNA Damage, DNA Repair, Aging, and Neurodegeneration

    PubMed Central

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2015-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  13. RNA-templated DNA repair

    PubMed Central

    Storici, Francesca; Bebenek, Katarzyna; Kunkel, Thomas A.; Gordenin, Dmitry A.; Resnick, Michael A.

    2007-01-01

    RNA can act as a template for DNA synthesis in the reverse transcription of retroviruses and retrotransposons1 and in the elongation of telomeres2. Despite its abundance in the nucleus, there has been no evidence for a direct role of RNA as a template in the repair of any chromosomal DNA lesions, including DNA double-strand breaks (DSBs), which are repaired in most organisms by homologous recombination or by non-homologous end joining3. An indirect role for RNA in DNA repair, following reverse transcription and formation of a complementary DNA, has been observed in the non-homologous joining of DSB ends4,5. In the yeast Saccharomyces cerevisiae, in which homologous recombination is efficient3, RNA was shown to mediate recombination, but only indirectly through a cDNA intermediate6,7 generated by the reverse transcriptase function of Ty retrotransposons in Ty particles in the cytoplasm8. Although pairing between duplex DNA and single-strand (ss)RNA can occur in vitro9,10 and in vivo11, direct homologous exchange of genetic information between RNA and DNA molecules has not been observed. We show here that RNA can serve as a template for DNA synthesis during repair of a chromosomal DSB in yeast. The repair was accomplished with RNA oligonucleotides complementary to the broken ends. This and the observation that even yeast replicative DNA polymerases such as α and δ can copy short RNA template tracts in vitro demonstrate that RNA can transfer genetic information in vivo through direct homologous interaction with chromosomal DNA. PMID:17429354

  14. Oxidative stress intensity-related effects of cadmium (Cd) and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos.

    PubMed

    Ling, Li-Bin; Chang, Yung; Liu, Chia-Wei; Lai, Po-Ling; Hsu, Todd

    2017-01-01

    Our earlier studies showed the inhibitory effects of cadmium (Cd) and paraquat (PQ) on the gene expression of DNA mismatch recognition proteins in zebrafish (Danio rerio) embryos. This study explored the effects of Cd and PQ on nucleotide excision repair (NER) capacity in zebrafish embryos. Exposure of embryos at 1 h post fertilization (hpf) to 3-5 μM Cd or 30-100 μM PQ for 9 h induced a 2-3-fold increase of oxidative stress, while a 6.5-fold increase of oxidative stress was induced by 200 μM PQ. Real-time RT-PCR detected a down-regulated xeroderma pigmentosum C (XPC) and an up-regulated UV-DDB2 gene expression in mildly-stressed embryos, whereas 8-oxoguanine DNA glycosylase (OGG1) gene expression increased with PQ exposure levels. NER of UV-damaged DNA was enhanced in weakly oxidant-stressed embryos as shown by a transcription-based DNA repair assay, yet repair activities of both UV and cisplatin-damaged DNA were inhibited in embryos exposed to 200 μM PQ. Band shift assay showed a suppression of cyclobutane pyrimidine dimer (CPD) binding activity in all stressed embryos. In contrast, (6-4) photoproduct (6-4PP) recognition activity was weakly stimulated except in embryos exposed to 200 μM PQ, revealing a link of NER capacity to 6-4PP binding. Our results showed that Cd and PQ imposed similar inducing effects on UV-DDB2 gene expression, NER of UV-damaged DNA and 6-4PP binding activity in zebrafish embryo under low levels of oxidative stress and NER capacity could be inhibited if the intensity of oxidative stress increased to a critical level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin induces mutations when bypassed by DNA polymerases and is a substrate for base excision repair.

    PubMed

    Alshykhly, Omar R; Fleming, Aaron M; Burrows, Cynthia J

    2015-09-21

    Guanine (G) is a target for oxidation by reactive oxygen species in DNA, RNA, and the nucleotide pool. Damage to DNA yields products with alternative properties toward DNA processing enzymes compared to those of the parent nucleotide. A new lesion, 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), bearing a stereocenter in the base was recently identified from the oxidation of G. DNA polymerase and base excision repair processing of this new lesion has now been evaluated. Single nucleotide insertion opposite (S)-2Ih and (R)-2Ih in the template strand catalyzed by the DNA polymerases Klenow fragment exo(-), DPO4, and Hemo KlenTaq demonstrates these lesions to cause point mutations. Specifically, they promote 3-fold more G·C → C·G transversion mutations than G·C → T·A, and (S)-2Ih was 2-fold more blocking for polymerase bypass than (R)-2Ih. Both diastereomer lesions were found to be substrates for the DNA glycosylases NEIL1 and Fpg, and poorly excised by endonuclease III (Nth). The activity was independent of the base pair partner. Thermal melting, CD spectroscopy, and density functional theory geometric optimization calculations were conducted to provide insight into these polymerase and DNA glycosylase studies. These results identify that formation of the 2Ih lesions in a cell would be mutagenic in the event that they were not properly repaired.

  16. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  17. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  18. Sirtuins, Metabolism, and DNA repair

    PubMed Central

    Choi, Jee-Eun; Mostoslavsky, Raul

    2014-01-01

    Cells evolve to actively coordinate nutrient availability with cellular activity in order to maintain metabolic homeostasis. In addition, active pathways to repair DNA damage are crucial to avoid deleterious genomic instability. In recent years, it has become increasingly clear that availability of intermediate metabolites may play an important role in DNA repair, suggesting that these two seemingly distant cellular activities may be highly coordinated. The sirtuin family of proteins now described as deacylases (they can also remove acyl groups other than acetyl moieties), it appears to have evolved to control both metabolism and DNA repair. In this review, we discuss recent advances that lay the foundation to understanding the role of sirtuins in these two biological processes, and the potential crosstalk to coordinate them. PMID:25005742

  19. Novel method for site-specific induction of oxidative DNA damage reveals differences in recruitment of repair proteins to heterochromatin and euchromatin

    PubMed Central

    Lan, Li; Nakajima, Satoshi; Wei, Leizhen; Sun, Luxi; Hsieh, Ching-Lung; Sobol, Robert W.; Bruchez, Marcel; Van Houten, Bennett; Yasui, Akira; Levine, Arthur S.

    2014-01-01

    Reactive oxygen species (ROS)-induced DNA damage is repaired by the base excision repair pathway. However, the effect of chromatin structure on BER protein recruitment to DNA damage sites in living cells is poorly understood. To address this problem, we developed a method to specifically produce ROS-induced DNA damage by fusing KillerRed (KR), a light-stimulated ROS-inducer, to a tet-repressor (tetR-KR) or a transcription activator (TA-KR). TetR-KR or TA-KR, bound to a TRE cassette (∼90 kb) integrated at a defined genomic locus in U2OS cells, was used to induce ROS damage in hetero- or euchromatin, respectively. We found that DNA glycosylases were efficiently recruited to DNA damage in heterochromatin, as well as in euchromatin. PARP1 was recruited to DNA damage within condensed chromatin more efficiently than in active chromatin. In contrast, recruitment of FEN1 was highly enriched at sites of DNA damage within active chromatin in a PCNA- and transcription activation-dependent manner. These results indicate that oxidative DNA damage is differentially processed within hetero or euchromatin. PMID:24293652

  20. Novel method for site-specific induction of oxidative DNA damage reveals differences in recruitment of repair proteins to heterochromatin and euchromatin.

    PubMed

    Lan, Li; Nakajima, Satoshi; Wei, Leizhen; Sun, Luxi; Hsieh, Ching-Lung; Sobol, Robert W; Bruchez, Marcel; Van Houten, Bennett; Yasui, Akira; Levine, Arthur S

    2014-02-01

    Reactive oxygen species (ROS)-induced DNA damage is repaired by the base excision repair pathway. However, the effect of chromatin structure on BER protein recruitment to DNA damage sites in living cells is poorly understood. To address this problem, we developed a method to specifically produce ROS-induced DNA damage by fusing KillerRed (KR), a light-stimulated ROS-inducer, to a tet-repressor (tetR-KR) or a transcription activator (TA-KR). TetR-KR or TA-KR, bound to a TRE cassette (∼ 90 kb) integrated at a defined genomic locus in U2OS cells, was used to induce ROS damage in hetero- or euchromatin, respectively. We found that DNA glycosylases were efficiently recruited to DNA damage in heterochromatin, as well as in euchromatin. PARP1 was recruited to DNA damage within condensed chromatin more efficiently than in active chromatin. In contrast, recruitment of FEN1 was highly enriched at sites of DNA damage within active chromatin in a PCNA- and transcription activation-dependent manner. These results indicate that oxidative DNA damage is differentially processed within hetero or euchromatin.

  1. DNA repair in photoreceptor survival.

    PubMed

    Cortina, M Soledad; Gordon, William C; Lukiw, Walter J; Bazan, Nicolas G

    2003-10-01

    Light triggers a sequence of events that damage photoreceptor cells within the superior central portion of the retina, resulting in apoptotic cell death. This damage is mediated by energy absorbed by rhodopsin and the intermediates of the rhodopsin-bleaching process. Furthermore, inhibition of the visual cycle and the re-isomerization of all-trans retinol preserve photoreceptors. We have recently shown light-induced DNA fragmentation to occur only within photoreceptors, and, in time-courses following light treatment, these cells exhibit two peaks of damage, approx 24 h apart. This was also observed by quantification of nucleosome-length DNA fragments and their multimers (DNA ladders) as well as by highly repetitive short interspersed nuclear element (SINE) analysis. This bimodal pattern of photoreceptor DNA fragmentation suggests two populations of cells, and each of these were affected by light at a different rate or time. However, the rat retina is composed of 500 nm-sensitive rods, and approx 2% cones, suggesting that a two-cell-type hypothesis is incorrect. Thus, there is a possibility that light-induced DNA fragmentation is triggered and that some photoreceptors are able to initiate a repair mechanism, resulting in a temporary decrease in DNA damage followed by another wave of fragmentation that ultimately leads to cell death. Subsequently, we observed that the repair enzyme DNA polymerase beta was upregulated following light treatment, again suggesting the presence of a repair mechanism. Our results suggest that a DNA-repair mechanism exists within photoreceptors, and indicate that manipulation of this process may provide additional protection and/or recovery from events that trigger DNA fragmentation and apoptotic cell death in photoreceptors.

  2. A purified feverfew extract protects from oxidative damage by inducing DNA repair in skin cells via a PI3-kinase-dependent Nrf2/ARE pathway.

    PubMed

    Rodriguez, Karien J; Wong, Heng-Kuan; Oddos, Thierry; Southall, Michael; Frei, Balz; Kaur, Simarna

    2013-12-01

    Environmental factors such as solar ultraviolet (UV) radiation and other external aggressors provide an oxidative challenge that is detrimental to skin health. The levels of endogenous antioxidants decrease with age, thus resulting in less protection and a greater potential for skin damage. The NF-E2-related factor-2 (Nrf2) - antioxidant response element (ARE) pathway is a primary defense mechanism against oxidative stress, and induces the expression of antioxidant, detoxification and repair genes. Activation of ARE-Nrf2 can help restore oxidative homeostasis of the skin and play a role in inflammatory response and DNA repair mechanisms. To evaluate the role of a purified parthenolide-depleted Feverfew (PD-Feverfew) extract on the ARE-Nrf2 pathway and DNA repair in skin cells. These studies were undertaken in primary human keratinocytes or KB cells using Luciferase Promoter assay, siRNA transfection studies, Western blot analyses, Immunofluorescence microscopy, comet assay and quantitative real-time PCR. PD-Feverfew was found to induce Nrf2 nuclear translocation and to increase ARE activity in a dose dependent manner. Furthermore, knockdown of Nrf2 resulted in suppression of PD-Feverfew-induced ARE activity. PD-Feverfew was also found to induce phosphorylation of Akt, a kinase downstream of PI3K. Inhibition of PI3K via pre-treatment with the selective pharmacological inhibitor, LY294002, abolished PD-Feverfew-induced Nrf2/ARE activation. PD-Feverfew also reduced UV-induced DNA damage in a PI3K and Nrf2-dependent manner. Therefore, by increasing endogenous defense mechanisms and aid in DNA repair of damaged skin cells via activation of a PI3K-dependent Nrf2/ARE pathway, PD-Feverfew may help protect the skin from numerous environmental aggressors. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. The repair of oxidized purines in the DNA of human lymphocytes requires an activation involving NF-YA-mediated upregulation of OGG1.

    PubMed

    von der Lippen, Carina; Sahu, Sanjeeb; Seifermann, Marco; Tiwari, Vijay K; Epe, Bernd

    2015-01-01

    8-Oxoguanine DNA glycosylase (OGG1), which initiates the repair of DNA purine modifications such as 8-oxo-7,8-dihydroguanine (8-oxoG), is often regarded as a house keeping protein ubiquitously active in mammalian cells. We have analysed the repair rates of oxidized purines generated by photosensitization in peripheral human lymphocytes and observed that the cells were virtually unable to remove these lesions (less than 10% removal within 24h). However, stimulation of the lymphocytes with phytohemagglutinin (PHA) strongly accelerated the repair so that ∼30% of the lesions were repaired within 4h. Within 24h following PHA stimulation and preceding the induction of cell proliferation, Western blots revealed an approximately 4-fold up-regulation of OGG1. The levels of OGG1 mRNA were 4-fold increased already after 6h. Chromatin immunoprecipitation analysis indicated that the up-regulation of OGG1 was associated with increased binding of the transcription factor NF-YA to the promoter of the OGG1 gene. The binding of NF-YA and subsequent induction of OGG1 was inhibited in the presence of an inhibitor of Jun kinase, indicating an activation of the corresponding signalling pathway as the mechanism underlying this transcriptional up-regulation. Our results reveal a strict control of base excision repair in cells of the human immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. RecA and RadA Proteins of Brucella abortus Do Not Perform Overlapping Protective DNA Repair Functions following Oxidative Burst

    PubMed Central

    Roux, Christelle M.; Booth, Natha J.; Bellaire, Bryan H.; Gee, Jason M.; Roop, R. Martin; Kovach, Michael E.; Tsolis, Renée M.; Elzer, Philip H.; Ennis, Don G.

    2006-01-01

    Very little is known about the role of DNA repair networks in Brucella abortus and its role in pathogenesis. We investigated the roles of RecA protein, DNA repair, and SOS regulation in B. abortus. While recA mutants in most bacterial species are hypersensitive to UV damage, surprisingly a B. abortus recA null mutant conferred only modest sensitivity. We considered the presence of a second RecA protein to account for this modest UV sensitivity. Analyses of the Brucella spp. genomes and our molecular studies documented the presence of only one recA gene, suggesting a RecA-independent repair process. Searches of the available Brucella genomes revealed some homology between RecA and RadA, a protein implicated in E. coli DNA repair. We considered the possibility that B. abortus RadA might be compensating for the loss of RecA by promoting similar repair activities. We present functional analyses that demonstrated that B. abortus RadA complements a radA defect in E. coli but could not act in place of the B. abortus RecA. We show that RecA but not RadA was required for survival in macrophages. We also discovered that recA was expressed at high constitutive levels, due to constitutive LexA cleavage by RecA, with little induction following DNA damage. Higher basal levels of RecA and its SOS-regulated gene products might protect against DNA damage experienced following the oxidative burst within macrophages. PMID:16816190

  5. Genetic variants involved in oxidative stress, base excision repair, DNA methylation, and folate metabolism pathways influence myeloid neoplasias susceptibility and prognosis.

    PubMed

    Gonçalves, Ana Cristina; Alves, Raquel; Baldeiras, Inês; Cortesão, Emília; Carda, José Pedro; Branco, Claudia C; Oliveiros, Bárbara; Loureiro, Luísa; Pereira, Amélia; Nascimento Costa, José Manuel; Sarmento-Ribeiro, Ana Bela; Mota-Vieira, Luisa

    2017-01-01

    Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) share common features: elevated oxidative stress, DNA repair deficiency, and aberrant DNA methylation. We performed a hospital-based case-control study to evaluate the association in variants of genes involved in oxidative stress, folate metabolism, DNA repair, and DNA methylation with susceptibility and prognosis of these malignancies. To that end, 16 SNPs (one per gene: CAT, CYBA, DNMT1, DNMT3A, DNMT3B, GPX1, KEAP1, MPO, MTRR, NEIL1, NFE2F2, OGG1, SLC19A1, SOD1, SOD2, and XRCC1) were genotyped in 191 patients (101 MDS and 90 AML) and 261 controls. We also measured oxidative stress (reactive oxygen species/total antioxidant status ratio), DNA damage (8-hydroxy-2'-deoxyguanosine), and DNA methylation (5-methylcytosine) in 50 subjects (40 MDS and 10 controls). Results showed that five genes (GPX1, NEIL1, NFE2L2, OGG1, and SOD2) were associated with MDS, two (DNMT3B and SLC19A1) with AML, and two (CYBA and DNMT1) with both diseases. We observed a correlation of CYBA TT, GPX1 TT, and SOD2 CC genotypes with increased oxidative stress levels, as well as NEIL1 TT and OGG1 GG genotypes with higher DNA damage. The 5-methylcytosine levels were negatively associated with DNMT1 CC, DNMT3A CC, and MTRR AA genotypes, and positively with DNMT3B CC genotype. Furthermore, DNMT3A, MTRR, NEIL1, and OGG1 variants modulated AML transformation in MDS patients. Additionally, DNMT3A, OGG1, GPX1, and KEAP1 variants influenced survival of MDS and AML patients. Altogether, data suggest that genetic variability influence predisposition and prognosis of MDS and AML patients, as well AML transformation rate in MDS patients. © 2016 Wiley Periodicals, Inc.

  6. Enzymological and Structural Studies of the Mechanism of Promiscuous Substrate Recognition by the Oxidative DNA Repair Enzyme AlkB

    SciTech Connect

    Yu, B.; Hunt, J

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis-Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this 'kcat/Km compensation,' which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding.

  7. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB

    PubMed Central

    Yu, Bomina; Hunt, John F.

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis–Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this “kcat/Km compensation,” which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding. PMID:19706517

  8. Function of transcription factors at DNA lesions in DNA repair.

    PubMed

    Malewicz, Michal; Perlmann, Thomas

    2014-11-15

    Cellular systems for DNA repair ensure prompt removal of DNA lesions that threaten the genomic stability of the cell. Transcription factors (TFs) have long been known to facilitate DNA repair via transcriptional regulation of specific target genes encoding key DNA repair proteins. However, recent findings identified TFs as DNA repair components acting directly at the DNA lesions in a transcription-independent fashion. Together this recent progress is consistent with the hypothesis that TFs have acquired the ability to localize DNA lesions and function by facilitating chromatin remodeling at sites of damaged DNA. Here we review these recent findings and discuss how TFs may function in DNA repair.

  9. Effects of ethylene oxide and ethylene inhalation on DNA adducts, apurinic/apyrimidinic sites and expression of base excision DNA repair genes in rat brain, spleen, and liver.

    PubMed

    Rusyn, Ivan; Asakura, Shoji; Li, Yutai; Kosyk, Oksana; Koc, Hasan; Nakamura, Jun; Upton, Patricia B; Swenberg, James A

    2005-09-28

    Ethylene oxide (EO) is an important industrial chemical that is classified as a known human carcinogen (IARC, Group 1). It is also a metabolite of ethylene (ET), a compound that is ubiquitous in the environment and is the most used petrochemical. ET has not produced evidence of cancer in laboratory animals and is "not classifiable as to its carcinogenicity to humans" (IARC, Group 3). The mechanism of carcinogenicity of EO is not well characterized, but is thought to involve the formation of DNA adducts. EO is mutagenic in a variety of in vitro and in vivo systems, whereas ET is not. Apurinic/apyrimidinic sites (AP) that result from chemical or glycosylase-mediated depurination of EO-induced DNA adducts could be an additional mechanism leading to mutations and chromosomal aberrations. This study tested the hypothesis that EO exposure results in the accumulation of AP sites and induces changes in expression of genes for base excision DNA repair (BER). Male Fisher 344 rats were exposed to EO (100 ppm) or ET (40 or 3000 ppm) by inhalation for 1, 3 or 20 days (6h/day, 5 days a week). Animals were sacrificed 2h after exposure for 1, 3 or 20 days as well as 6, 24 and 72 h after a single-day exposure. Experiments were performed with tissues from brain and spleen, target sites for EO-induced carcinogenesis, and liver, a non-target organ. Exposure to EO resulted in time-dependent increases in N7-(2-hydroxyethyl)guanine (7-HEG) in brain, spleen, and liver and N7-(2-hydroxyethyl)valine (7-HEVal) in globin. Ethylene exposure also induced 7-HEG and 7-HEVal, but the numbers of adducts were much lower. No increase in the number of aldehydic DNA lesions, an indicator of AP sites, was detected in any of the tissues between controls and EO-, or ET-exposed animals, regardless of the duration or strength of exposure. EO exposure led to a 3-7-fold decrease in expression of 3-methyladenine-DNA glycosylase (Mpg) in brain and spleen in rats exposed to EO for 1 day. Expression of 8

  10. Final report [DNA Repair and Mutagenesis - 1999

    SciTech Connect

    Walker, Graham C.

    2001-05-30

    The meeting, titled ''DNA Repair and Mutagenesis: Mechanism, Control, and Biological Consequences'', was designed to bring together the various sub-disciplines that collectively comprise the field of DNA Repair and Mutagenesis. The keynote address was titled ''Mutability Doth Play Her Cruel Sports to Many Men's Decay: Variations on the Theme of Translesion Synthesis.'' Sessions were held on the following themes: Excision repair of DNA damage; Transcription and DNA excision repair; UmuC/DinB/Rev1/Rad30 superfamily of DNA polymerases; Cellular responses to DNA damage, checkpoints, and damage tolerance; Repair of mismatched bases, mutation; Genome-instability, and hypermutation; Repair of strand breaks; Replicational fidelity, and Late-breaking developments; Repair and mutation in challenging environments; and Defects in DNA repair: consequences for human disease and aging.

  11. DNA-Protein Crosslink Proteolysis Repair.

    PubMed

    Vaz, Bruno; Popovic, Marta; Ramadan, Kristijan

    2017-06-01

    Proteins that are covalently bound to DNA constitute a specific type of DNA lesion known as DNA-protein crosslinks (DPCs). DPCs represent physical obstacles to the progression of DNA replication. If not repaired, DPCs cause stalling of DNA replication forks that consequently leads to DNA double-strand breaks, the most cytotoxic DNA lesion. Although DPCs are common DNA lesions, the mechanism of DPC repair was unclear until now. Recent work unveiled that DPC repair is orchestrated by proteolysis performed by two distinct metalloproteases, SPARTAN in metazoans and Wss1 in yeast. This review summarizes recent discoveries on two proteases in DNA replication-coupled DPC repair and establishes DPC proteolysis repair as a separate DNA repair pathway for genome stability and protection from accelerated aging and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dynamics of DNA Mismatch Repair

    NASA Astrophysics Data System (ADS)

    Coats, Julie; Lin, Yuyen; Rasnik, Ivan

    2009-11-01

    DNA mismatch repair protects the genome from spontaneous mutations by recognizing errors, excising damage, and re-synthesizing DNA in a pathway that is highly conserved. Mismatch recognition is accomplished by the MutS family of proteins which are weak ATPases that bind specifically to damaged DNA, but the specific molecular mechanisms by which these proteins recognize damage and initiate excision are not known. Previous structural investigations have implied that protein-induced conformational changes are central to mismatch recognition. Because damage detection is a highly dynamic process in which conformational changes of the protein-DNA complexes occur on a time scale of a few seconds, it is difficult to obtain meaningful kinetic information with traditional ensemble techniques. In this work, we use single molecule fluorescence resonance energy transfer (smFRET) to study the conformational dynamics of fluorescently labeled DNA substrates in the presence of the mismatch repair protein MutS from E. coli and its human homolog MSH2/MSH6. Our studies allow us to obtain quantitative kinetic information about the rates of binding and dissociation and to determine the conformational states for each protein-DNA complex.

  13. Interactions between DNA damage, repair, and transcription.

    PubMed

    Khobta, Andriy; Epe, Bernd

    2012-08-01

    This review addresses a variety of mechanisms by which DNA repair interacts with transcription and vice versa. Blocking of transcriptional elongation is the best studied of these mechanisms. Transcription recovery after damage therefore has often been used as a surrogate marker of DNA repair in cells. However, it has become evident that relationships between DNA damage, repair, and transcription are more complex due to various indirect effects of DNA damage on gene transcription. These include inhibition of transcription by DNA repair intermediates as well as regulation of transcription and of the epigenetic status of the genes by DNA repair-related mechanisms. In addition, since transcription is emerging as an important endogenous source of DNA damage in cells, we briefly summarise recent advances in understanding the nature of co-transcriptionally induced DNA damage and the DNA repair pathways involved. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. DNA repair capacity of zebrafish.

    PubMed

    Sussman, Raquel

    2007-08-14

    Damage to the genome is unavoidable in living creatures, because of sunlight exposure as well as environmental chemicals present in food and drinking water. There is a need to monitor and purify the drinking water; therefore, several methods of detection have been developed. A very promising model system for this purpose is the zebrafish (Danio rerio), which is endowed with special qualities for detecting external as well as internal abnormalities. Grossman and Wei's assay [Grossman L, Wei Q (1995) Clin Chem 12:1854-1863], which measures the expression level of a nonreplicating recombinant plasmid DNA containing a UV-damaged luciferase reporter gene, shows that zebrafish can repair chromosomal lesions to a much greater extent than the human population. This vertebrate model is still very promising after possible down-regulation of the DNA repair enzymes.

  15. Cancer-associated variants and a common polymorphism of MUTYH exhibit reduced repair of oxidative DNA damage using a GFP-based assay in mammalian cells.

    PubMed

    Raetz, Alan G; Xie, Yali; Kundu, Sucharita; Brinkmeyer, Megan K; Chang, Cindy; David, Sheila S

    2012-11-01

    Biallelic germline mutations in the base excision repair enzyme gene MUTYH lead to multiple colorectal adenomas and carcinomas referred to as MUTYH-associated polyposis. MUTYH removes adenine misincorporated opposite the DNA oxidation product, 8-oxoguanine (OG), thereby preventing accumulation of G:C to T:A transversion mutations. The most common cancer-associated MUTYH variant proteins when expressed in bacteria exhibit reduced OG:A mismatch affinity and adenine removal activity. However, direct evaluation of OG:A mismatch repair efficiency in mammalian cells has not been assessed due to the lack of an appropriate assay. To address this, we developed a novel fluorescence-based assay of OG:A repair and measured the repair capacity of MUTYH-associated polyposis variants expressed in Mutyh-/- mouse embryonic fibroblasts (MEFs). The repair of a single site-specific synthetic lesion in a green fluorescent protein reporter leads to green fluorescent protein expression with co-expression of a red fluorescent protein serving as the transfection control. Cell lines that stably express the MUTYH-associated polyposis variants G382D and Y165C have significantly lower OG:A repair versus wild-type MEFs and MEFs expressing human wild-type MUTYH. The MUTYH allele that encodes the Q324H variant is found at a frequency above 40% in samples from different ethnic groups and has long been considered phenotypically silent but has recently been associated with increased cancer risk in several clinical studies. In vitro analysis of Q324H MUTYH expressed in insect cells showed that it has reduced enzyme activity similar to that of the known cancer variant G382D. Moreover, we find that OG:A repair in MEFs expressing Q324H was significantly lower than wild-type controls, establishing that Q324H is functionally impaired and providing further evidence that this common variant may lead to increased cancer risk.

  16. Genomic approaches to DNA repair and mutagenesis.

    PubMed

    Wyrick, John J; Roberts, Steven A

    2015-12-01

    DNA damage is a constant threat to cells, causing cytotoxicity as well as inducing genetic alterations. The steady-state abundance of DNA lesions in a cell is minimized by a variety of DNA repair mechanisms, including DNA strand break repair, mismatch repair, nucleotide excision repair, base excision repair, and ribonucleotide excision repair. The efficiencies and mechanisms by which these pathways remove damage from chromosomes have been primarily characterized by investigating the processing of lesions at defined genomic loci, among bulk genomic DNA, on episomal DNA constructs, or using in vitro substrates. However, the structure of a chromosome is heterogeneous, consisting of heavily protein-bound heterochromatic regions, open regulatory regions, actively transcribed genes, and even areas of transient single stranded DNA. Consequently, DNA repair pathways function in a much more diverse set of chromosomal contexts than can be readily assessed using previous methods. Recent efforts to develop whole genome maps of DNA damage, repair processes, and even mutations promise to greatly expand our understanding of DNA repair and mutagenesis. Here we review the current efforts to utilize whole genome maps of DNA damage and mutation to understand how different chromosomal contexts affect DNA excision repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Genomic Approaches to DNA repair and Mutagenesis

    PubMed Central

    Wyrick, John J.; Roberts, Steven A.

    2015-01-01

    DNA damage is a constant threat to cells, causing cytotoxicity as well as inducing genetic alterations. The steady-state abundance of DNA lesions in a cell is minimized by a variety of DNA repair mechanisms, including DNA strand break repair, mismatch repair, nucleotide excision repair, base excision repair, and ribonucleotide excision repair. The efficiencies and mechanisms by which these pathways remove damage from chromosomes have been primarily characterized by investigating the processing of lesions at defined genomic loci, among bulk genomic DNA, on episomal DNA constructs, or using in vitro substrates. However, the structure of a chromosome is heterogeneous, consisting of heavily protein-bound heterochromatic regions, open regulatory regions, actively transcribed genes, and even areas of transient single stranded DNA. Consequently, DNA repair pathways function in a much more diverse set of chromosomal contexts than can be readily assessed using previous methods. Recent efforts to develop whole genome maps of DNA damage, repair processes, and even mutations promise to greatly expand our understanding of DNA repair and mutagenesis. Here we review the current efforts to utilize whole genome maps of DNA damage and mutation to understand how different chromosomal contexts affect DNA excision repair pathways. PMID:26411877

  18. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility.

    PubMed

    Gunes, Sezgin; Al-Sadaan, Maha; Agarwal, Ashok

    2015-09-01

    Spermatogenesis is a complex process of proliferation and differentiation during male germ cell development involving mitosis, meiosis and spermiogenesis. Endogenous and exogenous physical, chemical and biological sources modify the genome of spermatozoa. The genomic integrity and stability of the sperm is protected by DNA repair mechanisms. In the male germline cells, DNA repair mechanisms include nucleotide excision repair, base excision repair, DNA mismatch repair, double strand break repair and post-replication repair. Defects in repair mechanisms cause arrest of spermatogenesis and abnormal recombination, ultimately resulting in male infertility. This review focuses on molecular mechanisms of the DNA repair pathways, DNA repair defects and male infertility. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells.

    PubMed

    Kennedy, Christopher H; Catallo, W James; Wilson, Vincent L; Mitchell, James B

    2009-10-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from <1 microm to 1 mm. An organic extract of BDS is both cytotoxic and genotoxic to normal human bronchial epithelial (NHBE) cells. Based on the oxidizing potential of BDS, we hypothesized that an organic extract of this particulate matter would (1) cause enzyme inactivation due to protein amino acid oxidation and (2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and the expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (alpha-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized biomolecules may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both alpha-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage.

  20. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion.

    PubMed

    Xu, Meng; Lai, Yanhao; Torner, Justin; Zhang, Yanbin; Zhang, Zunzhen; Liu, Yuan

    2014-04-01

    Trinucleotide repeat (TNR) expansion is responsible for numerous human neurodegenerative diseases. However, the underlying mechanisms remain unclear. Recent studies have shown that DNA base excision repair (BER) can mediate TNR expansion and deletion by removing base lesions in different locations of a TNR tract, indicating that BER can promote or prevent TNR expansion in a damage location-dependent manner. In this study, we provide the first evidence that the repair of a DNA base lesion located in the loop region of a CAG repeat hairpin can remove the hairpin, attenuating repeat expansion. We found that an 8-oxoguanine located in the loop region of CAG hairpins of varying sizes was removed by OGG1 leaving an abasic site that was subsequently 5'-incised by AP endonuclease 1, introducing a single-strand breakage in the hairpin loop. This converted the hairpin into a double-flap intermediate with a 5'- and 3'-flap that was cleaved by flap endonuclease 1 and a 3'-5' endonuclease Mus81/Eme1, resulting in complete or partial removal of the CAG hairpin. This further resulted in prevention and attenuation of repeat expansion. Our results demonstrate that TNR expansion can be prevented via BER in hairpin loops that is coupled with the removal of TNR hairpins.

  1. Biological consequences of formation and repair of complex DNA damage.

    PubMed

    Magnander, Karin; Elmroth, Kecke

    2012-12-31

    Endogenous processes or genotoxic agents can induce many types of single DNA damage (single-strand breaks, oxidized bases and abasic sites). In addition, ionizing radiation induces complex lesions such as double-strand breaks and clustered damage. To preserve the genomic stability and prevent carcinogenesis, distinct repair pathways have evolved. Despite this, complex DNA damage can cause severe problems and is believed to contribute to the biological consequences observed in cells exposed to genotoxic stress. In this review, the current knowledge of formation and repair of complex DNA damage is summarized and the risks and biological consequences associated with their repair are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Brain’s DNA Repair Response to Neurotoxicants

    DTIC Science & Technology

    2005-07-01

    mycotoxins , and an organochloriine pesticide). At the end of the second year of the project, we have found that the temporal and spatial profile of OGG1...BODY TASK 1. MEASUREMENT OF REGIONAL DIFFERENCES IN OXIDATIVE DNA DAMAGE AND DNA REPAIR RESPONSES ELICITED BY MYCOTOXINS (OCHRATOXIN-A, RUBRATOXIN...1) The effects of two mycotoxins (ochratoxin-A and rubratoxin-B), and an organochlorine pesticide (dieldrin), on the capacity of brain to repair

  3. DNA repair pathways in human multiple myeloma

    PubMed Central

    Gourzones-Dmitriev, Claire; Kassambara, Alboukadel; Sahota, Surinder; Rème, Thierry; Moreaux, Jérôme; Bourquard, Pascal; Hose, Dirk; Pasero, Philippe; Constantinou, Angelos; Klein, Bernard

    2013-01-01

    Every day, cells are faced with thousands of DNA lesions, which have to be repaired to preserve cell survival and function. DNA repair is more or less accurate and could result in genomic instability and cancer. We review here the current knowledge of the links between molecular features, treatment, and DNA repair in multiple myeloma (MM), a disease characterized by the accumulation of malignant plasma cells producing a monoclonal immunoglobulin. Genetic instability and abnormalities are two hallmarks of MM cells and aberrant DNA repair pathways are involved in disease onset, primary translocations in MM cells, and MM progression. Two major drugs currently used to treat MM, the alkylating agent Melphalan and the proteasome inhibitor Bortezomib act directly on DNA repair pathways, which are involved in response to treatment and resistance. A better knowledge of DNA repair pathways in MM could help to target them, thus improving disease treatment. PMID:23966156

  4. DNA repair in cancer: emerging targets for personalized therapy

    PubMed Central

    Abbotts, Rachel; Thompson, Nicola; Madhusudan, Srinivasan

    2014-01-01

    Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is required to counteract oxidative DNA damage that is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence that overexpression of DNA repair factors may have prognostic and predictive significance in patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer therapy. Synthetic lethality exploits intergene relationships where the loss of function of either of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. In the current review, we focus on recent advances with a particular focus on synthetic lethality targeting in cancer. PMID:24600246

  5. Oxidative mutagenesis, mismatch repair, and aging.

    PubMed

    Skinner, Amy M; Turker, Mitchell S

    2005-03-02

    A PubMed search for the term "oxidative stress" yields over 29,000 articles published on the subject over the past 10 years; more than 2000 of these articles also include the term "aging" in their title or abstract. Many theories of aging predict causal roles for oxidative stress in the myriad of pathological changes that occur as a function of age, including an increasing propensity to develop cancer. A possible link between aging and cancer is the induction and accumulation of somatic mutations caused by oxidative stress. This Review focuses on small mutational events that are induced by oxidative stress and the role of mismatch repair (MMR) in preventing their formation. It also discusses a possible inhibitory effect of oxidative stress on MMR. We speculate that a synergistic interaction between oxidative damage to DNA and reduced MMR levels will, in part, account for an accumulation of small mutational events, and hence cancer, with aging.

