Sample records for dna oxidative repair

  1. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage

    PubMed Central

    Svilar, David; Goellner, Eva M.; Almeida, Karen H.

    2011-01-01

    Abstract Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage–induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease. Antioxid. Redox Signal. 14, 2491–2507. PMID:20649466

  3. Repair of oxidative DNA damage by amino acids.

    PubMed

    Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F

    2003-11-01

    Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.

  4. Involvement of oxidatively damaged DNA and repair in cancer development and aging

    PubMed Central

    Tudek, Barbara; Winczura, Alicja; Janik, Justyna; Siomek, Agnieszka; Foksinski, Marek; Oliński, Ryszard

    2010-01-01

    DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involvement of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively modified DNA bases may serve as a source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed several DNA repair mechanisms. The efficiency of oxidatively damaged DNA repair was frequently found to be decreased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particularly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing attention to the multiplicity of proteins with repair activities. PMID:20589166

  5. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2

    PubMed Central

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Background Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Methods Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. Results No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. Conclusion BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which

  6. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    PubMed

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment

  7. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis

    PubMed Central

    Li, Yanwen; Pelicic, Vladimir; Freemont, Paul S.; Baldwin, Geoff S.; Tang, Christoph M.

    2013-01-01

    Although oxidative stress is a key aspect of innate immunity, little is known about how host-restricted pathogens successfully repair DNA damage. Base excision repair (BER) is responsible for correcting nucleobases damaged by oxidative stress, and is essential for bloodstream infection caused by the human pathogen, Neisseria meningitidis. We have characterised meningococcal BER enzymes involved in the recognition and removal of damaged nucleobases, and incision of the DNA backbone. We demonstrate that the bi-functional glycosylase/lyases Nth and MutM share several overlapping activities and functional redundancy. However MutM and other members of the GO system, which deal with 8-oxoG, a common lesion of oxidative damage, are not required for survival of N. meningitidis under oxidative stress. Instead, the mismatch repair pathway provides back-up for the GO system, while the lyase activity of Nth can substitute for the meningococcal AP endonuclease, NApe. Our genetic and biochemical evidence show that DNA repair is achieved through a robust network of enzymes that provides a flexible system of DNA repair. This network is likely to reflect successful adaptation to the human nasopharynx, and might provide a paradigm for DNA repair in other prokaryotes. PMID:22296581

  8. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    PubMed Central

    Croteau, Deborah L.; de Souza-Pinto, Nadja C.; Harboe, Charlotte; Keijzers, Guido; Zhang, Yongqing; Becker, Kevin; Sheng, Shan

    2010-01-01

    AGING is associated with elevated oxidative stress and DNA damage. To achieve healthy aging, we must begin to understand how diet affects cellular processes. We postulated that fruit-enriched diets might initiate a program of enhanced DNA repair and thereby improve genome integrity. C57Bl/6 J mice were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from mice fed fruit-enriched diets. In support of these findings, gas chromatography–mass spectrometry analysis revealed that there was a decrease in the levels of formamidopyrimidines in peach-fed mice compared with the controls. Additionally, microarray analysis revealed that NTH1 was upregulated in peach-fed mice. Taken together, these results suggest that an increased intake of fruits might modulate the efficiency of DNA repair, resulting in altered levels of DNA damage. PMID:20847039

  9. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.

    PubMed

    Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline

    2012-09-01

    Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.

  10. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    PubMed

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair.

    PubMed

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott; Scheibye-Knudsen, Morten; Desler, Claus; Hickson, Ian D; Bohr, Vilhelm A

    2014-04-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy. Copyright © 2014. Published by Elsevier B.V.

  12. DNA Repair Deficiency in Neurodegeneration

    PubMed Central

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A.; Stevnsner, Tinna

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington’s disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. PMID:21550379

  13. Acetylation of hMOF Modulates H4K16ac to Regulate DNA Repair Genes in Response to Oxidative Stress.

    PubMed

    Zhong, Jianing; Ji, Liying; Chen, Huiqian; Li, Xianfeng; Zhang, Jian'an; Wang, Xingxing; Wu, Weilin; Xu, Ying; Huang, Fei; Cai, Wanshi; Sun, Zhong Sheng

    2017-01-01

    Oxidative stress is considered to be a key risk state for a variety of human diseases. In response to oxidative stress, the regulation of transcriptional expression of DNA repair genes would be important to DNA repair and genomic stability. However, the overall pattern of transcriptional expression of DNA repair genes and the underlying molecular response mechanism to oxidative stress remain unclear. Here, by employing colorectal cancer cell lines following exposure to hydrogen peroxide, we generated expression profiles of DNA repair genes via RNA-seq and identified gene subsets that are induced or repressed following oxidative stress exposure. RRBS-seq analyses further indicated that transcriptional regulation of most of the DNA repair genes that were induced or repressed is independent of their DNA methylation status. Our analyses also indicate that hydrogen peroxide induces deacetylase SIRT1 which decreases chromatin affinity and the activity of histone acetyltransferase hMOF toward H4K16ac and results in decreased transcriptional expression of DNA repair genes. Taken together, our findings provide a potential mechanism by which oxidative stress suppresses DNA repair genes which is independent of the DNA methylation status of their promoters.

  14. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  15. In Vitro Fluorogenic Real-time Assay of the Repair of Oxidative DNA Damage

    PubMed Central

    Edwards, Sarah K.; Ono, Toshikazu; Wang, Shenliang; Jiang, Wei; Franzini, Raphael M.; Jung, Jong Wha; Chan, Ke Min; Kool, Eric T.

    2015-01-01

    The repair of oxidative damage to DNA is essential to avoidance of mutations that lead to cancer. Oxidized DNA bases, such as 8-oxoguanine, are a chief source of these mutations, and the enzyme 8-oxoguanine glycosylase 1 (OGG1) is the chief human enzyme that excises 8-oxoguanine from DNA. The activity of OGG1 has been linked to human inflammation responses and to cancer, and researchers are beginning to search for inhibitors of the enzyme. However, measuring the activity of the enzyme typically requires laborious gel-based measurements of radiolabeled DNAs. Here we report on the design and properties of fluorogenic probes that directly report on OGG1 (and bacterial homologue Fpg) activity in real time as the oxidized base is excised. The probes are short modified DNA oligomers containing fluorescent DNA bases and are designed to utilize the damaged DNA base itself as a fluorescence quencher. Screening of combinations of fluorophores and 8-oxoguanine revealed two fluorophores, pyrene and tCo, that are strongly quenched by the damaged base. We tested 42 potential probe designs containing these fluorophores, and we found an optimized probe OGR1 that yields a 60-fold light-up signal in vitro with OGG1 and Fpg, and can report on oxidative repair activity in mammalian cell lysate and with bacterial cells overexpressing a repair enzyme. Such probes may be useful in quantifying enzyme activity and performing competitive inhibition assays. PMID:26073452

  16. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes

    PubMed Central

    Maher, Robyn L.; Prasad, Amalthiya; Rizvanova, Olga; Wallace, Susan S.; Pederson, David S.

    2013-01-01

    Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying histone octamer enables BER enzymes to bind to oxidative lesions that would otherwise be sterically inaccessible. In the present study, we asked if these periodic DNA unwrapping events are frequent enough to account for the estimated rates of BER in vivo. We measured rates of excision of oxidative lesions from sites in nucleosomes that are accessible only during unwrapping episodes. Using reaction conditions appropriate for presteady-state kinetic analyses, we derived lesion exposure rates for both 601 and 5S rDNA-based nucleosomes. Although DNA unwrapping-mediated exposure of a lesion ~16 NT from the nucleosome edge occurred ~7–8 times per minute, exposure rates fell dramatically for lesions located 10 or more NT further in from the nucleosome edge. The rates likely are too low to account for observed rates of BER in cells. Thus, chromatin remodeling, either BER-specific or that associated with transcription, replication, or other DNA repair processes, probably contributes to efficient BER in vivo. PMID:24051050

  17. DNA Excision Repair at Telomeres

    PubMed Central

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-01-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132

  18. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    PubMed Central

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-01-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2’-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ~1.3 fold in the nuclear protein extracts (NE) and ~1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ~1.5 fold higher, whereas in the MEs it was ~1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative DNA lesions

  19. Parameters of oxidative stress, DNA damage and DNA repair in type 1 and type 2 diabetes mellitus.

    PubMed

    Pácal, Lukáš; Varvařovská, Jana; Rušavý, Zdeněk; Lacigová, Silva; Stětina, Rudolf; Racek, Jaroslav; Pomahačová, Renata; Tanhäuserová, Veronika; Kaňková, Kateřina

    2011-10-01

    (i) to determine the extent of oxidative stress and DNA damage and repair using a panel of selected markers in patients with type 1 and type 2 diabetes mellitus (T1DM, T2DM), (ii) to find their possible relationships with diabetes compensation and duration, and finally (iii) to test for the effect of functional polymorphisms in the 8-oxoguanin DNA glycosylase (rs1052133), catalase (rs1001179) and superoxide dismutase (rs4880) genes on respective intermediate phenotypes. A total of 207 subjects (23 children and 44 adults with T1DM, 52 adult patients with T2DM and 88 healthy adult control subjects) were enrolled in the study. The following markers of redox state were determined in participants: erythrocyte superoxide dismutase (Ery-SOD), whole blood glutathione peroxidase (WB-GPx), erythrocyte glutathione (Ery-GSH), plasma total antioxidant capacity (P-tAOC) and plasma malondialdehyde (P-MDA). Furthermore, the extent of DNA damage and repair was ascertained using the following parameters: DNA single strand breaks (DNAssb), DNA repair capacity (DNArc) and DNA repair index (DNRI). Comparison of T1DM vs. T2DM patients revealed significantly higher Ery-GSH content (P < 0.0001) and significantly lower Ery-SOD activity (P = 0.0006) and P-tAOC level (P < 0.0001) in T1DM subjects. T2DM diabetics exhibited a significant increase in DNAssb (P < 0.0001) and significant decrease in both DNArc (P < 0.0001) and DNRI (P <  .0001) compared with T1DM patients. Patient's age (irrespective of DM type) significantly correlated with DNAssb (r = 0.48, P < 0.0001), DNArc (r = -0.67, P < 0.0001) and DNRI (r = -0.7, P < 0.0001). Allele frequencies of all studied polymorphisms did not exhibit any significant association with the investigated parameters. We demonstrated significant age- and DM type-related changes of oxidative DNA modification and capacity for its repair in subjects with T1DM and T2DM.

  20. Flavonoids and DNA Repair in Prostate Cancer

    DTIC Science & Technology

    2005-12-01

    1-0114 TITLE: Flavonoids and DNA Repair in Prostate Cancer...SUBTITLE Flavonoids and DNA Repair in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-04-1-0114 5c. PROGRAM ELEMENT NUMBER...test the hypothesis that natural products such as flavonoids are able to stimulate the repair of oxidative DNA damage. For this purpose LNCaP

  1. Involvement of DNA polymerase beta in repairing oxidative damages induced by antitumor drug adriamycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shukun; Wu Mei; Zhang Zunzhen, E-mail: zhangzunzhen@163.co

    2010-08-01

    Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here,more » cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.« less

  2. Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells.

    PubMed

    Lefevre, Sophie; Brossas, Caroline; Auchère, Françoise; Boggetto, Nicole; Camadro, Jean-Michel; Santos, Renata

    2012-09-15

    Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.

  3. Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins

    PubMed Central

    Hegde, Muralidhar L.; Hegde, Pavana M.; Bellot, Larry J.; Mandal, Santi M.; Hazra, Tapas K.; Li, Guo-Min; Boldogh, Istvan; Tomkinson, Alan E.; Mitra, Sankar

    2013-01-01

    Base oxidation by endogenous and environmentally induced reactive oxygen species preferentially occurs in replicating single-stranded templates in mammalian genomes, warranting prereplicative repair of the mutagenic base lesions. It is not clear how such lesions (which, unlike bulky adducts, do not block replication) are recognized for repair. Furthermore, strand breaks caused by base excision from ssDNA by DNA glycosylases, including Nei-like (NEIL) 1, would generate double-strand breaks during replication, which are not experimentally observed. NEIL1, whose deficiency causes a mutator phenotype and is activated during the S phase, is present in the DNA replication complex isolated from human cells, with enhanced association with DNA in S-phase cells and colocalization with replication foci containing DNA replication proteins. Furthermore, NEIL1 binds to 5-hydroxyuracil, the oxidative deamination product of C, in replication protein A-coated ssDNA template and inhibits DNA synthesis by DNA polymerase δ. We postulate that, upon encountering an oxidized base during replication, NEIL1 initiates prereplicative repair by acting as a “cowcatcher” and preventing nascent chain growth. Regression of the stalled replication fork, possibly mediated by annealing helicases, then allows lesion repair in the reannealed duplex. This model is supported by our observations that NEIL1, whose deficiency slows nascent chain growth in oxidatively stressed cells, is stimulated by replication proteins in vitro. Furthermore, deficiency of the closely related NEIL2 alone does not affect chain elongation, but combined NEIL1/2 deficiency further inhibits DNA replication. These results support a mechanism of NEIL1-mediated prereplicative repair of oxidized bases in the replicating strand, with NEIL2 providing a backup function. PMID:23898192

  4. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences*

    PubMed Central

    Cilli, Piera; Minoprio, Anna; Bossa, Cecilia; Bignami, Margherita; Mazzei, Filomena

    2015-01-01

    The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences. PMID:26338705

  5. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences.

    PubMed

    Cilli, Piera; Minoprio, Anna; Bossa, Cecilia; Bignami, Margherita; Mazzei, Filomena

    2015-10-23

    The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    PubMed Central

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  7. Role of DNA repair enzymes in the cellular resistance to oxidative stress.

    PubMed

    Laval, J

    1996-01-01

    Oxidative stress occurs in cells when the equilibrium between prooxidant and antioxidant species is broken in favor of the prooxidant state. It is due to reactive oxygen species (ROS) generated either by the cellular metabolism such as phagocytosis, mitochondrial respiration, xenobiotic detoxification, or by exogenous factors such as ionizing radiation or chemical compounds performing red-ox reactions. Some ROS are extremely reactive and interact with all the macromolecules including lipids, nucleic acids and proteins. Cells have numerous defence systems to counteract the deleterious effects of ROS. Proteins and small molecules specifically eliminate ROS when they are formed. There are three species of superoxyde dismutases which transform the superoxyde anion O2- in hydrogen peroxyde H2O2 which in turn will be destroyed by peroxysomal catalase or by various peroxydases. There are numerous small molecules in the cell such as glutathion, alpha-tocopherol, vitamines A and C, melanine, etc. which are antioxydant molecules. ROS escaping destruction generate various lesions in DNA such as base modifications, degradation products of deoxyribose, chain breaks. These various lesions have been characterized and it is possible to quantitate them in the DNA of cells which have been irradiated or treated by free radical generating systems. The biological properties of the bases modified by ROS have been established. For example C8-hydroxyguanine (8-oxoG) is promutagenic since, if present in DNA during replication, it leads to incorporation of dAMP residues, leading to transversion mutation (GC-->TA). Purines whose imidazole ring is opened (Fapy residues) are stops for the DNA polymerase during DNA replication and are therefore potentially lethal lesions for the cell. Oxidized pyrimidines have comparable coding properties. Efficient DNA repair mechanisms remove these oxidized bases. In Escherichia coli cells, endonuclease III (NTH protein) and endonuclease VIII (NEI protein

  8. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment.

    PubMed

    Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet

    2017-01-01

    DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016

  9. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  10. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells

    PubMed Central

    Yang, Di; Fletcher, Sally C.; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J.

    2017-01-01

    Abstract Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. PMID:28973444

  11. Repair of Clustered Damage and DNA Polymerase Iota.

    PubMed

    Belousova, E A; Lavrik, O I

    2015-08-01

    Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.

  12. DNA repair in mammalian mitochondria: Much more than we thought?

    PubMed

    Liu, Pingfang; Demple, Bruce

    2010-06-01

    For many years, the repair of most damage in mitochondrial DNA (mtDNA) was thought limited to short-patch base excision repair (SP-BER), which replaces a single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic (AP) endonuclease, the mitochondrial DNA polymerase gamma, an abasic lyase activity, and mitochondrial DNA ligase. However, the likely array of lesions inflicted on mtDNA by oxygen radicals and the possibility of replication errors and disruptions indicated that such a restricted repair repertoire would be inadequate. Recent studies have considerably expanded our knowledge of mtDNA repair to include long-patch base excision repair (LP-BER), mismatch repair, and homologous recombination and nonhomologous end-joining. In addition, elimination of mutagenic 8-oxodeoxyguanosine triphosphate (8-oxodGTP) helps prevent cell death due to the accumulation of this oxidation product in mtDNA. Although it was suspected for many years that irreparably damaged mtDNA might be targeted for degradation, only recently was clear evidence provided for this hypothesis. Therefore, multiple DNA repair pathways and controlled degradation of mtDNA function together to maintain the integrity of mitochondrial genome.

  13. DNA repair in Chromobacterium violaceum.

    PubMed

    Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina

    2004-03-31

    Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The phylogenetic analyses were done using programs of the PHILYP package. This analysis revealed various metabolic pathways, including photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, and the SOS system. The similarity between the C. violaceum sequences and those of Neisserie miningitidis and Ralstonia solanacearum was greater than that between the C. violaceum and Escherichia coli sequences. The peculiarities found in the C. violaceum genome were the absence of LexA, some horizontal transfer events and a large number of repair genes involved with alkyl and oxidative DNA damage.

  14. In vitro Repair of Oxidative DNA Damage by Human Nucleotide Excision Repair System: Possible Explanation for Neurodegeneration in Xeroderma Pigmentosum Patients

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Bessho, Tadayoshi; Kung, Hsiang Chuan; Bolton, Philip H.; Sancar, Aziz

    1997-08-01

    Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

  15. Base Excision Repair of Oxidative DNA Damage

    PubMed Central

    David, Sheila S.; O’Shea, Valerie L.; Kundu, Sucharita

    2010-01-01

    Base excision repair plays an important role in preventing mutations associated with the common product of oxidative damage, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine glycosylases use an intricate series of steps to efficiently search and locate 8-oxoguanine lesions within the multitude of undamaged bases. The importance of prevention of mutations associated with 8-oxoguanine has also been illustrated by direct connections between defects in the BER glycosylase MUTYH and colorectal cancer. In addition, the properties of other guanine oxidation products and the BER glycosylases that remove them are being uncovered. This work is providing surprising and intriguing new insights into the process of base excision repair. PMID:17581577

  16. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    PubMed

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  17. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    PubMed

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. DNA Damage and Repair: Relevance to Mechanisms of Neurodegeneration

    PubMed Central

    Martin, Lee J.

    2008-01-01

    DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling non-neuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons. PMID:18431258

  19. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli

    PubMed Central

    Moore, Jessica M.; Correa, Raul; Rosenberg, Susan M.

    2017-01-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS

  20. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli.

    PubMed

    Moore, Jessica M; Correa, Raul; Rosenberg, Susan M; Hastings, P J

    2017-07-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS

  1. DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond

    PubMed Central

    Markkanen, Enni; Meyer, Urs; Dianov, Grigory L.

    2016-01-01

    Schizophrenia and autism spectrum disorder (ASD) are multi-factorial and multi-symptomatic psychiatric disorders, each affecting 0.5%–1% of the population worldwide. Both are characterized by impairments in cognitive functions, emotions and behaviour, and they undermine basic human processes of perception and judgment. Despite decades of extensive research, the aetiologies of schizophrenia and ASD are still poorly understood and remain a significant challenge to clinicians and scientists alike. Adding to this unsatisfactory situation, patients with schizophrenia or ASD often develop a variety of peripheral and systemic disturbances, one prominent example of which is cancer, which shows a direct (but sometimes inverse) comorbidity in people affected with schizophrenia and ASD. Cancer is a disease characterized by uncontrolled proliferation of cells, the molecular origin of which derives from mutations of a cell’s DNA sequence. To counteract such mutations and repair damaged DNA, cells are equipped with intricate DNA repair pathways. Oxidative stress, oxidative DNA damage, and deficient repair of oxidative DNA lesions repair have been proposed to contribute to the development of schizophrenia and ASD. In this article, we summarize the current evidence of cancer comorbidity in these brain disorders and discuss the putative roles of oxidative stress, DNA damage and DNA repair in the aetiopathology of schizophrenia and ASD. PMID:27258260

  2. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways*

    PubMed Central

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T.; Gasparutto, Didier; Geacintov, Nicholas E.; Saparbaev, Murat

    2015-01-01

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3′-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. PMID:25903131

  3. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease.

    PubMed

    Silva, Aderbal R T; Santos, Ana Cecília Feio; Farfel, Jose M; Grinberg, Lea T; Ferretti, Renata E L; Campos, Antonio Hugo Jose Froes Marques; Cunha, Isabela Werneck; Begnami, Maria Dirlei; Rocha, Rafael M; Carraro, Dirce M; de Bragança Pereira, Carlos Alberto; Jacob-Filho, Wilson; Brentani, Helena

    2014-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline associated with a featured neuropathology (neuritic plaques and neurofibrillary tangles). Several studies have implicated oxidative damage to DNA, DNA repair, and altered cell-cycle regulation in addition to cell death in AD post-mitotic neurons. However, there is a lack of studies that systematically assess those biological processes in patients with AD neuropathology but with no evidence of cognitive impairment. We evaluated markers of oxidative DNA damage (8-OHdG, H2AX), DNA repair (p53, BRCA1, PTEN), and cell-cycle (Cdk1, Cdk4, Cdk5, Cyclin B1, Cyclin D1, p27Kip1, phospho-Rb and E2F1) through immunohistochemistry and cell death through TUNEL in autopsy hippocampal tissue samples arrayed in a tissue microarray (TMA) composed of three groups: I) "clinical-pathological AD" (CP-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and clinical dementia (CDR ≥ 2, IQCODE>3.8); II) "pathological AD" (P-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and without cognitive impairment (CDR 0, IQCODE<3.2); and III) "normal aging" (N)--subjects without neuropathological AD (Braak ≤ II and CERAD 0 or A) and with normal cognitive function (CDR 0, IQCODE<3.2). Our results show that high levels of oxidative DNA damage are present in all groups. However, significant reductions in DNA repair and cell-cycle inhibition markers and increases in cell-cycle progression and cell death markers in subjects with CP-AD were detected when compared to both P-AD and N groups, whereas there were no significant differences in the studied markers between P-AD individuals and N subjects. This study indicates that, even in the setting of pathological AD, healthy cognition may be associated with a preserved repair to DNA damage, cell-cycle regulation, and cell death in post-mitotic neurons.

  4. Circadian Modulation of 8-Oxoguanine DNA Damage Repair

    PubMed Central

    Manzella, Nicola; Bracci, Massimo; Strafella, Elisabetta; Staffolani, Sara; Ciarapica, Veronica; Copertaro, Alfredo; Rapisarda, Venerando; Ledda, Caterina; Amati, Monica; Valentino, Matteo; Tomasetti, Marco; Stevens, Richard G.; Santarelli, Lory

    2015-01-01

    The DNA base excision repair pathway is the main system involved in the removal of oxidative damage to DNA such as 8-Oxoguanine (8-oxoG) primarily via the 8-Oxoguanine DNA glycosylase (OGG1). Our goal was to investigate whether the repair of 8-oxoG DNA damage follow a circadian rhythm. In a group of 15 healthy volunteers, we found a daily variation of Ogg1 expression and activity with higher levels in the morning compared to the evening hours. Consistent with this, we also found lower levels of 8-oxoG in morning hours compared to those in the evening hours. Lymphocytes exposed to oxidative damage to DNA at 8:00 AM display lower accumulation of 8-oxoG than lymphocytes exposed at 8:00 PM. Furthermore, altered levels of Ogg1 expression were also observed in a group of shift workers experiencing a deregulation of circadian clock genes compared to a control group. Moreover, BMAL1 knockdown fibroblasts with a deregulated molecular clock showed an abolishment of circadian variation of Ogg1 expression and an increase of OGG1 activity. Our results suggest that the circadian modulation of 8-oxoG DNA damage repair, according to a variation of Ogg1 expression, could render humans less susceptible to accumulate 8-oxoG DNA damage in the morning hours. PMID:26337123

  5. Base excision repair: NMR backbone assignments of Escherichia coli formamidopyrimidine-DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Wallace, Susan S.; Kennedy, Michael A.

    2002-03-01

    Oxidative damage is emerging as one of the most important mechanisms responsible for mutagenesis, carcinogenesis, aging, and various diseases (Farr and Kogma, 1991). One of the potential targets for oxidation is cellular DNA. While exposure to exogenous agents, such as ionizing radiation and chemicals, contributes to damaging DNA, the most important oxidative agents are endogenous, such as the reactive free radicals produced during normal oxidative metabolism (Adelman et., 1988). To mitigate the potentially deleterious effects of oxidative DNA damage virtually all aerobic organisms have developed complex repair mechanisms (Petit and Sancar, 1999). One repair mechanism, base excision repair (BER), appearsmore » to be responsible for replacing most oxidative DNA damage (David and Williams, 1998). Formamidopyrimidine-DNA glycosylase (Fpg), a 269-residue metalloprotein with a molecular weight of 30.2 kDa, is a key BER enzyme in prokaryotes (Boiteaux et al., 1987). Substrates recognized and released by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoG), 2,6 diamino-4-hydroxy-5-formamido pyrimidine (Fapy-G), the adenine equivalents 8-oxoA and Fapy-A, 5-hydroxycytosine, 5-hydroxyuracil, B ureidoisobutiric acid, and a-R-hydroxy-B-ureidoisobutiric acid (Freidberg et al., 1995). In vitro Fpg bind double-stranded DNA and performs three catalytic activities: (i) DNA glycosylase, (ii) AP lyase, and (iii) deoxyribophosphodiesterase.« less

  6. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Shi, Qiong; Song, Xiufang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observedmore » phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.« less

  7. Oxidized nucleotide insertion by pol β confounds ligation during base excision repair

    PubMed Central

    Çağlayan, Melike; Horton, Julie K.; Dai, Da-Peng; Stefanick, Donna F.; Wilson, Samuel H.

    2017-01-01

    Oxidative stress in cells can lead to accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized purine nucleotides can be inserted into DNA during replication and repair. The main pathway for correcting oxidized bases in DNA is base excision repair (BER), and in vertebrates DNA polymerase β (pol β) provides gap filling and tailoring functions. Here we report that the DNA ligation step of BER is compromised after pol β insertion of oxidized purine nucleotides into the BER intermediate in vitro. These results suggest the possibility that BER mediated toxic strand breaks are produced in cells under oxidative stress conditions. We observe enhanced cytotoxicity in oxidizing-agent treated pol β expressing mouse fibroblasts, suggesting formation of DNA strand breaks under these treatment conditions. Increased cytotoxicity following MTH1 knockout or treatment with MTH1 inhibitor suggests the oxidation of precursor nucleotides. PMID:28067232

  8. Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts

    PubMed Central

    Gassman, Natalie R.; Coskun, Erdem; Stefanick, Donna F.; Horton, Julie K.; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.

    2015-01-01

    Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway. PMID:25693136

  9. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Letavayová, Lucia; Marková, Eva; Hermanská, Katarína; Vlcková, Viera; Vlasáková, Danusa; Chovanec, Miroslav; Brozmanová, Jela

    2006-05-10

    Oxidative damage to DNA seems to be an important factor in developing many human diseases including cancer. It involves base and sugar damage, base-free sites, DNA-protein cross-links and DNA single-strand (SSB) and double-strand (DSB) breaks. Oxidative DSB can be formed in various ways such as their direct induction by the drug or their generation either through attempted and aborted repair of primary DNA lesions or through DNA replication-dependent conversion of SSB. In general, two main pathways are responsible for repairing DSB, homologous recombination (HR) and non-homologous end-joining (NHEJ), with both of them being potential candidates for the repair of oxidative DSB. We have examined relative contribution of HR and NHEJ to cellular response after oxidative stress in Saccharomyces cerevisiae. Therefore, cell survival, mutagenesis and DSB induction and repair in the rad52, yku70 and rad52 yku70 mutants after hydrogen peroxide (H(2)O(2)), menadione (MD) or bleomycin (BLM) exposure were compared to those obtained for the corresponding wild type. We show that MD exposure does not lead to observable DSB induction in yeast, suggesting that the toxic effects of this agent are mediated by other types of DNA damage. Although H(2)O(2) treatment generates some DSB, their yield is relatively low and hence DSB may only partially be responsible for toxicity of H(2)O(2), particularly at high doses of the agent. On the other hand, the basis of the BLM toxicity resides primarily in DSB induction. Both HR and NHEJ act on BLM-induced DSB, although their relative participation in the process is not equal. Based on our results we suggest that the complexity and/or the quality of the BLM-induced DSB might represent an obstacle for the NHEJ pathway.

  10. DNA repair targeted therapy: the past or future of cancer treatment?

    PubMed Central

    Gavande, Navnath S.; VanderVere-Carozza, Pamela S.; Hinshaw, Hilary D.; Jalal, Shadia I.; Sears, Catherine R.; Pawelczak, Katherine S.; Turchi, John J.

    2016-01-01

    The repair of DNA damage is a complex process that relies on particular pathways to remedy specific types of damage to DNA. The range of insults to DNA includes small, modest changes in structure including mismatched bases and simple methylation events to oxidized bases, intra- and interstrand DNA crosslinks, DNA double strand breaks and protein-DNA adducts. Pathways required for the repair of these lesions include mismatch repair, base excision repair, nucleotide excision repair, and the homology directed repair/Fanconi anemia pathway. Each of these pathways contributes to genetic stability, and mutations in genes encoding proteins involved in these pathways have been demonstrated to promote genetic instability and cancer. In fact, it has been suggested all cancers display defects in DNA repair. It has also been demonstrated that the ability of cancer cells to repair therapeutically induced DNA damage impacts therapeutic efficacy. This has led to targeting DNA repair pathways and proteins to develop anti-cancer agents that will increase sensitivity to traditional chemotherapeutics. While initial studies languished and were plagued by a lack of specificity and a defined mechanism of action, more recent approaches to exploit synthetic lethal interaction and develop high affinity chemical inhibitors have proven considerably more effective. In this review we will highlight recent advances and discuss previous failures in targeting DNA repair to pave the way for future DNA repair targeted agents and their use in cancer therapy. PMID:26896565

  11. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage

    PubMed Central

    Yang, Yang; Durando, Michael; Smith-Roe, Stephanie L.; Sproul, Chris; Greenwalt, Alicia M.; Kaufmann, William; Oh, Sehyun; Hendrickson, Eric A.; Vaziri, Cyrus

    2013-01-01

    The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H2O2-induced DNA damage. UVC and H2O2 treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G0, G1 and S-phase. Rad18 was important for repressing H2O2-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G1, indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H2O2-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H2O2-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G1. In contrast with G1-synchronized cultures, S-phase cells were H2O2-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G1 (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase. PMID:23295675

  13. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects.

    PubMed

    Dizdaroglu, Miral; Kirkali, Güldal; Jaruga, Pawel

    2008-12-15

    Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA-protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8-OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines

  14. Regulation of oxidative DNA damage repair by DNA polymerase λ and MutYH by cross-talk of phosphorylation and ubiquitination

    PubMed Central

    Markkanen, Enni; van Loon, Barbara; Ferrari, Elena; Parsons, Jason L.; Dianov, Grigory L.; Hübscher, Ulrich

    2012-01-01

    It is of pivotal importance for genome stability that repair DNA polymerases (Pols), such as Pols λ and β, which all exhibit considerably reduced fidelity when replicating undamaged DNA, are tightly regulated, because their misregulation could lead to mutagenesis. Recently, we found that the correct repair of the abundant and highly miscoding oxidative DNA lesion 7,8-dihydro-8-oxo-2′-deoxyguanine (8-oxo-G) is performed by an accurate repair pathway that is coordinated by the MutY glycosylase homologue (MutYH) and Pol λ in vitro and in vivo. Pol λ is phosphorylated by Cdk2/cyclinA in late S and G2 phases of the cell cycle, promoting Pol λ stability by preventing it from being targeted for proteasomal degradation by ubiquitination. However, it has remained a mystery how the levels of Pol λ are controlled, how phosphorylation promotes its stability, and how the engagement of Pol λ in active repair complexes is coordinated. Here, we show that the E3 ligase Mule mediates the degradation of Pol λ and that the control of Pol λ levels by Mule has functional consequences for the ability of mammalian cells to deal with 8-oxo-G lesions. Furthermore, we demonstrate that phosphorylation of Pol λ by Cdk2/cyclinA counteracts its Mule-mediated degradation by promoting recruitment of Pol λ to chromatin into active 8-oxo-G repair complexes through an increase in Pol λ’s affinity to chromatin-bound MutYH. Finally, MutYH appears to promote the stability of Pol λ by binding it to chromatin. In contrast, Pol λ not engaged in active repair on chromatin is subject for proteasomal degradation. PMID:22203964

  15. Flavonoids and DNA Repair in Prostate Cancer

    DTIC Science & Technology

    2004-12-01

    AD Award Number: W81XWH-04-1-0114 TITLE: Flavonoids and DNA Repiar in Prostate Cancer PRINCIPAL INVESTIGATOR: Susanne M. Henning, Ph.D. CONTRACTING...DATES COVERED (Leave blank) December 2004 Annual (1 Dec 2003 - 30 Nov 2004) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Flavonoids and DNA Repiar in... flavonoids are able to stimulate the repair of oxidative DNA damage. For this purpose LNCaP prostate tumor cells were exposed to FeSO4 to induce

  16. Measuring oxidative damage to DNA and its repair with the comet assay.

    PubMed

    Collins, Andrew R

    2014-02-01

    Single cell gel electrophoresis, or the comet assay, was devised as a sensitive method for detecting DNA strand breaks, at the level of individual cells. A simple modification, incorporating a digestion of DNA with a lesion-specific endonuclease, makes it possible to measure oxidised bases. With the inclusion of formamidopyrimidine DNA glycosylase to recognise oxidised purines, or Nth (endonuclease III) to detect oxidised pyrimidines, the comet assay has been used extensively in human biomonitoring to monitor oxidative stress, usually in peripheral blood mononuclear cells. There is evidence to suggest that the enzymic approach is more accurate than chromatographic methods, when applied to low background levels of base oxidation. However, there are potential problems of over-estimation (because the enzymes are not completely specific) or under-estimation (failure to detect lesions that are close together). Attempts have been made to improve the inter-laboratory reproducibility of the comet assay. In addition to measuring DNA damage, the assay can be used to monitor the cellular or in vitro repair of strand breaks or oxidised bases. It also has applications in assessing the antioxidant status of cells. In its various forms, the comet assay is now an invaluable tool in human biomonitoring and genotoxicity testing. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  18. Repair-Resistant DNA Lesions

    PubMed Central

    2017-01-01

    The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance. PMID:28750166

  19. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder.

    PubMed

    Czarny, Piotr; Kwiatkowski, Dominik; Toma, Monika; Gałecki, Piotr; Orzechowska, Agata; Bobińska, Kinga; Bielecka-Kowalska, Anna; Szemraj, Janusz; Berk, Michael; Anderson, George; Śliwiński, Tomasz

    2016-11-20

    BACKGROUND Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. MATERIAL AND METHODS Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). RESULTS We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. CONCLUSIONS The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease.

  20. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder

    PubMed Central

    Czarny, Piotr; Kwiatkowski, Dominik; Toma, Monika; Gałecki, Piotr; Orzechowska, Agata; Bobińska, Kinga; Bielecka-Kowalska, Anna; Szemraj, Janusz; Berk, Michael; Anderson, George; Śliwiński, Tomasz

    2016-01-01

    Background Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. Material/Methods Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). Results We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. Conclusions The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease. PMID:27866211

  1. Markers of oxidative DNA damage in human interventions with fruit and berries.

    PubMed

    Freese, Riitta

    2006-01-01

    Diets rich in fruit and vegetables are associated with a decreased risk of several cancers via numerous possible mechanisms. For example, phytochemicals may decrease oxidative DNA damage and enhance DNA repair. Markers of oxidative DNA damage in human dietary intervention trials used most frequently include oxidized nucleosides such as 7-hydro-8-oxo-2'-deoxyguanosine, which can be analyzed from isolated DNA or urine. Single-cell gel electrophoresis has been widely used to measure baseline or H2O2-induced DNA strand breaks or sites of modified bases sensitive to repair enzymes recognizing oxidized purines or pyrimidines. Recently, markers of DNA repair also have been used. Few controlled human dietary interventions have investigated the specific effects of fruit or berries. There are indications that kiwifruit can decrease H2O2 sensitivity of lymphocyte DNA ex vivo and enhance DNA repair. Carefully controlled studies with flavonoid-rich fruit or berry juices found only few significant differences; less rigorously controlled studies gave more optimistic results. Data on the effects of fruit and berries on DNA damage in humans are scarce and inconclusive; adequately controlled studies with validated markers are needed. Because levels of DNA damage are usually low in young healthy volunteers, groups with an enhanced risk of DNA damage should be studied.

  2. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli.

    PubMed

    Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew

    2018-01-09

    Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.

  3. Mgm101p Is a Novel Component of the Mitochondrial Nucleoid That Binds DNA and Is Required for the Repair of Oxidatively Damaged Mitochondrial DNA

    PubMed Central

    Meeusen, Shelly; Tieu, Quinton; Wong, Edith; Weiss, Eric; Schieltz, David; Yates, John R.; Nunnari, Jodi

    1999-01-01

    Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome. PMID:10209025

  4. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.

  5. DNA Damage, DNA Repair, Aging, and Neurodegeneration

    PubMed Central

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2015-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  6. Drugging the Cancers Addicted to DNA Repair.

    PubMed

    Nickoloff, Jac A; Jones, Dennie; Lee, Suk-Hee; Williamson, Elizabeth A; Hromas, Robert

    2017-11-01

    Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects. © The Author 2017. Published by Oxford University Press.

  7. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1.

    PubMed

    Yang, Jenq-Lin; Lin, Yu-Ting; Chuang, Pei-Chin; Bohr, Vilhelm A; Mattson, Mark P

    2014-03-01

    Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.

  8. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    PubMed

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    PubMed Central

    Hsiao, Pi-Jung; Hsieh, Tusty-Jiuan; Kuo, Kung-Kai; Hung, Wei-Wen; Tsai, Kun-Bow; Yang, Ching-Hsiu; Yu, Ming-Lung; Shin, Shyi-Jang

    2008-01-01

    Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2) and DNA glycosylase (Ogg1, MutY). Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease. PMID:18822121

  10. OXIDATIVE DNA DAMAGE AND REPAIR IN RATS TREATED WITH POTASSIUM BROMATE AND A MIXTUE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Oxidative DNA Damage and Repair in Rats Treated with Potassium Bromate and a Mixture of Drinking Water Disinfection By-Products

    Public drinking water treated with chemical disint'ectants contains a complex mixture of disinfection by-products (D BPs). There is a need for m...

  11. Mitochondrial DNA repair and damage tolerance.

    PubMed

    Stein, Alexis; Sia, Elaine A

    2017-01-01

    The accurate maintenance of mitochondrial DNA (mtDNA) is required in order for eukaryotic cells to assemble a functional electron transport chain. This independently-maintained genome relies on nuclear-encoded proteins that are imported into the mitochondria to carry out replication and repair processes. Decades of research has made clear that mitochondria employ robust and varied mtDNA repair and damage tolerance mechanisms in order to ensure the proper maintenance of the mitochondrial genome. This review focuses on our current understanding of mtDNA repair and damage tolerance pathways including base excision repair, mismatch repair, homologous recombination, non-homologous end joining, translesion synthesis and mtDNA degradation in both yeast and mammalian systems.

  12. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    PubMed Central

    Jones, Daniel L.; Baxter, Bonnie K.

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms. PMID:29033920

  13. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    PubMed

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  14. Oxidative DNA damage during sleep periods among nightshift workers.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages*

    PubMed Central

    Cannan, Wendy J.; Tsang, Betty P.; Wallace, Susan S.; Pederson, David S.

    2014-01-01

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. PMID:24891506

  16. The distribution of DNA damage is defined by region-specific susceptibility to DNA damage formation rather than repair differences.

    PubMed

    Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars

    2014-06-01

    The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.

    PubMed

    Dutta, Arijit; Yang, Chunying; Sengupta, Shiladitya; Mitra, Sankar; Hegde, Muralidhar L

    2015-05-01

    Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory

  18. Genetic characterization of cells of homocystinuria patients with disrupted DNA repair system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinel'shchikova, T.A.; L'vova, G.N.; Shoniya, N.N.

    1986-08-01

    Fibroblasts obtained from biopsy material and lymphocytes of patients with homocystinuria were investigated for repair activity according to the following criteria: rejoined DNA breaks, induced by 4-nitroquinoline-1-oxide and ..gamma..-radiation; indices of reactivation and induced mutagenesis of smallpox vaccine virus treated with these mutagens. In lymphocytes a defect of DNA repair was observed according to all criteria investigated. During passage of fibroblast cultures, inhibition of repair activity of cells was preserved according to ..gamma..-type. Increase in the number of spontaneous and ..gamma..-induced mutations of virus was noted according to degree of passage of fibroblasts.

  19. Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse.

    PubMed

    Martínez-Alfaro, Minerva; Cárabez-Trejo, Alfonso; Gallegos-Corona, Marco-Antonio; Pedraza-Aboytes, Gustavo; Hernández-Chan, Nancy Georgina; Leo-Amador, Guillermo Enrique

    2010-04-01

    Humans can come into contact with thinner by occupational exposure or by intentional inhalation abuse. Numerous studies of workers for genotoxic effects of thinner exposure have yielded conflicting results, perhaps because co-exposure to variable other compounds cannot be avoided in workplace exposure studies. In contrast, there is no data concerning the genotoxic effects of intentional inhalation abuse. The aim of this project was to examine the genotoxic effects of thinner inhalation in an animal model of thinner abuse (rats exposed to 3000 ppm toluene, a high solvent concentration over a very short, 15 min time period, twice a day for 6 weeks). The data presented here provides evidence that thinner inhalation in our experimental conditions is able to induce weight loss, lung abnormalities and oxidative stress. This oxidative stress induces oxidative DNA damage that is not a characteristic feature of genotoxic damage. No significant difference in DNA damage and DNA repair (biomarkers of genotoxicity) in lymphocytes from thinner-treated and control rats was found. Lead treatment was used as a positive control in these assays. Finally, bone marrow was evaluated as a biomarker of cellular alteration associated with thinner inhalation. The observed absence of hemopoietic and genetic toxicity could be explained in part by the absence of benzene, the only carcinogenic component of thinner; however, benzene is no longer a common component of thinner. In conclusion, thinner did not cause genotoxic effects in an experimental model of intentional abuse despite the fact that thinner inhalation induces oxidative stress. (c) 2009 John Wiley & Sons, Ltd.

  20. XPD polymorphisms: effects on DNA repair proficiency.

    PubMed

    Lunn, R M; Helzlsouer, K J; Parshad, R; Umbach, D M; Harris, E L; Sanford, K K; Bell, D A

    2000-04-01

    XPD codes for a DNA helicase involved in transcription and nucleotide excision repair. Rare XPD mutations diminish nucleotide excision repair resulting in hypersensitivity to UV light and increased risk of skin cancer. Several polymorphisms in this gene have been identified but their impact on DNA repair is not known. We compared XPD genotypes at codons 312 and 751 with DNA repair proficiency in 31 women. XPD genotypes were measured by PCR-RFLP. DNA repair proficiency was assessed using a cytogenetic assay that detects X-ray induced chromatid aberrations (breaks and gaps). Chromatid aberrations were scored per 100 metaphase cells following incubation at 37 degrees C (1.5 h after irradiation) to allow for repair of DNA damage. Individuals with the Lys/Lys codon 751 XPD genotype had a higher number of chromatid aberrations (132/100 metaphase cells) than those having a 751Gln allele (34/100 metaphase cells). Individuals having greater than 60 chromatid breaks plus gaps were categorized as having sub-optimal repair. Possessing a Lys/Lys751 genotype increased the risk of sub-optimal DNA repair (odds ratio = 7.2, 95% confidence interval = 1.01-87.7). The Asp312Asn XPD polymorphism did not appear to affect DNA repair proficiency. These results suggest that the Lys751 (common) allele may alter the XPD protein product resulting in sub-optimal repair of X-ray-induced DNA damage.

  1. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  2. Reactive oxygen-mediated damage to a human DNA replication and repair protein.

    PubMed

    Montaner, Beatriz; O'Donovan, Peter; Reelfs, Olivier; Perrett, Conal M; Zhang, Xiaohong; Xu, Yao-Zhong; Ren, Xiaolin; Macpherson, Peter; Frith, David; Karran, Peter

    2007-11-01

    Ultraviolet A (UVA) makes up more than 90% of incident terrestrial ultraviolet radiation. Unlike shorter wavelength UVB, which damages DNA directly, UVA is absorbed poorly by DNA and is therefore considered to be less hazardous. Organ transplant patients treated with the immunosuppressant azathioprine frequently develop skin cancer. Their DNA contains 6-thioguanine-a base analogue that generates DNA-damaging singlet oxygen ((1)O(2)) when exposed to UVA. Here, we show that this (1)O(2) damages proliferating cell nuclear antigen (PCNA), the homotrimeric DNA polymerase sliding clamp. It causes covalent oxidative crosslinking between the PCNA subunits through a histidine residue in the intersubunit domain. Crosslinking also occurs after treatment with higher-although still moderate-doses of UVA alone or with chemical oxidants. Chronic accumulation of oxidized proteins is linked to neurodegenerative disorders and ageing. Our findings identify oxidative damage to an important DNA replication and repair protein as a previously unrecognized hazard of acute oxidative stress.

