Science.gov

Sample records for dna polymerased ebv-dp

  1. DNA polymerases and cancer

    PubMed Central

    Lange, Sabine S.; Takata, Kei-ichi; Wood, Richard D.

    2013-01-01

    There are fifteen different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells and at least one DNA polymerase, POLζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes may be viable targets for therapeutic strategies. PMID:21258395

  2. DNA polymerase profiling.

    PubMed

    Summerer, Daniel

    2008-01-01

    We report a simple homogeneous fluorescence assay for quantification of DNA polymerase function in high throughput. The fluorescence signal is generated by the DNA polymerase triggering opening of a molecular beacon extension of the template strand. A resulting distance alteration is reported by fluorescence resonance energy transfer between two dyes introduced into the molecular beacon stem. We describe real-time reaction profiling of two model DNA polymerases. We demonstrate kinetic characterization, rapid optimization of reaction conditions, and inhibitor profiling using the presented assay. Furthermore, to supersede purification steps in screening procedures of DNA polymerase mutant libraries, detection of enzymatic activity in bacterial expression lysates is described.

  3. Archaeal DNA polymerases in biotechnology.

    PubMed

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Huang, Yanchao

    2015-08-01

    DNA polymerase (pol) is a ubiquitous enzyme that synthesizes DNA strands in all living cells. In vitro, DNA pol is used for DNA manipulation, including cloning, PCR, site-directed mutagenesis, sequencing, and several other applications. Family B archaeal DNA pols have been widely used for molecular biological methods. Biochemical and structural studies reveal that each archaeal DNA pol has different characteristics with respect to fidelity, processivity and thermostability. Due to their high fidelity and strong thermostability, family B archaeal DNA pols have the extensive application on high-fidelity PCR, DNA sequencing, and site-directed mutagenesis while family Y archaeal DNA pols have the potential for error-prone PCR and random mutagenesis because of their low fidelity and strong thermostability. This information combined with mutational analysis has been used to construct novel DNA pols with altered properties that enhance their use as biotechnological reagents. In this review, we focus on the development and use of family B archaeal DNA pols.

  4. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles

    1997-01-01

    Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.

  5. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, S.; Richardson, C.

    1997-03-25

    A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.

  6. The evolutionary conservation of DNA polymerase. alpha

    SciTech Connect

    Miller, M.A.; Korn, D.; Wang, T.S.F. )

    1988-08-25

    The evolutionary conservation of DNA polymerase {alpha} was assessed by immunological and molecular genetic approaches. Four anti-human KB cell DNA polymerase {alpha} monoclonal antibodies were tested for their ability to recognize a phylogenetically broad array of eukaryotic DNA polymerases. While the single non-neutralizing antibody used in this study recognizes higher mammalian (human, simian, canine, and bovine) polymerases only, three neutralizing antibodies exhibit greater, but variable, extents of cross-reactivity among vertebrate species. Genomic Southern hybridization studies with the cDNA of the human DNA polymerase {alpha} catalytic polypeptide identify the existence of many consensus DNA sequences within the DNA polymerase genes of vertebrate, invertebrate, plant and unicellular organisms. These findings illustrate the differential evolutionary conservation of four unique epitopes on DNA sequences, presumably reflective of critical functional domains, in the DNA polymerase genes from a broad diversity of living forms.

  7. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    DOE PAGESBeta

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Errormore » rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less

  8. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase.

    PubMed

    McInerney, Peter; Adams, Paul; Hadi, Masood Z

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition. PMID:25197572

  9. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  10. DNA replication. A familiar ring to DNA polymerase processivity.

    PubMed

    Wyman, C; Botchan, M

    1995-04-01

    Structural similarity reveals that prokaryotic and eukaryotic DNA polymerases share a mechanism for processivity--but the conservation of additional chromosomal replication mechanisms remains to be determined.

  11. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases.

    PubMed

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-01-01

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. PMID:18834537

  12. Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination.

    PubMed

    Sutton, M D; Walker, G C

    2001-07-17

    Two important and timely questions with respect to DNA replication, DNA recombination, and DNA repair are: (i) what controls which DNA polymerase gains access to a particular primer-terminus, and (ii) what determines whether a DNA polymerase hands off its DNA substrate to either a different DNA polymerase or to a different protein(s) for the completion of the specific biological process? These questions have taken on added importance in light of the fact that the number of known template-dependent DNA polymerases in both eukaryotes and in prokaryotes has grown tremendously in the past two years. Most notably, the current list now includes a completely new family of enzymes that are capable of replicating imperfect DNA templates. This UmuC-DinB-Rad30-Rev1 superfamily of DNA polymerases has members in all three kingdoms of life. Members of this family have recently received a great deal of attention due to the roles they play in translesion DNA synthesis (TLS), the potentially mutagenic replication over DNA lesions that act as potent blocks to continued replication catalyzed by replicative DNA polymerases. Here, we have attempted to summarize our current understanding of the regulation of action of DNA polymerases with respect to their roles in DNA replication, TLS, DNA repair, DNA recombination, and cell cycle progression. In particular, we discuss these issues in the context of the Gram-negative bacterium, Escherichia coli, that contains a DNA polymerase (Pol V) known to participate in most, if not all, of these processes.

  13. Human DNA polymerase. alpha. : Predicted functional domains and relationships with viral DNA polymerases

    SciTech Connect

    Wang, T.S.F.; Wong, S.W.; Korn, D. )

    1989-01-01

    The primary sequence of human DNA polymerase {alpha} deduced from the full-length cDNA contains regions of striking similarity to sequences in replicative DNA polymerases from Escherichia coli phages PRD1 and T4, Bacillus phage {phi}19, yeast DNA polymerase I, yeast linear plasmid pGKL1, maize S1 mitochondrial DNA, herpes family viruses, vaccinia virus, and adenovirus. The conservation of these homologous regions across this vast phylogenetic expanse indicates that these prokaryotic and eukaryotic DNA polymerases may all have evolved from a common primordial gene. Based on the sequence analysis and genetic results from yeast and herpes simplex virus studies, these consensus sequences are suggested to define potential sites that subserve essential roles in the DNA polymerase reaction. Two of these conserved regions appear to participate directly in the active site required for substrate deoxynucleotide interaction. One region toward the carboxyl-terminus has the potential to be the DNA interacting domain is predicted toward the amino-terminus. The provisional assignment of these domains can be used to identify unique or dissimilar features of functionally homologous catalytic sites in viral DBA polymerases of pathogenetic significance and thereby serve to guide more rational antiviral drug design.

  14. DNA polymerase alpha and beta in the California urchin.

    PubMed Central

    Racine, F M; Morris, P W

    1978-01-01

    DNA polymerase alpha and beta were identified in the urchin, Strongylocentrotus purpuratus. The DNA polymerase beta sedimented at 3.4 S, constituted 5% of total DNA polymerase activity, and was resistant to N-ethylmaleimide and high ionic strength. The polymerase alpha sedimented at 6--8 S, was inhibited by N-ethylmalemide or 0.1 M (NH4)2SO4, and was dependent upon glycerol for preservation of activity. Both the polymerases alpha and beta were nuclear associated in embryos. The DNA polymerase alpha was markedly heterogeneous on DEAE-Sephadex ion exchange and showed three modal polymerase species. These polymerase alpha species were indistinguishable by template activity assays but the DNA polymerase associated ribonucleotidyl transferase (Biochemistry 75 : 3106-3113, 1976) was found predominantly with only one of the DNA polymerase alpha species. PMID:569291

  15. Engineered DNA polymerase improves PCR results for plastid DNA1

    PubMed Central

    Schori, Melanie; Appel, Maryke; Kitko, AlexaRae; Showalter, Allan M.

    2013-01-01

    • Premise of the study: Secondary metabolites often inhibit PCR and sequencing reactions in extractions from plant material, especially from silica-dried and herbarium material. A DNA polymerase that is tolerant to inhibitors improves PCR results. • Methods and Results: A novel DNA amplification system, including a DNA polymerase engineered via directed evolution for improved tolerance to common plant-derived PCR inhibitors, was evaluated and PCR parameters optimized for three species. An additional 31 species were then tested with the engineered enzyme and optimized protocol, as well as with regular Taq polymerase. • Conclusions: PCR products and high-quality sequence data were obtained for 96% of samples for rbcL and 79% for matK, compared to 29% and 21% with regular Taq polymerase. PMID:25202519

  16. Molecular Mechanisms of DNA Polymerase Clamp Loaders

    NASA Astrophysics Data System (ADS)

    Kelch, Brian; Makino, Debora; Simonetta, Kyle; O'Donnell, Mike; Kuriyan, John

    Clamp loaders are ATP-driven multiprotein machines that couple ATP hydrolysis to the opening and closing of a circular protein ring around DNA. This ring-shaped clamp slides along DNA, and interacts with numerous proteins involved in DNA replication, DNA repair and cell cycle control. Recently determined structures of clamp loader complexes from prokaryotic and eukaryotic DNA polymerases have revealed exciting new details of how these complex AAA+ machines perform this essential clamp loading function. This review serves as background to John Kuriyan's lecture at the 2010 Erice School, and is not meant as a comprehensive review of the contributions of the many scientists who have advanced this field. These lecture notes are derived from recent reviews and research papers from our groups.

  17. Targeting DNA Polymerase β for Therapeutic Intervention

    PubMed Central

    Goellner, Eva M.; Svilar, David; Almeida, Karen H.; Sobol, Robert W.

    2014-01-01

    DNA damage plays a causal role in numerous disease processes. Hence, it is suggested that DNA repair proteins, which maintain the integrity of the nuclear and mitochondrial genomes, play a critical role in reducing the onset of multiple diseases, including cancer, diabetes and neurodegeneration. As the primary DNA polymerase involved in base excision repair, DNA polymerase β (Polβ) has been implicated in multiple cellular processes, including genome maintenance and telomere processing and is suggested to play a role in oncogenic transformation, cell viability following stress and the cellular response to radiation, chemotherapy and environmental genotoxicants. Therefore, Polβ inhibitors may prove to be effective in cancer treatment. However, Polβ has a complex and highly regulated role in DNA metabolism. This complicates the development of effective Polβ-specific inhibitors useful for improving chemotherapy and radiation response without impacting normal cellular function. With multiple enzymatic activities, numerous binding partners and complex modes of regulation from post-translational modifications, there are many opportunities for Polβ inhibition that have yet to be resolved. To shed light on the varying possibilities and approaches of targeting Polβ for potential therapeutic intervention, we summarize the reported small molecule inhibitors of Polβ and discuss the genetic, biochemical and chemical studies that implicate additional options for Polβ inhibition. Further, we offer suggestions on possible inhibitor combinatorial approaches and the potential for tumor specificity for Polβ-inhibitors. PMID:22122465

  18. Mutability of DNA polymerase I: implications for the creation of mutant DNA polymerases.

    PubMed

    Loh, Ern; Loeb, Lawrence A

    2005-12-01

    DNA polymerases of the Family A catalyze the addition of deoxynucleotides to a primer with high efficiency, processivity, and selectivity-properties that are critical to their function both in nature and in the laboratory. These polymerases tolerate many amino acid substitutions, even in regions that are evolutionarily conserved. This tolerance can be exploited to create DNA polymerases with novel properties and altered substrate specificities, using rational design and molecular evolution. These efforts have focused mainly on the Family A DNA polymerises -Taq, E. coli Pol I, and T7 - because they are widely utilized in biotechnology today. The redesign of polymerases often requires knowledge of the function of specific residues in the protein, including those located in six evolutionarily conserved regions. The most well characterized of these are motifs A and B, which regulate the fidelity of replication and the incorporation of nucleotide analogs such as dideoxynucleotides. Regions that remain to be more thoroughly characterized are motif C, which is critical for catalysis, and motifs 1, 2 and 6, all of which bind to DNA primer or template. Several recently identified mutants with abilities to incorporate nucleotides with bulky adducts have mutations that are not located within conserved regions and warrant further study. Analysis of these mutants will help advance our understanding of how DNA polymerases select bases with high fidelity. PMID:16230053

  19. Guanine-rich sequences inhibit proofreading DNA polymerases

    PubMed Central

    Zhu, Xiao-Jing; Sun, Shuhui; Xie, Binghua; Hu, Xuemei; Zhang, Zunyi; Qiu, Mengsheng; Dai, Zhong-Min

    2016-01-01

    DNA polymerases with proofreading activity are important for accurate amplification of target DNA. Despite numerous efforts have been made to improve the proofreading DNA polymerases, they are more susceptible to be failed in PCR than non-proofreading DNA polymerases. Here we showed that proofreading DNA polymerases can be inhibited by certain primers. Further analysis showed that G-rich sequences such as GGGGG and GGGGHGG can cause PCR failure using proofreading DNA polymerases but not Taq DNA polymerase. The inhibitory effect of these G-rich sequences is caused by G-quadruplex and is dose dependent. G-rich inhibitory sequence-containing primers can be used in PCR at a lower concentration to amplify its target DNA fragment. PMID:27349576

  20. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs

    PubMed Central

    de Vega, Miguel; Lázaro, José M.; Mencía, Mario; Blanco, Luis; Salas, Margarita

    2010-01-01

    Bacteriophage φ29 DNA polymerase is a unique enzyme endowed with two distinctive properties, high processivity and faithful polymerization coupled to strand displacement, that have led to the development of protocols to achieve isothermal amplification of limiting amounts of both circular plasmids and genomic DNA. To enhance the amplification efficiency of φ29 DNA polymerase, we have constructed chimerical DNA polymerases by fusing DNA binding domains to the C terminus of the polymerase. The results show that the addition of Helix-hairpin-Helix [(HhH)2] domains increases DNA binding of the hybrid polymerases without hindering their replication rate. In addition, the chimerical DNA polymerases display an improved and faithful multiply primed DNA amplification proficiency on both circular plasmids and genomic DNA and are unique φ29 DNA polymerase variants with enhanced amplification performance. The reported chimerical DNA polymerases will contribute to make φ29 DNA polymerase-based amplification technologies one of the most powerful tools for genomics. PMID:20823261

  1. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.

    PubMed

    de Vega, Miguel; Lázaro, José M; Mencía, Mario; Blanco, Luis; Salas, Margarita

    2010-09-21

    Bacteriophage ϕ29 DNA polymerase is a unique enzyme endowed with two distinctive properties, high processivity and faithful polymerization coupled to strand displacement, that have led to the development of protocols to achieve isothermal amplification of limiting amounts of both circular plasmids and genomic DNA. To enhance the amplification efficiency of ϕ29 DNA polymerase, we have constructed chimerical DNA polymerases by fusing DNA binding domains to the C terminus of the polymerase. The results show that the addition of Helix-hairpin-Helix [(HhH)(2)] domains increases DNA binding of the hybrid polymerases without hindering their replication rate. In addition, the chimerical DNA polymerases display an improved and faithful multiply primed DNA amplification proficiency on both circular plasmids and genomic DNA and are unique ϕ29 DNA polymerase variants with enhanced amplification performance. The reported chimerical DNA polymerases will contribute to make ϕ29 DNA polymerase-based amplification technologies one of the most powerful tools for genomics. PMID:20823261

  2. Data of expression and purification of recombinant Taq DNA polymerase.

    PubMed

    Fang, Na; Zhong, Niannian; Yang, Yueyang; Guo, Yujian; Ji, Shaoping

    2016-12-01

    Polymerase chain reaction (PCR) technique is widely used in many experimental conditions, and Taq DNA polymerase is critical in PCR process. In this article, the Taq DNA polymerase expression plasmid is reconstructed and the protein product is obtained by rapid purification, ("Rapid purification of high-activity Taq DNA polymerase" (Pluthero, 1993 [1]), "Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli" (Desai and Pfaffle, 1995 [2])). Here we present the production data from protein expression and provide the analysis results of the production from two different vectors. Meanwhile, the purification data is also provided to show the purity of the protein product. PMID:27656666

  3. Mechanism for priming DNA synthesis by yeast DNA Polymerase α

    PubMed Central

    Perera, Rajika L; Torella, Rubben; Klinge, Sebastian; Kilkenny, Mairi L; Maman, Joseph D; Pellegrini, Luca

    2013-01-01

    The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI: http://dx.doi.org/10.7554/eLife.00482.001 PMID:23599895

  4. Substrate-induced DNA polymerase β activation.

    PubMed

    Beard, William A; Shock, David D; Batra, Vinod K; Prasad, Rajendra; Wilson, Samuel H

    2014-11-01

    DNA polymerases and substrates undergo conformational changes upon forming protein-ligand complexes. These conformational adjustments can hasten or deter DNA synthesis and influence substrate discrimination. From structural comparison of binary DNA and ternary DNA-dNTP complexes of DNA polymerase β, several side chains have been implicated in facilitating formation of an active ternary complex poised for chemistry. Site-directed mutagenesis of these highly conserved residues (Asp-192, Arg-258, Phe-272, Glu-295, and Tyr-296) and kinetic characterization provides insight into the role these residues play during correct and incorrect insertion as well as their role in conformational activation. The catalytic efficiencies for correct nucleotide insertion for alanine mutants were wild type ∼ R258A > F272A ∼ Y296A > E295A > D192A. Because the efficiencies for incorrect insertion were affected to about the same extent for each mutant, the effects on fidelity were modest (<5-fold). The R258A mutant exhibited an increase in the single-turnover rate of correct nucleotide insertion. This suggests that the wild-type Arg-258 side chain generates a population of non-productive ternary complexes. Structures of binary and ternary substrate complexes of the R258A mutant and a mutant associated with gastric carcinomas, E295K, provide molecular insight into intermediate structural conformations not appreciated previously. Although the R258A mutant crystal structures were similar to wild-type enzyme, the open ternary complex structure of E295K indicates that Arg-258 stabilizes a non-productive conformation of the primer terminus that would decrease catalysis. Significantly, the open E295K ternary complex binds two metal ions indicating that metal binding cannot overcome the modified interactions that have interrupted the closure of the N-subdomain. PMID:25261471

  5. Mechanism of translesion DNA synthesis by DNA polymerase II. Comparison to DNA polymerases I and III core.

    PubMed

    Paz-Elizur, T; Takeshita, M; Goodman, M; O'Donnell, M; Livneh, Z

    1996-10-01

    Bypass synthesis by DNA polymerase II was studied using a synthetic 40-nucleotide-long gapped duplex DNA containing a site-specific abasic site analog, as a model system for mutagenesis associated with DNA lesions. Bypass synthesis involved a rapid polymerization step terminating opposite the nucleotide preceding the lesion, followed by a slow bypass step. Bypass was found to be dependent on polymerase and dNTP concentrations, on the DNA sequence context, and on the size of the gap. A side-by-side comparison of DNA polymerases I, II, and III core revealed the following. 1) Each of the three DNA polymerases bypassed the abasic site analog unassisted by other proteins. 2) In the presence of physiological-like salt conditions, only DNA polymerase II bypassed the lesion. 3) Bypass by each of the three DNA polymerases increased dramatically in the absence of proofreading. These results support a model (Tomer, G., Cohen-Fix, O. , O'Donnell, M., Goodman, M. and Livneh, Z. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1376-1380) by which the RecA, UmuD, and UmuC proteins are accessory factors rather than being absolutely required for the core mutagenic bypass reaction in induced mutagenesis in Escherichia coli.

  6. The Closing Mechanism of DNA Polymerase I at Atomic Resolution.

    PubMed

    Miller, Bill R; Beese, Lorena S; Parish, Carol A; Wu, Eugene Y

    2015-09-01

    DNA polymerases must quickly and accurately distinguish between similar nucleic acids to form Watson-Crick base pairs and avoid DNA replication errors. Deoxynucleoside triphosphate (dNTP) binding to the DNA polymerase active site induces a large conformational change that is difficult to characterize experimentally on an atomic level. Here, we report an X-ray crystal structure of DNA polymerase I bound to DNA in the open conformation with a dNTP present in the active site. We use this structure to computationally simulate the open to closed transition of DNA polymerase in the presence of a Watson-Crick base pair. Our microsecond simulations allowed us to characterize the key steps involved in active site assembly, and propose the sequence of events involved in the prechemistry steps of DNA polymerase catalysis. They also reveal new features of the polymerase mechanism, such as a conserved histidine as a potential proton acceptor from the primer 3'-hydroxyl. PMID:26211612

  7. Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases.

    PubMed

    Bernad, A; Zaballos, A; Salas, M; Blanco, L

    1987-12-20

    The Bacillus subtilis phage luminal diameter 29 DNA polymerase, involved in protein-primed viral DNA replication, was inhibited by phosphonoacetic acid (PAA), a known inhibitor of alpha-like DNA polymerases, by decreasing the rate of elongation. Three highly conserved regions of amino acid homology, found in several viral alpha-like DNA polymerases and in the luminal diameter 29 DNA polymerase, one of them proposed to be the PAA binding site, were also found in the T4 DNA polymerase. This prokaryotic enzyme was highly sensitive to the drugs aphidicolin and the nucleotide analogues butylanilino dATP (BuAdATP) and butylphenyl dGTP (BuPdGTP), known to be specific inhibitors of eukaryotic alpha-like DNA polymerases. Two potential DNA polymerases from the linear plasmid pGKL1 from yeast and the S1 mitochondrial DNA from maize have been identified, based on the fact that they contain the three conserved regions of amino acid homology. Comparison of DNA polymerases from prokaryotic and eukaryotic origin showed extensive amino acid homology in addition to highly conserved domains. These findings reflect evolutionary relationships between hypothetically unrelated DNA polymerases.

  8. A DNA polymerase activity is associated with Cauliflower Mosaic Virus.

    PubMed Central

    Menissier, J; Laquel, P; Lebeurier, G; Hirth, L

    1984-01-01

    A DNA polymerase activity is found within the Cauliflower Mosaic Virus (CaMV) particle. Analysis of the reaction product reveals that the linear form of the virion DNA is preferentially labelled. The molecular weight of the DNA polymerase as determined on an "activity gel" is 76 kDa. Images PMID:6514573

  9. Human DNA polymerase beta mutations allowing efficient abasic site bypass.

    PubMed

    Gieseking, Sonja; Bergen, Konrad; Di Pasquale, Francesca; Diederichs, Kay; Welte, Wolfram; Marx, Andreas

    2011-02-01

    The DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair. The mechanistic basis for the incapability of these DNA polymerases to bypass abasic sites is not clarified. To gain insights into the mechanistic basis, we intended to identify amino acid residues that govern for the pausing of DNA polymerase β when incorporating a nucleotide opposite to abasic sites. Human DNA polymerase β was chosen because it is a well characterized DNA polymerase and serves as model enzyme for studies of DNA polymerase mechanisms. Moreover, it acts as the main gap-filling enzyme in base excision repair, and human tumor studies suggest a link between DNA polymerase β and cancer. In this study we employed high throughput screening of a library of more than 11,000 human DNA polymerase β variants. We identified two mutants that have increased ability to incorporate a nucleotide opposite to an abasic site. We found that the substitutions E232K and T233I promote incorporation opposite the lesion. In addition to this feature, the variants have an increased activity and a lower fidelity when processing nondamaged DNA. The mutations described in this work are located in well characterized regions but have not been reported before. A crystallographic structure of one of the mutants was obtained, providing structural insights.

  10. Human DNA Polymerase β Mutations Allowing Efficient Abasic Site Bypass*

    PubMed Central

    Gieseking, Sonja; Bergen, Konrad; Di Pasquale, Francesca; Diederichs, Kay; Welte, Wolfram; Marx, Andreas

    2011-01-01

    The DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair. The mechanistic basis for the incapability of these DNA polymerases to bypass abasic sites is not clarified. To gain insights into the mechanistic basis, we intended to identify amino acid residues that govern for the pausing of DNA polymerase β when incorporating a nucleotide opposite to abasic sites. Human DNA polymerase β was chosen because it is a well characterized DNA polymerase and serves as model enzyme for studies of DNA polymerase mechanisms. Moreover, it acts as the main gap-filling enzyme in base excision repair, and human tumor studies suggest a link between DNA polymerase β and cancer. In this study we employed high throughput screening of a library of more than 11,000 human DNA polymerase β variants. We identified two mutants that have increased ability to incorporate a nucleotide opposite to an abasic site. We found that the substitutions E232K and T233I promote incorporation opposite the lesion. In addition to this feature, the variants have an increased activity and a lower fidelity when processing nondamaged DNA. The mutations described in this work are located in well characterized regions but have not been reported before. A crystallographic structure of one of the mutants was obtained, providing structural insights. PMID:21107011

  11. Human DNA polymerase α in binary complex with a DNA:DNA template-primer

    PubMed Central

    Coloma, Javier; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2016-01-01

    The Polα/primase complex assembles the short RNA-DNA fragments for priming of lagging and leading strand DNA replication in eukaryotes. As such, the Polα polymerase subunit encounters two types of substrates during primer synthesis: an RNA:DNA helix and a DNA:DNA helix. The engagement of the polymerase subunit with the DNA:DNA helix has been suggested as the of basis for primer termination in eukaryotes. However, there is no structural information on how the Polα polymerase subunit actually engages with a DNA:DNA helix during primer synthesis. We present here the first crystal structure of human Polα polymerase subunit in complex with a DNA:DNA helix. Unexpectedly, we find that portion of the DNA:DNA helix in contact with the polymerase is not in a B-form but in a hybrid A-B form. Almost all of the contacts observed previously with an RNA primer are preserved with a DNA primer – with the same set of polymerase residues tracking the sugar-phosphate backbone of the DNA or RNA primer. Thus, rather than loss of specific contacts, the free energy cost of distorting DNA from B- to hybrid A-B form may augur the termination of primer synthesis in eukaryotes. PMID:27032819

  12. Incorporation of reporter-labeled nucleotides by DNA polymerases.

    PubMed

    Anderson, Jon P; Angerer, Bernhard; Loeb, Lawrence A

    2005-02-01

    The incorporation of fluorescently labeled nucleotides into DNA by DNA polymerases has been used extensively for tagging genes and for labeling DNA. However, we lack studies comparing polymerase efficiencies for incorporating different fluorescently labeled nucleotides. We analyzed the incorporation of fluorescent deoxynucleoside triphosphates by 10 different DNA polymerases, representing a cross-section of DNA polymerases from families A, B, and reverse transcriptase. The substitution of one or more different reporter-labeled nucleotides for the cognate nucleotides was initially investigated by using an in vitro polymerase extension filter-binding assay with natural DNA as a template. Further analysis on longer DNA fragments containing one or more nucleotide analogs was performed using a newly developed extension cut assay. The results indicate that incorporation of fluorescent nucleotides is dependent on the DNA polymerase, fluorophore, linker between the nucleotide and the fluorophore, and position for attachment of the linker and the cognate nucleotide. Of the polymerases tested, Taq and Vent exo DNA polymerases were most efficient at incorporating a variety of fluorescently labeled nucleotides. This study suggests that it should be feasible to copy DNA with reactions mixtures that contain all four fluorescently labeled nucleotides allowing for high-density labeling of DNA. PMID:15727132

  13. In vitro replication slippage by DNA polymerases from thermophilic organisms.

    PubMed

    Viguera, E; Canceill, D; Ehrlich, S D

    2001-09-14

    Replication slippage of DNA polymerases is a potential source of spontaneous genetic rearrangements in prokaryotic and eukaryotic cells. Here we show that different thermostable DNA polymerases undergo replication slippage in vitro, during single-round replication of a single-stranded DNA template carrying a hairpin structure. Low-fidelity polymerases, such as Thermus aquaticus (Taq), high-fidelity polymerases, such as Pyrococcus furiosus (Pfu) and a highly thermostable polymerase from Pyrococcus abyssi (Pyra exo(-)) undergo slippage. Thermococcus litoralis DNA polymerase (Vent) is also able to slip; however, slippage can be inhibited when its strand-displacement activity is induced. Moreover, DNA polymerases that have a constitutive strand-displacement activity, such as Bacillus stearothermophilus DNA polymerase (Bst), do not slip. Polymerases that slip during single-round replication generate hairpin deletions during PCR amplification, with the exception of Vent polymerase because its strand-displacement activity is induced under these conditions. We show that these hairpin deletions occurring during PCR are due to replication slippage, and not to a previously proposed process involving polymerization across the hairpin base.

  14. Evolution of Eukaryotic DNA Polymerases via Interaction Between Cells and Large DNA Viruses.

    PubMed

    Takemura, Masaharu; Yokobori, Shin-ichi; Ogata, Hiroyuki

    2015-08-01

    B-family DNA-directed DNA polymerases are DNA replication enzymes found in Eukaryota, Archaea, large DNA viruses, and in some, but not all, bacteria. Several polymerase domains are conserved among the B-family DNA polymerases from these organisms, suggesting that the B-family DNA polymerases evolved from a common ancestor. Eukaryotes retain at least three replicative B-family DNA polymerases, DNA polymerase α, δ, and ε, and one translesion B-family DNA polymerase, DNA polymerase ζ. Here, we present molecular evolutionary evidence that suggests DNA polymerase genes evolved through horizontal gene transfer between the viral and archaeal-eukaryotic lineages. Molecular phylogenetic analyses of the B-family DNA polymerases from nucleo-cytoplasmic large DNA viruses (NCLDVs), eukaryotes, and archaea suggest that different NCLDV lineages such as Poxviridae and Mimiviridae were involved in the evolution of different DNA polymerases (pol-α-, δ-, ε-, and ζ-like genes) in archaeal-eukaryotic cell lineages, putatively through horizontal gene transfer. These results support existing theories that link the evolution of NCLDVs and the origin of the eukaryotic nucleus.

  15. Accessory proteins for DNA polymerase alpha activity with single-strand DNA templates.

    PubMed Central

    Lamothe, P; Baril, B; Chi, A; Lee, L; Baril, E

    1981-01-01

    Three forms of DNA polymerase alpha [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7] were partially purified from the combined nuclear extract and postmicrosomal supernatant solution of synchronized HeLa cells. These enzymes, designated DNA polymerases alpha 1, alpha 2, and alpha 3, on the basis of their order of elution from DEAE-Bio-Gel, differ in their abilities to utilize single-strand DNA templates. DNA polymerase alpha 2 has equal catalytic activities with activated and single-strand DNAs as template-primers. DNA polymerase alpha 1 has only partial catalytic activity with single-strand DNA templates, and DNA polymerase alpha 3 is essentially inactive with this template. Successive steps of hydrophobic affinity chromatography and phosphocellulose chromatography of DNA polymerase alpha 2 resolved the polymerase alpha activity and two protein factors (C1 and C2) that are required for its catalytic activity with a DNA template-primer that contains extended single-strand regions. In the absence of the factors, DNA polymerase alpha activity is measurable with activated but not single-strand DNA templates. In the presence of the C1 and C2 factors DNA polymerase alpha activity with single-strand DNA templates is restored to about 75% of the catalytic activity of DNA polymerase alpha 2 with this template. Images PMID:6946421

  16. Evidence implying DNA polymerase beta function in excision repair.

    PubMed

    Siedlecki, J A; Szyszko, J; Pietrzykowska, I; Zmudzka, B

    1980-01-25

    Comparison was made of the ability of calf thymus DNA polymerases alpha and beta to replicate the following templates: native E. coli CR-34 DNA (T-DNA), calf thymus DNA activated by DNase I (act.DNA), BU-DNA (from E. coli CR-34 cells cultured on BUdR-containing medium) with damages resulting from incomplete excision repair, as well as thermally denatured act.DNA and BU-DNA (s.s.act.DNA and s.s.BU-DNA). 3H-TTP incorporation during extensive replication of act.DNA was similar for both enzymes, being, as expected, 40 times higher than for T-DNA. Likewise, the differences in the yield of the s.s.act.DNA or s.s.BU-DNA replication between both enzymes were negligible. In contrast, damaged native DNA was 6 - 30 times more extensively replicated by DNA polymerase beta than alpha. We propose that this is due to the greater ability of DNA polymerase beta compared with alpha to replicate single-stranded gaps, the presence of which is more likely in damaged BU-DNA than in T-DNA and act.DNA.

  17. Physical Interactions between Mcm10, DNA, and DNA Polymerase [alpha

    SciTech Connect

    Warren, Eric M.; Huang, Hao; Fanning, Ellen; Chazin, Walter J.; Eichman, Brandt F.

    2009-10-21

    Mcm10 is an essential eukaryotic protein required for the initiation and elongation phases of chromosomal replication. Specifically, Mcm10 is required for the association of several replication proteins, including DNA polymerase {alpha} (pol {alpha}), with chromatin. We showed previously that the internal (ID) and C-terminal (CTD) domains of Mcm10 physically interact with both single-stranded (ss) DNA and the catalytic p180 subunit of pol {alpha}. However, the mechanism by which Mcm10 interacts with pol {alpha} on and off DNA is unclear. As a first step toward understanding the structural details for these critical intermolecular interactions, x-ray crystallography and NMR spectroscopy were used to map the binary interfaces between Mcm10-ID, ssDNA, and p180. The crystal structure of an Mcm10-ID {center_dot} ssDNA complex confirmed and extended our previous evidence that ssDNA binds within the oligonucleotide/oligosaccharide binding-fold cleft of Mcm10-ID. We show using NMR chemical shift perturbation and fluorescence spectroscopy that p180 also binds to the OB-fold and that ssDNA and p180 compete for binding to this motif. In addition, we map a minimal Mcm10 binding site on p180 to a small region within the p180 N-terminal domain (residues 286-310). These findings, together with data for DNA and p180 binding to an Mcm10 construct that contains both the ID and CTD, provide the first mechanistic insight into how Mcm10 might use a handoff mechanism to load and stabilize pol {alpha} within the replication fork.

  18. Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity*

    PubMed Central

    Kamath-Loeb, Ashwini S.; Balakrishna, Sharath; Whittington, Dale; Shen, Jiang-Cheng; Emond, Mary J.; Okabe, Takayoshi; Masutani, Chikahide; Hanaoka, Fumio; Nishimura, Susumu; Loeb, Lawrence A.

    2014-01-01

    Translesion (TLS) DNA polymerases are specialized, error-prone enzymes that synthesize DNA across bulky, replication-stalling DNA adducts. In so doing, they facilitate the progression of DNA synthesis and promote cell proliferation. To potentiate the effect of cancer chemotherapeutic regimens, we sought to identify inhibitors of TLS DNA polymerases. We screened five libraries of ∼3000 small molecules, including one comprising ∼600 nucleoside analogs, for their effect on primer extension activity of DNA polymerase η (Pol η). We serendipitously identified sphingosine, a lipid-signaling molecule that robustly stimulates the activity of Pol η by ∼100-fold at low micromolar concentrations but inhibits it at higher concentrations. This effect is specific to the Y-family DNA polymerases, Pols η, κ, and ι. The addition of a single phosphate group on sphingosine completely abrogates this effect. Likewise, the inclusion of other sphingolipids, including ceramide and sphingomyelin to extension reactions does not elicit this response. Sphingosine increases the rate of correct and incorrect nucleotide incorporation while having no effect on polymerase processivity. Endogenous Pol η activity is modulated similarly as the recombinant enzyme. Importantly, sphingosine-treated cells exhibit increased lesion bypass activity, and sphingosine tethered to membrane lipids mimics the effects of free sphingosine. Our studies have uncovered sphingosine as a modulator of TLS DNA polymerase activity; this property of sphingosine may be associated with its known role as a signaling molecule in regulating cell proliferation in response to cellular stress. PMID:24928506

  19. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-04-01

    Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering of the error probability under physiological conditions. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  20. Inhibition of DNA polymerase alpha by aphidicolin derivatives.

    PubMed Central

    Arabshahi, L; Brown, N; Khan, N; Wright, G

    1988-01-01

    17-Acetylaphidicolin was 10-fold weaker and two derivatives lacking hydroxyl groups at the 16 and 17 positions were 100-fold weaker than aphidicolin as inhibitors of DNA polymerase alpha from HeLa and Chinese hamster ovary cells. 17,18-Diacetyl, 3,17,18-triacetyl and 3-epi derivatives of aphidicolin were inactive. Active compounds were, like aphidicolin, competitive with dCTP and did not inhibit aphidicolin-resistant DNA polymerases. PMID:3133639

  1. Inhibition of DNA polymerase alpha by aphidicolin derivatives.

    PubMed

    Arabshahi, L; Brown, N; Khan, N; Wright, G

    1988-06-10

    17-Acetylaphidicolin was 10-fold weaker and two derivatives lacking hydroxyl groups at the 16 and 17 positions were 100-fold weaker than aphidicolin as inhibitors of DNA polymerase alpha from HeLa and Chinese hamster ovary cells. 17,18-Diacetyl, 3,17,18-triacetyl and 3-epi derivatives of aphidicolin were inactive. Active compounds were, like aphidicolin, competitive with dCTP and did not inhibit aphidicolin-resistant DNA polymerases.

  2. Techniques used to study the DNA polymerase reaction pathway

    PubMed Central

    Joyce, Catherine M.

    2009-01-01

    Summary A minimal reaction pathway for DNA polymerases was established over 20 years ago using chemical quench methods. Since that time there has been considerable interest in noncovalent steps in the reaction pathway, conformational changes involving the polymerase or its DNA substrate that may play a role in substrate specificity. Fluorescence-based assays have been devised in order to study these conformational transitions and the results obtained have added new detail to the reaction pathway. PMID:19665596

  3. A meiotic DNA polymerase from a mushroom, Agaricus bisporus.

    PubMed Central

    Takami, K; Matsuda, S; Sono, A; Sakaguchi, K

    1994-01-01

    A meiotic DNA polymerase [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7], which likely has a role in meiotic DNA repair, was isolated from a mushroom, Agaricus bisporus. The purified fraction displays three bands in SDS/PAGE, at molecular masses of 72 kDa, 65 kDa and 36 kDa. Optimal activity is at pH 7.0-8.0 in the presence of 5 mM Mg2+ and 50 mM KCl and at 28-30 degrees C, which is the temperature for meiosis. This enzyme is resistant to N-ethylmaleimide and sensitive to 2',3'-dideoxythymidine 5'-triphosphate, suggesting that it is a beta-like DNA polymerase. These characteristics are similar to those of Coprinus DNA polymerase beta [Sakaguchi and Lu (1982) Mol. Cell. Biol. 2, 752-757]. In Western-blot analysis, the antiserum against the Coprinus polymerase reacts only with the 65 kDa band, which coincides with the molecular mass of the Coprinus polymerase. Western-blot analysis also showed that the antiserum could react with crude extracts not only from the Agaricales family, to which Agaricus and Coprinus belong, but also from different mushroom families and Saccharomyces. The Agaricus polymerase activity can be found only in the meiotic-cell-rich fraction, but the enzyme is also present in the somatic cells in an inactive state. Images Figure 2 Figure 5 Figure 6 PMID:8172591

  4. DNA Polymerase in Virions of a Reptilian Type C Virus

    PubMed Central

    Twardzik, Daniel R.; Papas, Takis S.; Portugal, Frank H.

    1974-01-01

    A study was made of the DNA polymerase of reptilian type C virus isolated from Russell's viper spleen cells. Simultaneous detection experiments demonstrated the presence of 70S RNA and RNA-dependent DNA polymerase activity in reptilian type C virions. The endogenous activity was dependent on the addition of all four deoxynucleotide triphosphates and demonstrated an absolute requirement for a divalent cation. The reptilian viral DNA polymerase elutes from phosphocellulose at 0.22 M salt. In this respect, it is similar to the avian (avian myeloblastosis virus; AMV) viral enzyme but is different from the mammalian (Rauscher leukemia virus; RLV) viral enzyme which elutes at 0.4 M salt. The molecular weight of the viper DNA polymerase as estimated from glycerol gradient centrifugation is 109,000. It is a smaller enzyme than the AMV DNA polymerase (180,000 daltons) and somewhat larger than the RLV enzyme (70,000 daltons). A comparison of other properties of the type C reptilian DNA polymerase with the enzyme found in other type C oncogenic viruses is made. PMID:4129837

  5. Kinetics and thermodynamics of exonuclease-deficient DNA polymerases

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-04-01

    A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  6. Kinetic Analysis of an Efficient DNA-Dependent TNA Polymerase

    PubMed Central

    Horhota, Allen; Zou, Keyong; Ichida, Justin K.; Yu, Biao; McLaughlin, Larry W.; Szostak, Jack W.

    2005-01-01

    α-l-Threofuranosyl nucleoside triphosphates (tNTPs) are tetrafuranose nucleoside derivatives and potential progenitors of present-day β-d-2‘-deoxyribofuranosyl nucleoside triphosphates (dNTPs). Therminator DNA polymerase, a variant of the 9°N DNA polymerase, is an efficient DNA-directed threosyl nucleic acid (TNA) polymerase. Here we report a detailed kinetic comparison of Therminator-catalyzed TNA and DNA syntheses. We examined the rate of single-nucleotide incorporation for all four tNTPs and dNTPs from a DNA primer−template complex and carried out parallel experiments with a chimeric DNA−TNA primer−DNA template containing five TNA residues at the primer 3‘-terminus. Remarkably, no drop in the rate of TNA incorporation was observed in comparing the DNA−TNA primer to the all-DNA primer, suggesting that few primer-enzyme contacts are lost with a TNA primer. Moreover, comparison of the catalytic efficiency of TNA synthesis relative to DNA synthesis at the downstream positions reveals a difference of no greater than 5-fold in favor of the natural DNA substrate. This disparity becomes negligible when the TNA synthesis reaction mixture is supplemented with 1.25 mM MnCl2. These results indicate that Therminator DNA polymerase can recognize both a TNA primer and tNTP substrates and is an effective catalyst of TNA polymerization despite changes in the geometry of the reactants. PMID:15898792

  7. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis.

    PubMed

    Kawamoto, Takuo; Araki, Kasumi; Sonoda, Eiichiro; Yamashita, Yukiko M; Harada, Kouji; Kikuchi, Koji; Masutani, Chikahide; Hanaoka, Fumio; Nozaki, Kazuhiko; Hashimoto, Nobuo; Takeda, Shunichi

    2005-12-01

    Chicken B lymphocyte precursors and DT40 cells diversify their immunoglobulin-variable (IgV) genes through homologous recombination (HR)-mediated Ig gene conversion. To identify DNA polymerases that are involved in Ig gene conversion, we created DT40 clones deficient in DNA polymerase eta (poleta), which, in humans, is defective in the variant form of xeroderma pigmentosum (XP-V). Poleta is an error-prone translesion DNA synthesis polymerase that can bypass UV damage-induced lesions and is involved in IgV hypermutation. Like XP-V cells, poleta-disrupted (poleta) clones exhibited hypersensitivity to UV. Remarkably, poleta cells showed a significant decrease in the frequency of both Ig gene conversion and double-strand break-induced HR when compared to wild-type cells, and these defects were reversed by complementation with human poleta. Our findings identify a DNA polymerase that carries out DNA synthesis for physiological HR and provides evidence that a single DNA polymerase can play multiple cellular roles. PMID:16337602

  8. Real-time DNA sequencing from single polymerase molecules.

    PubMed

    Korlach, Jonas; Bjornson, Keith P; Chaudhuri, Bidhan P; Cicero, Ronald L; Flusberg, Benjamin A; Gray, Jeremy J; Holden, David; Saxena, Ravi; Wegener, Jeffrey; Turner, Stephen W

    2010-01-01

    Pacific Biosciences has developed a method for real-time sequencing of single DNA molecules (Eid et al., 2009), with intrinsic sequencing rates of several bases per second and read lengths into the kilobase range. Conceptually, this sequencing approach is based on eavesdropping on the activity of DNA polymerase carrying out template-directed DNA polymerization. Performed in a highly parallel operational mode, sequential base additions catalyzed by each polymerase are detected with terminal phosphate-linked, fluorescence-labeled nucleotides. This chapter will first outline the principle of this single-molecule, real-time (SMRT) DNA sequencing method, followed by descriptions of its underlying components and typical sequencing run conditions. Two examples are provided which illustrate that, in addition to the DNA sequence, the dynamics of DNA polymerization from each enzyme molecules is directly accessible: the determination of base-specific kinetic parameters from single-molecule sequencing reads, and the characterization of DNA synthesis rate heterogeneities. PMID:20580975

  9. Getting it Right: How DNA Polymerases Select the Right Nucleotide.

    PubMed

    Ludmann, Samra; Marx, Andreas

    2016-01-01

    All living organisms are defined by their genetic code encrypted in their DNA. DNA polymerases are the enzymes that are responsible for all DNA syntheses occurring in nature. For DNA replication, repair and recombination these enzymes have to read the parental DNA and recognize the complementary nucleotide out of a pool of four structurally similar deoxynucleotide triphosphates (dNTPs) for a given template. The selection of the nucleotide is in accordance with the Watson-Crick rule. In this process the accuracy of DNA synthesis is crucial for the maintenance of the genome stability. However, to spur evolution a certain degree of freedom must be allowed. This brief review highlights the mechanistic basis for selecting the right nucleotide by DNA polymerases.