  6. DNA-mediated charge transport for DNA repair

    PubMed Central

    Boon, Elizabeth M.; Livingston, Alison L.; Chmiel, Nikolas H.; David, Sheila S.; Barton, Jacqueline K.

    2003-01-01

    MutY, like many DNA base excision repair enzymes, contains a [4Fe4S]2+ cluster of undetermined function. Electrochemical studies of MutY bound to a DNA-modified gold electrode demonstrate that the [4Fe4S] cluster of MutY can be accessed in a DNA-mediated redox reaction. Although not detectable without DNA, the redox potential of DNA-bound MutY is ≈275 mV versus NHE, which is characteristic of HiPiP iron proteins. Binding to DNA is thus associated with a change in [4Fe4S]3+/2+ potential, activating the cluster toward oxidation. Given that DNA charge transport chemistry is exquisitely sensitive to perturbations in base pair structure, such as mismatches, we propose that this redox process of MutY bound to DNA exploits DNA charge transport and provides a DNA signaling mechanism to scan for mismatches and lesions in vivo. PMID:14559969

  7. The Effect of Leonurus sibiricus Plant Extracts on Stimulating Repair and Protective Activity against Oxidative DNA Damage in CHO Cells and Content of Phenolic Compounds

    PubMed Central

    Sitarek, Przemysław; Skała, Ewa; Wysokińska, Halina; Wielanek, Marzena; Szemraj, Janusz; Toma, Monika; Śliwiński, Tomasz

    2016-01-01

    Leonurus sibiricus L. has been used as a traditional and medicinal herb for many years in Asia and Europe. This species is known to have antibacterial, anti-inflammatory, and antioxidant activity and has demonstrated a reduction of intracellular reactive oxygen species. All tested extracts of L. sibiricus showed protective and DNA repair stimulating effects in Chinese hamster ovary (CHO) cells exposed to H2O2. Preincubation of the CHO cells with 0.5 mg/mL of plant extracts showed increased expression level of antioxidant genes (SOD2, CAT, and GPx). LC-MS/MS and HPLC analyses revealed the presence of nine phenolic compounds in L. sibiricus plant extracts: catechin, verbascoside, two flavonoids (quercetin and rutin), and five phenolic acids (4-hydroxybenzoic acid, chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid). The roots and aerial parts of in vitro L. sibiricus plant extracts, which had the strongest antioxidant properties, may be responsible for stimulating CHO cells to repair oxidatively induced DNA damage, as well as protecting DNA via enhanced activation of the antioxidant genes (SOD2, CAT, and GPx) regulating intracellular antioxidant capacity. The content of phenolic compounds in in vitro raised plants was greater than the levels found in plants propagated from seeds. PMID:26788249

  8. The Effect of Leonurus sibiricus Plant Extracts on Stimulating Repair and Protective Activity against Oxidative DNA Damage in CHO Cells and Content of Phenolic Compounds.

    PubMed

    Sitarek, Przemysław; Skała, Ewa; Wysokińska, Halina; Wielanek, Marzena; Szemraj, Janusz; Toma, Monika; Śliwiński, Tomasz

    2016-01-01

    Leonurus sibiricus L. has been used as a traditional and medicinal herb for many years in Asia and Europe. This species is known to have antibacterial, anti-inflammatory, and antioxidant activity and has demonstrated a reduction of intracellular reactive oxygen species. All tested extracts of L. sibiricus showed protective and DNA repair stimulating effects in Chinese hamster ovary (CHO) cells exposed to H2O2. Preincubation of the CHO cells with 0.5 mg/mL of plant extracts showed increased expression level of antioxidant genes (SOD2, CAT, and GPx). LC-MS/MS and HPLC analyses revealed the presence of nine phenolic compounds in L. sibiricus plant extracts: catechin, verbascoside, two flavonoids (quercetin and rutin), and five phenolic acids (4-hydroxybenzoic acid, chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid). The roots and aerial parts of in vitro L. sibiricus plant extracts, which had the strongest antioxidant properties, may be responsible for stimulating CHO cells to repair oxidatively induced DNA damage, as well as protecting DNA via enhanced activation of the antioxidant genes (SOD2, CAT, and GPx) regulating intracellular antioxidant capacity. The content of phenolic compounds in in vitro raised plants was greater than the levels found in plants propagated from seeds.

  9. Increased oxidative DNA damage and decreased expression of base excision repair proteins in airway epithelial cells of women who cook with biomass fuels.

    PubMed

    Mukherjee, Bidisha; Bindhani, Banani; Saha, Hirak; Ray, Manas Ranjan

    2014-09-01

    To investigate whether biomass burning causes oxidative DNA damage and alters the expression of DNA base excision repair (BER) proteins in airway cells, sputum samples were collected from 80 premenopausal rural biomass-users and 70 age-matched control women who cooked with liquefied petroleum gas. Compared with control the airway cells of biomass-users showed increased DNA damage in alkaline comet assay. Biomass-users showed higher percentage of cells expressing oxidative DNA damage marker 8-oxoguanine and lower percentages of BER proteins OGG1 and APE1 by immunocytochemical staining. Reactive oxygen species (ROS) generation was doubled and level of superoxide dismutase was depleted significantly among biomass-users. The concentrations of particulate matters were higher in biomass-using households which positively correlated with ROS generation and negatively with BER proteins expressions. ROS generation was positively correlated with 8-oxoguanine and negatively with BER proteins suggesting cooking with biomass is a risk for genotoxicity among rural women in their child-bearing age. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An alternative eukaryotic DNA excision repair pathway.

    PubMed Central

    Freyer, G A; Davey, S; Ferrer, J V; Martin, A M; Beach, D; Doetsch, P W

    1995-01-01

    DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe. PMID:7623848

  11. DNA Damage and Repair in Vascular Disease.

    PubMed

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease.

  12. Effect of acrylamide on hepatocellular DNA repair

    SciTech Connect

    Miller, M.J.; McQueen, C.A.

    1986-01-01

    Acrylamide has recently been reported to induce tumors in laboratory animals. The effect of acrylamide on unscheduled DNA synthesis using the hepatocyte primary culture (HPC)/DNA repair test was examined. Isolated hepatocytes were exposed to acrylamide and (3H)thymidine ( (3H)TdR) for 18 hr. Incorporation of (3H)TdR into DNA was determined by autoradiography. No DNA repair was observed at acrylamide concentrations up to 10(-2) M. These findings were confirmed using density gradients. Acrylamide concentrations exceeding 10(-2) M were cytotoxic to hepatocytes. Because both autoradiography and density gradients measure DNA repair as an endpoint, the ability of acrylamide to inhibit these repair processes was also determined. Acrylamide had no effect on the repair of UV-damaged DNA. These results show that acrylamide is not genotoxic in isolated hepatocytes.

  13. Protein–DNA charge transport: Redox activation of a DNA repair protein by guanine radical

    PubMed Central

    Yavin, Eylon; Boal, Amie K.; Stemp, Eric D. A.; Boon, Elizabeth M.; Livingston, Alison L.; O'Shea, Valerie L.; David, Sheila S.; Barton, Jacqueline K.

    2005-01-01

    DNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S]2+ cluster of MutY to [4Fe-4S]3+ and its decomposition product [3Fe-4S]1+. Flash/quench experiments monitored by EPR spectroscopy reveal spectra with g = 2.08, 2.06, and 2.02, characteristic of the oxidized clusters. Transient absorption spectra of poly(dGC) and [Ru(phen)2dppz]3+ (dppz = dipyridophenazine), generated in situ, show an absorption characteristic of the guanine radical that is depleted in the presence of MutY with formation instead of a long-lived species with an absorption at 405 nm; we attribute this absorption also to formation of the oxidized [4Fe-4S]3+ and [3Fe-4S]1+ clusters. In ruthenium-tethered DNA assemblies, oxidative damage to the 5′-G of a 5′-GG-3′ doublet is generated from a distance but this irreversible damage is inhibited by MutY and instead EPR experiments reveal cluster oxidation. With ruthenium-tethered assemblies containing duplex versus single-stranded regions, MutY oxidation is found to be mediated by the DNA duplex, with guanine radical as an intermediate oxidant; guanine radical formation facilitates MutY oxidation. A model is proposed for the redox activation of DNA repair proteins through DNA CT, with guanine radicals, the first product under oxidative stress, in oxidizing the DNA-bound repair proteins, providing the signal to stimulate DNA repair. PMID:15738421

  14. Impaired DNA damage repair as a common feature of neurodegenerative diseases and psychiatric disorders.

    PubMed

    Shiwaku, H; Okazawa, H

    2015-01-01

    Impaired DNA damage repair is a common pathological endophenotype of some types of neurodegenerative diseases, intellectual disabilities, and psychiatric diseases. Dysfunctional DNA repair and DNA damage, including DNA double-stranded breaks, are linked to transcriptional dysfunction and abnormal DNA methylation. Impaired DNA repair in neural stem cells leads to microcephaly or cerebellar ataxia. Furthermore, DNA repair defects and DNA damage in mature neurons lead to progressive cognitive impairment, which might be a common feature of Alzheimer's disease, Huntington's disease, and other polyglutamine diseases. Oxidative DNA damage and altered DNA repair gene expression are observed in GABAergic neurons in schizophrenia. These findings indicate that impaired DNA repair is a common pathological endophenotype of neurological diseases, and that DNA damage might lead to diverse disease symptoms dependent on timing and the affected cell type.

  15. Role of Deubiquitinating Enzymes in DNA Repair

    PubMed Central

    2015-01-01

    Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling. PMID:26644404

  16. DNA excision repair in permeable human fibroblasts

    SciTech Connect

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the (3H)DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells.

  17. Flavonoids and DNA Repair in Prostate Cancer

    DTIC Science & Technology

    2005-12-01

    There is in vitro evidence that some flavonoids such as myricetin and baicalin will stimulate DNA repair (3, 4). Flavonoid concentrations used in...Enzymol. 335: 308-316. 4. Chen, X., Nishida, H. & Konishi, T. (2003) Baicalin promoted the repair of DNA single strand breakage caused by H2O2 in

  18. [A Nobel Prize for DNA repair].

    PubMed

    Jordan, Bertrand

    2016-01-01

    This year's Nobel Prize for chemistry recognizes the seminal contributions of three researchers who discovered the existence and the basic mechanisms of DNA repair: base excision repair, mismatch repair, and nucleotide excision repair. They have since been joined by many scientists elucidating diverse aspects of these complex mechanisms that now constitute a thriving research field with many applications, notably for understanding oncogenesis and devising more effective therapies.

  19. DNA repair: Dynamic defenders against cancer and aging

    SciTech Connect

    Fuss, Jill O.; Cooper, Priscilla K.

    2006-04-01

    You probably weren't thinking about your body's cellular DNA repair systems the last time you sat on the beach in the bright sunshine. Fortunately, however, while you were subjecting your DNA to the harmful effects of ultraviolet light, your cells were busy repairing the damage. The idea that our genetic material could be damaged by the sun was not appreciated in the early days of molecular biology. When Watson and Crick discovered the structure of DNA in 1953 [1], it was assumed that DNA is fundamentally stable since it carries the blueprint of life. However, over 50 years of research have revealed that our DNA is under constant assault by sunlight, oxygen, radiation, various chemicals, and even our own cellular processes. Cleverly, evolution has provided our cells with a diverse set of tools to repair the damage that Mother Nature causes. DNA repair processes restore the normal nucleotide sequence and DNA structure of the genome after damage [2]. These responses are highly varied and exquisitely regulated. DNA repair mechanisms are traditionally characterized by the type of damage repaired. A large variety of chemical modifications can alter normal DNA bases and either lead to mutations or block transcription if not repaired, and three distinct pathways exist to remove base damage. Base excision repair (BER) corrects DNA base alterations that do not distort the overall structure of the DNA helix such as bases damaged by oxidation resulting from normal cellular metabolism. While BER removes single damaged bases, nucleotide excision repair (NER) removes short segments of nucleotides (called oligonucleotides) containing damaged bases. NER responds to any alteration that distorts the DNA helix and is the mechanism responsible for repairing bulky base damage caused by carcinogenic chemicals such as benzo [a]pyrene (found in cigarette smoke and automobile exhaust) as well as covalent linkages between adjacent pyrimidine bases resulting from the ultraviolet (UV

  20. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy)

    PubMed Central

    Pizzino, Gabriele; Bitto, Alessandra; Interdonato, Monica; Galfo, Federica; Irrera, Natasha; Mecchio, Anna; Pallio, Giovanni; Ramistella, Vincenzo; Luca, Filippo De; Minutoli, Letteria; Squadrito, Francesco; Altavilla, Domenica

    2014-01-01

    Background The area of Milazzo-Valle del Mela (Sicily, Italy) is considered at high risk of environmental crisis by regional authorities. Objective To measure oxidative-stress, DNA repair and detoxification genes in school children living near the industrial area and in age-matched controls. Methods The parent study was a biomonitoring investigation evaluating heavy metal urine levels in 226 children aged 12–14 years, living in the high risk area, and in 29 age-matched controls living 45 km far from the industrial site. In the present study 67 exposed adolescents and 29 controls were included. Samples were analyzed for urinary 8-hydroxydeoxyguanosine (8OHdG) levels, and gene expression of OGG1 (DNA repair gene), NQO1, ST13, and MT1A (detoxifying genes). Results Urinary cadmium was higher (p = 0.0004) in exposed [geometric mean, 0.46 µg/L; 25th–75th percentile: 0.3–0.56] than in control adolescents [geometric mean, 0.26 µg/L; 25th–75th percentile: 0.2–0.3]. Chromium was also significantly elevated in exposed [geometric mean, 1.52 µg/L; 25th–75th percentile: 1.19–1.93] compared with controls [geometric mean, 1.25 µg/L; 25th–75th percentile: 1.05–1.48; p = 0.02]. Urinary 8-OHdG concentration was greater in exposed than in controls (71.49 vs 61.87 µg/L, p = 0.02), and it was correlated with cadmium levels (r = 0.46, p < 0.0001), and with the combined exposure index (r = 0.43, p < 0.0001). Moreover, cadmium levels showed a robust correlation with OGG1 and MT1A gene expression levels (r = 0.44, p < 0.0001; r = 0.39, p < 0.0001, respectively). Finally, OGG1 and MT1A were over-expressed in adolescents from Milazzo-Valle del Mela area compared with controls (p = 0.0004; p < 0.0001, respectively). Conclusions Continuous exposure at relatively low concentrations of heavy metals is associated with increased oxidative DNA damage and impaired expression of DNA repair and detoxification genes in adolescents. PMID:24936443

  1. 17β-estradiol increases expression of the oxidative stress response and DNA repair protein apurinic endonuclease (Ape1) in the cerebral cortex of female mice following hypoxia.

    PubMed

    Dietrich, Alicia K; Humphreys, Gwendolyn I; Nardulli, Ann M

    2013-11-01

    While it is well established that 17β-estradiol (E2) protects the rodent brain from ischemia-induced damage, it has been unclear how this neuroprotective effect is mediated. Interestingly, convincing evidence has also demonstrated that maintaining or increasing the expression of the oxidative stress response and DNA repair protein apurinic endonuclease 1 (Ape1) is instrumental in reducing ischemia-induced damage in the brain. Since E2 increases expression of the oxidative stress response proteins Cu/Zn superoxide dismutase and thioredoxin in the brain, we hypothesized that E2 may also increase Ape1 expression and that this E2-induced expression of Ape1 may help to mediate the neuroprotective effects of E2 in the brain. To test this hypothesis, we utilized three model systems including primary cortical neurons, brain slice cultures, and whole animals. Although estrogen receptor α and Ape1 were expressed in primary cortical neurons, E2 did not alter Ape1 expression in these cells. However, immunofluorescent staining and quantitative Western blot analysis demonstrated that estrogen receptor α and Ape1 were expressed in the nuclei of cortical neurons in brain slice cultures and that E2 increased Ape1 expression in the cerebral cortex of these cultures. Furthermore, Ape1 expression was increased and oxidative DNA damage was decreased in the cerebral cortices of ovariectomized female C57Bl/6J mice that had been treated with E2 and exposed to hypoxia. Taken together, our studies demonstrate that the neuronal microenvironment may be required for increased Ape1 expression and that E2 enhances expression of Ape1 and reduces oxidative DNA damage, which may in turn help to reduce ischemia-induced damage in the cerebral cortex and mediate the neuroprotective effects of E2.

  2. Single-nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts.

    PubMed

    Stierum, R H; Dianov, G L; Bohr, V A

    1999-09-15

    Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that there was no DNA repair in mitochondria, but lately there is evidence that some lesions are efficiently repaired in these organelles. In the study of nuclear DNA repair, the in vitro repair measurements in cell extracts have provided major insights into the mechanisms. The use of whole-cell extract based DNA repair methods has revealed that mammalian nuclear base excision repair (BER) diverges into two pathways: the single-nucleotide replacement and long patch repair mechanisms. Similar in vitro methods have not been available for the study of mitochondrial BER. We have established an in vitro DNA repair system supported by rat liver mitochondrial protein extract and DNA substrates containing a single uracil opposite to a guanine. Using this approach, we examined the repair pathways and the identity of the DNA polymerase involved in mitochondrial BER (mtBER). Employing restriction analysis of in vitro repaired DNA to map the repair patch size, we demonstrate that only one nucleotide is incorporated during the repair process. Thus, in contrast to BER in the nucleus, mtBER of uracil in DNA is solely accomplished by single-nucleotide replacement.

  3. Mechanisms of DNA-protein crosslink repair.

    PubMed

    Stingele, Julian; Bellelli, Roberto; Boulton, Simon J

    2017-09-01

    Covalent DNA-protein crosslinks (DPCs, also known as protein adducts) of topoisomerases and other proteins with DNA are highly toxic DNA lesions. Of note, chemical agents that induce DPCs include widely used classes of chemotherapeutics. Their bulkiness blocks virtually every chromatin-based process and makes them intractable for repair by canonical repair pathways. Distinct DPC repair pathways employ unique points of attack and are crucial for the maintenance of genome stability. Tyrosyl-DNA phosphodiesterases (TDPs) directly hydrolyse the covalent linkage between protein and DNA. The MRE11-RAD50-NBS1 (MRN) nuclease complex targets the DNA component of DPCs, excising the fragment affected by the lesion, whereas proteases of the spartan (SPRTN)/weak suppressor of SMT3 protein 1 (Wss1) family target the protein component. Loss of these pathways renders cells sensitive to DPC-inducing chemotherapeutics, and DPC repair pathways are thus attractive targets for combination cancer therapy.

  4. Preferential DNA repair in expressed genes

    SciTech Connect

    Hanawalt, P.C.

    1987-12-01

    Potentially deleterious alterations to DNA occur nonrandomly within the mammalian genome. These alterations include the adducts produced by many chemical carcinogens, but not the UV-induced cyclobutane pyrimidine dimer, which may be an exception. Recent studies in our laboratory have shown that the excision repair of pyrimidine dimers and certain other lesions is nonrandom in the mammalian genome, exhibiting a distinct preference for actively transcribed DNA sequences. An important consequence of this fact is that mutagenesis and carcinogenesis may be determined in part by the activities of the relevant genes. Repair may also be processive, and a model is proposed in which excision repair is coupled to transcription at the nuclear matrix. Similar but freely diffusing repair complexes may account for the lower overall repair efficiencies in the silent domains of the genome. Risk assessment in relations to chemical carcinogenesis requires assays that determine effective levels of DNA damage for producing malignancy. The existence of nonrandom repair in the genome casts into doubt the reliability of overall indicators of DNA binding and lesion repair for such determinations. Furthermore, some apparent differences between the intragenomic repair heterogeneity in rodent cells and that in human cells mandate a reevaluation of rodent test systems for human risk assessment. Tissue-specific and cell-specific differences in the coordinate regulation of gene expression and DNA repair may account for corresponding differences in the carcinogenic response.

  5. Active DNA demethylation by DNA repair: Facts and uncertainties.

    PubMed

    Schuermann, David; Weber, Alain R; Schär, Primo

    2016-08-01

    Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. DNA Triplet Repeat Expansion and Mismatch Repair

    PubMed Central

    Iyer, Ravi R.; Pluciennik, Anna; Napierala, Marek; Wells, Robert D.

    2016-01-01

    DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway. PMID:25580529

  7. INVESTIGATION OF DNA REPAIR BY SISTER CHROMATID EXCHANGE (SCE) ANALYSIS AND THE ALKALINE SINGLE CELL GEL ASSAY (SCG) IN MAMMALIAN GO-LYMPHOCYTES AFTER IN VITRO EXPOSURE TO ETHYLENE OXIDE (EO)

    EPA Science Inventory

    Investigation ofDNA Repair by Sister Chromatid Exchange (SCE) Analysis and the Alkaline Single Cell Gel Assay (SCG) in Mammalian Go-Lymphocytes after In Vitro Exposure to Ethylene Oxide (EO).

    EO is a large volume chemical used primarily as an intermediate in manufacturing...

  8. INVESTIGATION OF DNA REPAIR BY SISTER CHROMATID EXCHANGE (SCE) ANALYSIS AND THE ALKALINE SINGLE CELL GEL ASSAY (SCG) IN MAMMALIAN GO-LYMPHOCYTES AFTER IN VITRO EXPOSURE TO ETHYLENE OXIDE (EO)

    EPA Science Inventory

    Investigation ofDNA Repair by Sister Chromatid Exchange (SCE) Analysis and the Alkaline Single Cell Gel Assay (SCG) in Mammalian Go-Lymphocytes after In Vitro Exposure to Ethylene Oxide (EO).

    EO is a large volume chemical used primarily as an intermediate in manufacturing...

  9. Choreography of oxidative damage repair in mammalian genomes.

    PubMed

    Mitra, Sankar; Izumi, Tadahide; Boldogh, Istvan; Bhakat, Kishor K; Hill, Jeff W; Hazra, Tapas K

    2002-07-01

    The lesions induced by reactive oxygen species in both nuclear and mitochondrial genomes include altered bases, abasic (AP) sites, and single-strand breaks, all repaired primarily via the base excision repair (BER) pathway. Although the basic BER process (consisting of five sequential steps) could be reconstituted in vitro with only four enzymes, it is now evident that repair of oxidative damage, at least in mammalian cell nuclei, is more complex, and involves a number of additional proteins, including transcription- and replication-associated factors. These proteins may be required in sequential repair steps in concert with other cellular changes, starting with nuclear targeting of the early repair enzymes in response to oxidative stress, facilitation of lesion recognition, and access by chromatin unfolding via histone acetylation, and formation of metastable complexes of repair enzymes and other accessory proteins. Distinct, specific subclasses of protein complexes may be formed for repair of oxidative lesions in the nucleus in transcribed vs. nontranscribed sequences in chromatin, in quiescent vs. cycling cells, and in nascent vs. parental DNA strands in replicating cells. Characterizing the proteins for each repair subpathway, their signaling-dependent modifications and interactions in the nuclear as well as mitochondrial repair complexes, will be a major focus of future research in oxidative damage repair.

  10. DNA Repair Pathways in Trypanosomatids: from DNA Repair to Drug Resistance

    PubMed Central

    Genois, Marie-Michelle; Paquet, Eric R.; Laffitte, Marie-Claude N.; Maity, Ranjan; Rodrigue, Amélie

    2014-01-01

    SUMMARY All living organisms are continuously faced with endogenous or exogenous stress conditions affecting genome stability. DNA repair pathways act as a defense mechanism, which is essential to maintain DNA integrity. There is much to learn about the regulation and functions of these mechanisms, not only in human cells but also equally in divergent organisms. In trypanosomatids, DNA repair pathways protect the genome against mutations but also act as an adaptive mechanism to promote drug resistance. In this review, we scrutinize the molecular mechanisms and DNA repair pathways which are conserved in trypanosomatids. The recent advances made by the genome consortiums reveal the complete genomic sequences of several pathogens. Therefore, using bioinformatics and genomic sequences, we analyze the conservation of DNA repair proteins and their key protein motifs in trypanosomatids. We thus present a comprehensive view of DNA repair processes in trypanosomatids at the crossroads of DNA repair and drug resistance. PMID:24600040

  11. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo.

    PubMed

    Lu, Chun-Jiao; Jiang, Xue-Feng; Junaid, Muhammad; Ma, Yan-Bo; Jia, Pan-Pan; Wang, Hua-Bin; Pei, De-Sheng

    2017-10-01

    Graphene oxide (GO) has widespread concerns in the fields of biological sciences and medical applications. Currently, studies have reported that excessive GO exposure can cause cellular DNA damage through reactive oxygen species (ROS) generation. However, DNA damage mediated response of the base excision repair (BER) pathway due to GO exposure is not elucidated yet. Therefore, we exposed HEK293T cells and zebrafish embryos to different concentrations of GO for 24 h, and transcriptional profiles of BER pathway genes, DNA damage, and cell viability were analyzed both in vitro and in vivo. Moreover, the deformation of HEK293T cells before and after GO exposure was also investigated using atomic force microscopy (AFM) to identify the physical changes occurred in the cells' structure. CCK-8 and Comet assay revealed the significant decrease in cell viability and increase in DNA damage in HEK293T cells at higher GO doses (25 and 50 μg/mL). Among the investigated genetic markers in HEK293T cells, BER pathway genes (APEX1, OGG1, CREB1, UNG) were significantly up-regulated upon exposure to higher GO dose (50 μg/mL), however, low exposure concentration (5, 25 μg/mL) failed to induce significant genetic induction except for CREB1 at 25 μg/mL. Additionally, the viscosity of HEK293T cells decreased upon GO exposure. In zebrafish, the results of up-regulated gene expressions (apex1, ogg1, polb, creb1) were consistent with those in the HEK293T cells. Taken all together, the exposure to elevated GO concentration could cause DNA damage to HEK293T cells and zebrafish embryos; BER pathway could be proposed as the possible inner response mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antibody specific for a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-07-11

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  13. Nuclear position dictates DNA repair pathway choice

    PubMed Central

    Lemaître, Charlène; Grabarz, Anastazja; Tsouroula, Katerina; Andronov, Leonid; Furst, Audrey; Pankotai, Tibor; Heyer, Vincent; Rogier, Mélanie; Attwood, Kathleen M.; Kessler, Pascal; Dellaire, Graham; Klaholz, Bruno; Reina-San-Martin, Bernardo; Soutoglou, Evi

    2014-01-01

    Faithful DNA repair is essential to avoid chromosomal rearrangements and promote genome integrity. Nuclear organization has emerged as a key parameter in the formation of chromosomal translocations, yet little is known as to whether DNA repair can efficiently occur throughout the nucleus and whether it is affected by the location of the lesion. Here, we induce DNA double-strand breaks (DSBs) at different nuclear compartments and follow their fate. We demonstrate that DSBs induced at the nuclear membrane (but not at nuclear pores or nuclear interior) fail to rapidly activate the DNA damage response (DDR) and repair by homologous recombination (HR). Real-time and superresolution imaging reveal that DNA DSBs within lamina-associated domains do not migrate to more permissive environments for HR, like the nuclear pores or the nuclear interior, but instead are repaired in situ by alternative end-joining. Our results are consistent with a model in which nuclear position dictates the choice of DNA repair pathway, thus revealing a new level of regulation in DSB repair controlled by spatial organization of DNA within the nucleus. PMID:25366693

  14. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA.

    PubMed

    Morland, Ingrid; Rolseth, Veslemøy; Luna, Luisa; Rognes, Torbjørn; Bjørås, Magnar; Seeberg, Erling

    2002-11-15

    The mild phenotype associated with targeted disruption of the mouse OGG1 and NTH1 genes has been attributed to the existence of back-up activities and/or alternative pathways for the removal of oxidised DNA bases. We have characterised two new genes in human cells that encode DNA glycosylases, homologous to the bacterial Fpg (MutM)/Nei class of enzymes, capable of removing lesions that are substrates for both hOGG1 and hNTH1. One gene, designated HFPG1, showed ubiquitous expression in all tissues examined whereas the second gene, HFPG2, was only expressed at detectable levels in the thymus and testis. Transient transfections of HeLa cells with fusions of the cDNAs to EGFP revealed intracellular sorting to the nucleus with accumulation in the nucleoli for hFPG1, while hFPG2 co-localised with the 30 kDa subunit of RPA. hFPG1 was purified and shown to act on DNA substrates containing 8-oxoguanine, 5-hydroxycytosine and abasic sites. Removal of 8-oxoguanine, but not cleavage at abasic sites, was opposite base-dependent, with 8-oxoG:C being the preferred substrate and negligible activity towards 8-oxoG:A. It thus appears that hFPG1 has properties similar to mammalian OGG1 in preventing mutations arising from misincorporation of A across 8-oxoG and could function as a back-up repair activity for OGG1 in ogg1(-/-) mice.

  15. International congress on DNA damage and repair: Book of abstracts

    SciTech Connect

    Not Available

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  16. DNA repair variants and breast cancer risk.

    PubMed

    Grundy, Anne; Richardson, Harriet; Schuetz, Johanna M; Burstyn, Igor; Spinelli, John J; Brooks-Wilson, Angela; Aronson, Kristan J

    2016-05-01

    A functional DNA repair system has been identified as important in the prevention of tumour development. Previous studies have hypothesized that common polymorphisms in DNA repair genes could play a role in breast cancer risk and also identified the potential for interactions between these polymorphisms and established breast cancer risk factors such as physical activity. Associations with breast cancer risk for 99 single nucleotide polymorphisms (SNPs) from genes in ten DNA repair pathways were examined in a case-control study including both Europeans (644 cases, 809 controls) and East Asians (299 cases, 160 controls). Odds ratios in both additive and dominant genetic models were calculated separately for participants of European and East Asian ancestry using multivariate logistic regression. The impact of multiple comparisons was assessed by correcting for the false discovery rate within each DNA repair pathway. Interactions between several breast cancer risk factors and DNA repair SNPs were also evaluated. One SNP (rs3213282) in the gene XRCC1 was associated with an increased risk of breast cancer in the dominant model of inheritance following adjustment for the false discovery rate (P < 0.05), although no associations were observed for other DNA repair SNPs. Interactions of six SNPs in multiple DNA repair pathways with physical activity were evident prior to correction for FDR, following which there was support for only one of the interaction terms (P < 0.05). No consistent associations between variants in DNA repair genes and breast cancer risk or their modification by breast cancer risk factors were observed.

  17. Repair of DNA Double-Strand Breaks

    NASA Astrophysics Data System (ADS)

    Falk, Martin; Lukasova, Emilie; Kozubek, Stanislav

    The genetic information of cells continuously undergoes damage induced by intracellular processes including energy metabolism, DNA replication and transcription, and by environmental factors such as mutagenic chemicals and UV and ionizing radiation. This causes numerous DNA lesions, including double strand breaks (DSBs). Since cells cannot escape this damage or normally function with a damaged genome, several DNA repair mechanisms have evolved. Although most "single-stranded" DNA lesions are rapidly removed from DNA without permanent damage, DSBs completely break the DNA molecule, presenting a real challenge for repair mechanisms, with the highest risk among DNA lesions of incorrect repair. Hence, DSBs can have serious consequences for human health. Therefore, in this chapter, we will refer only to this type of DNA damage. In addition to the biochemical aspects of DSB repair, which have been extensively studied over a long period of time, the spatio-temporal organization of DSB induction and repair, the importance of which was recognized only recently, will be considered in terms of current knowledge and remaining questions.

  18. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation

    PubMed Central

    Grin, Inga; Ishchenko, Alexander A.

    2016-01-01

    Active DNA demethylation (ADDM) in mammals occurs via hydroxylation of 5-methylcytosine (5mC) by TET and/or deamination by AID/APOBEC family enzymes. The resulting 5mC derivatives are removed through the base excision repair (BER) pathway. At present, it is unclear how the cell manages to eliminate closely spaced 5mC residues whilst avoiding generation of toxic BER intermediates and whether alternative DNA repair pathways participate in ADDM. It has been shown that non-canonical DNA mismatch repair (ncMMR) can remove both alkylated and oxidized nucleotides from DNA. Here, a phagemid DNA containing oxidative base lesions and methylated sites are used to examine the involvement of various DNA repair pathways in ADDM in murine and human cell-free extracts. We demonstrate that, in addition to short-patch BER, 5-hydroxymethyluracil and uracil mispaired with guanine can be processed by ncMMR and long-patch BER with concomitant removal of distant 5mC residues. Furthermore, the presence of multiple mispairs in the same MMR nick/mismatch recognition region together with BER-mediated nick formation promotes proficient ncMMR resulting in the reactivation of an epigenetically silenced reporter gene in murine cells. These findings suggest cooperation between BER and ncMMR in the removal of multiple mismatches that might occur in mammalian cells during ADDM. PMID:26843430

  19. Mechanisms of DNA damage, repair, and mutagenesis.

    PubMed

    Chatterjee, Nimrat; Walker, Graham C

    2017-06-01

    Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  1. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  2. DNA repair targeted therapy: the past or future of cancer treatment?

    PubMed Central

    Gavande, Navnath S.; VanderVere-Carozza, Pamela S.; Hinshaw, Hilary D.; Jalal, Shadia I.; Sears, Catherine R.; Pawelczak, Katherine S.; Turchi, John J.

    2016-01-01

    The repair of DNA damage is a complex process that relies on particular pathways to remedy specific types of damage to DNA. The range of insults to DNA includes small, modest changes in structure including mismatched bases and simple methylation events to oxidized bases, intra- and interstrand DNA crosslinks, DNA double strand breaks and protein-DNA adducts. Pathways required for the repair of these lesions include mismatch repair, base excision repair, nucleotide excision repair, and the homology directed repair/Fanconi anemia pathway. Each of these pathways contributes to genetic stability, and mutations in genes encoding proteins involved in these pathways have been demonstrated to promote genetic instability and cancer. In fact, it has been suggested all cancers display defects in DNA repair. It has also been demonstrated that the ability of cancer cells to repair therapeutically induced DNA damage impacts therapeutic efficacy. This has led to targeting DNA repair pathways and proteins to develop anti-cancer agents that will increase sensitivity to traditional chemotherapeutics. While initial studies languished and were plagued by a lack of specificity and a defined mechanism of action, more recent approaches to exploit synthetic lethal interaction and develop high affinity chemical inhibitors have proven considerably more effective. In this review we will highlight recent advances and discuss previous failures in targeting DNA repair to pave the way for future DNA repair targeted agents and their use in cancer therapy. PMID:26896565

  3. DNA repair genes in the Megavirales pangenome.

    PubMed

    Blanc-Mathieu, Romain; Ogata, Hiroyuki

    2016-06-01

    The order 'Megavirales' represents a group of eukaryotic viruses with a large genome encoding a few hundred up to two thousand five hundred genes. Several members of Megavirales possess genes involved in major DNA repair pathways. Some of these genes were likely inherited from an ancient virus world and some others were derived from the genomes of their hosts. Here we examine molecular phylogenies of key DNA repair enzymes in light of recent hypotheses on the origin of Megavirales, and propose that the last common ancestors of the individual families of the order Megavirales already possessed DNA repair functions to achieve and maintain a moderately large genome and that this repair capacity gradually increased, in a family-dependent manner, during their recent evolution.