  3. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages.

    PubMed

    Cannan, Wendy J; Tsang, Betty P; Wallace, Susan S; Pederson, David S

    2014-07-18

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. XPD localizes in mitochondria and protects the mitochondrial genome from oxidative DNA damage.

    PubMed

    Liu, Jing; Fang, Hongbo; Chi, Zhenfen; Wu, Zan; Wei, Di; Mo, Dongliang; Niu, Kaifeng; Balajee, Adayabalam S; Hei, Tom K; Nie, Linghu; Zhao, Yongliang

    2015-06-23

    Xeroderma pigmentosum group D (XPD/ERCC2) encodes an ATP-dependent helicase that plays essential roles in both transcription and nucleotide excision repair of nuclear DNA, however, whether or not XPD exerts similar functions in mitochondria remains elusive. In this study, we provide the first evidence that XPD is localized in the inner membrane of mitochondria, and cells under oxidative stress showed an enhanced recruitment of XPD into mitochondrial compartment. Furthermore, mitochondrial reactive oxygen species production and levels of oxidative stress-induced mitochondrial DNA (mtDNA) common deletion were significantly elevated, whereas capacity for oxidative damage repair of mtDNA was markedly reduced in both XPD-suppressed human osteosarcoma (U2OS) cells and XPD-deficient human fibroblasts. Immunoprecipitation-mass spectrometry analysis was used to identify interacting factor(s) with XPD and TUFM, a mitochondrial Tu translation elongation factor was detected to be physically interacted with XPD. Similar to the findings in XPD-deficient cells, mitochondrial common deletion and oxidative damage repair capacity in U2OS cells were found to be significantly altered after TUFM knock-down. Our findings clearly demonstrate that XPD plays crucial role(s) in protecting mitochondrial genome stability by facilitating an efficient repair of oxidative DNA damage in mitochondria. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,B.; Edstrom, W.; Benach, J.

    2006-01-01

    Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coliAlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by SN2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profilemore » analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(ii) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 Angstroms. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized

  6. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    PubMed Central

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  7. New Perspectives on Oxidized Genome Damage and Repair Inhibition by Pro-Oxidant Metals in Neurological Diseases

    PubMed Central

    Mitra, Joy; Guerrero, Erika N.; Hegde, Pavana M.; Wang, Haibo; Boldogh, Istvan; Rao, Kosagi Sharaf; Mitra, Sankar; Hegde, Muralidhar L.

    2014-01-01

    The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases. PMID:25036887

  8. Epigenetic changes of DNA repair genes in cancer.

    PubMed

    Lahtz, Christoph; Pfeifer, Gerd P

    2011-02-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  9. Pro-oxidant Induced DNA Damage in Human Lymphoblastoid Cells: Homeostatic Mechanisms of Genotoxic Tolerance

    PubMed Central

    Seager, Anna L.

    2012-01-01

    Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H2O2), potassium bromate (KBrO3), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H2O2 and KBrO3, but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair–focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H2O2-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H2O2 dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in “genotoxic tolerance.” PMID:22539617

  10. Direct inhibition of excision/synthesis DNA repair activities by cadmium: analysis on dedicated biochips.

    PubMed

    Candéias, S; Pons, B; Viau, M; Caillat, S; Sauvaigo, S

    2010-12-10

    The well established toxicity of cadmium and cadmium compounds results from their additive effects on several key cellular processes, including DNA repair. Mammalian cells have evolved several biochemical pathways to repair DNA lesions and maintain genomic integrity. By interfering with the homeostasis of redox metals and antioxidant systems, cadmium promotes the development of an intracellular environment that results in oxidative DNA damage which can be mutagenic if unrepaired. Small base lesions are recognised by specialized glycosylases and excised from the DNA molecule. The resulting abasic sites are incised, and the correct sequences restored by DNA polymerases using the opposite strands as template. Bulky lesions are recognised by a different set of proteins and excised from DNA as part of an oligonucleotide. As in base repair, the resulting gaps are filled by DNA polymerases using the opposite strands as template. Thus, these two repair pathways consist in excision of the lesion followed by DNA synthesis. In this study, we analysed in vitro the direct effects of cadmium exposure on the functionality of base and nucleotide DNA repair pathways. To this end, we used recently described dedicated microarrays that allow the parallel monitoring in cell extracts of the repair activities directed against several model base and/or nucleotide lesions. Both base and nucleotide excision/repair pathways are inhibited by CdCl₂, with different sensitivities. The inhibitory effects of cadmium affect mainly the recognition and excision stages of these processes. Furthermore, our data indicate that the repair activities directed against different damaged bases also exhibit distinct sensitivities, and the direct comparison of cadmium effects on the excision of uracile in different sequences even allows us to propose a hierarchy of cadmium sensibility within the glycosylases removing U from DNA. These results indicate that, in our experimental conditions, cadmium is a very

  11. [Biomarkers of radiation-induced DNA repair processes].

    PubMed

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  12. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rongxin; Mullins, Elwood A.; Shen, Xing‐Xing

    DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct frommore » that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.« less

  13. DNA-PKcs deficiency leads to persistence of oxidatively-induced clustered DNA lesions in human tumor cells

    PubMed Central

    Peddi, Prakash; Loftin, Charles W.; Dickey, Jennifer S.; Hair, Jessica M.; Burns, Kara J.; Aziz, Khaled; Francisco, Dave C.; Panayiotidis, Mihalis I.; Sedelnikova, Olga A.; Bonner, William M.; Winters, Thomas A.; Georgakilas, Alexandros G.

    2010-01-01

    DNA-dependent protein kinase (DNA-PK) is a key non-homologous end joining (NHEJ) nuclear serine/threonine protein kinase involved in various DNA metabolic and damage signaling pathways contributing to the maintenance of genomic stability and prevention of cancer. In order to examine the role of DNA-PK in processing of non-DSB clustered DNA damage, we have used three different models of DNA-PK deficiency i.e. chemical inactivation of its kinase activity by novel inhibitors IC86621 and NU7026, knock-down and complete absence of the protein in human breast cancer (MCF-7) and glioblastoma cell lines (MO59-J/K). Compromised DNA-PK repair pathway has lead to accumulation of clustered DNA lesions induced by γ-rays. Tumor cells lacking protein expression or with inhibited kinase activity showed a marked decrease in their ability to process oxidatively-induced non-DSB clustered DNA lesions measured using a modified version of pulsed field gel electrophoresis or single cell gel electrophoresis (Comet assay). In all cases, DNA-PK inactivation lead to a higher level of lesion persistence even after 24–72 hrs of repair. We suggest a model in which DNA-PK deficiency affects the processing of these clusters by first compromising base excision repair and second by the presence of catalytically inactive DNA-PK inhibiting the efficient processing of these lesions due to the failure of DNA-PK to disassociate from the DNA ends. The information rendered will be important not only for understating cancer etiology in the presence of a NHEJ deficiency but also lead to a better understanding of cancer treatments based on the induction of oxidative stress and inhibition of cluster repair. PMID:20193758

  14. Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells.

    PubMed

    Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter

    2015-11-01

    Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.

  15. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and anticancer drug effectiveness

    PubMed Central

    McAdam, Elizabeth; Brem, Reto; Karran, Peter

    2016-01-01

    The relationship between sun exposure and non-melanoma skin cancer risk is well established. Solar ultraviolet radiation (UV; wavelengths 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 mn) component of solar UV radiation increases skin cancer risk is not understood. We demonstrate here that the contribution of UVA to the effects of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the cells’ susceptibility to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. Statement of implication: Since NER is both a defence against cancer a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative-stress has implications for both cancer risk and for the effectiveness of anticancer therapy. PMID:27106867

  16. DNA Repair and Genome Maintenance in Bacillus subtilis

    PubMed Central

    Lenhart, Justin S.; Schroeder, Jeremy W.; Walsh, Brian W.

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis. PMID:22933559

  17. DNA repair variants and breast cancer risk.

    PubMed

    Grundy, Anne; Richardson, Harriet; Schuetz, Johanna M; Burstyn, Igor; Spinelli, John J; Brooks-Wilson, Angela; Aronson, Kristan J

    2016-05-01

    A functional DNA repair system has been identified as important in the prevention of tumour development. Previous studies have hypothesized that common polymorphisms in DNA repair genes could play a role in breast cancer risk and also identified the potential for interactions between these polymorphisms and established breast cancer risk factors such as physical activity. Associations with breast cancer risk for 99 single nucleotide polymorphisms (SNPs) from genes in ten DNA repair pathways were examined in a case-control study including both Europeans (644 cases, 809 controls) and East Asians (299 cases, 160 controls). Odds ratios in both additive and dominant genetic models were calculated separately for participants of European and East Asian ancestry using multivariate logistic regression. The impact of multiple comparisons was assessed by correcting for the false discovery rate within each DNA repair pathway. Interactions between several breast cancer risk factors and DNA repair SNPs were also evaluated. One SNP (rs3213282) in the gene XRCC1 was associated with an increased risk of breast cancer in the dominant model of inheritance following adjustment for the false discovery rate (P < 0.05), although no associations were observed for other DNA repair SNPs. Interactions of six SNPs in multiple DNA repair pathways with physical activity were evident prior to correction for FDR, following which there was support for only one of the interaction terms (P < 0.05). No consistent associations between variants in DNA repair genes and breast cancer risk or their modification by breast cancer risk factors were observed. © 2016 Wiley Periodicals, Inc.

  18. DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib

    PubMed Central

    Peacock, Matthew; Brem, Reto; Macpherson, Peter; Karran, Peter

    2014-01-01

    Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib—a BRAF inhibitor used to treat metastatic melanoma—are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage. PMID:25414333

  19. Repair of DNA damage induced by accelerated heavy ions--a mini review.

    PubMed

    Okayasu, Ryuichi

    2012-03-01

    Increasing use of heavy ions for cancer therapy and concerns from exposure to heavy charged particles in space necessitate the study of the basic biological mechanisms associated with exposure to heavy ions. As the most critical damage induced by ionizing radiation is DNA double strand break (DSB), this review focuses on DSBs induced by heavy ions and their repair processes. Compared with X- or gamma-rays, high-linear energy transfer (LET) heavy ion radiation induces more complex DNA damage, categorized into DSBs and non-DSB oxidative clustered DNA lesions (OCDL). This complexity makes the DNA repair process more difficult, partially due to retarded enzymatic activities, leading to increased chromosome aberrations and cell death. In general, the repair process following heavy ion exposure is LET-dependent, but with nonhomologous end joining defective cells, this trend is less emphasized. The variation in cell survival levels throughout the cell cycle is less prominent in cells exposed to high-LET heavy ions when compared with low LET, but this mechanism has not been well understood until recently. Involvement of several DSB repair proteins is suggested to underlie this interesting phenomenon. Recent improvements in radiation-induced foci studies combined with high-LET heavy ion exposure could provide a useful opportunity for more in depth study of DSB repair processes. Accelerated heavy ions have become valuable tools to investigate the molecular mechanisms underlying repair of DNA DSBs, the most crucial form of DNA damage induced by radiation and various chemotherapeutic agents. Copyright © 2011 UICC.

  20. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation

    PubMed Central

    2012-01-01

    Background The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI) after BCS (breast conserving surgery). Methods A total of 57 breast cancer patients who underwent SSPBI were genotyped for SNPs (single nucleotide polymorphisms) in XRCC1, XRCC3, GST and RAD51 by Pyrosequencing technology. Univariate analysis (ORs and 95% CI) was performed to correlate SNPs with the risk of developing ≥ G2 fibrosis or fat necrosis. Results A higher significant risk of developing ≥ G2 fibrosis or fat necrosis in patients with: polymorphic variant GSTP1 (Ile105Val) (OR = 2.9; 95%CI, 0.88-10.14, p = 0.047). Conclusions The presence of some SNPs involved in DNA repair or response to oxidative stress seem to be able to predict late toxicity. Trial Registration ClinicalTrials.gov: NCT01316328 PMID:22272830

  1. Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature.

    PubMed

    Sauvaigo, Sylvie; Sarrazy, Fanny; Batal, Mohamed; Caillat, Sylvain; Pitiot, Benoit; Mouret, Stéphane; Cléry-Barraud, Cécile; Boudry, Isabelle; Douki, Thierry

    2016-01-22

    Sulfur mustard (SM) is a chemical warfare agent that, upon topical application, damages skin and reaches internal organs through diffusion in blood. Two major toxic consequences of SM exposure are inflammation, associated with oxidative stress, and the formation of alkylated DNA bases. In the present study, we investigated the impact of exposure to SM on DNA repair, using two different functional DNA repair assays which provide information on several Base Excision Repair (BER) and Excision/Synthesis Repair (ESR) activities. BER activities were reduced in all organs as early as 4h after exposure, with the exception of the defense systems against 8-oxo-guanine and hypoxanthine which were stimulated. Interestingly, the resulting BER intermediates could activate inflammation signals, aggravating the inflammation triggered by SM exposure and leading to increased oxidative stress. ESR activities were found to be mostly inhibited in skin, brain and kidneys. In contrast, in the lung there was a general increase in ESR activities. In summary, exposure to SM leads to a significant decrease in DNA repair in most organs, concomitant with the formation of DNA damage. These synergistic genotoxic effects are likely to participate in the high toxicity of this alkylating agent. Lungs, possibly better equipped with repair enzymes to handle exogenous exposure, are the exception. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair.

    PubMed

    Lu, Wei-Ting; Hawley, Ben R; Skalka, George L; Baldock, Robert A; Smith, Ewan M; Bader, Aldo S; Malewicz, Michal; Watts, Felicity Z; Wilczynska, Ania; Bushell, Martin

    2018-02-07

    The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells.

  3. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone.

    PubMed

    DeMott, Michael S; Beyret, Ergin; Wong, Donny; Bales, Brian C; Hwang, Jae-Taeg; Greenberg, Marc M; Demple, Bruce

    2002-03-08

    Oxidized abasic residues in DNA constitute a major class of radiation and oxidative damage. Free radical attack on the nucleotidyl C-1' carbon yields 2-deoxyribonolactone (dL) as a significant lesion. Although dL residues are efficiently incised by the main human abasic endonuclease enzyme Ape1, we show here that subsequent excision by human DNA polymerase beta is impaired at dL compared with unmodified abasic sites. This inhibition is accompanied by accumulation of a protein-DNA cross-link not observed in reactions of polymerase beta with unmodified abasic sites, although a similar form can be trapped by reduction with sodium borohydride. The formation of the stably cross-linked species with dL depends on the polymerase lysine 72 residue, which forms a Schiff base with the C-1 aldehyde during excision of an unmodified abasic site. In the case of a dL residue, attack on the lactone C-1 by lysine 72 proceeds more slowly and evidently produces an amide linkage, which resists further processing. Consequently dL residues may not be readily repaired by "short-patch" base excision repair but instead function as suicide substrates in the formation of protein-DNA cross-links that may require alternative modes of repair.

  4. N-acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease.

    PubMed

    Kim, June-Bum; Lim, Nary; Kim, Sung-Jo; Heo, Tae-Hwe

    2012-12-01

    Batten disease is an inherited disorder characterized by early onset neurodegeneration due to the mutation of the CLN3 gene. The function of the CLN3 protein is not clear, but an association with oxidative stress has been proposed. Oxidative stress and DNA damage play critical roles in the pathogenesis of neurodegenerative diseases. Antioxidants are of interest because of their therapeutic potential for treating neurodegenerative diseases. We tested whether N-acetylcysteine (NAC), a well-known antioxidant, improves the pathology of cells from patients with Batten disease. At first, the expression levels of urea cycle components and DNA repair enzymes were compared between Batten disease cells and normal cells. We used both mRNA expression levels and Western blot analysis. We found that carbamoyl phosphate synthetase 1, an enzyme involved in the urea cycle, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta, enzymes involved in DNA repair, were expressed at higher levels in Batten disease cells than in normal cells. The treatment of Batten disease cells with NAC for 48 h attenuated activities of the urea cycle and of DNA repair, as indicated by the substantially decreased expression levels of carbamoyl phosphate synthetase 1, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta proteins compared with untreated Batten cells. NAC may serve in alleviating the burden of urea cycle and DNA repair processes in Batten disease cells. We propose that NAC may have beneficial effects in patients with Batten disease. Copyright © 2012 John Wiley & Sons, Ltd.

  5. The Seed Repair Response during Germination: Disclosing Correlations between DNA Repair, Antioxidant Response, and Chromatin Remodeling in Medicago truncatula

    PubMed Central

    Pagano, Andrea; Araújo, Susana de Sousa; Macovei, Anca; Leonetti, Paola; Balestrazzi, Alma

    2017-01-01

    This work provides novel insights into the effects caused by the histone deacetylase inhibitor trichostatin A (TSA) during Medicago truncatula seed germination, with emphasis on the seed repair response. Seeds treated with H2O and TSA (10 and 20 μM) were collected during imbibition (8 h) and at the radicle protrusion phase. Biometric data showed delayed germination and impaired seedling growth in TSA-treated samples. Comet assay, performed on radicles at the protrusion phase and 4-days old M. truncatula seedlings, revealed accumulation of DNA strand breaks upon exposure to TSA. Activation of DNA repair toward TSA-mediated genotoxic damage was evidenced by the up-regulation of MtOGG1(8-OXOGUANINE GLYCOSYLASE/LYASE) gene involved in the removal of oxidative DNA lesions, MtLIGIV(LIGASE IV) gene, a key determinant of seed quality, required for the rejoining of DNA double strand breaks and TDP(TYROSYL-DNA PHOSPHODIESTERASE) genes encoding the multipurpose DNA repair enzymes tyrosyl-DNA phosphodiesterases. Since radical scavenging can prevent DNA damage, the specific antioxidant activity (SAA) was measured by DPPH (1,1-diphenyl-2-picrylhydrazyl) and Folin-Ciocalteu reagent assays. Fluctuations of SAA were observed in TSA-treated seeds/seedlings concomitant with the up-regulation of antioxidant genes MtSOD(SUPEROXIDE DISMUTASE, MtAPX(ASCORBATE PEROXIDASE) and MtMT2(TYPE 2 METALLOTHIONEIN). Chromatin remodeling, required to facilitate the access of DNA repair enzymes at the damaged sites, is also part of the multifaceted seed repair response. To address this aspect, still poorly explored in plants, the MtTRRAP(TRANSFORMATION/TRANSACTIVATION DOMAIN-ASSOCIATED PROTEIN) gene was analyzed. TRRAP is a transcriptional adaptor, so far characterized only in human cells where it is needed for the recruitment of histone acetyltransferase complexes to chromatin during DNA repair. The MtTRRAP gene and the predicted interacting partners MtHAM2 (HISTONE ACETYLTRANSFERASE OF THE MYST

  6. Endogenous melatonin and oxidatively damaged guanine in DNA

    PubMed Central

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan; Sobel, Eugene

    2009-01-01

    Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight). Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR) was associated with significantly higher levels of 8-oxodG (p < 0.05), but not with 8-oxoGua. Among the fathers, age range 46-80, lower melatonin production was associated with

  7. Endogenous melatonin and oxidatively damaged guanine in DNA.

    PubMed

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan; Sobel, Eugene

    2009-10-18

    A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Mother-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight). Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR) was associated with significantly higher levels of 8-oxodG (p < 0.05), but not with 8-oxoGua. Among the fathers, age range 46-80, lower melatonin production was associated with marginally higher levels of

  8. Assessment of DNA damage and repair efficiency in drug naïve schizophrenia using comet assay.

    PubMed

    Muraleedharan, Aparna; Menon, Vikas; Rajkumar, Ravi Philip; Chand, Parkash

    2015-09-01

    The etiology of schizophrenia continues to be confounding and elusive. Some knowledge gaps exist in the neurodegenerative theory of schizophrenia. Oxidative DNA damage and repair deficits are relevant to the mechanisms of neurodegeneration but have not been studied in drug naïve schizophrenia. The present study used the comet assay technique to study the extent of DNA damage in circulating peripheral lymphocytes of patients with drug naïve schizophrenia (n = 40) along with an age and gender matched control group (n = 40). We also assessed the DNA repair efficiency in cases following incubation in a nutrient medium. All the assayed comet parameters demonstrated significantly greater baseline DNA damage in cases in comparison to the controls except for head diameter (p < 0.001 for all significant results, p = 0.32 for head diameter). Gender, age and duration of illness (p = 0.21, 0.69 and 0.12 respectively for tail length) did not influence any of the parameters significantly. Significant decrease was noted in the comet tail length and percentage of DNA in comet tail (p < 0.001 for both) in cases following incubation suggesting that the DNA repair machinery was preserved. No difference in DNA repair efficiency was noted between the genders (p = 0.23 for tail length). Our findings confirm the presence of significant baseline DNA damage in schizophrenia even prior to the initiation of anti-psychotic treatment. Additionally, intact genomic repair efficiency was noted in this group as a whole. These results provide some evidence for oxidative DNA damage as molecular link underpinning neurodegeneration in drug naïve schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. DNA repair phenotype and dietary antioxidant supplementation.

    PubMed

    Guarnieri, Serena; Loft, Steffen; Riso, Patrizia; Porrini, Marisa; Risom, Lotte; Poulsen, Henrik E; Dragsted, Lars O; Møller, Peter

    2008-05-01

    Phytochemicals may protect cellular DNA by direct antioxidant effect or modulation of the DNA repair activity. We investigated the repair activity towards oxidised DNA in human mononuclear blood cells (MNBC) in two placebo-controlled antioxidant intervention studies as follows: (1) well-nourished subjects who ingested 600 g fruits and vegetables, or tablets containing the equivalent amount of vitamins and minerals, for 24 d; (2) poorly nourished male smokers who ingested 500 mg vitamin C/d as slow- or plain-release formulations together with 182 mg vitamin E/d for 4 weeks. The mean baseline levels of DNA repair incisions were 65.2 (95 % CI 60.4, 70.0) and 86.1 (95 % CI 76.2, 99.9) among the male smokers and well-nourished subjects, respectively. The male smokers also had high baseline levels of oxidised guanines in MNBC. After supplementation, only the male smokers supplemented with slow-release vitamin C tablets had increased DNA repair activity (27 (95 % CI 12, 41) % higher incision activity). These subjects also benefited from the supplementation by reduced levels of oxidised guanines in MNBC. In conclusion, nutritional status, DNA repair activity and DNA damage are linked, and beneficial effects of antioxidants might only be observed among poorly nourished subjects with high levels of oxidised DNA damage and low repair activity.

  10. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats.

    PubMed

    He, Meixia; Xing, Shihui; Yang, Bo; Zhao, Liqun; Hua, Haiying; Liang, Zhijian; Zhou, Wenliang; Zeng, Jinsheng; Pei, Zhong

    2007-11-21

    Oxidative DNA damage has been proposed to be a major contributor to focal cerebral ischemic injury. However, little is known about the role of oxidative DNA damage in remote damage secondary to the primary infarction. In the present study, we investigated oxidative damage within the ventroposterior nucleus (VPN) after distal middle cerebral artery occlusion (MCAO) in hypertensive rats. We also examined the possible protective effect of ebselen, one glutathione peroxidase mimic, on delayed degeneration in the VPN after distal MCAO. Neuronal damage in the ipsilateral VPN was examined by Nissl staining. Oxidative DNA damage and base repair enzyme activity were assessed by analyzing immunoreactivity of 8-hydroxy-2'-deoxyguanosine (8-ohdG) and 8-oxoguanine DNA glycosylase (OGG1), respectively. The number of intact neurons in the ipsilateral VPN decreased by 52% compared to the contralateral side in ischemia group 2 weeks after distal cerebral cortical infarction. The immunoreactivity of 8-ohdG significantly increased while OGG1 immunoreactivity significantly decreased in the ipsilateral VPN 2 weeks after distal cortical infarction (all p<0.01). Compared with vehicle treatment, ebselen significantly attenuated the neuron loss, ameliorated ischemia-induced increase in 8-ohdG level as well as decrease in OGG1 level within the ipsilateral VPN (all p<0.01). OGG1 was further demonstrated to mainly express in neurons. These findings strongly suggest that oxidative DNA damage may be involved in the delayed neuronal death in the VPN region following distal MCAO. Furthermore, ebselen protects against the delayed damage in the VPN when given at 24 h following distal MCAO.

  11. ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses.

    PubMed

    Berger, N Daniel; Stanley, Fintan K T; Moore, Shaun; Goodarzi, Aaron A

    2017-10-05

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).

  12. Targeting DNA repair pathways for cancer treatment: what's new?

    PubMed Central

    Kelley, Mark R; Logsdon, Derek; Fishel, Melissa L

    2014-01-01

    Disruptions in DNA repair pathways predispose cells to accumulating DNA damage. A growing body of evidence indicates that tumors accumulate progressively more mutations in DNA repair proteins as cancers progress. DNA repair mechanisms greatly affect the response to cytotoxic treatments, so understanding those mechanisms and finding ways to turn dysregulated repair processes against themselves to induce tumor death is the goal of all DNA repair inhibition efforts. Inhibition may be direct or indirect. This burgeoning field of research is replete with promise and challenge, as more intricacies of each repair pathway are discovered. In an era of increasing concern about healthcare costs, use of DNA repair inhibitors can prove to be highly effective stewardship of R&D resources and patient expenses. PMID:24947262

  13. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    PubMed

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  14. 8-Oxoguanine DNA glycosylase1-driven DNA repair-A paradoxical role in lung aging.

    PubMed

    German, Peter; Saenz, David; Szaniszlo, Peter; Aguilera-Aguirre, Leopoldo; Pan, Lang; Hegde, Muralidhar L; Bacsi, Attila; Hajas, Gyorgy; Radak, Zsolt; Ba, Xueqing; Mitra, Sankar; Papaconstantinou, John; Boldogh, Istvan

    2017-01-01

    Age-associated changes in lung structure and function are some of the most important predictors of overall health, cognitive activities and longevity. Common to all aging cells is an increase in oxidatively modified DNA bases, primarily 8-oxo-7,8-dihydroguanine (8-oxoG). It is repaired via DNA base excision repair pathway driven by 8-oxoguanine DNA glycosylase-1 (OGG1-BER), whose role in aging has been the focus of many studies. This study hypothesizes that signaling and consequent gene expression during cellular response to OGG1-BER "wires" senescence/aging processes. To test OGG1-BER was mimicked by repeatedly exposing diploid lung fibroblasts cells and airways of mice to 8-oxoG base. Results showed that repeated exposures led to G1 cell cycle arrest and pre-matured senescence of cultured cells in which over 1000 genes were differentially expressed -86% of them been identical to those in naturally senesced cells. Gene ontology analysis of gene expression displayed biological processes driven by small GTPases, phosphoinositide 3-kinase and mitogen activated kinase cascades both in cultured cells and lungs. These results together, points to a new paradigm about the role of DNA damage and repair by OGG1 in aging and age-associated disease processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    PubMed Central

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  16. Recruitment of DNA methyltransferase I to DNA repair sites.

    PubMed

    Mortusewicz, Oliver; Schermelleh, Lothar; Walter, Joachim; Cardoso, M Cristina; Leonhardt, Heinrich

    2005-06-21

    In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair.

  17. Day and night variations in the repair of ionizing-radiation-induced DNA damage in mouse splenocytes.

    PubMed

    Palombo, Philipp; Moreno-Villanueva, Maria; Mangerich, Aswin

    2015-04-01

    In mammals, biological rhythms synchronize physiological and behavioral processes to the 24-h light-dark (LD) cycle. At the molecular level, self-sustaining processes, such as oscillations of transcription-translation feedback loops, control the circadian clock, which in turn regulates a wide variety of cellular processes, including gene expression and cell cycle progression. Furthermore, previous studies reported circadian oscillations in the repair capacity of DNA lesions specifically repaired by nucleotide excision repair (NER). However, it is so far only poorly understood if DNA repair pathways other than NER are under circadian control, in particular base excision and DNA strand break repair. In the present study, we analyzed potential day and night variations in the repair of DNA lesions induced by ionizing radiation (i.e., mainly oxidative damage and DNA strand breaks) in living mouse splenocytes using a modified protocol of the automated FADU assay. Our results reveal that splenocytes isolated from mice during the light phase (ZT06) displayed higher DNA repair activity than those of the dark phase (ZT18). As analyzed by highly sensitive and accurate qPCR arrays, these alterations were accompanied by significant differences in expression profiles of genes involved in the circadian clock and DNA repair. Notably, the majority of the DNA repair genes were expressed at higher levels during the light phase (ZT06). This included genes of all major DNA repair pathways with the strongest differences observed for genes of base excision and DNA double strand break repair. In conclusion, here we provide novel evidence that mouse splenocytes exhibit significant differences in the repair of IR-induced DNA damage during the LD cycle, both on a functional and on a gene expression level. It will be interesting to test if these findings could be exploited for therapeutic purposes, e.g. time-of-the-day-specific application of DNA-damaging treatments used against blood

  18. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    PubMed

    Stirling, Peter C; Hieter, Philip

    2017-10-27

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA.

    PubMed

    Ling, F; Morioka, H; Ohtsuka, E; Shibata, T

    2000-12-15

    A nuclear recessive mutant in Saccharomyces cerevisiae, mhr1-1, is defective in mitochondrial genetic recombination at 30 degrees C and shows extensive vegetative petite induction by UV irradiation at 30 degrees C or when cultivated at a higher temperature (37 degrees C). It has been postulated that mitochondrial DNA (mtDNA) is oxidatively damaged by by-products of oxidative respiration. Since genetic recombination plays a critical role in DNA repair in various organisms, we tested the possibility that MHR1 plays a role in the repair of oxidatively damaged mtDNA using an enzyme assay. mtDNA isolated from cells grown under standard (aerobic) conditions contained a much higher level of DNA lesions compared with mtDNA isolated from anaerobically grown cells. Soon after a temperature shift from 30 to 37 degrees C the number of mtDNA lesions increased 2-fold in mhr1-1 mutant cells but not in MHR1 cells. Malonic acid, which decreased the oxidative stress in mitochondria, partially suppressed both petite induction and the temperature-induced increase in the amount of mtDNA damage in mhr1-1 cells at 37 degrees C. Thus, functional mitochondria require active MHR1, which keeps the extent of spontaneous oxidative damage in mtDNA within a tolerable level. These observations are consistent with MHR1 having a possible role in mtDNA repair.

  20. DNA damage induction in human cells exposed to vanadium oxides in vitro.

    PubMed

    Rodríguez-Mercado, Juan J; Mateos-Nava, Rodrigo A; Altamirano-Lozano, Mario A

    2011-12-01

    Vanadium and vanadium salts cause genotoxicity and elicit variable biological effects depending on several factors. In the present study, we analyzed and compared the DNA damage and repair processes induced by vanadium in three oxidation states. We used human blood leukocytes in vitro and in a single cell gel electrophoresis assay at two pH values. We observed that vanadium(III) trioxide and vanadium(V) pentoxide produced DNA single-strand breaks at all of the concentrations (1, 2, 4, or 8 μg/ml) and treatment times (2, 4, or 6 h) tested. Vanadium(IV) tetraoxide treatment significantly increased DNA damage at all concentrations for 4 or 6 h of treatment but not for 2 h of treatment. The DNA repair kinetics indicated that most of the cells exposed to vanadium III and V for 4 h recovered within the repair incubation time of 90 min; however, those exposed to vanadium(IV) repaired their DNA within 120 min. The data at pH 9 indicated that vanadium(IV) tetraoxide induced DNA double-strand breaks. Our results show that the genotoxic effect of vanadium can be produced by any of its three oxidation states. However, vanadium(IV) induces double-strand breaks, and it is known that these lesions are linked with forming structural chromosomal aberrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription*

    PubMed Central

    Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971

  2. DNA repair: a changing geography? (1964-2008).

    PubMed

    Maisonobe, Marion; Giglia-Mari, Giuseppina; Eckert, Denis

    2013-07-01

    This article aims to explain the current state of DNA Repair studies' global geography by focusing on the genesis of the community. Bibliometric data is used to localize scientific activities related to DNA Repair at the city level. The keyword "DNA Repair" was introduced first by American scientists. It started to spread after 1964 that is to say, after P. Howard-Flanders (Yale University), P. Hanawalt (Stanford University) and R. Setlow (Oak Ridge Laboratories) found evidence for Excision Repair mechanisms. It was the first stage in the emergence of an autonomous scientific community. In this article, we will try to assess to what extent the geo-history of this scientific field is determinant in understanding its current geography. In order to do so, we will localize the places where the first "DNA Repair" publications were signed fifty years ago and the following spatial diffusion process, which led to the current geography of the field. Then, we will focus on the evolution of the research activity of "early entrants" in relation to the activity of "latecomers". This article is an opportunity to share with DNA Repair scientists some research results of a dynamic field in Science studies: spatial scientometrics. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. RAD51 interconnects between DNA replication, DNA repair and immunity.

    PubMed

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes.

    PubMed

    Zana, Marianna; Szécsényi, Anita; Czibula, Agnes; Bjelik, Annamária; Juhász, Anna; Rimanóczy, Agnes; Szabó, Krisztina; Vetró, Agnes; Szucs, Péter; Várkonyi, Agnes; Pákáski, Magdolna; Boda, Krisztina; Raskó, István; Janka, Zoltán; Kálmán, János

    2006-06-30

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n=7) and adults (n=18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults.

  5. Structural Insights Into DNA Repair by RNase T—An Exonuclease Processing 3′ End of Structured DNA in Repair Pathways

    PubMed Central

    Hsiao, Yu-Yuan; Fang, Woei-Horng; Lee, Chia-Chia; Chen, Yi-Ping; Yuan, Hanna S.

    2014-01-01

    DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3′ end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3′ end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3′ overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V–dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3′-end processing. PMID:24594808

  6. [Ubiquitin-proteasome system and sperm DNA repair: An update].

    PubMed

    Zhang, Guo-Wei; Cai, Hong-Cai; Shang, Xue-Jun

    2016-09-01

    The ubiquitin-proteasome system (UPS) is a proteasome system widely present in the human body, which is composed of ubiquitin (Ub), ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin protein ligases (E3), 26S proteasome, and deubiquitinating enzymes (DUBs) and involved in cell cycle regulation, immune response, signal transduction, DNA repair as well as protein degradation. Sperm DNA is vulnerable to interference or damage in the progression of chromosome association and homologous recombination. Recent studies show that UPS participates in DNA repair in spermatogenesis by modulating DNA repair enzymes via ubiquitination, assisting in the identification of DNA damage sites, raising damage repair-related proteins, initiating the DNA repair pathway, maintaining chromosome stability, and ensuring the normal process of spermatogenesis.

  7. Effects of physical activity on systemic oxidative/DNA status in breast cancer survivors

    PubMed Central

    Tomasello, Barbara; Malfa, Giuseppe Antonio; Strazzanti, Angela; Gangi, Santi; Di Giacomo, Claudia; Basile, Francesco; Renis, Marcella

    2017-01-01

    Physical activity offers a paradoxical hormetic effect and a health benefit to cancer survivors; however, the biochemical mechanisms have not been entirely elucidated. Despite the well-documented evidence implicating oxidative stress in breast cancer, the association between health benefits and redox status has not been investigated in survivors who participate in dragon boating. The present study investigated the plasmatic systemic oxidative status (SOS) in breast cancer survivors involved in two distinct physical training exercises. A total of 75 breast cancer survivors were allocated to one of three groups: Control (resting), dragon boat racing and walking group; the latter is a type of aerobic conditioning exercise often advised to cancer patients. Various biochemical oxidative stress markers were examined, including oxidant status (hydroperoxide levels, lipid oxidation) and antioxidant status (enzymatic activities of superoxide dismutase and glutathione peroxidase, reduced glutathione levels and antioxidant capability). In addition, the individual DNA fragmentation and DNA repair capability of nucleotide excision repair (NER) systems were examined by comet assays. According to the results, all patients exhibited high levels of oxidative stress. Physical activity maintained this oxidative stress condition but simultaneously had a positive influence on the antioxidant component of the SOS, particularly in the dragon boat racing group. DNA fragmentation, according to the levels of single- and double-strand breaks, were within the normal range in the two survivor groups that were involved in training activities. Radiation-induced damage was not completely recognised or repaired by NER systems in any of the patients, probably leading to radiosensitivity and/or susceptibility of patients to cancer. These findings suggest that physical activity, particularly dragon boat racing, that modulates SOS and DNA repair capability could represent a strategy for enhancing the

  8. Effects of physical activity on systemic oxidative/DNA status in breast cancer survivors.

    PubMed

    Tomasello, Barbara; Malfa, Giuseppe Antonio; Strazzanti, Angela; Gangi, Santi; Di Giacomo, Claudia; Basile, Francesco; Renis, Marcella

    2017-01-01

    Physical activity offers a paradoxical hormetic effect and a health benefit to cancer survivors; however, the biochemical mechanisms have not been entirely elucidated. Despite the well-documented evidence implicating oxidative stress in breast cancer, the association between health benefits and redox status has not been investigated in survivors who participate in dragon boating. The present study investigated the plasmatic systemic oxidative status (SOS) in breast cancer survivors involved in two distinct physical training exercises. A total of 75 breast cancer survivors were allocated to one of three groups: Control (resting), dragon boat racing and walking group; the latter is a type of aerobic conditioning exercise often advised to cancer patients. Various biochemical oxidative stress markers were examined, including oxidant status (hydroperoxide levels, lipid oxidation) and antioxidant status (enzymatic activities of superoxide dismutase and glutathione peroxidase, reduced glutathione levels and antioxidant capability). In addition, the individual DNA fragmentation and DNA repair capability of nucleotide excision repair (NER) systems were examined by comet assays. According to the results, all patients exhibited high levels of oxidative stress. Physical activity maintained this oxidative stress condition but simultaneously had a positive influence on the antioxidant component of the SOS, particularly in the dragon boat racing group. DNA fragmentation, according to the levels of single- and double-strand breaks, were within the normal range in the two survivor groups that were involved in training activities. Radiation-induced damage was not completely recognised or repaired by NER systems in any of the patients, probably leading to radiosensitivity and/or susceptibility of patients to cancer. These findings suggest that physical activity, particularly dragon boat racing, that modulates SOS and DNA repair capability could represent a strategy for enhancing the

  9. Repair of DNA-polypeptide crosslinks by human excision nuclease

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  10. Simultaneous In Vitro Characterisation of DNA Deaminase Function and Associated DNA Repair Pathways

    PubMed Central

    Franchini, Don-Marc; Incorvaia, Elisabetta; Rangam, Gopinath; Coker, Heather A.; Petersen-Mahrt, Svend K.

    2013-01-01

    During immunoglobulin (Ig) diversification, activation-induced deaminase (AID) initiates somatic hypermutation and class switch recombination by catalysing the conversion of cytosine to uracil. The synergy between AID and DNA repair pathways is fundamental for the introduction of mutations, however the molecular and biochemical mechanisms underlying this process are not fully elucidated. We describe a novel method to efficiently decipher the composition and activity of DNA repair pathways that are activated by AID-induced lesions. The in vitro resolution (IVR) assay combines AID based deamination and DNA repair activities from a cellular milieu in a single assay, thus avoiding synthetically created DNA-lesions or genetic-based readouts. Recombinant GAL4-AID fusion protein is targeted to a plasmid containing GAL4 binding sites, allowing for controlled cytosine deamination within a substrate plasmid. Subsequently, the Xenopus laevis egg extract provides a source of DNA repair proteins and functional repair pathways. Our results demonstrated that DNA repair pathways which are in vitro activated by AID-induced lesions are reminiscent of those found during AID-induced in vivo Ig diversification. The comparative ease of manipulation of this in vitro systems provides a new approach to dissect the complex DNA repair pathways acting on defined physiologically lesions, can be adapted to use with other DNA damaging proteins (e.g. APOBECs), and provide a means to develop and characterise pharmacological agents to inhibit these potentially oncogenic processes. PMID:24349193

  11. Enhanced Repair of UV-Induced DNA Damage by 1,25-Dihydroxyvitamin D3 in Skin Is Linked to Pathways that Control Cellular Energy.

    PubMed

    Rybchyn, Mark Stephen; De Silva, Warusavithana Gunawardena Manori; Sequeira, Vanessa Bernadette; McCarthy, Bianca Yuko; Dilley, Anthony Vincent; Dixon, Katie Marie; Halliday, Gary Mark; Mason, Rebecca Sara

    2018-05-01

    Inadequately repaired post-UV DNA damage results in skin cancers. DNA repair requires energy but skin cells have limited capacity to produce energy after UV insult. We examined whether energy supply is important for DNA repair after UV exposure, in the presence of 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), which reduces UV-induced DNA damage and photocarcinogenesis in a variety of models. After UV exposure of primary human keratinocytes, the addition of 1,25(OH) 2 D 3 increased unscheduled DNA synthesis, a measure of DNA repair. Oxidative phosphorylation was depleted in UV-irradiated keratinocytes to undetectable levels within an hour of UV irradiation. Treatment with 1,25(OH) 2 D 3 but not vehicle increased glycolysis after UV. 2-Deoxyglucose-dependent inhibition of glycolysis abolished the reduction in cyclobutane pyrimidine dimers by 1,25(OH) 2 D 3 , whereas inhibition of oxidative phosphorylation had no effect. 1,25(OH) 2 D 3 increased autophagy and modulated PINK1/Parkin consistent with enhanced mitophagy. These data confirm that energy availability is limited in keratinocytes after exposure to UV. In the presence of 1,25(OH) 2 D 3 , glycolysis is enhanced along with energy-conserving processes such as autophagy and mitophagy, resulting in increased repair of cyclobutane pyrimidine dimers and decreased oxidative DNA damage. Increased energy availability in the presence of 1,25(OH) 2 D 3 is an important contributor to DNA repair in skin after UV exposure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Base Excision Repair Facilitates a Functional Relationship Between Guanine Oxidation and Histone Demethylation

    PubMed Central

    Li, Jianfeng; Braganza, Andrea

    2013-01-01

    Abstract Significance: Appropriately controlled epigenetic regulation is critical for the normal development and health of an organism. Misregulation of epigenetic control via deoxyribonucleic acid (DNA) methylation or histone methylation has been associated with cancer and chromosomal instability syndromes. Recent Advances: The main function of the proteins in the base excision repair (BER) pathway is to repair DNA single-strand breaks and deamination, oxidation, and alkylation-induced DNA base damage that may result from chemotherapy, environmental exposure, or byproducts of cellular metabolism. Recent studies have suggested that one or more BER proteins may also participate in epigenetic regulation to facilitate gene expression modulation via alteration of the state of DNA methylation or via a reaction coupled to histone modification. BER proteins have also been reported to play an essential role in pluripotent stem cell reprogramming. Critical Issues: One emerging function for BER in epigenetic regulation is the repair of base lesions induced by hydrogen peroxide as a byproduct of lysine-specific demethylase 1 (LSD1) enzymatic activity (LSD1/LSD2-coupled BER) for transcriptional regulation. Future Directions: To shed light on this novel role of BER, this review focuses on the repair of oxidative lesions in nuclear DNA that are induced during LSD1-mediated histone demethylation. Further, we highlight current studies suggesting a role for BER proteins in transcriptional regulation of gene expression via BER-coupled active DNA demethylation in mammalian cells. Such efforts to address the role of BER proteins in epigenetic regulation could broaden cancer therapeutic strategies to include epigenetic modifiers combined with BER inhibitors. Antioxid. Redox Signal. 18, 2429–2443. PMID:23311711

  13. Discovery of DNA repair inhibitors by combinatorial library profiling

    PubMed Central

    Moeller, Benjamin J.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2011-01-01

    Small molecule inhibitors of DNA repair are emerging as potent and selective anti-cancer therapies, but the sheer magnitude of the protein networks involved in DNA repair processes poses obstacles to discovery of effective candidate drugs. To address this challenge, we used a subtractive combinatorial selection approach to identify a panel of peptide ligands that bind DNA repair complexes. Supporting the concept that these ligands have therapeutic potential, we show that one selected peptide specifically binds and non-competitively inactivates DNA-PKcs, a protein kinase critical in double-strand DNA break repair. In doing so, this ligand sensitizes BRCA-deficient tumor cells to genotoxic therapy. Our findings establish a platform for large-scale parallel screening for ligand-directed DNA repair inhibitors, with immediate applicability to cancer therapy. PMID:21343400

  14. DNA Repair and the Evolution of Transformation in Bacillus Subtilis. II. Role of Inducible Repair

    PubMed Central

    Wojciechowski, M. F.; Hoelzer, M. A.; Michod, R. E.