  10. A sulphoquinovosyl diacylglycerol is a DNA polymerase epsilon inhibitor.

    PubMed Central

    Mizushina, Yoshiyuki; Xu, Xianai; Asahara, Hitomi; Takeuchi, Ryo; Oshige, Masahiko; Shimazaki, Noriko; Takemura, Masaharu; Yamaguchi, Toyofumi; Kuroda, Kazufumi; Linn, Stuart; Yoshida, Hiromi; Koiwai, Osamu; Saneyoshi, Mineo; Sugawara, Fumio; Sakaguchi, Kengo

    2003-01-01

    Sulphoquinovosyl diacylglycerol (SQDG) was reported as a selective inhibitor of eukaryotic DNA polymerases alpha and beta [Hanashima, Mizushina, Ohta, Yamazaki, Sugawara and Sakaguchi (2000) Jpn. J. Cancer Res. 91, 1073-1083] and an immunosuppressive agent [Matsumoto, Sahara, Fujita, Shimozawa, Takenouchi, Torigoe, Hanashima, Yamazaki, Takahashi, Sugawara et al. (2002) Transplantation 74, 261-267]. The purpose of this paper is to elucidate the biochemical properties of the inhibition more precisely. As expected, SQDG could inhibit the activities of mammalian DNA polymerases such as alpha, delta, eta and kappa in vitro in the range of 2-5 micro M, and beta and lambda in vitro in the range of 20-45 micro M. However, SQDG could inhibit only mammalian DNA polymerases epsilon (pol epsilon) activity at less than 0.04 micro M. SQDG bound more tightly to mammalian pol epsilon than the other mammalian polymerases tested. Moreover, SQDG could inhibit the activities of all the polymerases from animals such as fish and insect, but not of the polymerases from plant and prokaryotes. SQDG should, therefore, be called a mammalian pol epsilon-specific inhibitor or animal polymerase-specific inhibitor. To our knowledge, this represents the first report about an inhibitor specific to mammalian pol epsilon. PMID:12435270

  11. DNA-dependent RNA polymerase from Crithidia oncopelti kinetoplasts

    SciTech Connect

    Zaitseva, G.N.; Levchenko, I.V.; Tarasov, I.A.; Kuz'min, E.V.

    1986-03-10

    Mitochondrial DNA-dependent RNA polymerase was isolated from Crithidia oncopelti kinetoplasts, and its properties were studied. RNA polymerase was solubilized from the structures with 2% digitonin in 0.25 M KCl. The enzyme was purified 550-fold according to activity by gel filtration through Sephadex 4B, followed by chromatography on heparin-Sepharose 4B, phosphocellulose, and DEAE-Sephadex A-50. The optimum conditions of the RNA polymerase reaction (time of incubation, temperature, Mg/sup 2 +/, K/sup +/ concentrations, etc) were determined. It was established that the activity of the enzyme is not inhibited by ..cap alpha..-amanitin, rifampicin, and streptolidigin, but is strongly suppressed by Mn/sup 2 +/ ions, a high KCl concentrations, as well as ethidium bromide. The RNA polymerase isolated transcribes denatured DNA substantially better than the native form. The enzyme utilizes mtDNA (in hybrid plasmids) as a substrate appreciably more actively than the nuclear form. Among the substrates used, the greatest template activity is possessed by single-stranded poly(dAT). In all the properties studied, DNA-dependent RNA polymerase from C. oncopelti kinetoplasts is similar to the mitochondrial enzymes of other eukaryotes but differs from the nuclear enzymes of this organism and from bacterial RNA polymerases.

  12. Mutational clusters generated by non-processive polymerases: A case study using DNA polymerase betain vitro.

    PubMed

    García-Villada, Libertad; Drake, John W

    2010-08-01

    Available DNA mutational spectra reveal that the number of mutants with multiple mutations ("multiples") is usually greater than expected from a random distribution of mutations among mutants. These overloads imply the occurrence of non-random clusters of mutations, probably generated during episodes of low-fidelity DNA synthesis. Excess multiples have been reported not only for viruses, bacteria, and eukaryotic cells but also for the DNA polymerases of phages T4 and RB69 in vitro. In the simplest case of a purified polymerase, non-random clusters may be generated by a subfraction of phenotypic variants able to introduce more errors per cycle of DNA synthesis than the normal enzyme. According to this hypothesis, excess multiples are not expected with non-processive polymerases even if they harbor rare mutator variants. DNA polymerase beta (Pol beta) is a mammalian DNA-repair polymerase with very low processivity. Although several Pol beta mutational spectra have been described, there is conflicting evidence on whether or not excess multiples occur, with spectra based on the HSV-tk system tending to show excess multiples. Excess multiples generated by Pol beta or any of its mutants might imply that the excesses of multiples observed in numerous other systems, especially those with processive polymerases, could be artifactual. Here, the distributions of mutations generated by native and recombinant rat Pol beta and by the Pol beta(Y265C) mutator were analyzed in the M13mp2 lacZalpha system. Our results present no evidence for a significant excess of multiples over the expected numbers with any of the Pol beta enzymes tested in this system. The reported excess of Pol beta-generated multiples in the HSV-tk system may reflect a reduced efficiency of detection of base substitutions that cause weak phenotypes, which in turn may artifactually increase the frequency of multiples. PMID:20627824

  13. Accuracy of DNA polymerase-alpha in copying natural DNA.

    PubMed Central

    Grosse, F; Krauss, G; Knill-Jones, J W; Fersht, A R

    1983-01-01

    The fidelity of DNA polymerase-alpha from calf thymus (9S enzyme) in copying bacteriophage phi174am16 DNA in vitro has been determined from the frequency of production of different revertants. In the self-priming reaction we were able to measure the frequencies of base pairing mismatches during the course of replication on biasing the ratios of deoxynucleoside triphosphates. The frequency of dGTP:T, dGTP:G and dATP:G mismatches were 7.6 x 10(-5), 4.4 x 10(-5) and 2.8 x 10(-5), respectively, at equal concentrations of the deoxynucleoside triphosphates. dCTP:A, dGTP:A, dCTP:T and dTTP:T mismatches were below the limit of detection (<5 x 10(-6)). A synthetic dodecamer primer with a 3' end covering the first two bases of the amber codon was used to determine the misinsertion frequency of the first nucleotide incorporated. This gave a misinsertion frequency of 1.5 x 10(-4) for the dGTP:T mismatch, which is slightly higher than that observed from the pool bias studies. Further, it showed no sensitivity to biasing the nucleotide pool, suggesting a different mechanism for the incorporation of the first nucleotide. These data do not support 'energy-relay'-like models for achieving high accuracy in eukaryotes. The observed misinsertion frequencies were corrected for mismatch repair of the heteroduplexes during the transfection experiments by parallel experiments using a mismatched primer. This was synthesized to have the same G:T mismatch as produced in the preceding experiment. PMID:11892804

  14. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis.

    PubMed

    Xu, Cuiling; Maxwell, Brian A; Suo, Zucai

    2014-08-12

    Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been performed to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol. PMID:24931550

  15. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    PubMed

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases. PMID:22320201

  16. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability

    PubMed Central

    Sharma, Shilpy; Helchowski, Corey M.; Canman, Christine E.

    2012-01-01

    Cancer cells display numerous abnormal characteristics which are initiated and maintained by elevated mutation rates and genome instability. Chromosomal DNA is continuously surveyed for the presence of damage or blocked replication forks by the DNA Damage Response (DDR) network. The DDR is complex and includes activation of cell cycle checkpoints, DNA repair, gene transcription, and induction of apoptosis. Duplicating a damaged genome is associated with elevated risks to fork collapse and genome instability. Therefore, the DNA Damage Tolerance (DDT) pathway is also employed to enhance survival and involves the recruitment of translesion DNA synthesis (TLS) polymerases to sites of replication fork blockade or single stranded DNA gaps left after the completion of replication in order to restore DNA to its double stranded form before mitosis. TLS polymerases are specialized for inserting nucleotides opposite DNA adducts, abasic sites, or DNA crosslinks. By definition, the DDT pathway is not involved in the actual repair of damaged DNA, but provides a mechanism to tolerate DNA lesions during replication thereby increasing survival and lessening the chance for genome instability. However this may be associated with increased mutagenesis. In this review, we will describe the specialized functions of Y family polymerases (Rev1, Polη, Polι and Polκ) and DNA polymerase ζ in lesion bypass, mutagenesis, and prevention of genome instability, the latter due to newly appreciated roles in DNA repair. The recently described role of the Fanconi anemia pathway in regulating Rev1 and Polζ-dependent TLS is also discussed in terms of their involvement in TLS, interstrand crosslink repair, and homologous recombination. PMID:23195997

  17. Simultaneous Removal of Multiple DNA Segments by Polymerase Chain Reactions.

    PubMed

    Krishnamurthy, Vishnu; Zhang, Kai

    2017-01-01

    Precise DNA manipulation is a key enabling technology for synthetic biology. Approaches based on restriction digestion are often limited by the presence of certain restriction enzyme recognition sites. Recent development of restriction-free cloning approaches has greatly enhanced the flexibility and speed of molecular cloning. Most restriction-free cloning methods focus on DNA assembly. Much less work has been dedicated towards DNA removal. Here we introduce a protocol that allows simultaneous removal of multiple DNA segments from a plasmid using polymerase chain reactions (PCR). Our approach will be beneficial to applications in multiple sites mutagenesis, DNA library construction, genetic and protein engineering, and synthetic biology. PMID:27671942

  18. Efficient DNA sequencing on microtiter plates using dried reagents and Bst DNA polymerase.

    PubMed

    Earley, J J; Kuivaniemi, H; Prockop, D J; Tromp, G

    1993-01-01

    Sequenase, Taq DNA polymerase and Bst DNA polymerase were tested for sequencing of DNA on microtiter plates using dried down reagents. Several parameters were investigated to expedite the drying process while minimizing damage to the enzyme. Sequenase did not tolerate drying very well, and frequently generated sequences with weak signals and many sites of premature termination. With Taq DNA polymerase it was possible to obtain sequences of good quality. However, there was considerable variation of results between experiments and between batches of microtiter plates. Bst DNA polymerase generated sequences of excellent quality. It was stable for more than a week in dried-down state at -20 degrees C and at least overnight at room temperature. The method described here using Bst DNA polymerase is well suited for laboratory robots and workstations that typically employ 96-well microtiter plates. PMID:8173079

  19. Human Rev1 polymerase disrupts G-quadruplex DNA

    PubMed Central

    Eddy, Sarah; Ketkar, Amit; Zafar, Maroof K.; Maddukuri, Leena; Choi, Jeong-Yun; Eoff, Robert L.

    2014-01-01

    The Y-family DNA polymerase Rev1 is required for successful replication of G-quadruplex DNA (G4 DNA) in higher eukaryotes. Here we show that human Rev1 (hRev1) disrupts G4 DNA structures and prevents refolding in vitro. Nucleotidyl transfer by hRev1 is not necessary for mechanical unfolding to occur. hRev1 binds G4 DNA substrates with Kd,DNA values that are 4–15-fold lower than those of non-G4 DNA substrates. The pre-steady-state rate constant of deoxycytidine monophosphate (dCMP) insertion opposite the first tetrad-guanine by hRev1 is ∼56% as fast as that observed for non-G4 DNA substrates. Thus, hRev1 can promote fork progression by either dislodging tetrad guanines to unfold the G4 DNA, which could assist in extension by other DNA polymerases, or hRev1 can prevent refolding of G4 DNA structures. The hRev1 mechanism of action against G-quadruplexes helps explain why replication progress is impeded at G4 DNA sites in Rev1-deficient cells and illustrates another unique feature of this enzyme with important implications for genome maintenance. PMID:24366879

  20. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.

    PubMed

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2016-02-19

    Ribonucleotides and 2'-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2'-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2'-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2'-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 10(3)-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2'-deoxyguanosine with a significant propeller twist. As a result, the 2'-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion.

  1. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases

    PubMed Central

    Kurth, Isabel; Georgescu, Roxana E.; O’Donnell, Mike

    2013-01-01

    Chromosomal replication machines contain coupled DNA polymerases that simultaneously replicate the leading and lagging strands1. However, coupled replication presents a largely unrecognized topological problem. Since DNA polymerase must travel a helical path during synthesis, the physical connection between leading and lagging strand polymerases causes the daughter strands to entwine, or produces extensive buildup of negative supercoils in the newly synthesized DNA2–4. How DNA polymerases maintain their connection during coupled replication despite these topological challenges is a mystery. Here, we examine the dynamics of the E. coli replisome, by ensemble and single-molecule methods that may solve this topological problem independent of topoisomerases. We find that the lagging strand polymerase frequently releases from an Okazaki fragment before completion, leaving single-strand gaps behind. Dissociation of the polymerase does not result in loss from the replisome due to its contact with the leading-strand polymerase. This behavior, referred to as “signal release”, had been thought to require a protein, possibly primase, to pry polymerase from incompletely extended DNA fragments5–7. However, we observe that signal release is independent of primase and does not appear to require a protein trigger at all. Instead, the lagging-strand polymerase is simply less processive in the context of a replisome. Interestingly, when the lagging-strand polymerase is supplied with primed DNA in trans, uncoupling it from the fork, high processivity is restored. Hence, we propose that coupled polymerases introduce topological changes, possibly by accumulation of superhelical tension in the newly synthesized DNA, that cause lower processivity and transient lagging-strand polymerase dissociation from DNA. PMID:23535600

  2. Euglena gracilis DNA dependent RNA polymerase II: a zinc metalloenzyme.

    PubMed

    Falchuk, K H; Mazus, B; Ulpino, L; Vallee, B L

    1976-10-01

    Zinc is essential for cellular proliferation. Zinc deficiency of Euglena gracilis results in arrest of cell division and deranges nucleic acid and protein metabolism pointing to a decisive role of zinc in transcription and translation. We have, therefore, investigated the role of zinc in the function of the DNA-dependent RNA polymerases of this organism. Two RNA polymerases from zinc sufficient organisms were purified first by affinity chromatography on a DNA cellulose column and subsequently separated on diethylaminoethyl (DEAE)-Sephadex A-25. The two fractions were characterized as polymerase I and II by their elution pattern from DEAE-Sephadex and sensitivity to alpha-amanitin. RNA polymerase II has a provisional molecular weight of 700 000 and contains an average of 2.2 g=atoms of zinc per mol of enzyme, but not Mn, Cu, or Fe, as measured by microwave emission spectroscopy. Chelating agents, such as 1,10-phenanthroline, 8-hydroxyquinoline, 8-hydroxyquinoline-5-sulfonic acid, and lomofungin, inhibit activity. In contrast, the nonchelating analogues, 1,7-and 4,7-phenanthroline, do not affect activity. Inhibition by 1,10-phenanthroline is instantaneous and fully reversible by dilution. 1,10-Phenanthroline also inhibits RNA polymerase I, suggesting a role of zinc in its function. The demonstration that RNA polymerase II is a zinc enzyme indicates the involvement of zinc in eukaryotic RNA synthesis and serves as a further basis for the definition of the role of this element in eukaryotic cell growth, division, and differentiation.

  3. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication

    PubMed Central

    Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro

    2016-01-01

    DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298

  4. RNA Polymerases of Maize. Purification and Molecular Structure of DNA-dependent RNA Polymerase II*

    PubMed Central

    Mullinix, Kathleen P.; Strain, Gustave C.; Bogorad, Lawrence

    1973-01-01

    Nuclear DNA-dependent RNA polymerase II has been purified from leaves of Zea mays by a new procedure that improves enzyme stability and thus permits more manipulation during purification. The purification procedure includes a heating step, gel filtration on Sepharose 6B and 4B, and chromatography on DEAE- and DNA-celluloses. This method of purification yields an enzyme that exhibits maximal activity when denatured DNA is used as a template. Electrophoresis of highly purified enzyme on polyacrylamide gels containing sodium dodecyl sulfate indicates that maize RNA polymerase IIa is composed of several polypeptide subunits. The most highly purified preparations contain polypeptides with molecular weights of 200,000, 160,000, 35,000, 25,000, 20,000, and 17,000. Images PMID:4525172

  5. Engineered polymerases amplify the potential of ancient DNA.

    PubMed

    Shapiro, Beth

    2008-06-01

    The generation of genomic data from mammoths and Neanderthals has reinvigorated discussion about whether extinct species could be brought back within the foreseeable future. However, post-mortem DNA decay rapidly reduces the number and quality of surviving DNA fragments, consequently increasing rates of sequencing error and forming a significant obstacle to accurate sequence reconstruction. Recent work has shown that it is possible to engineer a polymerase capable of using even highly damaged fragments as template sequences. PMID:18440082

  6. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies

    PubMed Central

    Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran

    2016-01-01

    Replication errors are the main cause of mtDNA mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineered the tamas locus, encoding fly POLγA, and introduced alleles expressing exonuclease- (exo-) and polymerase-deficient (pol-) POLγA versions. The exo- mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol- mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610

  7. Monitoring DNA polymerase with nanotube-based nanocircuits

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry; Collins, Philip

    DNA polymerases play an important role in the process of life by accurately and efficiently replicating our genetic information. They use a single-stranded DNA as a template and incorporate nucleotides to create the full, double-stranded DNA. Recent experiments have successfully monitored this process by attaching a Klenow fragment of polymerase I to a carbon nanotube and measuring the current along the tube. Follow-up experiments have shown promise for distinguishing between DNA base pairs when nucleotide analogs are used, thus opening a new avenue for DNA sequencing. In this talk, we present results from computational studies on DNA polymerase I nanocircuits. The enzyme was first equilibrated in molecular dynamics and then density functional theory and Keldysh non-equilibrium Green's function methods were used to calculate the ballistic transmission coefficients and currents for different enzymatic states. Our results show significant change in current when the enzyme alternates between open (idle) and closed (synthesizing) states. We can also differentiate between some template bases when modified nucleotides and gate scanning are used.

  8. The DNA polymerase III holoenzyme contains γ and is not a trimeric polymerase

    PubMed Central

    Dohrmann, Paul R.; Correa, Raul; Frisch, Ryan L.; Rosenberg, Susan M.; McHenry, Charles S.

    2016-01-01

    There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome. PMID:26786318

  9. A Nuclear Family A DNA Polymerase from Entamoeba histolytica Bypasses Thymine Glycol

    PubMed Central

    Pastor-Palacios, Guillermo; Azuara-Liceaga, Elisa; Brieba, Luis G.

    2010-01-01

    Background Eukaryotic family A DNA polymerases are involved in mitochondrial DNA replication or translesion DNA synthesis. Here, we present evidence that the sole family A DNA polymerase from the parasite protozoan E. histolytica (EhDNApolA) localizes to the nucleus and that its biochemical properties indicate that this DNA polymerase may be involved in translesion DNA synthesis. Methodology and Results EhDNApolA is the sole family A DNA polymerase in E. histolytica. An in silico analysis places family A DNA polymerases from the genus Entamoeba in a separate branch of a family A DNA polymerases phylogenetic tree. Biochemical studies of a purified recombinant EhDNApolA demonstrated that this polymerase is active in primer elongation, is poorly processive, displays moderate strand displacement, and does not contain 3′–5′ exonuclease or editing activity. Importantly, EhDNApolA bypasses thymine glycol lesions with high fidelity, and confocal microscopy demonstrates that this polymerase is translocated into the nucleus. These data suggest a putative role of EhDNApolA in translesion DNA synthesis in E. histolytica. Conclusion This is the first report of the biochemical characterization of a DNA polymerase from E. histolytica. EhDNApolA is a family A DNA polymerase that is grouped into a new subfamily of DNA polymerases with translesion DNA synthesis capabilities similar to DNA polymerases from subfamily ν. PMID:20706627

  10. RNA-directed DNA polymerase from particles released by normal goose cells.

    PubMed Central

    Bauer, G; Temin, H M

    1979-01-01

    Cells from a goose embryo were shown to release particle-associated RNA-directed DNA polymerase and RNase H activities that required the presence of Nonidet P-40 for detection. The particles were not infectious and did not have endogenous DNA synthesis. The goose particle DNA polymerase was related to the DNA polymerase of spleen necrosis virus with respect to size and was inhibited by immunoglobulin G to spleen necrosis virus DNA polymerase. However, goose cells producing DNA polymerase-containing particles did not contain reticuloendotheliosis virus-related nucleotide sequences in their DNA. PMID:87517

  11. Taq DNA Polymerase Mutants and 2'-Modified Sugar Recognition.

    PubMed

    Schultz, Hayley J; Gochi, Andrea M; Chia, Hannah E; Ogonowsky, Alexie L; Chiang, Sharon; Filipovic, Nedim; Weiden, Aurora G; Hadley, Emma E; Gabriel, Sara E; Leconte, Aaron M

    2015-09-29

    Chemical modifications to DNA, such as 2' modifications, are expected to increase the biotechnological utility of DNA; however, these modified forms of DNA are limited by their inability to be effectively synthesized by DNA polymerase enzymes. Previous efforts have identified mutant Thermus aquaticus DNA polymerase I (Taq) enzymes capable of recognizing 2'-modified DNA nucleotides. While these mutant enzymes recognize these modified nucleotides, they are not capable of synthesizing full length modified DNA; thus, further engineering is required for these enzymes. Here, we describe comparative biochemical studies that identify useful, but previously uncharacterized, properties of these enzymes; one enzyme, SFM19, is able to recognize a range of 2'-modified nucleotides much wider than that previously examined, including fluoro, azido, and amino modifications. To understand the molecular origins of these differences, we also identify specific amino acids and combinations of amino acids that contribute most to the previously evolved unnatural activity. Our data suggest that a negatively charged amino acid at 614 and mutation of the steric gate residue, E615, to glycine make up the optimal combination for modified oligonucleotide synthesis. These studies yield an improved understanding of the mutational origins of 2'-modified substrate recognition as well as identify SFM19 as the best candidate for further engineering, whether via rational design or directed evolution. PMID:26334839

  12. Comparison of six commercially-available DNA polymerases for direct PCR.

    PubMed

    Miura, Masashi; Tanigawa, Chihiro; Fujii, Yoshito; Kaneko, Satoshi

    2013-01-01

    The use of a "direct PCR" DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ) in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens. PMID:24213192

  13. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin.

    PubMed

    Tsurimoto, T; Melendy, T; Stillman, B

    1990-08-01

    Enzymatic synthesis of DNA from the simian virus 40 origin of DNA replication has been reconstituted in vitro with eight purified components. DNA polymerase alpha-primase complex first initiates DNA synthesis at the replication origin and continues as the lagging strand polymerase. Subsequently, the DNA polymerase delta complex initiates replication on the leading strand template. Some prokaryotic DNA polymerase complexes can replace the eukaryotic polymerase delta complex. A model for polymerase switching during initiation of DNA replication is presented.

  14. DNA polymerases delta and epsilon are required for chromosomal replication in Saccharomyces cerevisiae.

    PubMed Central

    Budd, M E; Campbell, J L

    1993-01-01

    Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork. PMID:8417347

  15. Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7.

    PubMed

    Zhang, Huidong; Tang, Yong; Lee, Seung-Joo; Wei, Zeliang; Cao, Jia; Richardson, Charles C

    2016-01-15

    The formation of a replication loop on the lagging strand facilitates coordinated synthesis of the leading- and lagging-DNA strands and provides a mechanism for recycling of the lagging-strand DNA polymerase. As an Okazaki fragment is completed, the loop is released, and a new loop is formed as the synthesis of a new Okazaki fragment is initiated. Loop release requires the dissociation of the complex formed by the interactions among helicase, DNA polymerase, and DNA. The completion of the Okazaki fragment may result in either a nick or a single-stranded DNA region. In the replication system of bacteriophage T7, the dissociation of the polymerase from either DNA region is faster than that observed for the dissociation of the helicase from DNA polymerase, implying that the replication loop is released more likely through the dissociation of the lagging-strand DNA from polymerase, retaining the polymerase at replication fork. Both dissociation of DNA polymerase from DNA and that of helicase from a DNA polymerase · DNA complex are much faster at a nick DNA region than the release from a ssDNA region. These results suggest that the replication loop is released as a result of the nick formed when the lagging-strand DNA polymerase encounters the previously synthesized Okazaki fragment, releasing lagging-strand DNA and retaining DNA polymerase at the replication fork for the synthesis of next Okazaki fragment.

  16. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    PubMed

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  17. Polymerase η suppresses telomere defects induced by DNA damaging agents

    PubMed Central

    Pope-Varsalona, Hannah; Liu, Fu-Jun; Guzik, Lynda; Opresko, Patricia L.

    2014-01-01

    Telomeres at chromosome ends are normally masked from proteins that signal and repair DNA double strand breaks (DSBs). Bulky DNA lesions can cause DSBs if they block DNA replication, unless they are bypassed by translesion (TLS) DNA polymerases. Here, we investigated roles for TLS polymerase η, (polη) in preserving telomeres following acute physical UVC exposure and chronic chemical Cr(VI) exposure, which both induce blocking lesions. We report that polη protects against cytotoxicity and replication stress caused by Cr(VI), similar to results with ultraviolet C light (UVC). Both exposures induce ataxia telangiectasia and Rad3-related (ATR) kinase and polη accumulation into nuclear foci and localization to individual telomeres, consistent with replication fork stalling at DNA lesions. Polη-deficient cells exhibited greater numbers of telomeres that co-localized with DSB response proteins after exposures. Furthermore, the genotoxic exposures induced telomere aberrations associated with failures in telomere replication that were suppressed by polη. We propose that polη's ability to bypass bulky DNA lesions at telomeres is critical for proper telomere replication following genotoxic exposures. PMID:25355508

  18. DNA Polymerase θ: A Unique Multifunctional End-Joining Machine.

    PubMed

    Black, Samuel J; Kashkina, Ekaterina; Kent, Tatiana; Pomerantz, Richard T

    2016-01-01

    The gene encoding DNA polymerase θ (Polθ) was discovered over ten years ago as having a role in suppressing genome instability in mammalian cells. Studies have now clearly documented an essential function for this unique A-family polymerase in the double-strand break (DSB) repair pathway alternative end-joining (alt-EJ), also known as microhomology-mediated end-joining (MMEJ), in metazoans. Biochemical and cellular studies show that Polθ exhibits a unique ability to perform alt-EJ and during this process the polymerase generates insertion mutations due to its robust terminal transferase activity which involves template-dependent and independent modes of DNA synthesis. Intriguingly, the POLQ gene also encodes for a conserved superfamily 2 Hel308-type ATP-dependent helicase domain which likely assists in alt-EJ and was reported to suppress homologous recombination (HR) via its anti-recombinase activity. Here, we review our current knowledge of Polθ-mediated end-joining, the specific activities of the polymerase and helicase domains, and put into perspective how this multifunctional enzyme promotes alt-EJ repair of DSBs formed during S and G2 cell cycle phases. PMID:27657134

  19. Intervening sequences in an Archaea DNA polymerase gene.

    PubMed

    Perler, F B; Comb, D G; Jack, W E; Moran, L S; Qiang, B; Kucera, R B; Benner, J; Slatko, B E; Nwankwo, D O; Hempstead, S K

    1992-06-15

    The DNA polymerase gene from the Archaea Thermococcus litoralis has been cloned and expressed in Escherichia coli. It is split by two intervening sequences (IVSs) that form one continuous open reading frame with the three polymerase exons. To our knowledge, neither IVS is similar to previously described introns. However, the deduced amino acid sequences of both IVSs are similar to open reading frames present in mobile group I introns. The second IVS (IVS2) encodes an endonuclease, I-Tli I, that cleaves at the exon 2-exon 3 junction after IVS2 has been deleted. IVS2 self-splices in E. coli to yield active polymerase, but processing is abolished if the IVS2 reading frame is disrupted. Silent changes in the DNA sequence at the exon 2-IVS2 junction that maintain the original protein sequence do not inhibit splicing. These data suggest that protein rather than mRNA splicing may be responsible for production of the mature polymerase. PMID:1608969

  20. DNA Polymerase θ: A Unique Multifunctional End-Joining Machine

    PubMed Central

    Black, Samuel J.; Kashkina, Ekaterina; Kent, Tatiana; Pomerantz, Richard T.

    2016-01-01

    The gene encoding DNA polymerase θ (Polθ) was discovered over ten years ago as having a role in suppressing genome instability in mammalian cells. Studies have now clearly documented an essential function for this unique A-family polymerase in the double-strand break (DSB) repair pathway alternative end-joining (alt-EJ), also known as microhomology-mediated end-joining (MMEJ), in metazoans. Biochemical and cellular studies show that Polθ exhibits a unique ability to perform alt-EJ and during this process the polymerase generates insertion mutations due to its robust terminal transferase activity which involves template-dependent and independent modes of DNA synthesis. Intriguingly, the POLQ gene also encodes for a conserved superfamily 2 Hel308-type ATP-dependent helicase domain which likely assists in alt-EJ and was reported to suppress homologous recombination (HR) via its anti-recombinase activity. Here, we review our current knowledge of Polθ-mediated end-joining, the specific activities of the polymerase and helicase domains, and put into perspective how this multifunctional enzyme promotes alt-EJ repair of DSBs formed during S and G2 cell cycle phases. PMID:27657134

  1. Replication across Regioisomeric Ethylated Thymidine Lesions by Purified DNA Polymerases

    PubMed Central

    Andersen, Nisana; Wang, Pengcheng; Wang, Yinsheng

    2013-01-01

    Causal links exist between smoking cigarettes and cancer development. Some genotoxic agents in cigarette smoke are capable of alkylating nucleobases in DNA and higher levels of ethylated DNA lesions were observed in smokers than non-smokers. In this study, we examined comprehensively how the regioisomeric O2-, N3- and O4-ethylthymidine (O2-, N3- and O4-EtdT) perturb DNA replication mediated by purified human DNA polymerases (hPol) η, κ, and ι, yeast DNA polymerase ζ (yPol ζ), and the exonuclease-free Klenow fragment (Kf−) of Escherichia coli DNA polymerase I. Our results showed that hPol η and Kf− could bypass all three lesions and generate full-length replication products, whereas hPol ι stalled after inserting a single nucleotide opposite the lesions. Bypass carried out by hPol κ and yPol ζ differed markedly amongst the three lesions: Consistent with its known capability in bypassing efficiently the minor-groove N2-substituted 2′-deoxyguanosine lesions, hPol κ was able to bypass O2-EtdT, though it experienced great difficulty in bypassing N3-EtdT and O4-EtdT; yPol ζ was only modestly blocked by O4-EtdT, but the polymerase was highly hindered by O2-EtdT and N3-EtdT. LC-MS/MS analysis of the replication products revealed that DNA synthesis opposite O4-EtdT was highly error-prone, with dGMP being preferentially inserted, while the presence of O2-EtdT and N3-EtdT in template DNA directed substantial frequencies of misincorporation of dGMP and, for hPol ι and Kf−, dTMP. Thus, our results suggested that O2-EtdT and N3-EtdT may also contribute to the AT→TA and AT→GC mutations observed in cells and tissues of animals exposed to ethylating agents. PMID:24134187

  2. Structure and mechanism of human DNA polymerase [eta

    SciTech Connect

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji; Ramón-Maiques, Santiago; Gregory, Mark; Lee, Jae Young; Masutani, Chikahide; Lehmann, Alan R.; Hanaoka, Fumio; Yang, Wei

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.

  3. Impact of the DNA polymerase Theta on the DNA replication program

    PubMed Central

    Baldacci, Giuseppe; Hoffmann, Jean-Sebastien; Cadoret, Jean-Charles

    2014-01-01

    The physiological function of the human DNA polymerase θ (pol θ) is still unclear despite its in vitro translesion synthesis capacity during DNA damage repair process. However this DNA polymerase is always present along the cell cycle in the absence of replication stress and DNA damage. Is there a different molecular function? We present the genomic data of replication timing in depleted pol θ cells (GSE49693) and in cells overexpressing pol θ (GSE53070) indicating that Pol θ holds a novel role in the absence of external stress as a critical determinant of the replication timing program in human cells. PMID:26484154

  4. Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering

    PubMed Central

    Yamagami, Takeshi; Ishino, Sonoko; Kawarabayasi, Yutaka; Ishino, Yoshizumi

    2014-01-01

    DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, DNA labeling, mutagenesis, and other experiments. Thermostable DNA polymerases are especially useful and became quite valuable after the development of PCR technology. A DNA polymerase from Thermus aquaticus (Taq polymerase) is the most famous DNA polymerase as a PCR enzyme, and has been widely used all over the world. In this study, the gene fragments of the family A DNA polymerases were amplified by PCR from the DNAs from microorganisms within environmental soil samples, using a primer set for the two conserved regions. The corresponding region of the pol gene for Taq polymerase was substituted with the amplified gene fragments, and various chimeric DNA polymerases were prepared. Based on the properties of these chimeric enzymes and their sequences, two residues, E742 and A743, in Taq polymerase were found to be critical for its elongation ability. Taq polymerases with mutations at 742 and 743 actually showed higher DNA affinity and faster primer extension ability. These factors also affected the PCR performance of the DNA polymerase, and improved PCR results were observed with the mutant Taq polymerase. PMID:25232352

  5. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    PubMed

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-01-01

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy. PMID:27589807

  6. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    PubMed Central

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-01-01

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy. PMID:27589807

  7. A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos.

    PubMed Central

    Conaway, R C; Lehman, I R

    1982-01-01

    Preparations of DNA polymerase alpha from early embryos of Drosophila melanogaster catalyze the ATP-dependent synthesis of DNA with single-stranded M13 DNA or poly(dT) templates. In the case of M13 DNA, GTP, but not UTP or CTP, can replace ATP. The reaction is completely dependent on added template and is not inhibited by alpha-amanitin. Alkaline hydrolysis of the product synthesized in the presence of [alpha-32P]dATP and poly(dT) generates 32P-labeled 3'(2') adenylate, showing that a covalent ribo-deoxynucleotide linkage is formed. Furthermore, incorporation of ribonucleotides occurs at the 5' end of the newly synthesized polynucleotide chain. These findings are consistent with the hypothesis that a ribo-oligonucleotide primer is synthesized by primase action and subsequently elongated by DNA polymerase. Under the appropriate conditions, DNA polymerase I from Escherichia coli can elongate primers formed by primase in the presence of ATP and poly(dT). Primase activity copurifies with DNA polymerase alpha and may be part of the multisubunit polymerase molecule. Images PMID:6806812

  8. Fluorescence Resonance Energy Transfer Studies of DNA Polymerase β

    PubMed Central

    Towle-Weicksel, Jamie B.; Dalal, Shibani; Sohl, Christal D.; Doublié, Sylvie; Anderson, Karen S.; Sweasy, Joann B.

    2014-01-01

    During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability. PMID:24764311

  9. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases.

    PubMed Central

    Wong, S W; Wahl, A F; Yuan, P M; Arai, N; Pearson, B E; Arai, K; Korn, D; Hunkapiller, M W; Wang, T S

    1988-01-01

    We have isolated cDNA clones encoding the human DNA polymerase alpha catalytic polypeptide. Studies of the human DNA polymerase alpha steady-state mRNA levels in quiescent cells stimulated to proliferate, or normal cells compared to transformed cells, demonstrate that the polymerase alpha mRNA, like its enzymatic activity and de novo protein synthesis, positively correlates with cell proliferation and transformation. Analysis of the deduced 1462-amino-acid sequence reveals six regions of striking similarity to yeast DNA polymerase I and DNA polymerases of bacteriophages T4 and phi 29, herpes family viruses, vaccinia virus and adenovirus. Three of these conserved regions appear to comprise the functional active site required for deoxynucleotide interaction. Two putative DNA interacting domains are also identified. Images PMID:3359994

  10. Transcriptional mapping of the DNA polymerase gene of vaccinia virus

    SciTech Connect

    Traktman, P.; Sridhar, P.; Condit, R.C.; Roberts, B.E.

    1984-01-01

    Vaccinia virus DNA polymerase, a single-subunit enzyme of 110,000 molecular weight, is induced early after infection. Genetic analysis suggests that the gene encoding the enzyme maps within a 15-kilobase HindIII fragment located 45 kilobases from the left-hand end of the genome. The authors identified the in vitro translation product with these propeties and mapped the transcript by hybrid selection, RNA filter hybridization, and S1 nuclease mapping. Two mRNAs from this region, 3.4 and 3.9 kilobases in size, could be translated in vitro to yield a 110K polypeptide. The two RNAs shared a common 5' terminus and had staggered 3' ends. Sequences mapping entirely within the gene were shown to be biologically active in rescuing mutants with temperature-sensitive or drug-resistant polymerase activity to the wild-type phenotype.

  11. Structural Basis of High-Fidelity DNA Synthesis by Yeast DNA Polymerase δ

    SciTech Connect

    Swan, M.; Johnson, R; Prakash, L; Prakash, S; Aggarwal, A

    2009-01-01

    DNA polymerase ? (Pol ?) has a crucial role in eukaryotic replication. Now the crystal structure of the yeast DNA Pol ? catalytic subunit in complex with template primer and incoming nucleotide is presented at 2.0-A resolution, providing insight into its high fidelity and a framework to understand the effects of mutations involved in tumorigenesis.

  12. A possible mechanism for the dynamics of transition between polymerase and exonuclease sites in a high-fidelity DNA polymerase.

    PubMed

    Xie, Ping

    2009-08-01

    The fidelity of DNA synthesis by DNA polymerase is significantly increased by a mechanism of proofreading that is performed at the exonuclease active site separate from the polymerase active site. Thus, the transition of DNA between the two active sites is an important activity of DNA polymerase. Here, based on our proposed model, the rates of DNA transition between the two active sites are theoretically studied. With the relevant parameters, which are determined from the available crystal structure and other experimental data, the calculated transfer rate of correctly base-paired DNA from the polymerase to exonuclease sites and the transfer rate after incorporation of a mismatched base are in good agreement with the available experimental data. The transfer rates in the presence of two and three mismatched bases are also consistent with the previous experimental data. In addition, the calculated transfer rate from the exonuclease to polymerase sites has a large value even with the high binding affinity of 3'-5' ssDNA for the exonuclease site, which is also consistent with the available experimental value. Moreover, we also give some predictive results for the transfer rate of DNA containing only A:T base pairs and that of DNA containing only G:C base pairs.

  13. [Detection of bacterial DNA using the polymerase chain reaction (PCR)].

    PubMed

    Höfler, G

    1994-01-01

    Enzymatic amplification of DNA using the polymerase chain reaction (PCR) is a very sensitive and rapid way of detecting specific DNA sequences. Bacterial DNA can be detected in a wide variety of samples provided at least partial sequence information is available. For a great number of bacteria PCR detection methods have been published. Most important for the pathologist are mycobacteriae (M. tuberculosis, avium, etc.). Borellia burgdorferi, Listeria monozytogenes and chlamydiae (Ce. trachomatis, C. psittaci). Fresh or fixed paraffin embedded tissues, exfoliated cells, whole blood, serum, sputum, urine, ascites or pleural fluid etc. can be analyzed. The time needed to perform the analysis varies between 5 hours and 2 days mostly depending on the DNA extraction method. Several potential pitfalls have to be avoided. The most common problem is contamination of reagents with target DNA. Amplification of DNA from biological samples may be prevented by enzyme inhibitors (salts, proteins). This problem can at least partially be avoided by changing the DNA purification method. Several additional problems may arise if bacterial DNA has to be amplified. Bacterial walls may have to be disrupted using heat or detergent for accessibility of target DNA. Positive results have to be judged carefully. Unlike the situation in retroviral infections with the virus sometimes present in the absence of disease, in the majority of bacterial infections the presence of bacteria signals manifest disease. A possible exception may be the finding of mycobacterial DNA in sarcoidosis patients who can be treated with steroids without provoking tuberculosis. PCR is especially useful in situations where rapid results are necessary or only fixed tissue is available.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7533972

  14. DNA polymerases as useful reagents for biotechnology – the history of developmental research in the field

    PubMed Central

    Ishino, Sonoko; Ishino, Yoshizumi

    2014-01-01

    DNA polymerase is a ubiquitous enzyme that synthesizes complementary DNA strands according to the template DNA in living cells. Multiple enzymes have been identified from each organism, and the shared functions of these enzymes have been investigated. In addition to their fundamental role in maintaining genome integrity during replication and repair, DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, labeling, mutagenesis, and other purposes. The fundamental ability of DNA polymerases to synthesize a deoxyribonucleotide chain is conserved. However, the more specific properties, including processivity, fidelity (synthesis accuracy), and substrate nucleotide selectivity, differ among the enzymes. The distinctive properties of each DNA polymerase may lead to the potential development of unique reagents, and therefore searching for novel DNA polymerase has been one of the major focuses in this research field. In addition, protein engineering techniques to create mutant or artificial DNA polymerases have been successfully developing powerful DNA polymerases, suitable for specific purposes among the many kinds of DNA manipulations. Thermostable DNA polymerases are especially important for PCR-related techniques in molecular biology. In this review, we summarize the history of the research on developing thermostable DNA polymerases as reagents for genetic manipulation and discuss the future of this research field. PMID:25221550

  15. Inhibition of DNA polymerase alpha activity by ammonium 21-tungsto-9-antimoniate (HPA23).

    PubMed

    Ono, K; Nakane, H; Matsumoto, T; Barré-Sinoussi, F; Chermann, J C

    1984-01-01

    Ammonium 21-tungsto-9-antimoniate (HPA23), an inorganic condensed ion, was shown to be a potent inhibitor for DNA polymerase alpha but not for beta. It inhibited the activity of mammalian DNA polymerase alpha in noncompetitive fashion with respect to either of deoxynucleotide substrate and template X primer, indicating the presence of a specific binding site for HPA23 on DNA polymerase alpha molecule. The Ki of the alpha polymerase for HPA23 was 24 nM. A possible interaction of HPA23 with DNA polymerase alpha is discussed.

  16. Human DNA Polymerase Kappa Encircles DNA: Implicatins for Mismatch Extension and Lesion Bypass

    SciTech Connect

    Lone,S.; Townson, S.; Uljon, S.; Johnson, R.; Brahma, A.; Nair, D.; Prakash, S.; Prakash, L.; Aggarwal, A.

    2007-01-01

    Human DNA polymerase (Pol ) is a proficient extender of mispaired primer termini on undamaged DNAs and is implicated in the extension step of lesion bypass. We present here the structure of Pol catalytic core in ternary complex with DNA and an incoming nucleotide. The structure reveals encirclement of the DNA by a unique 'N-clasp' at the N terminus of Pol , which augments the conventional right-handed grip on the DNA by the palm, fingers, and thumb domains and the PAD and provides additional thermodynamic stability. The structure also reveals an active-site cleft that is constrained by the close apposition of the N-clasp and the fingers domain, and therefore can accommodate only a single Watson-Crick base pair. Together, DNA encirclement and other structural features help explain Pol 's ability to extend mismatches and to promote replication through various minor groove DNA lesions, by extending from the nucleotide incorporated opposite the lesion by another polymerase.

  17. Long-Range PCR Amplification of DNA by DNA Polymerase III Holoenzyme from Thermus thermophilus

    PubMed Central

    Kane, Shawn D.; Bullard, James M.