  4. Premature aging in mice deficient in DNA repair and transcription.

    PubMed

    de Boer, Jan; Andressoo, Jaan Olle; de Wit, Jan; Huijmans, Jan; Beems, Rudolph B; van Steeg, Harry; Weeda, Geert; van der Horst, Gijsbertus T J; van Leeuwen, Wibeke; Themmen, Axel P N; Meradji, Morteza; Hoeijmakers, Jan H J

    2002-05-17

    One of the factors postulated to drive the aging process is the accumulation of DNA damage. Here, we provide strong support for this hypothesis by describing studies of mice with a mutation in XPD, a gene encoding a DNA helicase that functions in both repair and transcription and that is mutated in the human disorder trichothiodystrophy (TTD). TTD mice were found to exhibit many symptoms of premature aging, including osteoporosis and kyphosis, osteosclerosis, early greying, cachexia, infertility, and reduced life-span. TTD mice carrying an additional mutation in XPA, which enhances the DNA repair defect, showed a greatly accelerated aging phenotype, which correlated with an increased cellular sensitivity to oxidative DNA damage. We hypothesize that aging in TTD mice is caused by unrepaired DNA damage that compromises transcription, leading to functional inactivation of critical genes and enhanced apoptosis.

  5. Metabolism, Genomics, and DNA Repair in the Mouse Aging Liver

    PubMed Central

    Lebel, Michel; de Souza-Pinto, Nadja C.; Bohr, Vilhelm A.

    2011-01-01

    The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems. PMID:21559242

  6. Influence of proliferation on DNA repair rates in liver

    SciTech Connect

    St. Clair, W.H.; Dwarakanath, B.S.; Hong Zhang; Wheeler, K.T. )

    1991-12-01

    To test the hypothesis that the proliferative status of a mammalian cell determines the rate of removal of oxidative DNA damage, pre- and posthepatectomized livers in adult male Fisher 344 rats were irradiated in situ with 15.5 Gy of{sup 137}Cs{gamma}-rays. At 10 and 45 min after irradiation, the livers were removed and dissociated into single cell suspensions, and the DNA damage in the isolated quiescent or proliferative liver cells was assayed by alkaline elution. Proliferative liver cells irradiated 20-24 h or 29-31 h after hepatectomy repaired their DNA damage faster than quiescent liver cells. A corresponding increase in the accessibility of the DNA to digestion by m. nuclease was observed for the posthepatectomized liver cells. These data suggest that proliferative status is a major determinant of the rate of DNA repair in rat liver.

  7. Metabolism, genomics, and DNA repair in the mouse aging liver.

    PubMed

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems.

  8. The awakening of DNA repair at Yale.

    PubMed

    Hanawalt, Philip C

    2013-12-13

    As a graduate student with Professor Richard Setlow at Yale in the late 1950s, I studied the effects of ultraviolet and visible light on the syntheses of DNA, RNA, and protein in bacteria. I reflect upon my research in the Yale Biophysics Department, my subsequent postdoctoral experiences, and the eventual analyses in the laboratories of Setlow, Paul Howard-Flanders, and myself that constituted the discovery of the ubiquitous pathway of DNA excision repair in the early 1960s. I then offer a brief perspective on a few more recent developments in the burgeoning DNA repair field and their relationships to human disease.

  9. The Awakening of DNA Repair at Yale

    PubMed Central

    Hanawalt, Philip C.

    2013-01-01

    As a graduate student with Professor Richard Setlow at Yale in the late 1950s, I studied the effects of ultraviolet and visible light on the syntheses of DNA, RNA, and protein in bacteria. I reflect upon my research in the Yale Biophysics Department, my subsequent postdoctoral experiences, and the eventual analyses in the laboratories of Setlow, Paul Howard-Flanders, and myself that constituted the discovery of the ubiquitous pathway of DNA excision repair in the early 1960s. I then offer a brief perspective on a few more recent developments in the burgeoning DNA repair field and their relationships to human disease. PMID:24348216

  10. Mechanisms of Post-Replication DNA Repair.

    PubMed

    Gao, Yanzhe; Mutter-Rottmayer, Elizabeth; Zlatanou, Anastasia; Vaziri, Cyrus; Yang, Yang

    2017-02-08

    Accurate DNA replication is crucial for cell survival and the maintenance of genome stability. Cells have developed mechanisms to cope with the frequent genotoxic injuries that arise from both endogenous and environmental sources. Lesions encountered during DNA replication are often tolerated by post-replication repair mechanisms that prevent replication fork collapse and avert the formation of DNA double strand breaks. There are two predominant post-replication repair pathways, trans-lesion synthesis (TLS) and template switching (TS). TLS is a DNA damage-tolerant and low-fidelity mode of DNA synthesis that utilizes specialized 'Y-family' DNA polymerases to replicate damaged templates. TS, however, is an error-free 'DNA damage avoidance' mode of DNA synthesis that uses a newly synthesized sister chromatid as a template in lieu of the damaged parent strand. Both TLS and TS pathways are tightly controlled signaling cascades that integrate DNA synthesis with the overall DNA damage response and are thus crucial for genome stability. This review will cover the current knowledge of the primary mediators of post-replication repair and how they are regulated in the cell.

  11. Mechanisms of Post-Replication DNA Repair

    PubMed Central

    Gao, Yanzhe; Mutter-Rottmayer, Elizabeth; Zlatanou, Anastasia; Vaziri, Cyrus; Yang, Yang

    2017-01-01

    Accurate DNA replication is crucial for cell survival and the maintenance of genome stability. Cells have developed mechanisms to cope with the frequent genotoxic injuries that arise from both endogenous and environmental sources. Lesions encountered during DNA replication are often tolerated by post-replication repair mechanisms that prevent replication fork collapse and avert the formation of DNA double strand breaks. There are two predominant post-replication repair pathways, trans-lesion synthesis (TLS) and template switching (TS). TLS is a DNA damage-tolerant and low-fidelity mode of DNA synthesis that utilizes specialized ‘Y-family’ DNA polymerases to replicate damaged templates. TS, however, is an error-free ‘DNA damage avoidance’ mode of DNA synthesis that uses a newly synthesized sister chromatid as a template in lieu of the damaged parent strand. Both TLS and TS pathways are tightly controlled signaling cascades that integrate DNA synthesis with the overall DNA damage response and are thus crucial for genome stability. This review will cover the current knowledge of the primary mediators of post-replication repair and how they are regulated in the cell. PMID:28208741

  12. DNA repair mechanisms in embryonic stem cells.

    PubMed

    Fu, Xuemei; Cui, Ke; Yi, Qiuxiang; Yu, Lili; Xu, Yang

    2017-02-01

    Embryonic stem cells (ESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body. Therefore, as a renewable source of various functional cells in the human body, ESCs hold great promise for human cell therapy. During the rapid proliferation of ESCs in culture, DNA damage, such as DNA double-stranded breaks, will occur in ESCs. Therefore, to realize the potential of ESCs in human cell therapy, it is critical to understand the mechanisms how ESCs activate DNA damage response and DNA repair to maintain genomic stability, which is a prerequisite for their use in human therapy. In this context, it has been shown that ESCs harbor much fewer spontaneous mutations than somatic cells. Consistent with the finding that ESCs are genetically more stable than somatic cells, recent studies have indicated that ESCs can mount more robust DNA damage responses and DNA repair than somatic cells to ensure their genomic integrity.

  13. Ribonucleotides in DNA: Origins, repair and consequences

    PubMed Central

    Williams, Jessica S.; Kunkel, Thomas A.

    2014-01-01

    While primordial life is thought to have been RNA-based (Cech, Cold Spring Harbor Perspect. Biol. 4 (2012) a006742), all living organisms store genetic information in DNA, which is chemically more stable. Distinctions between the RNA and DNA worlds and our views of “DNA” synthesis continue to evolve as new details emerge on the incorporation, repair and biological effects of ribonucleotides in DNA genomes of organisms from bacteria through humans. PMID:24794402

  14. DNA repair responses in human skin cells

    SciTech Connect

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  15. DNA Repair and Personalized Breast Cancer Therapy

    PubMed Central

    Li, Shu-Xia; Sjolund, Ashley; Harris, Lyndsay; Sweasy, Joann B.

    2010-01-01

    Personalized cancer therapy is likely to be one of the next big advances in our search for a cure for cancer. To be able to treat people in an individualized manner, researchers need to know a great deal about their genetic constitution and the DNA repair status of their tumors. Specific knowledge is required regarding the polymorphisms individuals carry and how these polymorphisms influence responses to therapy. Researchers are actively engaged in biomarker discovery and validation for this purpose. In addition, the design of clinical trials must be reassessed to include new information on biomarkers and drug responses. In this review, we focus on personalized breast cancer therapy. The hypothesis we focus upon in this review is that there is connection between the DNA repair profile of individuals, their breast tumor subtypes, and their responses to cancer therapy. We first briefly review cellular DNA repair pathways that are likely to be impacted by breast cancer therapies. Next, we review the phenotypes of breast tumor subtypes with an emphasis on how a DNA repair deficiency might result in tumorigenesis itself and lead to the chemotherapeutic responses that are observed. Specific examples of breast tumor subtypes and their responses to cancer therapy are given, and we discuss possible DNA repair mechanisms that underlie the responses of tumors to various chemotherapeutic agents. Much is known about breast cancer subtypes and the way each of these subtypes responds to chemotherapy. In addition, we discuss novel design of clinical trials that incorporates rapidly emerging information on biomarkers. PMID:20872853

  16. Characterization of Oxidative Guanine Damage and Repair in Mammalian Telomeres

    PubMed Central

    Wang, Zhilong; Rhee, David B.; Lu, Jian; Bohr, Christina T.; Zhou, Fang; Vallabhaneni, Haritha; de Souza-Pinto, Nadja C.; Liu, Yie

    2010-01-01

    8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)–initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere–FISH), by chromosome orientation–FISH (CO–FISH), and by indirect immunofluorescence in combination with telomere–FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1−/−) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1−/− mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1−/− mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1−/− mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1−/− MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining

  17. Role of OGG1 and NTG2 in the repair of oxidative DNA damage and mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae: relationships with transition metals iron and copper.

    PubMed

    Melo, R G M; Leitão, A C; Pádula, M

    2004-09-01

    The base excision repair pathway of Saccharomyces cerevisiae possesses three DNA N-glycosylases, viz. Ogg1p, Ngt1p and Ntg2p, involved in the repair of oxidative DNA damage. It was previously reported that inactivation of any of these activities, in most cases, did not generate a sensitive mutant phenotype to a variety of oxidative agents. Only the ntg1 mutant appeared to be more sensitive to hydrogen peroxide (H2O2) than a wild-type (WT) strain. In the present study we evaluated the role of S. cerevisiae OGG1 and NTG2 genes in the repair of oxidative lesions induced by high H2O2 concentrations (5-100 mM for 20 min), followed by catalase treatment (500 IU/ml). In these conditions, the ogg1 mutant was more sensitive than the WT strain to H2O2 (concentration 40-60 mM). Unexpectedly, the inactivation of NTG2 in an ogg1 background was able to suppress both sensitivity and mutagenesis induced by H2O2. Indeed, even the ntg2 single mutant was more resistant than the WT (60-100 mM H2O2). The use of metal ion chelators dipyridyl and neocuproine allowed us to evaluate the participation of iron and copper ions in the production of lethal and mutagenic lesions during H2O2 treatment in different DNA repair-deficient S. cerevisiae strains. The roles of OGG1 and NTG2 genes in the repair of lethal and mutagenic oxidative lesions induced by H2O2 and their relationships with iron and copper ions are discussed.

  18. Roles of PTEN with DNA Repair in Parkinson's Disease.

    PubMed

    Ogino, Mako; Ichimura, Mayuko; Nakano, Noriko; Minami, Akari; Kitagishi, Yasuko; Matsuda, Satoru

    2016-06-15

    Oxidative stress is considered to play key roles in aging and pathogenesis of many neurodegenerative diseases such as Parkinson's disease, which could bring DNA damage by cells. The DNA damage may lead to the cell apoptosis, which could contribute to the degeneration of neuronal tissues. Recent evidence suggests that PTEN (phosphatase and tensin homolog on chromosome 10) may be involved in the pathophysiology of the neurodegenerative disorders. Since PTEN expression appears to be one dominant determinant of the neuronal cell death, PTEN should be a potential molecular target of novel therapeutic strategies against Parkinson's disease. In addition, defects in DNA damage response and DNA repair are often associated with modulation of hormone signaling pathways. Especially, many observations imply a role for estrogen in a regulation of the DNA repair action. In the present review, we have attempted to summarize the function of DNA repair molecules at a viewpoint of the PTEN signaling pathway and the hormone related functional modulation of cells, providing a broad interpretation on the molecular mechanisms for treatment of Parkinson's disease. Particular attention will be paid to the mechanisms proposed to explain the health effects of food ingredients against Parkinson's disease related to reduce oxidative stress for an efficient therapeutic intervention.

  19. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers

    SciTech Connect

    Hinhumpatch, Pantip; Navasumrit, Panida; Chaisatra, Krittinee; Promvijit, Jeerawan; Mahidol, Chulabhorn; Ruchirawat, Mathuros

    2013-12-15

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations with other biomarkers of arsenic exposure, including arsenic accumulation in nails (r = 0.56, P < 0.001) and arsenic concentration in urine (r = 0.50, P < 0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (∼ 4-fold, P < 0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (∼ 3-fold, P < 0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. - Highlights: • The effects of arsenic exposure in utero and through early childhood were studied. • Arsenic-exposed children had a reduction in arsenic methylation capacity. • Exposed children had more DNA damage, observed as elevated salivary 8-OHdG. • Lower salivary hOGG1 in exposed children indicated impairment of 8-OHdG repair. • Salivary and urinary 8-OHdG levels were discordant.

  20. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer

    PubMed Central

    Bernstein, Carol; Bernstein, Harris

    2015-01-01

    Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy. PMID:25987950

  1. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer.

    PubMed

    Bernstein, Carol; Bernstein, Harris

    2015-05-15

    Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy.

  2. Regulation of DNA repair by parkin

    SciTech Connect

    Kao, Shyan-Yuan

    2009-05-01

    Mutation of parkin is one of the most prevalent causes of autosomal recessive Parkinson's disease (PD). Parkin is an E3 ubiquitin ligase that acts on a variety of substrates, resulting in polyubiquitination and degradation by the proteasome or monoubiquitination and regulation of biological activity. However, the cellular functions of parkin that relate to its pathological involvement in PD are not well understood. Here we show that parkin is essential for optimal repair of DNA damage. Parkin-deficient cells exhibit reduced DNA excision repair that can be restored by transfection of wild-type parkin, but not by transfection of a pathological parkin mutant. Parkin also protects against DNA damage-induced cell death, an activity that is largely lost in the pathological mutant. Moreover, parkin interacts with the proliferating cell nuclear antigen (PCNA), a protein that coordinates DNA excision repair. These results suggest that parkin promotes DNA repair and protects against genotoxicity, and implicate DNA damage as a potential pathogenic mechanism in PD.

  3. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.

    PubMed

    Thompson, Benjamin C; Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2014-07-01

    Cutaneous melanoma is a significant cause of morbidity and mortality. Nicotinamide is a safe, widely available vitamin that reduces the immune suppressive effects of UV, enhances DNA repair in keratinocytes and has shown promise in the chemoprevention of non-melanoma skin cancer. Here, we report the effect of nicotinamide on DNA damage and repair in primary human melanocytes. Nicotinamide significantly enhanced the repair of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine) and cyclobutane pyrimidine dimers induced by UV exposure. It also enhanced the repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine induced by the culture conditions in unirradiated melanocytes. A significant increase in the percentage of melanocytes undergoing unscheduled but not scheduled DNA synthesis was observed, confirming that nicotinamide enhances DNA repair in human melanocytes. In summary, nicotinamide, by enhancing DNA repair in melanocytes, is a potential agent for the chemoprevention of cutaneous melanoma.

  4. Photo-induced DNA damage, DNA repair and cell lethality

    SciTech Connect

    Cool, B.L.

    1982-01-01

    DNA lesion induction and repair was measured in DNA repair proficient and deficient cells after exposures to far-UV, mid-UV, near-UV and visible light and an attempt was made to relate these molecular phenomena to the biological endpoint of cell lethality. Pyrimidine dimer and strand break induction, DNA repair and cell killing were measured after cell exposure to polychromatic but narrow bandwidth light sources with peak emissions at 254, 305, 353, 369, and 445 nm. Pyrimidine dimers were detected using specific endonuclease that nicks DNA adjacent to dimers, while strand breaks were measured using an alkaline unwinding assay. The induction efficiencies of both lesions declined with increasing wavelength; however, the decrease in strand break induction was not as rapid as that of dimer induction. The ratio of strand breaks to dimers following cell exposure to 254 or 369 nm radiation was, respectively, 1.8 x 10/sup -4/ or 0.19. The kinetics of dimer repair as well as the size of repair synthesized patches remained constant with increasing wavelength, indicating a similar repair mechanism for dimers induced by all wavelengths tested. However, consistent with the detected decline in dimer induction with increasing wavelength the proportion of dimer repair to total DNA repair decreased with increasing wavelength. The efficiency of cell killing, determined using chlonagenic survival assays, dropped rapidly, but not as rapidly as that of dimer induction, with increasing wavelength. In addition, dimer repair deficient xeroderma pigmentosum cells became less lethally hypersensitive with increasing wavelength. These data suggest a decline in dimer induced cell lethality and the existence of non-dimer lethal lesions at longer wavelengths.

  5. DNA methylation reprogramming and DNA repair in the mouse zygote.

    PubMed

    Lepikhov, Konstantin; Wossidlo, Mark; Arand, Julia; Walter, Joern

    2010-01-01

    Here, we summarize current knowledge about epigenetic reprogramming during mammalian preimplantation development, as well as the potential mechanisms driving these processes. We will particularly focus on changes taking place in the zygote, where the paternally derived DNA and chromatin undergo the most striking alterations, such as replacement of protamines by histones, histone modifications and active DNA demethylation. The putative mechanisms of active paternal DNA demethylation have been studied for over a decade, accumulating a lot of circumstantial evidence for enzymatic activities provided by the oocyte, protection of the maternal genome against such activities and possible involvement of DNA repair. We will discuss the various facets of dynamic epigenetic changes related to DNA methylation with an emphasis on the putative involvement of DNA repair in DNA demethylation.

  6. The multifunctional DNA repair/redox enzyme Ape1/Ref-1 promotes survival of neurons after oxidative stress.

    PubMed

    Vasko, Michael R; Guo, Chunlu; Kelley, Mark R

    2005-03-02

    exposure to various concentrations of H2O2. The C65A repair competent/redox incompetent Ape1 when expressed in the hippocampal and sensory cells conferred only partial protection on the cells. These data support the notion that both of functions of Ape1, redox and repair are necessary for optimal levels of neuronal cell survival.

  7. Repair of DNA-containing pyrimidine dimers

    SciTech Connect

    Grossman, L.; Caron, P.R.; Mazur, S.J.; Oh, E.Y.

    1988-08-01

    Ultraviolet light-induced pyrimidine dimers in DNA are recognized and repaired by a number of unique cellular surveillance systems. The most direct biochemical mechanism responding to this kind of genotoxicity involves direct photoreversal by flavin enzymes that specifically monomerize pyrimidine:pyrimidine dimers monophotonically in the presence of visible light. Incision reactions are catalyzed by a combined pyrimidine dimer DNA-glycosylase:apyrimidinic endonuclease found in some highly UV-resistant organisms. At a higher level of complexity, Escherichia coli has a uvr DNA repair system comprising the UvrA, UvrB, and UvrC proteins responsible for incision. There are several preincision steps governed by this pathway, which includes an ATP-dependent UvrA dimerization reaction required for UvrAB nucleoprotein formation. This complex formation driven by ATP binding is associated with localized topological unwinding of DNA. This same protein complex can catalyze an ATPase-dependent 5'----3'-directed strand displacement of D-loop DNA or short single strands annealed to a single-stranded circular or linear DNA. This putative translocational process is arrested when damaged sites are encountered. The complex is now primed for dual incision catalyzed by UvrC. The remainder of the repair process involves UvrD (helicase II) and DNA polymerase I for a coordinately controlled excision-resynthesis step accompanied by UvrABC turnover. Furthermore, it is proposed that levels of repair proteins can be regulated by proteolysis. UvrB is converted to truncated UvrB* by a stress-induced protease that also acts at similar sites on the E. coli Ada protein. Although UvrB* can bind with UvrA to DNA, it cannot participate in helicase or incision reactions. It is also a DNA-dependent ATPase.21 references.

  8. The RecQ DNA helicases in DNA Repair

    PubMed Central

    Bernstein, Kara A.; Gangloff, Serge; Rothstein, Rodney

    2014-01-01

    The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent data have shown that the RecQ helicases function during two distinct steps during DNA repair; DNA end resection and resolution of double Holliday junctions (dHJs). RecQ functions in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication, meiosis and at specific genomic loci such as telomeres. PMID:21047263

  9. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  10. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  11. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  12. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  13. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  14. Transcription-coupled DNA repair in prokaryotes.

    PubMed

    Ganesan, Ann; Spivak, Graciela; Hanawalt, Philip C

    2012-01-01

    Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling factor, Mfd. This protein recruits the NER lesion-recognition factor UvrA, and then dissociates from the DNA. UvrA binds UvrB, and the assembled UvrAB* complex initiates repair. In mutants lacking active Mfd, TCR is absent. A gene transcribed by the bacteriophage T7 RNA polymerase in E. coli also requires Mfd for TCR. The CSB protein (missing or defective in cells of patients with Cockayne syndrome, complementation group B) is essential for TCR in humans. CSB and its homologs in higher eukaryotes are likely functional equivalents of Mfd. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Early days of DNA repair: discovery of nucleotide excision repair and homology-dependent recombinational repair.

    PubMed

    Rupp, W Dean

    2013-12-13

    The discovery of nucleotide excision repair in 1964 showed that DNA could be repaired by a mechanism that removed the damaged section of a strand and replaced it accurately by using the remaining intact strand as the template. This result showed that DNA could be actively metabolized in a process that had no precedent. In 1968, experiments describing postreplication repair, a process dependent on homologous recombination, were reported. The authors of these papers were either at Yale University or had prior Yale connections. Here we recount some of the events leading to these discoveries and consider the impact on further research at Yale and elsewhere.

  16. Nobel Recognizes Seminal Work in DNA Repair.

    PubMed

    2015-12-01

    Three scientists will share this year's Nobel Prize in Chemistry for pioneering research that established the inherent instability of DNA and the cellular mechanisms underlying its repair. Their discoveries of how living cells function have aided in developing new cancer therapies.

  17. Flavonoids and DNA Repair in Prostate Cancer

    DTIC Science & Technology

    2004-12-01

    responsible to fill the gap created by the excision of 8-OHdG. There is in vitro evidence that some flavonoids such as myricetin and baicalin will...myricetin. Methods Enzymol., 335, 308-316. 4. Chen,X., Nishida,H., and Konishi,T. (2003) Baicalin promoted the repair of DNA single strand breakage caused by

  18. Electrically monitoring DNA repair by photolyase

    NASA Astrophysics Data System (ADS)

    DeRosa, Maria C.; Sancar, Aziz; Barton, Jacqueline K.

    2005-08-01

    Cyclobutane pyrimidine dimers are the major DNA photoproducts produced upon exposure to UV radiation. If left unrepaired, these lesions can lead to replication errors, mutation, and cell death. Photolyase is a light-activated flavoenzyme that binds to pyrimidine dimers in DNA and repairs them in a reaction triggered by electron transfer from the photoexcited flavin cofactor to the dimer. Using gold electrodes modified with DNA duplexes containing a cyclobutane thymine dimer (T<>T), here we probe the electrochemistry of the flavin cofactor in Escherichia coli photolyase. Cyclic and square-wave voltammograms of photolyase deposited on these electrodes show a redox signal at 40 mV versus normal hydrogen electrode, consistent with electron transfer to and from the flavin in the DNA-bound protein. This signal is dramatically attenuated on surfaces where the π-stacking of the DNA bases is perturbed by the presence of an abasic site below the T<>T, an indication that the redox pathway is DNA-mediated. DNA repair can, moreover, be monitored electrically. Exposure of photolyase on T<>T-damaged DNA films to near-UV/blue light leads to changes in the flavin signal consistent with repair, as confirmed by parallel HPLC experiments. These results demonstrate the exquisite sensitivity of DNA electrochemistry to perturbations in base pair stacking and the applicability of this chemistry to probe reactions of proteins with DNA. Author contributions: M.C.D. and J.K.B. designed research; M.C.D. performed research; A.S. contributed new reagents/analytic tools; M.C.D. analyzed data; and M.C.D. and J.K.B. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: T<>T, thymine dimer; CT, charge transport.

  19. Databases and Bioinformatics Tools for the Study of DNA Repair

    PubMed Central

    Milanowska, Kaja; Rother, Kristian; Bujnicki, Janusz M.

    2011-01-01

    DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions. PMID:22091405

  20. Influence of calorie reduction on DNA repair capacity of human peripheral blood mononuclear cells.

    PubMed

    Matt, Katja; Burger, Katharina; Gebhard, Daniel; Bergemann, Jörg

    2016-03-01

    Caloric restrictive feeding prolongs the lifespan of a variety of model organisms like rodents and invertebrates. It has been shown that caloric restriction reduces age-related as well as overall-mortality, reduces oxidative stress and influences DNA repair ability positively. There are numerous studies underlining this, but fewer studies involving humans exist. To contribute to a better understanding of the correlation of calorie reduction and DNA repair in humans, we adapted the host cell reactivation assay to an application with human peripheral blood mononuclear cells. Furthermore, we used this reliable and reproducible assay to research the influence of a special kind of calorie reduction, namely F. X. Mayr therapy, on DNA repair capacity. We found a positive effect in all persons with low pre-existing DNA repair capacity. In individuals with normal pre-existing DNA repair capacity, no effect on DNA repair capacity was detectable. Decline of DNA repair, accumulation of oxidative DNA damages, mitochondrial dysfunction, telomere shortening as well as caloric intake are widely thought to contribute to aging. With regard to that, our results can be considered as a strong indication that calorie reduction may support DNA repair processes and thus contribute to a healthier aging.

  1. The Impact of Base Excision DNA Repair in Age-Related Neurodegenerative Diseases

    PubMed Central

    Leandro, Giovana S.; Sykora, Peter; Bohr, Vilhelm A.

    2017-01-01

    The aging process and several age-related neurodegenerative disorders have been linked to elevated levels of DNA damage induced by ROS and deficiency in DNA repair mechanisms. DNA damage induced by ROS is a byproduct of cellular respiration and accumulation of damage over time, is a fundamental aspect of a main theory of aging. Mitochondria have a pivotal role in generating cellular oxidative stress, and mitochondrial dysfunction has been associated with several diseases. DNA base excision repair is considered the major pathway for repair of oxidized bases in DNA both in the nuclei and in mitochondria, and in neurons this mechanism is particularly important because non-diving cells have limited back-up DNA repair mechanisms. An association between elevated oxidative stress and a decrease in BER is strongly related to the aging process and has special relevance in age-related neurodegenerative diseases. Here, we review the role of DNA repair in aging, focusing on the implications of the DNA base excision repair pathways and how alterations in expression of these DNA repair proteins are related to the aging process and to age-related neurodegenerative diseases. PMID:26255938

  2. DNA repair mechanisms and human cytomegalovirus (HCMV) infection.

    PubMed

    Smolarz, Beata; Wilczyński, Jan; Nowakowska, Dorota

    2015-05-01

    Herpesvirus infections, such as those induced by human cytomegalovirus (HCMV), induce specific DNA damages. DNA damages can lead to cell mutation, death, apoptosis and immune system activation. Various types of DNA damage are repaired through multiple repair pathways, such as base excision, nucleotide excision, homologous recombination and nonhomologous end joining. Changes in the activity of DNA repair proteins during viral infection can cause disturbances in the DNA repair system and change its mechanisms. This report reviews results from studies, assaying a DNA repair system in HCMV infection.

  3. Energy and Technology Review: Unlocking the mysteries of DNA repair

    SciTech Connect

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  4. A history of the DNA repair and mutagenesis field: The discovery of base excision repair.

    PubMed

    Friedberg, Errol C

    2016-01-01

    This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases.

  5. Importance of DNA repair in tumor suppression

    NASA Astrophysics Data System (ADS)

    Brumer, Yisroel; Shakhnovich, Eugene I.

    2004-12-01

    The transition from a normal to cancerous cell requires a number of highly specific mutations that affect cell cycle regulation, apoptosis, differentiation, and many other cell functions. One hallmark of cancerous genomes is genomic instability, with mutation rates far greater than those of normal cells. In microsatellite instability (MIN tumors), these are often caused by damage to mismatch repair genes, allowing further mutation of the genome and tumor progression. These mutation rates may lie near the error catastrophe found in the quasispecies model of adaptive RNA genomes, suggesting that further increasing mutation rates will destroy cancerous genomes. However, recent results have demonstrated that DNA genomes exhibit an error threshold at mutation rates far lower than their conservative counterparts. Furthermore, while the maximum viable mutation rate in conservative systems increases indefinitely with increasing master sequence fitness, the semiconservative threshold plateaus at a relatively low value. This implies a paradox, wherein inaccessible mutation rates are found in viable tumor cells. In this paper, we address this paradox, demonstrating an isomorphism between the conservatively replicating (RNA) quasispecies model and the semiconservative (DNA) model with post-methylation DNA repair mechanisms impaired. Thus, as DNA repair becomes inactivated, the maximum viable mutation rate increases smoothly to that of a conservatively replicating system on a transformed landscape, with an upper bound that is dependent on replication rates. On a specific single fitness peak landscape, the repair-free semiconservative system is shown to mimic a conservative system exactly. We postulate that inactivation of post-methylation repair mechanisms is fundamental to the progression of a tumor cell and hence these mechanisms act as a method for the prevention and destruction of cancerous genomes.

  6. Oxidized nucleotide insertion by pol β confounds ligation during base excision repair

    PubMed Central

    Çağlayan, Melike; Horton, Julie K.; Dai, Da-Peng; Stefanick, Donna F.; Wilson, Samuel H.

    2017-01-01

    Oxidative stress in cells can lead to accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized purine nucleotides can be inserted into DNA during replication and repair. The main pathway for correcting oxidized bases in DNA is base excision repair (BER), and in vertebrates DNA polymerase β (pol β) provides gap filling and tailoring functions. Here we report that the DNA ligation step of BER is compromised after pol β insertion of oxidized purine nucleotides into the BER intermediate in vitro. These results suggest the possibility that BER mediated toxic strand breaks are produced in cells under oxidative stress conditions. We observe enhanced cytotoxicity in oxidizing-agent treated pol β expressing mouse fibroblasts, suggesting formation of DNA strand breaks under these treatment conditions. Increased cytotoxicity following MTH1 knockout or treatment with MTH1 inhibitor suggests the oxidation of precursor nucleotides. PMID:28067232

  7. Label-free and selective photoelectrochemical detection of chemical DNA methylation damage using DNA repair enzymes.

    PubMed

    Wu, Yiping; Zhang, Bintian; Guo, Liang-Hong

    2013-07-16

    Exogenous chemicals may produce DNA methylation that is potentially toxic to living systems. Methylated DNA bases are difficult to detect with biosensors because the methyl group is small and chemically inert. In this report, a label-free photoelectrochemical sensor was developed for the selective detection of chemically methylated bases in DNA films. The sensor employed two DNA repair enzymes, human alkyladenine DNA glycosylase and human apurinic/apyrimidinic endonuclease, to convert DNA methylation sites in DNA films on indium tin oxide electrodes into strand breaks. A DNA intercalator, Ru(bpy)2(dppz)(2+) (bpy=2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) was then used as the photoelectrochemical signal indicator to detect the DNA strand breaks. Its photocurrent signal was found to correlate inversely with the amount of 3-methyladenines (metAde) produced with a methylating agent, methylmethane sulfonate (MMS). The sensor detected the methylated bases produced with as low as 1 mM MMS, at which concentration the amount of metAde on the sensor surface was estimated to be 0.5 pg, or 1 metAde in 1.6 × 10(5) normal bases. Other DNA base modification products, such as 5-methylcytosine and DNA adducts with ethyl and styrene groups did not attenuate the photocurrent, demonstrating good selectivity of the sensor. This strategy can be utilized to develop sensors for the detection of other modified DNA bases with specific DNA repair enzymes.

  8. Stability of nucleosome placement in newly repaired regions of DNA

    SciTech Connect

    Nissen, K.A.; Lan, S.Y.; Smerdon, M.J.

    1986-07-05

    Rearrangements of chromatin structure during excision repair of UV-damaged DNA appear to involve unfolding of nucleosomal DNA while repair is taking place, followed by refolding of this DNA into a native nucleosome structure. Recently, we found that repair patches are not distributed uniformly along the DNA in nucleosome core particles immediately following their refolding into nucleosomes. Therefore, the distribution of repair patches in nucleosome core DNA was used to monitor the stability of nucleosome placement in these regions. Our results indicate that in nondividing human cells undergoing excision repair there is a slow change in the positioning of nucleosomes in newly repaired regions of chromatin, resulting in the eventual randomization of repair patches in nucleosome core DNA. Furthermore, the nonrandom placement of nucleosomes observed just after the refolding event is not re-established during DNA replication. Possible mechanisms for this change in nucleosome placement along the DNA are discussed.

  9. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects.

    PubMed

    Dizdaroglu, Miral; Kirkali, Güldal; Jaruga, Pawel

    2008-12-15

    Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA-protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8-OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines

  10. Envisioning the molecular choreography of DNA base excision repair.

    PubMed

    Parikh, S S; Mol, C D; Hosfield, D J; Tainer, J A

    1999-02-01

    Recent breakthroughs integrate individual DNA repair enzyme structures, biochemistry and biology to outline the structural cell biology of the DNA base excision repair pathways that are essential to genome integrity. Thus, we are starting to envision how the actions, movements, steps, partners and timing of DNA repair enzymes, which together define their molecular choreography, are elegantly controlled by both the nature of the DNA damage and the structural chemistry of the participating enzymes and the DNA double helix.

  11. DNA Damage, Homology-Directed Repair, and DNA Methylation

    PubMed Central

    Angrisano, Tiziana; Morano, Annalisa; Lee, Bongyong; Pardo, Alba Di; Messina, Samantha; Iuliano, Rodolfo; Fusco, Alfredo; Santillo, Maria R; Muller, Mark T; Chiariotti, Lorenzo; Gottesman, Max E; Avvedimento, Enrico V

    2007-01-01

    To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. PMID:17616978

  12. DNA repair genes of mammalian cells

    SciTech Connect

    Thompson, L.H.; Brookman, K.W.; Salazar, E.P.; Fuscoe, J.C.; Weber, C.A.

    1985-09-27

    In the CHO cell line various mutations affecting DNA repair have been obtained. Mutants that belong to five genetic complementation groups for UV sensitivity and resemble the cells from individuals having the cancer-prone genetic disorder xeroderma pigmentosum were previously identified. Each mutant is defective in the incision step of nucleotide excision repair and hypersensitive to bulky DNA lesions. A sixth genetic complementation group for UV sensitivity has now been identified with UV27-1. These UV mutants can be divided into two subgroups; only Groups 2 and 4 are extremely sensitive to mitomycin C and other DNA cross-linking agents. The clear-cut phenotypes of the CHO mutants have allowed us to construct hybrid cells by fusion with human lymphocytes and thereby identify which human chromosomes carry genes that correct the CHO mutations. The first two mutants analyzed, UV20 (excision-repair deficient; UV Group 2) and EM9, which has very high SCE, are both corrected by chromosome 19. 46 refs., 3 figs.

  13. Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans.