    1989-01-01

    In Bacillus subtilis, DNA repair and recombination are intimately associated with competence, the physiological state in which the bacterium can bind, take up and recombine exogenous DNA. Previously, we have shown that the homologous DNA transformation rate (ratio of transformants to total cells) increases with increasing UV dosage if cells are transformed after exposure to UV radiation (UV-DNA), whereas the transformation rate decreases if cells are transformed before exposure to UV (DNA-UV). In this report, by using different DNA repair-deficient mutants, we show that the greater increase in transformation rate in UV-DNA experiments than in DNA-UV experiments does not depend upon excision repair or inducible SOS-like repair, although certain quantitative aspects of the response do depend upon these repair systems. We also show that there is no increase in the transformation rate in a UV-DNA experiment when repair and recombination proficient cells are transformed with nonhomologous plasmid DNA, although the results in a DNA-UV experiment are essentially unchanged by using plasmid DNA. We have used din operon fusions as a sensitive means of assaying for the expression of genes under the control of the SOS-like regulon in both competent and noncompetent cell subpopulations as a consequence of competence development and our subsequent experimental treatments. Results indicate that the SOS-like system is induced in both competent and noncompetent subpopulations in our treatments and so should not be a major factor in the differential response in transformation rate observed in UV-DNA and DNA-UV treatments. These results provide further support to the hypothesis that the evolutionary function of competence is to bring DNA into the cell for use as template in the repair of DNA damage. PMID:2497048

  15. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair

    PubMed Central

    Roos, Wynand Paul; Krumm, Andrea

    2016-01-01

    Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization. PMID:27738139

  16. [Application of repair enzymes to improve the quality of degraded DNA templates for PCR amplification].

    PubMed

    Dovgerd, A P; Zharkov, D O

    2014-01-01

    PCR amplification of severely degraded DNA, including ancient DNA, forensic samples, and preparations from deeply processed foodstuffs, is a serious problem. Living organisms have a set of enzymes to repair lesions in their DNA. In this work, we have developed and characterized model systems of degraded high-molecular-weight DNA with a predominance of different types of damage. It was shown that depurination and oxidation of the model plasmid DNA template led to a decrease in the PCR efficiency. A set of enzymes performing a full cycle of excision repair of some lesions was determined. The treatment of model-damaged substrates with this set of enzymes resulted in an increased PCR product yield as compared with that of the unrepaired samples.

  17. Endogenous overexpression of an active phosphorylated form of DNA polymerase β under oxidative stress in Trypanosoma cruzi.

    PubMed

    Rojas, Diego A; Urbina, Fabiola; Moreira-Ramos, Sandra; Castillo, Christian; Kemmerling, Ulrike; Lapier, Michel; Maya, Juan Diego; Solari, Aldo; Maldonado, Edio

    2018-02-01

    Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase β To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase β which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase β were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase β mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control.

  18. Cytosine-based nucleoside analogs are selectively lethal to DNA mismatch repair-deficient tumour cells by enhancing levels of intracellular oxidative stress

    PubMed Central

    Hewish, M; Martin, S A; Elliott, R; Cunningham, D; Lord, C J; Ashworth, A

    2013-01-01

    Background: DNA mismatch repair deficiency is present in a significant proportion of a number of solid tumours and is associated with distinct clinical behaviour. Methods: To identify the therapeutic agents that might show selectivity for mismatch repair-deficient tumour cells, we screened a pair of isogenic MLH1-deficient and MLH1-proficient tumour cell lines with a library of clinically used drugs. To test the generality of hits in the screen, selective agents were retested in cells deficient in the MSH2 mismatch repair gene. Results: We identified cytarabine and other related cytosine-based nucleoside analogues as being selectively toxic to MLH1 and MSH2-deficient tumour cells. The selective cytotoxicity we observed was likely caused by increased levels of cellular oxidative stress, as it could be abrogated by antioxidants. Conclusion: We propose that cytarabine-based chemotherapy regimens may represent a tumour-selective treatment strategy for mismatch repair-deficient cancers. PMID:23361057

  19. DNA repair mechanisms in cancer development and therapy

    PubMed Central

    Torgovnick, Alessandro; Schumacher, Björn

    2015-01-01

    DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy. PMID:25954303

  20. DNA repair mechanisms in cancer development and therapy.

    PubMed

    Torgovnick, Alessandro; Schumacher, Björn

    2015-01-01

    DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.

  1. Single molecule techniques in DNA repair: A primer

    PubMed Central

    Hughes, Craig D.; Simons, Michelle; Mackenzie, Cassidy E.; Van Houten, Bennett; Kad, Neil M.

    2016-01-01

    A powerful new approach has become much more widespread and offers insights into aspects of DNA repair unattainable with billions of molecules. Single molecule techniques can be used to image, manipulate or characterize the action of a single repair protein on a single strand of DNA. This allows search mechanisms to be probed, and the effects of force to be understood. These physical aspects can dominate a biochemical reaction, where at the ensemble level their nuances are obscured. In this paper we discuss some of the many technical advances that permit study at the single molecule level. We focus on DNA repair to which these techniques are actively being applied. DNA repair is also a process that encompasses so much of what single molecule studies benefit – searching for targets, complex formation, sequential biochemical reactions and substrate hand-off to name just a few. We discuss how single molecule biophysics is poised to transform our understanding of biological systems, in particular DNA repair. PMID:24819596

  2. DNA damage and repair capacity in workers exposed to low concentrations of benzene.

    PubMed

    Lovreglio, Piero; Doria, Denise; Fracasso, Maria Enrica; Barbieri, Anna; Sabatini, Laura; Drago, Ignazio; Violante, Francesco S; Soleo, Leonardo

    2016-03-01

    DNA damage and cellular repair capacity were studied in 18 male fuel tanker drivers and 13 male filling-station attendants exposed to low and very low concentrations of benzene, respectively, and compared to 20 males with no occupational exposure (controls). Exposure to airborne benzene was measured using passive personal samplers, and internal doses were assayed through the biomarkers t,t-muconic acid, S-phenylmercapturic acid and urinary benzene. DNA damage was evaluated using tail intensity (TI) determined by the comet assay in peripheral lymphocytes. Urinary 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) was measured as a biomarker of oxidative damage. DNA repair kinetics were assessed using the comet assay in lymphocytes sampled 20 and 60 min post H2O2 exposure. Benzene exposure differed significantly between the drivers (median 246.3 µg/m(3)), attendants (median 13.8 µg/m(3)), and controls (median 4.1 µg/m(3)). There were no differences in TI and 8-oxodG among the three groups, or between smokers and non-smokers. DNA repair kinetics were similar among the drivers, attendants and controls, although the comet assay on H2 O2 -damaged lymphocytes after 60 min revealed significantly lower levels of TI only in drivers. The DNA repair process in smokers was similar to that observed in drivers. In conclusion, this study found no relationship between low levels of benzene exposure and DNA damage, although there was evidence that exposure interferes with DNA repair kinetics. The biological impact of this finding on the onset of genotoxic effects in exposed workers has still to be ascertained. © 2015 Wiley Periodicals, Inc.

  3. Mechanisms of DNA damage, repair and mutagenesis

    PubMed Central

    Chatterjee, Nimrat; Walker, Graham C.

    2017-01-01

    Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. PMID:28485537

  4. CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair

    DOE PAGES

    Qin, Lili; Fan, Ming; Candas, Demet; ...

    2015-12-06

    Nuclear DNA repair capacity is a critical determinant of cell fate under genotoxic stress conditions. DNA repair is a well-defined energy-consuming process. However, it is unclear how DNA repair is fueled and whether mitochondrial energy production contributes to nuclear DNA repair. Here, we report a dynamic enhancement of oxygen consumption and mitochondrial ATP generation in irradiated normal cells, paralleled with increased mitochondrial relocation of the cell-cycle kinase CDK1 and nuclear DNA repair. The basal and radiation-induced mitochondrial ATP generation is reduced significantly in cells harboring CDK1 phosphorylation-deficient mutant complex I subunits. Similarly, mitochondrial ATP generation and nuclear DNA repair aremore » also compromised severely in cells harboring mitochondrially targeted, kinase-deficient CDK1. These findings demonstrate a mechanism governing the communication between mitochondria and the nucleus by which CDK1 boosts mitochondrial bioenergetics to meet the increased cellular fuel demand for DNA repair and cell survival under genotoxic stress conditions.« less

  5. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    PubMed

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-08

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes

    PubMed Central

    Sekelsky, Jeff

    2017-01-01

    The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster. Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations. PMID:28154196

  7. NEIL2 Protects against Oxidative DNA Damage Induced by Sidestream Smoke in Human Cells

    PubMed Central

    Sarker, Altaf H.; Chatterjee, Arpita; Williams, Monique; Lin, Sabrina; Havel, Christopher; Jacob III, Peyton; Boldogh, Istvan; Hazra, Tapas K.; Talbot, Prudence; Hang, Bo

    2014-01-01

    Secondhand smoke (SHS) is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS), the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS) in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon–quantitative PCR (LA-QPCR) assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF) and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer. PMID:24595271

  8. S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Huestis, Juliana; Xu, Huan; Burchiel, Scott W.; Hudson, Laurie G.; Liu, Ke Jian

    2016-01-01

    Arsenic, a widely distributed carcinogen, is known to significantly amplify the impact of other carcinogens through inhibition of DNA repair. Our recent work suggests that reactive oxygen/nitrogen species (ROS/RNS) induced by arsenite (AsIII) play an important role in the inhibition of the DNA repair protein Poly(ADP-ribose) polymerase 1 (PARP-1). AsIII-induced ROS lead to oxidation of cysteine residues within the PARP-1 zinc finger DNA binding domain. However, the mechanism underlying RNS-mediated PARP inhibition by arsenic remains unknown. In this work, we demonstrate that AsIII treatment of normal human keratinocyte (HEKn) cells induced S-nitrosation on cysteine residues of PARP-1 protein, in a similar manner to a nitric oxide donor. S-nitrosation of PARP-1 could be reduced by 1400W (inducible nitric oxide synthase inhibitor) or c-PTIO (a nitric oxide scavenger). Furthermore, AsIII treatment of HEKn cells leads to zinc loss and inhibition of PARP-1 enzymatic activity. AsIII and 1400W/c-PTIO co-treatment demonstrate that these effects occur in an iNOS- and NO-dependent manner. Importantly, we confirmed S-nitrosation on the zinc finger DNA binding domain of PARP-1 protein. Taken together, AsIII induces S-nitrosation on PARP-1 zinc finger DNA binding domain by generating NO through iNOS activation, leading to zinc loss and inhibition of PARP-1 activity, thereby increasing retention of damaged DNA. These findings identify S-nitrosation as an important component of the molecular mechanism underlying AsIII inhibition of DNA repair, which may benefit the development of preventive and intervention strategies against AsIII co-carcinogenesis. PMID:27741521

  9. S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite.

    PubMed

    Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Xu, Huan; Burchiel, Scott W; Hudson, Laurie G; Liu, Ke Jian

    2016-12-06

    Arsenic, a widely distributed carcinogen, is known to significantly amplify the impact of other carcinogens through inhibition of DNA repair. Our recent work suggests that reactive oxygen/nitrogen species (ROS/RNS) induced by arsenite (AsIII) play an important role in the inhibition of the DNA repair protein Poly(ADP-ribose) polymerase 1 (PARP-1). AsIII-induced ROS lead to oxidation of cysteine residues within the PARP-1 zinc finger DNA binding domain. However, the mechanism underlying RNS-mediated PARP inhibition by arsenic remains unknown. In this work, we demonstrate that AsIII treatment of normal human keratinocyte (HEKn) cells induced S-nitrosation on cysteine residues of PARP-1 protein, in a similar manner to a nitric oxide donor. S-nitrosation of PARP-1 could be reduced by 1400W (inducible nitric oxide synthase inhibitor) or c-PTIO (a nitric oxide scavenger). Furthermore, AsIII treatment of HEKn cells leads to zinc loss and inhibition of PARP-1 enzymatic activity. AsIII and 1400W/c-PTIO co-treatment demonstrate that these effects occur in an iNOS- and NO-dependent manner. Importantly, we confirmed S-nitrosation on the zinc finger DNA binding domain of PARP-1 protein. Taken together, AsIII induces S-nitrosation on PARP-1 zinc finger DNA binding domain by generating NO through iNOS activation, leading to zinc loss and inhibition of PARP-1 activity, thereby increasing retention of damaged DNA. These findings identify S-nitrosation as an important component of the molecular mechanism underlying AsIII inhibition of DNA repair, which may benefit the development of preventive and intervention strategies against AsIII co-carcinogenesis.

  10. Staphylococcus aureus Sepsis Induces Early Renal Mitochondrial DNA Repair and Mitochondrial Biogenesis in Mice

    PubMed Central

    Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.

    2014-01-01

    Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481

  11. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, Juan F.; McCauley, Linda; Scherer, J.

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers andmore » applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects.« less

  12. Endogenous overexpression of an active phosphorylated form of DNA polymerase β under oxidative stress in Trypanosoma cruzi

    PubMed Central

    Moreira-Ramos, Sandra; Castillo, Christian; Kemmerling, Ulrike; Lapier, Michel; Maya, Juan Diego; Solari, Aldo

    2018-01-01

    Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase β To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase β which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase β were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase β mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control. PMID:29432450

  13. Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.K.; Sirover, M.A.

    1984-10-01

    The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior tomore » their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. 62 references, 3 figures, 2 tables.« less

  14. Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples.

    PubMed

    Gorden, Erin M; Sturk-Andreaggi, Kimberly; Marshall, Charla

    2018-05-01

    DNA sequence damage from cytosine deamination is well documented in degraded samples, such as those from ancient and forensic contexts. This study examined the effect of a DNA repair treatment on mitochondrial DNA (mtDNA) from aged and degraded skeletal samples. DNA extracts from 21 non-probative, degraded skeletal samples (aged 50-70 years) were utilized for the analysis. A portion of each sample extract was subjected to DNA repair using a commercial repair kit, the New England BioLabs' NEBNext FFPE DNA Repair Kit (Ipswich, MA). MtDNA was enriched using PCR and targeted capture in a side-by-side experiment of untreated and repaired DNA. Sequencing was performed using both traditional (Sanger-type; STS) and next-generation sequencing (NGS) methods Although cytosine deamination was evident in the mtDNA sequence data, the observed level of damaged bases varied by sequencing method as well as by enrichment type. The STS PCR amplicon data did not show evidence of cytosine deamination that could be distinguished from background signal in either the untreated or repaired sample set. However, the same PCR amplicons showed 850 C → T/G → A substitutions consistent with cytosine deamination with variant frequencies (VFs) of up to 25% when sequenced using NGS methods The occurrence of base misincorporation due to cytosine deamination was reduced by 98% (to 10) in the NGS amplicon data after repair. The NGS capture data indicated low levels (1-2%) of cytosine deamination in mtDNA fragments that was effectively mitigated by DNA repair. The observed difference in the level of cytosine deamination between the PCR and capture enrichment methods can be attributed to the greater propensity for stochastic effects from the PCR enrichment technique employed (e.g., low template input, increased PCR cycles). Altogether these results indicate that DNA repair may be required when sequencing PCR-amplified DNA from degraded forensic case samples with NGS methods. Copyright

  15. Oxidative DNA Base Damage in MCF-10A Breast Epithelial Cells at Clinically Achievable Concentrations of Doxorubicin

    PubMed Central

    Gajewski, Ewa; Gaur, Shikha; Akman, Steven A.; Matsumoto, Linda; van Balgooy, Josephus N.A.; Doroshow, James H.

    2009-01-01

    The cellular metabolism of doxorubicin generates reactive oxygen species with significant potential to damage DNA. Such DNA damage can result in mutations if not adequately repaired by cellular DNA repair pathways. Secondary malignancies have been reported in patients who have received doxorubicin-containing chemotherapeutic regimens; however, the underlying molecular mechanism(s) to explain the development of these tumors remains under active investigation. We have previously demonstrated the presence of DNA bases modified by oxidation in the peripheral blood mononuclear cells of patients with breast cancer following treatment with doxorubicin. In those studies, doxorubicin was administered by continuous infusion over 96 hours to minimize the risk of cardiac toxicity. To evaluate potential mechanisms underlying doxorubicin-induced DNA base oxidation in non-malignant tissues, MCF-10A breast epithelial cells were cultured for 96 hours with the same doxorubicin concentration achieved in vivo (0.1 μM). During doxorubicin exposure, MCF-10A cells underwent growth arrest and apoptosis, developed elevated levels of reactive oxygen species, and demonstrated a time-dependent and significant increase in the levels of 11 oxidized DNA bases, as determined by gas chromatography/mass spectroscopy. Diminished expression of DNA repair enzymes was also observed over the same time course. Thus, clinically achievable concentrations of doxorubicin induce a level of oxidative stress in MCF-10A cells that is capable of oxidizing DNA bases and significantly altering cellular proliferation. PMID:17445777

  16. Resistance of Bacillus subtilis Spore DNA to Lethal Ionizing Radiation Damage Relies Primarily on Spore Core Components and DNA Repair, with Minor Effects of Oxygen Radical Detoxification

    PubMed Central

    Raguse, Marina; Reitz, Günther; Okayasu, Ryuichi; Li, Zuofeng; Klein, Stuart; Setlow, Peter; Nicholson, Wayne L.

    2014-01-01

    The roles of various core components, including α/β/γ-type small acid-soluble spore proteins (SASP), dipicolinic acid (DPA), core water content, and DNA repair by apurinic/apyrimidinic (AP) endonucleases or nonhomologous end joining (NHEJ), in Bacillus subtilis spore resistance to different types of ionizing radiation including X rays, protons, and high-energy charged iron ions have been studied. Spores deficient in DNA repair by NHEJ or AP endonucleases, the oxidative stress response, or protection by major α/β-type SASP, DPA, and decreased core water content were significantly more sensitive to ionizing radiation than wild-type spores, with highest sensitivity to high-energy-charged iron ions. DNA repair via NHEJ and AP endonucleases appears to be the most important mechanism for spore resistance to ionizing radiation, whereas oxygen radical detoxification via the MrgA-mediated oxidative stress response or KatX catalase activity plays only a very minor role. Synergistic radioprotective effects of α/β-type but not γ-type SASP were also identified, indicating that α/β-type SASP's binding to spore DNA is important in preventing DNA damage due to reactive oxygen species generated by ionizing radiation. PMID:24123749

  17. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair ismore » suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.« less

  18. Interplay between DNA repair and inflammation, and the link to cancer

    PubMed Central

    Kidane, Dawit; Chae, Wook Jin; Czochor, Jennifer; Eckert, Kristin A.; Glazer, Peter M.; Bothwell, Alfred L. M.; Sweasy, Joann B.

    2015-01-01

    DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer. PMID:24410153

  19. Duplex Interrogation by a Direct DNA Repair Protein in Search of Base Damage

    PubMed Central

    Yi, Chengqi; Chen, Baoen; Qi, Bo; Zhang, Wen; Jia, Guifang; Zhang, Liang; Li, Charles J.; Dinner, Aaron R.; Yang, Cai-Guang; He, Chuan

    2012-01-01

    ALKBH2 is a direct DNA repair dioxygenase guarding mammalian genome against N1-methyladenine, N3-methylcytosine, and 1,N6-ethenoadenine damage. A prerequisite for repair is to identify these lesions in the genome. Here we present crystal structures of ALKBH2 bound to different duplex DNAs. Together with computational and biochemical analyses, our results suggest that DNA interrogation by ALKBH2 displays two novel features: i) ALKBH2 probes base-pair stability and detects base pairs with reduced stability; ii) ALKBH2 does not have nor need a “damage-checking site”, which is critical for preventing spurious base-cleavage for several glycosylases. The demethylation mechanism of ALKBH2 insures that only cognate lesions are oxidized and reversed to normal bases, and that a flipped, non-substrate base remains intact in the active site. Overall, the combination of duplex interrogation and oxidation chemistry allows ALKBH2 to detect and process diverse lesions efficiently and correctly. PMID:22659876

  20. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansson, J.; Keyse, S.M.; Lindahl, T.

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurementsmore » of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.« less

  1. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.

    PubMed

    Mukherjee, Anirban; Vasquez, Karen M

    2011-08-01

    Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. A history of the DNA repair and mutagenesis field: The discovery of base excision repair.

    PubMed

    Friedberg, Errol C

    2016-01-01

    This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases. Copyright © 2015. Published by Elsevier B.V.

  3. Molecular mechanisms of DNA repair inhibition by caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, C.P.; Sancar, A.

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, includingmore » acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.« less

  4. DNA repair pathways and mitochondrial DNA mutations in gastrointestinal carcinogenesis.

    PubMed

    Basso, Daniela; Navaglia, Filippo; Fogar, Paola; Zambon, Carlo-Federico; Greco, Eliana; Schiavon, Stefania; Fasolo, Michela; Stranges, Alessia; Falda, Alessandra; Padoan, Andrea; Fadi, Elisa; Pedrazzoli, Sergio; Plebani, Mario

    2007-05-01

    This work focuses on the main DNA repair pathways, highlighting their role in gastrointestinal carcinogenesis and the role of mitochondrial DNA (mtDNA), mutations being described in several tumor types, including those of the gastrointestinal tract. The mismatch repair (MMR) system is inherently altered in patients with hereditary non-polyposis colorectal cancer, and plays a role in carcinogenesis in a subset of sporadic colorectal, gastric and esophageal cancers. Alterations in homologous recombination (HR) and non-homologous end-joining (NHEJ) also contribute to the development of pancreatic cancer. Gene polymorphisms of some X-ray cross-complementing (XRCCs), cofactor proteins involved in the base excision repair pathway, have been investigated in relation to gastric, colorectal and pancreatic cancer. Yet only one polymorphism, XRCC1 Arg194Trp, appears to be involved in smoking-related cancers and in early onset pancreatic cancer. Although evidence in the literature indicates that mtDNA somatic mutations play a role in gastric and colorectal carcinogenesis, no sound conclusions have yet been drawn regarding this issue in pancreatic cancer, although an mtDNA variant at 16519 is believed to worsen the outcome of pancreatic cancer patients, possibly because it is involved in altering cellular metabolism.

  5. [Association between genetic polymorphisms of DNA repair genes XRCC1, XPD, XRCC3 and the capacity of DNA repair induce by benzene].

    PubMed

    Xu, Jianning; Yang, Min; Huang, Huilong; Wang, Quankai

    2007-09-01

    To explore the correlation between genetic polymorphisms of XRCC1, XPD, XRCC3 and DNA repair capacity induced by benzene. Eighty patients suffered from chronic benzene poisoning were investigated. PCR-RFLP was applied to detect the single nucleotide polymorphisms on C26304T, G27466A, G28152A, G36189A of XRCC1, C22541A, C23591T, A35931C of XPD, C18067T of XRCC3. Cytokinesis-block micronucleus (CBMN) and alkaline comet were applied to detect the DNA repair capacity. The DNA repair capacity of the subjects carrying XPD 35931C variant allele or carrying XRCC3 18067 C/T variant genotype were higher than those carrying corresponding mild genotype. There could be a correlation between polymorphisms of XRCC3 and DNA repair capacity of DNA damage induced by benzene.

  6. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGES

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6 -alkylguaninemore » DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  7. DNA Damage Induced by Alkylating Agents and Repair Pathways

    PubMed Central

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  8. The role of DNA repair in herpesvirus pathogenesis.

    PubMed

    Brown, Jay C

    2014-10-01

    In cells latently infected with a herpesvirus, the viral DNA is present in the cell nucleus, but it is not extensively replicated or transcribed. In this suppressed state the virus DNA is vulnerable to mutagenic events that affect the host cell and have the potential to destroy the virus' genetic integrity. Despite the potential for genetic damage, however, herpesvirus sequences are well conserved after reactivation from latency. To account for this apparent paradox, I have tested the idea that host cell-encoded mechanisms of DNA repair are able to control genetic damage to latent herpesviruses. Studies were focused on homologous recombination-dependent DNA repair (HR). Methods of DNA sequence analysis were employed to scan herpesvirus genomes for DNA features able to activate HR. Analyses were carried out with a total of 39 herpesvirus DNA sequences, a group that included viruses from the alpha-, beta- and gamma-subfamilies. The results showed that all 39 genome sequences were enriched in two or more of the eight recombination-initiating features examined. The results were interpreted to indicate that HR can stabilize latent herpesvirus genomes. The results also showed, unexpectedly, that repair-initiating DNA features differed in alpha- compared to gamma-herpesviruses. Whereas inverted and tandem repeats predominated in alpha-herpesviruses, gamma-herpesviruses were enriched in short, GC-rich initiation sequences such as CCCAG and depleted in repeats. In alpha-herpesviruses, repair-initiating repeat sequences were found to be concentrated in a specific region (the S segment) of the genome while repair-initiating short sequences were distributed more uniformly in gamma-herpesviruses. The results suggest that repair pathways are activated differently in alpha- compared to gamma-herpesviruses. Copyright © 2014. Published by Elsevier Inc.

  9. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells.

    PubMed

    Kennedy, Christopher H; Catallo, W James; Wilson, Vincent L; Mitchell, James B

    2009-10-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from <1 microm to 1 mm. An organic extract of BDS is both cytotoxic and genotoxic to normal human bronchial epithelial (NHBE) cells. Based on the oxidizing potential of BDS, we hypothesized that an organic extract of this particulate matter would (1) cause enzyme inactivation due to protein amino acid oxidation and (2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and the expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (alpha-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized biomolecules may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both alpha-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage.

  10. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells

    PubMed Central

    Kennedy, Christopher H.; Catallo, W. James; Wilson, Vincent L.; Mitchell, James B.

    2012-01-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polyaromatic hydrocarbons in particulates ranging in size from <1μm to 1 mm. An organic extract of BDS is both cytotoxic and genotoxic to normal human bronchial epithelial (NHBE) cells. Based on the oxidizing potential of BDS, we hypothesized that an organic extract of this particulate matter would: 1) cause enzyme inactivation due to protein amino acid oxidation; and 2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (α-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized proteins may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both α-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage. PMID:18685817

  11. International congress on DNA damage and repair: Book of abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  12. House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs.

    PubMed

    Chan, Tze Khee; Loh, Xin Yi; Peh, Hong Yong; Tan, W N Felicia; Tan, W S Daniel; Li, Na; Tay, Ian J J; Wong, W S Fred; Engelward, Bevin P

    2016-07-01

    Asthma is related to airway inflammation and oxidative stress. High levels of reactive oxygen and nitrogen species can induce cytotoxic DNA damage. Nevertheless, little is known about the possible role of allergen-induced DNA damage and DNA repair as modulators of asthma-associated pathology. We sought to study DNA damage and DNA damage responses induced by house dust mite (HDM) in vivo and in vitro. We measured DNA double-strand breaks (DSBs), DNA repair proteins, and apoptosis in an HDM-induced allergic asthma model and in lung samples from asthmatic patients. To study DNA repair, we treated mice with the DSB repair inhibitor NU7441. To study the direct DNA-damaging effect of HDM on human bronchial epithelial cells, we exposed BEAS-2B cells to HDM and measured DNA damage and reactive oxygen species levels. HDM challenge increased lung levels of oxidative damage to proteins (3-nitrotyrosine), lipids (8-isoprostane), and nucleic acid (8-oxoguanine). Immunohistochemical evidence for HDM-induced DNA DSBs was revealed by increased levels of the DSB marker γ Histone 2AX (H2AX) foci in bronchial epithelium. BEAS-2B cells exposed to HDM showed enhanced DNA damage, as measured by using the comet assay and γH2AX staining. In lung tissue from human patients with asthma, we observed increased levels of DNA repair proteins and apoptosis, as shown by caspase-3 cleavage, caspase-activated DNase levels, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. Notably, NU7441 augmented DNA damage and cytokine production in the bronchial epithelium and apoptosis in the allergic airway, implicating DSBs as an underlying driver of asthma pathophysiology. This work calls attention to reactive oxygen and nitrogen species and HDM-induced cytotoxicity and to a potential role for DNA repair as a modulator of asthma-associated pathophysiology. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. SIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair

    PubMed Central

    McCord, Ronald A.; Michishita, Eriko; Hong, Tao; Berber, Elisabeth; Boxer, Lisa D.; Kusumoto, Rika; Guan, Shenheng; Shi, Xiaobing; Gozani, Or; Burlingame, Alma L.; Bohr, Vilhelm A.; Chua, Katrin F.

    2009-01-01

    The Sir2 chromatin regulatory factor links maintenance of genomic stability to life span extension in yeast. The mammalian Sir2 family member SIRT6 has been proposed to have analogous functions, because SIRT6-deficiency leads to shortened life span and an aging-like degenerative phenotype in mice, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA-PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor with chromatin impacts on the efficiency of repair, and establish a link between chromatin regulation, DNA repair, and a mammalian Sir2 factor. PMID:20157594

  14. Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair

    DOE PAGES

    Andres, Sara N.; Appel, C. Denise; Westmoreland, James W.; ...

    2015-01-12

    Ctp1 (also known as CtIP or Sae2) collaborates with Mre11-Rad50-Nbs1 to initiate repair of DNA double-strand breaks (DSBs), but its functions remain enigmatic. In this paper, we report that tetrameric Schizosaccharomyces pombe Ctp1 contains multivalent DNA-binding and DNA-bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer, we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal 'RHR' DNA-interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA-bridging activity in vitro, and both the THDD and RHR are required for efficientmore » DSB repair in S. pombe. Finally, our results establish non-nucleolytic roles of Ctp1 in binding and coordination of DSB-repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CtIP-linked Seckel and Jawad syndromes.« less

  15. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway

    PubMed Central

    Lieber, Michael R.

    2011-01-01

    Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination and nonhomologous DNA end joining (NHEJ). The diverse causes of DSBs result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, polymerases and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during V(D)J recombination and class switch recombination. Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation, but also severely immunodeficient. PMID:20192759

  16. Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage λ

    PubMed Central

    Kuzminov, Andrei

    1999-01-01

    Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage λ recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation. PMID:10585965

  17. The transcription fidelity factor GreA impedes DNA break repair.

    PubMed

    Sivaramakrishnan, Priya; Sepúlveda, Leonardo A; Halliday, Jennifer A; Liu, Jingjing; Núñez, María Angélica Bravo; Golding, Ido; Rosenberg, Susan M; Herman, Christophe

    2017-10-12

    Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. However, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase and hence promotes transcription fidelity. We report that removal of GreA results in markedly enhanced break repair via the classic RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation, we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNA polymerase backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNA polymerase can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor that compromises genomic integrity.

  18. EVIDENCE FOR BASE EXCISION REPAIR PROCESSING OF DNA INTERSTRAND CROSSLINKS

    PubMed Central

    Kothandapani, Anbarasi; Patrick, Steve M

    2013-01-01

    Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed. PMID:23219605

  19. Genetic Variation in DNA Repair Genes and Prostate Cancer Risk: Results from a Population-Based Study

    PubMed Central

    Agalliu, Ilir; Kwon, Erika M; Salinas, Claudia A.; Koopmeiners, Joseph S.; Ostrander, Elaine A.; Stanford, Janet L.

    2009-01-01

    Objective DNA repair pathways are crucial to prevent accumulation of DNA damage and maintain genomic stability. Alterations of this pathway have been reported in many cancers. An increase in oxidative DNA damage or decrease of DNA repair capacity with aging or due to germline genetic variation may affect prostate cancer risk. Methods Pooled data from two population-based studies (1,457 cases and 1,351 controls) were analyzed to examine associations between 28 SNPs in 9 DNA repair genes (APEX1, BRCA2, ERCC2, ERCC4, MGMT, MUTYH, OGG1, XPC, and XRCC1) and prostate cancer risk. We also explored whether associations varied by smoking, by family history or clinical features of prostate cancer. Results There were no associations between these SNPs and overall risk of prostate cancer. Risks did not vary either by smoking or by family history of prostate cancer. Although, two SNPs in BRCA2 (rs144848, rs1801406) and two SNPs in ERCC2 (rs1799793, rs13181) showed stronger associations with high Gleason score or advanced stage tumors when comparing homozygous men carrying the minor vs. major allele, results were not statistically significantly different between clinically aggressive and non-aggressive tumors. Conclusion Overall this study found no associations between prostate cancer and the SNPs in DNA repair genes. Given the complexity of this pathway and its crucial role in maintenance of genomic stability a pathway-based analysis of all 150 genes in DNA repair pathways, as well as exploration of gene-environment interactions may be warranted. PMID:19902366

  20. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction ("mutation kinetics") at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  1. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    PubMed

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  2. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malloy, K.D.; Holman, M.A.; Mitchell, D.

    The detrimental effects of elevated intensities of mid-UV radiation (UVB), a result of stratospheric ozone depletion during the austral spring, on the primary producers of the Antarctic marine ecosystem have been well documented. Here we report that natural populations of Antarctic zooplankton also sustain significant DNA damage [measured as cyclobutane pyrimidine dimers (CPDs)] during periods of increased UVB flux. This is the first direct evidence that increased solar UVB may result in damage to marine organisms other than primary producers in Antarctica. The extent of DNA damage in pelagic icefish eggs correlated with daily incident UVB irradiance, reflecting the differencemore » between acquisition and repair of CPDs. Patterns of DNA damage in fish larvae did not correlated with daily UVB flux, possibly due to different depth distributions and/or different capacities for DNA repair. Clearance of CPDs by Antarctic fish and krill was mediated primarily by the photoenzymatic repair system. Although repair rates were large for all species evaluated, they were apparently inadequate to prevent the transient accumulation of substantial CPD burdens. The capacity for DNA repair in Antarctic organisms was highest in those species whose early life history stages occupy the water column during periods of ozone depletion (austral spring) and lowest in fish species whose eggs and larvae are abundant during winter. Although the potential reduction in fitness of Antarctic zooplankton resulting from DNA damage is unknown, we suggest that increased solar UV may reduce recruitment and adversely affect trophic transfer of productivity by affecting heterotrophic species as well as primary producers. 54 refs., 4 figs., 2 tabs.« less

  3. Potential of the homeopathic remedy, Arnica Montana 30C, to reduce DNA damage in Escherichia coli exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes.

    PubMed

    Das, Sreemanti; Saha, Santu Kumar; De, Arnab; Das, Durba; Khuda-Bukhsh, Anisur Rahman

    2012-03-01

    To examine to what degree an ultra-highly diluted homeopathic remedy, Arnica Montana 30C (AM-30C), used in the treatment of shock and injury, can modulate the expression of nucleotide excision repair genes in Escherichia coli exposed to ultraviolet (UV) irradiation. E. coli were cultured to their log phase in a standard Luria-Bertani medium and then exposed to sublethal doses of UV irradiation at 25 and 50 J/m(2) for 22.5 and 45 s, respectively. The UV-exposed bacteria were then supplemented with either AM-30C (drug) or placebo (P-30C). The drug-treated and placebo-treated bacteria were subjected to assay for DNA damage and oxidative stress 90 min after UV exposure. Several protocols like comet assay, gel electrophoresis for DNA ladder and intracellular reactive oxygen species (ROS) generation, and biomarker measurement like superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were conducted. The mRNA expressions of the excision repair genes like ultraviolet repair uvrA, B and C genes (or also known as excision repair genes) were estimated by reverse transcription-polymerase chain reaction method. The UV-exposed bacteria showed DNA damage and oxidative stress, as revealed by an increase in ROS generation, and a decrease in SOD, CAT and GSH activities. As compared to placebo, the AM-30C-treated bacteria showed less DNA damage and oxidative stress as manifested by a decrease in ROS generation, and an increase in SOD, CAT and GSH activities. AM-30C also up-regulated the expression of repair genes as compared to the control. AM-30C helped repair the DNA damage through up-regulation of repair genes and also ameliorated the oxidative stress through the reduction of ROS generation and suitable modulation of anti-oxidative stress enzymes.

  4. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; < 10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein.more » Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. - Highlights: • Low micromolar concentration of uranium inhibits polymerase-1 (PARP-1) activity. • Uranium causes zinc loss from multiple DNA repair proteins. • Uranium enhances retention of DNA damage caused by ultraviolet radiation. • Zinc reverses the effects of uranium on PARP activity and DNA damage repair.« less

  5. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    PubMed

    Schuler, Nadine; Palm, Jan; Kaiser, Mareike; Betten, Dominik; Furtwängler, Rhoikos; Rübe, Christian; Graf, Norbert; Rübe, Claudia E

    2014-01-01

    In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB) repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA) suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  6. Characterizing DNA Repair Processes at Transient and Long-lasting Double-strand DNA Breaks by Immunofluorescence Microscopy.

    PubMed

    Murthy, Vaibhav; Dacus, Dalton; Gamez, Monica; Hu, Changkun; Wendel, Sebastian O; Snow, Jazmine; Kahn, Andrew; Walterhouse, Stephen H; Wallace, Nicholas A

    2018-06-08

    The repair of double-stranded breaks (DSBs) in DNA is a highly coordinated process, necessitating the formation and resolution of multi-protein repair complexes. This process is regulated by a myriad of proteins that promote the association and disassociation of proteins to these lesions. Thanks in large part to the ability to perform functional screens of a vast library of proteins, there is a greater appreciation of the genes necessary for the double-strand DNA break repair. Often knockout or chemical inhibitor screens identify proteins involved in repair processes by using increased toxicity as a marker for a protein that is required for DSB repair. Although useful for identifying novel cellular proteins involved in maintaining genome fidelity, functional analysis requires the determination of whether the protein of interest promotes localization, formation, or resolution of repair complexes. The accumulation of repair proteins can be readily detected as distinct nuclear foci by immunofluorescence microscopy. Thus, association and disassociation of these proteins at sites of DNA damage can be accessed by observing these nuclear foci at representative intervals after the induction of double-strand DNA breaks. This approach can also identify mis-localized repair factor proteins, if repair defects do not simultaneously occur with incomplete delays in repair. In this scenario, long-lasting double-strand DNA breaks can be engineered by expressing a rare cutting endonuclease (e.g., I-SceI) in cells where the recognition site for the said enzyme has been integrated into the cellular genome. The resulting lesion is particularly hard to resolve as faithful repair will reintroduce the enzyme's recognition site, prompting another round of cleavage. As a result, differences in the kinetics of repair are eliminated. If repair complexes are not formed, localization has been impeded. This protocol describes the methodology necessary to identify changes in repair kinetics as

  7. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress–Induced DNA Damage

    PubMed Central

    Bräuner, Elvira Vaclavik; Forchhammer, Lykke; Møller, Peter; Simonsen, Jacob; Glasius, Marianne; Wåhlin, Peter; Raaschou-Nielsen, Ole; Loft, Steffen

    2007-01-01

    Background Particulate matter, especially ultrafine particles (UFPs), may cause health effects through generation of oxidative stress, with resulting damage to DNA and other macromolecules. Objective We investigated oxidative damage to DNA and related repair capacity in peripheral blood mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. Design Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. Methods The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were measured by the Comet assay. mRNA levels of OGG1, nucleoside diphosphate linked moiety X-type motif 1 (NUDT1), and heme oxygenase-1 (HO1) were determined by real-time reverse transcriptase–polymerase chain reaction. Results Exposure to UFPs for 6 and 24 hr significantly increased the levels of SBs and FPG sites, with a further insignificant increase after physical exercise. The OGG1 activity and expression of OGG1, NUDT1, and HO1 were unaltered. There was a significant dose–response relationship between NC and DNA damage, with the 57-nm mode as the major contributor to effects. Concomitant exposure to ozone, nitrogen oxides, and carbon monoxide had no influence. Conclusion Our results indicate that UFPs, especially the 57-nm soot fraction from vehicle emissions, causes systemic oxidative stress with damage to DNA and no apparent compensatory up-regulation of DNA repair within 24 hr. PMID:17687444

  8. DNA Repair in Prostate Cancer: Biology and Clinical Implications.

    PubMed

    Mateo, Joaquin; Boysen, Gunther; Barbieri, Christopher E; Bryant, Helen E; Castro, Elena; Nelson, Pete S; Olmos, David; Pritchard, Colin C; Rubin, Mark A; de Bono, Johann S

    2017-03-01

    For more precise, personalized care in prostate cancer (PC), a new classification based on molecular features relevant for prognostication and treatment stratification is needed. Genomic aberrations in the DNA damage repair pathway are common in PC, particularly in late-stage disease, and may be relevant for treatment stratification. To review current knowledge on the prevalence and clinical significance of aberrations in DNA repair genes in PC, particularly in metastatic disease. A literature search up to July 2016 was conducted, including clinical trials and preclinical basic research studies. Keywords included DNA repair, BRCA, ATM, CRPC, prostate cancer, PARP, platinum, predictive biomarkers, and hereditary cancer. We review how the DNA repair pathway is relevant to prostate carcinogenesis and progression. Data on how this may be relevant to hereditary cancer and genetic counseling are included, as well as data from clinical trials of PARP inhibitors and platinum therapeutics in PC. Relevant studies have identified genomic defects in DNA repair in PCs in 20-30% of advanced castration-resistant PC cases, a proportion of which are germline aberrations and heritable. Phase 1/2 clinical trial data, and other supporting clinical data, support the development of PARP inhibitors and DNA-damaging agents in this molecularly defined subgroup of PC following success in other cancer types. These studies may be an opportunity to improve patient care with personalized therapeutic strategies. Key literature on how genomic defects in the DNA damage repair pathway are relevant for prostate cancer biology and clinical management is reviewed. Potential implications for future changes in patient care are discussed. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  9. INVESTIGATION OF DNA REPAIR BY SISTER CHROMATID EXCHANGE (SCE) ANALYSIS AND THE ALKALINE SINGLE CELL GEL ASSAY (SCG) IN MAMMALIAN GO-LYMPHOCYTES AFTER IN VITRO EXPOSURE TO ETHYLENE OXIDE (EO)

    EPA Science Inventory

    Investigation ofDNA Repair by Sister Chromatid Exchange (SCE) Analysis and the Alkaline Single Cell Gel Assay (SCG) in Mammalian Go-Lymphocytes after In Vitro Exposure to Ethylene Oxide (EO).

    EO is a large volume chemical used primarily as an intermediate in manufacturing...

  10. DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts.

    PubMed

    Ahmed, Emad A; Vélaz, Eukene; Rosemann, Michael; Gilbertz, Klaus-P; Scherthan, Harry

    2017-03-01

    Noncycling and terminally differentiated (TD) cells display differences in radiosensitivity and DNA damage response. Unlike other TD cells, Sertoli cells express a mixture of proliferation inducers and inhibitors in vivo and can reenter the cell cycle. Being in a G 1 -like cell cycle stage, TD Sertoli cells are expected to repair DSBs by the error-prone nonhomologous end-joining pathway (NHEJ). Recently, we have provided evidence for the involvement of Ku-dependent NHEJ in protecting testis cells from DNA damage as indicated by persistent foci of the DNA double-strand break (DSB) repair proteins phospho-H2AX, 53BP1, and phospho-ATM in TD Sertoli cells of Ku70-deficient mice. Here, we analyzed the kinetics of 53BP1 foci induction and decay up to 12 h after 0.5 Gy gamma irradiation in DNA-PKcs-deficient (Prkdc scid ) and wild-type Sertoli cells. In nonirradiated mice and Prkdc scid Sertoli cells displayed persistent DSBs foci in around 12 % of cells and a fivefold increase in numbers of these DSB DNA damage-related foci relative to the wild type. In irradiated mice, Prkdc scid Sertoli cells showed elevated levels of DSB-indicating foci in 82 % of cells 12 h after ionizing radiation (IR) exposure, relative to 52 % of irradiated wild-type Sertoli cells. These data indicate that Sertoli cells respond to and repair IR-induced DSBs in vivo, with repair kinetics being slow in the wild type and inefficient in Prkdc scid . Applying the same dose of IR to Prdkc -/- and Ku -/- mouse embryonic fibroblast (MEF) cells revealed a delayed induction of 53BP1 DSB-indicating foci 5 min post-IR in Prdkc -/- cells. Inefficient DSB repair was evident 7 h post-IR in DNA-PKcs-deficient cells, but not in Ku -/- MEFs. Our data show that quiescent Sertoli cells repair genotoxic DSBs by DNA-PKcs-dependent NEHJ in vivo with a slower kinetics relative to somatic DNA-PKcs-deficient cells in vitro, while DNA-PKcs deficiency caused inefficient DSB repair at later time points post-IR in both

  11. DNA repair and tumorigenesis: lessons from hereditary cancer syndromes.

    PubMed

    Heinen, Christopher D; Schmutte, Christoph; Fishel, Richard

    2002-01-01

    The discovery that alterations of the DNA mismatch repair system (MMR) were linked to the common human cancer susceptibility syndrome hereditary nonpolyposis colon cancer (HNPCC) resulted in the declaration of a third class of genes involved in tumor development. In addition to oncogenes and tumor suppressors, alterations of DNA repair genes involved in maintaining genomic stability were found to be a clear cause of tum the level of the single nucleotides or chromosomes. This observation suggested that the establishment of genomic instability, termed the Mutator Phenotype, was an important aspect of tumor development.(1,2) Since the initial identification of the human MutS homolog hMSH2 nearly a decade ago,(3,4) more links have been described between human cancers and genes involved in maintaining genomic stability. Work in recent years has revealed that DNA repair proteins may also function in signaling pathways that provoke cell cycle arrest and apoptosis. This review will focus on the genetic and biochemical functions of DNA repair genes linked to hereditary cancer predisposition characterized by genomic instability (Table 1). Interestingly, the protein products of these genes have been directly or indirectly linked to the DNA damage-induce cell cycle arrest and apoptosis. We conclude that a robust connection between DNA repair proteins and damage-induced apoptosis may be as important for tumorigenesis as their role in maintaining genome stability.

  12. A novel carbohydrate derived compound FCP5 causes DNA strand breaks and oxidative modifications of DNA bases in cancer cells.