    2015-01-01

    DNA replication in bacteria is accomplished by a multicomponent replicase, the DNA polymerase III holoenzyme (pol III HE). The three essential components of the pol III HE are the α polymerase, the β sliding clamp processivity factor, and the DnaX clamp-loader complex. We report here the assembly of the functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme capable of DNA synthesis consists of α, β and DnaX (τ and γ), δ and δ′ components of the clamp-loader complex. The proteins were each cloned and expressed in a native form. Each component of the system was purified extensively. The minimum holoenzyme from these five purified subunits reassembled is sufficient for rapid and processive DNA synthesis. In an isolated form the α polymerase was found to be unstable at temperatures above 65°C. We were able to increase the thermostability of the pol III HE to 98°C by addition and optimization of various buffers and cosolvents. In the optimized buffer system we show that a replicative polymerase apparatus, Tth pol III HE, is capable of rapid amplification of regions of DNA up to 15,000 base pairs in PCR reactions. PMID:25688300

  18. RNA-dependent DNA polymerase activity of RNA tumor virus. VI. Processive mode of action of avian myeloblastosis virus polymerase.

    PubMed Central

    Leis, J P

    1976-01-01

    Purified avian myeloblastosis virus (AMV) polymerase consisting of alpha,beta subunits has been shown to act processively in catalyzing DNA synthesis primed with 34S AMV RNA oligo(dT), poly(A)-poly(dT), and poly(I)-poly(dC). DNA transcripts prepared with 34S AMV RNA-oligo(dT)14 and AMV polymerase (alphabeta) have been shown to have a molecular weight of 1.05 X 10(6), or approximately one-third the size of the 34S RNA genome. Polymerase subunit alpha acts nonprocessively with the above templates. PMID:61286

  19. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    PubMed

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.

  20. A novel in vitro assay to study the mechanism by which DNA polymerases bypass blocking lesions to DNA replication

    SciTech Connect

    Randall, S.K.

    1989-01-01

    We devised a simple gel assay to measure insertion kinetics for any dNTP substrate opposite a target site. Our ability to synthesize an abasic lesion and place it at a single site in synthetic oligonucleotides allows for an in vitro analysis of the mechanism by which DNA polymerases bypass blocking lesions to DNA replication and to identify E. coli polymerases and accessory proteins that allow for insertion and bypass of such lesions. Using this assay we examine the preferred insertion of dATP by Drosophila DNA polymerase {alpha} opposite the abasic lesion compared to dGTP, dCTP, and dTTP for all different nearest-neighbors. The preferred insertion of dATP is governed by a V{sub max} discrimination little affected by nearest-neighbors. A DNA polymerase activity was purified from E coli, deleted for DNA polymerase I, that appears to be part of the SOS response of E. coli since it cannot be induced in lexA(Ind{sup {minus}}) strains. This inducible polymerase is DNA polymerase II. In contrast to DNA polymerase III, DNA polymerase II efficiently incorporates nucleotides opposite the abasic lesion and continues DNA synthesis. We addressed the role of E. coli DNA polymerase I targeted SOS mutagenesis.

  1. Reverse Transcription by Escherichia coli DNA Polymerase I

    PubMed Central

    Karkas, John D.

    1973-01-01

    E. coli DNA polymerase I (EC 2.7.7.7) can engage in either DNA- or RNA-directed DNA synthesis with hybrid templates. The choice of the strand to be transcribed depends primarily on the relative lengths of the two strands of the hybrid, the longer strand serving as the template and the shorter as the primer. If a polynucleotide is reduced in size by exposure to an endonuclease before being hybridized to the complementary strand, the template efficiency of the latter increases several-fold. Under properly selected conditions, highly efficient reverse transcription of the all-ribonucleotide template-primers poly(A)·oligo(U), poly(C)·oligo(I), and poly(I)·oligo(C) can be achieved. “f1 RNA,” the RNA strand of an f1 DNA·RNA hybrid, can also serve as template for reverse transcription either after “nicking” of the hybrid with DNase, or after separation from the DNA strand and priming by DNase-treated f1 DNA. PMID:4129927

  2. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications.

    PubMed

    Oscorbin, Igor P; Boyarskikh, Ulyana A; Filipenko, Maksim L

    2015-10-01

    A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592 aa protein with a predicted molecular mass of 69.8 kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000 U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10 nmol of dNTP into acid insoluble material in 30 min at 65 °C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA.

  3. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications.

    PubMed

    Oscorbin, Igor P; Boyarskikh, Ulyana A; Filipenko, Maksim L

    2015-10-01

    A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592 aa protein with a predicted molecular mass of 69.8 kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000 U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10 nmol of dNTP into acid insoluble material in 30 min at 65 °C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA. PMID:26289299

  4. Degradation of DNA RNA Hybrids by Ribonuclease H and DNA Polymerases of Cellular and Viral Origin

    PubMed Central

    Keller, Walter; Crouch, Robert

    1972-01-01

    Ribonuclease H from human KB cells, chick embryos, calf thymus, avian myeloblastosis virus, and Rous associated virus specifically degrades the RNA of DNA·RNA hybrids, producing mono- and oligoribonucleotides terminated in 5′-phosphates. The cellular RNase H is an endonuclease, whereas the viral enzyme appears to be an exonuclease. Viral DNA polymerase and RNase H copurify through all separation steps. Therefore, RNase H activity is an intrinsic part of the viral DNA polymerase. DNA·RNA hybrids are also degraded by nucleases associated with cellular DNA polymerases and by exonuclease III. However, these nucleases differ from RNase H in their ability to degrade both strands of DNA·RNA hybrids. Images PMID:4343966

  5. Modulation of DNA Polymerase Noncovalent Kinetic Transitions by Divalent Cations.

    PubMed

    Dahl, Joseph M; Lieberman, Kate R; Wang, Hongyun

    2016-03-18

    Replicative DNA polymerases (DNAPs) require divalent metal cations for phosphodiester bond formation in the polymerase site and for hydrolytic editing in the exonuclease site. Me(2+) ions are intimate architectural components of each active site, where they are coordinated by a conserved set of amino acids and functional groups of the reaction substrates. Therefore Me(2+) ions can influence the noncovalent transitions that occur during each nucleotide addition cycle. Using a nanopore, transitions in individual Φ29 DNAP complexes are resolved with single-nucleotide spatial precision and sub-millisecond temporal resolution. We studied Mg(2+) and Mn(2+), which support catalysis, and Ca(2+), which supports deoxynucleoside triphosphate (dNTP) binding but not catalysis. We examined their effects on translocation, dNTP binding, and primer strand transfer between the polymerase and exonuclease sites. All three metals cause a concentration-dependent shift in the translocation equilibrium, predominantly by decreasing the forward translocation rate. Me(2+) also promotes an increase in the backward translocation rate that is dependent upon the primer terminal 3'-OH group. Me(2+) modulates the translocation rates but not their response to force, suggesting that Me(2+) does not affect the distance to the transition state of translocation. Absent Me(2+), the primer strand transfer pathway between the polymerase and exonuclease sites displays additional kinetic states not observed at >1 mm Me(2+). Complementary dNTP binding is affected by Me(2+) identity, with Ca(2+) affording the highest affinity, followed by Mn(2+), and then Mg(2+). Both Ca(2+) and Mn(2+) substantially decrease the dNTP dissociation rate relative to Mg(2+), while Ca(2+) also increases the dNTP association rate.

  6. The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase η

    PubMed Central

    Roy, Upasana; Mukherjee, Shivam; Sharma, Anjali; Frank, Ekaterina G.; Schärer, Orlando D.

    2016-01-01

    Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases. PMID:27257072

  7. Characterization of the mammalian DNA polymerase gene(s) and enzyme(s). Annual progress report

    SciTech Connect

    Mishra, N.C.

    1995-01-01

    Two Genes for DNA polymerase delta were identified from the wild type Chinese hamster ovary cells. These genes were cloned via RT-PCR from mRNA prepared the Chinese hamster ovary cells using primers specific to conserved sequences of the DNA polymerase {delta} gene. The first gene encodes a PCNA dependent DNA polymerase {delta} gene whereas the second gene encodes a PCNA independent DNA polymerase {delta} gene. Methods were developed to clone these genes in expression vector and host systems. The role of the two genes in DNA replication and repair was determined.

  8. RB69 DNA Polymerase Structure, Kinetics, and Fidelity

    PubMed Central

    2015-01-01

    This review will summarize our structural and kinetic studies of RB69 DNA polymerase (RB69pol) as well as selected variants of the wild-type enzyme that were undertaken to obtain a deeper understanding of the exquisitely high fidelity of B family replicative DNA polymerases. We discuss how the structures of the various RB69pol ternary complexes can be used to rationalize the results obtained from pre-steady-state kinetic assays. Our main findings can be summarized as follows. (i) Interbase hydrogen bond interactions can increase catalytic efficiency by 5000-fold; meanwhile, base selectivity is not solely determined by the number of hydrogen bonds between the incoming dNTP and the templating base. (ii) Minor-groove hydrogen bond interactions at positions n – 1 and n – 2 of the primer strand and position n – 1 of the template strand in RB69pol ternary complexes are essential for efficient primer extension and base selectivity. (iii) Partial charge interactions among the incoming dNTP, the penultimate base pair, and the hydration shell surrounding the incoming dNTP modulate nucleotide insertion efficiency and base selectivity. (iv) Steric clashes between mismatched incoming dNTPs and templating bases with amino acid side chains in the nascent base pair binding pocket (NBP) as well as weak interactions and large gaps between the incoming dNTPs and the templating base are some of the reasons that incorrect dNTPs are incorporated so inefficiently by wild-type RB69pol. In addition, we developed a tC°–tCnitro Förster resonance energy transfer assay to monitor partitioning of the primer terminus between the polymerase and exonuclease subdomains. PMID:24720884

  9. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  10. Pseudomonas aeruginosa phage PaP1 DNA polymerase is an A-family DNA polymerase demonstrating ssDNA and dsDNA 3'-5' exonuclease activity.

    PubMed

    Liu, Binyan; Gu, Shiling; Liang, Nengsong; Xiong, Mei; Xue, Qizhen; Lu, Shuguang; Hu, Fuquan; Zhang, Huidong

    2016-08-01

    Most phages contain DNA polymerases, which are essential for DNA replication and propagation in infected host bacteria. However, our knowledge on phage-encoded DNA polymerases remains limited. This study investigated the function of a novel DNA polymerase of PaP1, which is the lytic phage of Pseudomonas aeruginosa. PaP1 encodes its sole DNA polymerase called Gp90 that was predicted as an A-family DNA polymerase with polymerase and 3'-5' exonuclease activities. The sequence of Gp90 is homologous but not identical to that of other A-family DNA polymerases, such as T7 DNA polymerases (Pol) and DNA Pol I. The purified Gp90 demonstrated a polymerase activity. The processivity of Gp90 in DNA replication and its efficiency in single-dNTP incorporation are similar to those of T7 Pol with processive thioredoxin (T7 Pol/trx). Gp90 can degrade ssDNA and dsDNA in 3'-5' direction at a similar rate, which is considerably lower than that of T7 Pol/trx. The optimized conditions for polymerization were a temperature of 37 °C and a buffer consisting of 40 mM Tris-HCl (pH 8.0), 30 mM MgCl2, and 200 mM NaCl. These studies on DNA polymerase encoded by PaP1 help advance our knowledge on phage-encoded DNA polymerases and elucidate PaP1 propagation in infected P. aeruginosa. PMID:27052734

  11. Exchange of DNA polymerases at the replication fork of bacteriophage T7.

    PubMed

    Johnson, Donald E; Takahashi, Masateru; Hamdan, Samir M; Lee, Seung-Joo; Richardson, Charles C

    2007-03-27

    T7 gene 5 DNA polymerase (gp5) and its processivity factor, Escherichia coli thioredoxin, together with the T7 gene 4 DNA helicase, catalyze strand displacement synthesis on duplex DNA processively (>17,000 nucleotides per binding event). The processive DNA synthesis is resistant to the addition of a DNA trap. However, when the polymerase-thioredoxin complex actively synthesizing DNA is challenged with excess DNA polymerase-thioredoxin exchange occurs readily. The exchange can be monitored by the use of a genetically altered T7 DNA polymerase (gp5-Y526F) in which tyrosine-526 is replaced with phenylalanine. DNA synthesis catalyzed by gp5-Y526F is resistant to inhibition by chain-terminating dideoxynucleotides because gp5-Y526F is deficient in the incorporation of these analogs relative to the wild-type enzyme. The exchange also occurs during coordinated DNA synthesis in which leading- and lagging-strand synthesis occur at the same rate. On ssDNA templates with the T7 DNA polymerase alone, such exchange is not evident, suggesting that free polymerase is first recruited to the replisome by means of T7 gene 4 helicase. The ability to exchange DNA polymerases within the replisome without affecting processivity provides advantages for fidelity as well as the cycling of the polymerase from a completed Okazaki fragment to a new primer on the lagging strand.

  12. Correlations between the activities of DNA polymerase alpha and the glucocorticoid receptor.

    PubMed Central

    Schmidt, T J; Bollum, F J; Litwack, G

    1982-01-01

    Specific inhibitors and anti-DNA polymerase alpha IgG have been utilized to probe for similarities between cytoplasmic rat hepatic glucocorticoid receptors and DNA polymerase alpha [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7]. Rifamycin AF/013, an inhibitor of RNA and DNA polymerase activities, significantly inhibited the binding of activated [6,7-3H]-triamcinolone acetonide (TA) receptor complexes to DNA-cellulose. beta-Lapachone, an inhibitor of DNA polymerase alpha and reverse transcriptase activities, inhibited the specific binding of [6,7-3H]TA when preincubated with unbound receptors. Aphidicolin, another DNA polymerase alpha inhibitor, failed to inhibit any of the glucocorticoid-receptor functions tested. Two specific anti-DNA polymerase alpha IgGs interfered with glucocorticoid receptor functions as measured by their ability to inhibit the binding of [6,7-3H]TA to unbound receptors (85% maximal inhibition) and, to a lesser extent, to inhibit the binding of activated [6,7-3H]TA receptor complexes to DNA-cellulose (50% maximal inhibition). The anti-DNA polymerase alpha IgG and beta-lapachone failed to affect the binding of tritiated estradiol, progesterone, or 5 alpha-dihydrotestosterone to their receptors in appropriate rat target tissues or the binding of [1,2-3H]hydrocortisone to serum transcortin. The most obvious interpretation of these data is that cytoplasmic glucocorticoid receptors and DNA polymerase alpha share antigenic determinants. An alternative interpretation is that the polyclonal anti-DNA polymerase alpha antibody contains IgG molecules raised against calf thymus cytoplasmic activated glucocorticoid-receptor complexes that copurified with DNA polymerase alpha used as the antigen. Taken collectively, however, the antibody and inhibitor data suggest a relationship between DNA polymerase alpha and the glucocorticoid receptor. PMID:6812051

  13. Contributions of the specialised DNA polymerases to replication of structured DNA.

    PubMed

    Wickramasinghe, Caroline M; Arzouk, Hayat; Frey, Alexander; Maiter, Ahmed; Sale, Julian E

    2015-05-01

    It is becoming increasingly clear that processive DNA replication is threatened not only by DNA damage but also by secondary structures that can form in the DNA template. Failure to resolve these structures promptly leads to both genetic instability, for instance DNA breaks and rearrangements, and to epigenetic instability, in which inaccurate propagation of the parental chromatin state leads to unscheduled changes in gene expression. Multiple overlapping mechanisms are needed to deal with the wide range of potential DNA structural challenges to replication. This review focuses on the emerging mechanisms by which specialised DNA polymerases, best known for their role in the replication of damaged DNA, contribute to the replication of undamaged but structured DNA, particularly G quadruplexes.

  14. Optimal numbers of residues in linkers of DNA polymerase I, T7 primase and DNA polymerase IV

    PubMed Central

    Fu, Yi-Ben; Wang, Zhan-Feng; Wang, Peng-Ye; Xie, Ping

    2016-01-01

    DNA polymerase I (PolI), T7 primase and DNA polymerase IV (Dpo4) have a common feature in their structures that the two main domains are connected by an unstructured polypeptide linker. To perform their specific enzymatic activities, the enzymes are required to rearrange the position and orientation of one domain relative to the other into an active mode. Here, we show that the three enzymes share the same mechanism of the transition from the inert to active modes and use the minimum numbers of residues in their linkers to achieve the most efficient transitions. The transition time to the finally active mode is sensitively dependent on the stretched length of the linker in the finally active mode while is insensitive to the position and orientation in the initially inert state. Moreover, we find that for any enzyme whose two domains are connected by an unstructured flexible linker, the stretched length (L) of the linker in the finally active mode and the optimal number (Nopt) of the residues in the linker satisfy relation L ≈ αNopt, with α = 0.24–0.27 nm being a constant insensitive to the system. PMID:27364863

  15. Chloroplast DNA Copy Number Changes during Plant Development in Organelle DNA Polymerase Mutants

    PubMed Central

    Morley, Stewart A.; Nielsen, Brent L.

    2016-01-01

    Chloroplast genome copy number is very high in leaf tissue, with upwards of 10,000 or more copies of the chloroplast DNA (ctDNA) per leaf cell. This is often promoted as a major advantage for engineering the plastid genome, as it provides high gene copy number and thus is expected to result in high expression of foreign proteins from integrated genes. However, it is also known that ctDNA copy number and ctDNA integrity decrease as cells age. Quantitative PCR (qPCR) allows measurement of organelle DNA levels relative to a nuclear gene target. We have used this approach to determine changes in copy number of ctDNA relative to the nuclear genome at different ages of Arabidopsis plant growth and in organellar DNA polymerase mutants. The mutant plant lines have T-DNA insertions in genes encoding the two organelle localized DNA polymerases (PolIA and PolIB). Each of these mutant lines exhibits some delay in plant growth and development as compared to wild-type plants, with the PolIB plants having a more pronounced delay. Both mutant lines develop to maturity and produce viable seeds. Mutants for both proteins were observed to have a reduction in ctDNA and mtDNA copy number relative to wild type plants at all time points as measured by qPCR. Both DNA polymerase mutants had a fairly similar decrease in ctDNA copy number, while the PolIB mutant had a greater effect of reduction in mtDNA levels. However, despite similar decreases in genome copy number, RT-PCR analysis of PolIA mutants show that PolIB expression remains unchanged, suggesting that PolIA may not be essential to plant survival. Furthermore, genotypic analysis of plants from heterozygous parents display a strong pressure to maintain two functioning copies of PolIB. These results indicate that the two DNA polymerases are both important in ctDNA replication, and they are not fully redundant to each other, suggesting each has a specific function in plant organelles. PMID:26870072

  16. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase [delta

    SciTech Connect

    Swan, Michael K.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2009-09-25

    DNA polymerase {delta} (Pol {delta}) is a high-fidelity polymerase that has a central role in replication from yeast to humans. We present the crystal structure of the catalytic subunit of yeast Pol {delta} in ternary complex with a template primer and an incoming nucleotide. The structure, determined at 2.0-{angstrom} resolution, catches the enzyme in the act of replication, revealing how the polymerase and exonuclease domains are juxtaposed relative to each other and how a correct nucleotide is selected and incorporated. The structure also reveals the 'sensing' interactions near the primer terminus, which signal a switch from the polymerizing to the editing mode. Taken together, the structure provides a chemical basis for the bulk of DNA synthesis in eukaryotic cells and a framework for understanding the effects of cancer-causing mutations in Pol {delta}.

  17. Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage T7 DNA polymerase and Escherichia coli DNA polymerase I

    SciTech Connect

    Tabor, S.; Richardson, C.C. )

    1989-06-01

    Incorporation of dideoxynucleotides by T7 DNA polymerase and Escherichia coli DNA polymerase I is more efficient when Mn{sup 2+} rather than Mg{sup 2+} is used for catalysis. Substituting Mn{sup 2+} for Mg{sup 2+} reduces the discrimination against dideoxynucleotides approximately 100-fold for DNA polymerase I and 4-fold for T7 DNA polymerase. With T7 DNA polymerase and Mn{sup 2+}, dideoxynucleotides and deoxynucleotides are incorporated at virtually the same rate. Mn{sup 2+} also reduces the discrimination against other analogs with modifications in the furanose moiety, the base, and the phosphate linkage. A metal buffer, isocitrate, expands the MnCl{sub 2} concentration range effective in catalyzing DNA synthesis. The lack of discrimination against dideoxynucleoside triphosphates using T7 DNA polymerase and Mn{sup 2+} results in uniform terminations of DNA sequencing reactions, with the intensity of adjacent bands on polyacrylamide gel varying in most instances by less than 10%.

  18. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage

    PubMed Central

    Mallik, Sarita; Popodi, Ellen M.; Hanson, Andrew J.

    2015-01-01

    ABSTRACT Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. IMPORTANCE DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings

  19. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    SciTech Connect

    Xu, Y.; Dunn, J.; Gao, S.; Bruno, J. F.; Luft, B. J.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.

  20. Structure of the SSB-DNA polymerase III interface and its role in DNA replication

    SciTech Connect

    Marceau, Aimee H; Bahng, Soon; Massoni, Shawn C; George, Nicholas P; Sandler, Steven J; Marians, Kenneth J; Keck, James L

    2012-05-22

    Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.

  1. DNA Bending and Wrapping around RNA Polymerase: a “Revolutionary” Model Describing Transcriptional Mechanisms

    PubMed Central

    Coulombe, Benoit; Burton, Zachary F.

    1999-01-01

    A model is proposed in which bending and wrapping of DNA around RNA polymerase causes untwisting of the DNA helix at the RNA polymerase catalytic center to stimulate strand separation prior to initiation. During elongation, DNA bending through the RNA polymerase active site is proposed to lower the energetic barrier to the advance of the transcription bubble. Recent experiments with mammalian RNA polymerase II along with accumulating evidence from studies of Escherichia coli RNA polymerase indicate the importance of DNA bending and wrapping in transcriptional mechanisms. The DNA-wrapping model describes specific roles for general RNA polymerase II transcription factors (TATA-binding protein [TBP], TFIIB, TFIIF, TFIIE, and TFIIH), provides a plausible explanation for preinitiation complex isomerization, suggests mechanisms underlying the synergy between transcriptional activators, and suggests an unforseen role for TBP-associating factors in transcription. PMID:10357858

  2. DNA sequencing using polymerase substrate-binding kinetics.

    PubMed

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-23

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications.

  3. DNA sequencing using polymerase substrate-binding kinetics

    PubMed Central

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  4. Determinants of nucleotide sugar recognition in an archaeon DNA polymerase.

    PubMed

    Gardner, A F; Jack, W E

    1999-06-15

    Vent DNA polymerase normally discriminates strongly against incorporation of ribonucleotides, 3'-deoxyribonucleotides (such as cordycepin) and 2',3'-dideoxyribonucleotides. To explore the basis for this discrimination we have generated a family of variants with point mutations of residues in conserved Regions II and III and assayed incorporation of nucleo-tides with modified sugars by these variants, all of which were created in an exonuclease-deficient form of the enzyme. A Y412V variant incorporates ribonucleotides at least 200-fold more efficiently than the wild-type enzyme, consistent with Y412 acting as a 'steric gate' to specifically exclude ribonucleotides. The most striking variants tested involved changes to A488, a residue predicted to be facing away from the nucleotide binding site. The pattern of relaxed specificity at this position roughly correlates with the size of the substituted amino acid sidechain and affects a variety of modified nucleotide sugars. PMID:10352184

  5. [Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing]: Progress report

    SciTech Connect

    Not Available

    1992-12-31

    This project focuses on the DNA polymerase and accessory proteins of phage T7 for use in DNA sequence analysis. T7 DNA polymerase (gene 5 protein) interacts with accessory proteins for the acquisition of properties such as processivity that are necessary for DNA replication. One goal is to understand these interactions in order to modify the proteins to increase their usefulness with DNA sequence analysis. Using a genetically modified gene 5 protein lacking 3` to 5` exonuclease activity we have found that in the presence of manganese there is no discrimination against dideoxynucleotides, a property that enables novel approaches to DNA sequencing using automated technology. Pyrophosphorolysis can create problems in DNA sequence determination, a problem that can be eliminated by the addition of pyrophosphatase. Crystals of the gene 5 protein/thioredoxin complex have now been obtained and X-ray diffraction analysis will be undertaken once their quality has been improved. Amino acid changes in gene 5 protein have been identified that alter its interaction with thioredoxin. Characterization of these proteins should help determine how thioredoxin confers processivity on polymerization. We have characterized the 17 DNA binding protein, the gene 2.5 protein, and shown that it interacts with gene 5 protein and gene 4 protein. The gene 2.5 protein mediates homologous base pairing and strand uptake. Gene 5.5 protein interacts with E. coli Hl protein and affects gene expression. Biochemical and genetic studies on the T7 56-kDa gene 4 protein, the helicase, are focused on its physical interaction with T7 DNA polymerase and the mechanism by which the hydrolysis of nucleoside triphosphates fuels its unidirectional translocation on DNA.

  6. [Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing]: Progress report

    SciTech Connect

    Not Available

    1992-01-01

    This project focuses on the DNA polymerase and accessory proteins of phage T7 for use in DNA sequence analysis. T7 DNA polymerase (gene 5 protein) interacts with accessory proteins for the acquisition of properties such as processivity that are necessary for DNA replication. One goal is to understand these interactions in order to modify the proteins to increase their usefulness with DNA sequence analysis. Using a genetically modified gene 5 protein lacking 3' to 5' exonuclease activity we have found that in the presence of manganese there is no discrimination against dideoxynucleotides, a property that enables novel approaches to DNA sequencing using automated technology. Pyrophosphorolysis can create problems in DNA sequence determination, a problem that can be eliminated by the addition of pyrophosphatase. Crystals of the gene 5 protein/thioredoxin complex have now been obtained and X-ray diffraction analysis will be undertaken once their quality has been improved. Amino acid changes in gene 5 protein have been identified that alter its interaction with thioredoxin. Characterization of these proteins should help determine how thioredoxin confers processivity on polymerization. We have characterized the 17 DNA binding protein, the gene 2.5 protein, and shown that it interacts with gene 5 protein and gene 4 protein. The gene 2.5 protein mediates homologous base pairing and strand uptake. Gene 5.5 protein interacts with E. coli Hl protein and affects gene expression. Biochemical and genetic studies on the T7 56-kDa gene 4 protein, the helicase, are focused on its physical interaction with T7 DNA polymerase and the mechanism by which the hydrolysis of nucleoside triphosphates fuels its unidirectional translocation on DNA.

  7. Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton.

    PubMed

    Schmidt, Helen F; Sakowski, Eric G; Williamson, Shannon J; Polson, Shawn W; Wommack, K Eric

    2014-01-01

    Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an α-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton. PMID:23985748

  8. DNA polymerase I is required for premeiotic DNA replication and sporulation but not for X-ray repair in Saccharomyces cerevisiae

    SciTech Connect

    Budd, M.E.; Wittrup, K.D.; Bailey, J.E.; Campbell, J.L.

    1989-02-01

    We have used a set of seven temperature-sensitive mutants in the DNA polymerase I gene of Saccharomyces cerevisiae to investigate the role of DNA polymerase I in various aspects of DNA synthesis in vivo. Previously, we showed that DNA polymerase I is required for mitotic DNA replication. Here we extend our studies to several stages of meiosis and repair of X-ray-induced damage. We find that sporulation is blocked in all of the DNA polymerase temperature-sensitive mutants and that premeiotic DNA replication does not occur. Commitment to meiotic recombination is only 2% of wild-type levels. Thus, DNA polymerase I is essential for these steps. However, repair of X-ray-induced single-strand breaks is not defective in the DNA polymerase temperature-sensitive mutants, and DNA polymerase I is therefore not essential for repair of such lesions. These results suggest that DNA polymerase II or III or both, the two other nuclear yeast DNA polymerases for which roles have not yet been established, carry out repair in the absence of DNA polymerase I, but that DNA polymerase II and III cannot compensate for loss of DNA polymerase I in meiotic replication and recombination. These results do not, however, rule out essential roles for DNA polymerase II or III or both in addition to that for DNA polymerase I.

  9. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase.

    PubMed

    Indiani, Chiara; Langston, Lance D; Yurieva, Olga; Goodman, Myron F; O'Donnell, Mike

    2009-04-14

    All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the beta-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered. PMID:19279203

  10. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase

    PubMed Central

    Indiani, Chiara; Langston, Lance D.; Yurieva, Olga; Goodman, Myron F.; O'Donnell, Mike

    2009-01-01

    All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered. PMID:19279203

  11. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    SciTech Connect

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  12. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ.

    PubMed

    Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J

    2016-01-01

    Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.

  13. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ

    PubMed Central

    Copeland, William C.; Kasiviswanathan, Rajesh; Longley, Matthew J.

    2016-01-01

    Summary Mitochondrial DNA is replicated by the nuclear encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand crosslinks from chemotherapy agents. Although many of these lesions block DNA replication, Pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by Pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis. PMID:26530671

  14. Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules.

    PubMed

    Linko, Veikko; Leppiniemi, Jenni; Shen, Boxuan; Niskanen, Einari; Hytönen, Vesa P; Toppari, J Jussi

    2011-09-01

    We present a method for controlled connection of gold electrodes with dsDNA molecules (locally on a chip) by utilizing polymerase to elongate single-stranded DNA primers attached to the electrodes. Thiol-modified oligonucleotides are directed and immobilized to nanoscale electrodes by means of dielectrophoretic trapping, and extended in a procedure mimicking PCR, finally forming a complete dsDNA molecule bridging the gap between the electrodes. The technique opens up opportunities for building from the bottom-up, for detection and sensing applications, and also for molecular electronics.

  15. Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules

    NASA Astrophysics Data System (ADS)

    Linko, Veikko; Leppiniemi, Jenni; Shen, Boxuan; Niskanen, Einari; Hytönen, Vesa P.; Toppari, J. Jussi

    2011-09-01

    We present a method for controlled connection of gold electrodes with dsDNA molecules (locally on a chip) by utilizing polymerase to elongate single-stranded DNA primers attached to the electrodes. Thiol-modified oligonucleotides are directed and immobilized to nanoscale electrodes by means of dielectrophoretic trapping, and extended in a procedure mimicking PCR, finally forming a complete dsDNA molecule bridging the gap between the electrodes. The technique opens up opportunities for building from the bottom-up, for detection and sensing applications, and also for molecular electronics.

  16. Characterization of the mammalian DNA polymerase gene and protein. Annual progress report

    SciTech Connect

    Mishra, N.C.

    1993-01-01

    Methods were developed to purify the DNA polymerases of the {alpha}-family from Chinese hamster cells and their mutants selected as resistant to aphidicolin or specific inhibitor of DNA polymerases of the {alpha}-family. The wild type and mutant DNA polymerases were characterized with respect to their biochemical properties. A methodology was also developed to identify the replication intermediates and aphidicolin was found to inhibit a replication intermediate of the 24Kb size indicating the fact that aphidicolin inhibits the elongation process during DNA replication. This is the first demonstration of such role of aphidicolin in the eukaryotic DNA replication.

  17. Targeted radiosensitization of cells expressing truncated DNA polymerase {beta}.

    PubMed

    Neijenhuis, Sari; Verwijs-Janssen, Manon; van den Broek, Lenie J; Begg, Adrian C; Vens, Conchita

    2010-11-01

    Ionizing radiation (IR) is an effective anticancer treatment, although failures still occur. To improve radiotherapy, tumor-targeted strategies are needed to increase radiosensitivity of tumor cells, without influencing normal tissue radiosensitivity. Base excision repair (BER) and single-strand break repair (SSBR) contribute to the determination of sensitivity to IR. A crucial protein in BER/SSBR is DNA polymerase β (polβ). Aberrant polβ expression is commonly found in human tumors and leads to inhibition of BER. Here, we show that truncated polβ variant (polβ-Δ)-expressing cells depend on homologous recombination (HR) for survival after IR, indicating that a considerable fraction of polβ-Δ-induced lesions are subject to repair by HR. Increased sensitization was found not to result from involvement in DNA-dependent protein kinase-dependent nonhomologous end joining, the other major double-strand break repair pathway. Caffeine and the ATM inhibitor Ku55933 cause polβ-Δ-dependent radiosensitization. Consistent with the observed HR dependence and the known HR-modulating activity of ATM, polβ-Δ-expressing cells showed increased radiosensitization after BRCA2 knockdown that is absent under ATM-inhibited conditions. Our data suggest that treatment with HR modulators is a promising therapeutic strategy for exploiting defects in the BER/SSBR pathway in human tumors. PMID:20978197

  18. α,β-D-Constrained Nucleic Acids Are Strong Terminators of Thermostable DNA Polymerases in Polymerase Chain Reaction

    PubMed Central

    Mahéo, Sabrina; Gross, Grégori; Bodin, Pierre; Teissié, Justin; Escudier, Jean-Marc; Paquereau, Laurent

    2011-01-01

    (SC5′, RP) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5′C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases. PMID:21991314

  19. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ.

    PubMed

    Wang, Xiaoxiao; Zhang, Sufang; Zheng, Rong; Yue, Fu; Lin, Szu Hua Sharon; Rahmeh, Amal A; Lee, Ernest Y C; Zhang, Zhongtao; Lee, Marietta Y W T

    2016-02-01

    PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability.

  20. Sequence-Specific Incorporation of Enzyme-Nucleotide Chimera by DNA Polymerases.

    PubMed

    Welter, Moritz; Verga, Daniela; Marx, Andreas

    2016-08-16

    DNA polymerases select the right nucleotide for the growing polynucleotide chain based on the shape and geometry of the nascent nucleotide pairs and thereby ensure high DNA replication selectivity. High-fidelity DNA polymerases are believed to possess tight active sites that allow little deviation from the canonical structures. However, DNA polymerases are known to use nucleotides with small modifications as substrates, which is key for numerous core biotechnology applications. We show that even high-fidelity DNA polymerases are capable of efficiently using nucleotide chimera modified with a large protein like horseradish peroxidase as substrates for template-dependent DNA synthesis, despite this "cargo" being more than 100-fold larger than the natural substrates. We exploited this capability for the development of systems that enable naked-eye detection of DNA and RNA at single nucleotide resolution. PMID:27392211

  1. Role of Accessory DNA Polymerases in DNA Replication in Escherichia coli: Analysis of the dnaX36 Mutator Mutant▿

    PubMed Central

    Gawel, Damian; Pham, Phuong T.; Fijalkowska, Iwona J.; Jonczyk, Piotr; Schaaper, Roel M.

    2008-01-01

    The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (−1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the τ subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of τ, essential for interaction of τ with the α (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered α-τ interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX36 with mutM, mutY, and recA defects, support our assumption that dnaX36-mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a (dinB) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of τ subunit, in securing a high fidelity of replication. PMID:18156258

  2. Analysis of unassisted translesion replication by the DNA polymerase III holoenzyme.

    PubMed

    Tomer, G; Livneh, Z

    1999-05-01

    DNA damage-induced mutations are formed when damaged nucleotides present in single-stranded DNA are replicated. We have developed a new method for the preparation of gapped plasmids containing site-specific damaged nucleotides, as model DNA substrates for translesion replication. Using these substrates, we show that the DNA polymerase III holoenzyme from Escherichia coli can bypass a synthetic abasic site analogue with high efficiency (30% bypass in 16 min), unassisted by other proteins. The theta and tau subunits of the polymerase were not essential for bypass. No bypass was observed when the enzyme was assayed on a synthetic 60-mer oligonucleotide carrying the same lesion, and bypass on a linear gapped plasmid was 3-4-fold slower than on a circular gapped plasmid. There was no difference in the bypass when standing-start and running-start replication were compared. A comparison of translesion replication by DNA polymerase I, DNA polymerase II, the DNA polymerase III core, and the DNA polymerase III holoenzyme clearly showed that the DNA polymerase III holoenzyme was by far the most effective in performing translesion replication. This was not only due to the high processivity of the pol III holoenzyme, because increasing the processivity of pol II by adding the gamma complex and beta subunit, did not increase bypass. These results support the model that SOS regulation was imposed on a fundamentally constitutive translesion replication reaction to achieve tight control of mutagenesis.

  3. Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin

    SciTech Connect

    Aller, Pierre; Ye, Yu; Wallace, Susan S.; Burrows, Cynthia J.; Doubli, Sylvie

    2010-04-12

    The oxidation of guanine generates one of the most common DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). The further oxidation of 8-oxoG can produce either guanidinohydantoin (Gh) in duplex DNA or spiroiminodihydantoin (Sp) in nucleosides and ssDNA. Although Gh can be a strong block for replicative DNA polymerases such as RB69 DNA polymerase, this lesion is also mutagenic: DNA polymerases bypass Gh by preferentially incorporating a purine with a slight preference for adenine, which results in G {center_dot} C {yields} T {center_dot} A or G {center_dot} C {yields} C {center_dot} G transversions. The 2.15 {angstrom} crystal structure of the replicative RB69 DNA polymerase in complex with DNA containing Gh reveals that Gh is extrahelical and rotated toward the major groove. In this conformation Gh is no longer in position to serve as a templating base for the incorporation of an incoming nucleotide. This work also constitutes the first crystallographic structure of Gh, which is stabilized in the R configuration in the two polymerase/DNA complexes present in the crystal asymmetric unit. In contrast to 8-oxoG, Gh is found in a high syn conformation in the DNA duplex and therefore presents the same hydrogen bond donor and acceptor pattern as thymine, which explains the propensity of DNA polymerases to incorporate a purine opposite Gh when bypass occurs.

  4. In vitro production and screening of DNA polymerase eta mutants for catalytic diversity.

    PubMed

    Glick, Eitan; Anderson, Jon P; Loeb, Lawrence A

    2002-11-01

    Mutant DNA polymerases have become an increasingly important tool in biotechnology. The ability to examine the activity and specific properties of enzymes has a crucial role in the characterization of the enzyme. We have developed several systems for characterizing DNA polymerases that combine random mutagenesis with in vivo selection systems. However in vivo screening systems for specific properties are sometimes unavailable. The ability to quickly screen for polymerase activity has many applications, including the identification of compounds that can inhibit polymerase activity, identifying the properties of newly discovered polymerases, and engineering new biological properties into existing polymerases. These applications can both expand the knowledge of the basic science of polymerases and can further industrial efforts to identify new drugs that specifically target polymerase activity. Here we present a high-throughput in vitro assay to select for active polymerases. We show the applicability of this assay by measuring the level of activity for a set of in vitro synthesized polymerase mutants and by screening for the incorporation of a fluorescent nucleotide analog by DNA polymerases.

  5. The beta subunit sliding DNA clamp is responsible for unassisted mutagenic translesion replication by DNA polymerase III holoenzyme.

    PubMed

    Tomer, G; Reuven, N B; Livneh, Z

    1998-11-24

    The replication of damaged nucleotides that have escaped DNA repair leads to the formation of mutations caused by misincorporation opposite the lesion. In Escherichia coli, this process is under tight regulation of the SOS stress response and is carried out by DNA polymerase III in a process that involves also the RecA, UmuD' and UmuC proteins. We have shown that DNA polymerase III holoenzyme is able to replicate, unassisted, through a synthetic abasic site in a gapped duplex plasmid. Here, we show that DNA polymerase III*, a subassembly of DNA polymerase III holoenzyme lacking the beta subunit, is blocked very effectively by the synthetic abasic site in the same DNA substrate. Addition of the beta subunit caused a dramatic increase of at least 28-fold in the ability of the polymerase to perform translesion replication, reaching 52% bypass in 5 min. When the ssDNA region in the gapped plasmid was extended from 22 nucleotides to 350 nucleotides, translesion replication still depended on the beta subunit, but it was reduced by 80%. DNA sequence analysis of translesion replication products revealed mostly -1 frameshifts. This mutation type is changed to base substitution by the addition of UmuD', UmuC, and RecA, as demonstrated in a reconstituted SOS translesion replication reaction. These results indicate that the beta subunit sliding DNA clamp is the major determinant in the ability of DNA polymerase III holoenzyme to perform unassisted translesion replication and that this unassisted bypass produces primarily frameshifts.

  6. Conformational selection and induced fit for RNA polymerase and RNA/DNA hybrid backtracked recognition

    PubMed Central

    Wu, Jian; Ye, Wei; Yang, Jingxu; Chen, Hai-Feng

    2015-01-01

    RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD) simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15, and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS) P-test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein. PMID:26594643

  7. Model of elongation of short DNA sequence by thermophilic DNA polymerase under isothermal conditions.

    PubMed

    Kato, Tomohiro; Liang, Xingguo; Asanuma, Hiroyuki

    2012-10-01

    Short DNA sequences, especially those that are repetitive or palindromic, can be used as the seeds for synthesis of long DNA by some DNA polymerases in an unusual manner. Although several elongation mechanisms have been proposed, there is no well-established model that explains highly efficient elongation under isothermal conditions. In the present study, we analyzed the elongation of nonrepetitive sequences with distinct hairpins at each end. These DNAs were elongated efficiently under isothermal conditions by thermophilic Vent (exo(-)) DNA polymerase, and the products were longer than 10 kb within 10 min of the reaction. A 20-nucleotide DNA with only one hairpin was also elongated. Sequence analysis revealed that the long products are mainly tandem repeats of the short seed sequences. The thermal melting temperatures of the products were much higher than the reaction temperature, indicating that most DNAs form duplexes during the reaction. Accordingly, a terminal hairpin formation and self-priming extension model was proposed in detail, and the efficient elongation was explained. Formation of the hairpin at the 5' end plays an important role during the elongation.

  8. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    PubMed Central

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  9. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus

    PubMed Central

    Qi, Yonghe; Gao, Zhenchao; Peng, Bo; Yan, Huan; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui

    2016-01-01

    Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV. PMID:27783675

  10. A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity

    PubMed Central

    Lipps, Georg; Röther, Susanne; Hart, Christina; Krauss, Gerhard

    2003-01-01

    Although DNA replication is a process common in all domains of life, primase and replicative DNA polymerase appear to have evolved independently in the bacterial domain versus the archaeal/eukaryal branch of life. Here, we report on a new type of replication protein that constitutes the first member of the DNA polymerase family E. The protein ORF904, encoded by the plasmid pRN1 from the thermoacidophile archaeon Sulfolobus islandicus, is a highly compact multifunctional enzyme with ATPase, primase and DNA polymerase activity. Recombinant purified ORF904 hydrolyses ATP in a DNA-dependent manner. Deoxynucleotides are preferentially used for the synthesis of primers ∼8 nucleotides long. The DNA polymerase activity of ORF904 synthesizes replication products of up to several thousand nucleotides in length. The primase and DNA polymerase activity are located in the N-terminal half of the protein, which does not show homology to any known DNA polymerase or primase. ORF904 constitutes a new type of replication enzyme, which could have evolved indepen dently from the eubacterial and archaeal/eukaryal proteins of DNA replication. PMID:12743045

  11. Human DNA Polymerase ν Catalyzes Correct and Incorrect DNA Synthesis with High Catalytic Efficiency.

    PubMed

    Gowda, A S Prakasha; Moldovan, George-Lucian; Spratt, Thomas E

    2015-06-26

    DNA polymerase ν (pol ν) is a low fidelity A-family polymerase with a putative role in interstrand cross-link repair and homologous recombination. We carried out pre-steady-state kinetic analysis to elucidate the kinetic mechanism of this enzyme. We found that the mechanism consists of seven steps, similar that of other A-family polymerases. pol ν binds to DNA with a Kd for DNA of 9.2 nm, with an off-rate constant of 0.013 s(-1)and an on-rate constant of 14 μm(-1) s(-1). dNTP binding is rapid with Kd values of 20 and 476 μm for the correct and incorrect dNTP, respectively. Pyrophosphorylation occurs with a Kd value for PPi of 3.7 mm and a maximal rate constant of 11 s(-1). Pre-steady-state kinetics, examination of the elemental effect using dNTPαS, and pulse-chase experiments indicate that a rapid phosphodiester bond formation step is flanked by slow conformational changes for both correct and incorrect base pair formation. These experiments in combination with computer simulations indicate that the first conformational change occurs with rate constants of 75 and 20 s(-1); rapid phosphodiester bond formation occurs with a Keq of 2.2 and 1.7, and the second conformational change occurs with rate constants of 2.1 and 0.5 s(-1), for correct and incorrect base pair formation, respectively. The presence of a mispair does not induce the polymerase to adopt a low catalytic conformation. pol ν catalyzes both correct and mispair formation with high catalytic efficiency.