    PubMed

    Hyun, Moonjung; Lee, Jihyun; Lee, Kyungjin; May, Alfred; Bohr, Vilhelm A; Ahn, Byungchan

    2008-03-01

    DNA repair is an important mechanism by which cells maintain genomic integrity. Decline in DNA repair capacity or defects in repair factors are thought to contribute to premature aging in mammals. The nematode Caenorhabditis elegans is a good model for studying longevity and DNA repair because of key advances in understanding the genetics of aging in this organism. Long-lived C. elegans mutants have been identified and shown to be resistant to oxidizing agents and UV irradiation, suggesting a genetically determined correlation between DNA repair capacity and life span. In this report, gene-specific DNA repair is compared in wild-type C. elegans and stress-resistant C. elegans mutants for the first time. DNA repair capacity is higher in long-lived C. elegans mutants than in wild-type animals. In addition, RNAi knockdown of the nucleotide excision repair gene xpa-1 increased sensitivity to UV and reduced the life span of long-lived C. elegans mutants. These findings support that DNA repair capacity correlates with longevity in C. elegans.

  14. Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans

    PubMed Central

    Hyun, Moonjung; Lee, Jihyun; Lee, Kyungjin; May, Alfred; Bohr, Vilhelm A.; Ahn, Byungchan

    2008-01-01

    DNA repair is an important mechanism by which cells maintain genomic integrity. Decline in DNA repair capacity or defects in repair factors are thought to contribute to premature aging in mammals. The nematode Caenorhabditis elegans is a good model for studying longevity and DNA repair because of key advances in understanding the genetics of aging in this organism. Long-lived C. elegans mutants have been identified and shown to be resistant to oxidizing agents and UV irradiation, suggesting a genetically determined correlation between DNA repair capacity and life span. In this report, gene-specific DNA repair is compared in wild-type C. elegans and stress-resistant C. elegans mutants for the first time. DNA repair capacity is higher in long-lived C. elegans mutants than in wild-type animals. In addition, RNAi knockdown of the nucleotide excision repair gene xpa-1 increased sensitivity to UV and reduced the life span of long-lived C. elegans mutants. These findings support that DNA repair capacity correlates with longevity in C. elegans. PMID:18203746

  15. The role of DNA damage repair in aging of adult stem cells.

    PubMed

    Kenyon, Jonathan; Gerson, Stanton L

    2007-01-01

    DNA repair maintains genomic stability and the loss of DNA repair capacity results in genetic instability that may lead to a decline of cellular function. Adult stem cells are extremely important in the long-term maintenance of tissues throughout life. They regenerate and renew tissues in response to damage and replace senescent terminally differentiated cells that no longer function. Oxidative stress, toxic byproducts, reduced mitochondrial function and external exposures all damage DNA through base modification or mis-incorporation and result in DNA damage. As in most cells, this damage may limit the survival of the stem cell population affecting tissue regeneration and even longevity. This review examines the hypothesis that an age-related loss of DNA damage repair pathways poses a significant threat to stem cell survival and longevity. Normal stem cells appear to have strict control of gene expression and DNA replication whereas stem cells with loss of DNA repair may have altered patterns of proliferation, quiescence and differentiation. Furthermore, stem cells with loss of DNA repair may be susceptible to malignant transformation either directly or through the emergence of cancer-prone stem cells. Human diseases and animal models of loss of DNA repair provide longitudinal analysis of DNA repair processes in stem cell populations and may provide links to the physiology of aging.

  16. The RecQ DNA helicases in DNA repair.

    PubMed

    Bernstein, Kara A; Gangloff, Serge; Rothstein, Rodney

    2010-01-01

    The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent experiments have shown that the RecQ helicases function during distinct steps during DNA repair; DNA end resection, displacement-loop (D-loop) processing, branch migration, and resolution of double Holliday junctions (dHJs). RecQ function in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication and meiosis, as well as at specific genomic loci such as telomeres.

  17. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  18. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  19. Defective DNA strand break repair after DNA damage in prostate cancer cells: implications for genetic instability and prostate cancer progression.

    PubMed

    Fan, Rong; Kumaravel, Tirukalikundram S; Jalali, Farid; Marrano, Paula; Squire, Jeremy A; Bristow, Robert G

    2004-12-01

    Together with cell cycle checkpoint control, DNA repair plays a pivotal role in protecting the genome from endogenous and exogenous DNA damage. Although increased genetic instability has been associated with prostate cancer progression, the relative role of DNA double-strand break repair in malignant versus normal prostate epithelial cells is not known. In this study, we determined the RNA and protein expression of a series of DNA double-strand break repair genes in both normal (PrEC-epithelial and PrSC-stromal) and malignant (LNCaP, DU-145, and PC-3) prostate cultures. Expression of genes downstream of ATM after ionizing radiation-induced DNA damage reflected the p53 status of the cell lines. In the malignant prostate cell lines, mRNA and protein levels of the Rad51, Xrcc3, Rad52, and Rad54 genes involved in homologous recombination were elevated approximately 2- to 5-fold in comparison to normal PrEC cells. The XRCC1, DNA polymerase-beta and -delta proteins were also elevated. There were no consistent differences in gene expression relating to the nonhomologous end-joining pathway. Despite increased expression of DNA repair genes, malignant prostate cancer cells had defective repair of DNA breaks, alkali-labile sites, and oxidative base damage. Furthermore, after ionizing radiation and mitomycin C treatment, chromosomal aberration assays confirmed that malignant prostate cells had defective DNA repair. This discordance between expression and function of DNA repair genes in malignant prostate cancer cells supports the hypothesis that prostate tumor progression may reflect aberrant DNA repair. Our findings support the development of novel treatment strategies designed to reinstate normal DNA repair in prostate cancer cells.

  20. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  1. Targeting DNA repair pathways for cancer treatment: what's new?

    PubMed

    Kelley, Mark R; Logsdon, Derek; Fishel, Melissa L

    2014-05-01

    Disruptions in DNA repair pathways predispose cells to accumulating DNA damage. A growing body of evidence indicates that tumors accumulate progressively more mutations in DNA repair proteins as cancers progress. DNA repair mechanisms greatly affect the response to cytotoxic treatments, so understanding those mechanisms and finding ways to turn dysregulated repair processes against themselves to induce tumor death is the goal of all DNA repair inhibition efforts. Inhibition may be direct or indirect. This burgeoning field of research is replete with promise and challenge, as more intricacies of each repair pathway are discovered. In an era of increasing concern about healthcare costs, use of DNA repair inhibitors can prove to be highly effective stewardship of R&D resources and patient expenses.

  2. Ancient bacteria show evidence of DNA repair

    PubMed Central

    Johnson, Sarah Stewart; Hebsgaard, Martin B.; Christensen, Torben R.; Mastepanov, Mikhail; Nielsen, Rasmus; Munch, Kasper; Brand, Tina; Gilbert, M. Thomas P.; Zuber, Maria T.; Bunce, Michael; Rønn, Regin; Gilichinsky, David; Froese, Duane; Willerslev, Eske

    2007-01-01

    Recent claims of cultivable ancient bacteria within sealed environments highlight our limited understanding of the mechanisms behind long-term cell survival. It remains unclear how dormancy, a favored explanation for extended cellular persistence, can cope with spontaneous genomic decay over geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long-term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability. PMID:17728401

  3. DNA repair in human fibroblasts treated with a combination of chemicals

    SciTech Connect

    Ahmed, F.E.; Setlow, R.B.

    1981-07-01

    Excision repair of DNA damage was measured by the photolysis of bromodeoxyuridine incorporated during repair in normal human and xeroderma pigmentosum group C fibroblasts (XP C) treated with a combination of the carcinogens N-acetoxy-2-acetylamino fluorene (AAAF), and 4-nitroquinoline 1-oxide (4NQO). Repair was additive in normal and XP C cells treated with AAAF plus 4NQO, indicating that there are different rate limiting steps for removal of 4NQO and AAAF lesions.

  4. Unraveling DNA repair in human: molecular mechanisms and consequences of repair defect.

    PubMed

    Tuteja, N; Tuteja, R

    2001-01-01

    Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders.

  5. DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib.

    PubMed

    Peacock, Matthew; Brem, Reto; Macpherson, Peter; Karran, Peter

    2014-12-16

    Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib-a BRAF inhibitor used to treat metastatic melanoma-are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib

    PubMed Central

    Peacock, Matthew; Brem, Reto; Macpherson, Peter; Karran, Peter

    2014-01-01

    Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib—a BRAF inhibitor used to treat metastatic melanoma—are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage. PMID:25414333

  7. Endonucleases involved in repair and recombination of DNA

    SciTech Connect

    Linn, S.M.

    1988-01-01

    When our DOE support began as a contract in 1970, from the AEC, it was our intent to begin to understand how several enzymes which we had detected in E. coli might be involved in DNA recombination and repair. These studies led to our characterization of the recBC DNase (exonuclease 5) as well as endonucleases 3 and 5. As research supported by that contract progressed, we expanded our interests to include mammalian enzymes involved in base excision repair, most notably AP endonucleases, DNA glycosylases and DNA purine insertase. A logical next step involved the inclusion of DNA polymerases into our studies of repair. Current progress includes research on: isolation of xeroderma pigmentosum correction factors; isolation of ultraviolet (UV) endonucleases; mitochondrial repair enzymes; alkylation damage repair; comparisons of repair in normal diploid, transformed, and non-mitotic cells; and repair reactions by DNA polymerases.

  8. DNA polymerases and repair synthesis in NER in human cells.

    PubMed

    Lehmann, Alan R

    2011-07-15

    The late steps of nucleotide excision repair, following incisions to remove the damaged section of DNA, comprise repair synthesis and ligation. In vitro and in vivo studies have shown the size of the repaired patch to be about 30 nucleotides. In vitro studies implicated the replicative polymerases in repair synthesis, but recent in vivo data have shown that several DNA polymerases and ligases are involved in these steps in human cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Emerging roles for histone modifications in DNA excision repair.

    PubMed

    Mao, Peng; Wyrick, John J

    2016-11-01

    DNA repair is critical to maintain genome stability. In eukaryotic cells, DNA repair is complicated by the packaging of the DNA 'substrate' into chromatin. DNA repair pathways utilize different mechanisms to overcome the barrier presented by chromatin to efficiently locate and remove DNA lesions in the genome. DNA excision repair pathways are responsible for repairing a majority of DNA lesions arising in the genome. Excision repair pathways include nucleotide excision repair (NER) and base excision repair (BER), which repair bulky and non-bulky DNA lesions, respectively. Numerous studies have suggested that chromatin inhibits both NER and BER in vitro and in vivo Growing evidence demonstrates that histone modifications have important roles in regulating the activity of NER and BER enzymes in chromatin. Here, we will discuss the roles of different histone modifications and the corresponding modifying enzymes in DNA excision repair, highlighting the role of yeast as a model organism for many of these studies. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond.

    PubMed

    Markkanen, Enni; Meyer, Urs; Dianov, Grigory L

    2016-06-01

    Schizophrenia and autism spectrum disorder (ASD) are multi-factorial and multi-symptomatic psychiatric disorders, each affecting 0.5%-1% of the population worldwide. Both are characterized by impairments in cognitive functions, emotions and behaviour, and they undermine basic human processes of perception and judgment. Despite decades of extensive research, the aetiologies of schizophrenia and ASD are still poorly understood and remain a significant challenge to clinicians and scientists alike. Adding to this unsatisfactory situation, patients with schizophrenia or ASD often develop a variety of peripheral and systemic disturbances, one prominent example of which is cancer, which shows a direct (but sometimes inverse) comorbidity in people affected with schizophrenia and ASD. Cancer is a disease characterized by uncontrolled proliferation of cells, the molecular origin of which derives from mutations of a cell's DNA sequence. To counteract such mutations and repair damaged DNA, cells are equipped with intricate DNA repair pathways. Oxidative stress, oxidative DNA damage, and deficient repair of oxidative DNA lesions repair have been proposed to contribute to the development of schizophrenia and ASD. In this article, we summarize the current evidence of cancer comorbidity in these brain disorders and discuss the putative roles of oxidative stress, DNA damage and DNA repair in the aetiopathology of schizophrenia and ASD.

  11. DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond

    PubMed Central

    Markkanen, Enni; Meyer, Urs; Dianov, Grigory L.

    2016-01-01

    Schizophrenia and autism spectrum disorder (ASD) are multi-factorial and multi-symptomatic psychiatric disorders, each affecting 0.5%–1% of the population worldwide. Both are characterized by impairments in cognitive functions, emotions and behaviour, and they undermine basic human processes of perception and judgment. Despite decades of extensive research, the aetiologies of schizophrenia and ASD are still poorly understood and remain a significant challenge to clinicians and scientists alike. Adding to this unsatisfactory situation, patients with schizophrenia or ASD often develop a variety of peripheral and systemic disturbances, one prominent example of which is cancer, which shows a direct (but sometimes inverse) comorbidity in people affected with schizophrenia and ASD. Cancer is a disease characterized by uncontrolled proliferation of cells, the molecular origin of which derives from mutations of a cell’s DNA sequence. To counteract such mutations and repair damaged DNA, cells are equipped with intricate DNA repair pathways. Oxidative stress, oxidative DNA damage, and deficient repair of oxidative DNA lesions repair have been proposed to contribute to the development of schizophrenia and ASD. In this article, we summarize the current evidence of cancer comorbidity in these brain disorders and discuss the putative roles of oxidative stress, DNA damage and DNA repair in the aetiopathology of schizophrenia and ASD. PMID:27258260

  12. HDAC inhibitors: roles of DNA damage and repair.

    PubMed

    Robert, Carine; Rassool, Feyruz V

    2012-01-01

    Histone deacetylase inhibitors (HDACis) increase gene expression through induction of histone acetylation. However, it remains unclear whether specific gene expression changes determine the apoptotic response following HDACis administration. Herein, we discuss evidence that HDACis trigger in cancer and leukemia cells not only widespread histone acetylation but also actual increases in reactive oxygen species (ROS) and DNA damage that are further increased following treatment with DNA-damaging chemotherapies. While the origins of ROS production are not completely understood, mechanisms, including inflammation and altered antioxidant signaling, have been reported. While the generation of ROS is an explanation, at least in part, for the source of DNA damage observed with HDACi treatment, DNA damage can also be independently induced by changes in the DNA repair activity and chromatin remodeling factors. Recent development of sirtuin inhibitors (SIRTis) has shown that, similar to HDACis, these drugs induce increases in ROS and DNA damage used singly, or in combination with HDACis and other drugs. Thus, induction of apoptosis by HDACis/SIRTis may result through oxidative stress and DNA damage mechanisms in addition to direct activation of apoptosis-inducing genes. Nevertheless, while DNA damage and stress responses could be of interest as markers for clinical responses, they have yet to be validated as markers for responses to HDACi treatment in clinical trials, alone, and in combination.

  13. Comet assay to measure DNA repair: approach and applications

    PubMed Central

    Azqueta, Amaya; Slyskova, Jana; Langie, Sabine A. S.; O’Neill Gaivão, Isabel; Collins, Andrew

    2014-01-01

    Cellular repair enzymes remove virtually all DNA damage before it is fixed; repair therefore plays a crucial role in preventing cancer. Repair studied at the level of transcription correlates poorly with enzyme activity, and so assays of phenotype are needed. In a biochemical approach, substrate nucleoids containing specific DNA lesions are incubated with cell extract; repair enzymes in the extract induce breaks at damage sites; and the breaks are measured with the comet assay. The nature of the substrate lesions defines the repair pathway to be studied. This in vitro DNA repair assay has been modified for use in animal tissues, specifically to study the effects of aging and nutritional intervention on repair. Recently, the assay was applied to different strains of Drosophila melanogaster proficient and deficient in DNA repair. Most applications of the repair assay have been in human biomonitoring. Individual DNA repair activity may be a marker of cancer susceptibility; alternatively, high repair activity may result from induction of repair enzymes by exposure to DNA-damaging agents. Studies to date have examined effects of environment, nutrition, lifestyle, and occupation, in addition to clinical investigations. PMID:25202323

  14. A brief history of the DNA repair field.

    PubMed

    Friedberg, Errol C

    2008-01-01

    The history of the repair of damaged DNA can be traced to the mid-1930s. Since then multiple DNA repair mechanisms, as well as other biological responses to DNA damage, have been discovered and their regulation has been studied. This article briefly recounts the early history of this field.

  15. HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β

    PubMed Central

    Fang, Qingming; Inanc, Burcu; Schamus, Sandy; Wang, Xiao-hong; Wei, Leizhen; Brown, Ashley R.; Svilar, David; Sugrue, Kelsey F.; Goellner, Eva M.; Zeng, Xuemei; Yates, Nathan A.; Lan, Li; Vens, Conchita; Sobol, Robert W.

    2014-01-01

    Cellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase β (Polβ) and XRCC1 is thought to facilitate repair by recruiting Polβ to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair. Instead, the heterodimer formation is required to prevent ubiquitylation and degradation of Polβ. In contrast, the stability of the XRCC1 monomer is protected from CHIP-mediated ubiquitylation by interaction with the binding partner HSP90. In response to cellular proliferation and DNA damage, proteasome and HSP90-mediated regulation of Polβ and XRCC1 alters the DNA repair complex architecture. We propose that protein stability, mediated by DNA repair protein complex formation, functions as a regulatory mechanism for DNA repair pathway choice in the context of cell cycle progression and genome surveillance. PMID:25423885

  16. Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity.

    PubMed

    Balestrazzi, Alma; Confalonieri, Massimo; Macovei, Anca; Donà, Mattia; Carbonera, Daniela

    2011-03-01

    Crop productivity is strictly related to genome stability, an essential requisite for optimal plant growth/development. Genotoxic agents (e.g., chemical agents, radiations) can cause both chemical and structural damage to DNA. In some cases, they severely affect the integrity of plant genome by inducing base oxidation, which interferes with the basal processes of replication and transcription, eventually leading to cell death. The cell response to oxidative stress includes several DNA repair pathways, which are activated to remove the damaged bases and other lesions. Information concerning DNA repair in plants is still limited, although results from gene profiling and mutant analysis suggest possible differences in repair mechanisms between plants and other eukaryotes. The present review focuses on the base- and nucleotide excision repair (BER, NER) pathways, which operate according to the most common DNA repair rule (excision of damaged bases and replacement by the correct nucleotide), highlighting the most recent findings in plants. An update on DNA repair in organelles, chloroplasts and mitochondria is also provided. Finally, it is generally acknowledged that DNA repair plays a critical role during seed imbibition, preserving seed vigor. Despite this, only a limited number of studies, described here, dedicated to seeds are currently available.

  17. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast.

    PubMed

    Alseth, I; Eide, L; Pirovano, M; Rognes, T; Seeberg, E; Bjørås, M

    1999-05-01

    Endonuclease III from Escherichia coli is the prototype of a ubiquitous DNA repair enzyme essential for the removal of oxidized pyrimidine base damage. The yeast genome project has revealed the presence of two genes in Saccharomyces cerevisiae, NTG1 and NTG2, encoding proteins with similarity to endonuclease III. Both contain the highly conserved helix-hairpin-helix motif, whereas only one (Ntg2) harbors the characteristic iron-sulfur cluster of the endonuclease III family. We have characterized these gene functions by mutant and enzyme analysis as well as by gene expression and intracellular localization studies. Targeted gene disruption of NTG1 and NTG2 produced mutants with greatly increased spontaneous and hydrogen peroxide-induced mutation frequency relative to the wild type, and the mutation response was further increased in the double mutant. Both enzymes were found to remove thymine glycol and 2, 6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (faPy) residues from DNA with high efficiency. However, on UV-irradiated DNA, saturating concentrations of Ntg2 removed only half of the cytosine photoproducts released by Ntg1. Conversely, 5-hydroxycytosine was removed efficiently only by Ntg2. The enzymes appear to have different reaction modes, as judged from much higher affinity of Ntg2 for damaged DNA and more efficient borhydride trapping of Ntg1 to abasic sites in DNA despite limited DNA binding. Northern blot and promoter fusion analysis showed that NTG1 is inducible by cell exposure to DNA-damaging agents, whereas NTG2 is constitutively expressed. Ntg2 appears to be a nuclear enzyme, whereas Ntg1 was sorted both to the nucleus and to the mitochondria. We conclude that functions of both NTG1 and NTG2 are important for removal of oxidative DNA damage in yeast.

  18. Mechanism of DNA loading by the DNA repair helicase XPD

    PubMed Central

    Constantinescu-Aruxandei, Diana; Petrovic-Stojanovska, Biljana; Penedo, J. Carlos; White, Malcolm F.; Naismith, James H.

    2016-01-01

    The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5′ to 3′ helicase with an essential iron–sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD. PMID:26896802

  19. DNA damage and efficacy of DNA repair in patients with type 2 diabetes and coexisting colorectal cancer.

    PubMed

    Szymczak, Izabela; Sliwińska, Agnieszka; Drzewoski, Józef

    2014-01-01

     Numerous epidemiological studies have indicated that the frequency of developing certain types of cancer, including colorectal cancer (CRC), is higher in patients with type 2 diabetes. The possible causes of this association have not been fully clarified. It has been suggested that chronic hyperglycemia‑related oxidative stress leading to oxidative DNA damage and impaired DNA repair may contribute to increased risk of cancer in type 2 diabetes.  The aim of the study was to evaluate the level of DNA damage and efficacy of DNA repair in patients with CRC with and without type 2 diabetes in comparison with healthy controls.  The alkaline comet assay was used to assess the level of endogenous oxidative and H2O2‑induced DNA damage and the efficacy of DNA repair in the lymphocytes of patients with type 2 diabetes, with CRC, with type 2 diabetes and CRC, and of healthy people (a total of 32 patients).  The highest levels of endogenous oxidative and H2O2‑induced DNA damage were found in the lymphocytes of patients with type 2 diabetes and CRC. Additionally, the capacity of DNA repair was significantly decreased in patients with CRC with and without type 2 diabetes.  Our findings support the hypothesis that an increased risk of cancer in type 2 diabetes may be associated with oxidative DNA damage; however, impaired DNA repair seems to play a major role in carcinogenesis in people with and without type 2 diabetes.  

  20. The distribution of DNA damage is defined by region-specific susceptibility to DNA damage formation rather than repair differences.

    PubMed

    Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars

    2014-06-01

    The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  2. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M. ); Chen, D.S. . Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  3. Structure of the DNA repair helicase XPD.

    PubMed

    Liu, Huanting; Rudolf, Jana; Johnson, Kenneth A; McMahon, Stephen A; Oke, Muse; Carter, Lester; McRobbie, Anne-Marie; Brown, Sara E; Naismith, James H; White, Malcolm F

    2008-05-30

    The XPD helicase (Rad3 in Saccharomyces cerevisiae) is a component of transcription factor IIH (TFIIH), which functions in transcription initiation and Nucleotide Excision Repair in eukaryotes, catalyzing DNA duplex opening localized to the transcription start site or site of DNA damage, respectively. XPD has a 5' to 3' polarity and the helicase activity is dependent on an iron-sulfur cluster binding domain, a feature that is conserved in related helicases such as FancJ. The xpd gene is the target of mutation in patients with xeroderma pigmentosum, trichothiodystrophy, and Cockayne's syndrome, characterized by a wide spectrum of symptoms ranging from cancer susceptibility to neurological and developmental defects. The 2.25 A crystal structure of XPD from the crenarchaeon Sulfolobus tokodaii, presented here together with detailed biochemical analyses, allows a molecular understanding of the structural basis for helicase activity and explains the phenotypes of xpd mutations in humans.

  4. Structure of the DNA repair helicase XPD

    PubMed Central

    Liu, Huanting; Rudolf, Jana; Johnson, Kenneth A; McMahon, Stephen A; Oke, Muse; Carter, Lester; McRobbie, Anne-Marie; Brown, Sara E; Naismith, James H; White, Malcolm F

    2012-01-01

    Summary The XPD helicase (Rad3 in Saccharomyces cerevisiae) is a component of transcription factor IIH (TFIIH), which functions in transcription initiation and Nucleotide Excision Repair in eukaryotes, catalysing DNA duplex opening localised to the transcription start site or site of DNA damage, respectively. XPD has a 5′ to 3′ polarity and the helicase activity is dependent on an iron-sulfur cluster binding domain, a feature that is conserved in related helicases such as FancJ. The xpd gene is the target of mutation in patients with xeroderma pigentosum, trichothiodystrophy and Cockayne’s syndrome, characterised by a wide spectrum of symptoms ranging from cancer susceptibility to neurological and developmental defects. The 2.25 Å crystal structure of XPD from the crenarchaeon Sulfolobus tokodaii, presented here together with detailed biochemical analyses, allows a molecular understanding of the structural basis for helicase activity and explains the phenotypes of xpd mutations in humans. PMID:18510925

  5. Heat shock proteins and DNA repair mechanisms: an updated overview.

    PubMed

    Sottile, Mayra L; Nadin, Silvina B

    2017-09-26

    Heat shock proteins (HSPs), also known as molecular chaperones, participate in important cellular processes, such as protein aggregation, disaggregation, folding, and unfolding. HSPs have cytoprotective functions that are commonly explained by their antiapoptotic role. Their involvement in anticancer drug resistance has been the focus of intense research efforts, and the relationship between HSP induction and DNA repair mechanisms has been in the spotlight during the past decades. Because DNA is permanently subject to damage, many DNA repair pathways are involved in the recognition and removal of a diverse array of DNA lesions. Hence, DNA repair mechanisms are key to maintain genome stability. In addition, the interactome network of HSPs with DNA repair proteins has become an exciting research field and so their use as emerging targets for cancer therapy. This article provides a historical overview of the participation of HSPs in DNA repair mechanisms as part of their molecular chaperone capabilities.

  6. The 'Pushmi-Pullyu' of DNA REPAIR: Clinical Synthetic Lethality.

    PubMed

    Ivy, S Percy; de Bono, Johann; Kohn, Elise C

    2016-11-01

    Maintenance of genomic integrity is critical for adaptive survival in the face of endogenous and exogenous environmental stress. The loss of stability and fidelity in the genome caused by cancer and cancer treatment provides therapeutic opportunities to leverage the critical balance between DNA injury and repair. Blocking repair and pushing damaged DNA through the cell cycle using therapeutic inhibitors exemplify the 'pushmi-pullyu' effect of disrupted DNA repair. DNA repair inhibitors (DNARi) can be separated into five biofunctional categories: sensors, mediators, transducers, effectors, and collaborators that recognize DNA damage, propagate injury DNA messages, regulate cell cycle checkpoints, and alter the microenvironment. The result is cancer therapeutics that takes advantage of clinical synthetic lethality, resulting in selective tumor cell kill. Here, we review recent considerations related to DNA repair and new DNARi agents and organize those findings to address future directions and clinical opportunities. Published by Elsevier Inc.

  7. Site-specific DNA alkylation and repair

    SciTech Connect

    Ezaz-Nikpay, K.

    1993-01-01

    This thesis describes a general method for the site-specific insertion of modified nucleotides into DNA and the application of this method to the study of N7-methyl-2[prime]-deoxyguanosine (m[sup 7]dG) in DNA. This thesis describes the chemical basis for the gap insertion/ligation method (GIL) and the use of this method to generate circularly permuted oligonucleotides. In this method, the synthesis of a single oligonucleotide leads to the formation of a double-stranded multimer with periodically-occurring gaps upon base-pairing in solution. The sequential action of a DNA polymerase and a DNA ligase leads to the insertion of a 2[prime]-deoxynucleoside-5[prime]-triphosphate into the gap, and formation of covalently-closed DNA. Finally, restriction endonucleases are used to generate oligonucleotides which contain the introduced nucleotide at symmetrically-related positions. The author describes the use of the GIL method for the insertion of m[sup 7]dG into various oligonucleotides and the Dickerson/Drew dodecamer respectively. The Dickerson/Drew dodecamer was chosen because it has been extensively studies both in its native and adduct bearing forms. The author describes the biophysical characterization of m[sup 7]dG in DNA, and concludes that the probe moiety in dimethyl-sulfate and template-directed interference footprinting of protein-DNA complexes in m[sup 7]dG and not a product of its decomposition. Further studies of m[sub 7]dG in DNA reveal that over long periods of time, the primary product of decomposition is an apurinic site. This dissertation describes the large-scale synthesis of the Dickerson/Drew dodecamer, and the characterization of its effect on DNA structure using nuclear magnetic resonance spectroscopy. The final chapter describes the overproduction, purification and crystallization of N3-methyladenine DNA glycosylase II (AlkA). AlkA is known to repair m[sup 7]dG residues in DNA.

  8. Participation of DNA repair in the response to 5-fluorouracil

    PubMed Central

    Wyatt, Michael D.; Wilson, David M.

    2008-01-01

    The anti-metabolite 5-fluorouracil (5-FU) is employed clinically to manage solid tumors including colorectal and breast cancer. Intracellular metabolites of 5-FU can exert cytotoxic effects via inhibition of thymidylate synthetase, or through incorporation into RNA and DNA, events that ultimately activate apoptosis. In this review, we cover the current data implicating DNA repair processes in cellular responsiveness to 5-FU treatment. Evidence points to roles for base excision repair (BER) and mismatch repair (MMR). However, mechanistic details remain unexplained, and other pathways have not been exhaustively interrogated. Homologous recombination is of particular interest, because it resolves unrepaired DNA intermediates not properly dealt with by BER or MMR. Furthermore, crosstalk among DNA repair pathways and S-phase checkpoint signaling has not been examined. Ongoing efforts aim to design approaches and reagents that (i) approximate repair capacity and (ii) mediate strategic regulation of DNA repair in order to improve the efficacy of current anti-cancer treatments. PMID:18979208

  9. Oxygen-induced changes in mitochondrial DNA and DNA repair enzymes in aging rat lens.

    PubMed

    Zhang, Yi; Ouyang, Shan; Zhang, Lan; Tang, Xianling; Song, Zhen; Liu, Ping

    2010-01-01

    The treatment of patients with hyperbaric oxygen (HBO), vitrectomy and loss of vitreous gel during aging is associated with a high risk of subsequent development of nuclear cataract. Many studies proved that oxidation is the key reason of nuclear cataract. Reactive oxygen species (ROS) are formed in mitochondria as a by-product of normal metabolism and as a consequence of exposure to environmental compounds. Therefore, mitochondrial DNA (mtDNA) is at particularly high risk of ROS-induced damage. Oxidative damage to mtDNA has been implicated as a causative factor in a wide variety of degenerative diseases and aging. However, the effect of mtDNA damage to the lens has not been studied. The goals of the study were to identify if there was increased mtDNA damage in lens when the eye were exposed to hyperoxic or hypoxic conditions and also to evaluate the changes in gene expression of mtDNA base excision repair (mtBER) enzymes. Our data have shown that the damage of mtDNA, the expression of mtBER enzymes and the level of 8-OHdG in lens increased after inspired hyperoxia, which is likely associated with oxidative stress. However, there was no effect to mtDNA and mtBER enzymes in lens after inspired hypoxia. Nuclear cataract appeared rapidly at 14 month old rats in hyperoxia group, and lens kept transparency in other groups.

  10. Nonuniform distribution of excision repair synthesis in nucleosome core DNA

    SciTech Connect

    Lan, S.Y.; Smerdon, M.J.

    1985-12-17

    We have studied the distribution in nucleosome core DNA of nucleotides incorporated by excision repair synthesis occurring immediately after UV irradiation in human cells. The differences previously observed for whole nuclei between the DNase I digestion profiles of repaired DNA (following its refolding into a nucleosome structure) and bulk DNA are obtained for isolated nucleosome core particles. Analysis of the differences obtained indicates that they could reflect a significant difference in the level of repair-incorporated nucleotides at different sites within the core DNA region. To test this possibility directly, we have used exonuclease III digestion of very homogeneous sized core particle DNA to map the distribution of repair synthesis in these regions. Results indicate that in a significant fraction of the nucleosomes the 5' and 3' ends of the core DNA are markedly enhanced in repair-incorporated nucleotides relative to the central region of the core particle. A best fit analysis indicates that a good approximation of the data is obtained for a distribution where the core DNA is uniformly labeled from the 5' end to position 62 and from position 114 to the 3' end, with the 52-base central region being devoid of repair-incorporated nucleotides. This distribution accounts for all of the quantitative differences observed previously between repaired DNA and bulk DNA following the rapid phase of nucleosome rearrangement when it is assumed that linker DNA and the core DNA ends are repaired with equal efficiency and the nucleosome structure of newly repaired DNA is identical with that of bulk chromatin. The 52-base central region that is devoid of repair synthesis contains the lowest frequency cutting sites for DNase I in vitro, as well as the only internal locations where two (rather than one) histones interact with a 10-base segment of each DNA strand.

  11. Is thymidine glycol containing DNA a substrate of E. coli DNA mismatch repair system?

    PubMed

    Perevozchikova, Svetlana A; Trikin, Roman M; Heinze, Roger J; Romanova, Elena A; Oretskaya, Tatiana S; Friedhoff, Peter; Kubareva, Elena A

    2014-01-01

    The DNA mismatch repair (MMR) system plays a crucial role in the prevention of replication errors and in the correction of some oxidative damages of DNA bases. In the present work the most abundant oxidized pyrimidine lesion, 5,6-dihydro-5,6-dihydroxythymidine (thymidine glycol, Tg) was tested for being recognized and processed by the E. coli MMR system, namely complex of MutS, MutL and MutH proteins. In a partially reconstituted MMR system with MutS-MutL-MutH proteins, G/Tg and A/Tg containing plasmids failed to provoke the incision of DNA. Tg residue in the 30-mer DNA duplex destabilized double helix due to stacking disruption with neighboring bases. However, such local structural changes are not important for E. coli MMR system to recognize this lesion. A lack of repair of Tg containing DNA could be due to a failure of MutS (a first acting protein of MMR system) to interact with modified DNA in a proper way. It was shown that Tg in DNA does not affect on ATPase activity of MutS. On the other hand, MutS binding affinities to DNA containing Tg in G/Tg and A/Tg pairs are lower than to DNA with a G/T mismatch and similar to canonical DNA. Peculiarities of MutS interaction with DNA was monitored by Förster resonance energy transfer (FRET) and fluorescence anisotropy. Binding of MutS to Tg containing DNAs did not result in the formation of characteristic DNA kink. Nevertheless, MutS homodimer orientation on Tg-DNA is similar to that in the case of G/T-DNA. In contrast to G/T-DNA, neither G/Tg- nor A/Tg-DNA was able to stimulate ADP release from MutS better than canonical DNA. Thus, Tg residue in DNA is unlikely to be recognized or processed by the E. coli MMR system. Probably, the MutS transformation to active "sliding clamp" conformation on Tg-DNA is problematic.

  12. DNA mismatch repair and the DNA damage response

    PubMed Central

    Li, Zhongdao; Pearlman, Alexander H.; Hsieh, Peggy

    2015-01-01

    This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted. PMID:26704428

  13. DNA mismatch repair and the DNA damage response.

    PubMed

    Li, Zhongdao; Pearlman, Alexander H; Hsieh, Peggy

    2016-02-01

    This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted. Published by Elsevier B.V.

  14. Viral manipulation of DNA repair and cell cycle checkpoints

    PubMed Central

    Chaurushiya, Mira S.; Weitzman, Matthew D.