    PubMed

    Czubatka, Anna; Sarnik, Joanna; Lucent, Del; Blasiak, Janusz; Witczak, Zbigniew J; Poplawski, Tomasz

    2015-02-05

    1,5-Anhydro-6-deoxy-methane-sulfamido-D-glucitol (FCP5) is a functionalized carbohydrate containing functional groups that render it potentially therapeutically useful. According to our concept of 'functional carb-pharmacophores' (FCPs) incorporation of the methanesulfonamido pharmacophore to 1,5 glucitol could create a therapeutically useful compound. Our previous studies revealed that FCP5 was cytotoxic to cancer cells. Therefore, in this work we assessed the cytotoxic mechanisms of FCP5 in four cancer cell lines - HeLa, LoVo, A549 and MCF-7, with particular focus on DNA damage and repair. A broad spectrum of methods, including comet assay with modifications, DNA repair enzyme assay, plasmid relaxation assay, and DNA fragmentation assay, were used. We also checked the potential for FCP5 to induce apoptosis. The results show that FCP5 can induce DNA strand breaks as well as oxidative modifications of DNA bases. DNA lesions induced by FCP5 were not entirely repaired in HeLa cells and DNA repair kinetics differs from other cell lines. Results from molecular docking and plasmid relaxation assay suggest that FCP5 binds to the major groove of DNA with a preference for adenosine-thymine base pair sequences and directly induces DNA strand breaks. Thus, FCP5 may represent a novel lead for the design of new major groove-binding compounds. The results also confirmed the validity of functional carb-pharmacophores as a new source of innovative drugs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Antibody specific for a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-07-11

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  14. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

    PubMed Central

    Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G.; Daiber, Andreas

    2015-01-01

    Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease. PMID:26079210

  15. Sufficient Amounts of Functional HOP2/MND1 Complex Promote Interhomolog DNA Repair but Are Dispensable for Intersister DNA Repair during Meiosis in Arabidopsis[W

    PubMed Central

    Uanschou, Clemens; Ronceret, Arnaud; Von Harder, Mona; De Muyt, Arnaud; Vezon, Daniel; Pereira, Lucie; Chelysheva, Liudmila; Kobayashi, Wataru; Kurumizaka, Hitoshi; Schlögelhofer, Peter; Grelon, Mathilde

    2013-01-01

    During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The HOMOLOGOUS-PAIRING PROTEIN2/MEIOTIC NUCLEAR DIVISION PROTEIN1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases RADIATION SENSITIVE51 (RAD51) and DISRUPTED MEIOTIC cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair. PMID:24363313

  16. Electron Transfer Mechanisms of DNA Repair by Photolyase

    NASA Astrophysics Data System (ADS)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  17. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-inducedmore » heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.« less

  18. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-inducedmore » heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.« less

  19. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    EPA Science Inventory

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.

    ABSTRACT

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  20. Excess single-stranded DNA inhibits meiotic double-strand break repair.

    PubMed

    Johnson, Rebecca; Borde, Valérie; Neale, Matthew J; Bishop-Bailey, Anna; North, Matthew; Harris, Sheila; Nicolas, Alain; Goldman, Alastair S H

    2007-11-01

    During meiosis, self-inflicted DNA double-strand breaks (DSBs) are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE), in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA) in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects of overabundant

  1. Excess Single-Stranded DNA Inhibits Meiotic Double-Strand Break Repair

    PubMed Central

    Bishop-Bailey, Anna; North, Matthew; Harris, Sheila; Nicolas, Alain; Goldman, Alastair S. H

    2007-01-01

    During meiosis, self-inflicted DNA double-strand breaks (DSBs) are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1.We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE), in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Δ cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA) in dmc1Δ cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects of overabundant repair

  2. Assessment of the role of DNA repair in damaged forensic samples.

    PubMed

    Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; King, Jonathan; Budowle, Bruce

    2014-11-01

    Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.

  3. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-02-12

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conferencemore » sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair.« less

  4. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    PubMed Central

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye

    2015-01-01

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  5. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    PubMed

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. p53 downregulates the Fanconi anaemia DNA repair pathway.

    PubMed

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-04-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.

  7. Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair

    PubMed Central

    Rastogi, Rajesh P.; Richa; Kumar, Ashok; Tyagi, Madhu B.; Sinha, Rajeshwar P.

    2010-01-01

    DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280–315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms. PMID:21209706

  8. An evaluation of the differences in DNA damage in lymphocytes and repair efficiencies in patients with schizophrenia and schizoaffective disorder.

    PubMed

    Topak, Osman Zulkif; Ozdel, Osman; Dodurga, Yavuz; Secme, Mucahit

    2018-06-27

    Schizophrenia and schizoaffective disorder are chronic and debilitating psychiatric disorders. The present study was designed to determine DNA damage in patients with schizophrenia and schizoaffective disorder to assess the roles of oxidative metabolism and DNA repair mechanisms in this process, to assess the contribution of drugs, and thus to demonstrate the differences between schizophrenia and schizoaffective disorder. Thirty schizophrenia and 30 schizoaffective disorder patients, each having at least five years of disease history, aged between 18 and 60 years with no physical or neurological diseases, and 30 healthy volunteers participated in the study. Psychometric scales were applied, and 5 ml of blood was taken from all participants. The DNA damage was measured in lymphocytes by the comet assay method; the total oxidative parameters by ELISA; OGG1 and NEIL1 gene expressions by real-time PCR; and the role of drugs by in vitro assays. The most important finding in this study was that patients with schizophrenia had significantly greater DNA damage than schizoaffective disorder patients and the controls. This study also provides evidence of high oxidative stress statuses and inadequate DNA repair capacities in patients with schizophrenia. Moreover, psychotropic drugs did not induce any DNA damage to the lymphocytes according to in vitro analyses. The use of clozapine and adequate repair processes of the patients were the decisive factors in the prevention of DNA damage. The results of this study provide a reexamination of schizoaffective disorder within the schizophrenia spectrum and indicate that schizoaffective disorder may be considered a different diagnostic category. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Strategies for the evaluation of DNA damage and repair mechanisms in cancer.

    PubMed

    Figueroa-González, Gabriela; Pérez-Plasencia, Carlos

    2017-06-01

    DNA lesions and the repair mechanisms that maintain the integrity of genomic DNA are important in preventing carcinogenesis and its progression. Notably, mutations in DNA repair mechanisms are associated with cancer predisposition syndromes. Additionally, these mechanisms maintain the genomic integrity of cancer cells. The majority of therapies established to treat cancer are genotoxic agents that induce DNA damage, promoting cancer cells to undergo apoptotic death. Effective methods currently exist to evaluate the diverse effects of genotoxic agents and the underlying molecular mechanisms that repair DNA lesions. The current study provides an overview of a number of methods that are available for the detection, analysis and quantification of underlying DNA repair mechanisms.

  10. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions.

    PubMed

    Brown, Maxwell W; Kim, Yoori; Williams, Gregory M; Huck, John D; Surtees, Jennifer A; Finkelstein, Ilya J

    2016-02-03

    DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2-Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2-Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2-Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2-Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2-Msh3 and Msh2-Msh6 navigate on a crowded genome and suggest how Msh2-Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin.

  11. Importance of DNA repair in tumor suppression

    NASA Astrophysics Data System (ADS)

    Brumer, Yisroel; Shakhnovich, Eugene I.

    2004-12-01

    The transition from a normal to cancerous cell requires a number of highly specific mutations that affect cell cycle regulation, apoptosis, differentiation, and many other cell functions. One hallmark of cancerous genomes is genomic instability, with mutation rates far greater than those of normal cells. In microsatellite instability (MIN tumors), these are often caused by damage to mismatch repair genes, allowing further mutation of the genome and tumor progression. These mutation rates may lie near the error catastrophe found in the quasispecies model of adaptive RNA genomes, suggesting that further increasing mutation rates will destroy cancerous genomes. However, recent results have demonstrated that DNA genomes exhibit an error threshold at mutation rates far lower than their conservative counterparts. Furthermore, while the maximum viable mutation rate in conservative systems increases indefinitely with increasing master sequence fitness, the semiconservative threshold plateaus at a relatively low value. This implies a paradox, wherein inaccessible mutation rates are found in viable tumor cells. In this paper, we address this paradox, demonstrating an isomorphism between the conservatively replicating (RNA) quasispecies model and the semiconservative (DNA) model with post-methylation DNA repair mechanisms impaired. Thus, as DNA repair becomes inactivated, the maximum viable mutation rate increases smoothly to that of a conservatively replicating system on a transformed landscape, with an upper bound that is dependent on replication rates. On a specific single fitness peak landscape, the repair-free semiconservative system is shown to mimic a conservative system exactly. We postulate that inactivation of post-methylation repair mechanisms is fundamental to the progression of a tumor cell and hence these mechanisms act as a method for the prevention and destruction of cancerous genomes.

  12. Nanostructure of DNA repair foci revealed by superresolution microscopy.

    PubMed

    Sisario, Dmitri; Memmel, Simon; Doose, Sören; Neubauer, Julia; Zimmermann, Heiko; Flentje, Michael; Djuzenova, Cholpon S; Sauer, Markus; Sukhorukov, Vladimir L

    2018-06-12

    Induction of DNA double-strand breaks (DSBs) by ionizing radiation leads to formation of micrometer-sized DNA-repair foci, whose organization on the nanometer-scale remains unknown because of the diffraction limit (∼200 nm) of conventional microscopy. Here, we applied diffraction-unlimited, direct stochastic optical-reconstruction microscopy ( dSTORM) with a lateral resolution of ∼20 nm to analyze the focal nanostructure of the DSB marker histone γH2AX and the DNA-repair protein kinase (DNA-PK) in irradiated glioblastoma multiforme cells. Although standard confocal microscopy revealed substantial colocalization of immunostained γH2AX and DNA-PK, in our dSTORM images, the 2 proteins showed very little (if any) colocalization despite their close spatial proximity. We also found that γH2AX foci consisted of distinct circular subunits ("nanofoci") with a diameter of ∼45 nm, whereas DNA-PK displayed a diffuse, intrafocal distribution. We conclude that γH2AX nanofoci represent the elementary, structural units of DSB repair foci, that is, individual γH2AX-containing nucleosomes. dSTORM-based γH2AX nanofoci counting and distance measurements between nanofoci provided quantitative information on the total amount of chromatin involved in DSB repair as well as on the number and longitudinal distribution of γH2AX-containing nucleosomes in a chromatin fiber. We thus estimate that a single focus involves between ∼0.6 and ∼1.1 Mbp of chromatin, depending on radiation treatment. Because of their ability to unravel the nanostructure of DSB-repair foci, dSTORM and related single-molecule localization nanoscopy methods will likely emerge as powerful tools in biology and medicine to elucidate the effects of DNA damaging agents in cells.-Sisario, D., Memmel, S., Doose, S., Neubauer, J., Zimmermann, H., Flentje, M., Djuzenova, C. S., Sauer, M., Sukhorukov, V. L. Nanostructure of DNA repair foci revealed by superresolution microscopy.

  13. Stimulation of lactate receptor (HCAR1) affects cellular DNA repair capacity.

    PubMed

    Wagner, Waldemar; Kania, Katarzyna D; Ciszewski, Wojciech M

    2017-04-01

    Numerous G-protein coupled receptors have been reported to enhance cancer cell survival and resistance to clinically used chemotherapeutics. Recently, hydroxycarboxylic acid receptor 1 (HCAR1) was shown to drive lactate-dependent enhancement of cell survival and metastasis in pancreatic and breast cancers. Furthermore, our previous study confirmed the involvement of HCAR1 in lactate-related enhancement of DNA repair in cervical cancer cells. In the present study, we examined the possible mechanisms of HCAR1-mediated enhancement of DNA repair capacity. We observed that the HCAR1 agonist dihydroxybenzoic acid (DHBA) up-regulated BRCA1 (breast cancer type 1 susceptibility protein) and NBS1 (Nijmegen breakage syndrome 1) expression in HeLa cells. Moreover, HCAR1 silencing decreased mRNA and protein levels of BRCA1 by 30% and 20%, respectively. Immunocytochemical analyses of BRCA1, nibrin and DNA-PKcs indicated an increased accumulation of these proteins in cell nuclei after DHBA stimulation. Subsequently, these changes in the DNA repair protein levels translated into an enhanced DNA repair rate after doxorubicin treatment, as shown by γ-H2AX and comet assay experiments. In contrast, the down-regulation of HCAR1 decreased the efficiency of DNA repair. Finally, we observed the abrogation of DHBA-driven BRCA1 protein up-regulation and enhanced DNA repair following the preincubation of cells with the PKC inhibitor Gö6983. Taken together, our data indicate that lactate receptor/HCAR1 expression in cervical carcinoma cells may contribute to the modulation of cellular DNA repair mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The role of DNA repair pathways in cisplatin resistant lung cancer.

    PubMed

    O'Grady, Shane; Finn, Stephen P; Cuffe, Sinead; Richard, Derek J; O'Byrne, Kenneth J; Barr, Martin P

    2014-12-01

    Platinum chemotherapeutic agents such as cisplatin are currently used in the treatment of various malignancies such as lung cancer. However, their efficacy is significantly hindered by the development of resistance during treatment. While a number of factors have been reported that contribute to the onset of this resistance phenotype, alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating this phenomenon. The mode of action of cisplatin has been linked to its ability to crosslink purine bases on the DNA, thereby interfering with DNA repair mechanisms and inducing DNA damage. Following DNA damage, cells respond by activating a DNA-damage response that either leads to repair of the lesion by the cell thereby promoting resistance to the drug, or cell death via activation of the apoptotic response. Therefore, DNA repair is a vital target to improving cancer therapy and reduce the resistance of tumour cells to DNA damaging agents currently used in the treatment of cancer patients. To date, despite the numerous findings that differential expression of components of the various DNA repair pathways correlate with response to cisplatin, translation of such findings in the clinical setting are still warranted. The identification of alterations in specific proteins and pathways that contribute to these unique DNA repair pathways in cisplatin resistant cancer cells may potentially lead to a renewed interest in the development of rational novel therapies for cisplatin resistant cancers, in particular, lung cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    PubMed

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  16. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    PubMed

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Base excision repair in Archaea: back to the future in DNA repair.

    PubMed

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Correlation of Thermal Stability and Structural Distortion of DNA Interstrand Cross-Links Produced from Oxidized Abasic Sites with Their Selective Formation and Repair.

    PubMed

    Ghosh, Souradyuti; Greenberg, Marc M

    2015-10-13

    C4'-oxidized (C4-AP) and C5'-oxidized abasic sites (DOB) that are produced following abstraction of a hydrogen atom from the DNA backbone reversibly form cross-links selectively with dA opposite a 3'-adjacent nucleotide, despite the comparable proximity of an opposing dA. A previous report on UvrABC incision of DNA substrates containing stabilized analogues of the ICLs derived from C4-AP and DOB also indicated that the latter is repaired more readily by nucleotide excision repair [Ghosh, S., and Greenberg, M. M. (2014) Biochemistry 53, 5958-5965]. The source for selective cross-link formation was probed by comparing the reactivity of ICL analogues of C4-AP and DOB that mimic the preferred and disfavored cross-links with that of reagents that indirectly detect distortion by reacting with the nucleobases. The disfavored C4-AP and DOB analogues were each more reactive than the corresponding preferred cross-link substrates, suggesting that the latter are more stable, which is consistent with selective ICL formation. In addition, the preferred DOB analogue is more reactive than the respective C4-AP ICL, which is consistent with its more efficient incision by UvrABC. The conclusions drawn from the chemical probing experiments are corroborated by UV melting studies. The preferred ICLs exhibit melting temperatures higher than those of the corresponding disfavored isomers. These studies suggest that oxidized abasic sites form reversible interstrand cross-links with dA opposite the 3'-adjacent thymidine because these products are more stable and the thermodynamic preference is reflected in the transition states for their formation.

  19. p53 downregulates the Fanconi anaemia DNA repair pathway

    PubMed Central

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-01-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104

  20. Two sides of the same coin: TFIIH complexes in transcription and DNA repair.

    PubMed

    Zhovmer, Alexander; Oksenych, Valentyn; Coin, Frédéric

    2010-04-13

    TFIIH is organized into a seven-subunit core associated with a three-subunit Cdk-activating kinase (CAK) module. TFIIH has roles in both transcription initiation and DNA repair. During the last 15 years, several studies have been conducted to identify the composition of the TFIIH complex involved in DNA repair. Recently, a new technique combining chromatin immunoprecipitation and western blotting resolved the hidden nature of the TFIIH complex participating in DNA repair. Following the recruitment of TFIIH to the damaged site, the CAK module is released from the core TFIIH, and the core subsequently associates with DNA repair factors. The release of the CAK is specifically driven by the recruitment of the DNA repair factor XPA and is required to promote the incision/excision of the damaged DNA. Once the DNA lesions have been repaired, the CAK module returns to the core TFIIH on the chromatin, together with the release of the repair factors. These data highlight the dynamic composition of a fundamental cellular factor that adapts its subunit composition to the cell needs.

  1. Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair

    PubMed Central

    Nair, Nidhi; Shoaib, Muhammad

    2017-01-01

    Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage. PMID:28698521

  2. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions

    PubMed Central

    Brown, Maxwell W.; Kim, Yoori; Williams, Gregory M.; Huck, John D.; Surtees, Jennifer A.; Finkelstein, Ilya J.

    2016-01-01

    DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2–Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2–Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2–Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2–Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2–Msh3 and Msh2–Msh6 navigate on a crowded genome and suggest how Msh2–Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin. PMID:26837705

  3. Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair.

    PubMed

    Ihara, Makoto; Takeshita, Satoshi; Okaichi, Kumio; Okumura, Yutaka; Ohnishi, Takeo

    2014-03-01

    From the role of double strand DNA dependent protein kinase (DNA-PKcs) activity of non-homologous end joining (NHEJ) repair for DNA double strand breaks (DSBs), we aim to define possible associations between thermo-sensitisation and the enzyme activities in X-ray irradiated cells. DNA-PKcs deficient mouse, Chinese hamster and human cultured cells were compared to the parental wild-type cells. The radiosensitivities, the number of DSBs and DNA-PKcs activities after heat-treatment were measured. Both DNA-PKcs deficient cells and the wild-type cells showed increased radiosensitivities after heat-treatment. The wild-type cells have two repair processes; fast repair and slow repair. In contrast, DNA-PKcs deficient cells have only the slow repair process. The fast repair component apparently disappeared by heat-treatment in the wild-type cells. In both cell types, additional heat exposure enhanced radiosensitivities. Although DNA-PKcs activity was depressed by heat, the inactivated DNA-PKcs activity recovered during an incubation at 37 °C. DSB repair efficiency was dependent on the reactivation of DNA-PKcs activity. It was suggested that NHEJ is the major process used to repair X-ray-induced DSBs and utilises DNA-PKcs activity, but homologous recombination repair provides additional secondary levels of DSB repair. The thermo-sensitisation in X-ray-irradiated cells depends on the inhibition of NHEJ repair through the depression of DNA-PKcs activities.

  4. The production and repair of aflatoxin B sub 1 -induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leadon, S.A.

    To investigate the influence of function or activity of a DNA sequence on its repair, we have studied excision repair of aflatoxin B{sub 1} (AFB{sub 1})-induced damage in the nontranscribed, heterochromatic alpha DNA of monkey cells and in the metallothionein genes of human cells. In confluent cells, AFB{sub 1} adducts are produced in similar frequencies in alpha and in the rest of the DNA, but removal from alpha DNA is severely deficient, however, removal of AFB{sub 1} adducts from alpha DNA is enhanced by small doses of UV. The repair deficiencies are not observed in actively growing cells. We havemore » also shown that there is preferential repair of AFB{sub 1} damage in active genes. AFB{sub 1} damage is efficiently repaired in the active human metallothionein (hMT) genes, but deficiently repaired in inactive hMT genes. 51 refs., 3 tabs.« less

  5. Effects of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites on DNA damage and repair under in vitro conditions.

    PubMed

    Ozcagli, Eren; Alpertunga, Buket; Fenga, Concettina; Berktas, Mehmet; Tsitsimpikou, Christina; Wilks, Martin F; Tsatsakis, Αristidis M

    2016-03-01

    3-monochloropropane-1,2-diol (3-MCPD) is a food contaminant that occurs during industrial production processes and can be found mainly in fat and salt containing products. 3-MCPD has exhibited mutagenic activity in vitro but not in vivo, however, a genotoxic mechanism for the occurrence of kidney tumors has not so far been excluded. The main pathway of mammalian 3-MCPD metabolism is via the formation of β--chlorolactatic acid and formation of glycidol has been demonstrated in bacterial metabolism. The aim of this study was to investigate genotoxic and oxidative DNA damaging effects of 3-MCPD and its metabolites, and to provide a better understanding of their roles in DNA repair processes. DNA damage was assessed by alkaline comet assay in target rat kidney epithelial cell lines (NRK-52E) and human embryonic kidney cells (HEK-293). Purine and pyrimidine base damage, H2O2 sensitivity and DNA repair capacity were assessed via modified comet assay. The results revealed in vitro evidence for increased genotoxicity and H2O2 sensitivity. No association was found between oxidative DNA damage and DNA repair capacity with the exception of glycidol treatment at 20 μg/mL. These findings provide further insights into the mechanisms underlying the in vitro genotoxic potential of 3-MCPD and metabolites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Differential DNA lesion formation and repair in heterochromatin and euchromatin

    PubMed Central

    Han, Chunhua; Srivastava, Amit Kumar; Cui, Tiantian; Wang, Qi-En; Wani, Altaf A.

    2016-01-01

    Discretely orchestrated chromatin condensation is important for chromosome protection from DNA damage. However, it is still unclear how different chromatin states affect the formation and repair of nucleotide excision repair (NER) substrates, e.g. ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP), as well as cisplatin-induced intrastrand crosslinks (Pt-GG). Here, by using immunofluorescence and chromatin immunoprecipitation assays, we have demonstrated that CPD, which cause minor distortion of DNA double helix, can be detected in both euchromatic and heterochromatic regions, while 6-4PP and Pt-GG, which cause major distortion of DNA helix, can exclusively be detected in euchromatin, indicating that the condensed chromatin environment specifically interferes with the formation of these DNA lesions. Mechanistic investigation revealed that the class III histone deacetylase SIRT1 is responsible for restricting the formation of 6-4PP and Pt-GG in cells, probably by facilitating the maintenance of highly condensed heterochromatin. In addition, we also showed that the repair of CPD in heterochromatin is slower than that in euchromatin, and DNA damage binding protein 2 (DDB2) can promote the removal of CPD from heterochromatic region. In summary, our data provide evidence for differential formation and repair of DNA lesions that are substrates of NER. Both the sensitivity of DNA to damage and the kinetics of repair can be affected by the underlying level of chromatin compaction. PMID:26717995

  7. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice.

    PubMed

    Nallanthighal, Sameera; Chan, Cadia; Murray, Thomas M; Mosier, Aaron P; Cady, Nathaniel C; Reliene, Ramune

    2017-10-01

    Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual's susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4 mg/kg of citrate-coated AgNPs over a period of 7 d. DNA damage was examined at 3 and 7 d of exposure and 7 and 14 d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.

  8. Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage.

    PubMed

    Yu, Yang; Cui, Yuxiang; Niedernhofer, Laura J; Wang, Yinsheng

    2016-12-19

    A variety of endogenous and exogenous agents can induce DNA damage and lead to genomic instability. Reactive oxygen species (ROS), an important class of DNA damaging agents, are constantly generated in cells as a consequence of endogenous metabolism, infection/inflammation, and/or exposure to environmental toxicants. A wide array of DNA lesions can be induced by ROS directly, including single-nucleobase lesions, tandem lesions, and hypochlorous acid (HOCl)/hypobromous acid (HOBr)-derived DNA adducts. ROS can also lead to lipid peroxidation, whose byproducts can also react with DNA to produce exocyclic DNA lesions. A combination of bioanalytical chemistry, synthetic organic chemistry, and molecular biology approaches have provided significant insights into the occurrence, repair, and biological consequences of oxidatively induced DNA lesions. The involvement of these lesions in the etiology of human diseases and aging was also investigated in the past several decades, suggesting that the oxidatively induced DNA adducts, especially bulky DNA lesions, may serve as biomarkers for exploring the role of oxidative stress in human diseases. The continuing development and improvement of LC-MS/MS coupled with the stable isotope-dilution method for DNA adduct quantification will further promote research about the clinical implications and diagnostic applications of oxidatively induced DNA adducts.

  9. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    PubMed

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  10. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.

    PubMed

    Boiteux, Serge; Coste, Franck; Castaing, Bertrand

    2017-06-01

    Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver

    PubMed Central

    Ding, Wei; Bishop, Michelle E.; Lyn-Cook, Lascelles E.; Davis, Kelly J.; Manjanatha, Mugimane G.

    2016-01-01

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals. PMID:27166647

  12. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver.

    PubMed

    Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G

    2016-05-04

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.

  13. Fanconi anemia (cross)linked to DNA repair.

    PubMed

    Niedernhofer, Laura J; Lalai, Astrid S; Hoeijmakers, Jan H J

    2005-12-29

    Fanconi anemia is characterized by hypersensitivity to DNA interstrand crosslinks (ICLs) and susceptibility to tumor formation. Despite the identification of numerous Fanconi anemia (FANC) genes, the mechanism by which proteins encoded by these genes protect a cell from DNA interstrand crosslinks remains unclear. The recent discovery of two DNA helicases that, when defective, cause Fanconi anemia tips the balance in favor of the direct involvement of the FANC proteins in DNA repair and the bypass of DNA lesions.

  14. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response

    PubMed Central

    Mund, Andreas; Schubert, Tobias; Staege, Hannah; Kinkley, Sarah; Reumann, Kerstin; Kriegs, Malte; Fritsch, Lauriane; Battisti, Valentine; Ait-Si-Ali, Slimane; Hoffbeck, Anne-Sophie; Soutoglou, Evi; Will, Hans

    2012-01-01

    Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure. PMID:23034801

  15. DNA Damage and Repair in Human Cancer: Molecular Mechanisms and Contribution to Therapy-Related Leukemias

    PubMed Central

    Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita

    2012-01-01

    Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388

  16. The Repeat Expansion Diseases: the dark side of DNA repair?

    PubMed Central

    Zhao, Xiao-Nan; Usdin, Karen

    2015-01-01

    DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion. PMID:26002199

  17. Reduced DNA repair in mouse satellite DNA after treatment with methylmethanesulfonate, and N-methyl-N-nitrosourea.

    PubMed Central

    Bodell, W J; Banerjee, M R

    1976-01-01

    We have measured DNA repair in mouse satellite and main band DNA as resolved by Ag+-Cs2SO4 centrifugation in response to treatment with the alkylating agents, methyl methanesulfonate, and N-methyl-N-nitrosourea. We find that there is a statistically significant lower incorporation of 3H-Tdr into the satellite DNA as compared to the main band at varying periods after treatment with the alkylating agents. This suggests a reduced repair activity in the satellite DNA. We have measured the extent of binding of 14C-methyl methanesulfonate to the satellite, and main band DNA, and no difference in binding was observed, indicating that the reduced repair activity of satellite DNA is not due to a difference in binding of alkylating agents. We believe that the reduced incorporation of 3H-Tdr into satellite DNA may be due to its location in the condensed chromatin fraction. PMID:184436

  18. The barley EST DNA Replication and Repair Database (bEST-DRRD) as a tool for the identification of the genes involved in DNA replication and repair.

    PubMed

    Gruszka, Damian; Marzec, Marek; Szarejko, Iwona

    2012-06-14

    The high level of conservation of genes that regulate DNA replication and repair indicates that they may serve as a source of information on the origin and evolution of the species and makes them a reliable system for the identification of cross-species homologs. Studies that had been conducted to date shed light on the processes of DNA replication and repair in bacteria, yeast and mammals. However, there is still much to be learned about the process of DNA damage repair in plants. These studies, which were conducted mainly using bioinformatics tools, enabled the list of genes that participate in various pathways of DNA repair in Arabidopsis thaliana (L.) Heynh to be outlined; however, information regarding these mechanisms in crop plants is still very limited. A similar, functional approach is particularly difficult for a species whose complete genomic sequences are still unavailable. One of the solutions is to apply ESTs (Expressed Sequence Tags) as the basis for gene identification. For the construction of the barley EST DNA Replication and Repair Database (bEST-DRRD), presented here, the Arabidopsis nucleotide and protein sequences involved in DNA replication and repair were used to browse for and retrieve the deposited sequences, derived from four barley (Hordeum vulgare L.) sequence databases, including the "Barley Genome version 0.05" database (encompassing ca. 90% of barley coding sequences) and from two databases covering the complete genomes of two monocot models: Oryza sativa L. and Brachypodium distachyon L. in order to identify homologous genes. Sequences of the categorised Arabidopsis queries are used for browsing the repositories, which are located on the ViroBLAST platform. The bEST-DRRD is currently used in our project during the identification and validation of the barley genes involved in DNA repair. The presented database provides information about the Arabidopsis genes involved in DNA replication and repair, their expression patterns and models

  19. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    PubMed

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  20. Base Excision Repair

    PubMed Central

    Krokan, Hans E.; Bjørås, Magnar

    2013-01-01

    Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins. PMID:23545420

  1. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair.

    PubMed

    Serrano, M A; Li, Z; Dangeti, M; Musich, P R; Patrick, S; Roginskaya, M; Cartwright, B; Zou, Y

    2013-05-09

    Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.

  2. Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma.

    PubMed

    Annovazzi, Laura; Mellai, Marta; Schiffer, Davide

    2017-05-26

    Despite improvements in therapeutic strategies, glioblastoma (GB) remains one of the most lethal cancers. The presence of the blood-brain barrier, the infiltrative nature of the tumor and several resistance mechanisms account for the failure of current treatments. Distinct DNA repair pathways can neutralize the cytotoxicity of chemo- and radio-therapeutic agents, driving resistance and tumor relapse. It seems that a subpopulation of stem-like cells, indicated as glioma stem cells (GSCs), is responsible for tumor initiation, maintenance and recurrence and they appear to be more resistant owing to their enhanced DNA repair capacity. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis and in the modulation of therapeutic treatment effects. In this review, we try to summarize the knowledge concerning the main molecular mechanisms involved in the removal of genotoxic lesions caused by alkylating agents, emphasizing the role of GSCs. Beside their increased DNA repair capacity in comparison with non-stem tumor cells, GSCs show a constitutive checkpoint expression that enables them to survive to treatments in a quiescent, non-proliferative state. The targeted inhibition of checkpoint/repair factors of DDR can contribute to eradicate the GSC population and can have a great potential therapeutic impact aiming at sensitizing malignant gliomas to treatments, improving the overall survival of patients.

  3. DNA damage and repair in plants – from models to crops

    PubMed Central

    Manova, Vasilissa; Gruszka, Damian

    2015-01-01

    The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to “peak” by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis

  4. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    PubMed

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  5. Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF.

    PubMed

    Xia, Min; Chen, Kun; Yao, Xiao; Xu, Yichi; Yao, Jiaying; Yan, Jun; Shao, Zhen; Wang, Gang

    2017-08-22

    DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER) and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Astragalin from Cassia alata Induces DNA Adducts in Vitro and Repairable DNA Damage in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Saito, Samuel; Silva, Givaldo; Santos, Regineide Xavier; Gosmann, Grace; Pungartnik, Cristina; Brendel, Martin

    2012-01-01

    Reverse phase-solid phase extraction from Cassia alata leaves (CaRP) was used to obtain a refined extract. Higher than wild-type sensitivity to CaRP was exhibited by 16 haploid Saccharomyces cerevisiae mutants with defects in DNA repair and membrane transport. CaRP had a strong DPPH free radical scavenging activity with an IC50 value of 2.27 μg mL−1 and showed no pro-oxidant activity in yeast. CaRP compounds were separated by HPLC and the three major components were shown to bind to DNA in vitro. The major HPLC peak was identified as kampferol-3-O-β-d-glucoside (astragalin), which showed high affinity to DNA as seen by HPLC-UV measurement after using centrifugal ultrafiltration of astragalin-DNA mixtures. Astragalin-DNA interaction was further studied by spectroscopic methods and its interaction with DNA was evaluated using solid-state FTIR. These and computational (in silico) docking studies revealed that astragalin-DNA binding occurs through interaction with G-C base pairs, possibly by intercalation stabilized by H-bond formation. PMID:22489129

  7. Astragalin from Cassia alata induces DNA adducts in vitro and repairable DNA damage in the yeast Saccharomyces cerevisiae.

    PubMed

    Saito, Samuel; Silva, Givaldo; Santos, Regineide Xavier; Gosmann, Grace; Pungartnik, Cristina; Brendel, Martin

    2012-01-01

    Reverse phase-solid phase extraction from Cassia alata leaves (CaRP) was used to obtain a refined extract. Higher than wild-type sensitivity to CaRP was exhibited by 16 haploid Saccharomyces cerevisiae mutants with defects in DNA repair and membrane transport. CaRP had a strong DPPH free radical scavenging activity with an IC(50) value of 2.27 μg mL(-1) and showed no pro-oxidant activity in yeast. CaRP compounds were separated by HPLC and the three major components were shown to bind to DNA in vitro. The major HPLC peak was identified as kampferol-3-O-β-d-glucoside (astragalin), which showed high affinity to DNA as seen by HPLC-UV measurement after using centrifugal ultrafiltration of astragalin-DNA mixtures. Astragalin-DNA interaction was further studied by spectroscopic methods and its interaction with DNA was evaluated using solid-state FTIR. These and computational (in silico) docking studies revealed that astragalin-DNA binding occurs through interaction with G-C base pairs, possibly by intercalation stabilized by H-bond formation.

  8. Fanconi Anemia Proteins, DNA Interstrand Crosslink Repair Pathways, and Cancer Therapy

    PubMed Central

    Andreassen, Paul R.; Ren, Keqin

    2016-01-01

    DNA interstrand crosslinkers, a chemically diverse group of compounds which also induce alkylation of bases and DNA intrastrand crosslinks, are extensively utilized for cancer therapy. Understanding the cellular response to DNA damage induced by these agents is critical for more effective utilization of these compounds and for the identification of novel therapeutic targets. Importantly, the repair of DNA interstrand crosslinks (ICLs) involves many distinct DNA repair pathways, including nucleotide excision repair, translesion synthesis (TLS), and homologous recombination (HR). Additionally, proteins implicated in the pathophysiology of the multigenic disease Fanconi anemia (FA) have a role in the repair of ICLs that is not well understood. Cells from FA patients are hypersensitive to agents that induce ICLs, therefore FA proteins are potentially novel therapeutic targets. Here we will review current research directed at identifying FA genes and understanding the function of FA proteins in DNA damage responses. We will also examine interactions of FA proteins with other repair proteins and pathways, including signaling networks, which are potentially involved in ICL repair. Potential approaches to the modulation of FA protein function to enhance therapeutic outcome will be discussed. Also, mutation of many genes that encode proteins involved in ICL repair, including FA genes, increases susceptibility to cancer. A better understanding of these pathways is therefore critical for the design of individualized therapies tailored to the genetic profile of a particular malignancy. For this purpose, we will also review evidence for the association of mutation of FA genes with cancer in non-FA patients. PMID:19200054

  9. RPA physically interacts with the human DNA glycosylase NEIL1 to regulate excision of oxidative DNA base damage in primer-template structures.

    PubMed

    Theriot, Corey A; Hegde, Muralidhar L; Hazra, Tapas K; Mitra, Sankar

    2010-06-04

    The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (K(d) approximately 20 nM) via the common interacting interface (residues 312-349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CDelta78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CDelta78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Silibinin preferentially radiosensitizes prostate cancer by inhibiting DNA repair signaling

    PubMed Central

    Nambiar, Dhanya K.; Rajamani, Paulraj; Deep, Gagan; Jain, Anil K.; Agarwal, Rajesh; Singh, Rana P.

    2015-01-01

    Radiotherapy, a frequent mode of cancer treatment, is often restricted by dose-related toxicity and development of therapeutic resistance. To develop a novel and selective radiosensitizer, we studied the radiosensitizing effects and associated mechanisms of silibinin in prostate cancer (PCa). The radiosensitizing effect of silibinin with ionizing radiation (IR) was assessed on radioresistant PCa cell lines by clonogenic, cell cycle, cell death and DNA repair assays. Tumor xenograft growth, immunohistochemical (IHC) analysis of tumor tissues, and toxicity-related parameters were measured in vivo. Silibinin (25 μM) enhanced IR (2.5-10 Gy)-caused inhibition (up to 96%, P<0.001) of colony formation selectively in PCa cells, and prolonged and enhanced IR-caused G2/M arrest, apoptosis and ROS production. Mechanistically, silibinin inhibited IR-induced DNA repair (ATM and Chk1/2) and EGFR signaling and attenuated the levels of anti-apoptotic proteins. Specifically, silibinin suppressed IR-induced nuclear translocation of EGFR and DNA-PK, an important mediator of DSB repair, leading to an increased number of γ-H2AX (ser139) foci suggesting lesser DNA repair. In vivo, silibinin strongly radiosensitized DU145 tumor xenograft inhibition (84%, P<0.01) with higher apoptotic response (10-fold, P<0.01) and reduced repair of DNA damage, and rescued the mice from IR-induced toxicity and hematopoietic injury. Overall, silibinin enhanced the radiotherapeutic response via suppressing IR-induced pro-survival signaling and DSB repair by inhibiting nuclear translocation of EGFR and DNA-PK. Since silibinin is already in phase II clinical trial for PCa patients, the present finding has translational relevance for radioresistant PCa. PMID:26516160

  11. Silibinin Preferentially Radiosensitizes Prostate Cancer by Inhibiting DNA Repair Signaling.

    PubMed

    Nambiar, Dhanya K; Rajamani, Paulraj; Deep, Gagan; Jain, Anil K; Agarwal, Rajesh; Singh, Rana P

    2015-12-01

    Radiotherapy, a frequent mode of cancer treatment, is often restricted by dose-related toxicity and development of therapeutic resistance. To develop a novel and selective radiosensitizer, we studied the radiosensitizing effects and associated mechanisms of silibinin in prostate cancer. The radiosensitizing effect of silibinin with ionizing radiation (IR) was assessed on radioresistant prostate cancer cell lines by clonogenic, cell cycle, cell death, and DNA repair assays. Tumor xenograft growth, immunohistochemical (IHC) analysis of tumor tissues, and toxicity-related parameters were measured in vivo. Silibinin (25 μmol/L) enhanced IR (2.5-10 Gy)-caused inhibition (up to 96%, P < 0.001) of colony formation selectively in prostate cancer cells, and prolonged and enhanced IR-caused G2-M arrest, apoptosis, and ROS production. Mechanistically, silibinin inhibited IR-induced DNA repair (ATM and Chk1/2) and EGFR signaling and attenuated the levels of antiapoptotic proteins. Specifically, silibinin suppressed IR-induced nuclear translocation of EGFR and DNA-PK, an important mediator of DSB repair, leading to an increased number of γ-H2AX (ser139) foci suggesting lesser DNA repair. In vivo, silibinin strongly radiosensitized DU145 tumor xenograft inhibition (84%, P < 0.01) with higher apoptotic response (10-fold, P < 0.01) and reduced repair of DNA damage, and rescued the mice from IR-induced toxicity and hematopoietic injury. Overall, silibinin enhanced the radiotherapeutic response via suppressing IR-induced prosurvival signaling and DSB repair by inhibiting nuclear translocation of EGFR and DNA-PK. Because silibinin is already in phase II clinical trial for prostate cancer patients, the present finding has translational relevance for radioresistant prostate cancer. ©2015 American Association for Cancer Research.

  12. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.

    PubMed

    Weeden, Clare E; Asselin-Labat, Marie-Liesse

    2018-01-01

    Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2

    PubMed Central

    Malfatti, Matilde Clarissa; Balachander, Sathya; Antoniali, Giulia; Koh, Kyung Duk; Saint-Pierre, Christine; Gasparutto, Didier; Chon, Hyongi; Crouch, Robert J.

    2017-01-01

    Abstract Ribonucleoside 5′-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3′-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA. PMID:28977421

  14. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2.

    PubMed

    Malfatti, Matilde Clarissa; Balachander, Sathya; Antoniali, Giulia; Koh, Kyung Duk; Saint-Pierre, Christine; Gasparutto, Didier; Chon, Hyongi; Crouch, Robert J; Storici, Francesca; Tell, Gianluca

    2017-11-02

    Ribonucleoside 5'-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3'-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Single-molecule live-cell imaging of bacterial DNA repair and damage tolerance.

    PubMed

    Ghodke, Harshad; Ho, Han; van Oijen, Antoine M

    2018-02-19

    Genomic DNA is constantly under threat from intracellular and environmental factors that damage its chemical structure. Uncorrected DNA damage may impede cellular propagation or even result in cell death, making it critical to restore genomic integrity. Decades of research have revealed a wide range of mechanisms through which repair factors recognize damage and co-ordinate repair processes. In recent years, single-molecule live-cell imaging methods have further enriched our understanding of how repair factors operate in the crowded intracellular environment. The ability to follow individual biochemical events, as they occur in live cells, makes single-molecule techniques tremendously powerful to uncover the spatial organization and temporal regulation of repair factors during DNA-repair reactions. In this review, we will cover practical aspects of single-molecule live-cell imaging and highlight recent advances accomplished by the application of these experimental approaches to the study of DNA-repair processes in prokaryotes. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Requirement of the Saccharomyces cerevisiae APN1 Gene for the Repair of Mitochondrial DNA Alkylation Damage

    PubMed Central

    Acevedo-Torres, Karina; Fonseca-Williams, Sharon; Ayala-Torres, Sylvette; Torres-Ramos, Carlos A.

    2010-01-01

    The Saccharomyces cerevisiae APN1 gene that participates in base excision repair has been localized both in the nucleus and the mitochondria. APN1 deficient cells (apn1Δ) show increased mutation frequencies in mitochondrial DNA (mtDNA) suggesting that APN1 is also important for mtDNA stability. To understand APN1-dependent mtDNA repair processes we studied the formation and repair of mtDNA lesions in cells exposed to methyl methanesulfonate (MMS). We show that MMS induces mtDNA damage in a dose-dependent fashion and that deletion of the APN1 gene enhances the susceptibility of mtDNA to MMS. Repair kinetic experiments demonstrate that in wild-type cells (WT) it takes 4 hr to repair the damage induced by 0.1% MMS, whereas in the apn1Δ strain there is a lag in mtDNA repair that results in significant differences in the repair capacity between the two yeast strains. Analysis of lesions in nuclear DNA (nDNA) after treatment with 0.1% MMS shows a significant difference in the amount of nDNA lesions between WT and apn1Δ cells. Interestingly, comparisons between nDNA and mtDNA damage show that nDNA is more sensitive to the effects of MMS treatment. However, both strains are able to repair the nDNA lesions, contrary to mtDNA repair, which is compromised in the apn1Δ mutant strain. Therefore, although nDNA is more sensitive than mtDNA to the effects of MMS, deletion of APN1 has a stronger phenotype in mtDNA repair than in nDNA. These results highlight the prominent role of APN1 in the repair of environmentally induced mtDNA damage. PMID:19197988

  17. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: evidence for oxidatively DNA damage generation.

    PubMed

    Pinto, A Viviana; Deodato, Elder L; Cardoso, Janine S; Oliveira, Eliza F; Machado, Sérgio L; Toma, Helena K; Leitão, Alvaro C; de Pádula, Marcelo

    2010-06-01

    Although titanium dioxide (TiO(2)) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO(2) is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO(2)-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO(2) associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO(2) plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO(2) protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO(2) plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO(2) plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine. Copyright 2010 Elsevier B.V. All rights reserved.

  18. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  19. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair

    PubMed Central

    Serrano, Moises A.; Li, Zhengke; Dangeti, Mohan; Musich, Phillip R.; Patrick, Steve; Roginskaya, Marina; Cartwright, Brian; Zou, Yue

    2012-01-01

    Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two distinct DNA double-strand break (DSB) repair pathways. Here we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR. PMID:22797063

  20. Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, P.S.; Hevelone, J.; Dwarakanath, V.

    1989-06-01

    Radioimmunoassays were used to monitor the removal of antibody-binding sites associated with the two major UV radiation-induced DNA photoproducts (cyclobutane dimers and (6-4) photoproducts). Unlike with cultured human cells, where (6-4) photoproducts are removed more rapidly than cyclobutane dimers, the kinetics of repair were similar for both lesions. Repair capacity in wild type diminished throughout development. The radioimmunoassays were also employed to confirm the absence of photoreactivation in C. elegans. In addition, three radiation-sensitive mutants (rad-1, rad-2, rad-7) displayed normal repair capacities. An excision defect was much more pronounced in larvae than embryos in the fourth mutant tested (rad-3). Thismore » correlates with the hypersensitivity pattern of this mutant and suggests that DNA repair may be developmentally regulated in C. elegans. The mechanism of DNA repair in C. elegans as well as the relationship between the repair of specific photoproducts and UV radiation sensitivity during development are discussed.« less

  1. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer.