  12. Detection and characterization of mammalian DNA polymerase beta mutants by functional complementation in Escherichia coli.

    PubMed Central

    Sweasy, J B; Loeb, L A

    1993-01-01

    We have designed and utilized a bacterial complementation system to identify and characterize mammalian DNA polymerase beta mutants. In this complementation system, wild-type rat DNA polymerase beta replaces both the replicative and repair functions of DNA polymerase I in the Escherichia coli recA718 polA12 double mutant; our 263 DNA polymerase beta mutants replace E. coli polymerase I less efficiently or not at all. Of the 10 mutants that have been shown to contain DNA sequence alterations, 2 exhibit a split phenotype with respect to complementation of the growth defect and methylmethanesulfonate sensitivity of the double mutant; one is a null mutant. The mutants possessing a split phenotype contain amino acid residue alterations within a putative nucleotide binding site of DNA polymerase beta. This approach for the isolation and evaluation of mutants of a mammalian DNA polymerase in E. coli may ultimately lead to a better understanding of the mechanism of action of this enzyme and to precisely defining its role in vertebrate cells. Images Fig. 2 PMID:8506308

  13. Role of Escherichia coli DNA Polymerase I in chromosomal DNA replication fidelity

    PubMed Central

    Makiela-Dzbenska, Karolina; Jaszczur, Malgorzata; Banach-Orlowska, Magdalena; Jonczyk, Piotr; Schaaper, Roel M.; Fijalkowska, Iwona J.

    2009-01-01

    Summary We have investigated the possible role of E. coli DNA polymerase I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3'→5' exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5- to 4-fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favoring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared to other error-producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand. PMID:19843230

  14. Influence of polymerase brand on microarray-based spoligotyping in low concentrations of mycobacterial DNA.

    PubMed

    Monecke, Stefan; Engelmann, Ines; Ehricht, Ralf

    2015-04-01

    Spoligotyping is a widely used typing method for the Mycobacterium tuberculosis complex. Protocols and platforms can be adapted for direct use on patient samples. Serial dilutions of genomic DNA from Mycobacterium bovis BCG strain DSM45071 were spoligotyped by array hybridization using 32 different commercial PCR polymerase preparations. In samples with very low concentrations of mycobacterial DNA, commercially available PCR polymerases differed in their performance, and some yielded no, or false, identification. Direct spoligotyping from samples with very low concentrations of mycobacterial DNA thus requires careful selection of polymerase and strict standardization.

  15. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    DOEpatents

    Gardner, Shea N.; Mariella, Jr., Raymond P.; Christian, Allen T.; Young, Jennifer A.; Clague, David S.

    2011-01-18

    A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.

  16. Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA

    SciTech Connect

    Xing, G.; Kirouac, K.; Shin, Y.J.; Bell, S.D.; Ling, H.

    2009-09-16

    DNA polymerases are co-ordinated by sliding clamps (PCNA/{beta}-clamp) in translesion synthesis. It is unclear how these enzymes assemble on PCNA with geometric and functional compatibility. We report the crystal structure of a full-length Y-family polymerase, Dpo4, in complex with heterodimeric PCNA1-PCNA2 at 2.05 {angstrom} resolution. Dpo4 exhibits an extended conformation that differs from the Dpo4 structures in apo- or DNA-bound form. Two hinges have been identified in Dpo4, which render the multidomain polymerase flexible conformations and orientations relative to PCNA. Dpo4 binds specifically to PCNA1 on the conserved ligand binding site. The C-terminal peptide of Dpo4 becomes structured with a 3{sub 10} helix and dominates the specific binding. The Y-family polymerase also contacts PCNA1 with its finger, thumb and little finger domains, which are conformation-dependent protein-protein interactions that diversify the binding mode of Dpo4 on PCNA. The structure reveals a molecular model in which substrate/partner binding-coupled multiple conformations of a Y-family polymerase facilitate its recruitment and co-ordination on the sliding clamp. The conformational flexibility would turn the error-prone Y-family polymerase off when more efficient high-fidelity DNA polymerases work on undamaged DNA and turn it onto DNA templates to perform translesion synthesis when replication forks are stalled by DNA lesions.

  17. Virtual screening reveals a viral-like polymerase inhibitor that complexes with the DNA polymerase of Moniliophthora perniciosa.

    PubMed

    Andrade, B S; Souza, C S; Santos, G; Góes-Neto, A

    2016-01-01

    The filamentous fungus Moniliophthora perniciosa is a basidiomycota that causes the witches' broom disease in cocoa trees (Theobroma cacao L.). The mitochondrial DNA polymerase of M. perniciosa (MpmitDNApol) is classified within the B family of DNA polymerases, which can be found in viruses and cellular organelles. Using virtual screening processes, accessing KEGG, PubChem, and ZINC databases, we selected the 27 best putative nucleoside viral-like polymerase inhibitors to test against MpmitDNApol. We used Autodock Vina to perform docking simulations of the selected molecules and to return energy values in several ligand conformations. Then, we used Pymol v1.7.4.4 to check the stereochemistry of chiral carbons, hydrogen bonding receptors, absence or presence of hydrogen, sub and superstructure, numbers of rings, rotatable bonds, and donor groups. We selected the Entecavir Hydrate, a drug used to control hepatitis B; subsequently AMBER 14 was used to describe the behavior of polymerase-entecavir complex after setting up 3500 ps of simulation in water at a temperature of 300 K. From the simulation, a graph of Potential Energy was generated revealing that the ligand remains in the catalytic site after 3500 ps with a final energy of -612,587.4214 kcal/mol. PMID:27323084

  18. Probing Minor Groove Hydrogen Bonding Interactions between RB69 DNA Polymerase and DNA

    SciTech Connect

    Xia, Shuangluo; Christian, Thomas D.; Wang, Jimin; Konigsberg, William H.

    2012-09-17

    Minor groove hydrogen bonding (HB) interactions between DNA polymerases (pols) and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer extension. Because there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2'-deoxyadenosine (3DA), an analogue of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom. We then determined pre-steady-state kinetic parameters for the insertion of dAMP opposite dT using primer/templates (P/T)-containing 3DA. We also determined three structures of ternary complexes with 3DA at various positions in the duplex DNA substrate. We found that the incorporation efficiency of dAMP opposite dT decreased 10{sup 2}-10{sup 3}-fold even when only one minor groove HB interaction was missing. Our structures show that the HB pattern and base pair geometry of 3DA/dT is exactly the same as those of dA/dT, which makes 3DA an optimal analogue for probing minor groove HB interactions between a DNA polymerase and a nucleobase. In addition, our structures provide a rationale for the observed 10{sup 2}-10{sup 3}-fold decrease in the rate of nucleotide incorporation. The minor groove HB interactions between position n-2 of the primer strand and RB69pol fix the rotomer conformations of the K706 and D621 side chains, as well as the position of metal ion A and its coordinating ligands, so that they are in the optinal orientation for DNA synthesis.

  19. Characterization of a family B DNA polymerase from Thermococcus barophilus Ch5 and its application for long and accurate PCR.

    PubMed

    Kwon, Kyung-Min; Kang, Sung Gyun; Sokolova, Tatyana G; Cho, Sung Suk; Kim, Yun Jae; Kim, Cheorl-Ho; Kwon, Suk-Tae

    2016-05-01

    The family B DNA polymerase gene from the euryarchaeon Thermococcus barophilus Ch5 (Tba5) contains an open reading frame of 6198 base pairs that encodes 2065 amino acid residues. The gene is split by three inteins that must be spliced out to form the mature DNA polymerase. A Tba5 DNA polymerase gene without inteins (genetically intein-spliced) was expressed under the control of the pET-28b(+)T7lac promoter in E. coli Rosetta 2(DE3)pLysS cells. The molecular mass of the purified Tba5 DNA polymerase was about 90kDa consistent with the 90,470Da molecular mass calculated based on the 776 amino acid sequence. The optimal pH for Tba5 DNA polymerase activity was 7.5 and the optimal temperature was 70-75°C. The enzyme possessed 3'→5' exonuclease activity and was activated by magnesium ions. PCR amplification using Tba5 DNA polymerase enables high-yield for 1- to 6-kb target DNA products, while 8- to 10-kb target DNA products were amplified at low or inefficient levels. To simultaneously improve product yield and amplification fidelity, Tba5 plus DNA polymerase mixtures were constituted with various amounts of Tba5 DNA polymerase mixed with Taq DNA polymerase. The Tba5 plus DNA polymerase mixtures robustly amplified up to 25-kb λ DNA fragments. In addition, the PCR error rate of Tba5 plus3 and Tba5 plus4 mixtures were much lower than those of wild-type Tba5 DNA polymerase, Pfu DNA polymerase, Taq DNA polymerase, and Pfu plus DNA polymerase. PMID:26992800

  20. Pyridoxal 5'-phosphate is a selective inhibitor in vivo of DNA polymerase alpha and epsilon.

    PubMed

    Mizushina, Yoshiyuki; Xu, Xianai; Matsubara, Kiminori; Murakami, Chikako; Kuriyama, Isoko; Oshige, Masahiko; Takemura, Masaharu; Kato, Norihisa; Yoshida, Hiromi; Sakaguchi, Kengo

    2003-12-26

    Vitamin B(6) compounds such as pyridoxal 5(')-phosphate (PLP), pyridoxal (PL), pyridoxine (PN), and pyridoxamine (PM), which reportedly have anti-angiogenic and anti-cancer effects, were thought to be inhibitors of some types of eukaryotic DNA polymerases. PL moderately inhibited only the activities of calf DNA polymerase alpha (pol alpha), while PN and PM had no inhibitory effects on any of the polymerases tested. On the other hand, PLP, a phosphated form of PL, was potentially a strong inhibitor of pol alpha and epsilon from phylogenetic-wide organisms including mammals, fish, insects, plants, and protists. PLP did not suppress the activities of prokaryotic DNA polymerases such as Escherichia coli DNA polymerase I and Taq DNA polymerase, or DNA-metabolic enzymes such as deoxyribonuclease I. For pol alpha and epsilon, PLP acted non-competitively with the DNA template-primer and competitively with the nucleotide substrate. Since PL was converted to PLP in vivo after being incorporated into human cancer cells, the anti-angiogenic and anti-cancer effects caused by PL must have been caused by the inhibition of pol alpha and epsilon activities after conversion to PLP.

  1. Spectroscopic analysis of the interaction of Escherichia coli DNA-dependent RNA polymerase with T7 DNA and synthetic polynucleotides.

    PubMed

    Reisbig, R R; Woody, A Y; Woody, R W

    1979-11-25

    We have studied the circular dichroism and ultraviolet difference spectra of T7 bacteriophage DNA and various synthetic polynucleotides upon addition of Escherichia coli RNA polymerase. When RNA polymerase binds nonspecifically to T7 DNA, the CD spectrum shows a decrease in the maximum at 272 but no detectable changes in other regions of the spectrum. This CD change can be compared with those associated with known conformational changes in DNA. Nonspecific binding to RNA polymerase leads to an increase in the winding angle, theta, in T7 DNA. The CD and UV difference spectra for poly[d(A-T)] at 4 degrees C show similar effects. At 25 degrees C, binding of RNA polymerase to poly[d(A-T)] leads to hyperchromicity at 263 nm and to significant changes in CD. These effects are consistent with an opening of the double helix, i.e. melting of a short region of the DNA. The hyperchromicity observed at 263 nm for poly[d(A-T)] is used to determine the number of base pairs disrupted in the binding of RNA polymerase holoenzyme. The melting effect involves about 10 base pairs/RNA polymerase molecule. Changes in the CD of poly(dT) and poly(dA) on binding to RNA polymerase suggest an unstacking of the bases with a change in the backbone conformation. This is further confirmed by the UV difference spectra. We also show direct evidence for differences in the template binding site between holo- and core enzyme, presumably induced by the sigma subunit. By titration of the enzyme with poly(dT) the physical site size of RNA polymerase on single-stranded DNA is approximately equal to 30 bases for both holo- and core enzyme. Titration of poly[d(A-T)] with polymerase places the figure at approximately equal to 28 base pairs for double-stranded DNA.

  2. Structural Basis for Error-free Replication of Oxidatively Damaged DNA by Yeast DNA Polymerase eta

    SciTech Connect

    T Silverstein; R Jain; R Johnson; L Prakash; S Prakash; A Aggarwal

    2011-12-31

    7,8-dihydro-8-oxoguanine (8-oxoG) adducts are formed frequently by the attack of oxygen-free radicals on DNA. They are among the most mutagenic lesions in cells because of their dual coding potential, where, in addition to normal base-pairing of 8-oxoG(anti) with dCTP, 8-oxoG in the syn conformation can base pair with dATP, causing G to T transversions. We provide here for the first time a structural basis for the error-free replication of 8-oxoG lesions by yeast DNA polymerase {eta} (Pol{eta}). We show that the open active site cleft of Pol{eta} can accommodate an 8-oxoG lesion in the anti conformation with only minimal changes to the polymerase and the bound DNA: at both the insertion and post-insertion steps of lesion bypass. Importantly, the active site geometry remains the same as in the undamaged complex and provides a basis for the ability of Pol to prevent the mutagenic replication of 8-oxoG lesions in cells.

  3. Translesion DNA polymerases are required for spontaneous deletion formation in Salmonella typhimurium.

    PubMed

    Koskiniemi, Sanna; Andersson, Dan I

    2009-06-23

    How spontaneous deletions form in bacteria is still a partly unresolved problem. Here, we show that deletion formation in Salmonella typhimurium requires the presence of functional translesion polymerases. First, in wild-type bacteria, removal of the known translesion DNA polymerases, PolII (polB), PolIV (dinB), PolV (umuDC), and SamAB (samAB), resulted in a 10-fold decrease in the deletion rate, indicating that 90% of all spontaneous deletions require these polymerases for their formation. Second, overexpression of these polymerases by derepression of the DNA damage-inducible LexA regulon caused a 25-fold increase in deletion rate that depended on the presence of functional translesion polymerases. Third, overexpression of the polymerases PolII and PolIV from a plasmid increased the deletion rate 12- to 30-fold, respectively. Last, in a recBC(-) mutant where dsDNA ends are stabilized due to the lack of the end-processing nuclease RecBC, the deletion rate was increased 20-fold. This increase depended on the translesion polymerases. In lexA(def) mutant cells with constitutive SOS expression, a 10-fold increase in DNA breaks was observed. Inactivation of all 4 translesion polymerases in the lexA(def) mutant reduced the deletion rate 250-fold without any concomitant reduction in the amount of DNA breaks. Mutational inactivation of 3 endonucleases under LexA control reduced the number of DNA breaks to the wild-type level in a lexA(def) mutant with a concomitant 50-fold reduction in deletion rate. These findings suggest that the translesion polymerases are not involved in forming the DNA breaks, but that they require them to stimulate deletion formation. PMID:19525399

  4. Inhibition of viral reverse transcriptase and human sperm DNA polymerase by anti-sperm antibodies.

    PubMed Central

    Witkin, S S; Higgins, P J; Bendich, A

    1978-01-01

    The IgG fraction of serum from a rabbit immunized with detergent-prepared human sperm nuclei inhibited the DNA polymerase activities in human sperm and seminal fluid as well as the partially purified reverse transcriptase of the baboon endogenous type-C retrovirus (BEV). The analogous enzymes from lysates of oncogenic type-C viruses was unaffected. IgG from the serum of individual partners from infertile marriages similarly inhibited both purified BEV reverse transcriptase and human sperm DNA polymerase, but not a DNA polymerase isolated from human prostatic fluid. The data suggest that BEV reverse transcriptase and the human sperm DNA polymerase are antigenically related. Furthermore, the sperm appears to be auto-antigenic and the antibodies thus formed may be capable of interfering with reproductive success. PMID:82498

  5. Structure of a Small-Molecule Inhibitor of a DNA Polymerase Sliding Clamp

    SciTech Connect

    Georgescu, R.; Yurieva, O; Kim, S; Kuriyan, J; Kong, X; O'Donnell, M

    2008-01-01

    DNA polymerases attach to the DNA sliding clamp through a common overlapping binding site. We identify a small-molecule compound that binds the protein-binding site in the Escherichia coli ?-clamp and differentially affects the activity of DNA polymerases II, III, and IV. To understand the molecular basis of this discrimination, the cocrystal structure of the chemical inhibitor is solved in complex with ? and is compared with the structures of Pol II, Pol III, and Pol IV peptides bound to ?. The analysis reveals that the small molecule localizes in a region of the clamp to which the DNA polymerases attach in different ways. The results suggest that the small molecule may be useful in the future to probe polymerase function with ?, and that the ?-clamp may represent an antibiotic target.

  6. Replication of N[superscript 2],3-Ethenoguanine by DNA Polymerases

    SciTech Connect

    Zhao, Linlin; Christov, Plamen P.; Kozekov, Ivan D.; Pence, Matthew G.; Pallan, Pradeep S.; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter

    2014-10-02

    The unstable DNA adduct N2,3-ethenoguanine, a product of both exposure to the carcinogen vinyl chloride and of oxidative stress, was built into an oligonucleotide, using an isostere strategy to stabilize the glycosidic bond. This modification was then used to examine the cause of mutations by DNA polymerases, in terms of both the biochemistry of the lesion and a structure of the lesion within a polymerase.

  7. Mitochondrial DNA polymerase from embryos of Drosophila melanogaster: purification, subunit structure, and partial characterization

    SciTech Connect

    Wernette, C.M.; Kaguni, L.S.

    1986-11-05

    The mitochondrial DNA polymerase has been purified to near-homogeneity from early embryos of Drosophila melanogaster. Sodium dodecyl sulfate gel electrophoresis of the highly purified enzyme reveals two polypeptides with molecular masses of 125,000 and 35,000 daltons, in a ratio of 1:1. The enzyme has a sedimentation coefficient of 7.6 S and a stokes radius of 51 A. Taken together, the data suggest that the D. melanogaster DNA polymerase ..gamma.. is a heterodimer. DNA polymerase activity gel analysis has allowed the assignment of the DNA polymerization function to the large subunit. The DNA polymerase exhibits a remarkable ability to utilize efficiently a variety of template-primers including gapped DNA, poly(rA).oligo(dT) and singly primed phiX174 DNA. Both the crude and the highly purified enzymes are stimulated by KCl, and inhibited by dideoxythymidine triphosphate and by N-ethylmaleimide. Thus, the catalytic properties of the near-homogeneous Drosophila enzyme are consistent with those of DNA polymerase ..gamma.. as partially purified from several vertebrates.

  8. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    PubMed

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research. PMID:26894757

  9. Inhibition and site modification of human hepatitis B virus DNA polymerase by pyridoxal 5'-phosphate

    SciTech Connect

    Oh, S.H.; Park, Y.H.; Kim, I.S.; Woo, K.

    1987-05-01

    Pyridoxal 5'-phosphate(PLP) modification of human hepatitis B virus (H3V) DNA polymerase was attempted in order to characterize the nature of the enzyme. Dane particle cores isolated from serum of a chronic HBV carrier by sucrose density gradient centrifugation contained DNA polymerase activity, and the enzyme activity was inhibited specifically by PLP in noncompetitive fashion with respective to dNTP. Kinetic study indicates that HBV DNA polymerase has a Km of 0.31..mu..M for dTTP and an apparent Ki of 2mM for PLP. Sodium borohydride reduction of PLP-HEV core particles caused almost complete inhibition of HBV DNA polymerase activity. Reduction of PLP-HBV core particles by /sup 3/H labeled NaBH4 followed by SDS polyacrylamide gel electrophoresis was carried out, and the fluorography of the SDS polyacrylamide gel revealed 3 major bands corresponding to molecular weights of 21,000, 80,000 and > 100,000. Dane particle associated DNA polymerase inhibition by PLP is mediated through Schiff's base formation with a free amino group present at catalytic site of the enzyme. A core protein having an approximate molecular weight of 80,000 is considered as HBV DNA polymerase.

  10. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    PubMed

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research.

  11. Characterization of the mammalian DNA polymerase gene(s) and enzyme(s). Annual progress report

    SciTech Connect

    Mishra, N.C.

    1994-01-01

    Consistent with the long term goal of our research to understand the nature of the key enzymes in eukaryotic DNA replication we have characterized the properties of the wild type DNA polymerases of the {alpha}-family and their mutants. We have also provided evidence for the role of aphidicolin in the elongation process of the in vivo DNA replication in eukaryotic cells. We also developed a technology for planned prep from a large numbers of clones for direct screening by size or restriction digestion in order to facilitate our goals to clone the DNA polymerase gene.

  12. Stopped-flow DNA polymerase assay by continuous monitoring of dNTP incorporation by fluorescence.

    PubMed

    Montgomery, Jesse L; Rejali, Nick; Wittwer, Carl T

    2013-10-15

    DNA polymerase activity was measured by a stopped-flow assay that monitors polymerase extension using an intercalating dye. Double-stranded DNA formation during extension of a hairpin substrate was monitored at 75°C for 2 min. Rates were determined in nucleotides per second per molecule of polymerase (nt/s) and were linear with time and polymerase concentration from 1 to 50 nM. The concentrations of 15 available polymerases were quantified and their extension rates determined in 50 mM Tris, pH 8.3, 0.5 mg/ml BSA, 2 mM MgCl₂, and 200 μM each dNTP as well as their commercially recommended buffers. Native Taq polymerases had similar extension rates of 10-45 nt/s. Three alternative polymerases showed faster speeds, including KOD (76 nt/s), Klentaq I (101 nt/s), and KAPA2G (155 nt/s). Fusion polymerases including Herculase II and Phusion were relatively slow (3-13 nt/s). The pH optimum for Klentaq extension was between 8.5 and 8.7 with no effect of Tris concentration. Activity was directly correlated to the MgCl2 concentration and inversely correlated to the KCl concentration. This continuous assay is relevant to PCR and provides accurate measurement of polymerase activity using a defined template without the need of radiolabeled substrates. PMID:23872003

  13. A putative Leishmania DNA polymerase theta protects the parasite against oxidative damage

    PubMed Central

    Fernández-Orgiler, Abel; Martínez-Jiménez, María I.; Alonso, Ana; Alcolea, Pedro J.; Requena, Jose M.; Thomas, María C.; Blanco, Luis; Larraga, Vicente

    2016-01-01

    Leishmania infantum is a protozoan parasite that is phagocytized by human macrophages. The host macrophages kill the parasite by generating oxidative compounds that induce DNA damage. We have identified, purified and biochemically characterized a DNA polymerase θ from L. infantum (LiPolθ), demonstrating that it is a DNA-dependent DNA polymerase involved in translesion synthesis of 8oxoG, abasic sites and thymine glycol lesions. Stably transfected L. infantum parasites expressing LiPolθ were significantly more resistant to oxidative and interstrand cross-linking agents, e.g. hydrogen peroxide, cisplatin and mitomycin C. Moreover, LiPolθ-overexpressing parasites showed an increased infectivity toward its natural macrophage host. Therefore, we propose that LiPolθ is a translesion synthesis polymerase involved in parasite DNA damage tolerance, to confer resistance against macrophage aggression. PMID:27131366

  14. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  15. Effect of DNA-interacting drugs on phage T7 RNA polymerase.

    PubMed

    Piestrzeniewicz, M; Studzian, K; Wilmańska, D; Płucienniczak, G; Gniazdowski, M

    1998-01-01

    9-Aminoacridine carboxamide derivatives studied here form with DNA intercalative complexes which differ in the kinetics of dissociation. Inhibition of total RNA synthesis catalyzed by phage T7 and Escherichia coli DNA-dependent RNA polymerases correlates with the formation of slowly dissociating acridine-DNA complex of time constant of 0.4-2.3 s. Their effect on RNA synthesis is compared with other ligands which form with DNA stable complexes of different steric properties. T7 RNA polymerase is more sensitive to distamycin A and netropsin than the E. coli enzyme while less sensitive to actinomycin D. Actinomycin induces terminations in the transcript synthesized by T7 RNA polymerase. Despite low dissociation rates of DNA complexes with acridines and pyrrole antibiotics no drug dependent terminations are observed with these ligands. PMID:9701505

  16. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    PubMed Central

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-01-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable. PMID:26174478

  17. Template strand scrunching during DNA gap repair synthesis by human polymerase [lamda

    SciTech Connect

    Garcia-Diaz, Miguel; Bebenek, Katarzyna; Larrea, Andres A.; Havener, Jody M.; Perera, Lalith; Krahn, Joseph M.; Pedersen, Lars C.; Ramsden, Dale A.; Kunkel, Thomas A.

    2009-09-25

    Family X polymerases such as DNA polymerase {lambda}(Pol {lambda}) are well suited for filling short gaps during DNA repair because they simultaneously bind both the 5{prime} and 3{prime} ends of short gaps. DNA binding and gap filling are well characterized for 1-nucleotide (nt) gaps, but the location of yet-to-be-copied template nucleotides in longer gaps is unknown. Here we present crystal structures revealing that, when bound to a 2-nt gap, Pol {lambda} scrunches the template strand and binds the additional uncopied template base in an extrahelical position within a binding pocket that comprises three conserved amino acids. Replacing these amino acids with alanine results in less processive gap filling and less efficient NHEJ when 2-nt gaps are involved. Thus, akin to scrunching by RNA polymerase during transcription initiation, scrunching occurs during gap filling DNA synthesis associated with DNA repair.

  18. Inhibition of RNA polymerase by captan at both DNA and substrate binding sites.

    PubMed

    Luo, G; Lewis, R A

    1992-12-01

    RNA synthesis carried out in vitro by Escherichia coli RNA polymerase was inhibited irreversibly by captan when T7 DNA was used as template. An earlier report and this one show that captan blocks the DNA binding site on the enzyme. Herein, it is also revealed that captan acts at the nucleoside triphosphate (NTP) binding site, and kinetic relationships of the action of captan at the two sites are detailed. The inhibition by captan via the DNA binding site of the enzyme was confirmed by kinetic studies and it was further shown that [14C]captan bound to the beta' subunit of RNA polymerase. This subunit contains the DNA binding site. Competitive-like inhibition by captan versus UTP led to the conclusion that captan also blocked the NTP binding site. In support of this conclusion, [14C]captan was observed to bind to the beta subunit which contains the NTP binding site. Whereas, preincubation of RNA polymerase with both DNA and NTPs prevented captan inhibition, preincubation with either DNA or NTPs alone was insufficient to protect the enzyme from the action of captan. Furthermore, the interaction of [14C]captan with the beta and beta' subunits was not prevented by a similar preincubation. Captan also bound, to a lesser extent, to the alpha and sigma subunits. Therefore, captan binding appears to involve interaction with RNA polymerase at sites in addition to those for DNA and NTP; however, this action does not inhibit the polymerase activity.

  19. Expression and Characterization of the RKOD DNA Polymerase in Pichia pastoris

    PubMed Central

    Wang, Fei; Li, Shuntang; Zhao, Hui; Bian, Lu; Chen, Liang; Zhang, Zhen; Zhong, Xing; Ma, Lixin; Yu, Xiaolan

    2015-01-01

    The present study assessed high-level expression of the KOD DNA polymerase in Pichia pastoris. Thermococcus kodakaraensis KOD1 is a DNA polymerase that is widely used in PCR. The DNA coding sequence of KOD was optimized based on the codon usage bias of P. pastoris and synthesized by overlapping PCR, and the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus was fused to the C-terminus of KOD. The resulting novel gene was cloned into a pHBM905A vector and introduced into P. pastoris GS115 for secretory expression. The yield of the target protein reached approximately 250 mg/l after a 6-d induction with 1% (v/v) methanol in shake flasks. This yield is much higher than those of other DNA polymerases expressed heterologously in Escherichia coli. The recombinant enzyme was purified, and its enzymatic features were studied. Its specific activity was 19,384 U/mg. The recombinant KOD expressed in P. pastoris exhibited excellent thermostability, extension rate and fidelity. Thus, this report provides a simple, efficient and economic approach to realize the production of a high-performance thermostable DNA polymerase on a large scale. This is the first report of the expression in yeast of a DNA polymerase for use in PCR. PMID:26134129

  20. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    SciTech Connect

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus.

  1. Mapping ribonucleotides in genomic DNA and exploring replication dynamics by polymerase usage sequencing (Pu-seq).

    PubMed

    Keszthelyi, Andrea; Daigaku, Yasukazu; Ptasińska, Katie; Miyabe, Izumi; Carr, Antony M

    2015-11-01

    Ribonucleotides are frequently misincorporated into DNA during replication, and they are rapidly repaired by ribonucleotide excision repair (RER). Although ribonucleotides in template DNA perturb replicative polymerases and can be considered as DNA damage, they also serve positive biological functions, including directing the orientation of mismatch repair. Here we describe a method for ribonucleotide identification by high-throughput sequencing that allows mapping of the location of ribonucleotides across the genome. When combined with specific mutations in the replicative polymerases that incorporate ribonucleotides at elevated frequencies, our ribonucleotide identification method was adapted to map polymerase usage across the genome. Polymerase usage sequencing (Pu-seq) has been used to define, in unprecedented detail, replication dynamics in yeasts. Although other methods that examine replication dynamics provide direct measures of replication timing and indirect estimates of origin efficiency, Pu-seq directly ascertains origin efficiency. The Pu-seq protocol can be completed in 12-14 d.

  2. Molecular events during translocation and proofreading extracted from 200 static structures of DNA polymerase

    PubMed Central

    Ren, Zhong

    2016-01-01

    DNA polymerases in family B are workhorses of DNA replication that carry out the bulk of the job at a high speed with high accuracy. A polymerase in this family relies on a built-in exonuclease for proofreading. It has not been observed at the atomic resolution how the polymerase advances one nucleotide space on the DNA template strand after a correct nucleotide is incorporated, that is, a process known as translocation. It is even more puzzling how translocation is avoided after the primer strand is excised by the exonuclease and returned back to the polymerase active site once an error occurs. The structural events along the bifurcate pathways of translocation and proofreading have been unwittingly captured by hundreds of structures in Protein Data Bank. This study analyzes all available structures of a representative member in family B and reveals the orchestrated event sequence during translocation and proofreading. PMID:27325739

  3. Replication of single-stranded DNA templates by primase-polymerase complexes of the yeast, Saccharomyces cerevisiae.

    PubMed Central

    Biswas, E E; Biswas, S B

    1988-01-01

    A partially purified primase-polymerase complex from the yeast, Saccharomyces cerevisiae, was capable of replicating a single stranded circular phage DNA into a replicative form with high efficiency. The primase-polymerase complex exhibited primase activity and polymerase activity on singly primed circular ssDNA as well as on gapped DNA. In addition, it was able to replicate an unprimed, single-stranded, circular phage DNA through a coupled primase-polymerase action. On Biogel A-O.5m filtration the primase-polymerase activities appeared in the void volume, demonstrating a mass of greater than 500 kilodaltons. Primase and various primase-polymerase complexes synthesized unique primers on single stranded DNA templates and the size distribution of primers was dependent on the structure of the DNA and the nature of the primase-polymerase assembly. Images PMID:3041377

  4. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation.

    PubMed

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke

    2016-08-15

    8-OxodG (8-oxo-2'-deoxyguanosine) is representative of nucleoside damage and shows a genotoxicity. To significantly reveal the contributions of 7-NH and C8-oxygen to the mutagenic effect of 8-oxodG by DNA polymerases, we evaluated the effects of the 8-halo-7-deaza-dG (8-halogenated 7-deaza-2'-deoxyguanosine) derivatives by DNA polymerases. 8-Halo-7-deaza-dGTPs were poorly incorporated by both KF(exo(-)) and human DNA polymerase β opposite dC or dA into the template DNA. Furthermore, it was found that KF(exo(-)) was very sensitive to the introduction of the C8-halogen, while polymerase β can accommodate the C8-halogen resulting in an efficient dCTP insertion opposite the 8-halo-7-deaza-dG in the template DNA. These results indicate that strong hydrogen bonding between 7-NH in the 8-oxo-G nucleobase and 1-N in the adenine at the active site of the DNA polymerase is required for the mutagenic effects. Whereas, I-deaza-dGTP shows an antiproliferative effect for the HeLa cells, suggesting that it could become a candidate as a new antitumor agent. PMID:27372838

  5. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    SciTech Connect

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein.

  6. Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery

    PubMed Central

    Makarova, Kira S.; Krupovic, Mart; Koonin, Eugene V.

    2014-01-01

    The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the family B and the

  7. Evidence for the involvement of human DNA polymerase N in the repair of DNA interstrand cross-links

    PubMed Central

    Zietlow, Laura; Smith, Leigh Anne; Bessho, Mika; Bessho, Tadayoshi

    2009-01-01

    Human DNA polymerase N (PolN) is an A-family nuclear DNA polymerase whose function is unknown. This study examines the possible role of PolN in DNA repair in human cells treated with PolN-targeted siRNA. HeLa cells with siRNA-mediated knockdown of PolN were more sensitive than control cells to DNA cross-linking agent mitomycin C (MMC), but were not hyper-sensitive to UV irradiation. The MMC hyper-sensitivity of PolN knockdown cells was rescued by the overexpression of DNA polymerase-proficient PolN but not by DNA polymerase-deficient PolN. Furthermore, in vitro experiments showed that purified PolN conducts low efficiency non-mutagenic bypass of a psoralen DNA interstrand cross-link (ICL), whose structure resembles an intermediate in the proposed pathway of ICL repair. These results suggest that PolN might play a role in translesion DNA synthesis during ICL repair in human cells. PMID:19908865

  8. Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69

    SciTech Connect

    Hogg, Matthew; Rudnicki, Jean; Midkiff, John; Reha-Krantz, Linda; Doubli, Sylvie; Wallace, Susan S.

    2010-04-12

    The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of a lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.

  9. Characterization of a novel inhibitor of human DNA polymerases: 3,4,5-tri-O-galloylquinic acid.

    PubMed

    Parker, W B; Nishizawa, M; Fisher, M H; Ye, N; Lee, K H; Cheng, Y C

    1989-11-01

    Various galloyl derivatives of quinic acid were found to be inhibitors of human DNA polymerases. Among them, 3,4,5-tri-O-galloylquinic acid (TGQA) was the most potent inhibitor of DNA polymerase alpha. Under identical conditions, this compound was 60-fold more potent than aphidicolin as an inhibitor of DNA polymerase alpha. The inhibition of DNA polymerase alpha by this compound was not competitive with either the template or any of the deoxynucleoside triphosphates with a Ki of 0.28 microM. Under similar reaction conditions, DNA polymerases beta and gamma were much less sensitive to the effects of these compounds and, in contrast to the effect seen with DNA polymerase alpha, the inhibition of DNA polymerases beta and gamma by TGQA was competitive with respect to the template with Ki values of 44.4 and 7.5 microM respectively. The potency of these compounds against DNA polymerase gamma varied according to the assay conditions used. The inhibition of DNA polymerase gamma by TGQA could be increased substantially by using MnCl2 in place of MgCl2 and by including 50 mM potassium phosphate, pH 7.5, in the assay mixture. DNA polymerase beta was also more sensitive to TGQA when measured with MnCl2. However, potassium phosphate had little, if any, effect on the inhibition by TGQA of either DNA polymerase alpha or beta. DNA polymerase alpha was less sensitive to TGQA when assayed with MnCl2. TGQA was not a potent inhibitor of human KB cell growth in culture, which could be due to its degradation or poor uptake. Nevertheless, this compound could serve as a model for developing antitumor drugs targeted at DNA polymerases.

  10. Molecular dynamics study of the opening mechanism for DNA polymerase I.

    PubMed

    Miller, Bill R; Parish, Carol A; Wu, Eugene Y

    2014-12-01

    During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme:DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics. PMID:25474643

  11. Preparation of Phi29 DNA Polymerase Free of Amplifiable DNA Using Ethidium Monoazide, an Ultraviolet-Free Light-Emitting Diode Lamp and Trehalose

    PubMed Central

    Takahashi, Hirokazu; Yamazaki, Hiroyuki; Akanuma, Satoshi; Kanahara, Hiroko; Saito, Toshiyuki; Chimuro, Tomoyuki; Kobayashi, Takayoshi; Ohtani, Toshio; Yamamoto, Kimiko; Sugiyama, Shigeru; Kobori, Toshiro

    2014-01-01

    We previously reported that multiply-primed rolling circle amplification (MRPCA) using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3′-5′ exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents. PMID:24505243

  12. Two Immunologically Distinct Human DNA Polymerase α-Primase Subpopulations Are Involved in Cellular DNA Replication

    PubMed Central

    Dehde, Silke; Rohaly, Gabor; Schub, Oliver; Nasheuer, Heinz-Peter; Bohn, Wolfgang; Chemnitz, Jan; Deppert, Wolfgang; Dornreiter, Irena

    2001-01-01

    Metabolic labeling of primate cells revealed the existence of phosphorylated and hypophosphorylated DNA polymerase α-primase (Pol-Prim) populations that are distinguishable by monoclonal antibodies. Cell cycle studies showed that the hypophosphorylated form was found in a complex with PP2A and cyclin E-Cdk2 in G1, whereas the phosphorylated enzyme was associated with a cyclin A kinase in S and G2. Modification of Pol-Prim by PP2A and Cdks regulated the interaction with the simian virus 40 origin-binding protein large T antigen and thus initiation of DNA replication. Confocal microscopy demonstrated nuclear colocalization of hypophosphorylated Pol-Prim with MCM2 in S phase nuclei, but its presence preceded 5-bromo-2′-deoxyuridine (BrdU) incorporation. The phosphorylated replicase exclusively colocalized with the BrdU signal, but not with MCM2. Immunoprecipitation experiments proved that only hypophosphorylated Pol-Prim associated with MCM2. The data indicate that the hypophosphorylated enzyme initiates DNA replication at origins, and the phosphorylated form synthesizes the primers for the lagging strand of the replication fork. PMID:11259605

  13. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.

    PubMed

    Su, Yan; Peter Guengerich, F

    2016-06-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc.

  14. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota.

    PubMed

    Faili, Ahmad; Aoufouchi, Said; Flatter, Eric; Guéranger, Quentin; Reynaud, Claude-Agnès; Weill, Jean-Claude

    2002-10-31

    Somatic hypermutation of immunoglobulin genes is a unique, targeted, adaptive process. While B cells are engaged in germinal centres in T-dependent responses, single base substitutions are introduced in the expressed Vh/Vl genes to allow the selection of mutants with a higher affinity for the immunizing antigen. Almost every possible DNA transaction has been proposed to explain this process, but each of these models includes an error-prone DNA synthesis step that introduces the mutations. The Y family of DNA polymerases--pol eta, pol iota, pol kappa and rev1--are specialized for copying DNA lesions and have high rates of error when copying a normal DNA template. By performing gene inactivation in a Burkitt's lymphoma cell line inducible for hypermutation, we show here that somatic hypermutation is dependent on DNA polymerase iota.

  15. Mitochondrial DNA polymerase, deoxyribonuclease and ribonuclease H activities from brain of chick embryo

    PubMed Central

    Soriano, L.; Smith, J.; Croisille, Y.; Dastugue, B.

    1974-01-01

    R-DNA polymerase, D-DNA polymerase, DNase and RNase H activities in mitochondria from chick embryonic brain were studied by ion-exchange chromatography. Two main fractions were separated according to their chromatographic behaviour: a fraction M Ib which is eluted with the washing buffer from two successive DEAE-cellulose columns and a fraction M IV which is eluted at 400 mM KC1 from a phosphocellulose column. Although the two fractions contain both the DNA polymerase and the degrading activities, all the specific activities are higher in fraction M IV than in fraction M Ib. Heat inactivation experiments have shown that R-DNA polymerase is inactivated in both fractions, whereas RNase H and DNase are not affected. Thus, degrading activities and R-DNA polymerase activity seem to be catalyzed by different molecular entities. However the fact that in most cases these activities co-chromatograph suggests that the corresponding molecules form rather stable complexes. PMID:4476911

  16. Replication dynamics in fission and budding yeasts through DNA polymerase tracking

    PubMed Central

    Vázquez, Enrique

    2015-01-01

    The dynamics of eukaryotic DNA polymerases has been difficult to establish because of the difficulty of tracking them along the chromosomes during DNA replication. Recent work has addressed this problem in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae through the engineering of replicative polymerases to render them prone to incorporating ribonucleotides at high rates. Their use as tracers of the passage of each polymerase has provided a picture of unprecedented resolution of the organization of replicons and replication origins in the two yeasts and has uncovered important differences between them. Additional studies have found an overlapping distribution of DNA polymorphisms and the junctions of Okazaki fragments along mononucleosomal DNA. This sequence instability is caused by the premature release of polymerase δ and the retention of non proof‐read DNA tracts replicated by polymerase α. The possible implementation of these new experimental approaches in multicellular organisms opens the door to the analysis of replication dynamics under a broad range of genetic backgrounds and physiological or pathological conditions. PMID:26293347

  17. Molecular docking studies of phytochemicals from Phyllanthus niruri against Hepatitis B DNA Polymerase

    PubMed Central

    Mohan, Mekha; James, Priyanka; Valsalan, Ravisankar; Nazeem, Puthiyaveetil Abdulla

    2015-01-01

    Hepatitis B virus (HBV) infection is the leading cause for liver disorders and can lead to hepatocellular carcinoma, cirrhosis and liver damage which in turn can cause death of patients. HBV DNA Polymerase is essential for HBV replication in the host and hence is used as one of the most potent pharmacological target for the inhibition of HBV. Chronic hepatitis B is currently treated with nucleotide analogues that suppress viral reverse transcriptase activity and most of them are reported to have viral resistance. Therefore, it is of interest to model HBV DNA polymerase to dock known phytochemicals. The present study focuses on homology modeling and molecular docking analysis of phytocompounds from the traditional antidote Phyllanthus niruri and other nucleoside analogues against HBV DNA Polymerase using the software Discovery studio 4.0. 3D structure of HBV DNA Polymerase was predicted based on previously reported alignment. Docking studies revealed that a few phytochemicals from Phyllanthus niruri had good interactions with HBV DNA Polymerase. These compounds had acceptable binding properties for further in vitro validation. Thus the study puts forth experimental validation for traditional antidote and these phytocompounds could be further promoted as potential lead molecule. PMID:26527851

  18. RNase H and RNA-directed DNA polymerase: associated enzymatic activities of murine mammary tumor virus.

    PubMed Central

    Dion, A S; Williams, C J; Moore, D H

    1977-01-01

    The RNA-directed DNA polymerase of murine mammary tumor virus, a type B RNA tumor virus, was purified sequentially through DEAE-cellulose, phosphocellulose (step gradient), and phosphocellulose (linear salt gradient) chromatography followed by glycerol sedimentation centrifugation. During all stages of purification, coincident peaks of RNA-directed DNA polymerase activity, templated by polyribocytidylate-oligodeoxyguanidylate, and RNase H digestion of [3H]polyriboadenylate-polydeoxythymidylate were observed, and both enzymatic activities displayed a cation preference for magnesium. Under conditions that removed adventitiously associated nucleases, RNase H activity was found to co-purify with polymerase. The specificity of this nuclease was assayed with various prepared substrates, which indicated that the polymerase-associated RNase H activity was directed only against the RNA strand of an RNA-DNA hybrid. It is highly probable that RNase H (RNA-DNA hybrid: ribonucleotide-hydrolase, EC 3.1.4..34) and RNA-directed DNA polymerase of type B viruses are associated enzymatic activities analogous to those observed for avian and mammalian type C RNA tumor viruses. Images PMID:67221

  19. Deoxyribonucleotide synthesis and DNA polymerase activity in plant cells (Vicia faba and Glycine max).

    PubMed

    Hovemann, B; Follmann, H

    1979-01-26

    Enzymes of deoxyribonucleotide and DNA biosynthesis, which are little known in plants, were studied in root tips of germinating broad beans (Vicia faba) and in fast-growing cultures of soybean cells (Glycine max). The plant cells contain a ribonucleoside 5'-diphosphate reductase which is detected in vitro only during a limited period of growth, viz. 30--32 h after inhibition of Vicia seeds, and between the second and third day after inoculation of soybean cultures. In both species ribonucleotide reductase activity precedes maximum DNA synthesis. The reductases could be precipitated with ammonium sulfate but were not purified further due to the extremely low enzyme content of the plant extracts. Therefore the reductive pathway of deoxyribotide formation was also established in Vicia root tips by efficient labeling of the plant DNA with a ribonucleoside, [5-3H]cytidine, which reaches a maximum at the same time as the reductase activity measured in vitro. Cycloheximide inhibits this process, indicating the need for de novo enzyme induction. In contrast, DNA polymerase is present in the tissue throughout the entire development and rises only 2-fold in activity during the S phase. The soluble polymerases were partially characterized in both legume species and were found very similar to the DNA polymerase of pea seedlings. Ribonucleotide reductase is more likely a limiting component of DNA formation during the plant cell cycle than DNA polymerase.