    2009-01-01

    Recognition and repair of DNA damage is critical for maintaining genomic integrity and suppressing tumorigenesis. In eukaryotic cells, the sensing and repair of DNA damage are exquisitely coordinated with cell cycle progression and checkpoints, in order to prevent the propagation of damaged DNA. The carefully maintained cellular response to DNA damage is challenged by viruses, which produce a large amount of exogenous DNA during infection. Viruses also express proteins that perturb cellular DNA repair and cell cycle pathways, promoting tumorigenesis in their quest for cellular domination. This review presents an overview of strategies employed by viruses to manipulate DNA damage responses and cell cycle checkpoints as they commandeer the cell to maximize their own viral replication. Studies of viruses have identified key cellular regulators and revealed insights into molecular mechanisms governing DNA repair, cell cycle checkpoints, and transformation. PMID:19473887

  15. Princess Takamatsu Symposium on DNA Repair and Human Cancers

    PubMed Central

    Loeb, Lawrence A.; Nishimura, Susumu

    2013-01-01

    The 40th International Symposium of the Princess Takamatsu Cancer Research Fund, entitled “DNA Repair and Human Cancers” was held on November 10–12, 2009 at Hotel Grand Palace, Tokyo, Japan. The meeting focused on the role of DNA repair in preventing mutations by endogenous and exogenous DNA damage and increasing the efficacy of chemotherapeutic agents by interfering with DNA repair. The fourteen presentations by the speakers from U.S.A., four from U.K., one each from Italy, The Netherlands and France, and thirteen from Japan, covered most aspects of DNA repair spanning DNA damage, molecular structures of repair enzymes, and clinical studies on inhibition of DNA repair processes. Extensive time was reserved for discussions with the active participation of the 150 invited Japanese scientists. The choice of a symposium on DNA repair in human cancers resulted in part from the excellent basic and clinical studies that have been carried out for many years in Japan, and the general lack of recognition vs. the importance of DNA repair in understanding carcinogenesis. PMID:20460534

  16. Princess takamatsu symposium on DNA repair and human cancers.

    PubMed

    Loeb, Lawrence A; Nishimura, Susumu

    2010-06-01

    The 40th International Symposium of the Princess Takamatsu Cancer Research Fund, entitled "DNA Repair and Human Cancers," was held on November 10-12, 2009 at Hotel Grand Palace, Tokyo, Japan. The meeting focused on the role of DNA repair in preventing mutations by endogenous and exogenous DNA damage and increasing the efficacy of chemotherapeutic agents by interfering with DNA repair. The 14 presentations by the speakers from the United States, four from the United Kingdom, one each from Italy, The Netherlands, and France, and 13 from Japan, covered most aspects of DNA repair, spanning DNA damage, molecular structures of repair enzymes, and clinical studies on inhibition of DNA repair processes. Extensive time was reserved for discussions with the active participation of the 150 invited Japanese scientists. The choice of a symposium on DNA repair in human cancers resulted in part from the excellent basic and clinical studies that have been carried out for many years in Japan, and the general lack of recognition versus the importance of DNA repair in understanding carcinogenesis. Copyright 2010 AACR.

  17. DNA Repair and Genome Maintenance in Bacillus subtilis

    PubMed Central

    Lenhart, Justin S.; Schroeder, Jeremy W.; Walsh, Brian W.

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis. PMID:22933559

  18. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors.

    PubMed

    Brown, Jessica S; O'Carrigan, Brent; Jackson, Stephen P; Yap, Timothy A

    2017-01-01

    Germline aberrations in critical DNA-repair and DNA damage-response (DDR) genes cause cancer predisposition, whereas various tumors harbor somatic mutations causing defective DDR/DNA repair. The concept of synthetic lethality can be exploited in such malignancies, as exemplified by approval of poly(ADP-ribose) polymerase inhibitors for treating BRCA1/2-mutated ovarian cancers. Herein, we detail how cellular DDR processes engage various proteins that sense DNA damage, initiate signaling pathways to promote cell-cycle checkpoint activation, trigger apoptosis, and coordinate DNA repair. We focus on novel therapeutic strategies targeting promising DDR targets and discuss challenges of patient selection and the development of rational drug combinations.

  19. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors

    PubMed Central

    Brown, Jessica S.; O’Carrigan, Brent; Jackson, Stephen P.; Yap, Timothy A.

    2017-01-01

    Germline aberrations in critical DNA repair and DNA-damage response (DDR) genes cause cancer predisposition, while various tumors harbor somatic mutations causing defective DDR/DNA repair. The concept of synthetic lethality can be exploited in such malignancies, as exemplified by approval of poly(ADP-ribose) polymerase inhibitors for treating BRCA1/2 mutated ovarian cancers. Herein, we detail how cellular DDR processes engage various proteins that sense DNA damage, initiate signaling pathways to promote cell cycle checkpoint activation, trigger apoptosis and coordinate DNA repair. We focus on novel therapeutic strategies targeting promising DDR targets and discuss challenges of patient selection and the development of rational drug combinations. PMID:28003236

  20. Regulation of DNA Repair Mechanisms: How the Chromatin Environment Regulates the DNA Damage Response.

    PubMed

    Stadler, Jens; Richly, Holger

    2017-08-05

    Cellular DNA is constantly challenged by damage-inducing factors derived from exogenous or endogenous sources. In order to maintain genome stability and integrity, cells have evolved a wide variety of DNA repair pathways which counteract different types of DNA lesions, also referred to as the DNA damage response (DDR). However, DNA in eukaryotes is highly organized and compacted into chromatin representing major constraints for all cellular pathways, including DNA repair pathways, which require DNA as their substrate. Therefore, the chromatin configuration surrounding the lesion site undergoes dramatic remodeling to facilitate access of DNA repair factors and subsequent removal of the DNA lesion. In this review, we focus on the question of how the cellular DNA repair pathways overcome the chromatin barrier, how the chromatin environment is rearranged to facilitate efficient DNA repair, which proteins mediate this re-organization process and, consequently, how the altered chromatin landscape is involved in the regulation of DNA damage responses.

  1. Transcript RNA supports precise repair of its own DNA gene.

    PubMed

    Keskin, Havva; Meers, Chance; Storici, Francesca

    2016-01-01

    The transfer of genetic information from RNA to DNA is considered an extraordinary process in molecular biology. Despite the fact that cells transcribe abundant amount of RNA with a wide range of functions, it has been difficult to uncover whether RNA can serve as a template for DNA repair and recombination. An increasing number of experimental evidences suggest a direct role of RNA in DNA modification. Recently, we demonstrated that endogenous transcript RNA can serve as a template to repair a DNA double-strand break (DSB), the most harmful DNA lesion, not only indirectly via formation of a DNA copy (cDNA) intermediate, but also directly in a homology driven mechanism in budding yeast. These results point out that the transfer of genetic information from RNA to DNA is more general than previously thought. We found that transcript RNA is more efficient in repairing a DSB in its own DNA (in cis) than in a homologous but ectopic locus (in trans). Here, we summarize current knowledge about the process of RNA-driven DNA repair and recombination, and provide further data in support of our model of DSB repair by transcript RNA in cis. We show that a DSB is precisely repaired predominately by transcript RNA and not by residual cDNA in conditions in which formation of cDNA by reverse transcription is inhibited. Additionally, we demonstrate that defects in ribonuclease (RNase) H stimulate precise DSB repair by homologous RNA or cDNA sequence, and not by homologous DNA sequence carried on a plasmid. These results highlight an antagonistic role of RNase H in RNA-DNA recombination. Ultimately, we discuss several questions that should be addressed to better understand mechanisms and implications of RNA-templated DNA repair and recombination.

  2. Genetic characterization of cells of homocystinuria patients with disrupted DNA repair system

    SciTech Connect

    Sinel'shchikova, T.A.; L'vova, G.N.; Shoniya, N.N.; Zasukhina, G.D.

    1986-08-01

    Fibroblasts obtained from biopsy material and lymphocytes of patients with homocystinuria were investigated for repair activity according to the following criteria: rejoined DNA breaks, induced by 4-nitroquinoline-1-oxide and ..gamma..-radiation; indices of reactivation and induced mutagenesis of smallpox vaccine virus treated with these mutagens. In lymphocytes a defect of DNA repair was observed according to all criteria investigated. During passage of fibroblast cultures, inhibition of repair activity of cells was preserved according to ..gamma..-type. Increase in the number of spontaneous and ..gamma..-induced mutations of virus was noted according to degree of passage of fibroblasts.

  3. DNA repair systems as targets of cadmium toxicity

    SciTech Connect

    Giaginis, Constantinos; Gatzidou, Elisavet; Theocharis, Stamatios . E-mail: theocharis@ath.forthnet.gr

    2006-06-15

    Cadmium (Cd) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. Recent evidence suggests that proteins participating in the DNA repair systems, especially in excision and mismatch repair, are sensitive targets of Cd toxicity. Cd by interfering and inhibiting these DNA repair processes might contribute to increased risk for tumor formation in humans. In the present review, the information available on the interference of Cd with DNA repair systems and their inhibition is summarized. These actions could possibly explain the indirect contribution of Cd to mutagenic effects and/or carcinogenicity.

  4. DNA-repair in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Bucholtz, Nina; Demuth, Ilja

    2013-10-01

    While the pathogenesis of the sporadic form of Alzheimer disease (late onset Alzheimer disease, LOAD) is not fully understood, it seems to be clear that a combination of genetic and environmental factors are involved and influence the course of the disease. Among these factors, elevated levels of oxidative stress have been recognized and individual differences in the capacity to deal with DNA damage caused by its effects have been the subject of numerous studies. This review summarizes the research on DNA repair proteins and genes in the context of LOAD pathogenesis and its possible prodromal stage, mild cognitive impairment (MCI). The current status of the research in this field is discussed with respect to methodological issues which might have compromised the outcome of some studies and future directions of investigation on this subject are depicted.

  5. DNA repair mechanisms in cancer development and therapy

    PubMed Central

    Torgovnick, Alessandro; Schumacher, Björn

    2015-01-01

    DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy. PMID:25954303

  6. Alkyltransferase-like proteins: Molecular switches between DNA repair pathways

    PubMed Central

    Tubbs, Julie L.; Tainer, John A.

    2011-01-01

    Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O6-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here, we review recent advances in unravelling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O6-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway. PMID:20502938

  7. How to Relate Complex DNA Repair Genotypes to Pathway Function and, Ultimately, Health Risk

    SciTech Connect

    Jones, IM

    2002-01-09

    Exposure to ionizing radiation increases the incidence of cancer. However, predicting which individuals are at most risk from radiation exposure is a distant goal. Predictive ability is needed to guide policies that regulate radiation exposure and ensure that medical treatments have maximum benefit and minimum risk. Differences between people in susceptibility to radiation are largely based on their genotype, the genes inherited from their parents. Among the important genes are those that produce proteins that repair DNA damaged by radiation. Base Excision Repair (BER) proteins repair single strand breaks and oxidized bases in DNA. Double Strand Break Repair proteins repair broken chromosomes. Using technologies and information from the Human Genome Project, we have previously determined that the DNA sequence of DNA repair genes varies within the human population. An average of 3-4 different variants were found that affect the protein for each of 37 genes studied. The average frequency of these variants is 5%. Given the many genes in each DNA repair pathway and their many variants, technical ability to determine an individual's repair genotype greatly exceeds ability to interpret the information. A long-term goal is to relate DNA repair genotypes to health risk from radiation. This study focused on the BER pathway. The BER genes are known, variants of the genes have been identified at LLNL, and LLNL had recently developed an assay for BER function using white blood cells. The goal of this initial effort was to begin developing data that could be used to test the hypothesis that many different genotypes have similar DNA repair capacity phenotypes (function). Relationships between genotype and phenotype could then be used to group genotypes with similar function and ultimately test the association of groups of genotypes with health risk from radiation. Genotypes with reduced repair function are expected to increase risk of radiation-induced health effects. The goal

  8. DNA repair investigations using siRNA.

    PubMed

    Miller, Holly; Grollman, Arthur P

    2003-06-11

    Small interfering RNA (siRNA) is a revolutionary tool for the experimental modulation of gene expression, in many cases making redundant the need for specific gene mutations and allowing examination of the effect of modulating essential genes. It has now been shown that siRNA phenotypes resulting from stable transfection with short hairpin RNA (shRNA) can be transmitted through the mouse germ line and Rosenquist and his colleagues have used shRNA, which is processed in vivo to siRNA, to create germline transgenic mice in which a target DNA repair gene has been silenced. Here, Holly Miller and Arthur P. Grollman give the background of these discoveries, provide an overview of current uses, and look at future applications of this research.

  9. DNA Damage Repair in the Context of Plant Chromatin1

    PubMed Central

    2015-01-01

    The integrity of DNA molecules is constantly challenged. All organisms have developed mechanisms to detect and repair multiple types of DNA lesions. The basic principles of DNA damage repair (DDR) in prokaryotes and unicellular and multicellular eukaryotes are similar, but the association of DNA with nucleosomes in eukaryotic chromatin requires mechanisms that allow access of repair enzymes to the lesions. This is achieved by chromatin-remodeling factors, and their necessity for efficient DDR has recently been demonstrated for several organisms and repair pathways. Plants share many features of chromatin organization and DNA repair with fungi and animals, but they differ in other, important details, which are both interesting and relevant for our understanding of genome stability and genetic diversity. In this Update, we compare the knowledge of the role of chromatin and chromatin-modifying factors during DDR in plants with equivalent systems in yeast and humans. We emphasize plant-specific elements and discuss possible implications. PMID:26089404

  10. Repair of damaged DNA in vivo: Final technical report

    SciTech Connect

    Hanawalt, P.C.

    1987-09-01

    This contract was initiated in 1962 with the US Atomic Energy Commission to carry out basic research on the effects of radiation on the process of DNA replication in bacteria. Within the first contract year we discovered repair replication at the same time that Setlow and Carrier discovered pyrimidine dimer excision. These discoveries led to the elucidation of the process of excision-repair, one of the most important mechanisms by which living systems, including humans, respond to structural damage in their genetic material. We improved methodology for distinguishing repair replication from semiconservative replication and instructed others in these techniques. Painter then was the first to demonstrate repair replication in ultraviolet irradiated human cells. He, in turn, instructed James Cleaver who discovered that skin fibroblasts from patients with xeroderma pigmentosum were defective in excision-repair. People with this genetic defect are extremely sensitive to sunlight and they develop carcinomas and melanomas of the skin with high frequency. The existence of this hereditary disease attests to the importance of DNA repair in man. We certainly could not survive in the normal ultraviolet flux from the sun if our DNA were not continuously monitored for damage and repaired. Other hereditary diseases such as ataxia telangiectasia, Cockayne's syndrome, Blooms syndrome and Fanconi's anemia also involve deficiencies in DNA damage processing. The field of DNA repair has developed rapidly as we have learned that most environmental chemical carcinogens as well as radiation produce repairable damage in DNA. 251 refs.

  11. Enzymatic DNA oxidation: mechanisms and biological significance.

    PubMed

    Xu, Guo-Liang; Walsh, Colum P

    2014-11-01

    DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development.

  12. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells

    PubMed Central

    González-Marín, Clara; Gosálvez, Jaime; Roy, Rosa

    2012-01-01

    Concentration, motility and morphology are parameters commonly used to determine the fertilization potential of an ejaculate. These parameters give a general view on the quality of sperm but do not provide information about one of the most important components of the reproductive outcome: DNA. Either single or double DNA strand breaks can set the difference between fertile and infertile males. Sperm DNA fragmentation can be caused by intrinsic factors like abortive apoptosis, deficiencies in recombination, protamine imbalances or oxidative stress. Damage can also occur due to extrinsic factors such as storage temperatures, extenders, handling conditions, time after ejaculation, infections and reaction to medicines or post-testicular oxidative stress, among others. Two singular characteristics differentiate sperm from somatic cells: Protamination and absence of DNA repair. DNA repair in sperm is terminated as transcription and translation stops post-spermiogenesis, so these cells have no mechanism to repair the damage occurred during their transit through the epididymis and post-ejaculation. Oocytes and early embryos have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined effects of sperm chromatin damage and the capacity of the oocyte to repair it. In this contribution we review some of these issues. PMID:23203048

  13. DNA lesions, inducible DNA repair, and cell division: Three key factors in mutagenesis and carcinogenesis

    SciTech Connect

    Ames, B.N.; Shigenaga, M.K.; Gold, L.S.

    1993-12-01

    DNA lesions that escape repair have a certain probability of giving rise to mutations when the cell divides. Endogenous DNA damage is high: 10{sup 6} oxidative lesions are present per rat cell. An exogenous mutagen produces an increment in lesions over the background rate of endogenous lesions. The effectiveness of a particular lesion depends on whether it is excised by a DNA repair system and the probability that it gives rise to a mutation when the cell divides. When the cell divides, an unrepaired DNA lesion has a certain probability of giving rise to a mutation. Thus, an important factor in the mutagenic effect of an exogenous agent whether it is genotoxic or non-genotoxic, is the increment it causes over the background cell division rate (mitogenesis) in cells that appear to matter most in cancer, the stem cells, which are not on their way to being discarded. Increasing their cell division rate increases by high doses of chemicals. If both the rate of DNA lesions and cell division are increased, then there will be a multiplicative effect on mutagenesis (and carcinogenesis), for example, by high doses of a mutagen that also increases mitogenesis through cell killing. The defense system against reactive electrophilic mutagens, such as the glutathione transferases, are also almost all inducible and buffer cells against increments in active forms of chemicals that can cause DNA lesions. A variety of DNA repair defense systems, almost all inducible, buffer the cell against any increment in DNA lesions. Therefore, the effect of a particular chemical insult depends on the level of each defense, which in turn depends on the past history of exposure. Exogenous agents can influence the induction and effectiveness of these defenses. Defenses can be partially disabled by lack of particular micronutrients in the diet (e.g., antioxidants).

  14. Effects of an Antimutagenic 1,4-Dihydropyridine AV-153 on Expression of Nitric Oxide Synthases and DNA Repair-related Enzymes and Genes in Kidneys of Rats with a Streptozotocin Model of Diabetes Mellitus.

    PubMed

    Ošiņa, Kristīne; Rostoka, Evita; Isajevs, Sergejs; Sokolovska, Jelizaveta; Sjakste, Tatjana; Sjakste, Nikolajs

    2016-11-01

    Development of complications of diabetes mellitus (DM), including diabetic nephropathy, is a complex multi-stage process, dependent on many factors including the modification of nitric oxide (NO) production and an impaired DNA repair. The goal of this work was to study in vivo effects of 1,4-dihydropyridine AV-153, known as antimutagen and DNA binder, on the expression of several genes and proteins involved in NO metabolism and DNA repair in the kidneys of rats with a streptozotocin (STZ)-induced model of DM. Transcription intensity was monitored by means of real-time RT-PCR and the expression of proteins by immunohistochemistry. Development of DM significantly induced PARP1 protein expression, while AV-153 (0.5 mg/kg) administration decreased it. AV-153 increased the expression of Parp1 gene in the kidneys of both intact and diabetic animals. Expression of H2afx mRNA and γH2AX histone protein, a marker of DNA breakage, was not changed in diabetic animals, but AV-153 up-regulated the expression of the gene without any impact on the protein expression. Development of DM was followed by a significant increase in iNOS enzyme expression, while AV-153 down-regulated the enzyme expression up to normal levels. iNos gene expression was also found to be increased in diabetic animals, but unlike the protein, the expression of mRNA was found to be enhanced by AV-153 administration. Expression of both eNOS protein and eNos gene in the kidneys was down-regulated, and the administration of AV-153 normalized the expression level. The effects of the compound in the kidneys of diabetic animals appear to be beneficial, as a trend for the normalization of expression of NO synthases is observed.

  15. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    SciTech Connect

    Thomas, S.M.; Sedgwick, S.G. )

    1989-11-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli.

  16. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  17. Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair.

    PubMed

    Czornak, Kamila; Chughtai, Sanaullah; Chrzanowska, Krystyna H

    2008-01-01

    Genomes are subject to a number of exogenous or endogenous DNA-damaging agents that cause DNA double-strand breaks (DSBs). These critical DNA lesions can result in cell death or a wide variety of genetic alterations, including deletions, translocations, loss of heterozygosity, chromosome loss, or chromosome fusions, which enhance genome instability and can trigger carcinogenesis. The cells have developed an efficient mechanism to cope with DNA damages by evolving the DNA repair machinery. There are 2 major DSB repair mechanisms: nonhomologous end joining (NHEJ) and homologous recombination (HR). One element of the repair machinery is the MRN complex, consisting of MRE11, RAD50 and NBN (previously described as NBS1), which is involved in DNA replication, DNA repair, and signaling to the cell cycle checkpoints. A number of kinases, like ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad-3-related), and DNA PKcs (DNA protein kinase catalytic subunit), phosphorylate various protein targets in order to repair the damage. If the damage cannot be repaired, they direct the cell to apoptosis. The MRN complex as well as repair kinases are also involved in telomere maintenance and genome stability. The dysfunction of particular elements involved in the repair mechanisms leads to genome instability disorders, like ataxia telangiectasia (A-T), A-T-like disorder (ATLD) and Nijmegen breakage syndrome (NBS). The mutated genes responsible for these disorders code for proteins that play key roles in the process of DNA repair. Here we present a detailed review of current knowledge on the MRN complex, kinases engaged in DNA repair, and genome instability disorders.

  18. Alleviation of Aflatoxin B1-Induced Genomic Damage by Proanthocyanidins via Modulation of DNA Repair.

    PubMed

    Bakheet, Saleh A; Alhuraishi, Ahmed M; Al-Harbi, Naif O; Al-Hosaini, Khaled A; Al-Sharary, Shakir D; Attia, Mohammed M; Alhoshani, Ali R; Al-Shabanah, Othman A; Al-Harbi, Mohammed M; Imam, Faisal; Ahmad, Sheikh F; Attia, Sabry M

    2016-11-01

    In order to study the mechanisms underlying the alleviation of aflatoxin B1-induced genomic damage by proanthocyanidins (PAs), we examined the modulation of oxidative DNA damage induced by aflatoxin B1 in PAs-pretreated animals. The effects of PAs on changes in the expression of DNA damage and repair genes induced by aflatoxin B1 were also evaluated in rat marrow cells. Administration of PAs before aflatoxin B1 significantly mitigated aflatoxin B1-induced oxidative DNA damage in a dose-dependent manner. Aflatoxin B1 treatment induced significant alterations in the expression of specific DNA repair genes, and the pre-treatment of rats with PAs ameliorated the altered expression of these genes. Conclusively, PAs protect against aflatoxin B1-induced oxidative DNA damage in rats. These protective effects are attributed to the antioxidant effects of PA and enhanced DNA repair through modulation of DNA repair gene expression. Therefore, PAs are a promising chemoprotective agent for averting genotoxic risks associated with aflatoxin B1 exposure.

  19. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    PubMed

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  20. The role of DNA repair in the pluripotency and differentiation of human stem cells.

    PubMed

    Rocha, Clarissa Ribeiro Reily; Lerner, Leticia Koch; Okamoto, Oswaldo Keith; Marchetto, Maria Carolina; Menck, Carlos Frederico Martins

    2013-01-01

    All living cells utilize intricate DNA repair mechanisms to address numerous types of DNA lesions and to preserve genomic integrity, and pluripotent stem cells have specific needs due to their remarkable ability of self-renewal and differentiation into different functional cell types. Not surprisingly, human stem cells possess a highly efficient DNA repair network that becomes less efficient upon differentiation. Moreover, these cells also have an anaerobic metabolism, which reduces the mitochondria number and the likelihood of oxidative stress, which is highly related to genomic instability. If DNA lesions are not repaired, human stem cells easily undergo senescence, cell death or differentiation, as part of their DNA damage response, avoiding the propagation of stem cells carrying mutations and genomic alterations. Interestingly, cancer stem cells and typical stem cells share not only the differentiation potential but also their capacity to respond to DNA damage, with important implications for cancer therapy using genotoxic agents. On the other hand, the preservation of the adult stem cell pool, and the ability of cells to deal with DNA damage, is essential for normal development, reducing processes of neurodegeneration and premature aging, as one can observe on clinical phenotypes of many human genetic diseases with defects in DNA repair processes. Finally, several recent findings suggest that DNA repair also plays a fundamental role in maintaining the pluripotency and differentiation potential of embryonic stem cells, as well as that of induced pluripotent stem (iPS) cells. DNA repair processes also seem to be necessary for the reprogramming of human cells when iPS cells are produced. Thus, the understanding of how cultured pluripotent stem cells ensure the genetic stability are highly relevant for their safe therapeutic application, at the same time that cellular therapy is a hope for DNA repair deficient patients.

  1. DNA base excision repair nanosystem engineering: model development.

    PubMed

    Sokhansanj, B A

    2005-01-01

    DNA base damage results from a combination of endogenous sources, (normal metabolism, increased metabolism due to obesity, stress from diseases such as arthritis and diabetes, and ischemia) and the environment (ingested toxins, ionizing radiation, etc.). If unrepaired DNA base damage can lead to diminished cell function, and potentially diseases and eventually mutations that lead to cancer. Sophisticated DNA repair mechanisms have evolved in all living cells to preserve the integrity of inherited genetic information and transcriptional control. Understanding a system like DNA repair is greatly enhanced by using engineering methods, in particular modeling interactions and using predictive simulation to analyze the impact of perturbations. We describe the use of such a "nanosystem engineering" approach to analyze the DNA base excision repair pathway in human cells, and use simulation to predict the impact of varying enzyme concentration on DNA repair capacity.

  2. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes.

    PubMed

    Sekelsky, Jeff

    2017-02-01

    The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations. Copyright © 2017 by the Genetics Society of America.

  3. Day and night variations in the repair of ionizing-radiation-induced DNA damage in mouse splenocytes.

    PubMed

    Palombo, Philipp; Moreno-Villanueva, Maria; Mangerich, Aswin

    2015-04-01

    In mammals, biological rhythms synchronize physiological and behavioral processes to the 24-h light-dark (LD) cycle. At the molecular level, self-sustaining processes, such as oscillations of transcription-translation feedback loops, control the circadian clock, which in turn regulates a wide variety of cellular processes, including gene expression and cell cycle progression. Furthermore, previous studies reported circadian oscillations in the repair capacity of DNA lesions specifically repaired by nucleotide excision repair (NER). However, it is so far only poorly understood if DNA repair pathways other than NER are under circadian control, in particular base excision and DNA strand break repair. In the present study, we analyzed potential day and night variations in the repair of DNA lesions induced by ionizing radiation (i.e., mainly oxidative damage and DNA strand breaks) in living mouse splenocytes using a modified protocol of the automated FADU assay. Our results reveal that splenocytes isolated from mice during the light phase (ZT06) displayed higher DNA repair activity than those of the dark phase (ZT18). As analyzed by highly sensitive and accurate qPCR arrays, these alterations were accompanied by significant differences in expression profiles of genes involved in the circadian clock and DNA repair. Notably, the majority of the DNA repair genes were expressed at higher levels during the light phase (ZT06). This included genes of all major DNA repair pathways with the strongest differences observed for genes of base excision and DNA double strand break repair. In conclusion, here we provide novel evidence that mouse splenocytes exhibit significant differences in the repair of IR-induced DNA damage during the LD cycle, both on a functional and on a gene expression level. It will be interesting to test if these findings could be exploited for therapeutic purposes, e.g. time-of-the-day-specific application of DNA-damaging treatments used against blood

  4. Mechanisms of interstrand DNA crosslink repair and human disorders.

    PubMed

    Hashimoto, Satoru; Anai, Hirofumi; Hanada, Katsuhiro

    2016-01-01

    Interstrand DNA crosslinks (ICLs) are the link between Watson-Crick strands of DNAs with the covalent bond and prevent separation of DNA strands. Since the ICL lesion affects both strands of the DNA, the ICL repair is not simple. So far, nucleotide excision repair (NER), structure-specific endonucleases, translesion DNA synthesis (TLS), homologous recombination (HR), and factors responsible for Fanconi anemia (FA) are identified to be involved in ICL repair. Since the presence of ICL lesions causes severe defects in transcription and DNA replication, mutations in these DNA repair pathways give rise to a various hereditary disorders. NER plays an important role for the ICL recognition and removal in quiescent cells, and defects of NER causes congential progeria syndrome, such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. On the other hand, the ICL repair in S phase requires more complicated orchestration of multiple factors, including structure-specific endonucleases, and TLS, and HR. Disturbed this ICL repair orchestration in S phase causes genome instability resulting a cancer prone disease, Fanconi anemia. So far more than 30 factors in ICL repair have already identified. Recently, a new factor, UHRF1, was discovered as a sensor of ICLs. In addition to this, numbers of nucleases that are involved in the first incision, also called unhooking, of ICL lesions have also been identified. Here we summarize the recent studies of ICL associated disorders and repair mechanism, with emphasis in the first incision of ICLs.

  5. DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae.

    PubMed

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-04-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.

  6. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    PubMed Central

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  7. Molecular Mechanisms of the Whole DNA Repair System: A Comparison of Bacterial and Eukaryotic Systems

    PubMed Central

    Morita, Rihito; Nakane, Shuhei; Shimada, Atsuhiro; Inoue, Masao; Iino, Hitoshi; Wakamatsu, Taisuke; Fukui, Kenji; Nakagawa, Noriko; Masui, Ryoji; Kuramitsu, Seiki

    2010-01-01

    DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8. PMID:20981145

  8. The DNA repair function of CUX1 contributes to radioresistance

    PubMed Central

    Ramdzan, Zubaidah M.; Kaur, Simran; Leduy, Lam; Dellaire, Graham; Ganesan, Shridar; Nepveu, Alain

    2017-01-01

    Ionizing radiation generates a broad spectrum of oxidative DNA lesions, including oxidized base products, abasic sites, single-strand breaks and double-strand breaks. The CUX1 protein was recently shown to function as an auxiliary factor that stimulates enzymatic activities of OGG1 through its CUT domains. In the present study, we investigated the requirement for CUX1 and OGG1 in the resistance to radiation. Cancer cell survival following ionizing radiation is reduced by CUX1 knockdown and increased by higher CUX1 expression. However, CUX1 knockdown is sufficient by itself to reduce viability in many cancer cell lines that exhibit high levels of reactive oxygen species (ROS). Consequently, clonogenic results expressed relative to that of non-irradiated cells indicate that CUX1 knockdown confers no or modest radiosensitivity to cancer cells with high ROS. A recombinant protein containing only two CUT domains is sufficient for rapid recruitment to DNA damage, acceleration of DNA repair and increased survival following radiation. In agreement with these findings, OGG1 knockdown and treatment of cells with OGG1 inhibitors sensitize cancer cells to radiation. Together, these results validate CUX1 and more specifically the CUT domains as therapeutic targets. PMID:28147323

  9. Situation-dependent repair of DNA damage in yeast

    SciTech Connect

    von Borstel, R.C.; Hastings, P.J.

    1985-01-01

    The concept of channelling of lesions in DNA into defined repair systems has been used to explain many aspects of induced and spontaneous mutation. The channelling hypothesis states that lesions excluded from one repair process will be taken up by another repair process. This is a simplification. The three known modes of repair of damage induced by radiation are not equivalent modes of repair; they are, instead, different solutions to the problem of replacement of damaged molecules with new molecules which have the same informational content as those that were damaged. The mode of repair that is used is the result of the response to the situation in which the damage takes place. Thus, when the most likely mode of repair does not take place, then the situation changes with respect to the repair of the lesion; the lesion may enter the replication fork and be reparable by another route.

  10. The elemental role of iron in DNA synthesis and repair.

    PubMed

    Puig, Sergi; Ramos-Alonso, Lucía; Romero, Antonia María; Martínez-Pastor, María Teresa

    2017-09-07

    Iron is an essential redox element that functions as a cofactor in many metabolic pathways. Critical enzymes in DNA metabolism, including multiple DNA repair enzymes (helicases, nucleases, glycosylases, demethylases) and ribonucleotide reductase, use iron as an indispensable cofactor to function. Recent striking results have revealed that the catalytic subunit of DNA polymerases also contains conserved cysteine-rich motifs that bind iron-sulfur (Fe/S) clusters that are essential for the formation of stable and active complexes. In line with this, mitochondrial and cytoplasmic defects in Fe/S cluster biogenesis and insertion into the nuclear iron-requiring enzymes involved in DNA synthesis and repair lead to DNA damage and genome instability. Recent studies have shown that yeast cells possess multi-layered mechanisms that regulate the ribonucleotide reductase function in response to fluctuations in iron bioavailability to maintain optimal deoxyribonucleotide concentrations. Finally, a fascinating DNA charge transport model indicates how the redox active Fe/S centers present in DNA repair machinery components are critical for detecting and repairing DNA mismatches along the genome by long-range charge transfers through double-stranded DNA. These unexpected connections between iron and DNA replication and repair have to be considered to properly understand cancer, aging and other DNA-related diseases.

  11. Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults.

    PubMed

    LeDoux, S P; Druzhyna, N M; Hollensworth, S B; Harrison, J F; Wilson, G L

    2007-04-14

    Cells of the CNS are constantly exposed to agents which damage DNA. Although much attention has been paid to the effects of this damage on nuclear DNA, the nucleus is not the only organelle containing DNA. Within each cell, there are hundreds to thousands of mitochondria. Within each mitochondrion are multiple copies of the mitochondrial genome. These genomes are extremely vulnerable to insult and mutations in mitochondrial DNA (mtDNA) have been linked to several neurodegenerative diseases, as well as the normal process of aging. The principal mechanism utilized by cells to avoid DNA mutations is DNA repair. Multiple pathways of DNA repair have been elucidated for nuclear DNA. However, it appears that only base excision repair is functioning in mitochondria. This repair pathway is responsible for the removal of most endogenous damage including alkylation damage, depurination reactions and oxidative damage. Within the rat CNS, there are cell-specific differences mtDNA repair. Astrocytes exhibit efficient repair, whereas, other glial cell types and neuronal cells exhibit a reduced ability to remove lesions from mtDNA. Additionally, a correlation was observed between those cells with reduced mtDNA repair and an increase in the induction of apoptosis. To demonstrate a causative relationship, a strategy of targeting DNA repair proteins to mitochondria to enhance mtDNA repair capacity was employed. Enhancement of mtDNA repair in oligodendrocytes provided protection from reactive oxygen species- and cytokine-induced apoptosis. These experiments provide a novel strategy for protecting sensitive CNS cells from genotoxic insults and thus provide new treatment options for neurodegenerative diseases.

  12. Bacterial DNA repair genes and their eukaryotic homologues: 5. The role of recombination in DNA repair and genome stability.

    PubMed

    Nowosielska, Anetta

    2007-01-01

    Recombinational repair is a well conserved DNA repair mechanism present in all living organisms. Repair by homologous recombination is generally accurate as it uses undamaged homologous DNA molecule as a repair template. In Escherichia coli homologous recombination repairs both the double-strand breaks and single-strand gaps in DNA. DNA double-strand breaks (DSB) can be induced upon exposure to exogenous sources such as ionizing radiation or endogenous DNA-damaging agents including reactive oxygen species (ROS) as well as during natural biological processes like conjugation. However, the bulk of double strand breaks are formed during replication fork collapse encountering an unrepaired single strand gap in DNA. Under such circumstances DNA replication on the damaged template can be resumed only if supported by homologous recombination. This functional cooperation of homologous recombination with replication machinery enables successful completion of genome duplication and faithful transmission of genetic material to a daughter cell. In eukaryotes, homologous recombination is also involved in essential biological processes such as preservation of genome integrity, DNA damage checkpoint activation, DNA damage repair, DNA replication, mating type switching, transposition, immune system development and meiosis. When unregulated, recombination can lead to genome instability and carcinogenesis.

  13. Sister chromatid exchanges and DNA repair capability in sanitary workers exposed to ethylene oxide: evaluation of the dose-effect relationship.

    PubMed

    Sarto, F; Clonfero, E; Bartolucci, G B; Franceschi, C; Chiricolo, M; Levis, A G

    1987-01-01

    Determination of ethylene oxide (EtO) in the working environment and induction of sister chromatid exchanges (SCE) and unscheduled DNA synthesis (UDS) in peripheral lymphocytes of 10 exposed sanitary workers and 10 control subjects matched for sex, age, and smoking habits are reported. The relationship between the external dose of EtO and the frequency of SCE was determined in the above group and in a group of 41 sanitary workers previously studied. The 10 newly examined workers were exposed to EtO concentrations (1.84 ppm as time-weighted average) intermediate between the high (10.7 ppm) and low (0.35 ppm) levels of exposure of the two previously examined groups (19 and 22 workers, respectively). A statistically significant (p less than 0.002) increase of SCE frequency was observed between the present control and exposed groups. The inducibility of unscheduled DNA synthesis by gamma rays was lower in the lymphocytes of the exposed workers than in controls, but the difference was not statistically significant. A significant relationship between the frequency of SCE and the level of EtO exposure for the three exposed groups was demonstrated by two different statistical methods. It is suggested that the present Italian threshold limit value for EtO (3 ppm) may not protect the exposed workers against possible genotoxic effects and that even a chronic exposure to 1 ppm may not be devoid of genotoxic risk.