    PubMed

    Pritchard, Colin C; Mateo, Joaquin; Walsh, Michael F; De Sarkar, Navonil; Abida, Wassim; Beltran, Himisha; Garofalo, Andrea; Gulati, Roman; Carreira, Suzanne; Eeles, Rosalind; Elemento, Olivier; Rubin, Mark A; Robinson, Dan; Lonigro, Robert; Hussain, Maha; Chinnaiyan, Arul; Vinson, Jake; Filipenko, Julie; Garraway, Levi; Taplin, Mary-Ellen; AlDubayan, Saud; Han, G Celine; Beightol, Mallory; Morrissey, Colm; Nghiem, Belinda; Cheng, Heather H; Montgomery, Bruce; Walsh, Tom; Casadei, Silvia; Berger, Michael; Zhang, Liying; Zehir, Ahmet; Vijai, Joseph; Scher, Howard I; Sawyers, Charles; Schultz, Nikolaus; Kantoff, Philip W; Solit, David; Robson, Mark; Van Allen, Eliezer M; Offit, Kenneth; de Bono, Johann; Nelson, Peter S

    2016-08-04

    Inherited mutations in DNA-repair genes such as BRCA2 are associated with increased risks of lethal prostate cancer. Although the prevalence of germline mutations in DNA-repair genes among men with localized prostate cancer who are unselected for family predisposition is insufficient to warrant routine testing, the frequency of such mutations in patients with metastatic prostate cancer has not been established. We recruited 692 men with documented metastatic prostate cancer who were unselected for family history of cancer or age at diagnosis. We isolated germline DNA and used multiplex sequencing assays to assess mutations in 20 DNA-repair genes associated with autosomal dominant cancer-predisposition syndromes. A total of 84 germline DNA-repair gene mutations that were presumed to be deleterious were identified in 82 men (11.8%); mutations were found in 16 genes, including BRCA2 (37 men [5.3%]), ATM (11 [1.6%]), CHEK2 (10 [1.9% of 534 men with data]), BRCA1 (6 [0.9%]), RAD51D (3 [0.4%]), and PALB2 (3 [0.4%]). Mutation frequencies did not differ according to whether a family history of prostate cancer was present or according to age at diagnosis. Overall, the frequency of germline mutations in DNA-repair genes among men with metastatic prostate cancer significantly exceeded the prevalence of 4.6% among 499 men with localized prostate cancer (P<0.001), including men with high-risk disease, and the prevalence of 2.7% in the Exome Aggregation Consortium, which includes 53,105 persons without a known cancer diagnosis (P<0.001). In our multicenter study, the incidence of germline mutations in genes mediating DNA-repair processes among men with metastatic prostate cancer was 11.8%, which was significantly higher than the incidence among men with localized prostate cancer. The frequencies of germline mutations in DNA-repair genes among men with metastatic disease did not differ significantly according to age at diagnosis or family history of prostate cancer. (Funded by

  2. DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-½ that promotes efficient DNA repair. [corrected].

    PubMed

    Belin, Brittany J; Lee, Terri; Mullins, R Dyche

    2015-08-19

    Actin filaments assemble inside the nucleus in response to multiple cellular perturbations, including heat shock, protein misfolding, integrin engagement, and serum stimulation. We find that DNA damage also generates nuclear actin filaments-detectable by phalloidin and live-cell actin probes-with three characteristic morphologies: (i) long, nucleoplasmic filaments; (ii) short, nucleolus-associated filaments; and (iii) dense, nucleoplasmic clusters. This DNA damage-induced nuclear actin assembly requires two biologically and physically linked nucleation factors: Formin-2 and Spire-1/Spire-2. Formin-2 accumulates in the nucleus after DNA damage, and depletion of either Formin-2 or actin's nuclear import factor, importin-9, increases the number of DNA double-strand breaks (DSBs), linking nuclear actin filaments to efficient DSB clearance. Nuclear actin filaments are also required for nuclear oxidation induced by acute genotoxic stress. Our results reveal a previously unknown role for nuclear actin filaments in DNA repair and identify the molecular mechanisms creating these nuclear filaments.

  3. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeney, S.; Brody, T.; Linn, S.

    1994-04-26

    Cells from a subset of patients with the DNA-repair-defective disease xeroderma pigmentosum complementation group E (XP-E) are known to lack a DNA damage-binding (DDB) activity. Purified human DDB protein was injected into XP-E cells to test whether the DNA-repair defect in these cells is caused by a defect in DDB activity. Injected DDB protein stimulated DNA repair to normal levels in those strains that lack the DDB activity but did not stimulate repair in cells from other xeroderma pigmentosum groups or in XP-E cells that contain the activity. These results provide direct evidence that defective DDB activity causes the repairmore » defect in a subset of XP-E patients, which in turn establishes a role for this activity in nucleotide-excision repair in vivo.« less

  4. Effect of Amalaki rasayana on DNA damage and repair in randomized aged human individuals.

    PubMed

    Vishwanatha, Udupi; Guruprasad, Kanive P; Gopinath, Puthiya M; Acharya, Raviraj V; Prasanna, Bokkasa V; Nayak, Jayakrishna; Ganesh, Rajeshwari; Rao, Jayalaxmi; Shree, Rashmi; Anchan, Suchitra; Raghu, Kothanahalli S; Joshi, Manjunath B; Paladhi, Puspendu; Varier, Panniampilly M; Muraleedharan, Kollath; Muraleedharan, Thrikovil S; Satyamoorthy, Kapaettu

    2016-09-15

    Preparations from Phyllanthus emblica called Amalaki rasayana is used in the Indian traditional medicinal system of Ayurveda for healthy living in elderly. The biological effects and its mechanisms are not fully understood. Since the diminishing DNA repair is the hallmark of ageing, we tested the influence of Amalaki rasayana on recognized DNA repair activities in healthy aged individuals. Amalaki rasayana was prepared fresh and healthy aged randomized human volunteers were administrated with either rasayana or placebo for 45 days strictly as per the traditional text. The DNA repair was analyzed in peripheral blood mononuclear cells before and after rasayana administration and after 45 days post-rasayana treatment regimen. UVC-induced DNA strand break repair (DSBR) based on extent of DNA unwinding by fluorometric analysis, nucleotide excision repair (NER) by flow cytometry and constitutive base excision repair (BER) by gap filling method were analyzed. Amalaki rasayana administration stably maintained/enhanced the DSBR in aged individuals. There were no adverse side effects. Further, subjects with different body mass index showed differential DNA strand break repair capacity. No change in unscheduled DNA synthesis during NER and BER was observed between the groups. Intake of Amalaki rasayana by aged individuals showed stable maintenance of DNA strand break repair without toxic effects. However, there was no change in nucleotide and base excision repair activities. Results warrant further studies on the effects of Amalaki rasayana on DSBR activities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Recognition and repair of chemically heterogeneous structures at DNA ends

    PubMed Central

    Andres, Sara N.; Schellenberg, Matthew J.; Wallace, Bret D.; Tumbale, Percy; Williams, R. Scott

    2014-01-01

    Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not “clean”. Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini. PMID:25111769

  6. Dynamic binding of replication protein a is required for DNA repair

    PubMed Central

    Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.

    2016-01-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385

  7. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair.

    PubMed

    Schrank, Benjamin R; Aparicio, Tomas; Li, Yinyin; Chang, Wakam; Chait, Brian T; Gundersen, Gregg G; Gottesman, Max E; Gautier, Jean

    2018-06-20

    DNA double-strand breaks repaired by non-homologous end joining display limited DNA end-processing and chromosomal mobility. By contrast, double-strand breaks undergoing homology-directed repair exhibit extensive processing and enhanced motion. The molecular basis of this movement is unknown. Here, using Xenopus laevis cell-free extracts and mammalian cells, we establish that nuclear actin, WASP, and the actin-nucleating ARP2/3 complex are recruited to damaged chromatin undergoing homology-directed repair. We demonstrate that nuclear actin polymerization is required for the migration of a subset of double-strand breaks into discrete sub-nuclear clusters. Actin-driven movements specifically affect double-strand breaks repaired by homology-directed repair in G2 cell cycle phase; inhibition of actin nucleation impairs DNA end-processing and homology-directed repair. By contrast, ARP2/3 is not enriched at double-strand breaks repaired by non-homologous end joining and does not regulate non-homologous end joining. Our findings establish that nuclear actin-based mobility shapes chromatin organization by generating repair domains that are essential for homology-directed repair in eukaryotic cells.

  8. Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links.

    PubMed

    Wolter, R; Siede, W; Brendel, M

    1996-02-05

    The interstrand cross-link repair gene SNM1 of Saccharomyces cerevisiae was examined for regulation in response to DNA-damaging agents. Induction of SNM1-lacZ fusions was detected in response to nitrogen mustard, cis-platinum (II) diamine dichloride, UV light, and 8-methoxypsoralen + UVA, but not after heat-shock treatment or incubation with 2-dimethylaminoethylchloride, methylmethane sulfonate or 4-nitroquinoline-N-oxide. The promoter of SNM1 contains a 15 bp motif, which shows homology to the DRE2 box of the RAD2 promoter. Similar motifs have been found in promoter regions of other damage-inducible DNA repair genes. Deletion of this motif results in loss of inducibility of SNM1. Also, a putative negative upstream regulation sequence was found to be responsible for repression of constitutive transcription of SNM1. Surprisingly, no inducibility of SNM1 was found after treatment with DNA-damaging agents in strains without an intact DUN1 gene, while regulation seems unchanged in sad1 mutants.

  9. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks.

    PubMed

    Kottemann, Molly C; Smogorzewska, Agata

    2013-01-17

    The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.

  10. DNA Repair at Telomeres: Keeping the Ends Intact

    PubMed Central

    Webb, Christopher J.; Wu, Yun; Zakian, Virginia A.

    2013-01-01

    The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3′ single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure. PMID:23732473

  11. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair

    PubMed Central

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J.; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D.; Wang, Zhao-Qi; Jasin, Maria

    2005-01-01

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca–/– cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice. PMID:15650050

  12. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    PubMed

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  13. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  14. Methods to alter levels of a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-10-17

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  15. USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair.

    PubMed

    Khoronenkova, Svetlana V; Dianov, Grigory L

    2013-02-01

    The E3 ubiquitin ligase Mule/ARF-BP1 plays an important role in the cellular DNA damage response by controlling base excision repair and p53 protein levels. However, how the activity of Mule is regulated in response to DNA damage is currently unknown. Here, we report that the Ser18-containing isoform of the USP7 deubiquitylation enzyme (USP7S) controls Mule stability by preventing its self-ubiquitylation and subsequent proteasomal degradation. We find that in response to DNA damage, downregulation of USP7S leads to self-ubiquitylation and proteasomal degradation of Mule, which eventually leads to p53 accumulation. Cells that are unable to downregulate Mule show reduced ability to upregulate p53 levels in response to DNA damage. We also find that, as Mule inactivation is required for stabilization of base excision repair enzymes, the failure of cells to downregulate Mule after DNA damage results in deficient DNA repair. Our data describe a novel mechanism by which Mule is regulated in response to DNA damage and coordinates cellular DNA damage responses and DNA repair.

  16. A Ubiquitin-Proteasome Pathway for the Repair of Topoisomerase I-DNA Covalent Complexes*S⃞

    PubMed Central

    Lin, Chao-Po; Ban, Yi; Lyu, Yi Lisa; Desai, Shyamal D.; Liu, Leroy F.

    2008-01-01

    Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged DNA, UV-irradiated DNA, alkylated DNA, uracil-substituted DNA, mismatched DNA, gapped and nicked DNA, and DNA with abasic sites). Top1 cleavage complexes arrest transcription and trigger transcription-dependent degradation of Top1, a phenomenon termed Top1 down-regulation. In the current study, we have investigated the role of Top1 down-regulation in the repair of Top1 cleavage complexes. Using quiescent (serum-starved) human WI-38 cells, camptothecin (CPT) was shown to induce Top1 down-regulation, which paralleled the induction of DNA single-strand breaks (SSBs) (assayed by comet assays) and ATM autophosphorylation (at Ser-1981). Interestingly, Top1 down-regulation, induction of DNA SSBs and ATM autophosphorylation were all abolished by the proteasome inhibitor MG132. Furthermore, studies using immunoprecipitation and dominant-negative ubiquitin mutants have suggested a specific requirement for the assembly of Lys-48-linked polyubiquitin chains for CPT-induced Top1 down-regulation. In contrast to the effect of proteasome inhibition, inactivation of PARP1 was shown to increase the amount of CPT-induced SSBs and the level of ATM autophosphorylation. Together, these results support a model in which Top1 cleavage complexes arrest transcription and activate a ubiquitin-proteasome pathway leading to the degradation of Top1 cleavage complexes. Degradation of Top1 cleavage complexes results in the exposure of Top1-concealed SSBs for repair through a PARP1-dependent process. PMID:18515798

  17. DNA Damage Repair Factors have a Tumor Promoting Role in MLL-fusion Leukemia | Center for Cancer Research

    Cancer.gov

    Cancers develop when cells accumulate DNA mutations that allow them to grow and divide inappropriately. Thus, proteins involved in repairing DNA damage are generally suppressors of cancer formation, and their expression is often lost in the early stages of cancer initiation. In contrast, cancer stem cells, like their normal counterparts, must retain their ability to self-renew, which necessitates maintenance of DNA integrity. In hematopoietic stem cells (HSC), for example, double strand breaks and oxidative damage exhaust their regenerative ability. André Nussenzweig, Ph.D., Chief of CCR’s Laboratory of Genome Integrity and his colleagues wondered whether leukemic stem cells might be similarly constrained by DNA damage.

  18. Prognostic value of DNA repair based stratification of hepatocellular carcinoma

    PubMed Central

    Lin, Zhuo; Xu, Shi-Hao; Wang, Hai-Qing; Cai, Yi-Jing; Ying, Li; Song, Mei; Wang, Yu-Qun; Du, Shan-Jie; Shi, Ke-Qing; Zhou, Meng-Tao

    2016-01-01

    Aberrant activation of DNA repair is frequently associated with tumor progression and response to therapy in hepatocellular carcinoma (HCC). Bioinformatics analyses of HCC data in the Cancer Genome Atlas (TCGA) were performed to define DNA repair based molecular classification that could predict the prognosis of patients with HCC. Furthermore, we tested its predictive performance in 120 independent cases. Four molecular subgroups were identified on the basis of coordinate DNA repair cluster (CDRC) comprising 15 genes in TCGA dataset. Increasing expression of CDRC genes were significantly associated with TP53 mutation. High CDRC was significantly correlated with advanced tumor grades, advanced pathological stage and increased vascular invasion rate. Multivariate Cox regression analysis indicated that the molecular subgrouping was an independent prognostic parameter for both overall survival (p = 0.004, hazard ratio (HR): 2.989) and tumor-free survival (p = 0.049, HR: 3.366) in TCGA dataset. Similar results were also obtained by analyzing the independent cohort. These data suggest that distinct dysregulation of DNA repair constituents based molecular classes in HCC would be useful for predicting prognosis and designing clinical trials for targeted therapy. PMID:27174663

  19. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    PubMed

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  20. Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals.

    PubMed

    Spampinato, Claudia P

    2017-05-01

    The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.

  1. Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage – When is a DSB not a DSB?☆

    PubMed Central

    Reynolds, Pamela; Botchway, Stanley W.; Parker, Anthony W.; O’Neill, Peter

    2013-01-01

    The formation of DNA lesions poses a constant threat to cellular stability. Repair of endogenously and exogenously produced lesions has therefore been extensively studied, although the spatiotemporal dynamics of the repair processes has yet to be fully understood. One of the most recent advances to study the kinetics of DNA repair has been the development of laser microbeams to induce and visualize recruitment and loss of repair proteins to base damage in live mammalian cells. However, a number of studies have produced contradictory results that are likely caused by the different laser systems used reflecting in part the wavelength dependence of the damage induced. Additionally, the repair kinetics of laser microbeam induced DNA lesions have generally lacked consideration of the structural and chemical complexity of the DNA damage sites, which are known to greatly influence their reparability. In this review, we highlight the key considerations when embarking on laser microbeam experiments and interpreting the real time data from laser microbeam irradiations. We compare the repair kinetics from live cell imaging with biochemical and direct quantitative cellular measurements for DNA repair. PMID:23688615

  2. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6more » μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.« less

  3. Hypomorphic PCNA mutation underlies a human DNA repair disorder

    PubMed Central

    Baple, Emma L.; Chambers, Helen; Cross, Harold E.; Fawcett, Heather; Nakazawa, Yuka; Chioza, Barry A.; Harlalka, Gaurav V.; Mansour, Sahar; Sreekantan-Nair, Ajith; Patton, Michael A.; Muggenthaler, Martina; Rich, Phillip; Wagner, Karin; Coblentz, Roselyn; Stein, Constance K.; Last, James I.; Taylor, A. Malcolm R.; Jackson, Andrew P.; Ogi, Tomoo; Lehmann, Alan R.; Green, Catherine M.; Crosby, Andrew H.

    2014-01-01

    Numerous human disorders, including Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and trichothiodystrophy, result from the mutation of genes encoding molecules important for nucleotide excision repair. Here, we describe a syndrome in which the cardinal clinical features include short stature, hearing loss, premature aging, telangiectasia, neurodegeneration, and photosensitivity, resulting from a homozygous missense (p.Ser228Ile) sequence alteration of the proliferating cell nuclear antigen (PCNA). PCNA is a highly conserved sliding clamp protein essential for DNA replication and repair. Due to this fundamental role, mutations in PCNA that profoundly impair protein function would be incompatible with life. Interestingly, while the p.Ser228Ile alteration appeared to have no effect on protein levels or DNA replication, patient cells exhibited marked abnormalities in response to UV irradiation, displaying substantial reductions in both UV survival and RNA synthesis recovery. The p.Ser228Ile change also profoundly altered PCNA’s interaction with Flap endonuclease 1 and DNA Ligase 1, DNA metabolism enzymes. Together, our findings detail a mutation of PCNA in humans associated with a neurodegenerative phenotype, displaying clinical and molecular features common to other DNA repair disorders, which we showed to be attributable to a hypomorphic amino acid alteration. PMID:24911150

  4. Chromosome territories reposition during DNA damage-repair response

    PubMed Central

    2013-01-01

    Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859

  5. The role of ADP-ribosylation in regulating DNA interstrand crosslink repair

    PubMed Central

    Gunn, Alasdair R.; Banos-Pinero, Benito; Paschke, Peggy; Sanchez-Pulido, Luis; Ariza, Antonio; Day, Joseph; Emrich, Mehera; Leys, David; Ponting, Chris P.

    2016-01-01

    ABSTRACT ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here, we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-joining (NHEJ). In silico searches were used to identify a protein that contains a permutated macrodomain (which we call aprataxin/APLF-and-PNKP-like protein; APL). Structural analysis reveals that this permutated macrodomain retains features associated with ADP-ribose interactions and that APL is capable of binding poly(ADP-ribose) through this macrodomain. APL is enriched in chromatin in response to cisplatin treatment, an agent that induces DNA interstrand crosslinks (ICLs). This is dependent on the macrodomain of APL and the ART Adprt2, indicating a role for ADP-ribosylation in the cellular response to cisplatin. Although adprt2− cells are sensitive to cisplatin, ADP-ribosylation is evident in these cells owing to redundant signalling by the double-strand break (DSB)-responsive ART Adprt1a, promoting NHEJ-mediated repair. These data implicate ADP-ribosylation in DNA ICL repair and identify that NHEJ can function to resolve this form of DNA damage in the absence of Adprt2. PMID:27587838

  6. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression.

    PubMed

    Zhang, Yin; Carr, Theresa; Dimtchev, Alexandre; Zaer, Naghmeh; Dritschilo, Anatoly; Jung, Mira

    2007-07-01

    Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and gamma-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D(0) = 1.63 Gy), to the control level (D(0) = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.

  7. ARTD1 (PARP1) activation and NAD+ in DNA repair and cell death

    PubMed Central

    Fouquerel, Elise; Sobol, Robert W.

    2014-01-01

    Nicotinamide adenine dinucleotide, NAD+, is a small metabolite coenzyme that is essential for the progress of crucial cellular pathways including glycolysis, the tricarboxylic acid cycle (TCA) and mitochondrial respiration. These processes consume and produce both oxidative and reduced forms of NAD (NAD+ and NADH). NAD+ is also important for ADP(ribosyl)ation reactions mediated by the ADP-ribosyltransferase enzymes (ARTDs) or deacetylation reactions catalysed by the sirtuins (SIRTs) which use NAD+ as a substrate. In this review, we highlight the significance of NAD+ catabolism in DNA repair and cell death through its utilization by ARTDs and SIRTs. We summarize the current findings on the involvement of ARTD1 activity in DNA repair and most specifically its involvement in the trigger of cell death mediated by energy depletion. By sharing the same substrate, the activities of ARTDs and SIRTs are tightly linked and dependent on each other and are thereby involved in the same cellular processes that play an important role in cancer biology, inflammatory diseases and ischemia/reperfusion. PMID:25283336

  8. DNA Damage Repair System in Plants: A Worldwide Research Update.

    PubMed

    Gimenez, Estela; Manzano-Agugliaro, Francisco

    2017-10-30

    Living organisms are usually exposed to various DNA damaging agents so the mechanisms to detect and repair diverse DNA lesions have developed in all organisms with the result of maintaining genome integrity. Defects in DNA repair machinery contribute to cancer, certain diseases, and aging. Therefore, conserving the genomic sequence in organisms is key for the perpetuation of life. The machinery of DNA damage repair (DDR) in prokaryotes and eukaryotes is similar. Plants also share mechanisms for DNA repair with animals, although they differ in other important details. Plants have, surprisingly, been less investigated than other living organisms in this context, despite the fact that numerous lethal mutations in animals are viable in plants. In this manuscript, a worldwide bibliometric analysis of DDR systems and DDR research in plants was made. A comparison between both subjects was accomplished. The bibliometric analyses prove that the first study about DDR systems in plants (1987) was published thirteen years later than that for other living organisms (1975). Despite the increase in the number of papers about DDR mechanisms in plants in recent decades, nowadays the number of articles published each year about DDR systems in plants only represents 10% of the total number of articles about DDR. The DDR research field was done by 74 countries while the number of countries involved in the DDR & Plant field is 44. This indicates the great influence that DDR research in the plant field currently has, worldwide. As expected, the percentage of studies published about DDR systems in plants has increased in the subject area of agricultural and biological sciences and has diminished in medicine with respect to DDR studies in other living organisms. In short, bibliometric results highlight the current interest in DDR research in plants among DDR studies and can open new perspectives in the research field of DNA damage repair.

  9. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts

    PubMed Central

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-01-01

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention. PMID:26447614

  10. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts.

    PubMed

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-11-24

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention.

  11. Genomic survey and expression analysis of DNA repair genes in the genus Leptospira.

    PubMed

    Martins-Pinheiro, Marinalva; Schons-Fonseca, Luciane; da Silva, Josefa B; Domingos, Renan H; Momo, Leonardo Hiroyuki Santos; Simões, Ana Carolina Quirino; Ho, Paulo Lee; da Costa, Renata M A

    2016-04-01

    Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.

  12. Oxidative DNA damage during night shift work.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2017-09-01

    We previously reported that compared with night sleep, day sleep among shift workers was associated with reduced urinary excretion of 8-hydroxydeoxyguanosine (8-OH-dG), potentially reflecting a reduced ability to repair 8-OH-dG lesions in DNA. We identified the absence of melatonin during day sleep as the likely causative factor. We now investigate whether night work is also associated with reduced urinary excretion of 8-OH-dG. For this cross-sectional study, 50 shift workers with the largest negative differences in night work versus night sleep circulating melatonin levels (measured as 6-sulfatoxymelatonin in urine) were selected from among the 223 shift workers included in our previous study. 8-OH-dG concentrations were measured in stored urine samples using high performance liquid chromatography with electrochemical detection. Mixed effects models were used to compare night work versus night sleep 8-OH-dG levels. Circulating melatonin levels during night work (mean=17.1 ng/mg creatinine/mg creatinine) were much lower than during night sleep (mean=51.7 ng/mg creatinine). In adjusted analyses, average urinary 8-OH-dG levels during the night work period were only 20% of those observed during the night sleep period (95% CI 10% to 30%; p<0.001). This study suggests that night work, relative to night sleep, is associated with reduced repair of 8-OH-dG lesions in DNA and that the effect is likely driven by melatonin suppression occurring during night work relative to night sleep. If confirmed, future studies should evaluate melatonin supplementation as a means to restore oxidative DNA damage repair capacity among shift workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Inducible repair of alkylated DNA in microorganisms.

    PubMed

    Mielecki, Damian; Wrzesiński, Michał; Grzesiuk, Elżbieta

    2015-01-01

    Alkylating agents, which are widespread in the environment, also occur endogenously as primary and secondary metabolites. Such compounds have intrinsically extremely cytotoxic and frequently mutagenic effects, to which organisms have developed resistance by evolving multiple repair mechanisms to protect cellular DNA. One such defense against alkylation lesions is an inducible Adaptive (Ada) response. In Escherichia coli, the Ada response enhances cell resistance by the biosynthesis of four proteins: Ada, AlkA, AlkB, and AidB. The glycosidic bonds of the most cytotoxic lesion, N3-methyladenine (3meA), together with N3-methylguanine (3meG), O(2)-methylthymine (O(2)-meT), and O(2)-methylcytosine (O(2)-meC), are cleaved by AlkA DNA glycosylase. Lesions such as N1-methyladenine (1meA) and N3-methylcytosine (3meC) are removed from DNA and RNA by AlkB dioxygenase. Cytotoxic and mutagenic O(6)-methylguanine (O(6)meG) is repaired by Ada DNA methyltransferase, which transfers the methyl group onto its own cysteine residue from the methylated oxygen. We review (i) the individual Ada proteins Ada, AlkA, AlkB, AidB, and COG3826, with emphasis on the ubiquitous and versatile AlkB and its prokaryotic and eukaryotic homologs; (ii) the organization of the Ada regulon in several bacterial species; (iii) the mechanisms underlying activation of Ada transcription. In vivo and in silico analysis of various microorganisms shows the widespread existence and versatile organization of Ada regulon genes, including not only ada, alkA, alkB, and aidB but also COG3826, alkD, and other genes whose roles in repair of alkylated DNA remain to be elucidated. This review explores the comparative organization of Ada response and protein functions among bacterial species beyond the classical E. coli model. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. DNA Polymerase λ Inactivation by Oxidized Abasic Sites&

    PubMed Central

    Stevens, Adam J.; Guan, Lirui; Bebenek, Katarzyna; Kunkel, Thomas A.; Greenberg, Marc M.

    2013-01-01

    Base excision repair plays a vital role in maintaining genomic integrity in mammalian cells. DNA polymerase λ is believed to play a backup role to DNA polymerase β in base excision repair. Two oxidized abasic lesions that are produced by a variety of DNA damaging agents, including several antitumor antibiotics, the C4′-oxidized abasic site following Ape1 incision (pC4-AP) and 5′-(2-phosphoryl-1,4-dioxobutane) (DOB), irreversibly inactivate Pol β and Pol λ. The interactions of DOB and pC4-AP with Pol λ are examined in detail using DNA substrates containing these lesions at defined sites. Single turnover kinetic experiments show that Pol λ excises DOB almost 13-times more slowly than a 5′-phosphorylated 2-deoxyribose (dRP). pC4-AP is excised approximately twice as fast as DOB. The absolute rate constants are considerably slower than those reported for Pol β at the respective reactions, suggesting that Pol λ may be an inefficient backup in BER. DOB inactivates Pol λ approximately 3-fold less efficiently than it does Pol β and the difference is attributable to a higher KI (33 ± 7 nM). Inactivation of Pol λ’s lyase activity by DOB also prevents the enzyme from carrying out polymerization following preincubation of the protein and DNA. Mass spectral analysis of GluC digested Pol λ inactivated by DOB shows that Lys324 is modified. There is inferential support that Lys312 may also be modified. Both residues are within the Pol λ lyase active site. Protein modification involves reaction with released but-2-ene-1,4-dial. When acting on pC4-AP, Pol λ achieves approximately 4 turnovers on average before being inactivated. Lyase inactivation by pC4-AP is also accompanied by loss of polymerase activity and mass spectrometry indicates that Lys312 and Lys324 are modified by the lesion. The ability of DOB and pC4-AP to inactivate Pol λ provides additional evidence that these lesions are significant sources of the cytotoxicity of DNA damaging agents that

  15. Histone Variant Regulates DNA Repair via Chromatin Condensation | Center for Cancer Research

    Cancer.gov

    Activating the appropriate DNA repair pathway is essential for maintaining the stability of the genome after a break in both strands of DNA. How a pathway is selected, however, is not well understood. Since these double strand breaks (DSBs) occur while DNA is packaged as chromatin, changes in its organization are necessary for repair to take place. Numerous alterations have

  16. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  17. Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays.

    PubMed

    Au, William W; Salama, Salama A; Sierra-Torres, Carlos H

    2003-11-01

    A major barrier to understanding the role of polymorphic DNA repair genes for environmental cancer is that the functions of variant genotypes are largely unknown. Using our cytogenetic challenge assays, we conducted an investigation to address the deficiency. Using X-rays or ultraviolet (UV) light, we irradiated blood lymphocytes from 80 nonsmoking donors to challenge the cells to repair the induced DNA damage, and we analyzed expression of chromosome aberrations (CA) specific to the inducing agents. We have genotyped polymorphic DNA repair genes preferentially involved with base excision repair (BER) and nucleotide excision repair (NER) activities (XRCC1, XRCC3, APE1, XPD) corresponding to the repair of X-ray- and UV light-induced DNA damage, respectively. We expected that defects in specific DNA repair pathways due to polymorphisms would cause corresponding increases of specific CA. From our data, XRCC1 399Gln and XRCC3 241Met were associated with significant increases in chromosome deletions compared with the corresponding homozygous wild types (18.27 1.1 vs 14.79 1.2 and 18.22 0.99 vs 14.20 1.39, respectively); XPD 312Asn and XPD 751Gln were associated with significant increases in chromatid breaks compared with wild types (16.09 1.36 vs 11.41 0.98 and 16.87 1.27 vs 10.54 0.87, respectively), p < 0.05. The data indicate that XRCC1 399Gln and XRCC3 241Met are significantly defective in BER, and the XPD 312Asn and XPD 751Gln are significantly defective in NER. In addition, the variant genotypes interact significantly, with limited overlap of the two different repair pathways.

  18. Chronic Oxidative Damage together with Genome Repair Deficiency in the Neurons is a Double Whammy for Neurodegeneration: Is Damage Response Signaling a Potential Therapeutic Target?

    PubMed Central

    Wang, Haibo; Dharmalingam, Prakash; Vasquez, Velmarini; Mitra, Joy; Boldogh, Istvan; Rao, K. S.; Kent, Thomas A.; Mitra, Sankar; Hegde, Muralidhar L.

    2016-01-01

    A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated ageing and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases. PMID:27663141

  19. Polymorphisms in DNA repair genes and MDR1 and the risk for non-Hodgkin lymphoma.

    PubMed

    Kim, Hee Nam; Kim, Nan Young; Yu, Li; Kim, Yeo-Kyeoung; Lee, Il-Kwon; Yang, Deok-Hwan; Lee, Je-Jung; Shin, Min-Ho; Park, Kyeong-Soo; Choi, Jin-Su; Kim, Hyeoung-Joon

    2014-04-21

    The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls). Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT) were associated with a decreased risk for NHL [odds ratio (OR)XRCC1 GA=0.80, p=0.02; OROGG1 GG=0.70, p=0.008; ORBRCA1 TT=0.71, p=0.048; ORWRN TT=0.68, p=0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR=1.25, p=0.04). In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR=0.74, p=0.04), and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT=1.50, p<0.0001; OR3435TT=1.43, p=0.02). These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients.

  20. HTLV-I Tax Increases Genetic Instability by Inducing DNA Double Strand Breaks during DNA Replication and Switching Repair to NHEJ

    PubMed Central

    Baydoun, Hicham H.; Bai, Xue Tao; Shelton, Shary; Nicot, Christophe

    2012-01-01

    Background Appropriate responses to damaged DNA are indispensible for preserving genome stability and preventing cancer. Tumor viruses often target DNA repair machinery to achieve transformation. The Human T-cell leukemia virus type I (HTLV-I) is the only known transforming human retrovirus and the etiological agent of Adult T-cell Leukemia (ATLL). Although HTLV-I-transformed leukemic cells have numerous genetic lesions, the precise role of the viral tax gene in this process is not fully understood. Results Our results show a novel function of HTLV-I oncoprotein Tax as an inducer of genomic DNA double strand breaks (DDSB) during DNA replication. We also found that Tax acts as a potent inhibitor of homologous recombination (HR) DNA repair through the activation of the NF-kB pathway. These results were confirmed using HTLV-I molecular clones expressing Tax at physiological levels in a natural context. We further found that HTLV-I- and Tax-transformed cells are not more susceptible to DNA damaging agents and repair DNA lesions at a rate similar to that of normal cells. Finally, we demonstrated that during S phase, Tax-associated DDSB are preferentially repaired using the error-prone non-homologous end joining (NHEJ) pathway. Conclusions This study provides new insights in Tax effects on DNA repair and genome instability. Although it may not be self sufficient, the creation of DNA breaks and subsequent abnormal use of the non-conservative NHEJ DNA repair during the S phase in HTLV-I-infected Tax-expressing cells may cooperate with other factors to increase genetic and genome instability and favor transformation. PMID:22916124

  1. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    PubMed Central

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  2. BRCA Mutations, DNA Repair Deficiency, and Ovarian Aging1

    PubMed Central

    Oktay, Kutluk; Turan, Volkan; Titus, Shiny; Stobezki, Robert; Liu, Lin

    2015-01-01

    Oocyte aging has a significant impact on reproductive outcomes both quantitatively and qualitatively. However, the molecular mechanisms underlying the age-related decline in reproductive success have not been fully addressed. BRCA is known to be involved in homologous DNA recombination and plays an essential role in double-strand DNA break repair. Given the growing body of laboratory and clinical evidence, we performed a systematic review on the current understanding of the role of DNA repair in human reproduction. We find that BRCA mutations negatively affect ovarian reserve based on convincing evidence from in vitro and in vivo results and prospective studies. Because decline in the function of the intact gene occurs at an earlier age, women with BRCA1 mutations exhibit accelerated ovarian aging, unlike those with BRCA2 mutations. However, because of the still robust function of the intact allele in younger women and because of the masking of most severe cases by prophylactic oophorectomy or cancer, it is less likely one would see an effect of BRCA mutations on fertility until later in reproductive age. The impact of BRCA2 mutations on reproductive function may be less visible because of the delayed decline in the function of normal BRCA2 allele. BRCA1 function and ataxia-telangiectasia-mutated (ATM)-mediated DNA repair may also be important in the pathogenesis of age-induced increase in aneuploidy. BRCA1 is required for meiotic spindle assembly, and cohesion function between sister chromatids is also regulated by ATM family member proteins. Taken together, these findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian aging. PMID:26224004

  3. Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice.

    PubMed

    Hashizume, Masahiro; Mouner, Marc; Chouteau, Joshua M; Gorodnya, Olena M; Ruchko, Mykhaylo V; Potter, Barry J; Wilson, Glenn L; Gillespie, Mark N; Parker, James C

    2013-02-15

    This study tested the hypothesis that oxidative mitochondrial-targeted DNA (mtDNA) damage triggered ventilator-induced lung injury (VILI). Control mice and mice infused with a fusion protein targeting the DNA repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) to mitochondria were mechanically ventilated with a range of peak inflation pressures (PIP) for specified durations. In minimal VILI (1 h at 40 cmH(2)O PIP), lung total extravascular albumin space increased 2.8-fold even though neither lung wet/dry (W/D) weight ratios nor bronchoalveolar lavage (BAL) macrophage inflammatory protein (MIP)-2 or IL-6 failed to differ from nonventilated or low PIP controls. This increase in albumin space was attenuated by OGG1. Moderately severe VILI (2 h at 40 cmH(2)O PIP) produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio and marked increases in BAL MIP-2 and IL-6, accompanied by oxidative mitochondrial DNA damage, as well as decreases in the total tissue glutathione (GSH) and GSH/GSSH ratio compared with nonventilated lungs. All of these injury indices were attenuated in OGG1-treated mice. At the highest level of VILI (2 h at 50 cmH(2)O PIP), OGG1 failed to protect against massive lung edema and BAL cytokines or against depletion of the tissue GSH pool. Interestingly, whereas untreated mice died before completing the 2-h protocol, OGG1-treated mice lived for the duration of observation. Thus mitochondrially targeted OGG1 prevented VILI over a range of ventilation times and pressures and enhanced survival in the most severely injured group. These findings support the concept that oxidative mtDNA damage caused by high PIP triggers induction of acute lung inflammation and injury.

  4. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Background. Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis. PMID:26273425

  5. Toll-Like Receptor-4 deficiency enhances repair of ultraviolet radiation induced cutaneous DNA damage by nucleotide excision repair mechanism

    PubMed Central

    Ahmad, Israr; Simanyi, Eva; Guroji, Purushotham; Tamimi, Iman A; delaRosa, Hillary J; Nagar, Anusuiya; Nagar, Priyamvada; Katiyar, Santosh K; Elmets, Craig A; Yusuf, Nabiha

    2014-01-01

    UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer. PMID:24326454

  6. Roles of exonucleases and translesion synthesis DNA polymerases during mitotic gap repair in yeast

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Transformation-based gap-repair assays have long been used to model the repair of mitotic double-strand breaks (DSBs) by homologous recombination in yeast. In the current study, we examine genetic requirements of two key processes involved in DSB repair: (1) the processive 5′-end resection that is required to efficiently engage a repair template and (2) the filling of resected ends by DNA polymerases. The specific gap-repair assay used allows repair events resolved as crossover versus noncrossover products to be distinguished, as well as the extent of heteroduplex DNA formed during recombination to be measured. To examine end resection, the efficiency and outcome of gap repair were monitored in the absence of the Exo1 exonuclease and the Sgs1 helicase. We found that either Exo1 or Sgs1 presence is sufficient to inhibit gap-repair efficiency over 10-fold, consistent with resection-mediated destruction of the introduced plasmid. In terms of DNA polymerase requirements for gap repair, we focused specifically on potential roles of the Pol ζ and Pol η translesion synthesis DNA polymerases. We found that both Pol ζ and Pol η are necessary for efficient gap repair and that each functions independently of the other. These polymerases may be either in the initiation of DNA synthesis from the an invading end, or in a gap-filling process that is required to complete recombination. PMID:24210827

  7. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    PubMed Central

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  8. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    PubMed

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.

  9. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines

    PubMed Central

    Yamamoto, Kimiyo N.; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P.; Witt, Kristine L.; Tice, Raymond R.

    2012-01-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the U.S. Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in 7 isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. PMID:21538559

  10. RTEL1 contributes to DNA replication and repair and telomere maintenance.

    PubMed

    Uringa, Evert-Jan; Lisaingo, Kathleen; Pickett, Hilda A; Brind'Amour, Julie; Rohde, Jan-Hendrik; Zelensky, Alex; Essers, Jeroen; Lansdorp, Peter M

    2012-07-01

    Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic stem cells to examine the function of mRtel1 in replication, DNA repair, recombination, and telomere maintenance. mRtel1-deficient mouse embryonic stem cells showed sensitivity to a range of DNA-damaging agents, highlighting its role in replication and genome maintenance. Deletion of mRtel1 increased the frequency of sister chromatid exchange events and suppressed gene replacement, demonstrating the involvement of the protein in homologous recombination. mRtel1 localized transiently at telomeres and is needed for efficient telomere replication. Of interest, in the absence of mRtel1, telomeres in embryonic stem cells appeared relatively stable in length, suggesting that mRtel1 is required to allow extension by telomerase. We propose that mRtel1 is a key protein for DNA replication, recombination, and repair and efficient elongation of telomeres by telomerase.

  11. Repair of DNA Strand Breaks in a Minichromosome In Vivo: Kinetics, Modeling, and Effects of Inhibitors

    PubMed Central

    Kumala, Slawomir; Fujarewicz, Krzysztof; Jayaraju, Dheekollu; Rzeszowska-Wolny, Joanna; Hancock, Ronald

    2013-01-01

    To obtain an overall picture of the repair of DNA single and double strand breaks in a defined region of chromatin in vivo, we studied their repair in a ∼170 kb circular minichromosome whose length and topology are analogous to those of the closed loops in genomic chromatin. The rate of repair of single strand breaks in cells irradiated with γ photons was quantitated by determining the sensitivity of the minichromosome DNA to nuclease S1, and that of double strand breaks by assaying the reformation of supercoiled DNA using pulsed field electrophoresis. Reformation of supercoiled DNA, which requires that all single strand breaks have been repaired, was not slowed detectably by the inhibitors of poly(ADP-ribose) polymerase-1 NU1025 or 1,5-IQD. Repair of double strand breaks was slowed by 20–30% when homologous recombination was supressed by KU55933, caffeine, or siRNA-mediated depletion of Rad51 but was completely arrested by the inhibitors of nonhomologous end-joining wortmannin or NU7441, responses interpreted as reflecting competition between these repair pathways similar to that seen in genomic DNA. The reformation of supercoiled DNA was unaffected when topoisomerases I or II, whose participation in repair of strand breaks has been controversial, were inhibited by the catalytic inhibitors ICRF-193 or F11782. Modeling of the kinetics of repair provided rate constants and showed that repair of single strand breaks in minichromosome DNA proceeded independently of repair of double strand breaks. The simplicity of quantitating strand breaks in this minichromosome provides a usefull system for testing the efficiency of new inhibitors of their repair, and since the sequence and structural features of its DNA and its transcription pattern have been studied extensively it offers a good model for examining other aspects of DNA breakage and repair. PMID:23382828

  12. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  13. A novel regulatory circuit in base excision repair involving AP endonuclease 1, Creb1 and DNA polymerase β

    PubMed Central

    Pei, De-Sheng; Yang, Xiao-Jie; Liu, Wei; Guikema, Jeroen E. J.; Schrader, Carol E.; Strauss, Phyllis R.

    2011-01-01

    DNA repair is required to maintain genome stability in stem cells and early embryos. At critical junctures, oxidative damage to DNA requires the base excision repair (BER) pathway. Since early zebrafish embryos lack the major polymerase in BER, DNA polymerase ß, repair proceeds via replicative polymerases, even though there is ample polb mRNA. Here, we report that Polb protein fails to appear at the appropriate time in development when AP endonuclease 1 (Apex), the upstream protein in BER, is knocked down. Because polb contains a Creb1 binding site, we examined whether knockdown of Apex affects creb1. Apex knockdown results in loss of Creb1 and Creb complex members but not Creb1 phosphorylation. This effect is independent of p53. Although both apex and creb1 mRNA rescue Creb1 and Polb after Apex knockdown, Apex is not a co-activator of creb1 transcription. This observation has broad significance, as similar results occur when Apex is inhibited in B cells from apex+/− mice. These results describe a novel regulatory circuit involving Apex, Creb1 and Polb and provide a mechanism for lethality of Apex loss in higher eukaryotes. PMID:21172930

  14. Emerging critical roles of Fe-S clusters in DNA replication and repair

    PubMed Central

    Fuss, Jill O.; Tsai, Chi-Lin; Ishida, Justin P.; Tainer, John A.

    2015-01-01

    Fe-S clusters are partners in the origin of life that predate cells, acetyl-CoA metabolism, DNA, and the RNA world. The double helix solved the mystery of DNA replication by base pairing for accurate copying. Yet, for genome stability necessary to life, the double helix has equally important implications for damage repair. Here we examine striking advances that uncover Fe-S cluster roles both in copying the genetic sequence by DNA polymerases and in crucial repair processes for genome maintenance, as mutational defects cause cancer and degenerative disease. Moreover, we examine an exciting, controversial role for Fe-S clusters in a third element required for life – the long-range coordination and regulation of replication and repair events. By their ability to delocalize electrons over both Fe and S centers, Fe-S clusters have unbeatable features for protein conformational control and charge transfer via double-stranded DNA that may fundamentally transform our understanding of life, replication, and repair. PMID:25655665

  15. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity.

    PubMed

    Kim, Yeo Jin; Kim, Hyoung-June; Kim, Hye Lim; Kim, Hyo Jeong; Kim, Hyun Soo; Lee, Tae Ryong; Shin, Dong Wook; Seo, Young Rok

    2017-02-01

    The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. An Overview of the Molecular Mechanisms of Recombinational DNA Repair

    PubMed Central

    Kowalczykowski, Stephen C.

    2015-01-01

    Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution. PMID:26525148

  17. An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression

    PubMed Central

    Pastukh, Viktor; Roberts, Justin T.; Clark, David W.; Bardwell, Gina C.; Patel, Mita; Al-Mehdi, Abu-Bakr; Borchert, Glen M.

    2015-01-01

    In hypoxia, mitochondria-generated reactive oxygen species not only stimulate accumulation of the transcriptional regulator of hypoxic gene expression, hypoxia inducible factor-1 (Hif-1), but also cause oxidative base modifications in hypoxic response elements (HREs) of hypoxia-inducible genes. When the hypoxia-induced base modifications are suppressed, Hif-1 fails to associate with the HRE of the VEGF promoter, and VEGF mRNA accumulation is blunted. The mechanism linking base modifications to transcription is unknown. Here we determined whether recruitment of base excision DNA repair (BER) enzymes in response to hypoxia-induced promoter modifications was required for transcription complex assembly and VEGF mRNA expression. Using chromatin immunoprecipitation analyses in pulmonary artery endothelial cells, we found that hypoxia-mediated formation of the base oxidation product 8-oxoguanine (8-oxoG) in VEGF HREs was temporally associated with binding of Hif-1α and the BER enzymes 8-oxoguanine glycosylase 1 (Ogg1) and redox effector factor-1 (Ref-1)/apurinic/apyrimidinic endonuclease 1 (Ape1) and introduction of DNA strand breaks. Hif-1α colocalized with HRE sequences harboring Ref-1/Ape1, but not Ogg1. Inhibition of BER by small interfering RNA-mediated reduction in Ogg1 augmented hypoxia-induced 8-oxoG accumulation and attenuated Hif-1α and Ref-1/Ape1 binding to VEGF HRE sequences and blunted VEGF mRNA expression. Chromatin immunoprecipitation-sequence analysis of 8-oxoG distribution in hypoxic pulmonary artery endothelial cells showed that most of the oxidized base was localized to promoters with virtually no overlap between normoxic and hypoxic data sets. Transcription of genes whose promoters lost 8-oxoG during hypoxia was reduced, while those gaining 8-oxoG was elevated. Collectively, these findings suggest that the BER pathway links hypoxia-induced introduction of oxidative DNA modifications in promoters of hypoxia-inducible genes to transcriptional

  18. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.