  20. DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides

    PubMed Central

    Laos, Roberto; Thomson, J. Michael; Benner, Steven A.

    2014-01-01

    DNA polymerases have evolved for billions of years to accept natural nucleoside triphosphate substrates with high fidelity and to exclude closely related structures, such as the analogous ribonucleoside triphosphates. However, polymerases that can accept unnatural nucleoside triphosphates are desired for many applications in biotechnology. The focus of this review is on non-standard nucleotides that expand the genetic “alphabet.” This review focuses on experiments that, by directed evolution, have created variants of DNA polymerases that are better able to accept unnatural nucleotides. In many cases, an analysis of past evolution of these polymerases (as inferred by examining multiple sequence alignments) can help explain some of the mutations delivered by directed evolution. PMID:25400626

  1. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response.

    PubMed

    Yoshimura, Akari; Kobayashi, Yume; Tada, Shusuke; Seki, Masayuki; Enomoto, Takemi

    2014-09-12

    WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH(-/-)) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  2. DNA Polymerase δ Is Highly Processive with Proliferating Cell Nuclear Antigen and Undergoes Collision Release upon Completing DNA*S⃞

    PubMed Central

    Langston, Lance D.; O'Donnell, Mike

    2008-01-01

    In most cells, 100-1000 Okazaki fragments are produced for each replicative DNA polymerase present in the cell. For fast-growing cells, this necessitates rapid recycling of DNA polymerase on the lagging strand. Bacteria produce long Okazaki fragments (1-2 kb) and utilize a highly processive DNA polymerase III (pol III), which is held to DNA by a circular sliding clamp. In contrast, Okazaki fragments in eukaryotes are quite short, 100-250 bp, and thus the eukaryotic lagging strand polymerase does not require a high degree of processivity. The lagging strand polymerase in eukaryotes, polymerase δ (pol δ), functions with the proliferating cell nuclear antigen (PCNA) sliding clamp. In this report, Saccharomyces cerevisiae pol δ is examined on model substrates to gain insight into the mechanism of lagging strand replication in eukaryotes. Surprisingly, we find pol δ is highly processive with PCNA, over at least 5 kb, on Replication Protein A (RPA)-coated primed single strand DNA. The high processivity of pol δ observed in this report contrasts with its role in synthesis of short lagging strand fragments, which require it to rapidly dissociate from DNA at the end of each Okazaki fragment. We find that this dilemma is solved by a “collision release” process in which pol δ ejects from PCNA upon extending a DNA template to completion and running into the downstream duplex. The released pol δ transfers to a new primed site, provided the new site contains a PCNA clamp. Additional results indicate that the collision release mechanism is intrinsic to the pol3/pol31 subunits of the pol δ heterotrimer. PMID:18635534

  3. DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA.

    PubMed

    Langston, Lance D; O'Donnell, Mike

    2008-10-24

    In most cells, 100-1000 Okazaki fragments are produced for each replicative DNA polymerase present in the cell. For fast-growing cells, this necessitates rapid recycling of DNA polymerase on the lagging strand. Bacteria produce long Okazaki fragments (1-2 kb) and utilize a highly processive DNA polymerase III (pol III), which is held to DNA by a circular sliding clamp. In contrast, Okazaki fragments in eukaryotes are quite short, 100-250 bp, and thus the eukaryotic lagging strand polymerase does not require a high degree of processivity. The lagging strand polymerase in eukaryotes, polymerase delta (pol delta), functions with the proliferating cell nuclear antigen (PCNA) sliding clamp. In this report, Saccharomyces cerevisiae pol delta is examined on model substrates to gain insight into the mechanism of lagging strand replication in eukaryotes. Surprisingly, we find pol delta is highly processive with PCNA, over at least 5 kb, on Replication Protein A (RPA)-coated primed single strand DNA. The high processivity of pol delta observed in this report contrasts with its role in synthesis of short lagging strand fragments, which require it to rapidly dissociate from DNA at the end of each Okazaki fragment. We find that this dilemma is solved by a "collision release" process in which pol delta ejects from PCNA upon extending a DNA template to completion and running into the downstream duplex. The released pol delta transfers to a new primed site, provided the new site contains a PCNA clamp. Additional results indicate that the collision release mechanism is intrinsic to the pol3/pol31 subunits of the pol delta heterotrimer. PMID:18635534

  4. Nucleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells.

    PubMed

    Canitrot, Y; Hoffmann, J S; Calsou, P; Hayakawa, H; Salles, B; Cazaux, C

    2000-09-01

    The nucleotide excision repair pathway contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only DNA polymerases delta and/or epsilon participate to the repair DNA synthesis step. Using UV and cisplatin-modified DNA templates, we measured in vitro that extracts from cells overexpressing the error-prone DNA polymerase beta exhibited a five- to sixfold increase of the ultimate DNA synthesis activity compared with control extracts and demonstrated the specific involvement of Pol beta in this step. By using a 28 nt gapped, double-stranded DNA substrate mimicking the product of the incision step, we showed that Pol beta is able to catalyze strand displacement downstream of the gap. We discuss these data within the scope of a hypothesis previously presented proposing that excess error-prone Pol beta in cancer cells could perturb the well-defined specific functions of DNA polymerases during error-free DNA transactions. PMID:10973926

  5. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    PubMed Central

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  6. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.

    PubMed

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-07-26

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress. PMID:27407148

  7. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression

    PubMed Central

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F.; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-01-01

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker–induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress. PMID:27407148

  8. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.

    PubMed

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-07-26

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.

  9. A complex between replication factor A (SSB) and DNA helicase stimulates DNA synthesis of DNA polymerase alpha on double-stranded DNA.

    PubMed

    Zhang, S; Grosse, F

    1992-11-01

    A helicase-like DNA unwinding activity was found in highly purified fractions of the calf thymus single-stranded DNA binding protein (ctSSB), also known as replication protein A (RP-A) or replication factor A (RF-A). This activity depended on the hydrolysis of ATP or dATP, and used CTP with a lower efficiency. ctSSB promoted the homologous DNA polymerase alpha to perform DNA synthesis on double-stranded templates containing replication fork-like structures. The rate and amount of DNA synthesis was found to be dependent on the concentration of ctSSB. At a 10-fold mass excess of ctSSB over double-stranded DNA, products of 200-600 nucleotides in length were obtained. This comprises or even exceeds the length of a eukaryotic Okazaki fragment. The ctSSB-associated DNA helicase activity is most likely a distinct protein rather than an inherent property of SSB, as inferred from titration experiments between SSB and DNA. The association of a helicase with SSB and the stimulatory action of this complex to the DNA polymerase alpha-catalyzed synthesis of double-stranded DNA suggests a cooperative function of the three enzymatic activities in the process of eukaryotic DNA replication.

  10. Comparison of proteases in DNA extraction via quantitative polymerase chain reaction.

    PubMed

    Eychner, Alison M; Lebo, Roberta J; Elkins, Kelly M

    2015-06-01

    We compared four proteases in the QIAamp DNA Investigator Kit (Qiagen) to extract DNA for use in multiplex polymerase chain reaction (PCR) assays. The aim was to evaluate alternate proteases for improved DNA recovery as compared with proteinase K for forensic, biochemical research, genetic paternity and immigration, and molecular diagnostic purposes. The Quantifiler Kit TaqMan quantitative PCR assay was used to measure the recovery of DNA from human blood, semen, buccal cells, breastmilk, and earwax in addition to low-template samples, including diluted samples, computer keyboard swabs, chewing gum, and cigarette butts. All methods yielded amplifiable DNA from all samples.

  11. Autographa californica Multiple Nucleopolyhedrovirus DNA Polymerase C Terminus Is Required for Nuclear Localization and Viral DNA Replication

    PubMed Central

    Feng, Guozhong

    2014-01-01

    ABSTRACT The DNA polymerase (DNApol) of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is essential for viral DNA replication. The DNApol exonuclease and polymerase domains are highly conserved and are considered functional in DNA replication. However, the role of the DNApol C terminus has not yet been characterized. To identify whether only the exonuclease and polymerase domains are sufficient for viral DNA replication, several DNApol C-terminal truncations were cloned into a dnapol-null AcMNPV bacmid with a green fluorescent protein (GFP) reporter. Surprisingly, most of the truncation constructs, despite containing both exonuclease and polymerase domains, could not rescue viral DNA replication and viral production in bacmid-transfected Sf21 cells. Moreover, GFP fusions of these same truncations failed to localize to the nucleus. Truncation of the C-terminal amino acids 950 to 984 showed nuclear localization but allowed for only limited and delayed viral spread. The C terminus contains a typical bipartite nuclear localization signal (NLS) motif at residues 804 to 827 and a monopartite NLS motif at residues 939 to 948. Each NLS, as a GFP fusion peptide, localized to the nucleus, but both NLSs were required for nuclear localization of DNApol. Alanine substitutions in a highly conserved baculovirus DNApol sequence at AcMNPV DNApol amino acids 972 to 981 demonstrated its importance for virus production and DNA replication. Collectively, the data indicated that the C terminus of AcMNPV DNApol contains two NLSs and a conserved motif, all of which are required for nuclear localization of DNApol, viral DNA synthesis, and virus production. IMPORTANCE The baculovirus DNA polymerase (DNApol) is a highly specific polymerase that allows viral DNA synthesis and hence virus replication in infected insect cells. We demonstrated that the exonuclease and polymerase domains of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) alone are

  12. Reconstitution of a eukaryotic replisome reveals the mechanism of asymmetric distribution of DNA polymerases

    PubMed Central

    Yurieva, Olga; O'Donnell, Mike

    2016-01-01

    ABSTRACT Eukaryotes require 3 DNA polymerases for normal replisome operations, DNA polymerases (Pol) α, delta and epsilon. Recent biochemical and structural studies support the asymmetric use of these polymerases on the leading and lagging strands. Pol epsilon interacts with the 11-subunit CMG helicase, forming a 15-protein leading strand complex that acts processively in leading strand synthesis in vitro, but Pol epsilon is inactive on the lagging strand. The opposite results are observed for Pol delta with CMG. Pol delta is highly active on the lagging strand in vitro, but has only feeble activity with CMG on the leading strand. Pol α also functions with CMG to prime both strands, and is even capable of extending both strands with CMG present. However, extensive DNA synthesis by Pol α is sharply curtailed by the presence of either Pol epsilon or Pol delta, which limits the role of the low fidelity Pol α to the initial priming of synthesis. PMID:27416113

  13. Structural Insight into Processive Human Mitochondrial DNA Synthesis and Disease-Related Polymerase Mutations

    SciTech Connect

    Lee, Young-Sam; Kennedy, W. Dexter; Yin, Y. Whitney

    2010-09-07

    Human mitochondrial DNA polymerase (Pol {gamma}) is the sole replicase in mitochondria. Pol {gamma} is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol {gamma} holoenzyme and, separately, a variant of its processivity factor, Pol {gamma}B. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol {gamma}A interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol {gamma} structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.

  14. A third DNA polymerase from Spiroplasma citri and two other spiroplasmas.

    PubMed Central

    Charron, A; Castroviejo, M; Bebear, C; Latrille, J; Bove, J M

    1982-01-01

    Recently, two DNA polymerases (ScA and ScB) were isolated and characterized from Spiroplasma citri. We now have found a third DNA polymerase (ScC) not only in S. citri but also in the serologically related honeybee spiroplasma BC3 and the unrelated flower spiroplasma BNR1. Enzyme ScC is N-ethylmaleimide (NEM) sensitive. The three DNA polymerases from the honeybee spiroplasma seem to be similar to the respective enzymes of S. citri. However, whereas the NEM-resistant enzyme ScA from S. citri and that from the BC3 honeybee spiroplasma are retained on DEAE-cellulose and require 0.09 M KCl for elution, the NEM-resistant enzyme A from the flower spiroplasma BNR1 is not retained. PMID:7061384

  15. Distinct double- and single-stranded DNA binding of E. coli replicative DNA polymerase III alpha subunit.

    PubMed

    McCauley, Micah J; Shokri, Leila; Sefcikova, Jana; Venclovas, Ceslovas; Beuning, Penny J; Williams, Mark C

    2008-09-19

    The alpha subunit of the replicative DNA polymerase III of Escherichia coli is the active polymerase of the 10-subunit bacterial replicase. The C-terminal region of the alpha subunit is predicted to contain an oligonucleotide binding (OB-fold) domain. In a series of optical tweezers experiments, the alpha subunit is shown to have an affinity for both double- and single-stranded DNA, in distinct subdomains of the protein. The portion of the protein that binds to double-stranded DNA stabilizes the DNA helix, because protein binding must be at least partially disrupted with increasing force to melt DNA. Upon relaxation, the DNA fails to fully reanneal, because bound protein interferes with the reformation of the double helix. In addition, the single-stranded DNA binding component appears to be passive, as the protein does not facilitate melting but instead binds to single-stranded regions already separated by force. From DNA stretching measurements we determine equilibrium association constants for the binding of alpha and several fragments to dsDNA and ssDNA. The results demonstrate that ssDNA binding is localized to the C-terminal region that contains the OB-fold domain, while a tandem helix-hairpin-helix (HhH) 2 motif contributes significantly to dsDNA binding. PMID:18652472

  16. Proficient Replication of the Yeast Genome by a Viral DNA Polymerase.

    PubMed

    Stodola, Joseph L; Stith, Carrie M; Burgers, Peter M

    2016-05-27

    DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication. PMID:27072134

  17. Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5'-flaps.

    PubMed

    Koc, Katrina N; Stodola, Joseph L; Burgers, Peter M; Galletto, Roberto

    2015-04-30

    The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3'-5' exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo(-) to carry out strand displacement synthesis and discovered that it is regulated by the 5'-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5'-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5'-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities.

  18. DNA Polymerase POLN Participates in Cross-Link Repair and Homologous Recombination ▿ †

    PubMed Central

    Moldovan, George-Lucian; Madhavan, Mahesh V.; Mirchandani, Kanchan D.; McCaffrey, Ryan M.; Vinciguerra, Patrizia; D'Andrea, Alan D.

    2010-01-01

    All cells rely on DNA polymerases to duplicate their genetic material and to repair or bypass DNA lesions. In humans, 16 polymerases have been identified, and each bears specific functions in genome maintenance. We identified here the recently discovered polymerase POLN to be involved in repair of DNA cross-links. Such DNA lesions are highly toxic and are believed to be repaired by the sequential activity of nucleotide excision repair, translesion synthesis, and homologous recombination mechanisms. By functionally assaying its role in these processes, we unraveled an unexpected involvement of POLN in homologous recombination. Moreover, we obtained evidence for physical and functional interaction of POLN with factors belonging to the Fanconi anemia pathway, a master regulator of cross-link repair. Finally, we show that POLN interacts and cooperates in DNA repair with the helicase HEL308, which shares a common origin with POLN in the Drosophila mus308 gene. Our data indicate that this novel polymerase-helicase complex participates in homologous recombination repair and is essential for cellular protection against DNA cross-links. PMID:19995904

  19. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  20. Extent of Transcription of Mouse Sarcoma-Leukemia Virus by RNA-Directed DNA Polymerase

    PubMed Central

    Tavitian, A.; Hamelin, R.; Tchen, P.; Olofsson, B.; Boiron, M.

    1974-01-01

    The DNA product obtained from the endogenous RNA-directed DNA polymerase (deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase, EC 2.7.7.7) reaction of the Moloney sarcoma:leukemia viruses produced by the 78 A-1 cell line was analyzed and characterized. The extent of transcription of viral 70S RNA was measured by RNA·DNA hybridization (32P-viral RNA-3H product DNA). No double-stranded DNA was obtained. The product consisted of 95-99% single-stranded DNA with an average length of 200 nucleotides. In contrast to the results reported with avian and other RNA oncogenic viruses, it was found that the entire 70S viral RNA genome was transcribed into DNA pieces and that a small excess of the product DNA was sufficient to anneal the 70S RNA and render it totally resistant to single-stranded-specific enzyme digestion. PMID:4132533

  1. Nuclear DNA polymerase beta from Leishmania infantum. Cloning, molecular analysis and developmental regulation

    PubMed Central

    Taladriz, Soraya; Hanke, Tobias; Ramiro, María J.; García-Díaz, Miguel; Lacoba, Mario García de; Blanco, Luis; Larraga, Vicente

    2001-01-01

    We have identified a novel polymerase beta (Pol β)-like enzyme from Leishmania infantum, a parasite protozoon causing disease in humans. This protein, named Li Pol β, shows a nuclear localization that contrasts with the mitochondrial localization of Pol β from Crithidia fasciculata, a closely related parasite, the only polymerase β described so far in Trypanosomatidae. Li Pol β, that belongs to the DNA polymerase X family, displays an evolutionarily conserved Pol β-type DNA polymerase core, in which most of the key residues involved in DNA binding, nucleotide binding, dRPase and polymerization catalysis are conserved. In agreement with this, Li Pol β, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity. Cell synchronization experiments showed a correlation between both Li Pol β mRNA and protein levels along the parasite cell cycle. Analysis of these parameters at the different growth phases of the parasite, from the proliferative (non-infective) logarithmic phase to the non-dividing (highly infectious) stationary phase, showed high levels of Li Pol β at the infective phase of the parasite. The data suggest a role of Li Pol β in base excision repair in L.infantum, a parasite usually affected by oxygen stress environments into the macrophage host cells. PMID:11557814

  2. Roles of Saccharomyces cerevisiae DNA polymerases Poleta and Polzeta in response to irradiation by simulated sunlight.

    PubMed

    Kozmin, Stanislav G; Pavlov, Youri I; Kunkel, Thomas A; Sage, Evelyne

    2003-08-01

    Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase eta (Poleta) and polymerase zeta (Polzeta), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of these polymerases in human and yeast cells irradiated with monochromatic, short wavelength UVC radiation (254 nm). However, less is known about cellular responses to solar radiation, which is of higher and mixed wavelengths (310-1100 nm) and produces a different spectrum of DNA lesions, including Dewar photoproducts and oxidative lesions. Here we report on the comparative cytotoxic and mutagenic effects of simulated sunlight (SSL) and UVC radiation on yeast wild-type, rad30Delta, rev3Delta and rev3Delta rad30Delta strains. The results with SSL support several previous interpretations on the roles of these two polymerases in TLS of photodimers and (6-4) photoproducts derived from studies with UVC. They further suggest that Poleta participates in the non-mutagenic bypass of SSL-dependent cytosine-containing Dewar photoproducts and 8-oxoguanine, while Polzeta is mainly responsible for the mutagenic bypass of all types of Dewar photoproducts. They also suggest that in the absence of Polzeta, Poleta contributes to UVC- and SSL-induced mutagenesis, possibly by the bypass of photodimers containing deaminated cytosine. PMID:12888515

  3. Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine

    PubMed Central

    Ishino, Sonoko; Connolly, Bernard A.

    2016-01-01

    In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil); Endonuclease V (EndoV, which recognises hypoxanthine); and Endonuclease Q (EndoQ), (which recognises both uracil and hypoxanthine). Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations. PMID:27721668

  4. Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum.

    PubMed Central

    Schleper, C; Swanson, R V; Mathur, E J; DeLong, E F

    1997-01-01

    Cenarchaeum symbiosum, an archaeon which lives in specific association with a marine sponge, belongs to a recently recognized nonthermophilic crenarchaeotal group that inhabits diverse cold and temperate environments. Nonthermophilic crenarchaeotes have not yet been obtained in laboratory culture, and so their phenotypic characteristics have been inferred solely from their ecological distribution. Here we report on the first protein to be characterized from one of these organisms. The DNA polymerase gene of C. symbiosum was identified in the vicinity of the rRNA operon on a large genomic contig. Its deduced amino acid sequence is highly similar to those of the archaeal family B (alpha-type) DNA polymerases. It shared highest overall sequence similarity with the crenarchaeal DNA polymerases from the extreme thermophiles Sulfolobus acidocaldarius and Pyrodictium occultum (54% and 53%, respectively). The conserved motifs of B (alpha-)-type DNA polymerases and 3'-5' exonuclease were identified in the 845-amino-acid sequence. The 96-kDa protein was expressed in Escherichia coli and purified with affinity tags. It exhibited its highest specific activity with gapped-duplex (activated) DNA as the substrate. Single-strand- and double-strand-dependent 3'-5' exonuclease activity was detected, as was a marginal 5'-3' exonuclease activity. The enzyme was rapidly inactivated at temperatures higher than 40 degrees C, with a half-life of 10 min at 46 degrees C. It was found to be less thermostable than polymerase I of E. coli and is substantially more heat labile than its most closely related homologs from thermophilic and hyperthermophilic crenarchaeotes. Although phylogenetic studies suggest a thermophilic ancestry for C. symbiosum and its relatives, our biochemical analysis of the DNA polymerase is consistent with the postulated nonthermophilic phenotype of these crenarchaeotes, to date inferred solely from their ecological distribution. PMID:9401041

  5. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    SciTech Connect

    Yoshimura, Akari; Kobayashi, Yume; Tada, Shusuke; Seki, Masayuki; Enomoto, Takemi

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  6. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases

    PubMed Central

    Iyer, Lakshminarayan M; Koonin, Eugene V; Aravind, L

    2003-01-01

    Background The eukaryotic RNA-dependent RNA polymerase (RDRP) is involved in the amplification of regulatory microRNAs during post-transcriptional gene silencing. This enzyme is highly conserved in most eukaryotes but is missing in archaea and bacteria. No evolutionary relationship between RDRP and other polymerases has been reported so far, hence the origin of this eukaryote-specific polymerase remains a mystery. Results Using extensive sequence profile searches, we identified bacteriophage homologs of the eukaryotic RDRP. The comparison of the eukaryotic RDRP and their homologs from bacteriophages led to the delineation of the conserved portion of these enzymes, which is predicted to harbor the catalytic site. Further, detailed sequence comparison, aided by examination of the crystal structure of the DNA-dependent RNA polymerase (DDRP), showed that the RDRP and the β' subunit of DDRP (and its orthologs in archaea and eukaryotes) contain a conserved double-psi β-barrel (DPBB) domain. This DPBB domain contains the signature motif DbDGD (b is a bulky residue), which is conserved in all RDRPs and DDRPs and contributes to catalysis via a coordinated divalent cation. Apart from the DPBB domain, no similarity was detected between RDRP and DDRP, which leaves open two scenarios for the origin of RDRP: i) RDRP evolved at the onset of the evolution of eukaryotes via a duplication of the DDRP β' subunit followed by dramatic divergence that obliterated the sequence similarity outside the core catalytic domain and ii) the primordial RDRP, which consisted primarily of the DPBB domain, evolved from a common ancestor with the DDRP at a very early stage of evolution, during the RNA world era. The latter hypothesis implies that RDRP had been subsequently eliminated from cellular life forms and might have been reintroduced into the eukaryotic genomes through a bacteriophage. Sequence and structure analysis of the DDRP led to further insights into the evolution of RNA polymerases

  7. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme.

    PubMed

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354-370 and that K(354), R(355), and K(367) are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression

  8. An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase. alpha. in vitro

    SciTech Connect

    Fischer, H.; Erdmann, S.; Holler, E. )

    1989-06-13

    From extracts of microplasmodia of Physarum polycephalum and their culture medium, an unusual substance was isolated which inhibited homologous DNA polymerase {alpha} of this slime mold but not {beta}-like DNA polymerase and not heterologous DNA polymerases. Analysis, especially NMR spectroscopy, revealed the major component to be an anionic polyester of L-malic acid and the inhibition to be due to poly(L-malate) in binding reversibly to DNA polymerase {alpha}. The mode of inhibition is competitive with substrate DNA and follows an inhibition constant K{sub i} = 10 ng/mL. Inhibition is reversed in the presence of spermine, spermidine, poly(ethylene imine), and calf thymus histone H1. According to its ester nature, the inhibitor is slightly labile at neutral and instable at acid and alkaline conditions. Its largest size corresponds to a molecular mass of 40-50 kDa, but the bulk of the material after purification has lower molecular masses. The inhibitory activity depends on the polymer size and has a minimal size requirement.

  9. Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction.

    PubMed

    Jackson, D P; Lewis, F A; Taylor, G R; Boylston, A W; Quirke, P

    1990-06-01

    Several DNA extraction techniques were quantitatively and qualitatively compared using both fresh and paraffin wax embedded tissue and their suitability investigated for providing DNA and RNA for the polymerase chain reaction (PCR). A one hour incubation with proteinase K was the most efficient DNA extraction procedure for fresh tissue. For paraffin wax embedded tissue a five day incubation with proteinase K was required to produce good yields of DNA. Incubation with sodium dodecyl sulphate produced very poor yields, while boiling produced 20% as much DNA as long enzyme digestion. DNA extracted by these methods was suitable for the PCR amplification of a single copy gene. Proteinase K digestion also produced considerable amounts of RNA which has previously been shown to be suitable for PCR analysis. A delay before fixation had no effect on the amount of DNA obtained while fixation in Carnoy's reagent results in a much better preservation of DNA than formalin fixation, allowing greater yields to be extracted.

  10. Synthesis of DNA oligonucleotides containing C5-ethynylbenzenesulfonamide-modified nucleotides (EBNA) by polymerases towards the construction of base functionalized nucleic acids.

    PubMed

    Goubet, Astrid; Chardon, Antoine; Kumar, Pawan; Sharma, Pawan K; Veedu, Rakesh N

    2013-02-01

    C5-Ethynylbenzenesulfonamide-modified nucleotide (EBNA) was investigated as substrate of various DNA polymerases. The experiments revealed that KOD, Phusion and Klenow DNA polymerases successfully accepted EBNA-T nucleotide as a substrate and yielded the fully extended DNA. KOD DNA polymerase was found to be the most efficient enzyme to furnish EBNA-T containing DNA in good yields. Phusion DNA polymerase efficiently amplified the template containing EBNA-T nucleotides by PCR. PMID:23265899

  11. Reevaluation of the role of DNA polymerase theta in somatic hypermutation of immunoglobulin genes.

    PubMed

    Martomo, Stella A; Saribasak, Huseyin; Yokoi, Masayuki; Hanaoka, Fumio; Gearhart, Patricia J

    2008-09-01

    DNA polymerase theta has been implicated in the process of somatic hypermutation in immunoglobulin variable genes based on several reports of alterations in the frequency and spectra of mutations from Polq(-/-) mice. However, these studies have contrasting results on mutation frequencies and the types of nucleotide substitutions, which question the role of polymerase theta in hypermutation. DNA polymerase eta has a dominant effect on mutation and may substitute in the absence of polymerase theta to affect the pattern. Therefore, we have examined mutation in mice deficient for both polymerases theta and eta. The mutation frequencies in rearranged variable genes from Peyer's patches were similar in wild type, Polq(-/-), Polh(-/-), and Polq(-/-)Polh(-/-) mice. The types of substitutions were also similar between wild type and Polq(-/-) clones, and between Polh(-/-) and Polq(-/-)Polh(-/-) clones. Furthermore, there was no difference in heavy chain class switching in splenic B cells from the four groups of mice. These results indicate that polymerase theta does not play a significant role in the generation of somatic mutation in immunoglobulin genes.

  12. Interaction between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA.

    PubMed

    Furukohri, Asako; Nishikawa, Yoshito; Akiyama, Masahiro Tatsumi; Maki, Hisaji

    2012-07-01

    DNA polymerase IV (Pol IV) is one of three translesion polymerases in Escherichia coli. A mass spectrometry study revealed that single-stranded DNA-binding protein (SSB) in lysates prepared from exponentially-growing cells has a strong affinity for column-immobilized Pol IV. We found that purified SSB binds directly to Pol IV in a pull-down assay, whereas SSBΔC8, a mutant protein lacking the C-terminal tail, failed to interact with Pol IV. These results show that the interaction between Pol IV and SSB is mediated by the C-terminal tail of SSB. When polymerase activity was tested on an SSBΔC8-coated template, we observed a strong inhibition of Pol IV activity. Competition experiments using a synthetic peptide containing the amino acid sequence of SSB tail revealed that the chain-elongating capacity of Pol IV was greatly impaired when the interaction between Pol IV and SSB tail was inhibited. These results demonstrate that Pol IV requires the interaction with the C-terminal tail of SSB to replicate DNA efficiently when the template ssDNA is covered with SSB. We speculate that at the primer/template junction, Pol IV interacts with the tail of the nearest SSB tetramer on the template, and that this interaction allows the polymerase to travel along the template while disassembling SSB.

  13. DNA polymerase γ and disease: what we have learned from yeast

    PubMed Central

    Lodi, Tiziana; Dallabona, Cristina; Nolli, Cecilia; Goffrini, Paola; Donnini, Claudia; Baruffini, Enrico

    2015-01-01

    Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1) cause many mitochondrial pathologies, such as progressive external ophthalmoplegia (PEO), Alpers' syndrome, and ataxia-neuropathy syndrome, all of which present instability of mtDNA, which results in impaired mitochondrial function in several tissues with variable degrees of severity. In this review, we summarize the genetic and biochemical knowledge published on yeast mitochondrial DNA polymerase from 1989, when the MIP1 gene was first cloned, up until now. The role of yeast is particularly emphasized in (i) validating the pathological mutations found in human POLG and modeled in MIP1, (ii) determining the molecular defects caused by these mutations and (iii) finding the correlation between mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We also describe recent findings regarding the discovery of molecules able to rescue the phenotypic defects caused by pathological mutations in Mip1, and the construction of a model system in which the human Pol γ holoenzyme is expressed in yeast and complements the loss of Mip1. PMID:25852747

  14. The Second Subunit of DNA Polymerase Delta Is Required for Genomic Stability and Epigenetic Regulation.

    PubMed

    Zhang, Jixiang; Xie, Shaojun; Cheng, Jinkui; Lai, Jinsheng; Zhu, Jian-Kang; Gong, Zhizhong

    2016-06-01

    DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression. PMID:27208288

  15. Molecular Basis for DNA Double-Strand Break Annealing and Primer Extension by an NHEJ DNA Polymerase

    PubMed Central

    Brissett, Nigel C.; Martin, Maria J.; Bartlett, Edward J.; Bianchi, Julie; Blanco, Luis; Doherty, Aidan J.

    2013-01-01

    Summary Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks. PMID:24239356

  16. Structure of the 2-Aminopurine-Cytosine Base Pair Formed in the Polymerase Active Site of the RB69 Y567A-DNA Polymerase

    SciTech Connect

    Reha-Krantz, Linda J.; Hariharan, Chithra; Subuddhi, Usharani; Xia, Shuangluo; Zhao, Chao; Beckman, Jeff; Christian, Thomas; Konigsberg, William

    2011-11-21

    The adenine base analogue 2-aminopurine (2AP) is a potent base substitution mutagen in prokaryotes because of its enhanceed ability to form a mutagenic base pair with an incoming dCTP. Despite more than 50 years of research, the structure of the 2AP-C base pair remains unclear. We report the structure of the 2AP-dCTP base pair formed within the polymerase active site of the RB69 Y567A-DNA polymerase. A modified wobble 2AP-C base pair was detected with one H-bond between N1 of 2AP and a proton from the C4 amino group of cytosine and an apparent bifurcated H-bond between a proton on the 2-amino group of 2-aminopurine and the ring N3 and O2 atoms of cytosine. Interestingly, a primer-terminal region rich in AT base pairs, compared to GC base pairs, facilitated dCTP binding opposite template 2AP. We propose that the increased flexibility of the nucleotide binding pocket formed in the Y567A-DNA polymerase and increased 'breathing' at the primer-terminal junction of A+T-rich DNA facilitate dCTP binding opposite template 2AP. Thus, interactions between DNA polymerase residues with a dynamic primer-terminal junction play a role in determining base selectivity within the polymerase active site of RB69 DNA polymerase.

  17. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  18. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler. PMID:27271319

  19. Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases.

    PubMed

    Kielkowski, Pavel; Cahová, Hana; Pohl, Radek; Hocek, Michal

    2016-03-15

    New types of double-headed 2'-deoxycytidine 5'-O-triphosphates (dC(XC)TPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dC(XC)TPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins.

  20. Specific discrimination of chicken DNA from other poultry DNA in processed foods using the polymerase chain reaction.

    PubMed

    Fujimura, Tatsuya; Matsumoto, Takashi; Tanabe, Soichi; Morimatsu, Fumiki

    2008-03-01

    In the present study, specific discrimination of chicken DNA contamination in processed foods using the polymerase chain reaction was investigated. The primer pair was designed to amplify a 102-bp fragment of the chicken mitochondrial 16S ribosomal RNA gene. While the DNA from chicken meat was amplified, the DNA from other poultry meat, mammalian meat, fish, shellfish, and cereals was not amplified. The primer amplified DNA fragments derived from model processed and nonprocessed food samples containing 0.001, 0.01, 0.1, 1, 10, and 100% chicken.

  1. The purification and properties of hen oviduct form B DNA-dependent RNA polymerase

    PubMed Central

    Houghton, Michael; Cox, Ronald F.

    1974-01-01

    Hen oviduct form B DNA-dependent RNA polymerase has been extensively purified and its properties analysed. It seems likely to consist of a mixture of two forms of the type observed in tissues from other species. Furthermore using S1 nuclease to digest single-stranded DNA, we show that although form B can transcribe double-stranded DNA template it has a very strong preference for single-stranded regions. Also the rate of elongation on native DNA in vitro was measured and is an order of magnitude slower than that reported to be operative in vivo. Images PMID:4472377

  2. Advantage of a rapid extraction method of HIV1 DNA suitable for polymerase chain reaction.

    PubMed

    Vignoli, C; de Lamballerie, X; Zandotti, C; Tamalet, C; de Micco, P

    1995-01-01

    We describe a new protocol for extraction of DNA suitable for HIV1 gene amplification from clinical samples using "Chelex-100" chelating resin. Comparison was made with the classic proteinase K extraction method; 154 specimens were extracted with both methods and subjected to PCR (polymerase chain reaction). The Chelex-100 procedure optimized the yield of DNA recovery and minimized contamination due to sample manipulation. It decreased false negative results due to PCR inhibitors. A DNA sample suitable for use in PCR was obtained in 30 minutes. Chelex-100 treatment is a simple, rapid and low-cost method for DNA extraction in clinical laboratories.

  3. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I

    PubMed Central

    Markiewicz, Radoslaw P.; Vrtis, Kyle B.; Rueda, David; Romano, Louis J.

    2012-01-01

    The mechanism by which DNA polymerases achieve their extraordinary accuracy has been intensely studied because of the linkage between this process and mutagenesis and carcinogenesis. Here, we have used single-molecule fluorescence microscopy to study the process of nucleotide selection and exonuclease action. Our results show that the binding of Escherichia coli DNA polymerase I (Klenow fragment) to a primer-template is stabilized by the presence of the next correct dNTP, even in the presence of a large excess of the other dNTPs and rNTPs. These results are consistent with a model where nucleotide selection occurs in the open complex prior to the formation of a closed ternary complex. Our assay can also distinguish between primer binding to the polymerase or exonuclease domain and, contrary to ensemble-averaged studies, we find that stable exonuclease binding only occurs with a mismatched primer terminus. PMID:22669904

  4. Kinetic Analysis of the Bypass of a Bulky DNA Lesion Catalyzed by Human Y-family DNA Polymerases

    PubMed Central

    Sherrer, Shanen M.; Sanman, Laura E.; Xia, Cynthia X.; Bolin, Eric R.; Malik, Chanchal K.; Efthimiopoulos, Georgia; Basu, Ashis K.; Suo, Zucai

    2012-01-01

    1-Nitropyrene (1-NP), a mutagen and potential carcinogen, is the most abundant nitro polyaromatic hydrocarbon in diesel exhaust, which reacts with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). If not repaired, this DNA lesion is presumably bypassed in vivo by any of human Y-family DNA polymerases kappa (hPolκ), iota (hPolτ), eta (hPolη), and Rev1 (hRev1). Our running start assays demonstrated that each of these enzymes was indeed capable of traversing a site-specifically placed dGAP on a synthetic DNA template but hRev1 was stopped after lesion bypass. The time required to bypass 50% of the dGAP sites (t50bypass ) encountered by hPolη, hPolκ and hPolτ was determined to be 2.5 s, 4.1 s, and 106.5 s, respectively. The efficiency order of catalyzing translesion synthesis of dGAP (hPolη > hPolκ > hPolτ >> hRev1) is the same as the order for these human Y-family enzymes to elongate undamaged DNA. Although hPolη bypassed dGAP efficiently, replication by both hPolκ and hPolτ was strongly stalled at the lesion site and at a site immediately downstream from dGAP. By employing pre-steady state kinetic methods, a kinetic basis was established for polymerase pausing at these DNA template sites. Besides efficiency of bypass, the fidelity of those low-fidelity polymerases at these pause sites was also significantly decreased. Thus, if the translesion DNA synthesis of dGAP in vivo is catalyzed by a human Y-family DNA polymerase, e.g. hPolη, the process is certainly mutagenic. PMID:22324639

  5. A transposon-derived DNA polymerase from Entamoeba histolytica displays intrinsic strand displacement, processivity and lesion bypass.

    PubMed

    Pastor-Palacios, Guillermo; López-Ramírez, Varinia; Cardona-Felix, Cesar S; Brieba, Luis G

    2012-01-01

    Entamoeba histolytica encodes four family B2 DNA polymerases that vary in amino acid length from 813 to 1279. These DNA polymerases contain a N-terminal domain with no homology to other proteins and a C-terminal domain with high amino acid identity to archetypical family B2 DNA polymerases. A phylogenetic analysis indicates that these family B2 DNA polymerases are grouped with DNA polymerases from transposable elements dubbed Polintons or Mavericks. In this work, we report the cloning and biochemical characterization of the smallest family B2 DNA polymerase from E. histolytica. To facilitate its characterization we subcloned its 660 amino acids C-terminal region that comprises the complete exonuclease and DNA polymerization domains, dubbed throughout this work as EhDNApolB2. We found that EhDNApolB2 displays remarkable strand displacement, processivity and efficiently bypasses the DNA lesions: 8-oxo guanosine and abasic site.Family B2 DNA polymerases from T. vaginalis, G. lambia and E. histolytica contain a Terminal Region Protein 2 (TPR2) motif twice the length of the TPR2 from φ29 DNA polymerase. Deletion studies demonstrate that as in φ29 DNA polymerase, the TPR2 motif of EhDNApolB2 is solely responsible of strand displacement and processivity. Interestingly the TPR2 of EhDNApolB2 is also responsible for efficient abasic site bypass. These data suggests that the 21 extra amino acids of the TPR2 motif may shape the active site of EhDNApolB2 to efficiently incorporate and extended opposite an abasic site. Herein we demonstrate that an open reading frame derived from Politons-Mavericks in parasitic protozoa encode a functional enzyme and our findings support the notion that the introduction of novel motifs in DNA polymerases can confer specialized properties to a conserved scaffold. PMID:23226232

  6. Plasimids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, Sanford A.; Martinez, Susana; Lopez, Paloma; Espinosa, Manuel

    1991-01-01

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.

  7. Localized Cerebral Energy Failure in DNA Polymerase Gamma-Associated Encephalopathy Syndromes

    ERIC Educational Resources Information Center

    Tzoulis, Charalampos; Neckelmann, Gesche; Mork, Sverre J.; Engelsen, Bernt E.; Viscomi, Carlo; Moen, Gunnar; Ersland, Lars; Zeviani, Massimo; Bindoff, Laurence A.

    2010-01-01

    Mutations in the catalytic subunit of the mitochondrial DNA-polymerase gamma cause a wide spectrum of clinical disease ranging from infantile hepato-encephalopathy to juvenile/adult-onset spinocerebellar ataxia and late onset progressive external ophthalmoplegia. Several of these syndromes are associated with an encephalopathy that…

  8. Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome.

    PubMed

    Singh, Bhupendra; Li, Xiurong; Owens, Kjerstin M; Vanniarajan, Ayyasamy; Liang, Ping; Singh, Keshav K

    2015-01-01

    To date, mitochondrial DNA polymerase γ (POLG) is the only polymerase known to be present in mammalian mitochondria. A dogma in the mitochondria field is that there is no other polymerase present in the mitochondria of mammalian cells. Here we demonstrate localization of REV3 DNA polymerase in the mammalian mitochondria. We demonstrate localization of REV3 in the mitochondria of mammalian tissue as well as cell lines. REV3 associates with POLG and mitochondrial DNA and protects the mitochondrial genome from DNA damage. Inactivation of Rev3 leads to reduced mitochondrial membrane potential, reduced OXPHOS activity, and increased glucose consumption. Conversely, inhibition of the OXPHOS increases expression of Rev3. Rev3 expression is increased in human primary breast tumors and breast cancer cell lines. Inactivation of Rev3 decreases cell migration and invasion, and localization of Rev3 in mitochondria increases survival and the invasive potential of cancer cells. Taken together, we demonstrate that REV3 functions in mammalian mitochondria and that mitochondrial REV3 is associated with the tumorigenic potential of cells.

  9. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1987-08-28

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.

  10. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1991-03-26

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 figure.

  11. PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities

    PubMed Central

    Guilliam, Thomas A.; Bailey, Laura J.; Brissett, Nigel C.; Doherty, Aidan J.

    2016-01-01

    Translesion synthesis (TLS) employs specialized DNA polymerases to bypass replication fork stalling lesions. PrimPol was recently identified as a TLS primase and polymerase involved in DNA damage tolerance. Here, we identify a novel PrimPol binding partner, PolDIP2, and describe how it regulates PrimPol's enzymatic activities. PolDIP2 stimulates the polymerase activity of PrimPol, enhancing both its capacity to bind DNA and the processivity of the catalytic domain. In addition, PolDIP2 stimulates both the efficiency and error-free bypass of 8-oxo-7,8-dihydrodeoxyguanosine (8-oxoG) lesions by PrimPol. We show that PolDIP2 binds to PrimPol's catalytic domain and identify potential binding sites. Finally, we demonstrate that depletion of PolDIP2 in human cells causes a decrease in replication fork rates, similar to that observed in PrimPol−/− cells. However, depletion of PolDIP2 in PrimPol−/− cells does not produce a further decrease in replication fork rates. Together, these findings establish that PolDIP2 can regulate the TLS polymerase and primer extension activities of PrimPol, further enhancing our understanding of the roles of PolDIP2 and PrimPol in eukaryotic DNA damage tolerance. PMID:26984527

  12. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  13. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks.

    PubMed

    Rozacky, Jenna; Nemec, Antoni A; Sweasy, Joann B; Kidane, Dawit

    2015-09-15

    DNA polymerase beta (Pol β) is a key enzyme for the protection against oxidative DNA lesions via its role in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5' phosphate group (5'-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5'-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation. PMID:26090616

  14. Structure and mechanism of human PrimPol, a DNA polymerase with primase activity

    PubMed Central

    Rechkoblit, Olga; Gupta, Yogesh K.; Malik, Radhika; Rajashankar, Kanagalaghatta R.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2016-01-01

    PrimPol is a novel human enzyme that contains both DNA primase and DNA polymerase activities. We present the first structure of human PrimPol in ternary complex with a DNA template-primer and an incoming deoxynucleoside triphosphate (dNTP). The ability of PrimPol to function as a DNA primase stems from a simple but remarkable feature—almost complete lack of contacts to the DNA primer strand. This, in turn, allows two dNTPs to bind initiation and elongation sites on the enzyme for the formation of the first dinucleotide. PrimPol shows the ability to synthesize DNA opposite ultraviolet (UV) lesions; however, unexpectedly, the active-site cleft of the enzyme is constrained, which precludes the bypass of UV-induced DNA lesions by conventional translesion synthesis. Together, the structure addresses long-standing questions about how DNA primases actually initiate synthesis and how primase and polymerase activities combine in a single enzyme to carry out DNA synthesis.