  14. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance

    PubMed Central

    Li, Xue; Sipple, Jared; Pang, Qishen

    2012-01-01

    Salidroside is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea, which has potent antioxidant properties. Here we show that salidroside prevented the loss of hematopoietic stem cells (HSCs) in mice under oxidative stress. Quiescent HSCs were recruited into cell cycling on in vivo challenge with oxidative stress, which was blocked by salidroside. Surprisingly, salidroside does not prevent the production of reactive oxygen species but reduces hydrogen peroxide–induced DNA-strand breaks in bone marrow cells enriched for HSCs. We tested whether salidroside enhances oxidative DNA damage repair in mice deficient for 5 DNA repair pathways known to be involved in oxidative DNA damage repair; we found that salidroside activated poly(ADP-ribose)polymerase-1 (PARP-1), a component of the base excision repair pathway, in mouse bone marrow HSCs as well as primary fibroblasts and human lymphoblasts. PARP-1 activation by salidroside protects quiescent HSCs from oxidative stress–induced cycling in native animals and self-renewal defect in transplanted recipients, which was abrogated by genetic ablation or pharmacologic inhibition of PARP-1. Together, these findings suggest that activation of PARP-1 by salidroside could affect the homeostasis and function of HSCs and contribute to the antioxidant effects of salidroside. PMID:22427203

  15. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance.

    PubMed

    Li, Xue; Sipple, Jared; Pang, Qishen; Du, Wei

    2012-05-03

    Salidroside is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea, which has potent antioxidant properties. Here we show that salidroside prevented the loss of hematopoietic stem cells (HSCs) in mice under oxidative stress. Quiescent HSCs were recruited into cell cycling on in vivo challenge with oxidative stress, which was blocked by salidroside. Surprisingly, salidroside does not prevent the production of reactive oxygen species but reduces hydrogen peroxide-induced DNA-strand breaks in bone marrow cells enriched for HSCs. We tested whether salidroside enhances oxidative DNA damage repair in mice deficient for 5 DNA repair pathways known to be involved in oxidative DNA damage repair; we found that salidroside activated poly(ADP-ribose)polymerase-1 (PARP-1), a component of the base excision repair pathway, in mouse bone marrow HSCs as well as primary fibroblasts and human lymphoblasts. PARP-1 activation by salidroside protects quiescent HSCs from oxidative stress-induced cycling in native animals and self-renewal defect in transplanted recipients, which was abrogated by genetic ablation or pharmacologic inhibition of PARP-1. Together, these findings suggest that activation of PARP-1 by salidroside could affect the homeostasis and function of HSCs and contribute to the antioxidant effects of salidroside.

  16. Chromatin modifications and DNA repair: beyond double-strand breaks

    PubMed Central

    House, Nealia C. M.; Koch, Melissa R.; Freudenreich, Catherine H.

    2014-01-01

    DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions. PMID:25250043

  17. Acetylation regulates DNA repair mechanisms in human cells.

    PubMed

    Piekna-Przybylska, Dorota; Bambara, Robert A; Balakrishnan, Lata

    2016-06-02

    The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.

  18. Connecting the Dots: From DNA Damage and Repair to Aging

    PubMed Central

    Pan, Mei-Ren; Li, Kaiyi; Lin, Shiaw-Yih; Hung, Wen-Chun

    2016-01-01

    Mammalian cells evolve a delicate system, the DNA damage response (DDR) pathway, to monitor genomic integrity and to prevent the damage from both endogenous end exogenous insults. Emerging evidence suggests that aberrant DDR and deficient DNA repair are strongly associated with cancer and aging. Our understanding of the core program of DDR has made tremendous progress in the past two decades. However, the long list of the molecules involved in the DDR and DNA repair continues to grow and the roles of the new “dots” are under intensive investigation. Here, we review the connection between DDR and DNA repair and aging and discuss the potential mechanisms by which deficient DNA repair triggers systemic effects to promote physiological or pathological aging. PMID:27164092

  19. Effect of aging and dietary restriction on DNA repair

    SciTech Connect

    Weraarchakul, N.; Strong, R.; Wood, W.G.; Richardson, A.

    1989-03-01

    DNA repair was studied as a function of age in cells isolated from both the liver and the kidney of male Fischer F344 rats. DNA repair was measured by quantifying unscheduled DNA synthesis induced by UV irradiation. Unscheduled DNA synthesis decreased approximately 50% between the ages of 5 and 30 months in both hepatocytes and kidney cells. The age-related decline in unscheduled DNA synthesis in cells isolated from the liver and kidney was compared in rats fed ad libitum and rats fed a calorie-restricted diet; calorie restriction has been shown to increase the survival of rodents. The level of unscheduled DNA synthesis was significantly higher in hepatocytes and kidney cells isolated from the rats fed the restricted diet. Thus, calorie restriction appears to retard the age-related decline in DNA repair.

  20. The Repeat Expansion Diseases: the dark side of DNA repair?

    PubMed Central

    Zhao, Xiao-Nan; Usdin, Karen

    2015-01-01

    DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion. PMID:26002199

  1. Noncanonical views of homology-directed DNA repair

    PubMed Central

    Verma, Priyanka; Greenberg, Roger A.

    2016-01-01

    DNA repair is essential to maintain genomic integrity and initiate genetic diversity. While gene conversion and classical nonhomologous end-joining are the most physiologically predominant forms of DNA repair mechanisms, emerging lines of evidence suggest the usage of several noncanonical homology-directed repair (HDR) pathways in both prokaryotes and eukaryotes in different contexts. Here we review how these alternative HDR pathways are executed, specifically focusing on the determinants that dictate competition between them and their relevance to cancers that display complex genomic rearrangements or maintain their telomeres by homology-directed DNA synthesis. PMID:27222516

  2. Regulation of oxidized base damage repair by chromatin assembly factor 1 subunit A

    PubMed Central

    Yang, Chunying; Sengupta, Shiladitya; Hegde, Pavana M.; Mitra, Joy; Jiang, Shuai; Holey, Brooke; Sarker, Altaf H.; Tsai, Miaw-Sheue; Hegde, Muralidhar L.; Mitra, Sankar

    2017-01-01

    Reactive oxygen species (ROS), generated both endogenously and in response to exogenous stress, induce point mutations by mis-replication of oxidized bases and other lesions in the genome. Repair of these lesions via base excision repair (BER) pathway maintains genomic fidelity. Regulation of the BER pathway for mutagenic oxidized bases, initiated by NEIL1 and other DNA glycosylases at the chromatin level remains unexplored. Whether single nucleotide (SN)-BER of a damaged base requires histone deposition or nucleosome remodeling is unknown, unlike nucleosome reassembly which is shown to be required for other DNA repair processes. Here we show that chromatin assembly factor (CAF)-1 subunit A (CHAF1A), the p150 subunit of the histone H3/H4 chaperone, and its partner anti-silencing function protein 1A (ASF1A), which we identified in human NEIL1 immunoprecipitation complex, transiently dissociate from chromatin bound NEIL1 complex in G1 cells after induction of oxidative base damage. CHAF1A inhibits NEIL1 initiated repair in vitro. Subsequent restoration of the chaperone-BER complex in cell, presumably after completion of repair, suggests that histone chaperones sequester the repair complex for oxidized bases in non-replicating chromatin, and allow repair when oxidized bases are induced in the genome. PMID:27794043

  3. A Base-Independent Repair Mechanism for DNA Glycosylase—No Discrimination Within the Active Site

    PubMed Central

    Blank, Iris D.; Sadeghian, Keyarash; Ochsenfeld, Christian

    2015-01-01

    The ubiquitous occurrence of DNA damages renders its repair machinery a crucial requirement for the genomic stability and the survival of living organisms. Deficiencies in DNA repair can lead to carcinogenesis, Alzheimer, or Diabetes II, where increased amounts of oxidized DNA bases have been found in patients. Despite the highest mutation frequency among oxidized DNA bases, the base-excision repair process of oxidized and ring-opened guanine, FapydG (2,6-diamino-4-hydroxy-5-formamidopyrimidine), remained unclear since it is difficult to study experimentally. We use newly-developed linear-scaling quantum-chemical methods (QM) allowing us to include up to 700 QM-atoms and achieving size convergence. Instead of the widely assumed base-protonated pathway we find a ribose-protonated repair mechanism which explains experimental observations and shows strong evidence for a base-independent repair process. Our results also imply that discrimination must occur during recognition, prior to the binding within the active site. PMID:26013033

  4. Methods to alter levels of a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-10-17

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  5. DNA double-strand break repair pathway choice and cancer.

    PubMed

    Aparicio, Tomas; Baer, Richard; Gautier, Jean

    2014-07-01

    Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB "mis-repair", in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer.

  6. Nuclear GIT2 Is an ATM Substrate and Promotes DNA Repair

    PubMed Central

    Lu, Daoyuan; Cai, Huan; Park, Sung-Soo; Siddiqui, Sana; Premont, Richard T.; Schmalzigaug, Robert; Paramasivam, Manikandan; Seidman, Michael; Bodogai, Ionoa; Biragyn, Arya; Daimon, Caitlin M.; Martin, Bronwen

    2015-01-01

    Insults to nuclear DNA induce multiple response pathways to mitigate the deleterious effects of damage and mediate effective DNA repair. G-protein-coupled receptor kinase-interacting protein 2 (GIT2) regulates receptor internalization, focal adhesion dynamics, cell migration, and responses to oxidative stress. Here we demonstrate that GIT2 coordinates the levels of proteins in the DNA damage response (DDR). Cellular sensitivity to irradiation-induced DNA damage was highly associated with GIT2 expression levels. GIT2 is phosphorylated by ATM kinase and forms complexes with multiple DDR-associated factors in response to DNA damage. The targeting of GIT2 to DNA double-strand breaks was rapid and, in part, dependent upon the presence of H2AX, ATM, and MRE11 but was independent of MDC1 and RNF8. GIT2 likely promotes DNA repair through multiple mechanisms, including stabilization of BRCA1 in repair complexes; upregulation of repair proteins, including HMGN1 and RFC1; and regulation of poly(ADP-ribose) polymerase activity. Furthermore, GIT2-knockout mice demonstrated a greater susceptibility to DNA damage than their wild-type littermates. These results suggest that GIT2 plays an important role in MRE11/ATM/H2AX-mediated DNA damage responses. PMID:25605334

  7. Recognition and repair of chemically heterogeneous structures at DNA ends

    PubMed Central

    Andres, Sara N.; Schellenberg, Matthew J.; Wallace, Bret D.; Tumbale, Percy; Williams, R. Scott

    2014-01-01

    Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not “clean”. Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini. PMID:25111769

  8. Chemosensitivity of IDH1 mutant gliomas due to an impairment in PARP1-mediated DNA repair.

    PubMed

    Lu, Yanxin; Kwintkiewicz, Jakub; Liu, Yang; Tech, Katherine; Frady, Lauren N; Su, Yu-Ting; Bautista, Wendy; Moon, Seog In; MacDonald, Jeffrey; Edwend, Matthew G; Gilbert, Mark R; Yang, Chunzhang; Wu, Jing

    2017-02-15

    Mutations in isocitrate dehydrogenase (IDH) are the most prevalent genetic abnormalities in lower grade gliomas. The presence of these mutations in glioma is prognostic for better clinical outcomes with longer patient survival. In the present study, we found that defects in oxidative metabolism and 2-HG production confer chemosensitization in IDH1-mutated glioma cells. In addition, temozolomide (TMZ) treatment induced greater DNA damage and apoptotic changes in mutant glioma cells. The PARP1-associated DNA repair pathway was extensively compromised in mutant cells due to decreased NAD+ availability. Targeting the PARP DNA repair pathway extensively sensitized IDH1-mutated glioma cells to TMZ. Our findings demonstrate a novel molecular mechanism that defines chemosensitivity in IDH mutant gliomas. Targeting PARP-associated DNA repair may represent a novel therapeutic strategy for gliomas.

  9. The SMX DNA Repair Tri-nuclease.

    PubMed

    Wyatt, Haley D M; Laister, Rob C; Martin, Stephen R; Arrowsmith, Cheryl H; West, Stephen C

    2017-03-02

    The efficient removal of replication and recombination intermediates is essential for the maintenance of genome stability. Resolution of these potentially toxic structures requires the MUS81-EME1 endonuclease, which is activated at prometaphase by formation of the SMX tri-nuclease containing three DNA repair structure-selective endonucleases: SLX1-SLX4, MUS81-EME1, and XPF-ERCC1. Here we show that SMX tri-nuclease is more active than the three individual nucleases, efficiently cleaving replication forks and recombination intermediates. Within SMX, SLX4 co-ordinates the SLX1 and MUS81-EME1 nucleases for Holliday junction resolution, in a reaction stimulated by XPF-ERCC1. SMX formation activates MUS81-EME1 for replication fork and flap structure cleavage by relaxing substrate specificity. Activation involves MUS81's conserved N-terminal HhH domain, which mediates incision site selection and SLX4 binding. Cell cycle-dependent formation and activation of this tri-nuclease complex provides a unique mechanism by which cells ensure chromosome segregation and preserve genome integrity.

  10. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  11. In vitro measurement of DNA base excision repair in isolated mitochondria.

    PubMed

    Page, Melissa M; Stuart, Jeffrey A

    2009-01-01

    Mitochondrial DNA (mtDNA) is in relatively close proximity to reactive oxygen species (ROS) arising from spontaneous superoxide formation during respiration. As a result, it sustains oxidative damage that may include base modifications, base loss, and strand breaks. mtDNA replication past sites of oxidative damage can result in the introduction of mutations. mtDNA mutations are associated with various human diseases and can manifest as loss of bioenergetic function. DNA repair processes exist in mitochondria from apparently all metazoans. A fully functional DNA base excision repair (BER) pathway is present in mitochondria of vertebrates. This pathway is catalyzed by a number of DNA glycosylases, an AP endonuclease, polymerase gamma, and a DNA ligase. This chapter outlines the step-by-step protocols for isolating mitochondrial fractions, from a number of different model organisms, of sufficient purity to allow mtDNA repair activities to be measured. It details in vitro assays for the measurement of BER enzyme activities in lysates prepared from isolated mitochondria.

  12. New insights into the mechanism of DNA mismatch repair

    PubMed Central

    Reyes, Gloria X.; Schmidt, Tobias T.; Kolodner, Richard D.; Hombauer, Hans

    2015-01-01

    The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by upto-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR. PMID:25862369

  13. Impact of Alternative DNA Structures on DNA Damage, DNA Repair, and Genetic Instability

    PubMed Central

    Wang, Guliang; Vasquez, Karen M.

    2014-01-01

    Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability. PMID:24767258

  14. Nucleotide excision repair of DNA: The very early history.

    PubMed

    Friedberg, Errol C

    2011-07-15

    This article, taken largely from the book Correcting the Blueprint of Life: An Historical Account of the Discovery of DNA Repair Mechanisms, summarizes the very early history of the discovery of nucleotide excision repair. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Robustness of DNA Repair through Collective Rate Control

    PubMed Central

    Manders, Erik; von Bornstaedt, Gesa; van Driel, Roel; Höfer, Thomas

    2014-01-01

    DNA repair and other chromatin-associated processes are carried out by enzymatic macromolecular complexes that assemble at specific sites on the chromatin fiber. How the rate of these molecular machineries is regulated by their constituent parts is poorly understood. Here we quantify nucleotide-excision DNA repair in mammalian cells and find that, despite the pathways' molecular complexity, repair effectively obeys slow first-order kinetics. Theoretical analysis and data-based modeling indicate that these kinetics are not due to a singular rate-limiting step. Rather, first-order kinetics emerge from the interplay of rapidly and reversibly assembling repair proteins, stochastically distributing DNA lesion repair over a broad time period. Based on this mechanism, the model predicts that the repair proteins collectively control the repair rate. Exploiting natural cell-to-cell variability, we corroborate this prediction for the lesion-recognition factor XPC and the downstream factor XPA. Our findings provide a rationale for the emergence of slow time scales in chromatin-associated processes from fast molecular steps and suggest that collective rate control might be a widespread mode of robust regulation in DNA repair and transcription. PMID:24499930

  16. Arsenic Biotransformation as a Cancer Promoting Factor by Inducing DNA Damage and Disruption of Repair Mechanisms

    PubMed Central

    Martinez, Victor D.; Vucic, Emily A.; Adonis, Marta; Gil, Lionel; Lam, Wan L.

    2011-01-01

    Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM). Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here. PMID:22091411

  17. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    PubMed Central

    Wojcik, Katarzyna A.; Synowiec, Ewelina; Sobierajczyk, Katarzyna; Izdebska, Justyna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P.

    2014-01-01

    Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease. PMID:25356504

  18. Effect of DNA Repair Protein Rad18 on Viral Infection

    PubMed Central

    Lloyd, Aliza G; Tateishi, Satoshi; Bieniasz, Paul D; Muesing, Mark A; Yamaizumi, Masaru; Mulder, Lubbertus C. F

    2006-01-01

    Host factors belonging to the DNA repair machineries are assumed to aid retroviruses in the obligatory step of integration. Here we describe the effect of DNA repair molecule Rad18, a component of the post-replication repair pathway, on viral infection. Contrary to our expectations, cells lacking Rad18 were consistently more permissive to viral transduction as compared to Rad18+/+ controls. Remarkably, such susceptibility was integration independent, since retroviruses devoid of integration activity also showed enhancement of the initial steps of infection. Moreover, the elevated sensitivity of the Rad18−/− cells was also observed with adenovirus. These data indicate that Rad18 suppresses viral infection in a non-specific fashion, probably by targeting incoming DNA. Furthermore, considering data published recently, it appears that the interactions between DNA repair components with incoming viruses, often result in inhibition of the infection rather than cooperation toward its establishment. PMID:16710452

  19. p53 in the DNA damage repair process

    PubMed Central

    Williams, Ashley B.; Schumacher, Björn

    2016-01-01

    The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA damage response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA repair systems. It thus appears as if p53 is multitasking in protecting from cancer development by maintaining genome stability. PMID:27048304

  20. Molecular mechanisms of DNA repair inhibition by caffeine

    SciTech Connect

    Selby, C.P.; Sancar, A. )

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.

  1. Repair of DNA Double-Strand Breaks in Heterochromatin

    PubMed Central

    Watts, Felicity Z.

    2016-01-01

    DNA double-strand breaks (DSBs) are among the most damaging lesions in DNA, since, if not identified and repaired, they can lead to insertions, deletions or chromosomal rearrangements. DSBs can be in the form of simple or complex breaks, and may be repaired by one of a number of processes, the nature of which depends on the complexity of the break or the position of the break within the chromatin. In eukaryotic cells, nuclear DNA is maintained as either euchromatin (EC) which is loosely packed, or in a denser form, much of which is heterochromatin (HC). Due to the less accessible nature of the DNA in HC as compared to that in EC, repair of damage in HC is not as straightforward as repair in EC. Here we review the literature on how cells deal with DSBs in HC. PMID:27999260

  2. NAD(+): The convergence of DNA repair and mitophagy.

    PubMed

    Fang, Evandro F; Bohr, Vilhelm A

    2017-02-01

    ATM is a 350 kDa serine/threonine kinase best known for its role in DNA repair and multiple cellular homeostasis pathways. Mutation in ATM causes the disease ataxia telangiectasia (A-T) with clinical features including ataxia, severe cerebellar atrophy and Purkinje cell loss. In a cross-species study, using primary rat neurons, the roundworm C. elegans, and a mouse model of A-T, we showed that loss of ATM induces mitochondrial dysfunction and compromised mitophagy due to NAD(+) insufficiency. Remarkably, NAD(+) repletion mitigates both the DNA repair defect and mitochondrial dysfunction in ATM-deficient neurons. In C. elegans, NAD(+) repletion can clear accumulated dysfunctional mitochondria through restoration of compromised mitophagy via upregulation of DCT-1. Thus, NAD(+) ties together DNA repair and mitophagy in neuroprotection and intimates immediate translational applications for A-T and related neurodegenerative DNA repair-deficient diseases.

  3. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair

    PubMed Central

    Roos, Wynand Paul; Krumm, Andrea

    2016-01-01

    Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization. PMID:27738139

  4. DNA single-strand break repair is impaired in aprataxin-related ataxia.

    PubMed

    Hirano, Makito; Yamamoto, Aya; Mori, Toshio; Lan, Li; Iwamoto, Taka-aki; Aoki, Masashi; Shimada, Keiji; Furiya, Yoshiko; Kariya, Shingo; Asai, Hirohide; Yasui, Akira; Nishiwaki, Tomohisa; Imoto, Kyoko; Kobayashi, Nobuhiko; Kiriyama, Takao; Nagata, Tetsuya; Konishi, Noboru; Itoyama, Yasuto; Ueno, Satoshi

    2007-02-01

    Early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH)/ataxia with oculomotor apraxia type 1 (AOA1) is an autosomal recessive form of cerebellar ataxia. The causative protein for EAOH/AOA1, aprataxin (APTX), interacts with X-ray repair cross-complementing 1 (XRCC1), a scaffold DNA repair protein for single-strand breaks (SSBs). The goal of this study was to prove the functional involvement of APTX in SSB repair (SSBR). We visualized the SSBR process with a recently developed laser irradiation system that allows real-time observation of SSBR proteins and with a local ultraviolet-irradiation system using a XPA-UVDE cell line that repairs DNA lesions exclusively via SSBR. APTX was knocked down using small interference RNA in the cells. Oxidative stress-induced DNA damage and cell death were assessed in EAOH fibroblasts and cerebellum. Our systems showed the XRCC1-dependent recruitment of APTX to SSBs. SSBR was impaired in APTX-knocked-down cells. Oxidative stress in EAOH fibroblasts readily induced SSBs and cell death, which were blocked by antioxidants. Accumulated oxidative DNA damage was confirmed in EAOH cerebellum. This study provides the first direct evidence for the functional involvement of APTX in SSBR and in vivo DNA damage in EAOH/AOA1, and suggests a benefit of antioxidant treatment.

  5. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli

    PubMed Central

    Moore, Jessica M.; Correa, Raul; Rosenberg, Susan M.

    2017-01-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS

  6. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli.

    PubMed

    Moore, Jessica M; Correa, Raul; Rosenberg, Susan M; Hastings, P J

    2017-07-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS

  7. Transcript-RNA-templated DNA recombination and repair.

    PubMed

    Keskin, Havva; Shen, Ying; Huang, Fei; Patel, Mikir; Yang, Taehwan; Ashley, Katie; Mazin, Alexander V; Storici, Francesca

    2014-11-20

    Homologous recombination is a molecular process that has multiple important roles in DNA metabolism, both for DNA repair and genetic variation in all forms of life. Generally, homologous recombination involves the exchange of genetic information between two identical or nearly identical DNA molecules; however, homologous recombination can also occur between RNA molecules, as shown for RNA viruses. Previous research showed that synthetic RNA oligonucleotides can act as templates for DNA double-strand break (DSB) repair in yeast and human cells, and artificial long RNA templates injected in ciliate cells can guide genomic rearrangements. Here we report that endogenous transcript RNA mediates homologous recombination with chromosomal DNA in yeast Saccharomyces cerevisiae. We developed a system to detect the events of homologous recombination initiated by transcript RNA following the repair of a chromosomal DSB occurring either in a homologous but remote locus, or in the same transcript-generating locus in reverse-transcription-defective yeast strains. We found that RNA-DNA recombination is blocked by ribonucleases H1 and H2. In the presence of H-type ribonucleases, DSB repair proceeds through a complementary DNA intermediate, whereas in their absence, it proceeds directly through RNA. The proximity of the transcript to its chromosomal DNA partner in the same locus facilitates Rad52-driven homologous recombination during DSB repair. We demonstrate that yeast and human Rad52 proteins efficiently catalyse annealing of RNA to a DSB-like DNA end in vitro. Our results reveal a novel mechanism of homologous recombination and DNA repair in which transcript RNA is used as a template for DSB repair. Thus, considering the abundance of RNA transcripts in cells, RNA may have a marked impact on genomic stability and plasticity.

  8. Platinum drugs and DNA repair mechanisms in lung cancer.

    PubMed

    Bonanno, Laura; Favaretto, Adolfo; Rosell, Rafael

    2014-01-01

    The standard first-line treatment for around 80% of newly-diagnosed advanced non-small cell lung cancer (NSCLC) is chemotherapy. Currently, patients are allocated to chemotherapy on the basis of clinical conditions, comorbidities and histology. If feasible, platinum-based chemotherapy is considered as the most efficacious option. Due to the heterogeneity in terms of platinum-sensitivity among patients with NSCLC, great efforts have been made in order to identify molecular predictive markers of platinum resistance. Based on the mechanism of action of platinum, several components of DNA repair pathways have been investigated as potential predictive markers. The main DNA repair pathways involved in the repair of platinum-induced DNA damage are nucleotide excision repair and homologous recombination. The most studied potential predictive markers of platinum-sensitivity are Excision Repair Cross Complementing-1 (ERCC1) and Brest Cancer Type-I Susceptibility protein (BRCA1); however, increasing biological knowledge about DNA repair pathways suggests the potential clinical usefulness of integrated analysis of multiple DNA repair components.

  9. Mitochondrial DNA repair: a novel therapeutic target for heart failure.

    PubMed

    Marín-García, José

    2016-09-01

    Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca(2+) handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA-protein complexes, called "mitochondrial nucleoids," along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF.

  10. DNA Repair Gene Polymorphisms in Hereditary and Sporadic Breast Cancer

    DTIC Science & Technology

    2006-03-01

    joining repair, the two double-strand-breaks are directly ligated and in HR, the DNA ends are first resected in the 5 ’ to 3’ direction by nucleases; the...DNA polymerase, which copies information from the partner. In HR, the DNA ends are first resected in the 5 ’ to 3’ direction by nucleases; the resulting...genotypes by studying DNA repair proficiency in the terms of 5 chromosomal breaks in EBV-immortalized lymphocytes following in vitro treatment with

  11. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    PubMed

    Morales, Maria E; Derbes, Rebecca S; Ade, Catherine M; Ortego, Jonathan C; Stark, Jeremy; Deininger, Prescott L; Roy-Engel, Astrid M

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  12. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.

  13. DNA in motion during double-strand break repair.

    PubMed

    Miné-Hattab, Judith; Rothstein, Rodney

    2013-11-01

    DNA organization and dynamics profoundly affect many biological processes such as gene regulation and DNA repair. In this review, we present the latest studies on DNA mobility in the context of DNA damage. Recent studies demonstrate that DNA mobility is dramatically increased in the presence of double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae. As a consequence, chromosomes explore a larger nuclear volume, facilitating homologous pairing but also increasing the rate of ectopic recombination. Increased DNA dynamics is dependent on several homologous recombination (HR) proteins and we are just beginning to understand how chromosome dynamics is regulated after DNA damage.

  14. DNA repair proficiency: A potential susceptibility factor for breast cancer

    SciTech Connect

    Helzlsouer, K.J.; Perry, H.; Harris, E.L. |

    1994-09-01

    A family study and a case-control study were conducted to examine the association between sub-optimal repair of ionizing radiation induced DNA damage and the development of breast cancer. A familial cluster of breast cancer was investigated in which breast cancer occurred in 4 of 6 sisters, some of whom were exposed to ionizing radiation from repeated chest fluoroscopic examinations during adolescence and early adulthood. DNA repair proficiency was measured among available family members and correlated with their history of radiation exposure. DNA repair proficiency was also measured among 16 breast cancer cases, 5 women with a family history of breast cancer and 12 controls. The results of the family study suggest an association between poor DNA repair proficiency and increased sensitivity to the carcinogenic effects of early radiation exposure on breast tissue. The case-control study showed that a significantly higher percentage of women with breast cancer (63%) and women with a family history of breast cancer (80%) had poor repair of ionizing radiation induced DNA damage than control women (17%) (P-value=0.02). Sub-optimal repair of DNA damage may be a host susceptibility factor predisposing individuals to breast cancer through increased sensitivity to carcinogenic damage from environmental exposures such as ionizing radiation.

  15. Purification of mammalian DNA repair protein XRCC1

    SciTech Connect

    Chen, I.

    1995-11-01

    Malfunctioning DNA repair systems lead to cancer mutations, and cell death. XRCC1 (X-ray Repair Cross Complementing) is a human DNA repair gene that has been found to fully correct the x-ray repair defect in Chinese hamster ovary (CHO) cell mutant EM9. The corresponding protein (XRCC1) encoded by this gene has been linked to a DNA repair pathway known as base excision repair, and affects the activity of DNA ligase III. Previously, an XRCC1 cDNA minigene (consisting of the uninterrupted coding sequence for XRCC1 protein followed by a decahistidine tag) was constructed and cloned into vector pET-16b for the purpose of: (1) overproduction of XRCC1 in both prokaryotic and eukaryotic cells; and (2) to facilitate rapid purification of XRCC1 from these systems. A vector is basically a DNA carrier that allows recombinant protein to be cloned and overexpressed in host cells. In this study, XRCC1 protein was overexpressed in E. coli and purified by immobilized metal affinity chromatography. Currently, the XRCC1 minigene is being inserted into a new vector [pET-26b(+)] in hopes to increase overexpression and improve purification. Once purified XRCC1 can be crystallized for structural studies, or studied in vitro for its biological function.

  16. New approaches to biochemical radioprotection: antioxidants and DNA repair enhancement

    NASA Astrophysics Data System (ADS)

    Riklis, E.; Emerit, I.; Setlow, R. B.

    Chemical repair may be provided by radioprotective compounds present during exposure to ionizing radiation. Considering DNA as the most sensitive target it is feasible to biochemically improve protection by enhancing DNA repair mechanisms. Protection of DNA by reducing the amount of damage (by radical scavenging and chemical repair) followed by enhanced repair of DNA will provide much improved protection and recovery. Furthermore, in cases of prolonged exposure, such as is possible in prolonged space missions, or of unexpected variations in the intensity of radiation, as is possible when encountering solar flares, it is important to provide long-acting protection, and this may be provided by antioxidants and well functioning DNA repair systems. It has also become important to provide protection from the potentially damaging action of long-lived clastogenic factors which have been found in plasma of exposed persons from Hiroshima & Nagasaki, radiation accidents, radiotherapy patients and recently in ``liquidators'' - persons involved in salvage operations at the Chernobyl reactor. The clastogenic factor, which causes chromatid breaks in non-exposed plasma, might account for late effects and is posing a potential carcinogenic hazard /1/. The enzyme superoxide dismutase (SOD) has been shown to eliminate the breakage factor from cultured plasma of exposed persons /2/. Several compounds have been shown to enhance DNA repair: WR-2721 /3/, nicotinamide /4/, glutathione monoester (Riklis et al., unpublished) and others. The right combination of such compounds may prove effective in providing protection from a wide range of radiation exposures over a long period of time.

  17. Xeroderma Pigmentosum: defective DNA repair causes skin cancer and neurodegeneration

    SciTech Connect

    Robbins, J.H.

    1988-07-15

    Xeroderma pigmentosum is a rare autosomal recessive disease with numerous malignancies on sun-exposed areas of the skin and eye because of an inability to repair DNA damage inflicted by harmful ultraviolet (UV) radiation of the sun. Because it is the only disease in which cancer is known to result from defective DNA repair, XP has received intense clinical and biochemical study during the last two decades. Furthermore, some patients with XP develop a primary neuronal degeneration, probably due to the inability of nerve cells to repair damage to their DNA caused by intraneuronal metabolites and physicochemical events that mimic the effects of UV radiation. Studies of XP neurodegeneration and DNA-repair defects have led to the conclusion that efficient DNA repair is required to prevent premature death of human nerve cells. Since XP neurodegeneration has similarities to premature death of nerve cells that occurs in such neurodegenerative disorders, XP may be the prototype for these more common neurodegenerations. Recent studies indicate that these degenerations also may have DNA-repair defects.

  18. Replication protein A binds to regulatory elements in yeast DNA repair and DNA metabolism genes.

    PubMed Central

    Singh, K K; Samson, L

    1995-01-01

    Saccharomyces cerevisiae responds to DNA damage by arresting cell cycle progression (thereby preventing the replication and segregation of damaged chromosomes) and by inducing the expression of numerous genes, some of which are involved in DNA repair, DNA replication, and DNA metabolism. Induction of the S. cerevisiae 3-methyladenine DNA glycosylase repair gene (MAG) by DNA-damaging agents requires one upstream activating sequence (UAS) and two upstream repressing sequences (URS1 and URS2) in the MAG promoter. Sequences similar to the MAG URS elements are present in at least 11 other S. cerevisiae DNA repair and metabolism genes. Replication protein A (Rpa) is known as a single-stranded-DNA-binding protein that is involved in the initiation and elongation steps of DNA replication, nucleotide excision repair, and homologous recombination. We now show that the MAG URS1 and URS2 elements form similar double-stranded, sequence-specific, DNA-protein complexes and that both complexes contain Rpa. Moreover, Rpa appears to bind the MAG URS1-like elements found upstream of 11 other DNA repair and DNA metabolism genes. These results lead us to hypothesize that Rpa may be involved in the regulation of a number of DNA repair and DNA metabolism genes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7761422

  19. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once

    PubMed Central

    Lafrance-Vanasse, Julien

    2014-01-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by Watson-Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure twice these nucleases

  20. Dieldrin elicits a widespread DNA repair and antioxidative response in mouse brain.

    PubMed

    Sava, Vasyl; Velasquez, Adriana; Song, Shijie; Sanchez-Ramos, Juan

    2007-01-01

    Dieldrin is an organochlorine pesticide that is toxic for monoaminergic neurons. This study was designed to test the hypothesis that a weak DNA repair response to dieldrin by nigrostriatal dopaminergic (DA) neurons results in depletion of striatal DA. The activity of the mammalian base excision repair enzyme oxyguanosine glycosylase was utilized as the index of DNA repair. Other measures of oxidative stress were also studied, including the regional distribution of lipid peroxidation and superoxide dismutase (SOD) activity. The effects of acute and slow infusion of dieldrin on striatal DA levels were biphasic with a transient initial depression followed by increases beyond normal steady-:state levels. Dieldrin administration caused a global oxidative stress evidenced by increased levels of lipid peroxidation in all brain regions, an effect consistent with its capacity to affect mitochondrial bioenergetics. Dieldrin also elicited strong antioxidative and DNA repair responses across the entire mouse brain. Although mitochondrial SOD was not as increased in midbrain as it was in other regions following a cumulative dose of 24 mg/kg, this response, along with the robust DNA repair response, appeared to be sufficient to protect potentially vulnerable DA neurons from cytotoxicity. However, the long-:term consequences of chronic low-:dose dieldrin exposure remain to be studied, especially in light of the concept of "slow excitotoxicity,'' which postulates that even a mild bioenergetic compromise can over time result in the demise of neurons.

  1. DNA repair mechanisms in dividing and non-dividing cells.

    PubMed

    Iyama, Teruaki; Wilson, David M

    2013-08-01

    DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.

  2. DNA repair mechanisms in dividing and non-dividing cells

    PubMed Central

    Iyama, Teruaki; Wilson, David M.