    PubMed

    Ricchetti, M; Fairhead, C; Dujon, B

    1999-11-04

    The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process.

  19. The Fanconi Anemia Pathway in Replication Stress and DNA Crosslink Repair

    PubMed Central

    Jones, Mathew JK.; Huang, Tony T.

    2013-01-01

    Interstand crosslinks (ICLs) are DNA lesions where the bases of opposing DNA strands are covalently linked, inhibiting critical cellular processes such as transcription and replication. Chemical agents that generate ICLs cause chromosomal abnormalities including breaks, deletions and rearrangements, making them highly genotoxic compounds. This toxicity has proven useful for chemotherapeutic treatment against a wide variety of cancer types. The majority of our understanding of ICL repair in humans has been uncovered thorough analysis of the rare genetic disorder Fanconi anemia, in which patients are extremely sensitive to crosslinking agents. Here, we discuss recent insights into ICL repair gained through new ICL repair assays and highlight the role of the Fanconi Anemia repair pathway during replication stress. PMID:22744751

  20. Identification and Characterization of uvrA, a DNA Repair Gene of Deinococcus radiodurans

    DTIC Science & Technology

    1996-01-01

    and Classificalion I 2 . TheCellWall 4 3. Intracellular Molecules 7 4. Genetics _ _ _ _ _.. 8 a. DNA COntent. 8 b. Chromosomes 8 c. Plasmids 10 d...Summary 11 B. DNA Damaging Agenls 12 I. Visible Light and Low-Frequency UV Radiation 12 2 . High-frequency UV Radiation 13 a. Pyrimidine DiIners 13 b. The...23 a. Photoreactivation Repair 23 b. Repair of Spore Pholoproducts 27 2 . Repair by Methods Involving Single Proteins 27 a. Repair of

  1. Ex vivo study for the assessment of behavioral factor and gene polymorphisms in individual susceptibility to oxidative DNA damage metals-induced.

    PubMed

    Di Pietro, Angela; Baluce, Barbara; Visalli, Giuseppa; La Maestra, Sebastiano; Micale, Rosanna; Izzotti, Alberto

    2011-06-01

    Transition metals in fine particulate matter generated by combustion induce oxidative DNA damage and inflammation. However, there is remarkable inter-individual variability in susceptibility to these damages. To assess this variability, an ex vivo study was performed using lymphocytes of 47 Caucasian healthy subjects. Cell samples were exposed to a water solution of oil fly ash (OFA). This was formed by the distinctive transition metals vanadium, iron, and nickel. Oxidative DNA damage was evaluated by testing cell viability, intracellular ROS production and 8-oxo-dG. DNA fragmentation and DNA repair capacity were assessed by using the Alkaline-Halo assay. GSTM1, GSTT1, hOGG1, and C677T and A1298C MTHFR gene polymorphisms were tested. Demographic and behavioral factors, collected by questionnaire, were also considered. OFA induced damages showed: (a) a 20-fold variation in range among different subjects in ROS production, (b) a 7-fold variation in range of 8-oxo-dG, and (c) a 25-fold variation in range in DNA repair capacity. A significant increase in DNA damage was detected in GSTT1-deficent subjects compared with wild type genotype carriers. Increases in cytoplasmic ROS and decreases in DNA repair capacity (P<0.05) were observed in C677T and A1298C variants of MTHFR. A remarkable protective effect of high fruits and vegetable intake was observed for ROS production and DNA damage. Conversely, an adverse effect of meat intake was observed on ROS increase, DNA damage and repair capacity, probably due to the increased intake of bioavailable iron. Smoking decreased DNA repair capacity, while age increased OFA-induced DNA damage. The wide comparative analysis of the complex interactions network, between genetic and behavioral factors provides evidence of the remarkable role of several lifestyle factors. In comparison to genetic polymorphisms they seem to have a higher weight in determining individual susceptibility to the adverse effects of airborne pollutants as

  2. p53: traffic cop at the crossroads of DNA repair and recombination.

    PubMed

    Sengupta, Sagar; Harris, Curtis C

    2005-01-01

    p53 mutants that lack DNA-binding activities, and therefore, transcriptional activities, are among the most common mutations in human cancer. Recently, a new role for p53 has come to light, as the tumour suppressor also functions in DNA repair and recombination. In cooperation with its function in transcription, the transcription-independent roles of p53 contribute to the control and efficiency of DNA repair and recombination.

  3. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    PubMed Central

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  4. True Lies: The Double Life of the Nucleotide Excision Repair Factors in Transcription and DNA Repair

    PubMed Central

    Le May, Nicolas; Egly, Jean-Marc; Coin, Frédéric

    2010-01-01

    Nucleotide excision repair (NER) is a major DNA repair pathway in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation or bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to three genetic disorders that result in predisposition to cancers, accelerated aging, neurological and developmental defects. During NER, more than 30 polypeptides cooperate to recognize, incise, and excise a damaged oligonucleotide from the genomic DNA. Recent papers reveal an additional and unexpected role for the NER factors. In the absence of a genotoxic attack, the promoters of RNA polymerases I- and II-dependent genes recruit XPA, XPC, XPG, and XPF to initiate gene expression. A model that includes the growth arrest and DNA damage 45α protein (Gadd45α) and the NER factors, in order to maintain the promoter of active genes under a hypomethylated state, has been proposed but remains controversial. This paper focuses on the double life of the NER factors in DNA repair and transcription and describes the possible roles of these factors in the RNA synthesis process. PMID:20725631

  5. Increased oxidative phosphorylation in response to acute and chronic DNA damage

    PubMed Central

    Brace, Lear E; Vose, Sarah C; Stanya, Kristopher; Gathungu, Rose M; Marur, Vasant R; Longchamp, Alban; Treviño-Villarreal, Humberto; Mejia, Pedro; Vargas, Dorathy; Inouye, Karen; Bronson, Roderick T; Lee, Chih-Hao; Neilan, Edward; Kristal, Bruce S; Mitchell, James R

    2016-01-01

    Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. PMID:28721274

  6. DNA repair kinetic of hydrogen peroxide and UVA/B induced lesions in peripheral blood leucocytes from xeroderma pigmentosum patients and healthy subjects.

    PubMed

    Gonzalez, Elio A Prieto; Mudry, Marta D; Palermo, Ana Maria

    2014-01-01

    The objective of the present work was to study the fine kinetics of DNA repair in xeroderma pigmentosum (XP) syndrome, a complex disorder linked to a deficiency in repair that increases cancer susceptibility. The repair process was evaluated by the comet assay (CA) in cells from 2 XP patients and 9 controls exposed to UVA/B (UVA 366/UVB 280 nm) and H2O2 (150 μM) at temperatures of 4, 15, and 37°C. Samples were taken at 2-min intervals during the first 10 min to analyze the "fine kinetics" repair during the initial phase of the curve, and then at 15, 20, 25, 30, 45, 60, and 120 min. CA evaluation of DNA repair activity points to BER/NER initiation in the first 30 min with both inductors at 37°C and 15°C, but final comet length showed differences according to treatment. Repair kinetics during 120 min showed a good correlation with clinical features in both XP patients. Differences in final comet length were less pronounced in XP cells treated with H2O2 than with UVA/B, probably because the peroxide produces mainly base oxidation but less bulky lesions; UVA/B generates a mixture of both. These findings reinforce the value of CA in testing in DNA repair ability or exposure monitoring.

  7. KDM5A demethylase: Erasing histone modifications to promote repair of DNA breaks

    PubMed Central

    2017-01-01

    Repairing DNA breaks within the complexity of the cell chromatin is challenging. In this issue, Gong et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201611135) identify the histone demethylase KDM5A as a critical editor of the cells’ “histone code” that is required to recruit DNA repair complexes to DNA breaks. PMID:28572116

  8. DNA repair and aging: the impact of the p53 family.

    PubMed

    Nicolai, Sara; Rossi, Antonello; Di Daniele, Nicola; Melino, Gerry; Annicchiarico-Petruzzelli, Margherita; Raschellà, Giuseppe

    2015-12-01

    Cells are constantly exposed to endogenous and exogenous factors that threaten the integrity of their DNA. The maintenance of genome stability is of paramount importance in the prevention of both cancer and aging processes. To deal with DNA damage, cells put into operation a sophisticated and coordinated mechanism, collectively known as DNA damage response (DDR). The DDR orchestrates different cellular processes, such as DNA repair, senescence and apoptosis. Among the key factors of the DDR, the related proteins p53, p63 and p73, all belonging to the same family of transcription factors, play multiple relevant roles. Indeed, the members of this family are directly involved in the induction of cell cycle arrest that is necessary to allow the cells to repair. Alternatively, they can promote cell death in case of prolonged or irreparable DNA damage. They also take part in a more direct task by modulating the expression of core factors involved in the process of DNA repair or by directly interacting with them. In this review we will analyze the fundamental roles of the p53 family in the aging process through their multifaceted function in DDR.

  9. DNA repair and aging: the impact of the p53 family

    PubMed Central

    Nicolai, Sara; Rossi, Antonello; Di Daniele, Nicola; Melino, Gerry; Annicchiarico-Petruzzelli, Margherita; Raschellà, Giuseppe

    2015-01-01

    Cells are constantly exposed to endogenous and exogenous factors that threaten the integrity of their DNA. The maintenance of genome stability is of paramount importance in the prevention of both cancer and aging processes. To deal with DNA damage, cells put into operation a sophisticated and coordinated mechanism, collectively known as DNA damage response (DDR). The DDR orchestrates different cellular processes, such as DNA repair, senescence and apoptosis. Among the key factors of the DDR, the related proteins p53, p63 and p73, all belonging to the same family of transcription factors, play multiple relevant roles. Indeed, the members of this family are directly involved in the induction of cell cycle arrest that is necessary to allow the cells to repair. Alternatively, they can promote cell death in case of prolonged or irreparable DNA damage. They also take part in a more direct task by modulating the expression of core factors involved in the process of DNA repair or by directly interacting with them. In this review we will analyze the fundamental roles of the p53 family in the aging process through their multifaceted function in DDR. PMID:26668111

  10. SIRT6 expression and oxidative DNA damage in individuals with prediabetes and type 2 diabetes mellitus.

    PubMed

    Çalışkan, Z; Mutlu, T; Güven, M; Tunçdemir, M; Niyazioğlu, M; Hacioglu, Y; Dincer, Y

    2018-02-05

    Sirtuins (SIRTs) is a family of NAD + dependent histone deacetylases. SIRT6 takes play in glucose homeostasis, genomic stability and DNA repair. Although increased oxidative DNA damage and decreased DNA repair activity were determined in diabetes mellitus, the possible relation between level of oxidative DNA damage and SIRT6 expression has not been investigated so far. We determined SIRT6 expression and urinary 8-hydroxy deoxyguanosine (8-OHdG) levels, marker of oxidative DNA damage, in cases with prediabetes (PreDM) and type 2 diabetes mellitus (T2DM). SIRT6 gene expression was determined in peripheral blood leukocytes of 70 patients with type 2 diabetes, 50 cases in prediabetic stage and 40 healthy subjects. SIRT6 mRNA levels were determined by quantitive real time- polymerase chain reaction. SIRT6 protein was detected by immunocytochemical staining. Urinary 8-hydroxy deoxyguanosine (8-OHdG) levels were measured by ELISA. There was no significant difference between groups for SIRT6 mRNA level. SIRT6 immunopositivity in T2DM group was lower when compared to those in preDM group (P<0.05). SIRT6 positive cell number in T2DM and preDM groups were lower in comparison to control group (P<0.01 for both), however, when study groups were subdivided into two groups according to their age, the difference between preDM and control groups disappeared in both mid-aged and old-aged groups. The urinary 8-OHdG level was found to be higher in the T2DM group in comparison to preDM group (P<0.05). When age is taken into consideration, urinary 8-OHdG level in the T2DM group was found to be higher than those in both preDM and control groups in the old-aged cases but no significant difference was determined between groups in the mid-aged cases. There was no relation between SIRT6 expression and urinary 8-OHDG excretion. It was concluded that SIRT6 may take play in development of T2DM but this effect seems to be independent from repair of oxidative DNA damage. Copyright © 2017 Elsevier

  11. Efficient DNA Repair: A Cell’s Fountain of Youth? | Center for Cancer Research

    Cancer.gov

    Given the central importance of the genome to a cell’s function, it is not surprising that there are a number of proteins devoted to sensing and repairing DNA damage. But what happens when these repair proteins do not work properly? Cancer is one possible outcome, and a growing body of evidence also indicates that the cellular response to DNA damage plays a key role in the aging process. This concept is supported by the fact that many premature aging syndromes are caused by mutations in DNA repair proteins.

  12. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-driven Gene Expression*

    PubMed Central

    Pan, Lang; Hao, Wenjing; Ba, Xueqing

    2016-01-01

    A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression. PMID:27756845

  13. DR-GAS: a database of functional genetic variants and their phosphorylation states in human DNA repair systems.

    PubMed

    Sehgal, Manika; Singh, Tiratha Raj

    2014-04-01

    We present DR-GAS(1), a unique, consolidated and comprehensive DNA repair genetic association studies database of human DNA repair system. It presents information on repair genes, assorted mechanisms of DNA repair, linkage disequilibrium, haplotype blocks, nsSNPs, phosphorylation sites, associated diseases, and pathways involved in repair systems. DNA repair is an intricate process which plays an essential role in maintaining the integrity of the genome by eradicating the damaging effect of internal and external changes in the genome. Hence, it is crucial to extensively understand the intact process of DNA repair, genes involved, non-synonymous SNPs which perhaps affect the function, phosphorylated residues and other related genetic parameters. All the corresponding entries for DNA repair genes, such as proteins, OMIM IDs, literature references and pathways are cross-referenced to their respective primary databases. DNA repair genes and their associated parameters are either represented in tabular or in graphical form through images elucidated by computational and statistical analyses. It is believed that the database will assist molecular biologists, biotechnologists, therapeutic developers and other scientific community to encounter biologically meaningful information, and meticulous contribution of genetic level information towards treacherous diseases in human DNA repair systems. DR-GAS is freely available for academic and research purposes at: http://www.bioinfoindia.org/drgas. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair.

    PubMed Central

    Ayyagari, R; Impellizzeri, K J; Yoder, B L; Gary, S L; Burgers, P M

    1995-01-01

    The saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA), encoded by the POL30 gene, is essential for DNA replication and DNA repair processes. Twenty-one site-directed mutations were constructed in the POL30 gene, each mutation changing two adjacently located charged amino acids to alanines. Although none of the mutant strains containing these double-alanine mutations as the sole source of PCNA were temperature sensitive or cold sensitive for growth, about a third of the mutants showed sensitivity to UV light. Some of those UV-sensitive mutants had elevated spontaneous mutation rates. In addition, several mutants suppressed a cold-sensitive mutation in the CDC44 gene, which encodes the large subunit of replication factor C. A cold-sensitive mutant, which was isolated by random mutagenesis, showed a terminal phenotype at the restrictive temperature consistent with a defect in DNA replication. Several mutant PCNAs were expressed and purified from Escherichia coli, and their in vitro properties were determined. The cold-sensitive mutant (pol30-52, S115P) was a monomer, rather than a trimer, in solution. This mutant was deficient for DNA synthesis in vitro. Partial restoration of DNA polymerase delta holoenzyme activity was achieved at 37 degrees C but not at 14 degrees C by inclusion of the macromolecular crowding agent polyethylene glycol in the assay. The only other mutant (pol30-6, DD41,42AA) that showed a growth defect was partially defective for interaction with replication factor C and DNA polymerase delta but completely defective for interaction with DNA polymerase epsilon. Two other mutants sensitive to DNA damage showed no defect in vitro. These results indicate that the latter mutants are specifically impaired in one or more DNA repair processes whereas pol30-6 and pol30-52 mutants show their primary defects in the basic DNA replication machinery with probable associated defects in DNA repair. Therefore, DNA repair requires interactions

  15. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    PubMed

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.

  16. Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair

    PubMed Central

    Subramanian, Vijayalakshmi V.; MacQueen, Amy J.; Vader, Gerben; Shinohara, Miki; Sanchez, Aurore; Borde, Valérie; Shinohara, Akira; Hochwagen, Andreas

    2016-01-01

    Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression. PMID:26870961

  17. Ada response - a strategy for repair of alkylated DNA in bacteria.

    PubMed

    Mielecki, Damian; Grzesiuk, Elżbieta

    2014-06-01

    Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N(3)-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N(1)-methyladenine (1meA) and N(3)-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O(6)-methylguanine (O(6) meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  18. Stress and DNA repair biology of the Fanconi anemia pathway

    PubMed Central

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  19. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    PubMed

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (P<0.05) after 48h of exposure to 3 or 6μM PM. The NOR-G-OH DNA adduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stingele, Julian; Bellelli, Roberto; Alte, Ferdinand

    Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled bymore » several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome.« less

  1. Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN

    DOE PAGES

    Stingele, Julian; Bellelli, Roberto; Alte, Ferdinand; ...

    2016-10-27

    Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled bymore » several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome.« less

  2. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    PubMed

    Li, Cuiping; Wang, Hailin

    2015-08-07

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair.

    PubMed

    Borgesius, Nils Z; de Waard, Monique C; van der Pluijm, Ingrid; Omrani, Azar; Zondag, Gerben C M; van der Horst, Gijsbertus T J; Melton, David W; Hoeijmakers, Jan H J; Jaarsma, Dick; Elgersma, Ype

    2011-08-31

    Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.

  4. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus

    PubMed Central

    Bothmer, Anne; Phadke, Tanushree; Barrera, Luis A.; Margulies, Carrie M; Lee, Christina S.; Buquicchio, Frank; Moss, Sean; Abdulkerim, Hayat S.; Selleck, William; Jayaram, Hariharan; Myer, Vic E.; Cotta-Ramusino, Cecilia

    2017-01-01

    The CRISPR–Cas9 system provides a versatile toolkit for genome engineering that can introduce various DNA lesions at specific genomic locations. However, a better understanding of the nature of these lesions and the repair pathways engaged is critical to realizing the full potential of this technology. Here we characterize the different lesions arising from each Cas9 variant and the resulting repair pathway engagement. We demonstrate that the presence and polarity of the overhang structure is a critical determinant of double-strand break repair pathway choice. Similarly, single nicks deriving from different Cas9 variants differentially activate repair: D10A but not N863A-induced nicks are repaired by homologous recombination. Finally, we demonstrate that homologous recombination is required for repairing lesions using double-stranded, but not single-stranded DNA as a template. This detailed characterization of repair pathway choice in response to CRISPR–Cas9 enables a more deterministic approach for designing research and therapeutic genome engineering strategies. PMID:28067217

  5. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    DTIC Science & Technology

    2014-09-18

    MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved

  6. Ultraviolet light-resistant primary transfectants of xeroderma pigmentosum cells are also DNA repair-proficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, M.; Naiman, T.; Canaani, D.

    1989-08-15

    In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced ({sup 3}H)thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line.

  7. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    PubMed

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  8. Interplay of DNA repair with transcription: from structures to mechanisms.

    PubMed

    Deaconescu, Alexandra M; Artsimovitch, Irina; Grigorieff, Nikolaus

    2012-12-01

    Many DNA transactions are crucial for maintaining genomic integrity and faithful transfer of genetic information but remain poorly understood. An example is the interplay between nucleotide excision repair (NER) and transcription, also known as transcription-coupled DNA repair (TCR). Discovered decades ago, the mechanisms for TCR have remained elusive, not in small part due to the scarcity of structural studies of key players. Here we summarize recent structural information on NER/TCR factors, focusing on bacterial systems, and integrate it with existing genetic, biochemical, and biophysical data to delineate the mechanisms at play. We also review emerging, alternative modalities for recruitment of NER proteins to DNA lesions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks

    PubMed Central

    Bolderson, Emma; Tomimatsu, Nozomi; Richard, Derek J.; Boucher, Didier; Kumar, Rakesh; Pandita, Tej K.; Burma, Sandeep; Khanna, Kum Kum

    2010-01-01

    DNA double-strand break (DSB) repair via the homologous recombination pathway is a multi-stage process, which results in repair of the DSB without loss of genetic information or fidelity. One essential step in this process is the generation of extended single-stranded DNA (ssDNA) regions at the break site. This ssDNA serves to induce cell cycle checkpoints and is required for Rad51 mediated strand invasion of the sister chromatid. Here, we show that human Exonuclease 1 (Exo1) is required for the normal repair of DSBs by HR. Cells depleted of Exo1 show chromosomal instability and hypersensitivity to ionising radiation (IR) exposure. We find that Exo1 accumulates rapidly at DSBs and is required for the recruitment of RPA and Rad51 to sites of DSBs, suggesting a role for Exo1 in ssDNA generation. Interestingly, the phosphorylation of Exo1 by ATM appears to regulate the activity of Exo1 following resection, allowing optimal Rad51 loading and the completion of HR repair. These data establish a role for Exo1 in resection of DSBs in human cells, highlighting the critical requirement of Exo1 for DSB repair via HR and thus the maintenance of genomic stability. PMID:20019063

  10. Clinical Radiation Sensitivity With DNA Repair Disorders: An Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, Julianne M.; Biomedical Physics Interdepartmental Graduate Program, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA

    2009-08-01

    Adverse reactions to radiotherapy represent a confounding phenomenon in radiation oncology. These reactions are rare, and many have been associated with individuals with DNA repair disorders such as ataxia-telangiectasia and Nijmegen Breakage syndrome. A paucity of published data is available detailing such circumstances. This overview describes four exemplary situations, a comprehensive list of 32 additional cases, and some insights gleaned from this overall experience. Fanconi anemia was associated with more than one-half of the reports. The lowest dose given to a patient that resulted in a reaction was 3 Gy, given to an ataxia-telangiectasia patient. Most patients died within monthsmore » of exposure. It is clear that the patients discussed in this report had complicated illnesses, in addition to cancer, and the radiotherapy administered was most likely their best option. However, the underlying DNA repair defects make conventional radiation doses dangerous. Our findings support previous wisdom that radiotherapy should either be avoided or the doses should be selected with great care in the case of these radiosensitive genotypes, which must be recognized by their characteristic phenotypes, until more rapid, reliable, and functional assays of DNA repair become available.« less

  11. Red light improves spermatozoa motility and does not induce oxidative DNA damage

    NASA Astrophysics Data System (ADS)

    Preece, Daryl; Chow, Kay W.; Gomez-Godinez, Veronica; Gustafson, Kyle; Esener, Selin; Ravida, Nicole; Durrant, Barbara; Berns, Michael W.

    2017-04-01

    The ability to successfully fertilize ova relies upon the swimming ability of spermatozoa. Both in humans and in animals, sperm motility has been used as a metric for the viability of semen samples. Recently, several studies have examined the efficacy of low dosage red light exposure for cellular repair and increasing sperm motility. Of prime importance to the practical application of this technique is the absence of DNA damage caused by radiation exposure. In this study, we examine the effect of 633 nm coherent, red laser light on sperm motility using a novel wavelet-based algorithm that allows for direct measurement of curvilinear velocity under red light illumination. This new algorithm gives results comparable to the standard computer-assisted sperm analysis (CASA) system. We then assess the safety of red light treatment of sperm by analyzing, (1) the levels of double-strand breaks in the DNA, and (2) oxidative damage in the sperm DNA. The results demonstrate that for the parameters used there are insignificant differences in oxidative DNA damage as a result of irradiation.

  12. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    PubMed Central

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  13. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer.

    PubMed

    Scarbrough, Peter M; Weber, Rachel Palmieri; Iversen, Edwin S; Brhane, Yonathan; Amos, Christopher I; Kraft, Peter; Hung, Rayjean J; Sellers, Thomas A; Witte, John S; Pharoah, Paul; Henderson, Brian E; Gruber, Stephen B; Hunter, David J; Garber, Judy E; Joshi, Amit D; McDonnell, Kevin; Easton, Doug F; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A; Schildkraut, Joellen M

    2016-01-01

    DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. We identified three susceptibility DNA repair genes, RAD51B (P < 5.09 × 10(-6)), MSH5 (P < 5.09 × 10(-6)), and BRCA2 (P = 5.70 × 10(-6)). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. ©2015 American Association for Cancer Research.

  14. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions.

    PubMed

    Schuch, André Passaglia; Moreno, Natália Cestari; Schuch, Natielen Jacques; Menck, Carlos Frederico Martins; Garcia, Camila Carrião Machado

    2017-06-01

    The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All

  15. Influence of Morinda citrifolia (Noni) on Expression of DNA Repair Genes in Cervical Cancer Cells.

    PubMed

    Gupta, Rakesh Kumar; Bajpai, Deepti; Singh, Neeta

    2015-01-01

    Previous studies have suggested that Morinda citrifolia (Noni) has potential to reduce cancer risk. The purpose of this study was to investigate the effect of Noni, cisplatin, and their combination on DNA repair genes in the SiHa cervical cancer cell line. SiHa cells were cultured and treated with 10% Noni, 10 μg/dl cisplatin or their combination for 24 hours. Post culturing, the cells were pelleted, RNA extracted, and processed for investigating DNA repair genes by real time PCR. The expression of nucleotide excision repair genes ERCC1, ERCC2, and ERCC4 and base excision repair gene XRCC1 was increased 4 fold, 8.9 fold, 4 fold, and 5.5 fold, respectively, on treatment with Noni as compared to untreated controls (p<0.05). In contrast, expression was found to be decreased 22 fold, 13 fold, 16 fold, and 23 fold on treatment with cisplatin (p<0.05). However, the combination of Noni and cisplatin led to an increase of 2 fold, 1.6 fold, 3 fold, 1.2 fold, respectively (p<0.05). Noni enhanced the expression of DNA repair genes by itself and in combination with cisplatin. However, high expression of DNA repair genes at mRNA level only signifies efficient DNA transcription of the above mentioned genes; further investigations are needed to evaluate the DNA repair protein expression.

  16. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?

    PubMed

    Lee, Andrea J; Wallace, Susan S

    2017-06-01

    The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes.

    PubMed

    Jobert, Laure; Nilsen, Hilde

    2014-07-01

    The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.

  18. Ada response – a strategy for repair of alkylated DNA in bacteria

    PubMed Central

    Mielecki, Damian; Grzesiuk, Elżbieta

    2014-01-01

    Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N3-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N1-methyladenine (1meA) and N3-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O6-methylguanine (O6meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. PMID:24810496

  19. Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications

    PubMed Central

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2016-01-01

    Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings

  20. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    PubMed

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.

  1. Nickel(II) affects poly(ADP-ribose) polymerase-mediated DNA repair in normal and cancer cells.

    PubMed

    Wozniak, Katarzyna; Czechowska, Agnieszka; Blasiak, Janusz

    2006-01-01

    Nickel(II) can be genotoxic, but the mechanism of its genotoxicity is not fully understood and the process of DNA repair may be considered as its potential target. We studied the effect of nickel chloride on the poly(ADP-ribose) polymerase (PARP)-mediated repair of DNA damaged by gamma-radiation and idarubicin with the alkaline comet assay in normal and cancer cells. Our results indicate that nickel chloride at very low, non-cytotoxic concentration of 1 microM can affect PARP-mediated DNA repair of lesions evoked by idarubicin and gamma-radiation. We also suggest that in the quiescent lymphocytes treated with gamma-radiation, nickel(II) could interfere with DNA repair process independent of PARP.

  2. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice.

    PubMed

    Safdar, Adeel; Khrapko, Konstantin; Flynn, James M; Saleem, Ayesha; De Lisio, Michael; Johnston, Adam P W; Kratysberg, Yevgenya; Samjoo, Imtiaz A; Kitaoka, Yu; Ogborn, Daniel I; Little, Jonathan P; Raha, Sandeep; Parise, Gianni; Akhtar, Mahmood; Hettinga, Bart P; Rowe, Glenn C; Arany, Zoltan; Prolla, Tomas A; Tarnopolsky, Mark A

    2016-01-01

    Human genetic disorders and transgenic mouse models have shown that mitochondrial DNA (mtDNA) mutations and telomere dysfunction instigate the aging process. Epidemiologically, exercise is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of exercise are well established, the molecular mechanisms instigating these observations remain unclear. Endurance exercise reduces mtDNA mutation burden, alleviates multisystem pathology, and increases lifespan of the mutator mice, with proofreading deficient mitochondrial polymerase gamma (POLG1). We report evidence for a POLG1-independent mtDNA repair pathway mediated by exercise, a surprising notion as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here, we show that the tumor suppressor protein p53 translocates to mitochondria and facilitates mtDNA mutation repair and mitochondrial biogenesis in response to endurance exercise. Indeed, in mutator mice with muscle-specific deletion of p53, exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, or mitigate premature mortality. Our data establish a new role for p53 in exercise-mediated maintenance of the mtDNA genome and present mitochondrially targeted p53 as a novel therapeutic modality for diseases of mitochondrial etiology.

  3. DNA Damage Repair and the Emerging Role of Poly(ADP-ribose) Polymerase Inhibition in Cancer Therapeutics.

    PubMed

    Rabenau, Karen; Hofstatter, Erin

    2016-07-01

    As a result of improved understanding of DNA repair mechanisms, poly(ADP-ribose) polymerase inhibitors (PARPi) are increasingly recognized to play an important therapeutic role in the treatment of cancer. The aim of this article is to provide a review of PARPi function in DNA damage repair and synthetic lethality and to demonstrate how these mechanisms can be exploited to provide new PARPi-based therapies to patients with solid tumors. Literature from a range of sources, including PubMed and MEDLINE, were searched to identify recent reports regarding DNA damage repair and PARPi. DNA damage repair is central to cellular viability. The family of poly(ADP-ribose) polymerase proteins play multiple intracellular roles in DNA repair, but function primarily in the resolution of repair of single-strand DNA breaks. Insights through the discovery of germline BRCA1/2 mutations led to the understanding of synthetic lethality and the potential therapeutic role of PARPi in the treatment of cancer. Further understanding of DNA damage repair and the concept of BRCA-like tumors have catalyzed PARPi clinical investigation in multiple oncologic settings. PARPi hold great promise in the treatment of solid tumors, both as monotherapy and in combination with other cancer therapeutics. Multiple PARPi clinical trials are currently underway. Further understanding of aberrant DNA repair mechanisms in the germline and in the tumor genome will allow clinicians and researchers to apply PARPi most strategically in the era of personalized medicine. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  4. Conformational trapping of mismatch recognition complex MSH2/MSH3 on repair-resistant DNA loops.

    PubMed

    Lang, Walter H; Coats, Julie E; Majka, Jerzy; Hura, Greg L; Lin, Yuyen; Rasnik, Ivan; McMurray, Cynthia T

    2011-10-18

    Insertion and deletion of small heteroduplex loops are common mutations in DNA, but why some loops are prone to mutation and others are efficiently repaired is unknown. Here we report that the mismatch recognition complex, MSH2/MSH3, discriminates between a repair-competent and a repair-resistant loop by sensing the conformational dynamics of their junctions. MSH2/MSH3 binds, bends, and dissociates from repair-competent loops to signal downstream repair. Repair-resistant Cytosine-Adenine-Guanine (CAG) loops adopt a unique DNA junction that traps nucleotide-bound MSH2/MSH3, and inhibits its dissociation from the DNA. We envision that junction dynamics is an active participant and a conformational regulator of repair signaling, and governs whether a loop is removed by MSH2/MSH3 or escapes to become a precursor for mutation.

  5. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA.

    PubMed

    Phadnis, Naina; Mehta, Reema; Meednu, Nida; Sia, Elaine A

    2006-07-13

    Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.

  6. Histone Variant Regulates DNA Repair via Chromatin Condensation | Center for Cancer Research

    Cancer.gov

    Activating the appropriate DNA repair pathway is essential for maintaining the stability of the genome after a break in both strands of DNA. How a pathway is selected, however, is not well understood. Since these double strand breaks (DSBs) occur while DNA is packaged as chromatin, changes in its organization are necessary for repair to take place. Numerous alterations have been associated with DSBs, including modifications of histone tails and exchange of histone variants, some increasing chromatin accessibility, others reducing it. In fact, distinct domains flanking a single DSB have been observed that are bound by opposing repair pathway proteins 53BP1and BRCA1, which promote non-homologous end joining (NHEJ) and homologous recombination (HR), respectively. To investigate whether DSB-proximal chromatin reorganization affects repair pathway selection, Philipp Oberdoerffer, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues performed a high-throughput RNA interference (RNAi) screen for chromatin-related genes that modulate HR.

  7. Mammalian DNA single-strand break repair: an X-ra(y)ted affair.

    PubMed

    Caldecott, K W

    2001-05-01

    The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented. Copyright 2001 John Wiley & Sons, Inc.

  8. Alterations in Synthesis and Repair of DNA during the Development of Loach Misgurnus fossilis

    PubMed Central

    Gening, Leonid V.; Lakhin, Andrei V.; Makarova, Irina V.; Nenasheva, Valentina V.; Andreeva, Ludmila E.; Tarantul, Vyacheslav Z.

    2016-01-01

    Using a modified radiolabeled primer extension method (we named this modification misGvA—“misincorporation of G versus A”) we have investigated the DNA synthesis and repair at early and late stages of development of loach Misgurnus fossilis. The misincorporation activity of DNA polymerase iota (Pol ι) in wild-type loach could not be detected by this method at any stage of loach development. In transgenic loach overexpressing human Pol ι we have shown that the bypassing of DNA synthesis arrest after incorporation of mismatched nucleotide by Pol ι (the T-stop) was not associated with this enzyme. Non-transgenic loach larvae are virtually lacking the capacity for error correction of DNA duplex containing a mismatched nucleotide. Such repair activity develops only in the adult fish. It appears that the initial stages of development are characterized by more intensive DNA synthesis, while in terminal stages the repair activities become more prominent. The misGvA approach clearly indicates substantial changes in the DNA synthesis intensity, although the role of particular replicative and repair DNA polymerases in this process requires further study. PMID:29615575

  9. Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay

    PubMed Central

    Nickson, Catherine M.; Parsons, Jason L.

    2014-01-01

    Base excision repair (BER) is the predominant cellular mechanism by which human cells repair DNA base damage, sites of base loss, and DNA single strand breaks of various complexity, that are generated in their thousands in every human cell per day as a consequence of cellular metabolism and exogenous agents, including ionizing radiation. Over the last three decades the comet assay has been employed in scientific research to examine the cellular response to these types of DNA damage in cultured cells, therefore revealing the efficiency and capacity of BER. We have recently pioneered new research demonstrating an important role for post-translational modifications (particularly ubiquitylation) in the regulation of cellular levels of BER proteins, and that subtle changes (∼20–50%) in protein levels following siRNA knockdown of E3 ubiquitin ligases or deubiquitylation enzymes can manifest in significant changes in DNA repair capacity monitored using the comet assay. For example, we have shown that the E3 ubiquitin ligase Mule, the tumor suppressor protein ARF, and the deubiquitylation enzyme USP47 modulate DNA repair by controlling cellular levels of DNA polymerase β, and also that polynucleotide kinase phosphatase levels are controlled by ATM-dependant phosphorylation and Cul4A–DDB1–STRAP-dependent ubiquitylation. In these studies we employed a modification of the comet assay whereby cultured cells, following DNA damage treatment, are embedded in agarose and allowed to repair in-gel prior to lysis and electrophoresis. Whilst this method does have its limitations, it avoids the extensive cell culture-based processing associated with the traditional approach using attached cells and also allows for the examination of much more precise DNA repair kinetics. In this review we will describe, using this modified comet assay, our accumulating evidence that ubiquitylation-dependant regulation of BER proteins has important consequences for overall cellular DNA repair

  10. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome.

    PubMed

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

  11. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome

    PubMed Central

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo. PMID:26559182

  12. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles’ Heel of Cancer

    PubMed Central

    Velic, Denis; Couturier, Anthony M.; Ferreira, Maria Tedim; Rodrigue, Amélie; Poirier, Guy G.; Fleury, Fabrice; Masson, Jean-Yves

    2015-01-01

    For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use. PMID:26610585

  13. Crystal structure and DNA repair activities of the AP endonuclease from Leishmania major.

    PubMed

    Vidal, Antonio E; Harkiolaki, Maria; Gallego, Claribel; Castillo-Acosta, Victor M; Ruiz-Pérez, Luis M; Wilson, Keith; González-Pacanowska, Dolores

    2007-11-02

    Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage.

  14. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  15. Modulation of DNA-Induced Damage and Repair Capacity in Humans after Dietary Intervention with Lutein-Enriched Fermented Milk

    PubMed Central

    Herrero-Barbudo, Carmen; Soldevilla, Beatriz; Pérez-Sacristán, Belén; Blanco-Navarro, Inmaculada; Herrera, Mercedes; Granado-Lorencio, Fernando; Domínguez, Gemma

    2013-01-01

    Dietary factors provide protection against several forms of DNA damage. Additionally, consumer demand for natural products favours the development of bioactive food ingredients with health benefits. Lutein is a promising biologically active component in the food industry. The EFSA Panel on Dietetic Products, Nutrition and Allergies considers that protection from oxidative damage may be a beneficial physiological effect but that a cause and effect relationship has not been established. Thus, our aim was to evaluate the safety and potential functional effect of a lutein-enriched milk product using the Comet Assay in order to analyze the baseline, the induced DNA-damage and the repair capacity in the lymphocytes of 10 healthy donors before and after the intake of the mentioned product. Our data suggest that the regular consumption of lutein-enriched fermented milk results in a significant increase in serum lutein levels and this change is associated with an improvement in the resistance of DNA to damage and the capacity of DNA repair in lymphocytes. Our results also support the lack of a genotoxic effect at the doses supplied as well as the absence of interactions and side effects on other nutritional and biochemicals markers. PMID:24040187

  16. PTEN positively regulates UVB-induced DNA damage repair

    PubMed Central

    Ming, Mei; Feng, Li; Shea, Christopher R.; Soltani, Keyoumars; Zhao, Baozhong; Han, Weinong; Smart, Robert C.; Trempus, Carol S.; He, Yu-Ying

    2011-01-01

    Non-melanoma skin cancer is the most common cancer in the U.S., where DNA-damaging UVB radiation from the sun remains the major environmental risk factor. However, the critical genetic targets of UVB radiation are undefined. Here we show that attenuating PTEN in epidermal keratinocytes is a predisposing factor for UVB-induced skin carcinogenesis in mice. In skin papilloma and squamous cell carcinoma (SCC), levels of PTEN were reduced compared to skin lacking these lesions. Likewise, there was a reduction in PTEN levels in human premalignant actinic keratosis and malignant SCC, supporting a key role for PTEN in human skin cancer formation and progression. PTEN downregulation impaired the capacity of global genomic nucleotide excision repair (GG-NER), a critical mechanism for removing UVB-induced mutagenic DNA lesions. In contrast to the response to ionizing radiation, PTEN downregulation prolonged UVB-induced growth arrest and increased the activation of the Chk1 DNA damage pathway in an AKT-independent manner, likely due to reduced DNA repair. PTEN loss also suppressed expression of the key GG-NER protein xeroderma pigmentosum C (XPC) through the AKT/p38 signaling axis. Reconstitution of XPC levels in PTEN-inhibited cells restored GG-NER capacity. Taken together, our findings define PTEN as an essential genomic gatekeeper in the skin, through its ability to positively regulate XPC-dependent GG-NER following DNA damage. PMID:21771908

  17. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.

    PubMed

    O'Rourke, Thomas W; Doudican, Nicole A; Mackereth, Melinda D; Doetsch, Paul W; Shadel, Gerald S

    2002-06-01

    The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochondrion-localized, base excision repair enzyme functions to protect mtDNA. However, ntg1 null strains did not exhibit a mitochondrial respiration-deficient (petite) phenotype, suggesting that mtDNA damage is negotiated by the cooperative actions of multiple damage resistance pathways. Null mutations in ABF2 or PIF1, two genes implicated in mtDNA maintenance and recombination, exhibit a synthetic-petite phenotype in combination with ntg1 null mutations that is accompanied by enhanced mtDNA point mutagenesis in the corresponding double-mutant strains. This phenotype was partially rescued by malonic acid, indicating that reactive oxygen species generated by the electron transport chain contribute to mitochondrial dysfunction in abf2 Delta strains. In contrast, when two other genes involved in mtDNA recombination, CCE1 and NUC1, were inactivated a strong synthetic-petite phenotype was not observed, suggesting that the effects mediated by Abf2p and Pif1p are due to novel activities of these proteins other than recombination. These results document the existence of recombination-independent mechanisms in addition to base excision repair to cope with oxidative mtDNA damage in Saccharomyces cerevisiae. Such systems are likely relevant to those operating in human cells where mtDNA recombination is less prevalent, validating yeast as a model system in which to study these important issues.

  18. β2-spectrin depletion impairs DNA damage repair

    PubMed Central

    Horikoshi, Nobuo; Pandita, Raj K.; Mujoo, Kalpana; Hambarde, Shashank; Sharma, Dharmendra; Mattoo, Abid R.; Chakraborty, Sharmistha; Charaka, Vijaya; Hunt, Clayton R.; Pandita, Tej K.

    2016-01-01

    β2-Spectrin (β2SP/SPTBN1, gene SPTBN1) is a key TGF-β/SMAD3/4 adaptor and transcriptional cofactor that regulates TGF-β signaling and can contribute to liver cancer development. Here we report that cells deficient in β2-Spectrin (β2SP) are moderately sensitive to ionizing radiation (IR) and extremely sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with IR or ICL agents (formaldehyde, cisplatin, camptothecin, mitomycin), β2SP deficient cells displayed a higher frequency of cells with delayed γ-H2AX removal and a higher frequency of residual chromosome aberrations. Following hydroxyurea (HU)-induced replication stress, β2SP-deficient cells displayed delayed disappearance of γ-H2AX foci along with defective repair factor recruitment (MRE11, CtIP, RAD51, RPA, and FANCD2) as well as defective restart of stalled replication forks. Repair factor recruitment is a prerequisite for initiation of DNA damage repair by the homologous recombination (HR) pathway, which was also defective in β2SP deficient cells. We propose that β2SP is required for maintaining genomic stability following replication fork stalling, whether induced by either ICL damage or replicative stress, by facilitating fork regression as well as DNA damage repair by homologous recombination. PMID:27248179

  19. Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: Defective bricks build a defective house.

    PubMed

    Rai, Priyamvada

    2010-11-28

    Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation. 2010 Elsevier B.V. All rights reserved.

  20. Activation of DNA damage repair pathways by murine polyomavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling.more » ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. -- Highlights: •Murine polyomavirus activates and recruits DNA damage repair (DDR) proteins to replication centers. •Large T-antigen mediates recruitment of DDR proteins to viral replication centers. •Inhibition or knockout of CHK1, CHK2, DNA-PK or H2AX do not affect viral titers. •Inhibition of ATR activity reduces viral titers, but not viral DNA accumulation.« less

  1. Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: A pro-oxidant mechanism.

    PubMed

    Rehmani, Nida; Zafar, Atif; Arif, Hussain; Hadi, Sheikh Mumtaz; Wani, Altaf A

    2017-04-01

    Oxidative DNA damage has been implicated in the pathogenesis of neurological disorders, cancer and ageing. Owing to the established link between labile copper concentrations and neurological diseases, it is critical to explore the interactions of neurotransmitters and drug supplements with copper. Herein, we investigate the pro-oxidant DNA damage induced by the interaction of L-DOPA and dopamine (DA) with copper. The DNA binding affinity order of the compounds has been determined by in silico molecular docking. Agarose gel electrophoresis reveals that L-DOPA and DA are able to induce strand scission in plasmid pcDNA3.1 (+/-) in a copper dependent reaction. These metabolites also cause cellular DNA breakage in human lymphocytes by mobilizing endogenous copper, as assessed by comet assay. Further, L-DOPA and DA-mediated DNA breaks were detected by the appearance of post-DNA damage sensitive marker γH2AX in cancer cell lines accumulating high copper. Immunofluorescence demonstrated the co-localization of downstream repair factor 53BP1 at the damaged induced γH2AX foci in cancer cells. The present study corroborates and provides a mechanism to the hypothesis that suggests metal-mediated oxidation of catecholamines contributes to the pathogenesis of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Maintaining Genetic Integrity Under Extreme Conditions: Novel DNA Damage Repair Biology in the Archaea

    DTIC Science & Technology

    2013-11-23

    Genetic analysis of Nre DNA repair function A4 Conclusions B. Widening the net in the search for new DNA-directed enzyme activities C. New tools for H...Figure 1) were hypothesised to be novel DNA repair enzymes . The stated aims of the proposal were to use a combination of genetic, biochemical and...in E.coli Almost all proteins that interact directly with PCNA are enzymes possessing DNA-directed activities such as nucleases, glycosylases

  3. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain.