  15. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-01

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA.

  16. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-01

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA. PMID:27311715

  17. An artificial processivity clamp made with streptavidin facilitates oriented attachment of polymerase-DNA complexes to surfaces.

    PubMed

    Williams, John G K; Steffens, David L; Anderson, Jon P; Urlacher, Teresa M; Lamb, Donald T; Grone, Daniel L; Egelhoff, Jolene C

    2008-10-01

    Single molecule analysis of individual enzymes can require oriented immobilization of the subject molecules on a detection surface. As part of a technology development project for single molecule DNA sequencing, we faced the multiple challenges of immobilizing both a DNA polymerase and its DNA template together in an active, stable complex capable of highly processive DNA synthesis on a nonstick surface. Here, we report the genetic modification of the archaeal DNA polymerase 9 degrees N in which two biotinylated peptide 'legs' are inserted at positions flanking the DNA-binding cleft. Streptavidin binding on either side of the cleft both traps the DNA template in the polymerase and orients the complex on a biotinylated surface. We present evidence that purified polymerase-DNA-streptavidin complexes are active both in solution and immobilized on a surface. Processivity is improved from <20 nt in the unmodified polymerase to several thousand nucleotides in the engineered complexes. High-molecular weight DNA synthesized by immobilized complexes is observed moving above the surface even as it remains tethered to the polymerase. Pre-formed polymerase-DNA-streptavidin complexes can be stored frozen and subsequently thawed without dissociation or loss of activity, making them convenient for use in single molecule analysis. PMID:18723573

  18. Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes) are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology. Results I propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB) whereas the bacterial replicative DNA polymerase (PolC) is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the help of the archaeal

  19. DNA-directed DNA polymerase and strand displacement activity of the reverse transcriptase encoded by the R2 retrotransposon.

    PubMed

    Kurzynska-Kokorniak, Anna; Jamburuthugoda, Varuni K; Bibillo, Arkadiusz; Eickbush, Thomas H

    2007-11-23

    R2 elements are non-long terminal repeat (non-LTR) retrotransposons with a single open reading-frame encoding reverse transcriptase, DNA endonuclease and nucleic acid-binding domains. The elements are specialized for insertion into the 28 S rRNA genes of many animal phyla. The R2-encoded activities initiate retrotransposition by sequence-specific cleavage of the 28 S gene target site and the utilization of the released DNA 3' end to prime reverse transcription (target primed reverse transcription). The activity of the R2 polymerase on RNA templates has been shown to differ from retroviral reverse transcriptases (RTs) in a number of properties. We demonstrate that the R2-RT is capable of efficiently utilizing single-stranded DNA (ssDNA) as a template. The processivity of the enzyme on ssDNA templates is higher than its processivity on RNA templates. This finding suggests that R2-RT is also capable of synthesizing the second DNA strand during retrotransposition. However, R2-RT lacks the RNAse H activity that is typically used by retroviral and LTR-retrotransposon RTs to remove the RNA strand before the first DNA strand is used as template. Remarkably, R2-RT can displace RNA strands that are annealed to ssDNA templates with essentially no loss of processivity. Such strand displacement activity is highly unusual for a DNA polymerase. Thus the single R2 protein contains all the activities needed to make a double-stranded DNA product from an RNA transcript. Finally, during these studies we found an unexpected property of the highly sequence-specific R2 endonuclease domain. The endonuclease can non-specifically cleave ssDNA at a junction with double-stranded DNA. This activity suggests that second-strand cleavage of the target site may not be sequence specific, but rather is specified by a single-stranded region generated when the first DNA strand is used to prime reverse transcription.

  20. Isolation and expression of cDNA clones encoding mammalian poly(A) polymerase.

    PubMed Central

    Wahle, E; Martin, G; Schiltz, E; Keller, W

    1991-01-01

    cDNA clones encoding mammalian poly(A) polymerase were isolated with probes generated by the polymerase chain reaction based on amino acid sequences derived from the purified enzyme. A bovine cDNA clone was obtained encoding a protein of 82 kDa. Expression in Escherichia coli resulted in the appearance of a poly(A) polymerase activity that was dependent on the addition of the purified specificity factor CPF and the presence of the polyadenylation signal AAUAAA in the RNA substrate. The activity copurified with a polypeptide of the expected size. A second class of cDNAs encoded a polypeptide of 43 kDa which was closely related to the N-terminal half of the 82 kDa protein. Northern blots showed two mRNAs of 4.2 and 2.4 kb that probably correspond to the two classes of cDNAs, as well as a third band of 1.3 kb. The sequence of the N-terminal half of bovine poly(A) polymerase is 47% identical with the amino acid sequence of the corresponding part of yeast poly(A) polymerase. Homologies to other proteins are of uncertain significance. Images PMID:1756732

  1. Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase eta, DNA polymerase iota causes the very high frequency and unique spectrum of UV-induced mutations.

    PubMed

    Wang, Yun; Woodgate, Roger; McManus, Terrence P; Mead, Samantha; McCormick, J Justin; Maher, Veronica M

    2007-04-01

    Xeroderma pigmentosum variant (XPV) patients have normal DNA excision repair, yet are predisposed to develop sunlight-induced cancer. They exhibit a 25-fold higher than normal frequency of UV-induced mutations and very unusual kinds (spectrum), mainly transversions. The primary defect in XPV cells is the lack of functional DNA polymerase (Pol) eta, the translesion synthesis DNA polymerase that readily inserts adenine nucleotides opposite photoproducts involving thymine. The high frequency and striking difference in kinds of UV-induced mutations in XPV cells strongly suggest that, in the absence of Pol eta, an abnormally error-prone polymerase substitutes. In vitro replication studies of Pol iota show that it replicates past 5'T-T3' and 5'T-U3' cyclobutane pyrimidine dimers, incorporating G or T nucleotides opposite the 3' nucleotide. To test the hypothesis that Pol iota causes the high frequency and abnormal spectrum of UV-induced mutations in XPV cells, we identified an unlimited lifespan XPV cell line expressing two forms of Pol iota, whose frequency of UV-induced mutations is twice that of XPV cells expressing one form. We eliminated expression of one form and compared the parental cells and derivatives for the frequency and kinds of UV-induced mutations. All exhibited similar sensitivity to the cytotoxicity of UV((254 nm)), and the kinds of mutations induced were identical, but the frequency of mutations induced in the derivatives was reduced to

  2. RNase-sensitive DNA polymerase activity in cell fractions and mutants of Neurospora crassa

    SciTech Connect

    Dutta, S.K.; Mukhopadhyay, D.K.; Bhattachryya, J.

    1980-01-01

    RNase-sensitive DNA polymerase activity was tested in different cell fractions of Neurospora crassa cell types and its morphological mutants. This RSDP was found localized in the microsomal pellet fraction and absent in the purified nuclear pellets isolated from different N. crassa cell types: conidia, germinated conidia, and mycelia. This enzyme is capable of synthesizing a DNA product only in the presence of all four deoxyribonucleoside-5'-triphosphates and Mg/sup 2 +/. Removal of RNA from the pellet fraction by RNase strongly inhibited the DNA synthesis. The endogenous synthesis of DNA in the microsomal pellet fraction was associated with the formation of an RNA:DNA hybrid as analyzed by Cs/sub 2/SO/sub 4/ equilibrium density gradient centrifugation. The DNA product after alkali hydrolysis hybridizes with the RNA isolated from the same pellet fraction, as analyzed by elution from hydroxylapatite column at 60 C. This DNA product did not hybridize with poly(A). A few mutants tested showed this RNase-sensitive DNA polymerase activity.

  3. Conformational Dynamics of Bacteriophage T7 DNA Polymerase and its Processivity Factor, Escherichia coli thioredoxin

    SciTech Connect

    Akabayov, B.; Akabayov, S; Lee , S; Tabor, S; Kulczyk , A; Richardson, C

    2010-01-01

    Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one in the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.

  4. Mechanism of Microhomology-Mediated End-Joining Promoted by Human DNA Polymerase Theta

    PubMed Central

    Kent, Tatiana; Chandramouly, Gurushankar; McDevitt, Shane Michael; Ozdemir, Ahmet Y.; Pomerantz, Richard T.

    2014-01-01

    Microhomology-mediated end-joining (MMEJ) is an error-prone alternative double-strand break repair pathway that utilizes sequence microhomology to recombine broken DNA. Although MMEJ is implicated in cancer development, the mechanism of this pathway is unknown. We demonstrate that purified human DNA polymerase θ (Polθ) performs MMEJ of DNA containing 3’ single-strand DNA overhangs with two or more base-pairs of homology, including DNA modeled after telomeres, and show that MMEJ is dependent on Polθ in human cells. Our data support a mechanism whereby Polθ facilitates end-joining and microhomology annealing then utilizes the opposing overhang as a template in trans which stabilizes the DNA synapse. Polθ exhibits a preference for DNA containing a 5’-terminal phosphate, similar to polymerases involved in non-homologous end-joining. Lastly, we identify a conserved loop domain that is essential for MMEJ and higher-order structures of Polθ which likely promote DNA synapse formation. PMID:25643323

  5. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2ʹ-modified DNA

    NASA Astrophysics Data System (ADS)

    Chen, Tingjian; Hongdilokkul, Narupat; Liu, Zhixia; Adhikary, Ramkrishna; Tsuen, Shujian S.; Romesberg, Floyd E.

    2016-06-01

    The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2ʹ positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases. Here we report the development of a polymerase-evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2ʹ-OMe-modified oligonucleotides and their DNA counterparts via ‘transcription’ and ‘reverse transcription’ or, more importantly, that PCR-amplify partially C2ʹ-OMe- or C2ʹ-F-modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for tailoring polymerases to have other types of novel function.

  6. Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing. Final report, June 1, 1988--January 31, 1996

    SciTech Connect

    Richardson, C.C.

    1996-08-01

    This project has focused on the DNA polymerase of phage T7 for use in DNA sequencing. A complex of T7 DNA polymerase and E. coli thioredoxin form a highly processive DNA polymerase. The exonuclease activity of the enzyme can be reduced by chemical or genetic modifications resulting in an enzyme that has several properties useful in sequencing including high processivity and lack of discrimination against dideoxynucleotides. Manganese ion eliminates all discrimination against ddNTPs allowing sequence determination based on band intensity. A single tyrosine residue in the active site of T7 DNA polymerase is responsible for the efficient incorporation of ddNMPs. Replacement of the phenylalanine at this position in Klenow or Taq DNA polymerase with tyrosine eliminates discrimination against ddNTPs, a property that has advantages for cycle sequencing. Pyrophosphorolysis catalyzed by a polymerase results in the hydrolysis of specific fragments in DNA sequencing reactions, a problem that is eliminated by the addition of pyrophosphatase. The thioredoxin domain of gene 5 protein has been identified and transferred to Klenow DNA polymerase to make it processive. We have crystallized a complex of T7 DNA polymerase/thioredoxin bound to a primer-template in the presence of a dNTP.

  7. Role of Human DNA Polymerase kappa in Extension Opposite from a cis-syn Thymine Dimer

    SciTech Connect

    R Vasquez-Del Carpio; T Silverstein; S Lone; R Johnson; L Prakash; S Prakash; A Aggarwal

    2011-12-31

    Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase {Kappa} (Pol{Kappa}), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Pol{Kappa} in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure reveals a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Pol{Kappa} in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.

  8. Analysis of ancient DNA from coprolites: a perspective with random amplified polymorphic DNA-polymerase chain reaction approach.

    PubMed

    Iñiguez, Alena M; Araújo, Adauto; Ferreira, Luiz Fernando; Vicente, Ana Carolina P

    2003-01-01

    The aim of this work was to determine approaches that would improve the quality of ancient DNA (aDNA) present in coprolites to enhance the possibility of success in retrieving specific sequence targets. We worked with coprolites from South American archaeological sites in Brazil and Chile dating up to 7,000 years ago. Using established protocols for aDNA extraction we obtained samples showing high degradation as usually happens with this kind of material. The reconstructive polymerization pretreatment was essential to overcome the DNA degradation and the serial dilutions helped with to prevent polymerase chain reaction (PCR) inhibitors. Moreover, the random amplified polymorphic DNA-PCR has been shown to be a reliable technique for further experiments to recover specific aDNA sequences.

  9. Increased Learning and Brain Long-Term Potentiation in Aged Mice Lacking DNA Polymerase μ

    PubMed Central

    Lucas, Daniel; Delgado-García, José M.; Escudero, Beatriz; Albo, Carmen; Aza, Ana; Acín-Pérez, Rebeca; Torres, Yaima; Moreno, Paz; Enríquez, José Antonio; Samper, Enrique; Blanco, Luis; Fairén, Alfonso

    2013-01-01

    A definitive consequence of the aging process is the progressive deterioration of higher cognitive functions. Defects in DNA repair mechanisms mostly result in accelerated aging and reduced brain function. DNA polymerase µ is a novel accessory partner for the non-homologous end-joining DNA repair pathway for double-strand breaks, and its deficiency causes reduced DNA repair. Using associative learning and long-term potentiation experiments, we demonstrate that Polµ−/− mice, however, maintain the ability to learn at ages when wild-type mice do not. Expression and biochemical analyses suggest that brain aging is delayed in Polµ−/− mice, being associated with a reduced error-prone DNA oxidative repair activity and a more efficient mitochondrial function. This is the first example in which the genetic ablation of a DNA-repair function results in a substantially better maintenance of learning abilities, together with fewer signs of brain aging, in old mice. PMID:23301049

  10. Impact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair

    PubMed Central

    Crespan, Emmanuele; Furrer, Antonia; Rösinger, Marcel; Bertoletti, Federica; Mentegari, Elisa; Chiapparini, Giulia; Imhof, Ralph; Ziegler, Nathalie; Sturla, Shana J.; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2016-01-01

    Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols β and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol β, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol β- and λ-deficient cell extracts suggest that Pol β levels can greatly affect rNMP incorporation opposite oxidative DNA lesions. PMID:26917111

  11. Enzymatic synthesis of modified oligonucleotides by PEAR using Phusion and KOD DNA polymerases.

    PubMed

    Wang, Xuxiang; Zhang, Jianye; Li, Yingjia; Chen, Gang; Wang, Xiaolong

    2015-02-01

    Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase-endonuclease amplification reaction (PEAR) for amplification of natural and 5'-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2'-deoxy-2'-fluoro-(2'-F) and 2'-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with one or two modified nucleotides, and KOD DNA polymerase is more suitable than Phusion DNA polymerase for PEAR amplification of 2'-F and 2'-F/S double modified oligonucleotides. The composition of PEAR products were analyzed by electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection and showed that the sequence of the PEAR products are maintained at an extremely high accuracy (>99.9%), and after digestion the area percent of full-length modified oligonucleotides reaches 89.24%. PEAR is suitable for synthesis of modified oligonucleotides efficiently and with high purity. PMID:25517220

  12. Toxicity of nucleoside analogues used to treat AIDS and the selectivity of the mitochondrial DNA polymerase.

    PubMed

    Lee, Harold; Hanes, Jeremiah; Johnson, Kenneth A

    2003-12-23

    Incorporation of nucleoside analogues by the mitochondrial DNA polymerase has been implicated as the primary cause underlying many of the toxic side effects of these drugs in HIV therapy. Recent success in reconstituting recombinant human enzyme has afforded a detailed mechanistic analysis of the reactions governing nucleotide selectivity of the polymerase and the proofreading exonuclease. The toxic side effects of nucleoside analogues are correlated with the kinetics of incorporation by the mitochondrial DNA polymerase, varying over 6 orders of magnitude in the sequence zalcitabine (ddC) > didanosine (ddI metabolized to ddA) > stavudine (d4T) > lamivudine (3TC) > tenofovir (PMPA) > zidovudine (AZT) > abacavir (metabolized to carbovir, CBV). In this review, we summarize our current efforts to examine the mechanistic basis for nucleotide selectivity by the mitochondrial DNA polymerase and its role in mitochondrial toxicity of nucleoside analogues used to treat AIDS and other viral infections. We will also discuss the promise and underlying challenges for the development of new analogues with lower toxicity.

  13. Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3'-5' exonuclease activity.

    PubMed Central

    Southworth, M W; Kong, H; Kucera, R B; Ware, J; Jannasch, H W; Perler, F B

    1996-01-01

    Five extremely thermophilic Archaea from hydrothermal vents were isolated, and their DNA polymerases were cloned and expressed in Escherichia coli. Protein splicing elements (inteins) are present in many archaeal DNA polymerases, but only the DNA polymerase from strain GB-C contained an intein. Of the five cloned DNA polymerases, the Thermococcus sp. 9 degrees N-7 DNA polymerase was chosen for biochemical characterization. Thermococcus sp. 9 degrees N-7 DNA polymerase exhibited temperature-sensitive strand displacement activity and apparent Km values for DNA and dNTP similar to those of Thermococcus litoralis DNA polymerase. Six substitutions in the 3'-5' exonuclease motif I were constructed in an attempt to reduce the 3'-5' exonuclease activity of Thermococcus sp. 9 degrees N-7 DNA polymerase. Five mutants resulted in no detectable 3'-5' exonuclease activity, while one mutant (Glul43Asp) had <1% of wild-type activity. Images Fig. 2 Fig. 3 PMID:8643567

  14. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    PubMed Central

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  15. DNA from oral bacteria by sodium hydroxide-paper method suitable for polymerase chain reaction.

    PubMed

    Lefimil, Claudia; Lozano, Carla; Morales-Bozo, Irene; Plaza, Anita; Maturana, Cristian; Urzúa, Blanca

    2013-02-15

    In the oral cavity, we can find a complex mixture of microorganisms, commensals, and pathogens. The studies of normal oral microbiota, as well as the studies of much oral pathology (e.g., caries, periodontitis), involve the isolation and cultivation of these microorganisms and their molecular analysis. The aim of this study was to validate a quick, easy, efficient, and inexpensive DNA extraction method for the recovery of genomic DNA from gram-positive and gram-negative oral bacteria to be used in polymerase chain reaction amplification. This method worked great with all samples analyzed, providing an approach to extract DNA for different microorganisms.

  16. Mechanistic investigation of the bypass of a bulky aromatic DNA adduct catalyzed by a Y-family DNA polymerase.

    PubMed

    Gadkari, Varun V; Tokarsky, E John; Malik, Chanchal K; Basu, Ashis K; Suo, Zucai

    2014-09-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG(C8-N-ABA)). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dG(C8-N-ABA) is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dG(C8-N-ABA) on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dG(C8-N-ABA) lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dG(C8-N-ABA) lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dG(C8-N-ABA) bypass catalyzed by Dpo4. PMID:25048879

  17. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    PubMed Central

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  18. Wheat DNA Primase (RNA Primer Synthesis in Vitro, Structural Studies by Photochemical Cross-Linking, and Modulation of Primase Activity by DNA Polymerases).

    PubMed Central

    Laquel, P.; Litvak, S.; Castroviejo, M.

    1994-01-01

    DNA primase synthesizes short RNA primers used by DNA polymerases to initiate DNA synthesis. Two proteins of approximately 60 and 50 kD were recognized by specific antibodies raised against yeast primase subunits, suggesting a high degree of analogy between wheat and yeast primase subunits. Gel-filtration chromatography of wheat primase showed two active forms of 60 and 110 to 120 kD. Ultraviolet-induced cross-linking with radioactive oligothymidilate revealed a highly labeled protein of 60 kD. After limited trypsin digestion of wheat (Triticum aestivum L.) primase, a major band of 48 kD and two minor bands of 38 and 17 kD were observed. In the absence of DNA polymerases, the purified primase synthesizes long RNA products. The size of the RNA product synthesized by wheat primase is considerably reduced by the presence of DNA polymerases, suggesting a modulatory effect of the association between these two enzymes. Lowering the primase concentration in the assay also favored short RNA primer synthesis. Several properties of the wheat DNA primase using oligoadenylate [oligo(rA)]-primed or unprimed polythymidilate templates were studied. The ability of wheat primase, without DNA polymerases, to elongate an oligo(rA) primer to long RNA products depends on the primer size, temperature, and the divalent cation concentration. Thus, Mn2+ ions led to long RNA products in a very wide range of concentrations, whereas with Mg2+ long products were observed around 15 mM. We studied the ability of purified wheat DNA polymerases to initiate DNA synthesis from an RNA primer: wheat DNA polymerase A showed the highest activity, followed by DNA polymerases B and CII, whereas DNA polymerase CI was unable to initiate DNA synthesis from an RNA primer. Results are discussed in terms of understanding the role of these polymerases in DNA replication in plants. PMID:12232187

  19. Comparative modeling of DNA and RNA polymerases from Moniliophthora perniciosa mitochondrial plasmid

    PubMed Central

    Andrade, Bruno S; Taranto, Alex G; Góes-Neto, Aristóteles; Duarte, Angelo A

    2009-01-01

    Background The filamentous fungus Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is a hemibiotrophic Basidiomycota that causes witches' broom disease of cocoa (Theobroma cacao L.). This disease has resulted in a severe decrease in Brazilian cocoa production, which changed the position of Brazil in the market from the second largest cocoa exporter to a cocoa importer. Fungal mitochondrial plasmids are usually invertrons encoding DNA and RNA polymerases. Plasmid insertions into host mitochondrial genomes are probably associated with modifications in host generation time, which can be involved in fungal aging. This association suggests activity of polymerases, and these can be used as new targets for drugs against mitochondrial activity of fungi, more specifically against witches' broom disease. Sequencing and modeling: DNA and RNA polymerases of M. perniciosa mitochondrial plasmid were completely sequenced and their models were carried out by Comparative Homology approach. The sequences of DNA and RNA polymerase showed 25% of identity to 1XHX and 1ARO (pdb code) using BLASTp, which were used as templates. The models were constructed using Swiss PDB-Viewer and refined with a set of Molecular Mechanics (MM) and Molecular Dynamics (MD) in water carried out with AMBER 8.0, both working under the ff99 force fields, respectively. Ramachandran plots were generated by Procheck 3.0 and exhibited models with 97% and 98% for DNA and RNA polymerases, respectively. MD simulations in water showed models with thermodynamic stability after 2000 ps and 300 K of simulation. Conclusion This work contributes to the development of new alternatives for controlling the fungal agent of witches' broom disease. PMID:19744344

  20. Development and use of an in vitro HSV-tk forward mutation assay to study eukaryotic DNA polymerase processing of DNA alkyl lesions.

    PubMed Central

    Eckert, K A; Hile, S E; Vargo, P L

    1997-01-01

    We have developed an in vitro DNA polymerase forward mutation assay using damaged DNA templates that contain the herpes simplex virus type 1 thymidine kinase (HSV-tk) gene. The quantitative method uses complementary strand hybridization to gapped duplex DNA molecules and chloramphenicol selection. This design ensures exclusive analysis of mutations derived from the DNA strand produced during in vitro synthesis. We have examined the accuracy of DNA synthesis catalyzed by calf thymus polymerase alpha-primase, polymerase beta and exonuclease-deficient Klenow polymerase. Using unmodified DNA templates, polymerase beta displays a unique specificity for the loss of two bases in a dinucleotide repeat sequence within the HSV-tk locus. Treatment of the DNA template with N-ethyl-N-nitrosourea resulted in a dose-dependent inhibition of DNA synthesis concomitant with an increased mutation frequency. Similar dose-response curves were measured for the three polymerases examined; thus the identity of the DNA polymerase does not appear to affect the mutagenic potency of ethyl lesions. The HSV-tk system is unique in that damage-induced mutagenesis can be analyzed both quantitatively and qualitatively in human cells, in bacterial cells and in in vitro DNA synthesis reactions at a single target sequence. PMID:9060443

  1. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases.

    PubMed

    Mačková, Michaela; Boháčová, Soňa; Perlíková, Pavla; Poštová Slavětínská, Lenka; Hocek, Michal

    2015-10-12

    Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.

  2. Computational investigation of locked nucleic acid (LNA) nucleotides in the active sites of DNA polymerases by molecular docking simulations.

    PubMed

    Poongavanam, Vasanthanathan; Madala, Praveen K; Højland, Torben; Veedu, Rakesh N

    2014-01-01

    Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5'-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3'-endo conformation which in fact helps better orienting within the active site. PMID:25036012

  3. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.

    PubMed

    Dubarry, Marion; Lawless, Conor; Banks, A Peter; Cockell, Simon; Lydall, David

    2015-10-01

    Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase α-primase (Pol α) and DNA polymerase δ (Pol δ) replicate the lagging-strand and Pol α and DNA polymerase ε (Pol ε) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We combined temperature-sensitive mutations affecting the three replicative polymerases, Pol α, Pol δ, and Pol ε with genome-wide collections of null and reduced function mutations. We identify large numbers of genetic interactions that inform about the roles that specific genes play to help Pol α, Pol δ, and Pol ε function. Surprisingly, the overlap between the genetic networks affecting the three DNA polymerases does not represent the majority of the genetic interactions identified. Instead our data support a model for division of labor between the different DNA polymerases during DNA replication. For example, our genetic interaction data are consistent with biochemical data showing that Pol ε is more important to the Pre-Loading complex than either Pol α or Pol δ. We also observed distinct patterns of genetic interactions between leading- and lagging-strand DNA polymerases, with particular genes being important for coupling proliferating cell nuclear antigen loading/unloading (Ctf18, Elg1) with nucleosome assembly (chromatin assembly factor 1, histone regulatory HIR complex). Overall our data reveal specialized genetic networks that affect different aspects of leading- and lagging-strand DNA replication. To help others to engage with these data we have generated two novel, interactive visualization tools, DIXY and Profilyzer. PMID:26297725

  4. Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes.

    PubMed Central

    Harris, P V; Mazina, O M; Leonhardt, E A; Case, R B; Boyd, J B; Burtis, K C

    1996-01-01

    Mutations in the Drosophila mus308 gene confer specific hypersensitivity to DNA-cross-linking agents as a consequence of defects in DNA repair. The mus308 gene is shown here to encode a 229-kDa protein in which the amino-terminal domain contains the seven conserved motifs characteristic of DNA and RNA helicases and the carboxy-terminal domain shares over 55% sequence similarity with the polymerase domains of prokaryotic DNA polymerase I-like enzymes. This is the first reported member of this family of DNA polymerases in a eukaryotic organism, as well as the first example of a single polypeptide with homology to both DNA polymerase and helicase motifs. Identification of a closely related gene in the genome of Caenorhabditis elegans suggests that this novel polypeptide may play an evolutionarily conserved role in the repair of DNA damage in eukaryotic organisms. PMID:8816490

  5. T7 RNA polymerase cannot transcribe through a highly knotted DNA template.

    PubMed Central

    Portugal, J; Rodríguez-Campos, A

    1996-01-01

    The ability of T7 RNA polymerase to transcribe a plasmid DNA in vitro in its linear, supercoiled, relaxed and knotted forms was analysed. Similar levels of transcription were found on each template with the exception of plasmids showing varying degrees of knotting (obtained using stoichiometric amounts of yeast topoisomerase II). A purified fraction of knotted DNA with a high number of nodes (crosses) was found to be refractory to transcription. The unknotting of the knotted plasmids, using catalytic amounts of topoisomerase II, restored their capacity as templates for transcription to levels similar to those obtained for the other topological forms. These results demonstrate that highly knotted DNA is the only topological form of DNA that is not a template for transcription. We suggest that the regulation of transcription, which depends on the topological state of the template, might be related to the presence of knotted DNA with different number of nodes. PMID:9016657

  6. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    NASA Astrophysics Data System (ADS)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  7. Fluorescent xDNA nucleotides as efficient substrates for a template-independent polymerase

    PubMed Central

    Jarchow-Choy, Sarah K.; Krueger, Andrew T.; Liu, Haibo; Gao, Jianmin; Kool, Eric T.

    2011-01-01

    Template independent polymerases, and terminal deoxynucleotidyl transferase (TdT) in particular, have been widely used in enzymatic labeling of DNA 3′-ends, yielding fluorescently-labeled polymers. The majority of fluorescent nucleotides used as TdT substrates contain tethered fluorophores attached to a natural nucleotide, and can be hindered by undesired fluorescence characteristics such as self-quenching. We previously documented the inherent fluorescence of a set of four benzo-expanded deoxynucleoside analogs (xDNA) that maintain Watson–Crick base pairing and base stacking ability; however, their substrate abilities for standard template-dependent polymerases were hampered by their large size. However, it seemed possible that a template-independent enzyme, due to lowered geometric constraints, might be less restrictive of nucleobase size. Here, we report the synthesis and study of xDNA nucleoside triphosphates, and studies of their substrate abilities with TdT. We find that this polymerase can incorporate each of the four xDNA monomers with kinetic efficiencies that are nearly the same as those of natural nucleotides, as measured by steady-state methods. As many as 30 consecutive monomers could be incorporated. Fluorescence changes over time could be observed in solution during the enzymatic incorporation of expanded adenine (dxATP) and cytosine (dxCTP) analogs, and after incorporation, when attached to a glass solid support. For (dxA)n polymers, monomer emission quenching and long-wavelength excimer emission was observed. For (dxC)n, fluorescence enhancement was observed in the polymer. TdT-mediated synthesis may be a useful approach for creating xDNA labels or tags on DNA, making use of the fluorescence and strong hybridization properties of the xDNA. PMID:20947563

  8. Duality of polynucleotide substrates for Phi29 DNA polymerase: 3′→5′ RNase activity of the enzyme

    PubMed Central

    Lagunavicius, Arunas; Kiveryte, Zivile; Zimbaite-Ruskuliene, Vilma; Radzvilavicius, Tomas; Janulaitis, Arvydas

    2008-01-01

    Phi29 DNA polymerase is a small DNA-dependent DNA polymerase that belongs to eukaryotic B-type DNA polymerases. Despite the small size, the polymerase is a multifunctional proofreading-proficient enzyme. It catalyzes two synthetic reactions (polymerization and deoxynucleotidylation of Phi29 terminal protein) and possesses two degradative activities (pyrophosphorolytic and 3′→5′ DNA exonucleolytic activities). Here we report that Phi29 DNA polymerase exonucleolyticaly degrades ssRNA. The RNase activity acts in a 3′ to 5′ polarity. Alanine replacements in conserved exonucleolytic site (D12A/D66A) inactivated RNase activity of the enzyme, suggesting that a single active site is responsible for cleavage of both substrates: DNA and RNA. However, the efficiency of RNA hydrolysis is ∼10-fold lower than for DNA. Phi29 DNA polymerase is widely used in rolling circle amplification (RCA) experiments. We demonstrate that exoribonuclease activity of the enzyme can be used for the target RNA conversion into a primer for RCA, thus expanding application potential of this multifunctional enzyme and opening new opportunities for RNA detection. PMID:18230765

  9. Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA.

    PubMed

    Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-02-01

    Recombinase polymerase amplification (RPA) may be used to detect a variety of pathogens, often after minimal sample preparation. However, previous work has shown that whole blood inhibits RPA. In this paper, we show that the concentrations of background DNA found in whole blood prevent the amplification of target DNA by RPA. First, using an HIV-1 RPA assay with known concentrations of nonspecific background DNA, we show that RPA tolerates more background DNA when higher HIV-1 target concentrations are present. Then, using three additional assays, we demonstrate that the maximum amount of background DNA that may be tolerated in RPA reactions depends on the DNA sequences used in the assay. We also show that changing the RPA reaction conditions, such as incubation time and primer concentration, has little effect on the ability of RPA to function when high concentrations of background DNA are present. Finally, we develop and characterize a lateral flow-based method for enriching the target DNA concentration relative to the background DNA concentration. This sample processing method enables RPA of 10(4) copies of HIV-1 DNA in a background of 0-14 μg of background DNA. Without lateral flow sample enrichment, the maximum amount of background DNA tolerated is 2 μg when 10(6) copies of HIV-1 DNA are present. This method requires no heating or other external equipment, may be integrated with upstream DNA extraction and purification processes, is compatible with the components of lysed blood, and has the potential to detect HIV-1 DNA in infant whole blood with high proviral loads.

  10. Expression, purification, and enzymatic characterization of Bombyx mori nucleopolyhedrovirus DNA polymerase.

    PubMed

    Liu, Liu; Song, Huifang; Zhang, Lei; Fan, Xiaoting; Zhang, Qian; Chen, Keping; Chen, Huiqing; Zhou, Yajing

    2013-12-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a major viral agent that causes deadly grasserie disease in silkworms. BmNPV DNA polymerase (Bm-DNAPOL), encoded by the ORF53 gene, plays a central role in viral DNA replication. In this work, a His-tagged Bm-DNAPOL fusion protein, constructed using a novel MultiBac expression system, was overexpressed in Sf-9 insect cells, purified to near homogeneity on Ni-NTA agarose beads and further purified by ion-exchange chromatography. About 0.4 mg of enzyme was obtained from about 1 × 10(9) infected Sf-9 cells in suspension culture. Characterization of the highly purified enzyme indicated that Bm-DNAPOL is a monomer with an apparent molecular mass of approximately 110,000 Da. It possessed a specific activity of 15,126.3 U/mg under optimal in vitro reaction conditions and behaved in the manner of a proliferating cell nuclear antigen (PCNA)-independent DNA polymerase on both poly(dA)/oligo(dT) primer/template and singly premiered M13 DNA. BmNPV viral replication may be independent of replication factor C and a PCNA complex, while single-stranded DNA binding protein might play an important role in BmNPV DNA replication. These findings will be significant in studies on BmNPV-based disease in silkworms and for using silkworms as a bioreactor for the production of biomolecules of commercial importance.

  11. Antimicrobials targeted to the replication-specific DNA polymerases of gram-positive bacteria: target potential of dnaE.

    PubMed

    Barnes, Marjorie H; Butler, Michelle M; Wright, George E; Brown, Neal C

    2012-10-01

    DNA polymerases pol IIIC and dnaE [i.e. pol IIIE] are essential for replicative DNA synthesis in low G:C Gram-positive eubacteria. Therefore, they have strong potential as targets for development of Gram-positive-selective antibacterial agents. This work has sought to extend to dnaE the recent discovery of antimicrobial agents based on pol IIIC-specific dGTP analogs. Compound 324C, a member of the same dGTP analog family, was found to be a potent and selective inhibitor of isolated dnaE in vitro. Surprisingly, 324C had no inhibitory effect in either intact Bacillus subtilis cells or in permeabilized cell preparations used to assess replicative DNA synthesis directly. It is proposed that the failure of 324C in the intact cell is a consequence of two major factors: (i) its template-dependent base pairing mechanism, and (ii) a specific subordinate role which dnaE apparently plays to pol IIIC. To generate an effective dnaE-selective inhibitor of replicative DNA synthesis in Gram-positive bacteria, it will likely be necessary to develop a molecule that attacks the enzyme's active site directly, without binding to template DNA.

  12. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli.

    PubMed

    Zheng, Wenjun; Wang, Qingsong; Bi, Qun

    2016-04-01

    Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future. PMID:26920159

  13. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.

    PubMed

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.

  14. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    PubMed

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations.

  15. Replication of linear duplex DNA in vitro with bacteriophage T5 DNA polymerase

    SciTech Connect

    Fujimura, R. K.; Das, S. K.; Allison, D. P.; Roop, B. C.

    1980-01-01

    Two sets of experiments are presented that attempt to contribute to understanding the mechanisms of DNA replication. The specific areas discussed are fidelity of DNA replication and initiation of replication of duplex DNA. (ACR)

  16. Mechanism of release of active alpha subunit from dimeric alpha beta avian myeloblastosis virus DNA polymerase.

    PubMed Central

    Papas, T S; Marciani, D J; Samuel, K; Chirikjian, J G

    1976-01-01

    Storage of the dimeric (alphabeta) form of avian myeloblastosis virus (AMV) DNA polymerase in glycerol resulted in the release of the smaller alpha subunit, as detected by glycerol gradient sedimentation. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of enzyme stored in glycerol showed the concomitant appearance of several polypeptides and a lowering in the level of both beta and alpha components. This reduction appears to be the result of cleavages introduced by traces of hydrolytic activity present in glycerol samples. An enhancement of alpha subunit released, as detected by activity profile, was also achieved upon direct but limited exposure of purified avian myeloblastosis virus DNA polymerase to carboxymethyl-cellulose-bound trypsin matrix. Electrophoretic analysis of digested enzyme revealed a progressive fragmentation, with simultaneous increase in the alpha subunit and decrease in the beta subunit. PMID:58080

  17. Strandedness and Complementarity of DNA from Long-Term RNA-Dependent DNA Polymerase Reactions of Soehner-Dmochowski Murine Sarcoma Virus

    PubMed Central

    East, James L.; Knesek, John E.; Allen, Patton T.; Dmochowski, Leon

    1973-01-01

    The DNA product of the endogenously instructed RNA-dependent DNA polymerase reaction of murine sarcoma virus continued to be synthesized for as long as 64 h in the presence of 0.008% Triton X-100. Higher detergent concentrations and actinomycin D inhibited DNA product synthesis. The DNA product from long-term polymerase reactions consisted of small DNA fragments as shown by sedimentation in alkaline sucrose gradients. The enzymatic DNA product was separated into a slow sedimenting fraction and a fast sedimenting fraction by rate-zonal centrifugation. Fast sedimenting DNA was the predominant fraction made in viral polymerase reactions containing 262 mM NaCl. By using a combination of S-1 nuclease and pancreatic RNase A, the amount of single-stranded DNA, double-stranded DNA, and DNA-RNA hybrid present in the slow-sedimenting and fast-sedimenting fractions was determined. Under standard polymerase conditions of 70 mM NaCl, single-stranded DNA was the major form of DNA found in both fractions. In contrast, the prevalent form of DNA made in the presence of 262 mM NaCl was DNA-RNA hybrid. Hybridization studies in which either S-1 nuclease or pancreatic RNase A was used to measure hybrid formation demonstrated not only that the DNA product was complementary in base sequence to the RNA genome, but also that at least 79 to 84% of the RNA genome was transcribed into complementary DNA. PMID:4358160

  18. Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site.

    PubMed

    Vaidyanathan, Vaidyanathan G; Liang, Fengting; Beard, William A; Shock, David D; Wilson, Samuel H; Cho, Bongsup P

    2013-08-01

    The active site conformation of the mutagenic fluoroaminofluorene-deoxyguanine adduct (dG-FAF, N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene) has been investigated in the presence of Klenow fragment of Escherichia coli DNA polymerase I (Kfexo(-)) and DNA polymerase β (pol β) using (19)F NMR, insertion assay, and surface plasmon resonance. In a single nucleotide gap, the dG-FAF adduct adopts both a major-groove- oriented and base-displaced stacked conformation, and this heterogeneity is retained upon binding pol β. The addition of a non-hydrolysable 2'-deoxycytosine-5'-[(α,β)-methyleno]triphosphate (dCMPcPP) nucleotide analog to the binary complex results in an increase of the major groove conformation of the adduct at the expense of the stacked conformation. Similar results were obtained with the addition of an incorrect dAMPcPP analog but with formation of the minor groove binding conformer. In contrast, dG-FAF adduct at the replication fork for the Kfexo(-) complex adopts a mix of the major and minor groove conformers with minimal effect upon the addition of non-hydrolysable nucleotides. For pol β, the insertion of dCTP was preferred opposite the dG-FAF adduct in a single nucleotide gap assay consistent with (19)F NMR data. Surface plasmon resonance binding kinetics revealed that pol β binds tightly with DNA in the presence of correct dCTP, but the adduct weakens binding with no nucleotide specificity. These results provide molecular insights into the DNA binding characteristics of FAF in the active site of DNA polymerases and the role of DNA structure and sequence on its coding potential.

  19. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  20. Involvement of DNA polymerase beta overexpression in the malignant transformation induced by benzo[a]pyrene

    PubMed Central

    Zhao, Wei; Wu, Mei; Lai, Yanhao; Deng, Wenwen; Liu, Yuan; Zhang, Zunzhen

    2014-01-01

    Objective To explore the relationship between DNA polymerase β (pol β) overexpression and benzo[a]pyrene (BaP) carcinogenesis. Methods Firstly, mouse embryonic fibroblasts that express wild-type level of DNA polymerase β (pol β cell) and high level of pol β (pol β oe cell) were treated by various concentrations of BaP to determine genetic instability induced by BaP under differential expression levels of pol β. Secondly, malignant transformation of pol β cells by low concentration of BaP (20 μM) was determined by soft agar colony formation assay and transformation focus assay. Thirdly, the mRNA and protein levels of BaP-transformed pol β cells (named pol β-T cells) was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot, and the genetic instability of these cells were examined by HPRT gene mutation assay and random amplified polymorphic DNA (RAPD) assay. Results Pol β cells were successfully transformed into malignant pol β-T cells by an exposure to low concentration of BaP for 6 months. Pol β-T cells exhibited increased levels of pol β gene expression, HPRT gene mutation frequency and polymorphisms of RAPD products that were comparable to those of pol β oe cells. Conclusion Pol β overexpression and its-associated genetic instability may play a key role in BaP carcinogenesis. PMID:23652152

  1. Fission yeast with DNA polymerase delta temperature-sensitive alleles exhibits cell division cycle phenotype.

    PubMed Central

    Francesconi, S; Park, H; Wang, T S

    1993-01-01

    DNA polymerases alpha and delta are essential enzymes believed to play critical roles in initiation and replication of chromosome DNA. In this study, we show that the genes for Schizosaccharomyces pombe (S.pombe) DNA polymerase alpha and delta (pol alpha+ and pol delta+) are essential for cell viability. Disruption of either the pol alpha+ or pol delta+ gene results in distinct terminal phenotypes. The S.pombe pol delta+ gene is able to complement the thermosensitive cdc2-2 allele of Saccharomyces cerevisiae (S.cerevisiae) at the restrictive temperature. By random mutagenesis in vitro, we generated three pol delta conditional lethal alleles. We replaced the wild type chromosomal copy of pol delta+ gene with the mutagenized sequence and characterized the thermosensitive alleles in vivo. All three thermosensitive mutants exhibit a typical cell division cycle (cdc) terminal phenotype similar to that of the disrupted pol delta+ gene. Flow cytometric analysis showed that at the nonpermissive temperature all three mutants were arrested in S phase of the cell cycle. The three S.pombe conditional pol delta alleles were recovered and sequenced. The mutations causing the thermosensitive phenotype are missense mutations. The altered amino acid residues are uniquely conserved among the known polymerase delta sequences. Images PMID:8367300

  2. Structural basis for the suppression of skin cancers by DNA polymerase [eta

    SciTech Connect

    Silverstein, Timothy D.; Johnson, Robert E.; Jain, Rinku; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2010-09-13

    DNA polymerase {eta} (Pol{eta}) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Pol{eta} (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Pol{eta} (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Pol{eta} to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln55, Arg73 and Met74. Together, these features define the basis for Pol{eta}'s action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.

  3. Flavonoid glycoside: a new inhibitor of eukaryotic DNA polymerase alpha and a new carrier for inhibitor-affinity chromatography.

    PubMed

    Mizushina, Yoshiyuki; Ishidoh, Tomomi; Kamisuki, Shinji; Nakazawa, Satoshi; Takemura, Masaharu; Sugawara, Fumio; Yoshida, Hiromi; Sakaguchi, Kengo

    2003-02-01

    Two flavonoid glycosides, kaempferol 3-O-(6"-acetyl)-beta-glucopyranoside (KAG) and quercetin 3-O-(6"-acetyl)-beta-glucopyranoside (QAG), were found to be inhibitors of eukaryotic DNA polymerases from a Japanese vegetable, Petasites japonicus. These compounds inhibited the activities of mammalian replicative DNA polymerases (i.e., pol alpha, delta, and epsilon), but not other pol beta, eta, kappa, and lambda activities. KAG was a stronger inhibitor and more selective to pol alpha than QAG. The IC(50) values of KAG for pol alpha, delta, and epsilon were 41, 164, and 127 microM, respectively. The pol alpha inhibition by KAG was non-competitive with respect to both the DNA template-primer and the dNTP substrate. KAG and QAG did not influence the activities of prokaryotic DNA polymerases or other mammalian DNA metabolic enzymes such as human immunodeficiency virus type 1 reverse transcriptase, human telomerase, human DNA topoisomerase I and II, T7 RNA polymerase, and bovine deoxyribonuclease I. Therefore, we concluded that these flavonoid glycosides are moderate replicative DNA polymerase inhibitors leaning more relatively to pol alpha, and could be used as chromatographic carriers to purify the DNA polymerases rather than cytotoxic agents. We then made a KAG-conjugated column such as the epoxy-activated Sepharose 6B. In the column, pol alpha was selectively adsorbed and eluted. PMID:12565887

  4. Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II.