    2013-01-01

    DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye towards how these pathways may regulate the development of neurological disease. PMID:23684800

  3. The repair function of the multifunctional DNA repair/redox protein APE1 is neuroprotective after ionizing radiation.

    PubMed

    Vasko, Michael R; Guo, Chunlu; Thompson, Eric L; Kelley, Mark R

    2011-09-05

    Although exposure to ionizing radiation (IR) can produce significant neurotoxicity, the mechanisms mediating this toxicity remain to be determined. Previous studies using neurons isolated from the central nervous system show that IR produces reactive oxygen species and oxidative DNA damage in those cells. Because the base excision DNA repair pathway repairs single-base modifications caused by ROS, we asked whether manipulating this pathway by altering APE1 expression would affect radiation-induced neurotoxicity. In cultures of adult hippocampal and sensory neurons, IR produces DNA damage as measured by phosphorylation of histone H2A.X and results in dose-dependent cell death. In isolated sensory neurons, we demonstrate for the first time that radiation decreases the capsaicin-evoked release of the neuropeptide CGRP. Reducing APE1 expression in cultured cells augments IR-induced neurotoxicity, whereas overexpressing APE1 is neuroprotective. Using lentiviral constructs with a neuronal specific promoter that selectively expresses APE1s different functions in neurons, we show that selective expression of the DNA repair competent (redox inactive) APE1 constructs in sensory neurons resurrects cell survival and neuronal function, whereas use of DNA-repair deficient (redox active) constructs is not protective. Use of an APE1 redox-specific inhibitor, APX3330, also facilitates neuronal protection against IR-induced toxicity. These results demonstrate for the first time that the repair function of APE1 is required to protect both hippocampal and DRG neuronal cultures--specifically neuronal cells--from IR-induced damage, while the redox activity of APE1 does not appear to be involved. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The repair function of the multifunctional DNA repair/redox protein APE1 is neuroprotective after ionizing radiation

    PubMed Central

    Vasko, Michael R.; Guo, Chunlu; Thompson, Eric L.; Kelley, Mark R.

    2011-01-01

    Although exposure to ionizing radiation (IR) can produce significant neurotoxicity, the mechanisms mediating this toxicity remain to be determined. Previous studies using neurons isolated from the central nervous system show that IR produces reactive oxygen species and oxidative DNA damage in those cells. Because the base excision DNA repair pathway repairs single-base modifications caused by ROS, we asked whether manipulating this pathway by altering APE1 expression would affect radiation-induced neurotoxicity. In cultures of adult hippocampal and sensory neurons, IR produces DNA damage as measured by phosphorylation of histone H2A.X and results in dose-dependent cell death. In isolated sensory neurons, we demonstrate for the first time that radiation decreases the capsaicin-evoked release of the neuropeptide CGRP. Reducing APE1 expression in cultured cells augments IR-induced neurotoxicity, whereas overexpressing APE1 is neuroprotective. Using lentiviral constructs with a neuronal specific promoter that selectively expresses APE1’s different functions in neurons, we show that selective expression of the DNA repair competent (redox inactive) APE1 constructs in sensory neurons resurrects cell survival and neuronal function, whereas use of DNA-repair deficient (redox active) constructs is not protective. Use of an APE1 redox-specific inhibitor, APX3330, also facilitates neuronal protection against IR-induced toxicity. These results demonstrate for the first time that the repair function of APE1 is required to protect both hippocampal and DRG neuronal cultures—specifically neuronal cells—from IR-induced damage, while the redox activity of APE1 does not appear to be involved. PMID:21741887

  5. DNA damage and repair in human skin in situ

    SciTech Connect

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  6. Differential DNA lesion formation and repair in heterochromatin and euchromatin

    PubMed Central

    Han, Chunhua; Srivastava, Amit Kumar; Cui, Tiantian; Wang, Qi-En; Wani, Altaf A.

    2016-01-01

    Discretely orchestrated chromatin condensation is important for chromosome protection from DNA damage. However, it is still unclear how different chromatin states affect the formation and repair of nucleotide excision repair (NER) substrates, e.g. ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP), as well as cisplatin-induced intrastrand crosslinks (Pt-GG). Here, by using immunofluorescence and chromatin immunoprecipitation assays, we have demonstrated that CPD, which cause minor distortion of DNA double helix, can be detected in both euchromatic and heterochromatic regions, while 6-4PP and Pt-GG, which cause major distortion of DNA helix, can exclusively be detected in euchromatin, indicating that the condensed chromatin environment specifically interferes with the formation of these DNA lesions. Mechanistic investigation revealed that the class III histone deacetylase SIRT1 is responsible for restricting the formation of 6-4PP and Pt-GG in cells, probably by facilitating the maintenance of highly condensed heterochromatin. In addition, we also showed that the repair of CPD in heterochromatin is slower than that in euchromatin, and DNA damage binding protein 2 (DDB2) can promote the removal of CPD from heterochromatic region. In summary, our data provide evidence for differential formation and repair of DNA lesions that are substrates of NER. Both the sensitivity of DNA to damage and the kinetics of repair can be affected by the underlying level of chromatin compaction. PMID:26717995

  7. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin

    PubMed Central

    Yu, Shirong; Evans, Katie; Bennett, Mark; Webster, Richard M.; Leadbitter, Matthew; Teng, Yumin; Waters, Raymond

    2016-01-01

    The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome–NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome. PMID:27470111

  8. DNA repair: a changing geography? (1964-2008).

    PubMed

    Maisonobe, Marion; Giglia-Mari, Giuseppina; Eckert, Denis

    2013-07-01

    This article aims to explain the current state of DNA Repair studies' global geography by focusing on the genesis of the community. Bibliometric data is used to localize scientific activities related to DNA Repair at the city level. The keyword "DNA Repair" was introduced first by American scientists. It started to spread after 1964 that is to say, after P. Howard-Flanders (Yale University), P. Hanawalt (Stanford University) and R. Setlow (Oak Ridge Laboratories) found evidence for Excision Repair mechanisms. It was the first stage in the emergence of an autonomous scientific community. In this article, we will try to assess to what extent the geo-history of this scientific field is determinant in understanding its current geography. In order to do so, we will localize the places where the first "DNA Repair" publications were signed fifty years ago and the following spatial diffusion process, which led to the current geography of the field. Then, we will focus on the evolution of the research activity of "early entrants" in relation to the activity of "latecomers". This article is an opportunity to share with DNA Repair scientists some research results of a dynamic field in Science studies: spatial scientometrics. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Loss of Urokinase Receptor Sensitizes Cells to DNA Damage and Delays DNA Repair

    PubMed Central

    Narayanaswamy, Pavan B.; Hodjat, Mahshid; Haller, Hermann; Dumler, Inna; Kiyan, Yulia

    2014-01-01

    DNA damage induced by numerous exogenous or endogenous factors may have irreversible consequences on the cell leading to cell cycle arrest, senescence and cell death. The DNA damage response (DDR) is powerful signaling machinery triggered in response to DNA damage, to provide DNA damage recognition, signaling and repair. Most anticancer drugs induce DNA damage, and DNA repair in turn attenuates therapeutic efficiency of those drugs. Approaches delaying DNA repair are often used to increase efficiency of treatment. Recent data show that ubiquitin-proteasome system is essential for signaling and repair of DNA damage. However, mechanisms providing regulation of proteasome intracellular localization, activity, and recruitment to DNA damage sites are elusive. Even less investigated are the roles of extranuclear signaling proteins in these processes. In this study, we report the involvement of the serine protease urokinase-type plasminogen activator receptor (uPAR) in DDR-associated regulation of proteasome. We show that in vascular smooth muscle cells (VSMC) uPAR activates DNA single strand break repair signaling pathway. We provide evidence that uPAR is essential for functional assembly of the 26S proteasome. We further demonstrate that uPAR mediates DNA damage-induced phosphorylation, nuclear import, and recruitment of the regulatory subunit PSMD6 to proteasome. We found that deficiency of uPAR and PSMD6 delays DNA repair and leads to decreased cell survival. These data may offer new therapeutic approaches for diseases such as cancer, cardiovascular and neurodegenerative disorders. PMID:24987841

  10. DNA repair defects associated with chromosomal translocation breaksite regions

    SciTech Connect

    Beecham, E.J.; Link, C.; Bohr, V.A.

    1994-02-01

    Using an assay that measures the removal of UV-induced pyrimidine dimers in specific DNA sequences, we have found that the Pvt-1, immunoglobulin H-C{alpha} (IgH-C{alpha}), and IgL-{kappa} loci are poorly repaired in normal B lymphoblasts from plasmacytoma-susceptible BALB/cAnPt mice. Breaksites in these genes are associated with the chromosomal translocations that are found in >95% of BALB/cAnPt plasmacytomas. In contrast to those from BALB/cAnPt mice, B lymphoblasts from plasmacytoma-resistant DBA/2N mice rapidly repair Pvt-1, IgH-C{alpha} and IgL-{kappa}. Further, (BALB/cAnPt x DBA/2N)F{sub 1} hybrids, which are resistant to plasmacytoma development, carry an efficient (DBA/2N-like) repair phenotype. Analysis of allele-specific repair in the IgH-C{alpha} locus indicates that efficient repair is controlled by dominant, transacting factors. In the F{sub 1} heterozygotes, these factors promote efficient repair of BALB/cAnPt IgH-C{alpha} gene sequences. The same sequences are poorly repaired in the BALB/cAnPt parental strain. Analysis of the strand specificity of repair indicates that both strand-selective and nonselective forms of repair determine repair efficiency at the gene level in nonimmortalized murine B lymphoblasts. 36 refs., 3 figs., 6 tabs.

  11. DNA INTERSTRAND CROSSLINK REPAIR IN MAMMALIAN CELLS: STEP BY STEP

    PubMed Central

    Muniandy, Parameswary; Liu, Jia; Majumdar, Alokes; Liu, Su-ting; Seidman, Michael M.

    2009-01-01

    Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by Nucleotide Excision Repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G1 phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells. PMID:20039786

  12. Modeling the repair of DNA strand breaks caused by γ-radiation in a minichromosome

    NASA Astrophysics Data System (ADS)

    Łakomiec, K.; Kumala, S.; Hancock, R.; Rzeszowska-Wolny, J.; Fujarewicz, K.

    2014-08-01

    The objective of the studies described here was the development of a mathematical model which would fit experimental data for the repair of single and double strand breaks induced in DNA in living cells by exposure to ionizing radiation, and which would allow to better understand the processes of DNA repair. DNA breaks are believed to play the major role in radiation-induced lethality and formation of chromosome deletions, and are therefore crucial to the response of cells to radiotherapy. In an initial model which we reported on the basis of data for the repair of Epstein-Barr minichromosomes in irradiated Raji cells, we assumed that DNA breaks are induced only at the moment of irradiation and are later removed by repair systems. This work gives a development of that mathematical model which fits the experimental results more precisely and suggests strongly that DNA breaks are generated not only by direct irradiation but also later, probably by systems engaged in repair of oxidative damage.

  13. Ntg2 of Saccharomyces cerevisiae repairs the oxidation products of 8-hydroxyguanine.

    PubMed

    Kim, J E; You, H J; Choi, J Y; Doetsch, P W; Kim, J S; Chung, M H

    2001-08-03

    In Escherichia coli, endonuclease III (endo III) repairs the oxidation products of 8-OHGua. However, the corresponding repair enzymes in eukaryotes have not been identified. Here we report that 8-hydroxyguanine (8-OHGua) is highly sensitive to further oxidation. We also show that Ntg2, a functional homolog of endo III in Saccharomyces cerevisiae, is capable of nicking the irradiated duplex DNA containing 8-OHGua. Moreover, Ntg2 formed a stable complex with the DNA upon incubation with NaBH(4). In contrast, Ntg1, another functional homolog of endo III, showed no such activities. These findings indicate that Ntg2 is, at least in part, responsible for repairing the oxidation products of 8-OHGua in eukaryotic cells.

  14. Exploiting DNA repair defects for novel cancer therapies

    PubMed Central

    van Gent, Dik C.; Kanaar, Roland

    2016-01-01

    Most human tumors accumulate a multitude of genetic changes due to defects in the DNA damage response. Recently, small-molecule inhibitors have been developed that target cells with specific DNA repair defects, providing hope for precision treatment of such tumors. Here we discuss the rationale behind these therapies and how an important bottleneck—patient selection—can be approached. PMID:27418635

  15. DNA mismatch repair: Dr. Jekyll and Mr. Hyde?

    PubMed

    Hsieh, Peggy

    2012-09-14

    In this issue, Peña-Diaz et al. (2012) describe a pathway for somatic mutation in nonlymphoid cells termed noncanonical DNA mismatch repair, whereby the error-prone translesion polymerase Pol-η substitutes for high-fidelity replicative polymerases to resynthesize excised regions opposite DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Structural aspects of DNA repair: the role of restricted diffusion.

    PubMed

    Minsky, Abraham

    2003-10-01

    DNA repair and protection processes impose arduous demands upon cellular systems. The high-fidelity recombinational repair pathway entails a rapid genome-wide search for sequence homology. The efficiency of this transaction is intriguing in light of the uniquely adverse diffusion traits of the involved species. DNA protection in cells exposed to continuous stress or prolonged starvation is equally enigmatic, because the ability of such cells to deploy energy-dependent enzymatic repair processes is hampered as a result of progressive perturbation of the intracellular energy balance. DNA repair in radio-resistant bacteria, which involves accurate chromosome reconstruction from multiple fragments, is similarly associated with apparently insurmountable logistical obstacles. The studies reviewed here imply that the mechanisms deployed to overcome these intrinsic hurdles have a basic common denominator. In all these cases, condensed and ordered chromatin assemblies are formed, within which molecular diffusion is restricted and confined. Restricted diffusion thus appears as a general strategy that is exploited by nature to facilitate homologous search, to promote energy-independent DNA protection through physical DNA sequestration and attenuated accessibility to damaging agents, and to enable error-free repair of multiple double-strand DNA breaks.

  17. Recombinant methods for screening human DNA excision repair proficiency

    SciTech Connect

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period.

  18. Interindividual variation with respect to DNA repair in human cells

    SciTech Connect

    Leonard, R.C.; Leonard, J.C.; Bender, M.A.; Wieland, J.; Setlow, R.B.

    1989-01-01

    Ecogenetics is the study of genetically determined differences among individuals in their susceptibility to the actions of physical, chemical, and biological agents in the environment. An individual's most basic level of response to these environmental agents may be the ability to repair physical and chemical damage to DNA. We have been engaged in a survey of DNA-repair measurements in a healthy working population in order to determine the extent of the population variability in these endpoints and to assess the value of these screening protocols in identifying individuals who are at the extremes of the distribution. In addition, we are measuring intraindividual variation over time, as well as the correlations between measurements of different repair systems. The endpoints that we have chosen to use are cytogenetic responses (SCE's and micronucleus formation) and DNA excision repair (unscheduled DNA synthesis and removal of O{sup 6} guanine methylation) in human peripheral lymphocytes exposed to 254 nm ultraviolet light, x-rays, the bifunctional alkylating agent mitomycin C, or the monofunctional alkylating agent N-methyl-N-nitro-nitrosoguanidine (MNNG). These four test mutagens produce spectra of DNA lesions eliciting different types of DNA repair. 3 refs., 1 tab.

  19. Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer.

    PubMed

    Palli, Domenico; Polidoro, Silvia; D'Errico, Mariarosaria; Saieva, Calogero; Guarrera, Simonetta; Calcagnile, Angelo S; Sera, Francesco; Allione, Alessandra; Gemma, Simonetta; Zanna, Ines; Filomena, Alessandro; Testai, Emanuela; Caini, Saverio; Moretti, Renato; Gomez-Miguel, Maria-Jesus; Nesi, Gabriella; Luzzi, Ida; Ottini, Laura; Masala, Giovanna; Matullo, Giuseppe; Dogliotti, Eugenia

    2010-11-01

    Risk factors for gastric cancer (GC) include inter-individual variability in the inflammatory response to Helicobacter pylori infection, in the ability of detoxifying DNA reactive species and repairing DNA damage generated by oxidative stress and dietary carcinogens. To evaluate the association between polymorphic DNA repair genes and GC risk, a case-control study including 314 histologically confirmed GC patients and 548 healthy controls was conducted in a GC high-risk area in Tuscany, Italy. Polymorphic variants of base excision repair (APE1-D148E, XRCC1-R194W, XRCC1-R399Q and OGG1-S326C), nucleotide excision repair (XPC-PAT, XPA-23G>A, ERCC1-19007T>C and XPD-L751Q), recombination (XRCC3-T241M) and alkylation damage reversal (MGMT-L84F) were tested for their potential role in the development of GC by using logistic regression models. The same population was also characterised for GSTT1 and GSTM1 variant alleles to search for possible functional interactions between metabolic and DNA repair genotypes by two-way interactions using multivariate logistic models. No significant association between any single DNA repair genotype and GC risk was detected with a borderline association with the XPC-PAT homozygous genotype [odds ratio (OR) =1.42; 95% confidence interval (CI) 0.94-2.17]. Gene-gene interaction analysis revealed combinations of unfavourable genotypes involving either multiple DNA repair polymorphisms or DNA repair and GST-specific genotypes. The combination of the XPC-PAT and the XPA variant alleles significantly increased GC risk (OR=2.15; 95% CI 1.17-3.93, P=0.0092). A significant interaction was also found between the APE1 wild-type genotype and either the single GSTT1 (OR=4.90; 95% CI 2.38-10.11, P=0.0079) or double GSTM1-GSTT1 null (OR=7.84; 95% CI 3.19-19.22, P=0.0169) genotypes or the XPA-mutant allele (OR=3.56; 95% CI 1.53-8.25, P=0.0012). These findings indicate that a complex interaction between host factors such as oxidative stress, antioxidant

  20. Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair

    SciTech Connect

    Andres, Sara N.; Appel, C. Denise; Westmoreland, James W.; Williams, Jessica S.; Nguyen, Yvonne; Robertson, Patrick D.; Resnick, Michael A.; Williams, R. Scott

    2015-01-12

    Ctp1 (also known as CtIP or Sae2) collaborates with Mre11-Rad50-Nbs1 to initiate repair of DNA double-strand breaks (DSBs), but its functions remain enigmatic. In this paper, we report that tetrameric Schizosaccharomyces pombe Ctp1 contains multivalent DNA-binding and DNA-bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer, we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal 'RHR' DNA-interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA-bridging activity in vitro, and both the THDD and RHR are required for efficient DSB repair in S. pombe. Finally, our results establish non-nucleolytic roles of Ctp1 in binding and coordination of DSB-repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CtIP-linked Seckel and Jawad syndromes.

  1. Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair

    DOE PAGES

    Andres, Sara N.; Appel, C. Denise; Westmoreland, James W.; ...

    2015-01-12

    Ctp1 (also known as CtIP or Sae2) collaborates with Mre11-Rad50-Nbs1 to initiate repair of DNA double-strand breaks (DSBs), but its functions remain enigmatic. In this paper, we report that tetrameric Schizosaccharomyces pombe Ctp1 contains multivalent DNA-binding and DNA-bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer, we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal 'RHR' DNA-interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA-bridging activity in vitro, and both the THDD and RHR are required for efficientmore » DSB repair in S. pombe. Finally, our results establish non-nucleolytic roles of Ctp1 in binding and coordination of DSB-repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CtIP-linked Seckel and Jawad syndromes.« less

  2. DNA repair in murine embryonic stem cells and differentiated cells

    SciTech Connect

    Tichy, Elisia D. Stambrook, Peter J.

    2008-06-10

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.

  3. Dynamics and mechanisms of DNA repair by photolyase.

    PubMed

    Liu, Zheyun; Wang, Lijuan; Zhong, Dongping

    2015-05-14

    Photolyases, a class of flavoproteins, use blue light to repair two types of ultraviolet-induced DNA damage, a cyclobutane pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct (6-4PP). In this perspective, we review the recent progress in the repair dynamics and mechanisms of both types of DNA restoration by photolyases. We first report the spectroscopic characterization of flavin in various redox states and the active-site solvation dynamics in photolyases. We then systematically summarize the detailed repair dynamics of damaged DNA by photolyases and a biomimetic system through resolving all elementary steps on ultrafast timescales, including multiple intermolecular electron- and proton-transfer reactions and bond-breaking and -making processes. We determined the unique electron tunneling pathways, identified the key functional residues and revealed the molecular origin of high repair efficiency, and thus elucidate the molecular mechanisms and repair photocycles at the most fundamental level. We finally conclude that the active sites of photolyases, unlike the aqueous solution for the biomimetic system, provide a unique electrostatic environment and local flexibility and thus a dedicated synergy for all elementary dynamics to maximize the repair efficiency. This repair photomachine is the first enzyme that the entire functional evolution is completely mapped out in real time.

  4. Electron Transfer Mechanisms of DNA Repair by Photolyase

    NASA Astrophysics Data System (ADS)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  5. Electron transfer mechanisms of DNA repair by photolyase.

    PubMed

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  6. DNA double-strand break repair pathway choice in Dictyostelium.

    PubMed

    Hsu, Duen-Wei; Kiely, Rhian; Couto, C Anne-Marie; Wang, Hong-Yu; Hudson, Jessica J R; Borer, Christine; Pears, Catherine J; Lakin, Nicholas D

    2011-05-15

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). The mechanisms that govern whether a DSB is repaired by NHEJ or HR remain unclear. Here, we characterise DSB repair in the amoeba Dictyostelium. HR is the principal pathway responsible for resistance to DSBs during vegetative cell growth, a stage of the life cycle when cells are predominantly in G2. However, we illustrate that restriction-enzyme-mediated integration of DNA into the Dictyostelium genome is possible during this stage of the life cycle and that this is mediated by an active NHEJ pathway. We illustrate that Dclre1, a protein with similarity to the vertebrate NHEJ factor Artemis, is required for NHEJ independently of DNA termini complexity. Although vegetative dclre1(-) cells are not radiosensitive, they exhibit delayed DSB repair, further supporting a role for NHEJ during this stage of the life cycle. By contrast, cells lacking the Ku80 component of the Ku heterodimer that binds DNA ends to facilitate NHEJ exhibit no such defect and deletion of ku80 suppresses the DSB repair defect of dclre1(-) cells through increasing HR efficiency. These data illustrate a functional NHEJ pathway in vegetative Dictyostelium and the importance of Ku in regulating DSB repair choice during this phase of the life cycle.

  7. Hsp90: A New Player in DNA Repair?

    PubMed Central

    Pennisi, Rosa; Ascenzi, Paolo; di Masi, Alessandra

    2015-01-01

    Heat shock protein 90 (Hsp90) is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis), transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR) pathways that include: (i) cell cycle arrest; (ii) transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii) triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted. PMID:26501335

  8. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    PubMed Central

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  9. Single molecule techniques in DNA repair: A primer

    PubMed Central

    Hughes, Craig D.; Simons, Michelle; Mackenzie, Cassidy E.; Van Houten, Bennett; Kad, Neil M.

    2016-01-01

    A powerful new approach has become much more widespread and offers insights into aspects of DNA repair unattainable with billions of molecules. Single molecule techniques can be used to image, manipulate or characterize the action of a single repair protein on a single strand of DNA. This allows search mechanisms to be probed, and the effects of force to be understood. These physical aspects can dominate a biochemical reaction, where at the ensemble level their nuances are obscured. In this paper we discuss some of the many technical advances that permit study at the single molecule level. We focus on DNA repair to which these techniques are actively being applied. DNA repair is also a process that encompasses so much of what single molecule studies benefit – searching for targets, complex formation, sequential biochemical reactions and substrate hand-off to name just a few. We discuss how single molecule biophysics is poised to transform our understanding of biological systems, in particular DNA repair. PMID:24819596

  10. Repair of mismatched basepairs in mammalian DNA

    SciTech Connect

    Taylor, J.H.; Hare, J.T.

    1991-08-01

    We have concentrated on three specific areas of our research plan. Our greatest emphasis is on the role of single strand nicks in influencing template strand selection in mismatch repair. We have found, that the ability of a nick in one strand to influence which strand is repaired is not a simple function of distance from the mismatched site but rather that an hot spot where a nick is more likely to have an influence can exist. The second line was production of single-genotype heteroduplexes in order to examine independently the repair of T/G and A/C mispairs within the same sequence context as in our mixed mispair preparations. We have shown preparations of supercoiled heteroduplex can be prepared that were exclusively T/G or exclusively A/C at the mispair site. The third effort has been to understand the difference in repair bias of different cell lines or different transfection conditions as it may relate to different repair systems in the cell. We have identified some of the sources of variation, including cell cycle position. We hope to continue this work to more precisely identify the phase of the cell cycle.

  11. Isolating human DNA repair genes using rodent-cell mutants

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-03-23

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab.

  12. Direct Observation of Thymine Dimer Repair in DNA by Photolyase

    NASA Astrophysics Data System (ADS)

    Zhong, Dongping

    2006-03-01

    Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, 191 West Woodruff Avenue, OH 43210. Photolyase uses light energy to split ultraviolet-induced cyclobutane pyrimidine dimers in damaged DNA, but its molecular mechanism has never been directly revealed. We report here the direct mapping of catalytic processes through femtosecond synchronization of the enzymatic dynamics with the repair function. We observed direct electron transfer from the excited flavin cofactor to the dimer in 170 ps and back electron transfer from the repaired thymines in 560 ps. Both reactions are strongly modulated by active-site solvation to achieve maximum repair efficiency. These results show that the photocycle of DNA repair by photolyase is through a radical mechanism and completed on subnanosecond time scale at the dynamic active site with no net electron change in redox states of the flavin cofactor.

  13. Electronic Pathways in Photoactivated Repair of UV Mutated DNA

    NASA Astrophysics Data System (ADS)

    Bohr, Henrik; Jalkanen, K. J.; Bary Malik, F.

    An investigation of the physics, underlying the damage caused to DNA by UV radiation and its subsequent repair via a photoreactivation mechanism, is presented in this study. Electronic pathways, starting from the initial damage to the final repair process, are presented. UV radiation is absorbed to create a hole-excited thymine or other pyrimidine that subsequently is responsible for the formation of a dimer. The negative-ion of the cofactor riboflavin, FADH-, formed by the exposure of the photolyase protein to visible light, interacts with the hole-excited electronic orbital of the thymine dimer inducing a photon-less Auger transition, which restores the two thymines to the ground state, thereby detaching the lesion and repairing the DNA. Density functional theoretical calculations supporting the theory are presented. The mechanism involves the least amount of energy dissipation and is charge neutral. It also avoids radiation damage in the repair process. Recent experimental data are compatible with this theory.

  14. DNA Ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair

    PubMed Central

    Gao, Yankun; Katyal, Sachin; Lee, Youngsoo; Zhao, Jingfeng; Rehg, Jerold E.; Russell, Helen R.; McKinnon, Peter J.

    2011-01-01

    DNA replication and repair in mammalian cells involves three distinct DNA ligases; ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4)1. Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway2,3. Lig3 is also present in the mitochondria where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc14. However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality5. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss6, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair. PMID:21390131

  15. DNA Repair Is Associated with Information Content in Bacteria, Archaea, and DNA Viruses.

    PubMed

    Acosta, Sharlene; Carela, Miguelina; Garcia-Gonzalez, Aurian; Gines, Mariela; Vicens, Luis; Cruet, Ricardo; Massey, Steven E

    2015-01-01

    The concept of a "proteomic constraint" proposes that DNA repair capacity is positively correlated with the information content of a genome, which can be approximated to the size of the proteome (P). This in turn implies that DNA repair genes are more likely to be present in genomes with larger values of P. This stands in contrast to the common assumption that informational genes have a core function and so are evenly distributed across organisms. We examined the presence/absence of 18 DNA repair genes in bacterial genomes. A positive relationship between gene presence and P was observed for 17 genes in the total dataset, and 16 genes when only nonintracellular bacteria were examined. A marked reduction of DNA repair genes was observed in intracellular bacteria, consistent with their reduced value of P. We also examined archaeal and DNA virus genomes, and show that the presence of DNA repair genes is likewise related to a larger value of P. In addition, the products of the bacterial genes mutY, vsr, and ndk, involved in the correction of GC/AT mutations, are strongly associated with reduced genome GC content. We therefore propose that a reduction in information content leads to a loss of DNA repair genes and indirectly to a reduction in genome GC content in bacteria by exposure to the underlying AT mutation bias. The reduction in P may also indirectly lead to the increase in substitution rates observed in intracellular bacteria via loss of DNA repair genes.

  16. Roles of PTEN with DNA Repair in Parkinson’s Disease

    PubMed Central

    Ogino, Mako; Ichimura, Mayuko; Nakano, Noriko; Minami, Akari; Kitagishi, Yasuko; Matsuda, Satoru

    2016-01-01

    Oxidative stress is considered to play key roles in aging and pathogenesis of many neurodegenerative diseases such as Parkinson’s disease, which could bring DNA damage by cells. The DNA damage may lead to the cell apoptosis, which could contribute to the degeneration of neuronal tissues. Recent evidence suggests that PTEN (phosphatase and tensin homolog on chromosome 10) may be involved in the pathophysiology of the neurodegenerative disorders. Since PTEN expression appears to be one dominant determinant of the neuronal cell death, PTEN should be a potential molecular target of novel therapeutic strategies against Parkinson’s disease. In addition, defects in DNA damage response and DNA repair are often associated with modulation of hormone signaling pathways. Especially, many observations imply a role for estrogen in a regulation of the DNA repair action. In the present review, we have attempted to summarize the function of DNA repair molecules at a viewpoint of the PTEN signaling pathway and the hormone related functional modulation of cells, providing a broad interpretation on the molecular mechanisms for treatment of Parkinson’s disease. Particular attention will be paid to the mechanisms proposed to explain the health effects of food ingredients against Parkinson’s disease related to reduce oxidative stress for an efficient therapeutic intervention. PMID:27314344

  17. Altered DNA base excision repair profile in brain tissue and blood in Alzheimer's disease.

    PubMed

    Lillenes, Meryl S; Rabano, Alberto; Støen, Mari; Riaz, Tahira; Misaghian, Dorna; Møllersen, Linda; Esbensen, Ying; Günther, Clara-Cecilie; Selnes, Per; Stenset, Vidar T V; Fladby, Tormod; Tønjum, Tone

    2016-05-28

    Alzheimer's disease (AD) is a progressive, multifactorial neurodegenerative disorder that is the main cause of dementia globally. AD is associated with increased oxidative stress, resulting from imbalance in production and clearance of reactive oxygen species (ROS). ROS can damage DNA and other macromolecules, leading to genome instability and disrupted cellular functions. Base excision repair (BER) plays a major role in repairing oxidative DNA lesions. Here, we compared the expression of BER components APE1, OGG1, PARP1 and Polβ in blood and postmortem brain tissue from patients with AD, mild cognitive impairment (MCI) and healthy controls (HC). BER mRNA levels were correlated to clinical signs and cerebrospinal fluid biomarkers for AD. Notably, the expression of BER genes was higher in brain tissue than in blood samples. Polβ mRNA and protein levels were significantly higher in the cerebellum than in the other brain regions, more so in AD patients than in HC. Blood mRNA levels of OGG1 was low and PARP1 high in MCI and AD. These findings reflect the oxidative stress-generating energy-consumption in the brain and the importance of BER in repairing these damage events. The data suggest that alteration in BER gene expression is an event preceding AD. The results link DNA repair in brain and blood to the etiology of AD at the molecular level and can potentially serve in establishing novel biomarkers, particularly in the AD prodromal phase.

  18. Oxidative DNA damage in osteoarthritic porcine articular cartilage

    PubMed Central

    Chen, Antonia F.; Davies, Catrin M.; De Lin, Ming; Fermor, Beverley

    2008-01-01

    Purpose Osteoarthritis (OA) is associated with increased levels of reactive oxygen species. This study investigated if increased oxidative DNA damage accumulates in OA articular cartilage compared with non-OA articular cartilage from pigs with spontaneous OA. Additionally, the ability of nitric oxide (NO) or peroxynitrite (ONOO-) induced DNA damage in non-OA chondrocytes to undergo endogenous repair was investigated. Methods Porcine femoral condyles were graded for the stage of OA, macroscopically by the Collins Scale, and histologically by the modified Mankin Grade. Levels of DNA damage were determined in non-OA and OA cartilage, using the comet assay. For calibration, DNA damage was measured by exposing non-OA chondrocytes to 0-12 Gray of x-ray irradiation. Non-OA articular chondrocytes were treated with 0-500 μM of NO donors (NOC-18 or SIN-1), and DNA damage assessed after treatment and 5 days recovery. Results A significant increase (p<0.01) in oxidative DNA damage occurred in OA chondrocytes in joints with Mankin Grades 3 or greater, compared to non-OA chondrocytes. The percentage of nuclei containing DNA damage increased significantly (p<0.001) from early to late grades of OA. An increase of approximately 0.65-1.7 breaks/1000kB of DNA occurred in OA, compared to non-OA nuclei. NOC-18 or SIN-1 caused significant DNA damage (p<0.001) in non-OA chondrocytes that did not undergo full endogenous repair after 5 days (p<0.05). Conclusion Our data suggest significant levels of oxidative DNA damage occur in OA chondrocytes that accumulates with OA progression. Additionally, DNA damage induced by NO and ONOO- in non-OA chondrocytes does not undergo full endogenous repair. PMID:18720406

  19. Control of gene editing by manipulation of DNA repair mechanisms.

    PubMed

    Danner, Eric; Bashir, Sanum; Yumlu, Saniye; Wurst, Wolfgang; Wefers, Benedikt; Kühn, Ralf

    2017-04-03

    DNA double-strand breaks (DSBs) are produced intentionally by RNA-guided nucleases to achieve genome editing through DSB repair. These breaks are repaired by one of two main repair pathways, classic non-homologous end joining (c-NHEJ) and homology-directed repair (HDR), the latter being restricted to the S/G2 phases of the cell cycle and notably less frequent. Precise genome editing applications rely on HDR, with the abundant c-NHEJ formed mutations presenting a barrier to achieving high rates of precise sequence modifications. Here, we give an overview of HDR- and c-NHEJ-mediated DSB repair in gene editing and summarize the current efforts to promote HDR over c-NHEJ.

  20. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair.

    PubMed

    Zhang, Meng; Wang, Lijuan; Zhong, Dongping

    2017-08-09

    Photolyase, a flavoenzyme containing flavin adenine dinucleotide (FAD) molecule as a catalytic cofactor, repairs UV-induced DNA damage of cyclobutane pyrimidine dimer (CPD) and pyrimidine-pyrimidone (6-4) photoproduct using blue light. The FAD cofactor, conserved in the whole protein superfamily of photolyase/cryptochromes, adopts a unique folded configuration at the active site that plays a critical functional role in DNA repair. Here, we review our comprehensive characterization of the dynamics of flavin cofactor and its repair photocycles by different classes of photolyases on the most fundamental level. Using femtosecond spectroscopy and molecular biology, significant advances have recently been made to map out the entire dynamical evolution and determine actual timescales of all the catalytic processes in photolyases. The repair of CPD reveals seven electron-transfer (ET) reactions among ten elementary steps by a cyclic ET radical mechanism through bifurcating ET pathways, a direct tunneling route mediated by the intervening adenine and a two-step hopping path bridged by the intermediate adenine from the cofactor to damaged DNA, through the conserved folded flavin at the active site. The unified, bifurcated ET mechanism elucidates the molecular origin of various repair quantum yields of different photolyases from three life kingdoms. For 6-4 photoproduct repair, a similar cyclic ET mechanism operates and a new cyclic proton transfer with a conserved histidine residue at the active site of (6-4) photolyases is revealed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. DNA repair mechanisms and their clinical impact in glioblastoma.

    PubMed

    Erasimus, Hélène; Gobin, Matthieu; Niclou, Simone; Van Dyck, Eric

    2016-01-01

    Despite surgical resection and genotoxic treatment with ionizing radiation and the DNA alkylating agent temozolomide, glioblastoma remains one of the most lethal cancers, due in great part to the action of DNA repair mechanisms that drive resistance and tumor relapse. Understanding the molecular details of these mechanisms and identifying potential pharmacological targets have emerged as vital tasks to improve treatment. In this review, we introduce the various cellular systems and animal models that are used in studies of DNA repair in glioblastoma. We summarize recent progress in our knowledge of the pathways and factors involved in the removal of DNA lesions induced by ionizing radiation and temozolomide. We introduce the therapeutic strategies relying on DNA repair inhibitors that are currently being tested in vitro or in clinical trials, and present the challenges raised by drug delivery across the blood brain barrier as well as new opportunities in this field. Finally, we review the genetic and epigenetic alterations that help shape the DNA repair makeup of glioblastoma cells, and discuss their potential therapeutic impact and implications for personalized therapy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Defective DNA repair mechanisms in prostate cancer: impact of olaparib.