    PubMed

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I

    2012-12-21

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.

  4. Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity.

    PubMed

    Gattuso, Hugo; Durand, Elodie; Bignon, Emmanuelle; Morell, Christophe; Georgakilas, Alexandros G; Dumont, Elise; Chipot, Christophe; Dehez, François; Monari, Antonio

    2016-10-06

    In the present contribution, the interaction between damaged DNA and repair enzymes is examined by means of molecular dynamics simulations. More specifically, we consider clustered abasic DNA lesions processed by the primary human apurinic/apyrimidinic (AP) endonuclease, APE1. Our results show that, in stark contrast with the corresponding bacterial endonucleases, human APE1 imposes strong geometrical constraints on the DNA duplex. As a consequence, the level of recognition and, hence, the repair rate is higher. Important features that guide the DNA/protein interactions are the presence of an extended positively charged region and of a molecular tweezers that strongly constrains DNA. Our results are on very good agreement with the experimentally determined repair rate of clustered abasic lesions. The lack of repair for one particular arrangement of the two abasic sites is also explained considering the peculiar destabilizing interaction between the recognition region and the second lesion, resulting in a partial opening of the molecular tweezers and, thus, a less stable complex. This contribution cogently establishes the molecular bases for the recognition and repair of clustered DNA lesions by means of human endonucleases.

  5. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    PubMed

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer.

  6. Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans

    PubMed Central

    Gonzalez, Kaisha; Faustoferri, Roberta C.; Quivey, Robert G.

    2012-01-01

    Summary The oral pathogen, Streptococcus mutans, possesses inducible DNA repair defenses for protection against pH fluctuations and production of reactive oxygen metabolites such as hydrogen peroxide (H2O2), which are present in the oral cavity. DNA base excision repair (BER) has a critical role in genome maintenance by preventing the accumulation of mutations associated with environmental factors and normal products of cellular metabolism. In this study, we examined the consequences of compromising the DNA glycosylases (Fpg and MutY) and endonucleases (Smx and Smn) of the BER pathway and their relative role in adaptation and virulence. Enzymatic characterization of the BER system showed that it protects the organism against the effects of the highly mutagenic lesion, 7,8-dihydro-8-oxo-2’-deoxyguanine (8-oxo-dG). S. mutans strains lacking a functional Fpg, MutY, or Smn showed elevated spontaneous mutation frequencies; and, these mutator phenotypes correlated with the ability of the strains to survive killing by acid and oxidative agents. In addition, in the G. mellonella virulence model, strains of S. mutans deficient in Fpg, MutY and Smn showed increased virulence as compared to the parent strain. Our results suggest that, for S. mutans, mutator phenotypes, due to loss of BER enzymes, may confer an advantage to virulence of the organism. PMID:22651851

  7. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Wyrobek, Andrew J.

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization.more » During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.« less

  8. Infrared laser effects at fluences used for treatment of dentin hypersensitivity on DNA repair in Escherichia coli and plasmids

    NASA Astrophysics Data System (ADS)

    Rocha Teixeira, Gleica; da Silva Marciano, Roberta; da Silva Sergio, Luiz Philippe; Castanheira Polignano, Giovanni Augusto; Roberto Guimarães, Oscar; Geller, Mauro; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2014-12-01

    Low-intensity infrared lasers are proposed in clinical protocols based on biostimulative effects, yet dosimetry is inaccurate and their effects on DNA at therapeutic doses are controversial. The aim of this work was to evaluate the effects of low-intensity infrared laser on survival and induction of filamentation of Escherichia coli cells, and induction of DNA lesions in bacterial plasmids. E. coli cultures were exposed to laser (808 nm, 100 mW, 40 and 60 J/cm2) to study bacterial survival and filamentation. Also, bacterial plasmids were exposed to laser to study DNA lesions by electrophoretic profile and action of DNA repair enzymes. Data indicate low-intensity infrared laser has no effect on survival of E. coli wild type and exonuclease III, but decreases the survival of formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III deficient cells in stationary growth phase, induces bacterial filamentation, does not alter the electrophoretic profile of plasmids in agarose gels and does not alter the electrophoretic profile of plasmids incubated with endonuclease III, formamidopyrimidine DNA glycosylase/MutM protein and exonuclease III. Our findings show that low-intensity laser exposure causes DNA lesions at sub-lethal level and induces cellular mechanisms involved in repair of oxidative lesions in DNA. Studies about laser dosimetry and safety strategies are necessary for professionals and patients exposed to low-intensity lasers at therapeutic doses.

  9. DNA Damage Levels Determine Cyclobutyl Pyrimidine Dimer Repair Mechanisms in Alfalfa Seedlings.

    PubMed Central

    Quaite, F. E.; Takayanagi, S.; Ruffini, J.; Sutherland, J. C.; Sutherland, B. M.

    1994-01-01

    Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage. PMID:12244228

  10. Chromosomal bands affected by acute oil exposure and DNA repair errors.

    PubMed

    Monyarch, Gemma; de Castro Reis, Fernanda; Zock, Jan-Paul; Giraldo, Jesús; Pozo-Rodríguez, Francisco; Espinosa, Ana; Rodríguez-Trigo, Gema; Verea, Hector; Castaño-Vinyals, Gemma; Gómez, Federico P; Antó, Josep M; Coll, Maria Dolors; Barberà, Joan Albert; Fuster, Carme

    2013-01-01

    In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk. We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency. Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin. Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016). The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure.

  11. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair

    PubMed Central

    Nowarski, Roni; Wilner, Ofer I.; Cheshin, Ori; Shahar, Or D.; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S.; Goldberg, Michal; Willner, Itamar

    2012-01-01

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy. PMID:22645179

  12. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    PubMed

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.

  13. Cdt2-mediated XPG degradation promotes gap-filling DNA synthesis in nucleotide excision repair

    PubMed Central

    Han, Chunhua; Wani, Gulzar; Zhao, Ran; Qian, Jiang; Sharma, Nidhi; He, Jinshan; Zhu, Qianzheng; Wang, Qi-En; Wani, Altaf A

    2015-01-01

    Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3′ side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4Cdt2. Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4Cdt2 for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER. PMID:25483071

  14. PARP1 impact on DNA repair of platinum adducts: preclinical and clinical read-outs.

    PubMed

    Olaussen, Ken A; Adam, Julien; Vanhecke, Elsa; Vielh, Philippe; Pirker, Robert; Friboulet, Luc; Popper, Helmut; Robin, Angélique; Commo, Fréderic; Thomale, Jürgen; Kayitalire, Louis; Filipits, Martin; Le Chevalier, Thierry; André, Fabrice; Brambilla, Elisabeth; Soria, Jean-Charles

    2013-05-01

    Evaluation of DNA repair proteins might provide meaningful information in relation to prognosis and chemotherapy efficacy in Non-Small Cell Lung Cancer (NSCLC) patients. The role of Poly(ADP-Ribose) Polymerase (PARP) in DNA repair of platinum adducts has not been firmly established. We used a DNA repair functional test based on antibody recognition of cisplatin intrastrand platinum adducts on DNA. We evaluated the effect of PARP inhibition on DNA repair functionality in a panel of cisplatin cell lines treated by the clinical-grade pharmacological inhibitor CEP8983 (a 4-methoxy-carbazole derivate) and the commercially available inhibitor PJ34 (phenanthridinone). We determined PARP1 protein expression in whole tumor sections from the International Adjuvant Lung cancer Trial (IALT)-bio study and tested a 3-marker PARP1/MSH2/ERCC1 algorithm combining PARP1 tumor status with previously published data. Chemosensitivity of cisplatin in NSCLC cell lines was correlated with the accumulation of cisplatin DNA adducts (P=0.0004). Further, the pharmacological inhibition of PARP induced a 1.7 to 2.3-fold increase in platinum adduct accumulation (24h) in A549 cell line suggesting a slow-down of platinum DNA-adduct repair capacity. In parallel, PARP1 inhibition increased the sensitivity to cisplatin treatment. In patient samples, PARP1 expression levels did not influence patient survival or the effect of platinum-based post-operative chemotherapy in the global IALT-bio population (interaction P=0.79). Among cases with high expression of all three markers (triple positive), untreated patients had prolonged survival with a median DFS of 7.8 years, (HR=0.34, 95%CI [0.19-0.61], adjusted P=0.0003) compared to triple negative patients (1.4 years). Remarkably, triple positive patients suffered from a detrimental effect (4.9-year reduction of median DFS) by post-operative cisplatin-based chemotherapy (HR=1.79, 95%CI [1.01-3.17], adjusted P=0.04, chemotherapy vs. control). Combinatorial

  15. DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance.

    PubMed

    Rother, Magdalena B; van Attikum, Haico

    2017-10-05

    Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Authors.

  16. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    PubMed Central

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789

  17. The C-Terminal Domain of Cernunnos/XLF Is Dispensable for DNA Repair In Vivo▿ †

    PubMed Central

    Malivert, Laurent; Callebaut, Isabelle; Rivera-Munoz, Paola; Fischer, Alain; Mornon, Jean-Paul; Revy, Patrick; de Villartay, Jean-Pierre

    2009-01-01

    The core nonhomologous end-joining DNA repair pathway is composed of seven factors: Ku70, Ku80, DNA-PKcs, Artemis, XRCC4 (X4), DNA ligase IV (L4), and Cernunnos/XLF (Cernunnos). Although Cernunnos and X4 are structurally related and participate in the same complex together with L4, they have distinct functions during DNA repair. L4 relies on X4 but not on Cernunnos for its stability, and L4 is required for optimal interaction of Cernunnos with X4. We demonstrate here, using in vitro-generated Cernunnos mutants and a series of functional assays in vivo, that the C-terminal region of Cernunnos is dispensable for its activity during DNA repair. PMID:19103754

  18. Generation and Repair of AID-initiated DNA Lesions in B Lymphocytes

    PubMed Central

    Chen, Zhangguo; Wang, Jing H.

    2014-01-01

    Activation-induced deaminase (AID) initiates the secondary antibody diversification process in B lymphocytes. In mammalian B cells, this process includes somatic hypermutation (SHM) and class switch recombination (CSR), both of which require AID. AID induces U:G mismatch lesions in DNA that are subsequently converted into point mutations or DNA double stranded breaks during SHM/CSR. In a physiological context, AID targets immunoglobulin (Ig) loci to mediate SHM/CSR. However, recent studies reveal genome-wide access of AID to numerous non-Ig loci. Thus, AID poses a threat to the genome of B cells if AID-initiated DNA lesions cannot be properly repaired. In this review, we focus on the molecular mechanisms that regulate the specificity of AID targeting and the repair pathways responsible for processing AID-initiated DNA lesions. PMID:24748462

  19. Oxidative Stress Resistance in Deinococcus radiodurans†

    PubMed Central

    Slade, Dea; Radman, Miroslav

    2011-01-01

    Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health. PMID:21372322

  20. Glucose starvation impairs DNA repair in tumour cells selectively by blocking histone acetylation.

    PubMed

    Ampferl, Rena; Rodemann, Hans Peter; Mayer, Claus; Höfling, Tobias Tim Alexander; Dittmann, Klaus

    2018-03-01

    Tumour cells are characterized by aerobic glycolysis and thus have high glucose consumption. Because repairing radiation-induced DNA damage is an energy-demanding process, we hypothesized that glucose starvation combined with radiotherapy could be an effective strategy to selectively target tumour cells. We glucose-starved tumour cells (A549, FaDu) in vitro and analysed their radiation-induced cell responses compared to normal fibroblasts (HSF7). Irradiation depleted intracellular ATP levels preferentially in cancer cells. Consequently, glucose starvation impaired DNA double-strand break (DSB) repair and radiosensitized confluent tumour cells but not normal fibroblasts. In proliferating tumour cells glucose starvation resulted in a reduction of proliferation, but failed to radiosensitize cells. Glucose supply was indispensable during the late DSB repair in confluent tumour cells starting approximately 13 h after irradiation, and glucose starvation inhibited radiation-induced histone acetylation, which is essential for chromatin relaxation. Sirtinol - an inhibitor of histone deacetylases - reverted the effects of glucose depletion on histone acetylation and DNA DSB repair in tumour cells. Furthermore, a glucose concentration of 2.8 mmol/L was sufficient to impair DSB repair in tumour cells and reduced their clonogenic survival under a fractionated irradiation regimen. In resting tumour cells, glucose starvation combined with irradiation resulted in the impairment of late DSB repair and the reduction of clonogenic survival, which was associated with disrupted radiation-induced histone acetylation. However, in normal cells, DNA repair and radiosensitivity were not affected by glucose depletion. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer

    PubMed Central

    2012-01-01

    Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million

  2. The yeast MSH1 gene is not involved in DNA repair or recombination during meiosis.

    PubMed

    Sia, Elaine A; Kirkpatrick, David T

    2005-02-03

    Six strong homologs of the bacterial MutS DNA mismatch repair (MMR) gene have been identified in the yeast Saccharomyces cerevisiae. With the exception of the MSH1 gene, the involvement of each homolog in DNA repair and recombination during meiosis has been determined previously. Five of the homologs have been demonstrated to act in meiotic DNA repair (MSH2, MSH3, MSH6 and MSH4) and/or meiotic recombination (MSH4 and MSH5). Unfortunately the loss of mitochondrial function that results from deletion of MSH1 disrupts meiotic progression, precluding an analysis of MSH1 function in meiotic DNA repair and recombination. However, the recent identification of two separation-of-function alleles of MSH1 that interfere with protein function but still maintain functional mitochondria allow the meiotic activities of MSH1 to be determined. We show that the G776D and F105A alleles of MSH1 exhibit no defects in meiotic recombination, repair base-base mismatches and large loop mismatches efficiently during meiosis, and have high levels of spore viability. These data indicate that the MSH1 protein, unlike other MutS homologs in yeast, plays no role in DNA repair or recombination during meiosis.

  3. Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water.

    PubMed

    Andrew, Angeline S; Karagas, Margaret R; Hamilton, Joshua W

    2003-04-10

    Arsenic is well established as a human carcinogen, but its precise mechanism of action remains unknown. Arsenic does not directly damage DNA, but may act as a carcinogen through inhibition of DNA repair mechanisms, leading indirectly to increased mutations from other DNA damaging agents. The molecular mechanism underlying arsenic inhibition of nucleotide excision repair after UV irradiation (Hartwig et al., Carcinogenesis 1997;18:399-405) is unknown, but could be due to decreased expression of critical genes involved in nucleotide excision repair of damaged DNA. This hypothesis was tested by analyzing expression of repair genes and arsenic exposure in a subset of 16 individuals enrolled in a population based case-control study investigating arsenic exposure and cancer risk in New Hampshire. Toenail arsenic levels were inversely correlated with expression of critical members of the nucleotide excision repair complex, ERCC1 (r(2) = 0.82, p < 0.0001), XPF (r(2) = 0.56, p < 0.002), and XPB (r(2) = 0.75, p < 0.0001). The internal dose marker, toenail arsenic level, was more strongly associated with changes in expression of these genes than drinking water arsenic concentration. Our findings, based on human exposure to arsenic in a US population, show an association between biomarkers of arsenic exposure and expression of DNA repair genes. Although our findings need verification in a larger study group, they are consistent with the hypothesis that inhibition of DNA repair capacity is a potential mechanism for the co-carcinogenic activity of arsenic. Copyright 2003 Wiley-Liss, Inc.

  4. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    PubMed

    King, Harry O; Brend, Tim; Payne, Helen L; Wright, Alexander; Ward, Thomas A; Patel, Karan; Egnuni, Teklu; Stead, Lucy F; Patel, Anjana; Wurdak, Heiko; Short, Susan C

    2017-01-10

    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    PubMed

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  6. Cycling with BRCA2 from DNA repair to mitosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyunsook, E-mail: HL212@snu.ac.kr

    Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner inmore » the maintenance of genomic integrity. - Highlights: • BRCA2 is a multifaceted tumor suppressor and is crucial in genetic integrity. • BRCA2 exerts distinct functions in cell cycle-specific manner. • Mitotic kinases regulate diverse functions of BRCA2 in mitosis and cytokinesis.« less

  7. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break

    PubMed Central

    Harmsen, Tim; Klaasen, Sjoerd; van de Vrugt, Henri; te Riele, Hein

    2018-01-01

    Abstract Single-stranded oligodeoxyribonucleotide (ssODN)-mediated repair of CRISPR/Cas9-induced DNA double-strand breaks (DSB) can effectively be used to introduce small genomic alterations in a defined locus. Here, we reveal DNA mismatch repair (MMR) activity is crucial for efficient nucleotide substitution distal from the Cas9-induced DNA break when the substitution is instructed by the 3′ half of the ssODN. Furthermore, protecting the ssODN 3′ end with phosphorothioate linkages enhances MMR-dependent gene editing events. Our findings can be exploited to optimize efficiencies of nucleotide substitutions distal from the DSB and imply that oligonucleotide-mediated gene editing is effectuated by templated break repair. PMID:29447381

  8. GANP regulates the choice of DNA repair pathway by DNA-PKcs interaction in AID-dependent IgV region diversification.

    PubMed

    Eid, Mohammed Mansour Abbas; Maeda, Kazuhiko; Almofty, Sarah Ameen; Singh, Shailendra Kumar; Shimoda, Mayuko; Sakaguchi, Nobuo

    2014-06-15

    RNA export factor germinal center-associated nuclear protein (GANP) interacts with activation-induced cytidine deaminase (AID) and shepherds it from the cytoplasm to the nucleus and toward the IgV region loci in B cells. In this study, we demonstrate a role for GANP in the repair of AID-initiated DNA damage in chicken DT40 B cells to generate IgV region diversity by gene conversion and somatic hypermutation. GANP plays a positive role in IgV region diversification of DT40 B cells in a nonhomologous end joining-proficient state. DNA-PKcs physically interacts with GANP, and this interaction is dissociated by dsDNA breaks induced by a topoisomerase II inhibitor, etoposide, or AID overexpression. GANP affects the choice of DNA repair mechanism in B cells toward homologous recombination rather than nonhomologous end joining repair. Thus, GANP presumably plays a critical role in protection of the rearranged IgV loci by favoring homologous recombination of the DNA breaks under accelerated AID recruitment. Copyright © 2014 by The American Association of Immunologists, Inc.

  9. Oxidized Base Damage and Single-Strand Break Repair in Mammalian Genomes: Role of Disordered Regions and Posttranslational Modifications in Early Enzymes

    PubMed Central

    Hegde, Muralidhar L.; Izumi, Tadahide; Mitra, Sankar

    2012-01-01

    Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/ SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed. PMID:22749145

  10. Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation.

    PubMed

    Sonzogni, Silvina V; Ogara, María F; Castillo, Daniela S; Sirkin, Pablo F; Radicella, J Pablo; Cánepa, Eduardo T

    2015-01-01

    DNA is continuously exposed to damaging agents that can lead to changes in the genetic information with adverse consequences. Nonetheless, eukaryotic cells have mechanisms such as the DNA damage response (DDR) to prevent genomic instability. The DNA of eukaryotic cells is packaged into nucleosomes, which fold the genome into highly condensed chromatin, but relatively little is known about the role of chromatin accessibility in DNA repair. p19INK4d, a cyclin-dependent kinase inhibitor, plays an important role in cell cycle regulation and cellular DDR. Extensive data indicate that p19INK4d is a critical factor in the maintenance of genomic integrity and cell survival. p19INK4d is upregulated by various genotoxics, improving the repair efficiency for a variety of DNA lesions. The evidence of p19INK4d translocation into the nucleus and its low sequence specificity in its interaction with DNA prompted us to hypothesize that p19INK4d plays a role at an early stage of cellular DDR. In the present study, we demonstrate that upon oxidative DNA damage, p19INK4d strongly binds to and relaxes chromatin. Furthermore, in vitro accessibility assays show that DNA is more accessible to a restriction enzyme when a chromatinized plasmid is incubated in the presence of a protein extract with high levels of p19INK4d. Nuclear protein extracts from cells overexpressing p19INK4d are better able to repair a chromatinized and damaged plasmid. These observations support the notion that p19INK4d would act as a chromatin accessibility factor that allows the access of the repair machinery to the DNA damage site.

  11. A mediator methylation mystery: JMJD1C demethylates MDC1 to regulate DNA repair.

    PubMed

    Lu, Jian; Matunis, Michael J

    2013-12-01

    Mediator of DNA-damage checkpoint 1 (MDMDC1) has a central role in repair of DNA double-strand breaks (DSBs) by both homologous recombination and nonhomologous end joining, and its function is regulated by post-translational phosphorylation, ubiquitylation and sumoylation. In this issue, a new study by Watanabe et al. reveals that methylation of MDMDC1 is also critical for its function in DSB repair and specifically affects repair through BRCA1-dependent homologous recombination.

  12. Dissecting DNA repair in adult high grade gliomas for patient stratification in the post-genomic era

    PubMed Central

    Perry, Christina; Agarwal, Devika; Abdel-Fatah, Tarek M.A.; Lourdusamy, Anbarasu; Grundy, Richard; Auer, Dorothee T.; Walker, David; Lakhani, Ravi; Scott, Ian S.; Chan, Stephen; Ball, Graham; Madhusudan, Srinivasan

    2014-01-01

    Deregulation of multiple DNA repair pathways may contribute to aggressive biology and therapy resistance in gliomas. We evaluated transcript levels of 157 genes involved in DNA repair in an adult glioblastoma Test set (n=191) and validated in ‘The Cancer Genome Atlas’ (TCGA) cohort (n=508). A DNA repair prognostic index model was generated. Artificial neural network analysis (ANN) was conducted to investigate global gene interactions. Protein expression by immunohistochemistry was conducted in 61 tumours. A fourteen DNA repair gene expression panel was associated with poor survival in Test and TCGA cohorts. A Cox multivariate model revealed APE1, NBN, PMS2, MGMT and PTEN as independently associated with poor prognosis. A DNA repair prognostic index incorporating APE1, NBN, PMS2, MGMT and PTEN stratified patients in to three prognostic sub-groups with worsening survival. APE1, NBN, PMS2, MGMT and PTEN also have predictive significance in patients who received chemotherapy and/or radiotherapy. ANN analysis of APE1, NBN, PMS2, MGMT and PTEN revealed interactions with genes involved in transcription, hypoxia and metabolic regulation. At the protein level, low APE1 and low PTEN remain associated with poor prognosis. In conclusion, multiple DNA repair pathways operate to influence biology and clinical outcomes in adult high grade gliomas. PMID:25026297

  13. Presynaptic Filament Dynamics in Homologous Recombination and DNA Repair

    PubMed Central

    Liu, Jie; Ehmsen, Kirk T.; Heyer, Wolf-Dietrich; Morrical, Scott W.

    2014-01-01

    Homologous Recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA. Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we review the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments: some intrinsic such as recombinase ATP binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examine dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examine the biochemical properties of recombination proteins from four model systems (T4 phage, E. coli, S. cerevisiae, and H. sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We propose that the presynaptic filament has evolved to rely on multiple external factors for increased multi-level regulation of HR processes in genomes with greater structural and sequence complexity. PMID:21599536

  14. Beyond xeroderma pigmentosum: DNA damage and repair in an ecological context. A tribute to James E. Cleaver.

    PubMed

    Karentz, Deneb

    2015-01-01

    The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion. © 2014 The American Society of Photobiology.

  15. DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A NATURAL BIO-DEFENSE MECHANISM

    EPA Science Inventory

    DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A natural bio-defense mechanism
    Anuradha Mudipalli.

    Maintenance of genetic information, including the correct sequence of nucleotides in DNA, is essential for replication, gene expression, and protein synthesis. DNA lesions onto...

  16. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer.

    PubMed

    Das, Raima; Ghosh, Sankar Kumar

    2017-04-01

    DNA repair pathway is a primary defense system that eliminates wide varieties of DNA damage. Any deficiencies in them are likely to cause the chromosomal instability that leads to cell malfunctioning and tumorigenesis. Genetic polymorphisms in DNA repair genes have demonstrated a significant association with cancer risk. Our study attempts to give a glimpse of the overall scenario of the germline polymorphisms in the DNA repair genes by taking into account of the Exome Aggregation Consortium (ExAC) database as well as the Human Gene Mutation Database (HGMD) for evaluating the disease link, particularly in cancer. It has been found that ExAC DNA repair dataset (which consists of 228 DNA repair genes) comprises 30.4% missense, 12.5% dbSNP reported and 3.2% ClinVar significant variants. 27% of all the missense variants has the deleterious SIFT score of 0.00 and 6% variants carrying the most damaging Polyphen-2 score of 1.00, thus affecting the protein structure and function. However, as per HGMD, only a fraction (1.2%) of ExAC DNA repair variants was found to be cancer-related, indicating remaining variants reported in both the databases to be further analyzed. This, in turn, may provide an increased spectrum of the reported cancer linked variants in the DNA repair genes present in ExAC database. Moreover, further in silico functional assay of the identified vital cancer-associated variants, which is essential to get their actual biological significance, may shed some lights in the field of targeted drug development in near future. Copyright © 2017. Published by Elsevier B.V.

  17. Bioenergetic metabolites regulate base excision repair dependent cell death in response to DNA damage

    PubMed Central

    Tang, Jiang-bo; Goellner, Eva M.; Wang, Xiao-hong; Trivedi, Ram N.; Croix, Claudette M. St; Jelezcova, Elena; Svilar, David; Brown, Ashley R.; Sobol, Robert W.

    2009-01-01

    Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance (Polß deficiency or repair inhibition) enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polß triggers cell death dependent on PARP activation yet independent of poly(ADP-ribose) (PAR)-mediated AIF nuclear translocation or PARG, suggesting that cytotoxicity is not from PAR or PAR-catabolite signaling. Cell death is rescued by the NAD+ metabolite NMN and is synergistic with inhibition of NAD+ biosynthesis, demonstrating that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polß deficient cells, suggesting a linkage between DNA repair, cell survival and cellular bioenergetics. PMID:20068071

  18. Repair Mechanism of UV-damaged DNA in Xeroderma Pigmentosum | Center for Cancer Research

    Cancer.gov

    Xeroderma pigmentosum (XP) is a rare, inherited disorder characterized by extreme skin sensitivity to ultraviolet (UV) rays from sunlight. XP is caused by mutations in genes involved in nucleotide excision repair (NER) of damaged DNA. Normal cells are usually able to fix this damage before it leads to problems; however, the DNA damage is not repaired normally in patients with

  19. A mutation in EXO1 defines separable roles in DNA mismatch repair and post-replication repair

    PubMed Central

    Tran, Phuoc T.; Fey, Julien P.; Erdeniz, Naz; Gellon, Lionel; Boiteux, Serge; Liskay, R. Michael

    2007-01-01

    Replication forks stall at DNA lesions or as a result of an unfavorable replicative environment. These fork stalling events have been associated with recombination and gross chromosomal rearrangements. Recombination and fork bypass pathways are the mechanisms accountable for restart of stalled forks. An important lesion bypass mechanism is the highly conserved post-replication repair (PRR) pathway that is composed of error-prone translesion and error-free bypass branches. EXO1 codes for a Rad2p family member nuclease that has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. In this report, we show EXO1 functions in the MMS2 error-free branch of the PRR pathway independent of the role of EXO1 in DNA mismatch repair (MMR). Consistent with the idea that EXO1 functions independently in two separate pathways, we defined a domain of Exo1p required for PRR distinct from those required for interaction with MMR proteins. We then generated a point mutant exo1 allele that was defective for the function of Exo1p in MMR due to disrupted interaction with Mlh1p, but still functional for PRR. Lastly, by using a compound exo1 mutant that was defective for interaction with Mlh1p and deficient for nuclease activity, we provide further evidence that Exo1p plays both structural and catalytic roles during MMR. PMID:17602897

  20. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair.

    PubMed

    Liu, Ting; Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie; Huang, Jun

    2010-08-06

    Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.

  1. Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Morris, Lydia P; Conley, Andrew B; Degtyareva, Natalya; Jordan, I King; Doetsch, Paul W

    2017-11-01

    The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment.

    PubMed

    van Oorschot, Bregje; Granata, Giovanna; Di Franco, Simone; Ten Cate, Rosemarie; Rodermond, Hans M; Todaro, Matilde; Medema, Jan Paul; Franken, Nicolaas A P

    2016-10-04

    Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation.The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found.In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.

  3. Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epitehlial cells and in mice

    USDA-ARS?s Scientific Manuscript database

    Host DNA damage and DNA repair response to bacterial infections and its significance are not fully understood. Here, we demonstrate that infection by Gram-negative bacterium P. aeruginosa significantly altered the expression and enzymatic activity of base excision DNA repair protein OGG1 in lung epi...

  4. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG)more » and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C

  5. Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork

    PubMed Central

    Grogan, Dennis W.

    2015-01-01

    Although hyperthermophilic archaea arguably have a great need for efficient DNA repair, they lack members of several DNA repair protein families broadly conserved among bacteria and eukaryotes. Conversely, the putative DNA repair genes that do occur in these archaea often do not generate the expected phenotype when deleted. The prospect that hyperthermophilic archaea have some unique strategies for coping with DNA damage and replication errors has intellectual and technological appeal, but resolving this question will require alternative coping mechanisms to be proposed and tested experimentally. This review evaluates a combination of four enigmatic properties that distinguishes the hyperthermophilic archaea from all other organisms: DNA polymerase stalling at dU, apparent lack of conventional NER, lack of MutSL homologs, and apparent essentiality of homologous recombination proteins. Hypothetical damage-coping strategies that could explain this set of properties may provide new starting points for efforts to define how archaea differ from conventional models of DNA repair and replication fidelity. PMID:26146487

  6. Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage.

    PubMed

    Rangel-Zuñiga, Oriol A; Haro, Carmen; Tormos, Carmen; Perez-Martinez, Pablo; Delgado-Lista, Javier; Marin, Carmen; Quintana-Navarro, Gracia M; Cerdá, Concha; Sáez, Guillermo T; Lopez-Segura, Fernando; Lopez-Miranda, Jose; Perez-Jimenez, Francisco; Camargo, Antonio

    2017-06-01

    Using sunflower oil as frying oil increases postprandial oxidative stress, which is considered the main endogenous source of DNA oxidative damage. We aimed to test whether the protective effect of virgin olive oil and oil models with added antioxidants against postprandial oxidative stress may also protect against DNA oxidative damage. Twenty obese people received four breakfasts following a randomized crossover design consisting of different oils [virgin olive oil (VOO), sunflower oil (SFO), and a mixed seed oil (SFO/canola oil) with added dimethylpolysiloxane (SOX) or natural antioxidants from olives (SOP)], which were subjected to 20 heating cycles. We observed the postprandial increase in the mRNA levels of p53, OGG1, POLB, and GADD45b after the intake of the breakfast prepared with SFO and SOX, and an increase in the expression of MDM2, APEX1, and XPC after the intake of the breakfast prepared with SFO, whereas no significant changes at the postprandial state were observed after the intake of the other breakfasts (all p values <0.05). We observed lower 8-OHdG postprandial levels after the intake of the breakfast prepared with VOO and SOP than after the intake of the breakfast prepared with SFO and SOX (all p values <0.05). Our results support the beneficial effect on DNA oxidation damage of virgin olive oil and the oil models with added antioxidants, as compared to the detrimental use of sunflower oil, which induces p53-dependent DNA repair pathway activation.

  7. Relationship of the Xeroderma Pigmentosum Group E DNA Repair Defect to the Chromatin and DNA Binding Proteins UV-DDB and Replication Protein A

    PubMed Central

    Rapić Otrin, Vesna; Kuraoka, Isao; Nardo, Tiziana; McLenigan, Mary; Eker, A. P. M.; Stefanini, Miria; Levine, Arthur S.; Wood, Richard D.

    1998-01-01

    Cells from complementation groups A through G of the heritable sun-sensitive disorder xeroderma pigmentosum (XP) show defects in nucleotide excision repair of damaged DNA. Proteins representing groups A, B, C, D, F, and G are subunits of the core recognition and incision machinery of repair. XP group E (XP-E) is the mildest form of the disorder, and cells generally show about 50% of the normal repair level. We investigated two protein factors previously implicated in the XP-E defect, UV-damaged DNA binding protein (UV-DDB) and replication protein A (RPA). Three newly identified XP-E cell lines (XP23PV, XP25PV, and a line formerly classified as an XP variant) were defective in UV-DDB binding activity but had levels of RPA in the normal range. The XP-E cell extracts did not display a significant nucleotide excision repair defect in vitro, with either UV-irradiated DNA or a uniquely placed cisplatin lesion used as a substrate. Purified UV-DDB protein did not stimulate repair of naked DNA by DDB− XP-E cell extracts, but microinjection of the protein into DDB− XP-E cells could partially correct the repair defect. RPA stimulated repair in normal, XP-E, or complemented extracts from other XP groups, and so the effect of RPA was not specific for XP-E cell extracts. These data strengthen the connection between XP-E and UV-DDB. Coupled with previous results, the findings suggest that UV-DDB has a role in the repair of DNA in chromatin. PMID:9584159

  8. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair

    DOE PAGES

    Zahn, Karl E.; Averill, April M.; Aller, Pierre; ...

    2015-03-16

    DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less

  9. Dual Roles for DNA Polymerase Theta in Alternative End-Joining Repair of Double-Strand Breaks in Drosophila

    PubMed Central

    McVey, Mitch

    2010-01-01

    DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair. PMID:20617203

  10. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation.

    PubMed

    Yang, Shu; Zhang, Jiyuan; Zhang, Yalong; Wan, Xuechao; Zhang, Congzhe; Huang, Xiaohui; Huang, Wenhua; Pu, Honglei; Pei, Chaohan; Wu, Hai; Huang, Yan; Huang, Shengdong; Li, Yao

    2015-06-15

    Androgen receptor (AR) is a ligand dependent transcription factor that regulates the transcription of target genes. AR activity is closely involved in the maintenance and progression of prostate cancer. After the binding with androgen, AR moves into nucleus and binds to DNA sequence containing androgen response elements (ARE). Flavin-dependent monoamine oxidase KDM1A is necessary for AR driven transcription while the mechanism remains unclear. The association between androgen-dependent transcription and oxidation was tested through pharmaceutical inhibitions and siRNA knockdown of DNA oxidation repair components in prostate cancer cells. The recruitment of involved proteins and the histone methylation dynamics on ARE region was explored by chromatin immunoprecipitation (ChIP). Oxidation inhibition reduced AR dependent expression of KLK3, TMPRSS2, hsa-miR-125b2, and hsa-miR-133b. And such reduction could be restored by H2 O2 treatment. KDM1A recruitment and H3K4me2 demethylation on ARE regions, which produce H2 O2 , are associated with AR targets transcription. AR targets transcription and coupled oxidation recruit 8-oxoguanine-DNA glycosylase (OGG1) and the nuclease APEX1 to ARE regions. Such recruitment depends on KDM1A, and is necessary for AR targets transcription. Our work underlined the importance of histone demethylation and DNA oxidation/repairing machinery in androgen-dependent transcription. The present finds have implications for research into new druggable targets for prostate cancer relying on the cascade of AR activity regulation. © 2015 Wiley Periodicals, Inc.

  11. DNA Damage Response Factors from Diverse Pathways, Including DNA Crosslink Repair, Mediate Alternative End Joining

    PubMed Central

    Howard, Sean M.; Yanez, Diana A.; Stark, Jeremy M.

    2015-01-01

    Alternative end joining (Alt-EJ) chromosomal break repair involves bypassing classical non-homologous end joining (c-NHEJ), and such repair causes mutations often with microhomology at the repair junction. Since the mediators of Alt-EJ are not well understood, we have sought to identify DNA damage response (DDR) factors important for this repair event. Using chromosomal break reporter assays, we surveyed an RNAi library targeting known DDR factors for siRNAs that cause a specific decrease in Alt-EJ, relative to an EJ event that is a composite of Alt-EJ and c-NHEJ (Distal-EJ between two tandem breaks). From this analysis, we identified several DDR factors that are specifically important for Alt-EJ relative to Distal-EJ. While these factors are from diverse pathways, we also found that most of them also promote homologous recombination (HR), including factors important for DNA crosslink repair, such as the Fanconi Anemia factor, FANCA. Since bypass of c-NHEJ is likely important for both Alt-EJ and HR, we disrupted the c-NHEJ factor Ku70 in Fanca-deficient mouse cells and found that Ku70 loss significantly diminishes the influence of Fanca on Alt-EJ. In contrast, an inhibitor of poly ADP-ribose polymerase (PARP) causes a decrease in Alt-EJ that is enhanced by Ku70 loss. Additionally, the helicase/nuclease DNA2 appears to have distinct effects from FANCA and PARP on both Alt-EJ, as well as end resection. Finally, we found that the proteasome inhibitor Bortezomib, a cancer therapeutic that has been shown to disrupt FANC signaling, causes a significant reduction in both Alt-EJ and HR, relative to Distal-EJ, as well as a substantial loss of end resection. We suggest that several distinct DDR functions are important for Alt-EJ, which include promoting bypass of c-NHEJ and end resection. PMID:25629353

  12. Genotoxicity Assessment of Drinking Water Disinfection Byproducts by DNA Damage and Repair Pathway Profiling Analysis.

    PubMed

    Lan, Jiaqi; Rahman, Sheikh Mokhlesur; Gou, Na; Jiang, Tao; Plewa, Micheal J; Alshawabkeh, Akram; Gu, April Z

    2018-06-05

    Genotoxicity is considered a major concern for drinking water disinfection byproducts (DBPs). Of over 700 DBPs identified to date, only a small number has been assessed with limited information for DBP genotoxicity mechanism(s). In this study, we evaluated genotoxicity of 20 regulated and unregulated DBPs applying a quantitative toxicogenomics approach. We used GFP-fused yeast strains that examine protein expression profiling of 38 proteins indicative of all known DNA damage and repair pathways. The toxicogenomics assay detected genotoxicity potential of these DBPs that is consistent with conventional genotoxicity assays end points. Furthermore, the high-resolution, real-time pathway activation and protein expression profiling, in combination with clustering analysis, revealed molecular level details in the genotoxicity mechanisms among different DBPs and enabled classification of DBPs based on their distinct DNA damage effects and repair mechanisms. Oxidative DNA damage and base alkylation were confirmed to be the main molecular mechanisms of DBP genotoxicity. Initial exploration of QSAR modeling using moleular genotoxicity end points (PELI) suggested that genotoxicity of DBPs in this study was correlated with topological and quantum chemical descriptors. This study presents a toxicogenomics-based assay for fast and efficient mechanistic genotoxicity screening and assessment of a large number of DBPs. The results help to fill in the knowledge gap in the understanding of the molecular mechanisms of DBP genotoxicity.

  13. The RAD52 ortholog of Yarrowia lipolytica is essential for nuclear integrity and DNA repair.

    PubMed

    Campos-Góngora, Eduardo; Andaluz, Encarnación; Bellido, Alberto; Ruiz-Herrera, José; Larriba, German

    2013-08-01

    Yarrowia lipolytica (Yl) is a dimorphic fungus that has become a well-established model for a number of biological processes, including secretion of heterologous and chimerical proteins. However, little is known on the recombination machinery responsible for the integration in the genome of the exogenous DNA encoding for those proteins. We have carried out a phenotypic analysis of rad52 deletants of Y. lipolytica. YlRad52 exhibited 20-30% identity with Rad52 homologues of other eukaryotes, including Saccharomyces cerevisiae and Candida albicans. Ylrad52-Δ strains formed colonies on YPD-agar plates which were spinier and smaller than those from wild type, whereas in YPD liquid cultures they exhibited a decreased grow rate and contained cells with aberrant morphology and fragmented chromatin, supporting a role for homologous recombination (HR) in genome stability under nondamaging conditions. In addition, Ylrad52 mutants showed moderate to high sensitivity to UV light, oxidizing agents and compounds that cause single- (SSB) and double-strand breaks (DSB), indicating an important role for Rad52 in DNA repair. These findings extend to Yl previous observations indicating that RAD52 is a crucial gene for DNA repair in other fungi, including S. cerevisiae, C. albicans and Schizosaccharomyces pombe. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Repair of DNA double-strand breaks and cell killing by charged particles

    NASA Astrophysics Data System (ADS)

    Eguchi-Kasai, K.; Murakami, M.; Itsukaichi, H.; Fukutsu, K.; Yatagai, F.; Kanai, T.; Ohara, H.; Sato, K.

    It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing. We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/mum and were even smaller than unity for the LET region greater than 300 keV/mum. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/mum, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main cause of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.

  15. The Human Ligase IIIα-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA*

    PubMed Central

    Rashid, Ishtiaque; Tomkinson, Alan E.; Pederson, David S.

    2017-01-01

    Reactive oxygen species generate potentially cytotoxic and mutagenic lesions in DNA, both between and within the nucleosomes that package DNA in chromatin. The vast majority of these lesions are subject to base excision repair (BER). Enzymes that catalyze the first three steps in BER can act at many sites in nucleosomes without the aid of chromatin-remodeling agents and without irreversibly disrupting the host nucleosome. Here we show that the same is true for a protein complex comprising DNA ligase IIIα and the scaffolding protein X-ray repair cross-complementing protein 1 (XRCC1), which completes the fourth and final step in (short-patch) BER. Using in vitro assembled nucleosomes containing discretely positioned DNA nicks, our evidence indicates that the ligase IIIα-XRCC1 complex binds to DNA nicks in nucleosomes only when they are exposed by periodic, spontaneous partial unwrapping of DNA from the histone octamer; that the scaffolding protein XRCC1 enhances the ligation; that the ligation occurs within a complex that ligase IIIα-XRCC1 forms with the host nucleosome; and that the ligase IIIα-XRCC1-nucleosome complex decays when ligation is complete, allowing the host nucleosome to return to its native configuration. Taken together, our results illustrate ways in which dynamic properties intrinsic to nucleosomes may contribute to the discovery and efficient repair of base damage in chromatin. PMID:28184006

  16. Efficient DNA Repair: A Cell’s Fountain of Youth? | Center for Cancer Research

    Cancer.gov

    Given the central importance of the genome to a cell’s function, it is not surprising that there are a number of proteins devoted to sensing and repairing DNA damage. But what happens when these repair proteins do not work properly? Cancer is one possible outcome, and a growing body of evidence also indicates that the cellular response to DNA damage plays a key role in the

  17. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Kim, Ryeo-Ok; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2013-09-15

    To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease.

    PubMed

    Sepe, Sara; Milanese, Chiara; Gabriels, Sylvia; Derks, Kasper W J; Payan-Gomez, Cesar; van IJcken, Wilfred F J; Rijksen, Yvonne M A; Nigg, Alex L; Moreno, Sandra; Cerri, Silvia; Blandini, Fabio; Hoeijmakers, Jan H J; Mastroberardino, Pier G

    2016-05-31

    The underlying relation between Parkinson's disease (PD) etiopathology and its major risk factor, aging, is largely unknown. In light of the causative link between genome stability and aging, we investigate a possible nexus between DNA damage accumulation, aging, and PD by assessing aging-related DNA repair pathways in laboratory animal models and humans. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER) capacity and that Ercc1 mutant mice with mildly compromised NER exhibit typical PD-like pathological alterations, including decreased striatal dopaminergic innervation, increased phospho-synuclein levels, and defects in mitochondrial respiration. Ercc1 mouse mutants are also more sensitive to the prototypical PD toxin MPTP, and their transcriptomic landscape shares important similarities with that of PD patients. Our results demonstrate that specific defects in DNA repair impact the dopaminergic system and are associated with human PD pathology and might therefore constitute an age-related risk factor for PD. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    PubMed

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  20. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage

    PubMed Central

    Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576

  1. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens.

    PubMed

    Fahrer, Jörg; Kaina, Bernd

    2017-08-01

    Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, which is causally linked to dietary habits, notably the intake of processed and red meat. Processed and red meat contain dietary carcinogens, including heterocyclic aromatic amines (HCAs) and N-nitroso compounds (NOC). NOC are agents that induce various N-methylated DNA adducts and O 6 -methylguanine (O 6 -MeG), which are removed by base excision repair (BER) and O 6 -methylguanine-DNA methyltransferase (MGMT), respectively. HCAs such as the highly mutagenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) cause bulky DNA adducts, which are removed from DNA by nucleotide excision repair (NER). Both O 6 -MeG and HCA-induced DNA adducts are linked to the occurrence of KRAS and APC mutations in colorectal tumors of rodents and humans, thereby driving CRC initiation and progression. In this review, we focus on DNA repair pathways removing DNA lesions induced by NOC and HCA and assess their role in protecting against mutagenicity and carcinogenicity in the large intestine. We further discuss the impact of DNA repair on the dose-response relationship in colorectal carcinogenesis in view of recent studies, demonstrating the existence of 'no effect' point of departures (PoDs), i.e. thresholds for genotoxicity and carcinogenicity. The available data support the threshold concept for NOC with DNA repair being causally involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Use of Single-Cysteine Variants for Trapping Transient States in DNA Mismatch Repair.

    PubMed

    Friedhoff, Peter; Manelyte, Laura; Giron-Monzon, Luis; Winkler, Ines; Groothuizen, Flora S; Sixma, Titia K

    2017-01-01

    DNA mismatch repair (MMR) is necessary to prevent incorporation of polymerase errors into the newly synthesized DNA strand, as they would be mutagenic. In humans, errors in MMR cause a predisposition to cancer, called Lynch syndrome. The MMR process is performed by a set of ATPases that transmit, validate, and couple information to identify which DNA strand requires repair. To understand the individual steps in the repair process, it is useful to be able to study these large molecular machines structurally and functionally. However, the steps and states are highly transient; therefore, the methods to capture and enrich them are essential. Here, we describe how single-cysteine variants can be used for specific cross-linking and labeling approaches that allow trapping of relevant transient states. Analysis of these defined states in functional and structural studies is instrumental to elucidate the molecular mechanism of this important DNA MMR process. © 2017 Elsevier Inc. All rights reserved.