    PubMed

    Amegadzie, B Y; Ahn, B Y; Moss, B

    1992-05-01

    A previously unrecognized 7-kDa polypeptide copurified with the DNA-dependent RNA polymerase of vaccinia virus virions. Internal amino acid sequences of the small protein matched a viral genomic open reading frame of 63 codons. Antipeptide antiserum was used to confirm the specific and complete association of the 7-kDa protein with RNA polymerase. The amino acid sequence predicted from the viral gene, named rpo7, was 23% identical to that of the smallest subunit of Saccharomyces cerevisiae RNA polymerase II, and a metal-binding motif, Cys-X-X-Cys-Gly, was located at precisely the same location near the N terminus in the two proteins. RNA analyses demonstrated early transcriptional initiation and termination signals in the rpo7 gene sequence. The viral RNA polymerase subunit was synthesized during the early phase of infection and continued to accumulate during the late phase.

  5. Species-specific functional interactions of DNA polymerase alpha-primase with simian virus 40 (SV40) T antigen require SV40 origin DNA.

    PubMed Central

    Schneider, C; Weisshart, K; Guarino, L A; Dornreiter, I; Fanning, E

    1994-01-01

    Physical and functional interactions of simian virus 40 (SV40) and polyomavirus large-T antigens with DNA polymerase alpha-primase were analyzed to elucidate the molecular basis for the species specificity of polymerase alpha-primase in viral DNA replication. SV40 T antigen associated more efficiently with polymerase alpha-primase in crude human extracts than in mouse extracts, while polyomavirus T antigen interacted preferentially with polymerase alpha-primase in mouse extracts. The apparent species specificity of complex formation was not observed when purified polymerase alpha-primases were substituted for the crude extracts. Several functional interactions between T antigen and purified polymerase alpha-primase, including stimulation of primer synthesis and primer elongation on M13 DNA in the presence or absence of the single-stranded DNA binding protein RP-A, also proved to be independent of the species from which polymerase alpha-primase had been purified. However, the human DNA polymerase alpha-primase was specifically required for primosome assembly and primer synthesis on SV40 origin DNA in the presence of T antigen and RP-A. Images PMID:8164673

  6. A role for DNA polymerase delta in gene conversion and crossing over during meiosis in Saccharomyces cerevisiae.

    PubMed Central

    Maloisel, Laurent; Bhargava, Jaya; Roeder, G Shirleen

    2004-01-01

    A screen for mutants of budding yeast defective in meiotic gene conversion identified a novel allele of the POL3 gene. POL3 encodes the catalytic subunit of DNA polymerase delta, an essential DNA polymerase involved in genomic DNA replication. The new allele, pol3-ct, specifies a protein missing the last four amino acids. pol3-ct shows little or no defect in DNA replication, but displays a reduction in the length of meiotic gene conversion tracts and a decrease in crossing over. We propose a model in which DNA synthesis determines the length of strand exchange intermediates and influences their resolution toward crossing over. PMID:15280229

  7. Comparison of DNA polymerases for improved forensic analysis of challenging samples.

    PubMed

    Nilsson, Martina; Grånemo, Joakim; Buś, Magdalena M; Havsjö, Mikael; Allen, Marie

    2016-09-01

    Inhibitors of polymerase chain reaction (PCR) amplification often present a challenge in forensic investigations of e.g., terrorism, missing persons, sexual assaults and other criminal cases. Such inhibitors may be counteracted by dilution of the DNA extract, using different additives, and selecting an inhibitory resistant DNA polymerase. Additionally, DNA in forensic samples is often present in limited amounts and degraded, requiring special analyses of short nuclear targets or mitochondrial DNA. The present study evaluated the enzymes AmpliTaq Gold, HotStarTaq Plus, KAPA3G Plant, and KAPA2G Robust, with regard to their ability to overcome inhibitory effects. Our data showed that diluting the extracts and adding bovine serum albumin may increase the yield of the PCR product. However, the largest impact was observed when alternative enzymes were utilized, instead of the commonly used AmpliTaq Gold. KAPA2G Robust presented the highest amplification efficiency in the presence of the inhibitor ammonium nitrate. Moreover, the KAPA3G Plant enzyme had the highest efficiency in amplifying degraded DNA from old buried bone material. KAPA3G Plant and KAPA2G Robust may thus be useful for counteracting inhibitors and improving the analysis of challenging samples.

  8. Structural Basis for DNA-Hairpin Promoter Recognition by the Bacteriophage N4 Virion RNA Polymerase

    SciTech Connect

    Gleghorn, M.; Davydova, E; Rothman-Denes, L; Murakami, K

    2008-01-01

    Coliphage N4 virion-encapsidated RNA polymerase (vRNAP) is a member of the phage T7-like single-subunit RNA polymerase (RNAP) family. Its central domain (mini-vRNAP) contains all RNAP functions of the full-length vRNAP, which recognizes a 5 to 7 base pair stem and 3 nucleotide loop hairpin DNA promoter. Here, we report the X-ray crystal structures of mini-vRNAP bound to promoters. Mini-vRNAP uses four structural motifs to recognize DNA sequences at the hairpin loop and stem and to unwind DNA. Despite their low sequence similarity, three out of four motifs are shared with T7 RNAP that recognizes a double-stranded DNA promoter. The binary complex structure and results of engineered disulfide linkage experiments reveal that the plug and motif B loop, which block the access of template DNA to the active site in the apo-form mini-vRNAP, undergo a large-scale conformational change upon promoter binding, explaining the restricted promoter specificity that is critical for N4 phage early transcription.

  9. Comparison of DNA polymerases for improved forensic analysis of challenging samples.

    PubMed

    Nilsson, Martina; Grånemo, Joakim; Buś, Magdalena M; Havsjö, Mikael; Allen, Marie

    2016-09-01

    Inhibitors of polymerase chain reaction (PCR) amplification often present a challenge in forensic investigations of e.g., terrorism, missing persons, sexual assaults and other criminal cases. Such inhibitors may be counteracted by dilution of the DNA extract, using different additives, and selecting an inhibitory resistant DNA polymerase. Additionally, DNA in forensic samples is often present in limited amounts and degraded, requiring special analyses of short nuclear targets or mitochondrial DNA. The present study evaluated the enzymes AmpliTaq Gold, HotStarTaq Plus, KAPA3G Plant, and KAPA2G Robust, with regard to their ability to overcome inhibitory effects. Our data showed that diluting the extracts and adding bovine serum albumin may increase the yield of the PCR product. However, the largest impact was observed when alternative enzymes were utilized, instead of the commonly used AmpliTaq Gold. KAPA2G Robust presented the highest amplification efficiency in the presence of the inhibitor ammonium nitrate. Moreover, the KAPA3G Plant enzyme had the highest efficiency in amplifying degraded DNA from old buried bone material. KAPA3G Plant and KAPA2G Robust may thus be useful for counteracting inhibitors and improving the analysis of challenging samples. PMID:27299290

  10. Bypass of Mutagenic O(6)-Carboxymethylguanine DNA Adducts by Human Y- and B-Family Polymerases.

    PubMed

    Räz, Michael H; Dexter, Hannah R; Millington, Christopher L; van Loon, Barbara; Williams, David M; Sturla, Shana J

    2016-09-19

    The generation of chemical alkylating agents from nitrosation of glycine and bile acid conjugates in the gastrointestinal tract is hypothesized to initiate carcinogenesis. O(6)-carboxymethylguanine (O(6)-CMG) is a product of DNA alkylation derived from nitrosated glycine. Although the tendency of the structurally related adduct O(6)-methylguanine to code for the misincoporation of TTP during DNA replication is well-established, the impact of the presence of the O(6)-CMG adduct in a DNA template on the efficiency and fidelity of translesion DNA synthesis (TLS) by human DNA polymerases (Pols) has hitherto not been described. Herein, we characterize the ability of the four human TLS Pols η, ι, κ, and ζ and the replicative Pol δ to bypass O(6)-CMG in a prevalent mutational hot-spot for colon cancer. The results indicate that Pol η replicates past O(6)-CMG, incorporating dCMP or dAMP, whereas Pol κ incorporates dCMP only, and Pol ι incorporates primarily dTMP. Additionally, the subsequent extension step was carried out with high efficiency by TLS Pols η, κ, and ζ, while Pol ι was unable to extend from a terminal mismatch. These results provide a first basis of O(6)-CMG-promoted base misincorporation by Y- and B-family polymerases potentially leading to mutational signatures associated with colon cancer.

  11. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis.

    PubMed

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J; Xing, Chao; Wang, Richard C; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R; Burstein, Ezra

    2016-05-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  12. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis.

    PubMed

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J; Xing, Chao; Wang, Richard C; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R; Burstein, Ezra

    2016-05-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.

  13. Culture-negative endocarditis diagnosed using 16S DNA polymerase chain reaction.

    PubMed

    Duffett, Stephen; Missaghi, Bayan; Daley, Peter

    2012-01-01

    16S DNA polymerase chain reaction (PCR) is a molecular amplification technique that can be used to identify bacterial pathogens in culture-negative endocarditis. Bacterial DNA can be isolated from surgically excised valve tissue or from blood collected in EDTA vials. Use of this technique is particularly helpful in identifying the bacterial pathogen in cases of culture-negative endocarditis. A case involving a 48-year-old man who presented with severe aortic regurgitation and a four-month prodrome of low-grade fever is reported. Blood and valve tissue cultures following valve replacement were negative. A valve tissue sample was sent for investigation with 16S DNA PCR, which successfully identified Streptococcus salivarius and was interpreted as the true diagnosis. A review of the literature suggests that 16S DNA PCR from valve tissue is a more sensitive diagnostic test than culture. It is also extremely specific, based on a sequence match of at least 500 base pairs.

  14. Quantification of HIV-1 DNA using real-time recombinase polymerase amplification.

    PubMed

    Crannell, Zachary Austin; Rohrman, Brittany; Richards-Kortum, Rebecca

    2014-06-17

    Although recombinase polymerase amplification (RPA) has many advantages for the detection of pathogenic nucleic acids in point-of-care applications, RPA has not yet been implemented to quantify sample concentration using a standard curve. Here, we describe a real-time RPA assay with an internal positive control and an algorithm that analyzes real-time fluorescence data to quantify HIV-1 DNA. We show that DNA concentration and the onset of detectable amplification are correlated by an exponential standard curve. In a set of experiments in which the standard curve and algorithm were used to analyze and quantify additional DNA samples, the algorithm predicted an average concentration within 1 order of magnitude of the correct concentration for all HIV-1 DNA concentrations tested. These results suggest that quantitative RPA (qRPA) may serve as a powerful tool for quantifying nucleic acids and may be adapted for use in single-sample point-of-care diagnostic systems.

  15. DNA-Dependent RNA Polymerase Detects Hidden Giant Viruses in Published Databanks

    PubMed Central

    Sharma, Vikas; Colson, Philippe; Giorgi, Roch; Pontarotti, Pierre; Raoult, Didier

    2014-01-01

    Environmental metagenomic studies show that there is a “dark matter,” composed of sequences not linked to any known organism, as determined mainly using ribosomal DNA (rDNA) sequences, which therefore ignore giant viruses. DNA-dependent RNA polymerase (RNAP) genes are universal in microbes and conserved in giant viruses and may replace rDNA for identifying microbes. We found while reconstructing RNAP subunit 2 (RNAP2) phylogeny that a giant virus sequenced together with the genome of a large eukaryote, Hydra magnipapillata, has been overlooked. To explore the dark matter, we used viral RNAP2 and reconstructed putative ancestral RNAP2, which were significantly superior in detecting distant clades than current sequences, and we revealed two additional unknown mimiviruses, misclassified as an euryarchaeote and an oomycete plant pathogen, and detected unknown putative viral clades. We suggest using RNAP systematically to decipher the black matter and identify giant viruses. PMID:24929085

  16. DNA polymerase θ (POLQ), double-strand break repair, and cancer.

    PubMed

    Wood, Richard D; Doublié, Sylvie

    2016-08-01

    DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed "alternative end-joining" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. "Signatures" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization. PMID:27264557

  17. Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, ι, and κ but not DNA polymerase ζ

    PubMed Central

    Yoon, Jung-Hoon; Park, Jeseong; Conde, Juan; Wakamiya, Maki; Prakash, Louise; Prakash, Satya

    2015-01-01

    Translesion synthesis (TLS) DNA polymerases (Pols) promote replication through DNA lesions; however, little is known about the protein factors that affect their function in human cells. In yeast, Rev1 plays a noncatalytic role as an indispensable component of Polζ, and Polζ together with Rev1 mediates a highly mutagenic mode of TLS. However, how Rev1 functions in TLS and mutagenesis in human cells has remained unclear. Here we determined the role of Rev1 in TLS opposite UV lesions in human and mouse fibroblasts and showed that Rev1 is indispensable for TLS mediated by Polη, Polι, and Polκ but is not required for TLS by Polζ. In contrast to its role in mutagenic TLS in yeast, Rev1 promotes predominantly error-free TLS opposite UV lesions in humans. The identification of Rev1 as an indispensable scaffolding component for Polη, Polι, and Polκ, which function in TLS in highly specialized ways opposite a diverse array of DNA lesions and act in a predominantly error-free manner, implicates a crucial role for Rev1 in the maintenance of genome stability in humans. PMID:26680302

  18. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time.

    PubMed

    Robinson, Andrew; McDonald, John P; Caldas, Victor E A; Patel, Meghna; Wood, Elizabeth A; Punter, Christiaan M; Ghodke, Harshad; Cox, Michael M; Woodgate, Roger; Goodman, Myron F; van Oijen, Antoine M

    2015-08-01

    Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.

  19. Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse.

    PubMed

    Perera, Lalith; Freudenthal, Bret D; Beard, William A; Shock, David D; Pedersen, Lee G; Wilson, Samuel H

    2015-09-22

    DNA polymerases facilitate faithful insertion of nucleotides, a central reaction occurring during DNA replication and repair. DNA synthesis (forward reaction) is "balanced," as dictated by the chemical equilibrium by the reverse reaction of pyrophosphorolysis. Two closely spaced divalent metal ions (catalytic and nucleotide-binding metals) provide the scaffold for these reactions. The catalytic metal lowers the pKa of O3' of the growing primer terminus, and the nucleotide-binding metal facilitates substrate binding. Recent time-lapse crystallographic studies of DNA polymerases have identified an additional metal ion (product metal) associated with pyrophosphate formation, leading to the suggestion of its possible involvement in the reverse reaction. Here, we establish a rationale for a role of the product metal using quantum mechanical/molecular mechanical calculations of the reverse reaction in the confines of the DNA polymerase β active site. Additionally, site-directed mutagenesis identifies essential residues and metal-binding sites necessary for pyrophosphorolysis. The results indicate that the catalytic metal site must be occupied by a magnesium ion for pyrophosphorolysis to occur. Critically, the product metal site is occupied by a magnesium ion early in the pyrophosphorolysis reaction path but must be removed later. The proposed dynamic nature of the active site metal ions is consistent with crystallographic structures. The transition barrier for pyrophosphorolysis was estimated to be significantly higher than that for the forward reaction, consistent with kinetic activity measurements of the respective reactions. These observations provide a framework to understand how ions and active site changes could modulate the internal chemical equilibrium of a reaction that is central to genome stability.

  20. Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse

    PubMed Central

    Perera, Lalith; Freudenthal, Bret D.; Beard, William A.; Shock, David D.; Pedersen, Lee G.; Wilson, Samuel H.

    2015-01-01

    DNA polymerases facilitate faithful insertion of nucleotides, a central reaction occurring during DNA replication and repair. DNA synthesis (forward reaction) is “balanced,” as dictated by the chemical equilibrium by the reverse reaction of pyrophosphorolysis. Two closely spaced divalent metal ions (catalytic and nucleotide-binding metals) provide the scaffold for these reactions. The catalytic metal lowers the pKa of O3′ of the growing primer terminus, and the nucleotide-binding metal facilitates substrate binding. Recent time-lapse crystallographic studies of DNA polymerases have identified an additional metal ion (product metal) associated with pyrophosphate formation, leading to the suggestion of its possible involvement in the reverse reaction. Here, we establish a rationale for a role of the product metal using quantum mechanical/molecular mechanical calculations of the reverse reaction in the confines of the DNA polymerase β active site. Additionally, site-directed mutagenesis identifies essential residues and metal-binding sites necessary for pyrophosphorolysis. The results indicate that the catalytic metal site must be occupied by a magnesium ion for pyrophosphorolysis to occur. Critically, the product metal site is occupied by a magnesium ion early in the pyrophosphorolysis reaction path but must be removed later. The proposed dynamic nature of the active site metal ions is consistent with crystallographic structures. The transition barrier for pyrophosphorolysis was estimated to be significantly higher than that for the forward reaction, consistent with kinetic activity measurements of the respective reactions. These observations provide a framework to understand how ions and active site changes could modulate the internal chemical equilibrium of a reaction that is central to genome stability. PMID:26351676

  1. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time

    PubMed Central

    Robinson, Andrew; McDonald, John P.; Caldas, Victor E. A.; Patel, Meghna; Wood, Elizabeth A.; Punter, Christiaan M.; Ghodke, Harshad; Cox, Michael M.; Woodgate, Roger; Goodman, Myron F.; van Oijen, Antoine M.

    2015-01-01

    Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD′2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD′. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD′2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. PMID:26317348

  2. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time.

    PubMed

    Robinson, Andrew; McDonald, John P; Caldas, Victor E A; Patel, Meghna; Wood, Elizabeth A; Punter, Christiaan M; Ghodke, Harshad; Cox, Michael M; Woodgate, Roger; Goodman, Myron F; van Oijen, Antoine M

    2015-08-01

    Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. PMID:26317348

  3. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    PubMed

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  4. Contiguous 2,2,4-triamino-5(2H)-oxazolone obstructs DNA synthesis by DNA polymerases α, β, η, ι, κ, REV1 and Klenow Fragment exo-, but not by DNA polymerase ζ.

    PubMed

    Suzuki, Masayo; Kino, Katsuhito; Kawada, Taishu; Oyoshi, Takanori; Morikawa, Masayuki; Kobayashi, Takanobu; Miyazawa, Hiroshi

    2016-03-01

    Guanine is the most easily oxidized of the four DNA bases, and contiguous guanines (GG) in a sequence are more readily oxidized than a single guanine in a sequence. Continued oxidation of GGs results in a contiguous oxidized guanine lesion. Two contiguous 2,5-diamino-4H-imidazol-4-ones, an oxidized form of guanine that hydrolyses to 2,2,4-triamino-5(2H)-oxazolone (Oz), are detected following the oxidation of GG. In this study, we analysed translesion synthesis (TLS) across two contiguous Oz molecules (OzOz) using Klenow Fragment exo(-) (KF exo(-)) and DNA polymerases (Pols) α, β, ζ, η, ι, κ and REV1. We found that KF exo(-) and Pols α, β, ι and REV1 inserted one nucleotide opposite the 3' Oz of OzOz and stalled at the subsequent extension, and that Pol κ incorporated no nucleotide. Pol η only inefficiently elongated the primer up to full-length across OzOz; the synthesis of most DNA strands stalled at the 3' or 5' Oz of OzOz. Surprisingly, however, Pol ζ efficiently extended the primer up to full-length across OzOz, unlike the other DNA polymerases, but catalysed error-prone nucleotide incorporation. We therefore believe that Pol ζ is required for efficient TLS of OzOz. These results show that OzOz obstructs DNA synthesis by DNA polymerases except Pol ζ.

  5. Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions

    PubMed Central

    Kim, Sung-Kun; Castro, Aaron; Kim, Edward S.; Dinkel, Austin P.; Liu, Xiaoyun; Castro, Miguel

    2016-01-01

    Modified nucleosides have the potential to inhibit DNA polymerases for the treatment of viral infections and cancer. With the hope of developing potent drug candidates by the modification of the 2’,4’-position of the ribose with the inclusion of a bridge, efforts were focused on the inhibition of Taq DNA polymerase using quantitative real time PCR, and the results revealed the significant inhibitory effects of 2’,4’-bridged thymidine nucleoside on the polymerase. Study on the mode of inhibition revealed the competitive mechanism with which the 2’,4’-bridged thymidine operates. With a Ki value of 9.7 ± 1.1 μM, the 2’,4’-bridged thymidine proved to be a very promising inhibitor. Additionally, docking analysis showed that all the nucleosides including 2’,4’-bridged thymidine were able to dock in the active site, indicating that the substrate analogs reflect a structural complementarity to the enzyme active site. The analysis also provided evidence that Asp610 was a key binding site for 2’,4’-bridged thymidine. Molecular dynamics (MD) simulations were performed to further understand the conformational variations of the binding. The root-mean-square deviation (RMSD) values for the peptide backbone of the enzyme and the nitrogenous base of the inhibitor stabilized within 0.8 and 0.2 ns, respectively. Furthermore, the MD analysis indicates substantial conformational change in the ligand (inhibitor) as the nitrogenous base rotated anticlockwise with respect to the sugar moiety, complemented by the formation of several new hydrogen bonds where Arg587 served as a pivot axis for binding formation. In conclusion, the active site inhibition of Taq DNA polymerase by 2’,4’-bridged thymidine suggests the potential of bridged nucleosides as drug candidates. PMID:26820310

  6. 3' -> 5' Exonucleases of DNA Polymerases ε and δ Correct Base Analog Induced DNA Replication Errors on opposite DNA Strands in Saccharomyces Cerevisiae

    PubMed Central

    Shcherbakova, P. V.; Pavlov, Y. I.

    1996-01-01

    The base analog 6-N-hydroxylaminopurine (HAP) induces bidirectional GC -> AT and AT -> GC transitions that are enhanced in DNA polymerase ε and δ 3' -> 5' exonuclease-deficient yeast mutants, pol2-4 and pol3-01, respectively. We have constructed a set of isogenic strains to determine whether the DNA polymerases δ and ε contribute equally to proofreading of replication errors provoked by HAP during leading and lagging strand DNA synthesis. Site-specific GC -> AT and AT -> GC transitions in a Pol(+), pol2-4 or pol3-01 genetic background were scored as reversions of ura3 missense alleles. At each site, reversion was increased in only one proofreading-deficient mutant, either pol2-4 or pol3-01, depending on the DNA strand in which HAP incorporation presumably occurred. Measurement of the HAP-induced reversion frequency of the ura3 alleles placed into chromosome III near to the defined active replication origin ARS306 in two orientations indicated that DNA polymerases ε and δ correct HAP-induced DNA replication errors on opposite DNA strands. PMID:8849882

  7. Mechanistic Basis for the Bypass of a Bulky DNA Adduct Catalyzed by a Y-Family DNA Polymerase.

    PubMed

    Vyas, Rajan; Efthimiopoulos, Georgia; Tokarsky, E John; Malik, Chanchal K; Basu, Ashis K; Suo, Zucai

    2015-09-23

    1-Nitropyrene (1-NP), an environmental pollutant, induces DNA damage in vivo and is considered to be carcinogenic. The DNA adducts formed by the 1-NP metabolites stall replicative DNA polymerases but are presumably bypassed by error-prone Y-family DNA polymerases at the expense of replication fidelity and efficiency in vivo. Our running start assays confirmed that a site-specifically placed 8-(deoxyguanosin-N(2)-yl)-1-aminopyrene (dG(1,8)), one of the DNA adducts derived from 1-NP, can be bypassed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), although this representative Y-family enzyme was paused strongly by the lesion. Pre-steady-state kinetic assays were employed to determine the low nucleotide incorporation fidelity and establish a minimal kinetic mechanism for the dG(1,8) bypass by Dpo4. To reveal a structural basis for dCTP incorporation opposite dG(1,8), we solved the crystal structures of the complexes of Dpo4 and DNA containing a templating dG(1,8) lesion in the absence or presence of dCTP. The Dpo4·DNA-dG(1,8) binary structure shows that the aminopyrene moiety of the lesion stacks against the primer/template junction pair, while its dG moiety projected into the cleft between the Finger and Little Finger domains of Dpo4. In the Dpo4·DNA-dG(1,8)·dCTP ternary structure, the aminopyrene moiety of the dG(1,8) lesion, is sandwiched between the nascent and junction base pairs, while its base is present in the major groove. Moreover, dCTP forms a Watson-Crick base pair with dG, two nucleotides upstream from the dG(1,8) site, creating a complex for "-2" frameshift mutation. Mechanistically, these crystal structures provide additional insight into the aforementioned minimal kinetic mechanism.

  8. A mass spectrometry-based approach for identifying novel DNA polymerase substrates from a pool of dNTP analogues

    PubMed Central

    Kincaid, Kristi; Kuchta, Robert D.

    2006-01-01

    There has been a long-standing interest in the discovery of unnatural nucleotides that can be incorporated into DNA by polymerases. However, it is difficult to predict which nucleotide analogs will prove to have biological relevance. Therefore, we have developed a new screening method to identify novel substrates for DNA polymerases. This technique uses the polymerase itself to select a dNTP from a pool of potential substrates via incorporation onto a short oligonucleotide. The unnatural nucleotide(s) is then identified by high-resolution mass spectrometry. By using a DNA polymerase as a selection tool, only the biologically relevant members of a small nucleotide library can be quickly determined. We have demonstrated that this method can be used to discover unnatural base pairs in DNA with a detection threshold of ≤10% incorporation. PMID:16945949

  9. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases

    SciTech Connect

    Moore, P.D.; Bose, K.K.; Rabkin, S.D.; Strauss, B.S.

    1981-01-01

    In vitro DNA synthesis on a phi X174 template primed with a restriction fragment and catalyzed by the Escherichia coli DNA polymerase I large (Klenow) fragment (pol I) terminates at the nucleotide preceding a site that has been altered by ultraviolet irradiation or treatment with N-acetylaminofluorene. Termination on ultraviolet-irradiated templates is similar when synthesis is catalyzed by E. coli DNA polymerase III holoenzyme (pol III), phage T4DNA polymerase a polymerase ..cap alpha.. from human lymphoma cells, or avian myeloblastosis virus reverse transcriptase. 3' ..-->.. 5' exonuclease activity cannot be detected in the reverse transcriptase and DNA polymerase ..cap alpha.. preparations. On N-acetylaminofluorene templates, pol I, pol III, and T4 polymerase reactions terminate immediately preceding the lesion, whereas reverse transcriptase-catalyzed reactions and, at some positions in the sequence, polymerase ..cap alpha..-catalyzed reactions terminate at the site of the lesion. Substitution of Mn/sup 2 +/ for Mg/sup 2 +/ changes the pattern of pol I-catalyzed termination sites. The data sugest that termination is a complicated process that does not depend exclusively on the 3' ..-->.. 5' exonuclease activity associated with many polymerases.

  10. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases.

    PubMed

    Moore, P D; Bose, K K; Rabkin, S D; Strauss, B S

    1981-01-01

    In vitro DNA synthesis on a phi X174 template primed with a restriction fragment and catalyzed by the Escherichia coli DNA polymerase I large (Klenow) fragment (pol I) terminates at the nucleotide preceding a site that has been altered by ultraviolet irradiation or treatment with N-acetylaminofluorene. Termination on ultraviolet-irradiated templates is similar when synthesis is catalyzed by E. coli DNA polymerase III holoenzyme (pol III), phage T4 DNA polymerase, a polymerase alpha from human lymphoma cells, or avian myeloblastosis virus reverse transcriptase. 3' leads to 5' exonuclease activity cannot be detected in the reverse transcriptase and DNA polymerase alpha preparations. On N-acetylaminofluorene templates, pol I, pol III, and T4 polymerase reactions terminate immediately preceding the lesion, whereas reverse transcriptase-catalyzed reactions and, at some positions in the sequence, polymerase alpha-catalyzed reactions terminate at the site of the lesion. Substitution of Mn2+ for Mg2+ changes the pattern of pol I-catalyzed termination sites. The data suggest that termination is a complicated process that does not depend exclusively on the 3' leads to 5' exonuclease activity associated with many polymerases.

  11. Synthesis of a non-radioactive hepatitis B virus DNA probe from human serum by the polymerase chain reaction.

    PubMed

    Rodríguez-Frías, F; Arranz, J A; Buti, M; Esteban, R; Jardí, R

    1994-05-01

    A method for synthesizing probes for detecting hepatitis B virus DNA in serum was developed. It uses DNA extracted from the serum of an hepatitis B virus carrier as target, and digoxigenin-11-dUTP incorporated in DNA sequences during the polymerase chain reaction as tracer. Using a spot hybridization assay, the sensitivity and specificity of the digoxigenin-labelled DNA probe were compared with two standard hepatitis B virus DNA probes, synthesized with cloned hepatitis B virus DNA and labelled either with digoxigenin or 32P by random priming. Data obtained from the three methods showed an excellent correlation. Thus, hepatitis B virus DNA extracted from human serum and labelled by polymerase chain reaction may be considered a suitable alternative to cloned DNA. It provides reliable probes and eliminates the need for facilities and personnel dedicated to the manipulation of clones. These advantages will allow a wider application of hepatitis B virus DNA testing in clinical practice.

  12. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis.

    PubMed

    Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J

    2016-03-29

    In eukaryotes, DNA polymerase δ (pol δ) is responsible for replicating the lagging strand template and anchors to the proliferating cell nuclear antigen (PCNA) sliding clamp to form a holoenzyme. The stability of this complex is integral to every aspect of lagging strand replication. Most of our understanding comes from Saccharomyces cerevisae where the extreme stability of the pol δ holoenzyme ensures that every nucleobase within an Okazaki fragment is faithfully duplicated before dissociation but also necessitates an active displacement mechanism for polymerase recycling and exchange. However, the stability of the human pol δ holoenzyme is unknown. We designed unique kinetic assays to analyze the processivity and stability of the pol δ holoenzyme. Surprisingly, the results indicate that human pol δ maintains a loose association with PCNA while replicating DNA. Such behavior has profound implications on Okazaki fragment synthesis in humans as it limits the processivity of pol δ on undamaged DNA and promotes the rapid dissociation of pol δ from PCNA on stalling at a DNA lesion.

  13. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template.

    PubMed

    Pai, Dave A; Kaplan, Craig D; Kweon, Hye Kyong; Murakami, Kenji; Andrews, Philip C; Engelke, David R

    2014-05-01

    Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template.

  14. Stable RNA-DNA-RNA polymerase complexes can accompany formation of a single phosphodiester bond.

    PubMed

    Sylvester, J E; Cashel, M

    1980-03-18

    Incubation of RNA polymerase with poly[d(A-T)n] template results in a binary enzyme-DNA complex. Further addition of the dinucleotide UpA and [alpha-32P]UTP results in catalytic formation of the labeled trinucleotide UpApU until substrate exhaustion. In contrast, incubation of binary enzyme-DNA complexes with ApU and [alpha-32P]ATP results in labeled ApUpA formation to an extent that is stoichiometric with the amount of enzyme present despite an excess of substrates. The occurrence of ApUpA in a stable DNA-enzyme-RNA ternary complex is shown by gel exclusion chromatography, Millipore filtration, and the ability of ternary complexes to support subsequent RNA chain elongation. Radioactivity is not bound to Millipore filters when purified, labeled ApUpA is added to enzyme-DNA binary complexes. Hence, phosphodiester bond formation is required for stable ternary complex formation. The absence of the delta subunit of RNA polymerase or the addition of rifampicin to the reaction before ribonucleotide substrates results in catalytic ApUpA formation instead of stable ternary complexes.

  15. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae

    PubMed Central

    Donigan, Katherine A.; Cerritelli, Susana M.; McDonald, John P.; Vaisman, Alexandra; Crouch, Robert J.; Woodgate, Roger

    2015-01-01

    DNA polymerase η (pol η) is best characterized for its ability to perform accurate and efficient translesion DNA synthesis (TLS) through cyclobutane pyrimidine dimers (CPDs). To ensure accurate bypass the polymerase is not only required to select the correct base, but also discriminate between NTPs and dNTPs. Most DNA polymerases have a conserved “steric gate” residue which functions to prevent incorporation of NMPs during DNA synthesis. Here, we demonstrate that the Phe35 residue of S. cerevisiae pol η functions as a steric gate to limit the use of ribonucleotides during polymerization both in vitro and in vivo. Unlike the related polι enzyme, wild-type pol η does not readily incorporate NMPs in vitro. In contrast, a pol η F35A mutant incorporates NMPs on both damaged and undamaged DNA in vitro with a high degree of base selectivity. An S. cerevisiae strain expressing pol η F35A (rad30-F35A) that is also deficient for nucleotide excision repair (rad1Δ) and the TLS polymerase, pol ζ (rev3Δ), is extremely sensitive to UV-light. The sensitivity is due, in part, to RNaseH2 activity, as an isogenic rnh201Δ strain is roughly 50-fold more UV-resistant than its RNH201+ counterpart. Interestingly the rad1Δ rev3Δ rad30-F35A rnh201Δ strain exhibits a significant increase in the extent of spontaneous mutagenesis with a spectrum dominated by 1 bp deletions at runs of template Ts. We hypothesize that the increased mutagenesis is due to rA incorporation at these sites and that the short poly rA tract is subsequently repaired in an error-prone manner by a novel repair pathway that is specifically targeted to polyribonucleotide tracks. These data indicate that under certain conditions, pol η can compete with the cell’s replicases and gain access to undamaged genomic DNA. Such observations are consistent with a role for pol η in replicating common fragile sites (CFS) in human cells. PMID:26340535

  16. Structure of Human DNL Polymerase k Inserting dATP Opposite an 8-OxoG DNA Lesion

    SciTech Connect

    Vasquez-Del Carpio, R.; Silverstein, T; Lone, S; Swan, M; Choudhury, J; Johnson, R; Pratkash, S; Aggarwal, A

    2009-01-01

    The structure we present here is the first for a eukaryotic translesion synthesis (TLS) DNA polymerase with an 8-oxoG:A base pair in the active site. The structure shows why Pol? is more efficient at inserting an A opposite the 8-oxoG lesion than a C. The structure also provides a basis for why Pol? is more efficient at inserting an A opposite the lesion than other Y-family DNA polymerases.

  17. Regulation of Human RNA Polymerase III Transcription by DNMT1 and DNMT3a DNA Methyltransferases*

    PubMed Central

    Selvakumar, Tharakeswari; Gjidoda, Alison; Hovde, Stacy L.; Henry, R. William

    2012-01-01

    The human small nuclear RNA (snRNA) and small cytoplasmic RNA (scRNA) gene families encode diverse non-coding RNAs that influence cellular growth and division. Many snRNA and scRNA genes are related via their compact and yet powerful promoters that support RNA polymerase III transcription. We have utilized the human U6 snRNA gene family to examine the mechanism for regulated transcription of these potent transcription units. Analysis of nine U6 family members showed enriched CpG density within the promoters of actively transcribed loci relative to inert genes, implying a relationship between gene potency and DNA methylation. Indeed, both pharmacological inhibition of DNA methyltransferase (DNMT) activity and the forced diminution of DNMT-1, DNMT-3a, and DNMT-3b by siRNA targeting resulted in increased U6 levels in asynchronously growing MCF7 adenocarcinoma cells. In vitro transcription assays further showed that template methylation impedes U6 transcription by RNA polymerase III. Both DNMT-1 and DNMT-3a were detected at the U6-1 locus by chromatin immunoprecipitation directly linking these factors to RNA polymerase III regulation. Despite this association, the endogenous U6-1 locus was not substantially methylated in actively growing cells. However, both DNMT occupancy and low frequency methylation were correlated with increased Retinoblastoma tumor suppressor (RB) expression, suggesting that the RB status can influence specific epigenetic marks. PMID:22219193

  18. Cytosolic DNA triggers mitochondrial apoptosis via DNA damage signaling proteins independently of AIM2 and RNA polymerase III.

    PubMed

    Wenzel, Michael; Wunderlich, Michael; Besch, Robert; Poeck, Hendrik; Willms, Simone; Schwantes, Astrid; Kremer, Melanie; Sutter, Gerd; Endres, Stefan; Schmidt, Andreas; Rothenfusser, Simon

    2012-01-01

    A key host response to limit microbial spread is the induction of cell death when foreign nucleic acids are sensed within infected cells. In mouse macrophages, transfected DNA or infection with modified vaccinia virus Ankara (MVA) can trigger cell death via the absent in melanoma 2 (AIM2) inflammasome. In this article, we show that nonmyeloid human cell types lacking a functional AIM2 inflammasome still die in response to cytosolic delivery of different DNAs or infection with MVA. This cell death induced by foreign DNA is independent of caspase-8 and carries features of mitochondrial apoptosis: dependence on BAX, APAF-1, and caspase-9. Although it does not require the IFN pathway known to be triggered by infection with MVA or transfected DNA via polymerase III and retinoid acid-induced gene I-like helicases, it shows a strong dependence on components of the DNA damage signaling pathway: cytosolic delivery of DNA or infection with MVA leads to phosphorylation of p53 (serines 15 and 46) and autophosphorylation of ataxia telangiectasia mutated (ATM); depleting p53 or ATM with small interfering RNA or inhibiting the ATM/ATM-related kinase family by caffeine strongly reduces apoptosis. Taken together, our findings suggest that a pathway activating DNA damage signaling plays an important independent role in detecting intracellular foreign DNA, thereby complementing the induction of IFN and activation of the AIM2 inflammasome. PMID:22140256

  19. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome

    PubMed Central

    Perera, Rajika L.; van Deursen, Frederick; Evrin, Cecile; Ivanova, Marina E.; Kilkenny, Mairi L.; Renault, Ludovic; Kjaer, Svend; Matak-Vinković, Dijana; Labib, Karim; Costa, Alessandro; Pellegrini, Luca

    2014-01-01

    Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks1, to avoid stalling of the replication machinery and consequent genomic instability2-4. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a β-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the N-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new paradigm for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of E. coli5-8. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork. PMID:24805245

  20. Evidence for the kinetic partitioning of polymerase activity on G-quadruplex DNA

    PubMed Central

    Eddy, Sarah; Maddukuri, Leena; Ketkar, Amit; Zafar, Maroof K.; Henninger, Erin E.; Pursell, Zachary F.; Eoff, Robert L.

    2015-01-01

    We have investigated the action of the human DNA polymerase epsilon (hpol ε) and eta (hpol η) catalytic cores on G-quadruplex (G4) DNA substrates derived from the promoter of the c-MYC proto-oncogene. The translesion enzyme hpol η exhibits a 6.2-fold preference for binding to G4 DNA relative to non-G4 DNA, while hpol ε binds both G4 and non-G4 substrates with near equal affinity. Kinetic analysis of single-nucleotide insertion by hpol η reveals that it is able to maintain greater than 25% activity on G4 substrates compared to non-G4 DNA substrates, even when the primer template junction is positioned directly adjacent to G22 (the first tetrad-associated guanine in the c-MYC G4 motif). Surprisingly, hpol η fidelity increases ~15-fold when copying G22. By way of comparison, hpol ε retains ~4% activity and has a 33-fold decrease in fidelity when copying G22. The fidelity of hpol η is ~100-fold more accurate than hpol ε when comparing the mis-insertion frequencies of the two enzymes opposite a tetrad-associated guanine. The kinetic differences observed for the B- and Y-family pols on G4 DNA support a model where a simple kinetic switch between replicative and TLS pols could help govern fork progress during G4 DNA replication. PMID:25903680

  1. The Leu22Pro tumor-associated variant of DNA polymerase beta is dRP lyase deficient.

    PubMed

    Dalal, Shibani; Chikova, Anna; Jaeger, Joachim; Sweasy, Joann B

    2008-02-01

    Approximately 30% of human tumors characterized to date express DNA polymerase beta (pol beta) variant proteins. Two of the polymerase beta cancer-associated variants are sequence-specific mutators, and one of them binds to DNA but has no polymerase activity. The Leu22Pro (L22P) DNA polymerase beta variant was identified in a gastric carcinoma. Leu22 resides within the 8 kDa amino terminal domain of DNA polymerase beta, which exhibits dRP lyase activity. This domain catalyzes the removal of deoxyribose phosphate during short patch base excision repair. We show that this cancer-associated variant has very little dRP lyase activity but retains its polymerase activity. Although residue 22 has no direct contact with the DNA, we report here that the L22P variant has reduced DNA-binding affinity. The L22P variant protein is deficient in base excision repair. Molecular dynamics calculations suggest that alteration of Leu22 to Pro changes the local packing, the loop connecting helices 1 and 2 and the overall juxtaposition of the helices within the N-terminal domain. This in turn affects the shape of the binding pocket that is required for efficient dRP lyase catalysis. PMID:18039710

  2. The 29 DNA Polymerase: Protein-Primer Structure Suggests a Model of the Initiation to Elongation Transition

    SciTech Connect

    Kamtekar,S.; Berman, A.; Wang, J.; Lazaro, J.; Vega, M.; Blanco, L.; Salas, M.; Steitz, T.

    2006-01-01

    The absolute requirement for primers in the initiation of DNA synthesis poses a problem for replicating the ends of linear chromosomes. The DNA polymerase of bacteriophage {phi}29 solves this problem by using a serine hydroxyl of terminal protein to prime replication. The 3.0 Angstroms resolution structure shows one domain of terminal protein making no interactions, a second binding the polymerase and a third domain containing the priming serine occupying the same binding cleft in the polymerase as duplex DNA does during elongation. Thus, the progressively elongating DNA duplex product must displace this priming domain. Further, this heterodimer of polymerase and terminal protein cannot accommodate upstream template DNA, thereby explaining its specificity for initiating DNA synthesis only at the ends of the bacteriophage genome. We propose a model for the transition from the initiation to the elongation phases in which the priming domain of terminal protein moves out of the active site as polymerase elongates the primer strand. The model indicates that terminal protein should dissociate from polymerase after the incorporation of approximately six nucleotides.

  3. DNA polymerase κ-dependent DNA synthesis at stalled replication forks is important for CHK1 activation

    PubMed Central

    Bétous, Rémy; Pillaire, Marie-Jeanne; Pierini, Laura; van der Laan, Siem; Recolin, Bénédicte; Ohl-Séguy, Emma; Guo, Caixia; Niimi, Naoko; Grúz, Petr; Nohmi, Takehiko; Friedberg, Errol; Cazaux, Christophe; Maiorano, Domenico; Hoffmann, Jean-Sébastien

    2013-01-01

    Formation of primed single-stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR-mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA-mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y-family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9-1-1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9-1-1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells. PMID:23799366

  4. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes.

    PubMed

    Sykora, Peter; Misiak, Magdalena; Wang, Yue; Ghosh, Somnath; Leandro, Giovana S; Liu, Dong; Tian, Jane; Baptiste, Beverly A; Cong, Wei-Na; Brenerman, Boris M; Fang, Evandro; Becker, Kevin G; Hamilton, Royce J; Chigurupati, Soumya; Zhang, Yongqing; Egan, Josephine M; Croteau, Deborah L; Wilson, David M; Mattson, Mark P; Bohr, Vilhelm A

    2015-01-01

    We explore the role of DNA damage processing in the progression of cognitive decline by creating a new mouse model. The new model is a cross of a common Alzheimer's disease (AD) mouse (3xTgAD), with a mouse that is heterozygous for the critical DNA base excision repair enzyme, DNA polymerase β. A reduction of this enzyme causes neurodegeneration and aggravates the AD features of the 3xTgAD mouse, inducing neuronal dysfunction, cell death and impairing memory and synaptic plasticity. Transcriptional profiling revealed remarkable similarities in gene expression alterations in brain tissue of human AD patients and 3xTg/Polβ(+/-) mice including abnormalities suggestive of impaired cellular bioenergetics. Our findings demonstrate that a modest decrement in base excision repair capacity can render the brain more vulnerable to AD-related molecular and cellular alterations.