    PubMed

    De Felice, Francesca; Tombolini, Vincenzo; Marampon, Francesco; Musella, Angela; Marchetti, Claudia

    2017-01-01

    The field of prostate oncology has continued to change dramatically. It has truly become a field that is intensely linked to molecular genetic alterations, especially DNA-repair defects. Germline breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2) mutations are implicated in the highest risk of prostate cancer (PC) predisposition and aggressiveness. Poly adenosine diphosphate ribose polymerase (PARP) proteins play a key role in DNA repair mechanisms and represent a valid target for new therapies. Olaparib is an oral PARP inhibitor that blocks DNA repair pathway and coupled with BRCA mutated-disease results in tumor cell death. In phase II clinical trials, including patients with advanced castration-resistant PC, olaparib seems to be efficacious and well tolerated. Waiting for randomized phase III trials, olaparib should be considered as a promising treatment option for PC.

  3. Defective DNA repair mechanisms in prostate cancer: impact of olaparib

    PubMed Central

    De Felice, Francesca; Tombolini, Vincenzo; Marampon, Francesco; Musella, Angela; Marchetti, Claudia

    2017-01-01

    The field of prostate oncology has continued to change dramatically. It has truly become a field that is intensely linked to molecular genetic alterations, especially DNA-repair defects. Germline breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2) mutations are implicated in the highest risk of prostate cancer (PC) predisposition and aggressiveness. Poly adenosine diphosphate ribose polymerase (PARP) proteins play a key role in DNA repair mechanisms and represent a valid target for new therapies. Olaparib is an oral PARP inhibitor that blocks DNA repair pathway and coupled with BRCA mutated-disease results in tumor cell death. In phase II clinical trials, including patients with advanced castration-resistant PC, olaparib seems to be efficacious and well tolerated. Waiting for randomized phase III trials, olaparib should be considered as a promising treatment option for PC. PMID:28280302

  4. What is the DNA repair defect underlying Fanconi anemia?

    PubMed Central

    Duxin, Julien P.; Walter, Johannes C.

    2015-01-01

    Fanconi anemia (FA) is a rare human genetic disease characterized by bone marrow failure, cancer predisposition, and genomic instability. It has been known for many years that FA patient-derived cells are exquisitely sensitive to DNA interstrand cross-linking agents such as cisplatin and mitomycin C. On this basis, it was widely assumed that failure to repair endogenous interstrand cross-links (ICLs) causes FA, although the endogenous mutagen that generates these lesions remained elusive. Recent genetic evidence now suggests that endogenous aldehydes are the driving force behind FA. Importantly, aldehydes cause a variety of DNA lesions, including ICLs and DNA protein cross-links (DPCs), re-kindling the debate about which DNA lesions cause FA. In this review, we discuss new developments in our understanding of DPC and ICL repair, and how these findings bear on the question of which DNA lesion underlies FA. PMID:26512453

  5. DNA-PKcs and ATM Co-Regulate DNA Double-Strand Break Repair

    PubMed Central

    Shrivastav, Meena; Miller, Cheryl A.; De Haro, Leyma P.; Durant, Stephen T.; Chen, Benjamin P.C.; Chen, David J.; Nickoloff, Jac A.

    2009-01-01

    DNA double-strand breaks (DSBs) are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR). The NHEJ/HR decision is under complex regulation and involves DNA-dependent protein kinase (DNA-PKcs). HR is elevated in DNA-PKcs null cells, but suppressed by DNA-PKcs kinase inhibitors, suggesting that kinase-inactive DNA-PKcs (DNA-PKcs-KR) would suppress HR. Here we use a direct repeat assay to monitor HR repair of DSBs induced by I-SceI nuclease. Surprisingly, DSB-induced HR in DNA-PKcs-KR cells was 2- to 3-fold above the elevated HR level of DNA-PKcs null cells, and ∼4- to 7-fold above cells expressing wild-type DNA-PKcs. The hyperrecombination in DNA-PKcs-KR cells compared to DNA-PKcs null cells was also apparent as increased resistance to DNA crosslinks induced by mitomycin C. ATM phosphorylates many HR proteins, and ATM is expressed at a low level in cells lacking DNA-PKcs, but restored to wild-type level in cells expressing DNA-PKcs-KR. Several clusters of phosphorylation sites in DNA-PKcs, including the T2609 cluster, which is phosphorylated by DNA-PKcs and ATM, regulate access of repair factors to broken ends. Our results indicate that ATM-dependent phosphorylation of DNA-PKcs-KR contributes to the hyperrecombination phenotype. Interestingly, DNA-PKcs null cells showed more persistent ionizing radiation-induced RAD51 foci (but lower HR levels) compared to DNA-PKcs-KR cells, consistent with HR completion requiring RAD51 turnover. ATM may promote RAD51 turnover, suggesting a second (not mutually exclusive) mechanism by which restored ATM contributes to hyperrecombination in DNA-PKcs-KR cells. We propose a model in which DNA-PKcs and ATM coordinately regulate DSB repair by NHEJ and HR. PMID:19535303

  6. Curcumin Triggers DNA Damage and Inhibits Expression of DNA Repair Proteins in Human Lung Cancer Cells.

    PubMed

    Ting, Chien-Yi; Wang, Hsin-Ell; Yu, Chien-Chih; Liu, Hsin-Chung; Liu, Yu-Chang; Chiang, I-Tsang

    2015-07-01

    The study goal was to evaluate the effects of curcumin on DNA damage and expression of DNA-repair proteins in human lung cancer. Thus, NCI-H460 cells were used to study the effects of curcumin on DNA damage and repair in vitro. We investigated curcumin induces DNA damage by comet the assay and 4',6-diamidino-2-phenylindole (DAPI) staining. The DNA damage/repair-related protein levels were examined and monitored by western blotting and confocal microscopy. Curcumin significantly increased the length of comet tails and DNA condensation in NCI-H460 cells. Curcumin reduced expression of DNA-repair proteins such as 14-3-3 protein sigma (14-3-3σ), O6-methylguanine-DNA methyltransferase (MGMT), breast cancer susceptibility gene 1 (BRCA1), and mediator of DNA damage checkpoint 1 (MDC1). Curcumin also increased phosphorylation of p53 and Histone H2A.X (S140) in the nuclei of NCI-H460 cells. Taken together, our findings indicated that curcumin triggered DNA damage and inhibited expression of DNA-repair-associated proteins in NCI-H460 cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. DNA damage repair and genetic polymorphisms: Assessment of individual sensitivity and repair capacity

    SciTech Connect

    Cornetta, Tommaso; Festa, Fabiola; Testa, Antonella; Cozzi, Renata Prof. . E-mail: cozzi@uniroma3.it

    2006-10-01

    Purpose: To study the repair capacity after X-ray irradiation in human peripheral blood cells of healthy subjects, in relation to their genotypes. Methods and Materials: The peripheral blood of 50 healthy subjects was irradiated in vitro with 2 Gy of X rays and the induced DNA damage was measured by Comet assay immediately after irradiation. DNA repair was detected by analyzing the cells at defined time intervals after the exposure. Furthermore, all subjects were genotyped for XRCC1, OGG1, and XPC genes. Results: After X-ray irradiation, persons bearing XRCC1 homozygous variant (codon 399) genotype exhibited significantly lower Tail DNA values than those bearing wild-type and heterozygous genotypes. These results are also confirmed at 30 and 60 min after irradiation. Furthermore, XPC heterozygous subjects (variant codon 939) showed lower residual DNA damage 60 min after irradiation compared with wild-type and homozygous genotypes. Conclusion: The results of the present study show that polymorphisms in DNA repair genes could influence individual DNA repair capacity.

  8. DNA damage and repair in telomeres: relation to aging.

    PubMed Central

    Kruk, P A; Rampino, N J; Bohr, V A

    1995-01-01

    We have established a method for the detection of DNA damage and its repair in human telomeres, the natural ends of chromosomes which are necessary for replication and critical for chromosomal stability. We find that ultraviolet light-induced pyrimidine dimers in telomeric DNA are repaired less efficiently than endogenous genes but more efficiently than inactive, noncoding regions. We have also measured telomeric length, telomeric DNA damage, and its repair in relation to the progression of aging. Telomeres are shorter in fibroblasts from an old donor compared to fibroblasts from a young donor, shortest in cells from a patient with the progeroid disorder Werner syndrome, and relatively long in fibroblasts from a patient with Alzheimer disease. Telomeric DNA repair efficiency is lower in cells from an old donor than in cells from a young donor, normal in Alzheimer cells, and slightly lower in Werner cells. It is possible that this decline in telomeric repair with aging is of functional significance to an age-related decline in genomic stability. Images Fig. 1 Fig. 2 PMID:7816828

  9. Staphylococcus aureus Sepsis Induces Early Renal Mitochondrial DNA Repair and Mitochondrial Biogenesis in Mice

    PubMed Central

    Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.

    2014-01-01

    Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481

  10. Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival

    PubMed Central

    Sage, Evelyne; Harrison, Lynn

    2011-01-01

    A clustered DNA lesion, also known as a multiply damaged site, is defined as ≥ 2 damages in the DNA within 1–2 helical turns. Only ionizing radiation and certain chemicals introduce DNA damage in the genome in this non-random way. What is now clear is that the lethality of a damaging agent is not just related to the types of DNA lesions introduced, but also to how the damage is distributed in the DNA. Clustered DNA lesions were first hypothesized to exist in the 1990’s, and work has progressed where these complex lesions have been characterized and measured in irradiated as well as in non-irradiated cells. A clustered lesion can consist of single as well as double strand breaks, base damage and abasic sites, and the damages can be situated on the same strand or opposing strands. They include tandem lesions, double strand break (DSB) clusters and non-DSB clusters, and base excision repair as well as the DSB repair pathways can be required to remove these complex lesions. Due to the plethora of oxidative damage induced by ionizing radiation, and the repair proteins involved in their removal from the DNA, it has been necessary to study how repair systems handle these lesions using synthetic DNA damage. This review focuses on the repair process and mutagenic consequences of clustered lesions in yeast and mammalian cells. By examining the studies on synthetic clustered lesions, and the effects of low vs high LET radiation on mammalian cells or tissues, it is possible to extrapolate the potential biological relevance of these clustered lesions to the killing of tumor cells by radiotherapy and chemotherapy, and to the risk of cancer in non-tumor cells, and this will be discussed. PMID:21185841

  11. DNA damage and repair in a model of rat vascular injury.

    PubMed

    Forte, Amalia; Finicelli, Mauto; Grossi, Mario; Vicchio, Mariano; Alessio, Nicola; Santé, Pasquale; De Feo, Marisa; Cotrufo, Maurizio; Berrino, Liberato; Rossi, Francesco; Galderisi, Umberto; Cipollaro, Marilena

    2010-04-01

    Restenosis rate following vascular interventions still limits their long-term success. Oxidative stress plays a relevant role in this pathophysiological phenomenon, but less attention has been devoted to its effects on DNA damage and to the subsequent mechanisms of repair. We analysed in a model of arteriotomy-induced stenosis in rat carotids the time-dependent expression of DNA damage markers and of DNA repair genes, together with the assessment of proliferation and apoptosis indexes. The expression of the oxidative DNA damage marker 7,8-dihydro-8-oxo-2'-deoxyguanosine was increased at 3 and 7 days after arteriotomy, with immunostaining distributed in the injured vascular wall and in perivascular tissue. The expression of the DNA damage marker phospho-H2A.X was less relevant but increasing from 4 hrs to 7 days after arteriotomy, with immunostaining prevalently present in the adventitia and, to a lesser extent, in medial smooth muscle cells at the injury site. RT-PCR indicated a decrease of 8 out of 12 genes of the DNA repair machinery we selected from 4 hrs to 7 days after arteriotomy with the exception of increased Muyth and Slk genes (p<0.05). Western Blot revealed a decrease of p53 and catalase at 3 days after arteriotomy (p<0.05). A maximal 7% of BrdU-positive cells in endothelium and media occurred at 7 days after arteriotomy, while the apoptotic index peaked at 3 days after injury (p<0.05). Our results highlight a persistent DNA damage presumably related to a temporary decreased expression of the DNA repair machinery and of the antioxidant enzyme catalase, playing a role in stenosis progression.

  12. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities.

    PubMed

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-02-17

    DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes' activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL(-1) and 50 μg mL(-1) of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities.

  13. Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia.

    PubMed

    Sharma, Nilesh K; Lebedeva, Maria; Thomas, Terace; Kovalenko, Olga A; Stumpf, Jeffrey D; Shadel, Gerald S; Santos, Janine H

    2014-01-01

    Ataxia Telangiectasia (A-T) is a progressive childhood disorder characterized most notably by cerebellar degeneration and predisposition to cancer. A-T is caused by mutations in the kinase ATM, a master regulator of the DNA double-strand break response. In addition to DNA-damage signaling defects, A-T cells display mitochondrial dysfunction that is thought to contribute to A-T pathogenesis. However, the molecular mechanism leading to mitochondrial dysfunction in A-T remains unclear. Here, we show that lack of ATM leads to reduced mitochondrial DNA (mtDNA) integrity and mitochondrial dysfunction, which are associated to defective mtDNA repair. While protein levels of mtDNA repair proteins are essentially normal, in the absence of ATM levels specifically of DNA ligase III (Lig3), the only DNA ligase working in mitochondria is reduced. The reduction of Lig3 is observed in different A-T patient cells, in brain and pre-B cells derived from ATM knockout mice as well as upon transient or stable knockdown of ATM. Furthermore, pharmacological inhibition of Lig3 in wild type cells phenocopies the mtDNA repair defects observed in A-T patient cells. As targeted deletion of LIG3 in the central nervous system causes debilitating ataxia in mice, reduced Lig3 protein levels and the consequent mtDNA repair defect may contribute to A-T neurodegeneration. A-T is thus the first disease characterized by diminished Lig3. Published by Elsevier B.V.

  14. Oxidative DNA damage during night shift work.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2017-09-01

    We previously reported that compared with night sleep, day sleep among shift workers was associated with reduced urinary excretion of 8-hydroxydeoxyguanosine (8-OH-dG), potentially reflecting a reduced ability to repair 8-OH-dG lesions in DNA. We identified the absence of melatonin during day sleep as the likely causative factor. We now investigate whether night work is also associated with reduced urinary excretion of 8-OH-dG. For this cross-sectional study, 50 shift workers with the largest negative differences in night work versus night sleep circulating melatonin levels (measured as 6-sulfatoxymelatonin in urine) were selected from among the 223 shift workers included in our previous study. 8-OH-dG concentrations were measured in stored urine samples using high performance liquid chromatography with electrochemical detection. Mixed effects models were used to compare night work versus night sleep 8-OH-dG levels. Circulating melatonin levels during night work (mean=17.1 ng/mg creatinine/mg creatinine) were much lower than during night sleep (mean=51.7 ng/mg creatinine). In adjusted analyses, average urinary 8-OH-dG levels during the night work period were only 20% of those observed during the night sleep period (95% CI 10% to 30%; p<0.001). This study suggests that night work, relative to night sleep, is associated with reduced repair of 8-OH-dG lesions in DNA and that the effect is likely driven by melatonin suppression occurring during night work relative to night sleep. If confirmed, future studies should evaluate melatonin supplementation as a means to restore oxidative DNA damage repair capacity among shift workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. The two isomers of HDTIC compounds from Astragali Radix slow down telomere shortening rate via attenuating oxidative stress and increasing DNA repair ability in human fetal lung diploid fibroblast cells.

    PubMed

    Wang, Peichang; Zhang, Zongyu; Sun, Ying; Liu, Xinwen; Tong, Tanjun

    2010-01-01

    4-Hydroxy-5-hydroxymethyl-[1,3]dioxolan-2,6'-spirane-5',6',7',8'-tetrahydro-indolizine-3'-carbaldehyde (HDTIC)-1 and HDTIC-2 are two isomers extracted from Astragalus membranaceus (Fisch) Bunge Var. mongholicus (Bge) Hsiao. Our previous study had demonstrated that they could extend the lifespan of human fetal lung diploid fibroblasts (2BS). To investigate the mechanisms of the HDTIC-induced delay of replicative senescence, in this study, we assessed the effects of these two compounds on telomere shortening rate and DNA repair ability in 2BS cells. The telomere shortening rates of the cells cultured with HDTIC-1 or HDTIC-2 were 31.5 and 41.1 bp with each division, respectively, which were much less than that of the control cells (71.1 bp/PD). We also found that 2BS cells pretreated with HDTIC-1 or HDTIC-2 had a significant reduction in DNA damage after exposure to 200 microM H(2)O(2) for 5 min. Moreover, the 100 microM H(2)O(2)-induced DNA damage was significantly repaired after the damaged cells were continually cultured with HDTIC for 1 h. These results suggest that HDTIC compounds slow down the telomere shortening rate of 2BS cells, which is mainly due to the biological properties of the compounds including the reduction of DNA damage and the improvement of DNA repair ability. In addition, the slow down of telomere shortening rate, the reduction of DNA damage, and the improvement of DNA repair ability induced by HDTIC may be responsible for their delay of replicative senescence.

  16. NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging

    PubMed Central

    Bonsignore, Lindsay A.; Tooley, John G.; Van Hoose, Patrick M.; Wang, Eugenia; Cheng, Alan; Cole, Marsha P.; Tooley, Christine E. Schaner

    2015-01-01

    Though defective genome maintenance and DNA repair have long been know to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1−/−) mouse. The majority of these mice die shortly after birth. However, the ones that survive exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1−/− mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1−/− mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1−/− mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging. PMID:25843235

  17. NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging.

    PubMed

    Bonsignore, Lindsay A; Tooley, John G; Van Hoose, Patrick M; Wang, Eugenia; Cheng, Alan; Cole, Marsha P; Schaner Tooley, Christine E

    2015-03-01

    Though defective genome maintenance and DNA repair have long been known to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1(-/-)) mouse. The majority of these mice die shortly after birth. However, the ones that survive, exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1(-/-) mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1(-/-) mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1(-/-) mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging.

  18. Eukaryotic damaged DNA-binding proteins: DNA repair proteins or transcription factors?

    SciTech Connect

    Protic, M.

    1994-12-31

    Recognition and removal of structural defects in the genome, caused by diverse physical and chemical agents, are among the most important cell functions. Proteins that recognize and bind to modified DNA, and thereby initiate damage-induced recovery processes, have been identified in prokaryotic and eukaryotic cells. Damaged DNA-binding (DDB) proteins from prokaryotes are either DNA repair enzymes or noncatalytic subunits of larger DNA repair complexes that participate in excision repair, or in recombinational repair and SOS-mutagenesis. Although the methods employed may not have allowed detection of all eukaryotic DDB proteins and identification of their functions, it appears that during evolution cells have developed a wide array of DDB proteins that can discriminate among the diversity of DNA conformations found in the eukaryotic nucleus, as well as a gene-sharing feature found in DDB proteins that also act as transcription factors.

  19. Minimal role of base excision repair in TET-induced global DNA demethylation in HEK293T cells

    PubMed Central

    Jin, Chunlei; Qin, Taichun; Barton, Michelle Craig; Jelinek, Jaroslav; Issa, Jean-Pierre J

    2015-01-01

    Oxidation of 5-methylcytosine by TET family proteins can induce DNA replication-dependent (passive) DNA demethylation and base excision repair (BER)-based (active) DNA demethylation. The balance of active vs. passive TET-induced demethylation remains incompletely determined. In the context of large scale DNA demethylation, active demethylation may require massive induction of the DNA repair machinery and thus compromise genome stability. To study this issue, we constructed a tetracycline-controlled TET-induced global DNA demethylation system in HEK293T cells. Upon TET overexpression, we observed induction of DNA damage and activation of a DNA damage response; however, BER genes are not upregulated to promote DNA repair. Depletion of TDG (thymine DNA glycosylase) or APEX1 (apurinic/apyrimidinic endonuclease 1), two key BER enzymes, enhances rather than impairs global DNA demethylation, which can be explained by stimulated proliferation. By contrast, growth arrest dramatically blocks TET-induced global DNA demethylation. Thus, in the context of TET-induction in HEK293T cells, the DNA replication-dependent passive mechanism functions as the predominant pathway for global DNA demethylation. In the same context, BER-based active demethylation is markedly restricted by limited BER upregulation, thus potentially preventing a disastrous DNA damage response to extensive active DNA demethylation. PMID:26440216

  20. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    EPA Science Inventory

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.

    ABSTRACT

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  1. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    EPA Science Inventory

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.

    ABSTRACT

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  2. Torin2 Suppresses Ionizing Radiation-Induced DNA Damage Repair.

    PubMed

    Udayakumar, Durga; Pandita, Raj K; Horikoshi, Nobuo; Liu, Yan; Liu, Qingsong; Wong, Kwok-Kin; Hunt, Clayton R; Gray, Nathanael S; Minna, John D; Pandita, Tej K; Westover, Kenneth D

    2016-05-01

    Several classes of inhibitors of the mammalian target of rapamycin (mTOR) have been developed based on its central role in sensing growth factor and nutrient levels to regulate cellular metabolism. However, its ATP-binding site closely resembles other phosphatidylinositol 3-kinase-related kinase (PIKK) family members, resulting in reactivity with these targets that may also be therapeutically useful. The ATP-competitive mTOR inhibitor, Torin2, shows biochemical activity against the DNA repair-associated proteins ATM, ATR and DNA-PK, which raises the possibility that Torin2 and related compounds might radiosensitize cancerous tumors. In this study Torin2 was also found to enhance ionizing radiation-induced cell killing in conditions where ATM was dispensable, confirming the requirement for multiple PIKK targets. Moreover, Torin2 did not influence the initial appearance of γ-H2AX foci after irradiation but significantly delayed the disappearance of radiation-induced γ-H2AX foci, indicating a DNA repair defect. Torin2 increased the number of radiation-induced S-phase specific chromosome aberrations and reduced the frequency of radiation-induced CtIP and Rad51 foci formation, suggesting that Torin2 works by blocking homologous recombination (HR)-mediated DNA repair resulting in an S-phase specific DNA repair defect. Accordingly, Torin2 reduced HR-mediated repair of I-Sce1-induced DNA damage and contributed to replication fork stalling. We conclude that radiosensitization of tumor cells by Torin2 is associated with disrupting ATR- and ATM-dependent DNA damage responses. Our findings support the concept of developing combination cancer therapies that incorporate ionizing radiation therapy and Torin2 or compounds with similar properties.

  3. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    PubMed Central

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-01-01

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy. PMID:27589807

  4. Ultraviolet irradiation of monkey cells enhances the repair of DNA adducts in alpha DNA

    SciTech Connect

    Leadon, S.A.; Hanawalt, P.C.

    1984-11-01

    Excision repair of bulky adducts in alpha DNA of African green monkey cells has previously been shown to be deficient relative to that in the overall genome. We have found that u.v. irradiation of these cells results in the enhanced removal of both aflatoxin B1 (AFB1) and acetylaminofluorene (AAF) adducts from the alpha DNA sequences without affecting repair in the bulk of the DNA. The degree of enhanced removal of AFB1 is dependent upon the u.v. dose and the time interval between irradiation and AFB1 treatment. The u.v. enhancement is not inhibited by cycloheximide. Exposure of the cells to dimethylsulfate or gamma-rays does not affect AFB1 adduct repair. The formation and removal of N-acetoxy-2-acetylaminofluorene (NA-AAF) adducts from alpha and bulk DNA was studied in detail. A higher initial level of the acetylated C8 adduct of guanine was found in alpha DNA than in bulk DNA. Although both the acetylated and deacetylated C8 adducts were removed from the two DNA species, the level of repair was significantly greater in the bulk DNA. Irradiation of cells with u.v. prior to treatment with NA-AAF enhanced the removal of both adducts from alpha DNA with little or no effect on repair in bulk DNA. We conclude that the presence of u.v. photoproducts or some intermediate in their processing alters the chromatin structure of alpha DNA thereby rendering bulky adducts accessible to repair enzymes. In addition, the differential formation and repair of AAF adducts in alpha DNA compared with that in the bulk of the genome supports the hypothesis of an altered chromatin structure for alpha domains.

  5. DNA double strand break repair, aging and the chromatin connection.

    PubMed

    Gorbunova, Vera; Seluanov, Andrei

    2016-06-01

    Are DNA damage and mutations possible causes or consequences of aging? This question has been hotly debated by biogerontologists for decades. The importance of DNA damage as a possible driver of the aging process went from being widely recognized to then forgotten, and is now slowly making a comeback. DNA double strand breaks (DSBs) are particularly relevant to aging because of their toxicity, increased frequency with age and the association of defects in their repair with premature aging. Recent studies expand the potential impact of DNA damage and mutations on aging by linking DNA DSB repair and age-related chromatin changes. There is overwhelming evidence that increased DNA damage and mutations accelerate aging. However, an ultimate proof of causality would be to show that enhanced genome and epigenome stability delays aging. This is not an easy task, as improving such complex biological processes is infinitely more difficult than disabling it. We will discuss the possibility that animal models with enhanced DNA repair and epigenome maintenance will be generated in the near future.

  6. Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Loft, Steffen; Kocbach, Anette; Schwarze, Per E; Møller, Peter

    2009-03-31

    Genotoxic effects of traffic-generated particulate matter (PM) are well described, whereas little data are available on PM from combustion of biomass and wood, which contributes substantially to air pollution world wide. The aim of this study was to compare the genotoxicity of wood smoke particulate matter (WSPM), authentic traffic-generated particles, mineral PM and standard reference material (SRM2975) of diesel exhaust particles in human A549 lung epithelial and THP-1 monocytic cell lines. DNA damage was measured as strand breaks (SB) and formamidopyrimidine DNA glycosylase (FPG) sites by the comet assay, whereas cell cytotoxicity was determined as lactate dehydrogenase release. The exposure to WSPM generated SB and FPG sites in both cell lines at concentrations from 2.5 or 25 microg/ml, which were not cytotoxic. Compared to all other studied particles, WSPM generated greater responses in terms of both SB and FPG sites. Organic extracts of WSPM and SRM2975 elicited higher levels of SB than native and washed PM at 25 and 100 microg/ml, whereas assay saturation precluded reliable assessment of FPG sites. During a 6h post-exposure period, in which the medium with PM had been replaced by fresh medium, 60% of the DNA lesions generated by WSPM were removed. In conclusion, WSPM generated more DNA damage than traffic-generated PM per unit mass in human cell lines, possibly due to the high level of polycyclic aromatic hydrocarbons in WSPM. This suggests that exposure to WSPM might be more hazardous than PM collected from vehicle exhaust with respect to development of lung cancer.

  7. DNA repair and cytokines in antimutagenesis and anticarcinogenesis.

    PubMed

    Yarosh, D B; Kripke, M L

    1996-02-19

    UV is a complete carcinogen because it can induce skin cancer by sequential steps of initiation, promotion and progression. It produces the mutagenic DNA photoproducts that lead to activation of skin oncogenes, and also suppresses the cellular immune responses that are otherwise able to eliminate highly antigenic skin tumors. What is new is that these two steps are related because unrepaired DNA photoproducts cause the release of cytokines, producing a variety of response that contribute to tumor promotion, tumor progression, immunosuppression, and the induction of latent viruses. DNA repair enzymes are a key genoprotection mechanism not only by reversing DNA photoproducts, but also by blocking the carcinogenic cellular responses triggered by cytokines.

  8. New Perspectives on Oxidized Genome Damage and Repair Inhibition by Pro-Oxidant Metals in Neurological Diseases

    PubMed Central

    Mitra, Joy; Guerrero, Erika N.; Hegde, Pavana M.; Wang, Haibo; Boldogh, Istvan; Rao, Kosagi Sharaf; Mitra, Sankar; Hegde, Muralidhar L.

    2014-01-01

    The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases. PMID:25036887

  9. Oxidative Genome Damage and Its Repair in Neurodegenerative Diseases: Function of Transition Metals as a Double-Edged Sword

    PubMed Central

    Hegde, Muralidhar L.; Hegde, Pavana M.; Rao, K.S.J.; Mitra, Sankar

    2013-01-01

    The neurons in the central nervous system (CNS) with high O2 consumption and prolonged life span are chronically exposed to high levels of reactive oxygen species (ROS). Accumulation of ROS-induced genome damage in the form of oxidized bases and single-strand breaks (SSBs) as well as their defective or reduced repair in the brain has been implicated in the etiology of various neurological disorders including Alzheimer’s/Parkinson’s diseases (AD/PD). Although inactivating mutations in some DNA repair genes have been linked to hereditary neurodegenerative diseases, the underlying mechanisms of repair deficiencies for the sporadic diseases is not understood. The ROS-induced DNA damages are predominantly repaired via highly conserved and regulated base excision/SSB repair (BER/SSBR) pathway. We recently made an interesting discovery that transition metals iron (Fe) and copper (Cu) which accumulate excessively in the brains of AD, PD and other neurodegenerative diseases, act as a ‘double-edged sword’ by inducing genotoxic ROS and inhibiting DNA damage repair at the same time. These metals inhibit the base excision activity of NEIL family DNA glycosylases by oxidizing them, changing their structure, and inhibiting their binding to downstream repair proteins. Metal chelators and reducing agents partially reverse the inhibition, while curcumin with both chelating and reducing activities reverses the inhibition nearly completely. In this review, we have discussed the possible etiological linkage of BER/SSBR defects to neurodegenerative diseases and therapeutic potential of metal chelators in restoring DNA repair capacity. PMID:21441656

  10. DNA-damage repair; the good, the bad, and the ugly.

    PubMed

    Hakem, Razqallah

    2008-02-20

    Organisms have developed several DNA-repair pathways as well as DNA-damage checkpoints to cope with the frequent challenge of endogenous and exogenous DNA insults. In the absence or impairment of such repair or checkpoint mechanisms, the genomic integrity of the organism is often compromised. This review will focus on the functional consequences of impaired DNA-repair pathways. Although each pathway is addressed individually, it is essential to note that cross talk exists between repair pathways, and that there are instances in which a DNA-repair protein is involved in more than one pathway. It is also important to integrate DNA-repair process with DNA-damage checkpoints and cell survival, to gain a better understanding of the consequences of compromised DNA repair at both cellular and organismic levels. Functional consequences associated with impaired DNA repair include embryonic lethality, shortened life span, rapid ageing, impaired growth, and a variety of syndromes, including a pronounced manifestation of cancer.

  11. Polymorphisms in DNA repair genes and associations with cancer risk.

    PubMed

    Goode, Ellen L; Ulrich, Cornelia M; Potter, John D

    2002-12-01

    Common polymorphisms in DNA repair genes may alter protein function and an individual's capacity to repair damaged DNA; deficits in repair capacity may lead to genetic instability and carcinogenesis. To establish our overall understanding of possible in vivo relationships between DNA repair polymorphisms and the development of cancer, we performed a literature review of epidemiological studies that assessed associations between such polymorphisms and risk of cancer. Thirty studies of polymorphisms in OGG1, XRCC1, ERCC1, XPC, XPD, XPF, BRCA2, and XRCC3 were identified in the April 30, 2002 MEDLINE database (National Center for Biotechnology Information. PubMed Database: http://www.ncbi.nlm.nih.gov/entrez). These studies focused on adult glioma, bladder cancer, breast cancer, esophageal cancer, lung cancer, prostate cancer, skin cancer (melanoma and nonmelanoma), squamous cell carcinoma of the head and neck, and stomach cancer. We found that a small proportion of the published studies were large and population-based. Nonetheless, published data were consistent with associations between: (a) the OGG1 S326C variant and increased risk of various types of cancer; (b) the XRCC1 R194W variant and reduced risk of various types of cancer; and (c) the BRCA2 N372H variant and increased risk of breast cancer. Suggestive results were seen for polymorphisms in other genes; however, small sample sizes may have contributed to false-positive or false-negative findings. We conclude that large, well-designed studies of common polymorphisms in DNA repair genes are needed. Such studies may benefit from analysis of multiple genes or polymorphisms and from the consideration of relevant exposures that may influence the likelihood of cancer in the presence of reduced DNA repair capacity.

  12. DNA repair in microgravity: studies on bacteria and mammalian cells in the experiments REPAIR and KINETICS.

    PubMed

    Horneck, G; Rettberg, P; Baumstark-Khan, C; Rink, H; Kozubek, S; Schäfer, M; Schmitz, C

    1996-06-27

    The impact of microgravity on cellular repair processes was tested in the space experiments REPAIR and KINETICS, which were performed during the IML-2 mission in the Biorack of ESA: (a) survival of spores of Bacillus subtilis HA101 after UV-irradiation (up to 340 J m-2) in the experiment REPAIR; (b) in the experiment KINETICS the kinetics of DNA repair in three different test systems: rejoining of X-ray-induced DNA strand breaks (B1) in cells of Escherichia coli B/r (120 Gy) and (B2) in human fibroblasts (5 and 10 Gy) as well as (B3) induction of the SOS response after gamma-irradiation (300 Gy) of cells of Escherichia coli PQ37. Cells were irradiated prior to the space mission and were kept in a non-metabolic state (metabolically inactive spores of B. subtilis on membrane filters, frozen cells of E. coli and human fibroblasts) until incubation in orbit. Germination and growth of B. subtilis were initiated by humidification, E. coli and fibroblasts were thawed up and incubated at 37 degrees C for defined repair periods (up to 4.5 h), thereafter they were frozen again for laboratory analysis. Relevant controls were performed in-flight (1 x g reference centrifuge) and on ground (1 x g and 1.4 x g) The results show no significant differences between the microgravity samples and the corresponding controls neither in the survival curves nor in the kinetics of DNA strand break rejoining and induction of the SOS response (proven by Student's t-test, 2 P = 0.05). These observations provide evidence that in the microgravity environment cells are able to repair radiation-induced DNA damage close to normality. The results suggest that a disturbance of cellular repair processes in the microgravity environment might not be the explanation for the reported synergism of radiation and microgravity.

  13. Oxidative DNA damage during sleep periods among nightshift workers.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. DNA damage and repair capacity in workers exposed to low concentrations of benzene.

    PubMed

    Lovreglio, Piero; Doria, Denise; Fracasso, Maria Enrica; Barbieri, Anna; Sabatini, Laura; Drago, Ignazio; Violante, Francesco S; Soleo, Leonardo

    2016-03-01

    DNA damage and cellular repair capacity were studied in 18 male fuel tanker drivers and 13 male filling-station attendants exposed to low and very low concentrations of benzene, respectively, and compared to 20 males with no occupational exposure (controls). Exposure to airborne benzene was measured using passive personal samplers, and internal doses were assayed through the biomarkers t,t-muconic acid, S-phenylmercapturic acid and urinary benzene. DNA damage was evaluated using tail intensity (TI) determined by the comet assay in peripheral lymphocytes. Urinary 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) was measured as a biomarker of oxidative damage. DNA repair kinetics were assessed using the comet assay in lymphocytes sampled 20 and 60 min post H2O2 exposure. Benzene exposure differed significantly between the drivers (median 246.3 µg/m(3)), attendants (median 13.8 µg/m(3)), and controls (median 4.1 µg/m(3)). There were no differences in TI and 8-oxodG among the three groups, or between smokers and non-smokers. DNA repair kinetics were similar among the drivers, attendants and controls, although the comet assay on H2 O2 -damaged lymphocytes after 60 min revealed significantly lower levels of TI only in drivers. The DNA repair process in smokers was similar to that observed in drivers. In conclusion, this study found no relationship between low levels of benzene exposure and DNA damage, although there was evidence that exposure interferes with DNA repair kinetics. The biological impact of this finding on the onset of genotoxic effects in exposed workers has still to be ascertained.

  15. Involvement of translesion synthesis DNA polymerases in DNA interstrand crosslink repair.