  3. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  4. Analysis of a FANCE Splice Isoform in Regard to DNA Repair.

    PubMed

    Bouffard, Frédérick; Plourde, Karine; Bélanger, Simon; Ouellette, Geneviève; Labrie, Yvan; Durocher, Francine

    2015-09-25

    The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hereditary Disorders with Defective Repair of UV-Induced DNA Damage

    PubMed Central

    Moriwaki, Shinichi

    2013-01-01

    Nucleotide excision repair (NER) is an essential system for correcting ultraviolet (UV)—induced DNA damage. Lesions remaining in DNA due to reduced capacity of NER may result in cellular death, premature aging, mutagenesis and carcinogenesis of the skin. So, NER is an important protection against these changes. There are three representative genodermatoses resulting from genetic defects in NER: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). In Japan, CS is similarly rare but XP is more common and TTD is less common compared to Western countries. In 1998, we established the system for the diagnosis of these disorders and we have been performing DNA repair and genetic analysis for more than 400 samples since then. At present, there is no cure for any human genetic disorder. Early diagnosis and symptomatic treatment of neurological, ocular and dermatological abnormalities should contribute to prolonging life and elevating QOL in patients. PMID:23966815

  6. Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk.

    PubMed

    Terry, Mary Beth; Gammon, Marilie D; Zhang, Fang Fang; Eng, Sybil M; Sagiv, Sharon K; Paykin, Andrea B; Wang, Qiao; Hayes, Sharon; Teitelbaum, Susan L; Neugut, Alfred I; Santella, Regina M

    2004-12-01

    DNA repair is essential to an individual's ability to respond to damage caused by environmental carcinogens. Alterations in DNA repair genes may affect cancer risk by influencing individual susceptibility to environmental exposures. XPD, a gene involved in nucleotide excision repair, may influence individual DNA repair capacity particularly of bulky adducts. Using a population-based breast cancer case-control study that was specifically conducted to examine markers of environmental exposures, such as polycyclic aromatic hydrocarbons (PAH), on Long Island, NY, we examined whether XPD genotype modified the associations among PAH-DNA adducts, cigarette smoking, and breast cancer risk. Specifically, we examined the XPD polymorphism at exon 23, position 751 in 1,053 breast cancer cases and 1,102 population-based controls. The presence of at least one variant allele (Lys/Gln or Gln/Gln) was associated with a 20% increase in risk of breast cancer [odds ratio (OR), 1.21; 95% confidence interval (95% CI), 1.01-1.44]. The increase in risk for homozygosity of the variant allele (Gln/Gln) seemed limited to those with PAH-DNA adduct levels above the median(OR, 1.61; 95% CI, 0.99-2.63 for adducts above the median versus OR, 1.05; 95% CI, 0.64-1.74 for adductsbelow the median), although the multiplicative interaction was not statistically significant. The increasein risk for homozygosity of the variant allele (Gln/Gln) was only seen among current smokers (OR, 1.97; 95% CI, 1.02-3.81 for current smokers versus OR, 0.87; 95% CI, 0.57-1.32 for never smokers); the multiplicative interaction was statistically significant. Overall, this study suggests that those individuals with this polymorphism in the XPD gene may face an increased risk of breast cancer from PAH-DNA adducts and cigarette smoking.

  7. Mitochondrial DNA Damage and Diseases.

    PubMed

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.

  8. Mitochondrial DNA Damage and Diseases

    PubMed Central

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments. PMID:27508052

  9. Inducible DNA-repair systems in yeast: competition for lesions.

    PubMed

    Mitchel, R E; Morrison, D P

    1987-03-01

    DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate

  10. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment.

    PubMed

    Eyboulet, Fanny; Cibot, Camille; Eychenne, Thomas; Neil, Helen; Alibert, Olivier; Werner, Michel; Soutourina, Julie

    2013-12-01

    Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3' endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes.

  11. Enhanced Mitochondrial DNA Repair of the Common Disease-Associated Variant, Ser326Cys, of hOGG1 through Small Molecule Intervention.

    PubMed

    Baptiste, Beverly A; Katchur, Steven R; Fivenson, Elayne M; Croteau, Deborah L; Rumsey, William L; Bohr, Vilhelm A

    2018-06-04

    The common oxidatively generated lesion, 8-oxo-7,8-dihydroguanine (8-oxoGua), is removed from DNA by base excision repair. The glycosylase primarily charged with recognition and removal of this lesion is 8-oxoGuaDNA glycosylase 1 (OGG1). When left unrepaired, 8-oxodG alters transcription and is mutagenic. Individuals homozygous for the less active OGG1 allele, Ser326Cys, have increased risk of several cancers. Here, small molecule enhancers of OGG1 were identified and tested for their ability to stimulate DNA repair and protect cells from the environmental hazard paraquat (PQ). PQ-induced mtDNA damage was inversely proportional to the levels of OGG1 expression whereas stimulation of OGG1, in some cases, entirely abolished its cellular effects. The PQ-mediated decline of mitochondrial membrane potential or nuclear condensation were prevented by the OGG1 activators. In addition, in Ogg1 -/- mouse embryonic fibroblasts complemented with hOGG1 S326C , there was increased cellular and mitochondrial reactive oxygen species compared to their wild type counterparts. Mitochondrial extracts from cells expressing hOGG1 S326C were deficient in mitochondrial 8-oxodG incision activity, which was rescued by the OGG1 activators. These data demonstrate that small molecules can stimulate OGG1 activity with consequent cellular protection. Thus, OGG1-activating compounds may be useful in select humans to mitigate the deleterious effects of environmental oxidants and mutagens. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Electron-transfer oxidation properties of DNA bases and DNA oligomers.

    PubMed

    Fukuzumi, Shunichi; Miyao, Hiroshi; Ohkubo, Kei; Suenobu, Tomoyoshi

    2005-04-21

    Kinetics for the thermal and photoinduced electron-transfer oxidation of a series of DNA bases with various oxidants having the known one-electron reduction potentials (E(red)) in an aqueous solution at 298 K were examined, and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of DNA bases and the intrinsic barrier of the electron transfer. Although the E(ox) value of GMP at pH 7 is the lowest (1.07 V vs SCE) among the four DNA bases, the highest E(ox) value (CMP) is only 0.19 V higher than that of GMP. The selective oxidation of GMP in the thermal electron-transfer oxidation of GMP results from a significant decrease in the pH dependent oxidation potential due to the deprotonation of GMP*+. The one-electron reduced species of the photosensitizer produced by photoinduced electron transfer are observed as the transient absorption spectra when the free energy change of electron transfer is negative. The rate constants of electron-transfer oxidation of the guanine moieties in DNA oligomers with Fe(bpy)3(3+) and Ru(bpy)3(3+) were also determined using DNA oligomers containing different guanine (G) sequences from 1 to 10 G. The rate constants of electron-transfer oxidation of the guanine moieties in single- and double-stranded DNA oligomers with Fe(bpy)3(2+) and Ru(bpy)3(3+) are dependent on the number of sequential guanine molecules as well as on pH.

  13. DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade.

    PubMed

    Touat, Mehdi; Sourisseau, Tony; Dorvault, Nicolas; Chabanon, Roman M; Garrido, Marlène; Morel, Daphné; Krastev, Dragomir B; Bigot, Ludovic; Adam, Julien; Frankum, Jessica R; Durand, Sylvère; Pontoizeau, Clement; Souquère, Sylvie; Kuo, Mei-Shiue; Sauvaigo, Sylvie; Mardakheh, Faraz; Sarasin, Alain; Olaussen, Ken A; Friboulet, Luc; Bouillaud, Frédéric; Pierron, Gérard; Ashworth, Alan; Lombès, Anne; Lord, Christopher J; Soria, Jean-Charles; Postel-Vinay, Sophie

    2018-04-02

    Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.

  14. Efficient repair of DNA double-strand breaks in malignant cells with structural instability

    PubMed Central

    Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V.; Nakahara, Kenneth; Aplan, Peter D.

    2009-01-01

    Aberrant repair of DNA double strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1α) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1α promoter from the TK gene, or deletion of either the EF1α promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR. PMID:19909760

  15. Efficient repair of DNA double-strand breaks in malignant cells with structural instability.

    PubMed

    Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V; Nakahara, Kenneth; Aplan, Peter D

    2010-01-05

    Aberrant repair of DNA double-strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1alpha) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1alpha promoter from the TK gene, or deletion of either the EF1alpha promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR.

  16. Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase

    PubMed Central

    Ormeño, Fernando; Barrientos, Camila; Ramirez, Santiago; Ponce, Iván; Valenzuela, Lucía; Sepúlveda, Sofía; Bitar, Mainá; Kemmerling, Ulrike; Machado, Carlos Renato; Cabrera, Gonzalo; Galanti, Norbel

    2016-01-01

    Trypanosoma cruzi, the etiological agent of Chagas’ disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing. PMID:27284968

  17. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    PubMed

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  18. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    PubMed Central

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  19. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine.

    PubMed

    Klungland, Arne; Robertson, Adam B

    2017-06-01

    Recent reports suggest that the Tet enzyme family catalytically oxidize 5-methylcytosine in mammalian cells. The oxidation of 5-methylcytosine can result in three chemically distinct species - 5-hydroxymethylcytsine, 5-formylcytosine, and 5-carboxycytosine. While the base excision repair machinery processes 5-formylcytosine and 5-carboxycytosine rapidly, 5-hydroxymethylcytosine is stable under physiological conditions. As a stable modification 5-hydroxymethylcytosine has a broad range of functions, from stem cell pluriopotency to tumorigenesis. The subsequent oxidation products, 5-formylcytosine and 5-carboxycytosine, are suggested to be involved in an active DNA demethylation pathway. This review provides an overview of the biochemistry and biology of 5-methylcytosine oxidation products. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Fe-S Clusters and MutY Base Excision Repair Glycosylases: Purification, Kinetics, and DNA Affinity Measurements.

    PubMed

    Nuñez, Nicole N; Majumdar, Chandrima; Lay, Kori T; David, Sheila S

    2018-01-01

    A growing number of iron-sulfur (Fe-S) cluster cofactors have been identified in DNA repair proteins. MutY and its homologs are base excision repair (BER) glycosylases that prevent mutations associated with the common oxidation product of guanine (G), 8-oxo-7,8-dihydroguanine (OG) by catalyzing adenine (A) base excision from inappropriately formed OG:A mispairs. The finding of an [4Fe-4S] 2+ cluster cofactor in MutY, Endonuclease III, and structurally similar BER enzymes was surprising and initially thought to represent an example of a purely structural role for the cofactor. However, in the two decades subsequent to the initial discovery, purification and in vitro analysis of bacterial MutYs and mammalian homologs, such as human MUTYH and mouse Mutyh, have demonstrated that proper Fe-S cluster coordination is required for OG:A substrate recognition and adenine excision. In addition, the Fe-S cluster in MutY has been shown to be capable of redox chemistry in the presence of DNA. The work in our laboratory aimed at addressing the importance of the MutY Fe-S cluster has involved a battery of approaches, with the overarching hypothesis that understanding the role(s) of the Fe-S cluster is intimately associated with understanding the biological and chemical properties of MutY and its unique damaged DNA substrate as a whole. In this chapter, we focus on methods of enzyme expression and purification, detailed enzyme kinetics, and DNA affinity assays. The methods described herein have not only been leveraged to provide insight into the roles of the MutY Fe-S cluster but have also been provided crucial information needed to delineate the impact of inherited variants of the human homolog MUTYH associated with a colorectal cancer syndrome known as MUTYH-associated polyposis or MAP. Notably, many MAP-associated variants have been found adjacent to the Fe-S cluster further underscoring the intimate relationship between the cofactor, MUTYH-mediated DNA repair, and disease.

  1. Repair of damaged DNA in-vivo. Comprehensive progress report, August 1980-August 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanawalt, P.C.

    1983-07-01

    We have extended our characterization of long patch excision repair (LPER) and have demonstrated that LPER is not mutagenic (or error-prone); that the recA function is required for LPER, at least for its regulation; that the substrate for LPER is produced as a linear (not an exponential) function of uv (254 nm) dose; and that LPER can occur in uvr/sup -/ cells treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG). We have developed 3 methods for measuring the frequency of interstrand crosslinks in DNA and are now applying these methods to the study of the formation and repair of DNA crosslinks in E.Coli. Wemore » have developed a monoclonal antibody specific for thymine glycol in DNA, and are using it to study the repair of thymine glycol in E. coli.« less

  2. DNA double strand breaks induced by the indirect effect of radiation are more efficiently repaired by non-homologous end joining compared to homologous recombination repair.

    PubMed

    Bajinskis, Ainars; Natarajan, Adayapalam T; Erixon, Klaus; Harms-Ringdahl, Mats

    2013-08-30

    The aim of this study was to investigate the relative involvement of three major DNA repair pathways, i.e., non-homologous end joining (NHEJ), homologous recombination (HRR) and base excision (BER) in repair of DNA lesions of different complexity induced by low- or high-LET radiation with emphasis on the contribution of the indirect effect of radiation for these radiation qualities. A panel of DNA repair-deficient CHO cell lines was irradiated by (137)Cs γ-rays or radon progeny α-particles. Irradiation was also performed in the presence of 2M DMSO to reduce the indirect effect of radiation and the complexity of the DNA damage formed. Clonogenic survival and micronucleus assays were used to estimate efficiencies of the different repair pathways for DNA damages produced by direct and indirect effects. Removal of the indirect effect of low-LET radiation by DMSO increased clonogenic survival and decreased MN formation for all cell lines investigated. A direct contribution of the indirect effect of radiation to DNA base damage was suggested by the significant protection by DMSO seen for the BER deficient cell line. Lesions formed by the indirect effect are more readily repaired by the NHEJ pathway than by HRR after irradiation with γ-rays or α-particles as evaluated by cell survival and the yields of MN. The results obtained with BER- and NHEJ-deficient cells suggest that the indirect effect of radiation contributes significantly to the formation of repair substrates for these pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    PubMed

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  4. Involvement of DNA-PK(sub cs) in DSB Repair Following Fe-56 Ion Irradiation

    NASA Technical Reports Server (NTRS)

    O'Neill, Peter; Harper, Jane; Anderson, Jennifer a.; Cucinnota, Francis A.

    2007-01-01

    When cells are exposed to radiation, cellular lesions are induced in the DNA including double strand breaks (DSBs), single strand breaks and clustered DNA damage, which if not repaired with high fidelity may lead to detrimental biological consequences. Complex DSBs are induced by ionizing radiation and characterized by the presence of base lesions close to the break termini. They are believed to be one of the major causes of the biological effects of IR. The complexity of DSBs increases with the ionization density of the radiation and these complex DSBs are distinct from the damage induced by sparsely ionizing gamma-radiation. It has been hypothesized that complex DSBs produced by heavy ions in space pose problems to the DNA repair machinery. We have used imm uno-cyto-chemical staining of phosphorylated histone H2AX (gamma-H2AX) foci, as a marker of DSBs. We have investigated the formation and loss of gamma-H2AX foci and RAD51 foci (a protein involved in the homologous recombination pathway) in mammalian cells induced by low fluences of low-LET gamma-radiation and high-LET Fe-56 ions (1GeV/n, 151 keV/micron LET). M059J and M059K cells, which are deficient and proficient in DNA-PK(sub cs) activity respectively, were used to examine the role of DNA-PK(sub cs), a key protein in the non-homologous end joining (NHEJ) pathway of DSB repair, along with HF19 human fibroblasts. Followi ng irradiation with Fe-56 ions the rate of repair was slower in M059J cells compared with that in M059K, indicating a role for DNA-PK(sub cs) in the repair of DSB induced by Fe-56 ions. However a small percentage of DSBs induced are rejoined within 5 h although many DSBs still persist up to 24 h. When RAD51 was examined in M059J/K cells, RAD51 foci are visible 24 hours after irradiation in approximately 40% of M059J cells compared with <5% of M059K cells indicating that persistent DSBs or those formed at stalled replication forks recruit RAD51 in DNA-PK(sub cs) deficient cells. Following 1 Gy

  5. Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli.

    PubMed

    Moore, M H; Gulbis, J M; Dodson, E J; Demple, B; Moody, P C

    1994-04-01

    The mutagenic and carcinogenic effects of simple alkylating agents are mainly due to methylation at the O6 position of guanine in DNA. O6-methylguanine directs the incorporation of either thymine or cytosine without blocking DNA replication, resulting in GC to AT transition mutations. In prokaryotic and eukaryotic cells antimutagenic repair is effected by direct reversal of this DNA damage. A suicidal methyltransferase repair protein removes the methyl group from DNA to one of its own cysteine residues. The resulting self-methylation of the active site cysteine renders the protein inactive. Here we report the X-ray structure of the 19 kDa C-terminal domain of the Escherichia coli ada gene product, the prototype of these suicidal methyltransferases. In the crystal structure the active site cysteine is buried. We propose a model for the significant conformational change that the protein must undergo in order to bind DNA and effect methyl transfer.

  6. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  7. NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis.

    PubMed

    Zhou, Jia; Chan, Jany; Lambelé, Marie; Yusufzai, Timur; Stumpff, Jason; Opresko, Patricia L; Thali, Markus; Wallace, Susan S

    2017-08-29

    Oxidative damage to telomere DNA compromises telomere integrity. We recently reported that the DNA glycosylase NEIL3 preferentially repairs oxidative lesions in telomere sequences in vitro. Here, we show that loss of NEIL3 causes anaphase DNA bridging because of telomere dysfunction. NEIL3 expression increases during S phase and reaches maximal levels in late S/G2. NEIL3 co-localizes with TRF2 and associates with telomeres during S phase, and this association increases upon oxidative stress. Mechanistic studies reveal that NEIL3 binds to single-stranded DNA via its intrinsically disordered C terminus in a telomere-sequence-independent manner. Moreover, NEIL3 is recruited to telomeres through its interaction with TRF1, and this interaction enhances the enzymatic activity of purified NEIL3. Finally, we show that NEIL3 interacts with AP Endonuclease 1 (APE1) and the long-patch base excision repair proteins PCNA and FEN1. Taken together, we propose that NEIL3 protects genome stability through targeted repair of oxidative damage in telomeres during S/G2 phase. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Role of Bacillus subtilis Error Prevention Oxidized Guanine System in Counteracting Hexavalent Chromium-Promoted Oxidative DNA Damage

    PubMed Central

    Santos-Escobar, Fernando; Gutiérrez-Corona, J. Félix

    2014-01-01

    Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system. PMID:24973075

  9. Clinical symptoms and DNA repair characteristics of xeroderma pigmentosum patients from Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thielmann, H.W.; Popanda, O.; Edler, L.

    1991-07-01

    Sixty-one xeroderma pigmentosum (XP) patients living in the Federal Republic of Germany were investigated. Clinical symptoms were correlated with DNA repair parameters measured in fibroblasts grown from skin biopsies. Classification according to the international complementation groups revealed that of the 61 patients 3 belonged to group A, 26 to group C, 16 to group D, 3 to group E, and 2 to group F; 11 were of the XP variant type. A striking clinical aspect was the frequency of histogenetically different skin tumors varying from one XP complementation group to the other: squamous and basal cell carcinomas predominated in XPmore » group C; lentigo maligna melanomas were most frequent in group D; basal cell carcinomas occurred preferentially in group E and XP variants. Three DNA repair parameters were determined for 46 fibroblast strains: colony-forming ability (D0); DNA repair synthesis (G0); and DNA-incising capacity (E0). Dose-response experiments with up to 13 dose levels were performed throughout to achieve sufficient experimental accuracy. DNA-damaging treatments included UV light, the 'UV-like' carcinogen N-acetoxy-2-acetylaminofluorene, and the alkylating carcinogens methyl methanesulfonate and N-methyl-N-nitrosourea. Comparison of clinical signs and repair data was made on the basis of D0, G0, and E0 values of both individual cell strains and weighted means of XP complementation groups. Despite considerable clinical and biochemical heterogeneity within complementation groups distinctive features emerged. In general, D0, G0, and E0 values of all XP strains investigated, including XP variants, were found to be reduced upon treatment with UV light or N-acetoxy-2-acetylaminofluorene.« less

  10. Generation of DNA single-strand displacement by compromised nucleotide excision repair

    PubMed Central

    Godon, Camille; Mourgues, Sophie; Nonnekens, Julie; Mourcet, Amandine; Coin, Fréderic; Vermeulen, Wim; Mari, Pierre-Olivier; Giglia-Mari, Giuseppina

    2012-01-01

    Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. PMID:22863773

  11. Possible Role of Pectin-containing Mucilage and Dew in Repairing Embryo DNA of Seeds Adapted to Desert Conditions

    PubMed Central

    Huang, Zhenying; Boubriak, Ivan; Osborne, Daphne J.; Dong, Ming; Gutterman, Yitzchak

    2008-01-01

    Background and Aims Repair of damage to DNA of seed embryos sustained during long periods of quiescence under dry desert conditions is important for subsequent germination. The possibility that repair of embryo DNA can be facilitated by small amounts of water derived from dew temporarily captured at night by pectinaceous surface pellicles was tested. These pellicles are secreted during early seed development and form mucilage when hydrated. Methods Seeds of Artemisia sphaerocephala and Artemisia ordosica were collected from a sandy desert. Their embryos were damaged by gamma radiation to induce a standard level of DNA damage. The treated seeds were then exposed to nocturnal dew deposition on the surface of soil in the Negev desert highlands. The pellicles were removed from some seeds and left intact on others to test the ability of mucilage to support repair of the damaged DNA when night-time humidity and temperature favoured dew formation. Repair was assessed from fragmentation patterns of extracted DNA on agarose gels. Key Results For A. sphaerocephala, which has thick seed pellicles, DNA repair occurred in seeds with intact pellicles after 50 min of cumulative night dew formation, but not in seeds from which the pellicles had been removed. For A. ordosica, which has thin seed pellicles, DNA repair took at least 510 min of cumulative night dewing to achieve partial recovery of DNA integrity. The mucilage has the ability to rehydrate after daytime dehydration. Conclusions The ability of seeds to develop a mucilaginous layer when wetted by night-time dew, and to repair their DNA under these conditions, appear to be mechanisms that help maintain seed viability under harsh desert conditions. PMID:17495979

  12. Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions.

    PubMed

    Huang, Zhenying; Boubriak, Ivan; Osborne, Daphne J; Dong, Ming; Gutterman, Yitzchak

    2008-01-01

    Repair of damage to DNA of seed embryos sustained during long periods of quiescence under dry desert conditions is important for subsequent germination. The possibility that repair of embryo DNA can be facilitated by small amounts of water derived from dew temporarily captured at night by pectinaceous surface pellicles was tested. These pellicles are secreted during early seed development and form mucilage when hydrated. Seeds of Artemisia sphaerocephala and Artemisia ordosica were collected from a sandy desert. Their embryos were damaged by gamma radiation to induce a standard level of DNA damage. The treated seeds were then exposed to nocturnal dew deposition on the surface of soil in the Negev desert highlands. The pellicles were removed from some seeds and left intact on others to test the ability of mucilage to support repair of the damaged DNA when night-time humidity and temperature favoured dew formation. Repair was assessed from fragmentation patterns of extracted DNA on agarose gels. For A. sphaerocephala, which has thick seed pellicles, DNA repair occurred in seeds with intact pellicles after 50 min of cumulative night dew formation, but not in seeds from which the pellicles had been removed. For A. ordosica, which has thin seed pellicles, DNA repair took at least 510 min of cumulative night dewing to achieve partial recovery of DNA integrity. The mucilage has the ability to rehydrate after daytime dehydration. The ability of seeds to develop a mucilaginous layer when wetted by night-time dew, and to repair their DNA under these conditions, appear to be mechanisms that help maintain seed viability under harsh desert conditions.

  13. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase.

    PubMed

    Wang, Li-Juan; Ren, Ming; Zhang, Qianyi; Tang, Bo; Zhang, Chun-Yang

    2017-04-18

    Uracil-DNA glycosylase (UDG) is an important base excision repair (BER) enzyme responsible for the repair of uracil-induced DNA lesion and the maintenance of genomic integrity, while the aberrant expression of UDG is associated with a variety of cancers. Thus, the accurate detection of UDG activity is essential to biomedical research and clinical diagnosis. Here, we develop a fluorescent method for ultrasensitive detection of UDG activity using excision repair-initiated enzyme-assisted bicyclic cascade signal amplification. This assay involves (1) UDG-actuated uracil-excision repair, (2) excision repair-initiated nicking enzyme-mediated isothermal exponential amplification, (3) ribonuclease H (RNase H)-induced hydrolysis of signal probes for generating fluorescence signal. The presence of UDG enables the removal of uracil from U·A pairs and generates an apurinic/apyrimidinic (AP) site. Endonuclease IV (Endo IV) subsequently cleaves the AP site, resulting in the break of DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate isothermal exponential amplification, producing a large number of triggers. The resultant trigger may selectively hybridize with the signal probe which is modified with FAM and BHQ1, forming a RNA-DNA heterogeneous duplex. The subsequent hydrolysis of RNA-DNA duplex by RNase H leads to the generation of fluorescence signal. This assay exhibits ultrahigh sensitivity with a detection limit of 0.0001 U/mL, and it can even measure UDG activity at the single-cell level. Moreover, this method can be applied for the measurement of kinetic parameters and the screening of inhibitors, thereby providing a powerful tool for DNA repair enzyme-related biomedical research and clinical diagnosis.

  14. ERCC2/XPD Lys751Gln alter DNA repair efficiency of platinum-induced DNA damage through P53 pathway.

    PubMed

    Zhang, Guopei; Guan, Yangyang; Zhao, Yuejiao; van der Straaten, Tahar; Xiao, Sha; Xue, Ping; Zhu, Guolian; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo

    2017-02-01

    Platinum-based treatment causes Pt-DNA adducts which lead to cell death. The platinum-induced DNA damage is recognized and repaired by the nucleotide excision repair (NER) system of which ERCC2/XPD is a critical enzyme. Single nucleotide polymorphisms in ERCC2/XPD have been found to be associated with platinum resistance. The aim of the present study was to investigate whether ERCC2/XPD Lys751Gln (rs13181) polymorphism is causally related to DNA repair capacity of platinum-induced DNA damage. First, cDNA clones expressing different genotypes of the polymorphism was transfected to an ERCC2/XPD defective CHO cell line (UV5). Second, all cells were treated with cisplatin. Cellular survival rate were investigated by MTT growth inhibition assay, DNA damage levels were investigated by comet assay and RAD51 staining. The distribution of cell cycle and the change of apoptosis rates were detected by a flow cytometric method (FCM). Finally, P53mRNA and phospho-P53 protein levels were further investigated in order to explore a possible explanation. As expected, there was a significantly increased in viability of UV5 ERCC2 (AA) as compared to UV5 ERCC2 (CC) after cisplatin treatment. The DNA damage level of UV5 ERCC2 (AA) was significant decreased compared to UV5 ERCC2 (CC) at 24 h of treatment. Mutation of ERCC2rs13181 AA to CC causes a prolonged S phase in cell cycle. UV5 ERCC2 (AA) alleviated the apoptosis compared to UV5 ERCC2 (CC) , meanwhile P53mRNA levels in UV ERCC2 (AA) was also lower when compared UV5 ERCC2 (CC) . It co-incides with a prolonged high expression of phospho-P53, which is relevant for cell cycle regulation, apoptosis, and the DNA damage response (DDR). We concluded that ERCC2/XPD rs13181 polymorphism is possibly related to the DNA repair capacity of platinum-induced DNA damage. This functional study provides some clues to clarify the relationship between cisplatin resistance and ERCC2/XPDrs13181 polymorphism. Copyright © 2016 Elsevier Ireland Ltd. All

  15. Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing.

    PubMed

    Baird, Brandon J; Dickey, Jennifer S; Nakamura, Asako J; Redon, Christophe E; Parekh, Palak; Griko, Yuri V; Aziz, Khaled; Georgakilas, Alexandros G; Bonner, William M; Martin, Olga A

    2011-06-03

    Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0°C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7°C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13°C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13°C during and 12h after irradiation. Mild hypothermia at 20 and 30°C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13°C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX (γ-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (OCDLs) revealed partial repair at 13°C compared to the rapid repair at 37°C. For both γ-H2AX foci and OCDLs, the return of lymphocytes to 37°C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against radiation. 2011. Published by Elsevier B.V.

  16. Gene promoter methylation and DNA repair capacity in monozygotic twins with discordant smoking habits.

    PubMed

    Ottini, Laura; Rizzolo, Piera; Siniscalchi, Ester; Zijno, Andrea; Silvestri, Valentina; Crebelli, Riccardo; Marcon, Francesca

    2015-02-01

    The influence of DNA repair capacity, plasma nutrients and tobacco smoke exposure on DNA methylation was investigated in blood cells of twenty-one couples of monozygotic twins with discordant smoking habits. All study subjects had previously been characterized for mutagen sensitivity with challenge assays with ionizing radiation in peripheral blood lymphocytes. Plasma levels of folic acid, vitamin B12 and homocysteine were also available from a previous investigation. In this work DNA methylation in the promoter region of a panel of ten genes involved in cell cycle control, differentiation, apoptosis and DNA repair (p16, FHIT, RAR, CDH1, DAPK1, hTERT, RASSF1A, MGMT, BRCA1 and PALB2) was assessed in the same batches of cells isolated for previous studies, using the methylation-sensitive high-resolution melting technique. Fairly similar profiles of gene promoter methylation were observed within co-twins compared to unrelated subjects (p= 1.23 × 10(-7)), with no significant difference related to smoking habits (p = 0.23). In a regression analysis the methylation index of study subjects, used as synthetic descriptor of overall promoter methylation, displayed a significant inverse correlation with radiation-induced micronuclei (p = 0.021) and plasma folic acid level (p = 0.007) both in smokers and in non-smokers. The observed association between repair of radiation-induced DNA damage and promoter methylation suggests the involvement of the DNA repair machinery in DNA modification. Data also highlight the possible modulating effect of folate deficiency on DNA methylation and the strong influence of familiarity on the individual epigenetic profile. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example.

    PubMed

    Antoniali, Giulia; Lirussi, Lisa; Poletto, Mattia; Tell, Gianluca

    2014-02-01

    An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world.

  18. 4-Nonylphenol induced DNA damage and repair in fish, Channa punctatus after subchronic exposure.

    PubMed

    Sharma, Madhu; Chadha, Pooja

    2017-07-01

    The detection of a possible DNA damaging effect of 4-nonylphenol (NP) after subchronic exposure and repair after cessation of exposure to Channa punctatus is the aim of the present study. Channa punctatus was exposed to different concentrations (0.15 mg/l, 0.10 mg/l, and 0.07 mg/l) of NP along with positive control (ethanol) and negative control (water) for 90 d and after that allowed to recover for 30 d. Comet assay and micronucleus assay were used for the determination of DNA damage and repair by using blood cells. The effect was seen after 30, 60, and 90 d of exposure. Time- and dose-dependent increase in DNA damage was found as revealed by both the end points studied. Evident recovery was observed after 30 d of cessation of exposure. Blood cells were successfully appeared to achieve the restoration of DNA integrity. Hence, the study aimed to improve the knowledge of the genetic hazard to fish associated with NP exposure and provide a wide scope to discover the efficiency of DNA repair system in C. punctatus.

  19. Psoralen-induced DNA adducts are substrates for the base excision repair pathway in human cells

    PubMed Central

    Couvé-Privat, Sophie; Macé, Gaëtane; Saparbaev, Murat K.

    2007-01-01

    Interstrand cross-link (ICL) is a covalent modification of both strands of DNA, which prevents DNA strand separation during transcription and replication. Upon photoactivation 8-methoxypsoralen (8-MOP+UVA) alkylates both strands of DNA duplex at the 5,6-double bond of thymidines, generating monoadducts (MAs) and ICLs. It was thought that bulky DNA lesions such as MAs are eliminated only in the nucleotide excision repair pathway. Instead, non-bulky DNA lesions are substrates for DNA glycosylases and AP endonucleases which initiate the base excision repair (BER) pathway. Here we examined whether BER might be involved in the removal of psoralen–DNA photoadducts. The results show that in human cells DNA glycosylase NEIL1 excises the MAs in duplex DNA, subsequently the apurinic/apyrimidinic endonuclease 1, APE1, removes the 3′-phosphate residue at single-strand break generated by NEIL1. The apparent kinetic parameters suggest that NEIL1 excises MAs with high efficiency. Consistent with these results HeLa cells lacking APE1 and/or NEIL1 become hypersensitive to 8-MOP+UVA exposure. Furthermore, we demonstrate that bacterial homologues of NEIL1, the Fpg and Nei proteins, also excise MAs. New substrate specificity of the Fpg/Nei protein family provides an alternative repair pathway for ICLs and bulky DNA damage. PMID:17715144

  20. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair.

    PubMed

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-06-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs-c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142-XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells.

  1. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases.

    PubMed

    Bettencourt, Conceição; Hensman-Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas-Gómez, Petra; García-Velázquez, Lizbeth Esmeralda; Alonso-Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J; Jones, Lesley

    2016-06-01

    The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome-wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single-nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10(-5) ). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10(-5) ) and all SCAs (p = 2.22 × 10(-4) ) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10(-5) ), all in the same direction as in the HD GWAS. We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983-990. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  2. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases

    PubMed Central

    Bettencourt, Conceição; Hensman‐Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas‐Gómez, Petra; García‐Velázquez, Lizbeth Esmeralda; Alonso‐Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J.

    2016-01-01

    Objective The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome‐wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. Methods We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single‐nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. Results In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10–5). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10–5) and all SCAs (p = 2.22 × 10–4) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10–5), all in the same direction as in the HD GWAS. Interpretation We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983–990 PMID:27044000

  3. A damaged DNA binding protein 2 mutation disrupting interaction with proliferating-cell nuclear antigen affects DNA repair and confers proliferation advantage.

    PubMed

    Perucca, Paola; Mocchi, Roberto; Guardamagna, Isabella; Bassi, Elisabetta; Sommatis, Sabrina; Nardo, Tiziana; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella

    2018-06-01

    In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2 Wt and DDB2 PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2 PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  5. Small RNA-mediated repair of UV-induced DNA lesions by the DNA DAMAGE-BINDING PROTEIN 2 and ARGONAUTE 1

    PubMed Central

    Schalk, Catherine; Cognat, Valérie; Graindorge, Stéfanie; Vincent, Timothée; Voinnet, Olivier; Molinier, Jean

    2017-01-01

    As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites. PMID:28325872

  6. Measurement of oxidative DNA damage by gas chromatography-mass spectrometry: ethanethiol prevents artifactual generation of oxidized DNA bases.

    PubMed Central

    Jenner, A; England, T G; Aruoma, O I; Halliwell, B

    1998-01-01

    Analysis of oxidative damage to DNA bases by GC-MS enables identification of a range of base oxidation products, but requires a derivatization procedure. However, derivatization at high temperature in the presence of air can cause 'artifactual' oxidation of some undamaged bases, leading to an overestimation of their oxidation products, including 8-hydroxyguanine. Therefore derivatization conditions that could minimize this problem were investigated. Decreasing derivatization temperature to 23 degrees C lowered levels of 8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-(hydroxymethyl)uracil measured by GC-MS in hydrolysed calf thymus DNA. Addition of the reducing agent ethanethiol (5%, v/v) to DNA samples during trimethylsilylation at 90 degrees C also decreased levels of these four oxidized DNA bases as well as 5-hydroxyuracil. Removal of guanine from hydrolysed DNA samples by treatment with guanase, prior to derivatization, resulted in 8-hydroxyguanine levels (54-59 pmol/mg of DNA) that were significantly lower than samples not pretreated with guanase, independent of the derivatization conditions used. Only hydrolysed DNA samples that were derivatized at 23 degrees C in the presence of ethanethiol produced 8-hydroxyguanine levels (56+/-8 pmol/mg of DNA) that were as low as those of guanase-pretreated samples. Levels of other oxidized bases were similar to samples derivatized at 23 degrees C without ethanethiol, except for 5-hydroxycytosine and 5-hydroxyuracil, which were further decreased by ethanethiol. Levels of 8-hydroxyguanine, 8-hydroxyadenine and 5-hydroxycytosine measured in hydrolysed calf thymus DNA by the improved procedures described here were comparable with those reported previously by HPLC with electrochemical detection and by GC-MS with prepurification to remove undamaged base. We conclude that artifactual oxidation of DNA bases during derivatization can be prevented by decreasing the temperature to 23 degrees C, removing air from the

  7. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  8. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment

    PubMed Central

    Eyboulet, Fanny; Cibot, Camille; Eychenne, Thomas; Neil, Helen; Alibert, Olivier; Werner, Michel; Soutourina, Julie

    2013-01-01

    Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3′ endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes. PMID:24298055

  9. DNA strand breaks signal the induction of DNA double-strand break repair in Saccharomyces cerevisiae.

    PubMed

    Singh, Rakesh Kumar; Krishna, Malini

    2005-12-01

    Genotoxic stress induces a checkpoint signaling cascade to generate a stress response. Saccharomyces cerevisiae shows an altered radiation response under different type of stress. Although the induction of repair has been implicated in enhanced survival after exposure to the challenging stress, the nature of the signal remains poorly understood. This study demonstrates that low doses of gamma radiation and bleomycin induce RAD52-dependent recombination repair pathway in the wild-type strain D-261. Prior exposure of cells to DNA-damaging agents (gamma radiation or bleomycin) equips them better for the subsequent damage caused by challenging doses. However, exposure to UV light, which does not cause strand breaks, was ineffective. This was confirmed by PFGE studies. This indicates that the strand breaks probably serve as the signal for induction of the recombination repair pathway while pyrimidine dimers do not. The nature of the induced repair was investigated by mutation scoring in special strain D-7, which showed that the induced repair is essentially error free.

  10. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights

    PubMed Central

    Thompson, Larry H.; Hinz, John M.

    2009-01-01

    The Fanconi anemia (FA) molecular network consists of 15 “FANC” proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint; (b) mediating enzymatic replication-fork breakage and crosslink unhooking; (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s); and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ

  11. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Bishop, Jack; Gingerich, John

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widelymore » used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.« less

  12. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    DOE PAGES

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; ...

    2015-01-08

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widelymore » used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.« less

  13. Novel TDP2-ubiquitin interactions and their importance for the repair of topoisomerase II-mediated DNA damage

    PubMed Central

    Rao, Timsi; Gao, Rui; Takada, Saeko; Al Abo, Muthana; Chen, Xiang; Walters, Kylie J.; Pommier, Yves; Aihara, Hideki

    2016-01-01

    Tyrosyl DNA phosphodiesterase 2 (TDP2) is a multifunctional protein implicated in DNA repair, signal transduction and transcriptional regulation. In its DNA repair role, TDP2 safeguards genome integrity by hydrolyzing 5′-tyrosyl DNA adducts formed by abortive topoisomerase II (Top2) cleavage complexes to allow error-free repair of DNA double-strand breaks, thereby conferring cellular resistance against Top2 poisons. TDP2 consists of a C-terminal catalytic domain responsible for its phosphodiesterase activity, and a functionally uncharacterized N-terminal region. Here, we demonstrate that this N-terminal region contains a ubiquitin (Ub)-associated (UBA) domain capable of binding multiple forms of Ub with distinct modes of interactions and preference for either K48- or K63-linked polyUbs over monoUb. The structure of TDP2 UBA bound to monoUb shows a canonical mode of UBA-Ub interaction. However, the absence of the highly conserved MGF motif and the presence of a fourth α-helix make TDP2 UBA distinct from other known UBAs. Mutations in the TDP2 UBA-Ub binding interface do not affect nuclear import of TDP2, but severely compromise its ability to repair Top2-mediated DNA damage, thus establishing the importance of the TDP2 UBA–Ub interaction in DNA repair. The differential binding to multiple Ub forms could be important for responding to DNA damage signals under different contexts or to support the multi-functionality of TDP2. PMID:27543075

  14. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids.

    PubMed

    Ahmed, Emad A; Scherthan, Harry; de Rooij, Dirk G

    2015-12-16

    Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ) repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX) foci marking DNA double strand breaks (DSBs) in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko) mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP)-ribose polymerase 1 (PARP1) inhibitor (DPQ)-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.

  15. Differential expression of thymic DNA repair genes in low-dose-rate irradiated AKR/J mice

    PubMed Central

    Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chul; Choi, Seung Jin

    2013-01-01

    We previously determined that AKR/J mice housed in a low-dose-rate (LDR) (137Cs, 0.7 mGy/h, 2.1 Gy) γ-irradiation facility developed less spontaneous thymic lymphoma and survived longer than those receiving sham or high-dose-rate (HDR) (137Cs, 0.8 Gy/min, 4.5 Gy) radiation. Interestingly, histopathological analysis showed a mild lymphomagenesis in the thymus of LDR-irradiated mice. Therefore, in this study, we investigated whether LDR irradiation could trigger the expression of thymic genes involved in the DNA repair process of AKR/J mice. The enrichment analysis of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways showed immune response, nucleosome organization, and the peroxisome proliferator-activated receptors signaling pathway in LDR-irradiated mice. Our microarray analysis and quantitative polymerase chain reaction data demonstrated that mRNA levels of Lig4 and RRM2 were specifically elevated in AKR/J mice at 130 days after the start of LDR irradiation. Furthermore, transcriptional levels of H2AX and ATM, proteins known to recruit DNA repair factors, were also shown to be upregulated. These data suggest that LDR irradiation could trigger specific induction of DNA repair-associated genes in an attempt to repair damaged DNA during tumor progression, which in turn contributed to the decreased incidence of lymphoma and increased survival. Overall, we identified specific DNA repair genes in LDR-irradiated AKR/J mice. PMID:23820165

  16. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  17. Alpha-fetoprotein and Fanconi Anemia: Relevance to DNA Repair and Breast Cancer Susceptibility.

    PubMed

    Lakhi, Nisha A; Mizejewski, Gerald J

    2017-02-01

    Elevations of serum alpha-fetoprotein (sAFP) have been reported in fetal and infant states of anemia. Fanconi anemia (FA) belongs to a family of genetic instability disorders which lack the capability to repair DNA breaks. The lesion occurs at a checkpoint regulatory step of the G2 to mitotic transition, allowing FA cells to override cell-cycle arrest. FA DNA repair pathways contain complementation groups known as FANC proteins. FANC proteins form multi-protein complexes with BRCA proteins and are involved in homologous DNA repair. An impaired cascade in these events imparts an increased breast cancer susceptibility to female FA patients. Elevations of sAFP have availed this fetal protein to serve as a biomarker for FA disease. However, the origin of the synthesis of sAFA has not been determined in FA patients. We hypothesize that hematopoietic multipotent progenitor stem cells in the bone marrow are the source of sAFP production in FA patients.

  18. Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweigert, S.E.; Carroll, D.

    1990-11-01

    Plasmid DNA substrates were X-irradiated and injected into the nuclei of Xenopus laevis oocytes. After incubation for 20 h, DNA was recovered from the oocytes and analyzed simultaneously for repair and for intermolecular homologous recombination by electrophoresis and bacterial transformation. Oocyte-mediated repair of DNA strand breaks was observed with both methods. Using a repair-deficient mutant Escherichia coli strain and its repair-proficient parent as hosts for the transformation assay, we also demonstrated that oocytes repaired oxidative-type DNA base damage induced by X-rays. X-irradiation of a circular DNA stimulated its potential to recombine with a homologous linear partner. Recombination products were detectedmore » directly by Southern blot hybridization and as bacterial transformant clones expressing two antibiotic resistance markers originally carried separately on the two substrates. The increase in recombination was dependent on X-ray dose. There is some suggestion that lesions other than double-strand breaks contribute to the stimulation of oocyte-mediated homologous recombination. In summary, oocytes have considerable capacity to repair X-ray-induced damage, and some X-ray lesions stimulate homologous recombination in these cells.« less

  19. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    PubMed

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  20. Shaping Vulnerable Bodies at the Thin Boundary between Environment and Organism: Skin, DNA Repair, and a Genealogy of DNA Care Strategies.

    PubMed

    von Schwerin, Alexander

    2015-09-01

    This paper brings together the history of risk and the history of DNA repair, a biological phenomenon that emerged as a research field in between molecular biology, genetics, and radiation research in the 1960s. The case of xeroderma pigmentosum (XP), an inherited hypersensitivity to UV light and, hence, a disposition to skin cancer will be the starting point to argue that, in the 1970s and 1980s, DNA repair became entangled in the creation of new models of the human body at risk - what is here conceptually referred to as the vulnerability aspect of body history - and new attempts at cancer prevention and enhancement of the body associated with the new flourishing research areas of antimutagenesis and anticarcinogenesis. The aim will be to demonstrate that DNA repair created special attempts at disease prevention: molecular enhancement, seeking to identify means to increase the self-repair abilities of the body at the molecular level. Prevention in this sense meant enhancing the body's ability to cope with the environmental hazards of an already toxic world. This strategy has recently been adopted by the beauty industry, which introduced DNA care as a new target for skin care research and anti-aging formulas.