  5. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes.

    PubMed

    Sykora, Peter; Misiak, Magdalena; Wang, Yue; Ghosh, Somnath; Leandro, Giovana S; Liu, Dong; Tian, Jane; Baptiste, Beverly A; Cong, Wei-Na; Brenerman, Boris M; Fang, Evandro; Becker, Kevin G; Hamilton, Royce J; Chigurupati, Soumya; Zhang, Yongqing; Egan, Josephine M; Croteau, Deborah L; Wilson, David M; Mattson, Mark P; Bohr, Vilhelm A

    2015-01-01

    We explore the role of DNA damage processing in the progression of cognitive decline by creating a new mouse model. The new model is a cross of a common Alzheimer's disease (AD) mouse (3xTgAD), with a mouse that is heterozygous for the critical DNA base excision repair enzyme, DNA polymerase β. A reduction of this enzyme causes neurodegeneration and aggravates the AD features of the 3xTgAD mouse, inducing neuronal dysfunction, cell death and impairing memory and synaptic plasticity. Transcriptional profiling revealed remarkable similarities in gene expression alterations in brain tissue of human AD patients and 3xTg/Polβ(+/-) mice including abnormalities suggestive of impaired cellular bioenergetics. Our findings demonstrate that a modest decrement in base excision repair capacity can render the brain more vulnerable to AD-related molecular and cellular alterations. PMID:25552414

  6. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes

    PubMed Central

    Sykora, Peter; Misiak, Magdalena; Wang, Yue; Ghosh, Somnath; Leandro, Giovana S.; Liu, Dong; Tian, Jane; Baptiste, Beverly A.; Cong, Wei-Na; Brenerman, Boris M.; Fang, Evandro; Becker, Kevin G.; Hamilton, Royce J.; Chigurupati, Soumya; Zhang, Yongqing; Egan, Josephine M.; Croteau, Deborah L.; Wilson, David M.; Mattson, Mark P.; Bohr, Vilhelm A.

    2015-01-01

    We explore the role of DNA damage processing in the progression of cognitive decline by creating a new mouse model. The new model is a cross of a common Alzheimer's disease (AD) mouse (3xTgAD), with a mouse that is heterozygous for the critical DNA base excision repair enzyme, DNA polymerase β. A reduction of this enzyme causes neurodegeneration and aggravates the AD features of the 3xTgAD mouse, inducing neuronal dysfunction, cell death and impairing memory and synaptic plasticity. Transcriptional profiling revealed remarkable similarities in gene expression alterations in brain tissue of human AD patients and 3xTg/Polβ+/− mice including abnormalities suggestive of impaired cellular bioenergetics. Our findings demonstrate that a modest decrement in base excision repair capacity can render the brain more vulnerable to AD-related molecular and cellular alterations. PMID:25552414

  7. Relevance of GC content to the conservation of DNA polymerase III/mismatch repair system in Gram-positive bacteria

    PubMed Central

    Akashi, Motohiro; Yoshikawa, Hirofumi

    2013-01-01

    The mechanism of DNA replication is one of the driving forces of genome evolution. Bacterial DNA polymerase III, the primary complex of DNA replication, consists of PolC and DnaE. PolC is conserved in Gram-positive bacteria, especially in the Firmicutes with low GC content, whereas DnaE is widely conserved in most Gram-negative and Gram-positive bacteria. PolC contains two domains, the 3′-5′exonuclease domain and the polymerase domain, while DnaE only possesses the polymerase domain. Accordingly, DnaE does not have the proofreading function; in Escherichia coli, another enzyme DnaQ performs this function. In most bacteria, the fidelity of DNA replication is maintained by 3′-5′ exonuclease and a mismatch repair (MMR) system. However, we found that most Actinobacteria (a group of Gram-positive bacteria with high GC content) appear to have lost the MMR system and chromosomes may be replicated by DnaE-type DNA polymerase III with DnaQ-like 3′-5′ exonuclease. We tested the mutation bias of Bacillus subtilis, which belongs to the Firmicutes and found that the wild type strain is AT-biased while the mutS-deletant strain is remarkably GC-biased. If we presume that DnaE tends to make mistakes that increase GC content, these results can be explained by the mutS deletion (i.e., deletion of the MMR system). Thus, we propose that GC content is regulated by DNA polymerase and MMR system, and the absence of polC genes, which participate in the MMR system, may be the reason for the increase of GC content in Gram-positive bacteria such as Actinobacteria. PMID:24062730

  8. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene

    PubMed Central

    Furukawa, Tomoyuki; Angelis, Karel J.; Britt, Anne B.

    2015-01-01

    The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway. PMID:26074930

  9. Molecular Structures of DNA-Dependent RNA Polymerases (II) from Calf Thymus and Rat Liver

    PubMed Central

    Weaver, R. F.; Blatti, S. P.; Rutter, W. J.

    1971-01-01

    DNA-dependent RNA polymerase II has been purified to high specific activity and apparent homogeneity from both calf thymus and rat liver. Two form II enzymes are present in rat-liver preparations, one with the molecular structure [(190,000)1(150,000)1(35,000)1(25,000)1], the other with a molecular structure of [(170,000)1(150,000)1(35,000)1(25,000)1] (molecular weights are within ±5% but the absolute values are approximate). Inclusion of a proteolytic inhibitor during the isolation procedure decreases the proportion of the molecule containing the 170,000 subunit. Calf-thymus RNA polymerase preparations typically exhibit four components on polyacrylamide gels that contain sodium dodecyl sulfate, with an apparent molecular structure of [(190,000)1(150,000)1(35,000)1(25,000)1]. In addition, some calf-thymus polymerase II preparations contain small quantities of the [(170,000)1(150,000)1(35,000)1(25,000)1] species; the quantity of this species may also be increased from less than 5% in the normal preparation to at least 40% in an “aged” preparation. Thus, the 170,000 subunit may be derived from the 190,000 subunit in both tissues. Until unequivocal evidence is obtained on this point, however, the possibility that the large subunits are unique species should not be eliminated. The general structural similarity of the eukaryotic RNA polymerase II with that of the prokaryotic polymerase suggests that the modes of action and regulation may be analogous. Images PMID:5289245

  10. Role of DNA-Dependent RNA Polymerases II and III in Transcription of the Adenovirus Genome Late in Productive Infection

    PubMed Central

    Weinmann, Roberto; Raskas, Heschel J.; Roeder, Robert G.

    1974-01-01

    DNA-dependent RNA polymerases I, II, and III were isolated and partially purified from KB (human) cells 18 hr after infection with adenovirus 2. As reported previously for the enzymes from other animal cells, RNA polymerase II was completely sensitive to low concentrations of α-amanitin (50% inhibition at 0.02 μg/ml), RNA polymerase III was completely sensitive to high concentrations of α-amanitin (50% inhibition at 20 μg/ml) and RNA polymerase I was totally resistant to concentrations of α-amanitin less than or equal to 200 μg/ml. RNA synthesis by the endogenous RNA polymerase activities in nuclei isolated from infected cells was completely sensitive to α-amanitin, thus suggesting that RNA polymerase I is not involved in viral DNA transcription even though it is present in these cells. The α-amanitin inhibition curve was biphasic and showed inflection points at about 0.02 and 20 μg/ml, suggesting the participation of both RNA polymerases II and III in the synthesis of RNA in these nuclei. Furthermore, at least a large fraction of the synthesis of the nuclear precursors to viral mRNA, monitored by hybridization to viral DNA, showed the same sensitivity to α-amanitin as did RNA polymerase II; and the synthesis of both viral 5.5S RNA and (presumably cellular) 5S RNA in the isolated nuclei exhibited the same sensitivity to α-amanitin as did purified RNA polymerase III. Thus, these data provide strong supporting evidence for previous studies which suggested the involvement of an RNA polymerase II in transcription of the adenovirus genome and demonstrate the role of an RNA polymerase III activity in the synthesis of viral 5.5S RNA and cellular 5S RNA. PMID:4530313

  11. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates.

    PubMed

    Güixens-Gallardo, Pedro; Hocek, Michal; Perlíková, Pavla

    2016-01-15

    A simple and elegant method for inhibition of non-templated nucleotide addition by DNA polymerases and for following DNA 3'-heterogeneity in enzymatic DNA synthesis by primer extension (PEX) is described. When template bearing ortho-twisted intercalating nucleic acid (ortho-TINA) at the 5'-end is used, non-templated nucleotide addition is reduced in both the A- and B-family DNA polymerases (KOD XL, KOD (exo-), Bst 2.0, Therminator, Deep Vent (exo-) and Taq). Formation of a single oligonucleotide product was observed with ortho-TINA modified template and KOD XL, KOD (exo-), Bst 2.0, Deep Vent (exo-) and Taq DNA polymerases. This approach can be applied to the synthesis of both unmodified and base-modified oligonucleotides. PMID:26707394

  12. The circular intracellular form of Epstein-Barr virus DNA is amplified by the virus-associated DNA polymerase.

    PubMed Central

    Shaw, J E

    1985-01-01

    Selective DNA extraction and hybridization procedures were used to estimate the relative number of covalently closed circular viral genomes in cultures of Epstein-Barr virus (EBV)-transformed cells. In virus-producing P3HR-1 cultures that were exposed for 11 days to phosphonoacetic acid or to acyclovir, the content of covalently closed circular EBV DNA was reduced ca. 70% relative to a control culture without drug. The EBV plasmid content of Raji, a virus nonproducer cell line, was not reduced by exposure to these compounds. When P3HR-1 cultures were exposed to 12-O-tetradecanoylphorbol-13-acetate, the number of circular genomes per cell increased. These findings indicate that two enzyme activities synthesize circular EBV DNA and that the virus-associated DNA polymerase synthesizes most of the circular EBV DNA in a virus producer culture. It is suggested that the circular genomes synthesized by the viral enzyme are intermediates in the syntheses of linear virus DNA. PMID:2983082

  13. DNA polymerase η modulates replication fork progression and DNA damage responses in platinum-treated human cells

    NASA Astrophysics Data System (ADS)

    Sokol, Anna M.; Cruet-Hennequart, Séverine; Pasero, Philippe; Carty, Michael P.

    2013-11-01

    Human cells lacking DNA polymerase η (polη) are sensitive to platinum-based cancer chemotherapeutic agents. Using DNA combing to directly investigate the role of polη in bypass of platinum-induced DNA lesions in vivo, we demonstrate that nascent DNA strands are up to 39% shorter in human cells lacking polη than in cells expressing polη. This provides the first direct evidence that polη modulates replication fork progression in vivo following cisplatin and carboplatin treatment. Severe replication inhibition in individual platinum-treated polη-deficient cells correlates with enhanced phosphorylation of the RPA2 subunit of replication protein A on serines 4 and 8, as determined using EdU labelling and immunofluorescence, consistent with formation of DNA strand breaks at arrested forks in the absence of polη. Polη-mediated bypass of platinum-induced DNA lesions may therefore represent one mechanism by which cancer cells can tolerate platinum-based chemotherapy.

  14. DNA polymerase η modulates replication fork progression and DNA damage responses in platinum-treated human cells.

    PubMed

    Sokol, Anna M; Cruet-Hennequart, Séverine; Pasero, Philippe; Carty, Michael P

    2013-11-20

    Human cells lacking DNA polymerase η (polη) are sensitive to platinum-based cancer chemotherapeutic agents. Using DNA combing to directly investigate the role of polη in bypass of platinum-induced DNA lesions in vivo, we demonstrate that nascent DNA strands are up to 39% shorter in human cells lacking polη than in cells expressing polη. This provides the first direct evidence that polη modulates replication fork progression in vivo following cisplatin and carboplatin treatment. Severe replication inhibition in individual platinum-treated polη-deficient cells correlates with enhanced phosphorylation of the RPA2 subunit of replication protein A on serines 4 and 8, as determined using EdU labelling and immunofluorescence, consistent with formation of DNA strand breaks at arrested forks in the absence of polη. Polη-mediated bypass of platinum-induced DNA lesions may therefore represent one mechanism by which cancer cells can tolerate platinum-based chemotherapy.

  15. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates.

    PubMed Central

    Li, Y.; Kong, Y.; Korolev, S.; Waksman, G.

    1998-01-01

    The crystal structures of the Klenow fragment of the Thermus aquaticus DNA polymerase I (Klentaq1) complexed with four deoxyribonucleoside triphosphates (dNTP) have been determined to 2.5 A resolution. The dNTPs bind adjacent to the O helix of Klentaq1. The triphosphate moieties are at nearly identical positions in all four complexes and are anchored by three positively charged residues, Arg659, Lys663, and Arg587, and by two polar residues, His639 and Gln613. The configuration of the base moieties in the Klentaq1/dNTP complexes demonstrates variability suggesting that dNTP binding is primarily determined by recognition and binding of the phosphate moiety. However, when superimposed on the Taq polymerase/blunt end DNA complex structure (Eom et al., 1996), two of the dNTP/Klentaq1 structures demonstrate appropriate stacking of the nucleotide base with the 3' end of the DNA primer strand, suggesting that at least in these two binary complexes, the observed dNTP conformations are functionally relevant. PMID:9605316

  16. Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions

    DOE PAGESBeta

    Walmacq, Celine; Wang, Lanfeng; Chong, Jenny; Scibelli, Kathleen; Lubkowska, Lucyna; Gnatt, Averell; Brooks, Philip J.; Wang, Dong; Kashlev, Mikhail

    2015-01-20

    In human cells, the oxidative DNA lesion 8,5'-cyclo-2'-deoxyadenosine (CydA) induces prolonged stalling of RNA polymerase II (Pol II) followed by transcriptional bypass, generating both error-free and mutant transcripts with AMP misincorporated immediately downstream from the lesion. Here, we present biochemical and crystallographic evidence for the mechanism of CydA recognition. Pol II stalling results from impaired loading of the template base (5') next to CydA into the active site, leading to preferential AMP misincorporation. Such predominant AMP insertion, which also occurs at an abasic site, is unaffected by the identity of the 5´-templating base, indicating that it derives from nontemplated synthesismore » according to an A rule known for DNA polymerases and recently identified for Pol II bypass of pyrimidine dimers. Subsequent to AMP misincorporation, Pol II encounters a major translocation block that is slowly overcome. The translocation block combined with the poor extension of the dA.rA mispair reduce transcriptional mutagenesis. Moreover, increasing the active-site flexibility by mutation in the trigger loop, which increases the ability of Pol II to accommodate the bulky lesion, and addition of transacting factor TFIIF facilitate CydA bypass. Thus, blocking lesion entry to the active site, trans-lesion A rule synthesis, and translocation block are common features of transcription across different bulky DNA lesions.« less

  17. Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions

    SciTech Connect

    Walmacq, Celine; Wang, Lanfeng; Chong, Jenny; Scibelli, Kathleen; Lubkowska, Lucyna; Gnatt, Averell; Brooks, Philip J.; Wang, Dong; Kashlev, Mikhail

    2015-01-20

    In human cells, the oxidative DNA lesion 8,5'-cyclo-2'-deoxyadenosine (CydA) induces prolonged stalling of RNA polymerase II (Pol II) followed by transcriptional bypass, generating both error-free and mutant transcripts with AMP misincorporated immediately downstream from the lesion. Here, we present biochemical and crystallographic evidence for the mechanism of CydA recognition. Pol II stalling results from impaired loading of the template base (5') next to CydA into the active site, leading to preferential AMP misincorporation. Such predominant AMP insertion, which also occurs at an abasic site, is unaffected by the identity of the 5´-templating base, indicating that it derives from nontemplated synthesis according to an A rule known for DNA polymerases and recently identified for Pol II bypass of pyrimidine dimers. Subsequent to AMP misincorporation, Pol II encounters a major translocation block that is slowly overcome. The translocation block combined with the poor extension of the dA.rA mispair reduce transcriptional mutagenesis. Moreover, increasing the active-site flexibility by mutation in the trigger loop, which increases the ability of Pol II to accommodate the bulky lesion, and addition of transacting factor TFIIF facilitate CydA bypass. Thus, blocking lesion entry to the active site, trans-lesion A rule synthesis, and translocation block are common features of transcription across different bulky DNA lesions.

  18. Characterization of a Y-Family DNA Polymerase eta from the Eukaryotic Thermophile Alvinella pompejana

    DOE PAGESBeta

    Kashiwagi, Sayo; Kuraoka, Isao; Fujiwara, Yoshie; Hitomi, Kenichi; Cheng, Quen J.; Fuss, Jill O.; Shin, David S.; Masutani, Chikahide; Tainer, John A.; Hanaoka, Fumio; et al

    2010-01-01

    Humore » man DNA polymerase η (HsPol η ) plays an important role in translesion synthesis (TLS), which allows for replication past DNA damage such as UV-induced cis-syn cyclobutane pyrimidine dimers (CPDs). Here, we characterized ApPol η from the thermophilic worm Alvinella pompejana , which inhabits deep-sea hydrothermal vent chimneys. ApPol η shares sequence homology with HsPol η and contains domains for binding ubiquitin and proliferating cell nuclear antigen. Sun-induced UV does not penetrate Alvinella's environment; however, this novel DNA polymerase catalyzed efficient and accurate TLS past CPD, as well as 7,8-dihydro-8-oxoguanine and isomers of thymine glycol induced by reactive oxygen species. In addition, we found that ApPol η is more thermostable than HsPol η , as expected from its habitat temperature. Moreover, the activity of this enzyme was retained in the presence of a higher concentration of organic solvents. Therefore, ApPol η provides a robust, human-like Pol η that is more active after exposure to high temperatures and organic solvents.« less

  19. Triplex DNA: A new platform for polymerase chain reaction – based biosensor

    PubMed Central

    Li, Yubin; Miao, Xiangmin; Ling, Liansheng

    2015-01-01

    Non - specific PCR amplification and DNA contamination usually accompany with PCR process, to overcome these problems, here we establish a sensor for thrombin by sequence - specific recognition of the PCR product with molecular beacon through triplex formation. Probe A and probe B were designed for the sensor, upon addition of thrombin, two probes hybridized to each other and the probe B was extended in the presence of Klenow Fragment polymerase and dNTPs. The PCR amplification occurred with further addition of Taq DNA Polymerase and two primers, the PCR product was recognized by molecular beacon through triplex formation. The fluorescence intensity increased with the logarithm of the concentration of thrombin over the range from 1.0 × 10−12 M to 1.0 × 10−7 M, with a detection limit of 261 fM. Moreover, the effect of DNA contamination and non - specific amplification could be ignored completely in the proposed strategy. PMID:26268575

  20. Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion.

    PubMed

    Hohlbein, Johannes; Aigrain, Louise; Craggs, Timothy D; Bermek, Oya; Potapova, Olga; Shoolizadeh, Pouya; Grindley, Nigel D F; Joyce, Catherine M; Kapanidis, Achillefs N

    2013-01-01

    The fidelity of DNA polymerases depends on conformational changes that promote the rejection of incorrect nucleotides before phosphoryl transfer. Here, we combine single-molecule FRET with the use of DNA polymerase I and various fidelity mutants to highlight mechanisms by which active-site side chains influence the conformational transitions and free-energy landscape that underlie fidelity decisions in DNA synthesis. Ternary complexes of high fidelity derivatives with complementary dNTPs adopt mainly a fully closed conformation, whereas a conformation with a FRET value between those of open and closed is sparsely populated. This intermediate-FRET state, which we attribute to a partially closed conformation, is also predominant in ternary complexes with incorrect nucleotides and, strikingly, in most ternary complexes of low-fidelity derivatives for both correct and incorrect nucleotides. The mutator phenotype of the low-fidelity derivatives correlates well with reduced affinity for complementary dNTPs and highlights the partially closed conformation as a primary checkpoint for nucleotide selection.

  1. Triplex DNA: A new platform for polymerase chain reaction-based biosensor.

    PubMed

    Li, Yubin; Miao, Xiangmin; Ling, Liansheng

    2015-01-01

    Non-specific PCR amplification and DNA contamination usually accompany with PCR process, to overcome these problems, here we establish a sensor for thrombin by sequence-specific recognition of the PCR product with molecular beacon through triplex formation. Probe A and probe B were designed for the sensor, upon addition of thrombin, two probes hybridized to each other and the probe B was extended in the presence of Klenow Fragment polymerase and dNTPs. The PCR amplification occurred with further addition of Taq DNA Polymerase and two primers, the PCR product was recognized by molecular beacon through triplex formation. The fluorescence intensity increased with the logarithm of the concentration of thrombin over the range from 1.0 × 10(-12) M to 1.0 × 10(-7) M, with a detection limit of 261 fM. Moreover, the effect of DNA contamination and non - specific amplification could be ignored completely in the proposed strategy.

  2. A Germline Polymorphism of DNA Polymerase Beta Induces Genomic Instability and Cellular Transformation

    PubMed Central

    Keh, Agnes; Sweasy, Joann B.

    2012-01-01

    Several germline single nucleotide polymorphisms (SNPs) have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase β (Pol β), encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER), a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797) in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol β protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility. PMID:23144635

  3. Beta-sitosterol-3-O-beta-D-glucopyranoside: a eukaryotic DNA polymerase lambda inhibitor.

    PubMed

    Mizushina, Yoshiyuki; Nakanishi, Rumi; Kuriyama, Isoko; Kamiya, Kohei; Satake, Toshiko; Shimazaki, Noriko; Koiwai, Osamu; Uchiyama, Yukinobu; Yonezawa, Yuko; Takemura, Masaharu; Sakaguchi, Kengo; Yoshida, Hiromi

    2006-05-01

    Beta-sitosterol-3-O-beta-D-glucopyranoside (compound 1), a steroidal glycoside isolated from onion (Allium cepa L.) selectively inhibited the activity of mammalian DNA polymerase lambda (pol lambda) in vitro. The compound did not influence the activities of replicative DNA polymerases such as alpha, delta and epsilon, but also showed no effect even on the activity of pol beta which is thought to have a very similar three-dimensional structure to the pol beta-like region of pol lambda. Since parts of compound 1 such as beta-sitosterol (compound 2) and D-glucose (compound 3) did not influence the activities of any enzymes tested, the converted structure of compounds 2 and 3 might be important for pol lambda inhibition. The inhibitory effect of compound 1 on both intact pol lambda (i.e. residues 1-575) and a truncated pol lambda lacking the N-terminal BRCA1 C-terminus (BRCT) domain (133-575, del-1 pol lambda) was dose-dependent, and 50% inhibition was observed at a concentration of 9.1 and 5.4 microM, respectively. The compound 1-induced inhibition of del-1 pol lambda activity was non-competitive with respect to both the DNA template-primer and the dNTP substrate. On the basis of these results, the pol lambda inhibitory mechanism of compound 1 is discussed. PMID:16621516

  4. Detection of Trypanosoma congolense and Trypanosoma brucei subspecies by DNA amplification using the polymerase chain reaction.

    PubMed

    Moser, D R; Cook, G A; Ochs, D E; Bailey, C P; McKane, M R; Donelson, J E

    1989-08-01

    The nuclear DNA of Trypanosoma congolense contains a family of highly conserved 369 base pair (bp) repeats. The sequences of three cloned copies of these repeats were determined. An unrelated family of 177 bp repeats has previously been shown to occur in the nuclear DNA of Trypanosoma brucei brucei (Sloof et al. 1983a). Oligonucleotides were synthesized which prime the specific amplification of each of these repetitive DNAs by the polymerase chain reaction (PCR). Amplification of 10% of the DNA in a single parasite of T. congolense or T. brucei spp. produced sufficient amplified product to be visible as a band in an agarose gel stained with ethidium bromide. This level of detection, which does not depend on the use of radioactivity, is about 100 times more sensitive than previous detection methods based on radioactive DNA probes. The oligonucleotides did not prime the amplification of DNA sequences in other trypanosome species nor in Leishmania, mouse or human DNAs. Amplification of DNA from the blood of animals infected with T. congolense and/or T. brucei spp. permitted the identification of parasite levels far below that detectable by microscopic inspection. Since PCR amplification can be conducted on a large number of samples simultaneously, it is ideally suited for large-scale studies on the prevalence of African trypanosomes in both mammalian blood and insect vectors.

  5. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA.

    PubMed

    Rohrman, Brittany A; Richards-Kortum, Rebecca R

    2012-09-01

    Despite the importance of early diagnosis and treatment of HIV, only a small fraction of HIV-exposed infants in low- and middle-income countries are tested for the disease. The gold standard for early infant diagnosis, DNA PCR, requires resources that are unavailable in poor settings, and no point-of-care HIV DNA test is currently available. We have developed a device constructed of layers of paper, glass fiber, and plastic that is capable of performing isothermal, enzymatic amplification of HIV DNA. The device is inexpensive, small, light-weight, and easy to assemble. The device stores lyophilized enzymes, facilitates mixing of reaction components, and supports recombinase polymerase amplification in five steps of operation. Using commercially available lateral flow strips as a detection method, we demonstrate the ability of our device to amplify 10 copies of HIV DNA to detectable levels in 15 min. Our results suggest that our device, which is designed to be used after DNA extraction from dried-blood spots, may serve in conjunction with lateral flow strips as part of a point-of-care HIV DNA test to be used in low resource settings.

  6. A backup role of DNA polymerase kappa in Ig gene hypermutation only takes place in the complete absence of DNA polymerase eta.

    PubMed

    Faili, Ahmad; Stary, Anne; Delbos, Frédéric; Weller, Sandra; Aoufouchi, Said; Sarasin, Alain; Weill, Jean-Claude; Reynaud, Claude-Agnès

    2009-05-15

    Patients with the variant form of xeroderma pigmentosum (XPV) syndrome have a genetic deficiency in DNA polymerase (Pol) eta, and display accordingly an increased skin sensitivity to UV light, as well as an altered mutation pattern of their Ig V genes in memory B cells, alteration that consists in a reduced mutagenesis at A/T bases. We previously suggested that another polymerase with a different mutation signature, Pol kappa, is used as backup for Ig gene hypermutation in both humans and mice in cases of complete Pol eta deficiency, a proposition supported in this study by the analysis of Pol eta x Pol kappa double-deficient mice. We also describe a new XPV case, in which a splice site mutation of the first noncoding exon results in a decreased mRNA expression, a mRNA that otherwise encodes a normal Pol eta protein. Whereas the Pol eta mRNA level observed in patient's fibroblasts is one-twentieth the value of healthy controls, it is only reduced to one-fourth of the normal level in activated B cells. Memory B cells from this patient showed a 50% reduction in A/T mutations, with a spectrum that still displays a strict Pol eta signature. Pol eta thus appears as a dominant enzyme in hypermutation, its presence precluding the use of a substitute enzyme even in conditions of reduced availability. Such a dominant behavior may explain the lack of Pol kappa signature in Ig gene mutations of some XPV patients previously described, for whom residual Pol eta activity might exist. PMID:19414788

  7. Pyrovanadolysis, a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate, Mn2+, and DNA Polymerase of Bacteriophage T7*

    PubMed Central

    Akabayov, Barak; Kulczyk, Arkadiusz W.; Akabayov, Sabine R.; Theile, Christopher; McLaughlin, Larry W.; Beauchamp, Benjamin; van Oijen, Antoine M.; Richardson, Charles C.

    2011-01-01

    DNA polymerases catalyze the 3′–5′-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PPi). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5′-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PPi, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PPi complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn2+, larger than Mg2+, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes. PMID:21697085

  8. Pyrovanadolysis: a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate MN2plus and DNA Polymerase of Bacteriophage T7

    SciTech Connect

    B Akabayov; A Kulczyk; S Akabayov; C Thiele; L McLaughlin; B Beauchamp; C Richardson

    2011-12-31

    DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP{sub i}). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP{sub i}, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP{sub i} complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn{sup 2+}, larger than Mg{sup 2+}, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.

  9. Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II.

    PubMed

    Stiller, J W; Duffield, E C; Hall, B D

    1998-09-29

    Unlike parasitic protist groups that are defined by the absence of mitochondria, the Pelobiontida is composed mostly of free-living species. Because of the presence of ultrastructural and cellular features that set them apart from all other eukaryotic organisms, it has been suggested that pelobionts are primitively amitochondriate and may represent the earliest-evolved lineage of extant protists. Analyses of rRNA genes, however, have suggested that the group arose well after the diversification of the earliest-evolved protists. Here we report the sequence of the gene encoding the largest subunit of DNA-dependent RNA polymerase II (RPB1) from the pelobiont Mastigamoeba invertens. Sequences within RPB1 encompass several of the conserved catalytic domains that are common to eubacterial, archaeal, and eukaryotic nuclear-encoded RNA polymerases. In RNA polymerase II, these domains catalyze the transcription of all nuclear pre-mRNAs, as well as the majority of small nuclear RNAs. In contrast with rDNA-based trees, phylogenetic analyses of RPB1 sequences indicate that Mastigamoeba represents an early branch of eukaryotic evolution. Unlike sequences from parasitic amitochondriate protists that were included in our study, there is no indication that Mastigamoeba RPB1 is attracted to the base of the eukaryotic tree artifactually. In addition, the presence of introns and a heptapeptide C-terminal repeat in the Mastigamoeba RPB1 sequence, features that are typically associated with more recently derived eukaryotic groups, raise provocative questions regarding models of protist evolution that depend almost exclusively on rDNA sequence analyses.

  10. A RecA Protein Surface Required for Activation of DNA Polymerase V

    PubMed Central

    Gruber, Angela J.; Erdem, Aysen L.; Sabat, Grzegorz; Karata, Kiyonobu; Jaszczur, Malgorzata M.; Vo, Dan D.; Olsen, Tayla M.; Woodgate, Roger; Goodman, Myron F.; Cox, Michael M.

    2015-01-01

    DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis. PMID:25811184

  11. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction

    PubMed Central

    Elshawadfy, Ashraf M.; Keith, Brian J.; Ee Ooi, H'Ng; Kinsman, Thomas; Heslop, Pauline; Connolly, Bernard A.

    2014-01-01

    The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases have been comprehensively compared, confirming that Tkod-Pol: (1) extends primer-templates more rapidly; (2) has higher processivity; (3) demonstrates superior performance in normal and real time PCR. However, Tkod-Pol is less thermostable than Pfu-Pol and both enzymes have equal fidelities. To understand the favorable properties of Tkod-Pol, hybrid proteins have been prepared. Single, double and triple mutations were used to site arginines, present at the “forked-point” (the junction of the exonuclease and polymerase channels) of Tkod-Pol, at the corresponding locations in Pfu-Pol, slightly improving PCR performance. The Pfu-Pol thumb domain, responsible for double-stranded DNA binding, has been entirely replaced with that from Tkod-Pol, again giving better PCR properties. Combining the “forked-point” and thumb swap mutations resulted in a marked increase in PCR capability, maintenance of high fidelity and retention of the superior thermostability associated with Pfu-Pol. However, even the arginine/thumb swap mutant falls short of Tkod-Pol in PCR, suggesting further improvement within the Pfu-Pol framework is attainable. The significance of this work is the observation that improvements in PCR performance are easily attainable by blending elements from closely related archaeal polymerases, an approach that may, in future, be extended by using more polymerases from these organisms. PMID:24904539

  12. Cloning and sequence analysis of novel DNA polymerases from thermophilic Geobacillus species isolated from hot springs in Turkey: characterization of a DNA polymerase I from Geobacillus kaue strain NB.

    PubMed

    Çağlayan, Melike; Bilgin, Neş'e

    2011-11-01

    The complete coding sequences of the polA genes from seven thermophilic Geobacillus species, isolated from hot springs of Gönen and Hisaralan in Turkey, were cloned and sequenced. The polA genes of these Geobacillus species contain a long open reading frame of 2,637 bp encoding DNA polymerase I with a calculated molecular mass of 99 kDa. Amino acid sequences of these Geobacillus DNA polymerases are closely related. The multiple sequence alignments show all include the conserved amino acids in the polymerase and 5'-3' exonuclease domains, but the catalytic residues varied in 3'-5' exonuclease domain of these Geobacillus DNA polymerases. One of them, DNA polymerase I from Geobacillus kaue strain NB (Gkaue polI) is purified to homogeneity and biochemically characterized in vitro. The optimum temperature for enzymatic activity of Gkaue polI is 70 °C at pH 7.5-8.5 in the presence of 8 mM Mg(2+) and 80-100 mM of monovalent ions. The addition of polyamines stimulates the polymerization activity of the enzyme. Three-dimensional structure of Gkaue polI predicted using homology modeling confirmed the conservation of all the functionally important regions in the polymerase active site.

  13. Solution Structures of 2 : 1 And 1 : 1 DNA Polymerase - DNA Complexes Probed By Ultracentrifugation And Small-Angle X-Ray Scattering

    SciTech Connect

    Tang, K.H.; Niebuhr, M.; Aulabaugh, A.; Tsai, M.D.; /Ohio State U. /SLAC, SSRL

    2009-04-30

    We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase {beta} (Pol {beta}) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol {beta}-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol {beta}-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDa 5{prime}-dRP lyase domain of the second Pol {beta} molecule with the active site of the 1 : 1 Pol {beta}-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5{prime}-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5{prime}-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol {beta}-DNA complex enhances the function of Pol {beta}.

  14. Solution structures of 2 : 1 and 1 : 1 DNA polymerase-DNA complexes probed by ultracentrifugation and small-angle X-ray scattering

    SciTech Connect

    Tang, Kuo-Hsiang; Niebuhr, Marc; Aulabaugh, Ann; Tsai, Ming-Daw

    2008-03-25

    We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase β (Pol β) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol β-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol β-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDa 5'-dRP lyase domain of the second Pol β molecule with the active site of the 1 : 1 Pol β-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5'-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5'-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol β-DNA complex enhances the function of Pol β.

  15. Sliding Clamp–DNA Interactions Are Required for Viability and Contribute to DNA Polymerase Management in Escherichia coli

    SciTech Connect

    Heltzel, J.; Scouten Ponticelli, S; Sanders, L; Duzen, J; Cody, V; Pace, J; Snell, E; Sutton, M

    2009-01-01

    Sliding clamp proteins topologically encircle DNA and play vital roles in coordinating the actions of various DNA replication, repair, and damage tolerance proteins. At least three distinct surfaces of the Escherichia coli {beta} clamp interact physically with the DNA that it topologically encircles. We utilized mutant {beta} clamp proteins bearing G66E and G174A substitutions ({beta}159), affecting the single-stranded DNA-binding region, or poly-Ala substitutions in place of residues 148-HQDVR-152 ({beta}148-152), affecting the double-stranded DNA binding region, to determine the biological relevance of clamp-DNA interactions. As part of this work, we solved the X-ray crystal structure of {beta}148-152, which verified that the poly-Ala substitutions failed to significantly alter the tertiary structure of the clamp. Based on functional assays, both {beta}159 and {beta}148-152 were impaired for loading and retention on a linear primed DNA in vitro. In the case of {beta}148-152, this defect was not due to altered interactions with the DnaX clamp loader, but rather was the result of impaired {beta}148-152-DNA interactions. Once loaded, {beta}148-152 was proficient for DNA polymerase III (Pol III) replication in vitro. In contrast, {beta}148-152 was severely impaired for Pol II and Pol IV replication and was similarly impaired for direct physical interactions with these Pols. Despite its ability to support Pol III replication in vitro, {beta}148-152 was unable to support viability of E. coli. Nevertheless, physiological levels of {beta}148-152 expressed from a plasmid efficiently complemented the temperature-sensitive growth phenotype of a strain expressing {beta}159 (dnaN159), provided that Pol II and Pol IV were inactivated. Although this strain was impaired for Pol V-dependent mutagenesis, inactivation of Pol II and Pol IV restored the Pol V mutator phenotype. Taken together, these results support a model in which a sophisticated combination of competitive clamp-DNA

  16. The discovery of error-prone DNA polymerase V and its unique regulation by RecA and ATP.

    PubMed

    Goodman, Myron F

    2014-09-26

    My career pathway has taken a circuitous route, beginning with a Ph.D. degree in electrical engineering from The Johns Hopkins University, followed by five postdoctoral years in biology at Hopkins and culminating in a faculty position in biological sciences at the University of Southern California. My startup package in 1973 consisted of $2,500, not to be spent all at once, plus an ancient Packard scintillation counter that had a series of rapidly flashing light bulbs to indicate a radioactive readout in counts/minute. My research pathway has been similarly circuitous. The discovery of Escherichia coli DNA polymerase V (pol V) began with an attempt to identify the mutagenic DNA polymerase responsible for copying damaged DNA as part of the well known SOS regulon. Although we succeeded in identifying a DNA polymerase, one that was induced as part of the SOS response, we actually rediscovered DNA polymerase II, albeit in a new role. A decade later, we discovered a new polymerase, pol V, whose activity turned out to be regulated by bound molecules of RecA protein and ATP. This Reflections article describes our research trajectory, includes a review of key features of DNA damage-induced SOS mutagenesis leading us to pol V, and reflects on some of the principal researchers who have made indispensable contributions to our efforts.

  17. Analysis of UV-induced mutation spectra in Escherichia coli by DNA polymerase eta from Arabidopsis thaliana.

    PubMed

    Santiago, María Jesús; Alejandre-Durán, Encarna; Ruiz-Rubio, Manuel

    2006-10-10

    DNA polymerase eta belongs to the Y-family of DNA polymerases, enzymes that are able to synthesize past template lesions that block replication fork progression. This polymerase accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and therefore may contributes to resistance against sunlight in vivo, both ameliorating survival and decreasing the level of mutagenesis. We cloned and sequenced a cDNA from Arabidopsis thaliana which encodes a protein containing several sequence motifs characteristics of Pol eta homologues, including a highly conserved sequence reported to be present in the active site of the Y-family DNA polymerases. The gene, named AtPOLH, contains 14 exons and 13 introns and is expressed in different plant tissues. A strain from Saccharomyces cerevisiae, deficient in Pol eta activity, was transformed with a yeast expression plasmid containing the AtPOLH cDNA. The rate of survival to UV irradiation in the transformed mutant increased to similar values of the wild type yeast strain, showing that AtPOLH encodes a functional protein. In addition, when AtPOLH is expressed in Escherichia coli, a change in the mutational spectra is detected when bacteria are irradiated with UV light. This observation might indicate that AtPOLH could compete with DNA polymerase V and then bypass cyclobutane pyrimidine dimers incorporating two adenylates.

  18. Mutations in the herpes simplex virus DNA polymerase gene can confer resistance to 9-beta-D-arabinofuranosyladenine.

    PubMed Central

    Coen, D M; Furman, P A; Gelep, P T; Schaffer, P A

    1982-01-01

    Mutants of herpes simplex virus type 1 resistant to the antiviral drug 9-beta-D-arabinofuranosyladenine (araA) have been isolated and characterized. AraA-resistant mutants can be isolated readily and appear at an appreciable frequency in low-passage stocks of wild-type virus. Of 13 newly isolated mutants, at least 11 were also resistant to phosphonoacetic acid (PAA). Of four previously described PAA-resistant mutants, two exhibited substantial araA resistance. The araA resistance phenotype of one of these mutants, PAAr5, has been mapped to the HpaI-B fragment of herpes simplex virus DNA by marker transfer, and araA resistance behaved in marker transfer experiments as if it were closely linked to PAA resistance, a recognized marker for the viral DNA polymerase locus. PAAr5 induced viral DNA polymerase activity which was much less susceptible to inhibition by the triphosphate derivative of araA than was wild-type DNA polymerase. These genetic and biochemical data indicate that the herpes simplex virus DNA polymerase gene is a locus which, when mutated, can confer resistance to araA and thus that the herpes simplex virus DNA polymerase is a target for this antiviral drug. PMID:6284981

  19. The Discovery of Error-prone DNA Polymerase V and Its Unique Regulation by RecA and ATP

    PubMed Central

    Goodman, Myron F.

    2014-01-01

    My career pathway has taken a circuitous route, beginning with a Ph.D. degree in electrical engineering from The Johns Hopkins University, followed by five postdoctoral years in biology at Hopkins and culminating in a faculty position in biological sciences at the University of Southern California. My startup package in 1973 consisted of $2,500, not to be spent all at once, plus an ancient Packard scintillation counter that had a series of rapidly flashing light bulbs to indicate a radioactive readout in counts/minute. My research pathway has been similarly circuitous. The discovery of Escherichia coli DNA polymerase V (pol V) began with an attempt to identify the mutagenic DNA polymerase responsible for copying damaged DNA as part of the well known SOS regulon. Although we succeeded in identifying a DNA polymerase, one that was induced as part of the SOS response, we actually rediscovered DNA polymerase II, albeit in a new role. A decade later, we discovered a new polymerase, pol V, whose activity turned out to be regulated by bound molecules of RecA protein and ATP. This Reflections article describes our research trajectory, includes a review of key features of DNA damage-induced SOS mutagenesis leading us to pol V, and reflects on some of the principal researchers who have made indispensable contributions to our efforts. PMID:25160630

  20. Mammalian. cap alpha. -polymerase: cloning of partial complementary DNA and immunobinding of catalytic subunit in crude homogenate protein blots

    SciTech Connect

    SenGupta, D.N.; Kumar, P.; Zmudzka, B.Z.; Coughlin, S.; Vishwanatha, J.K.; Robey, F.A.; Parrott, C.; Wilson, S.H.

    1987-02-10

    A new polyclonal antibody against the ..cap alpha..-polymerase catalytic polypeptide was prepared by using homogeneous HeLa cell..cap alpha..-polymerase. The antibody neutralized ..cap alpha..-polymerase activity and was strong and specific for the ..cap alpha..-polymerase catalytic polypeptide (M/sub r/ 183,000) in Western blot analysis of crude extracts of HeLa cells. The antibody was used to screen a cDNA library of newborn rat brain poly(A+) RNA in lambdagt11. A positive phage was identified and plaque purified. This phage, designated lambdapol..cap alpha..1.2, also was found to be positive with an antibody against Drosophila ..cap alpha..-polymerase. The insert in lambdapol..cap alpha..1.2 (1183 base pairs) contained a poly(A) sequence at the 3' terminus and a short in-phase open reading frame at the 5' terminus. A synthetic oligopeptide (eight amino acids) corresponding to the open reading frame was used to raise antiserum in rabbits. Antibody affinity purified from this serum was found to be immunoreactive against purified ..cap alpha..-polymerase by enzyme-linked immunosorbent assay and was capable of immunoprecipitating ..cap alpha..-polymerase. This indicated the lambdapol..cap alpha..1.2 insert encoded an ..cap alpha..-polymerase epitope and suggested that the cDNA corresponded to an ..cap alpha..-polymerase mRNA. This was confirmed in hybrid selection experiments using pUC9 containing the cDNA insert and poly(A+) RNA from newborn rat brain; the insert hybridized to mRNA capable of encoding ..cap alpha..-polymerase catalytic polypeptides. Northern blot analysis of rat brain poly(A+) RNA revealed that this mRNA is approx.5.4 kilobases.

  1. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase.

    PubMed

    Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V

    2006-10-15

    The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.

  2. Structure of the gene for the catalytic subunit of human DNA polymerase {delta} (POLD1)

    SciTech Connect

    Chang, Lon-Sheng; Zhao, Lingyun; Zhu, Longyun

    1995-08-10

    We have isolated genomic DNA clones covering the gene for human DNA polymerase {delta} catalytic subunit (POLD1) and its 5{prime} flanking sequence. This gene is divided into 27 exons and is distributed over at least 32 kb of DNA. The exons and most of the introns are relatively small. The sizes of the exons range from 55 to 201 bp. Seven introns are smaller than 100 bp. Intron 1 is the largest intron, with a size of greater than 10 kb. All of the intron-exon junctions match well with the reported consensus sequence and the variable number of tandem repeats were found in several introns. Transcription of POLD1 appears to initiate at multiple sites. The major start site was 53 nucleotides upstream of the ATG start codon. The sequence of the promoter and upstream DNA is G+C rich and does not contain a TATA sequence. Several potential transcription factor-binding sites, including the AP2-, CTF-, Ets1-, GCF, MBF-1, NF-E1, and Sp1-binding sites, were found in this region. A 1.8-kb pol {delta} promoter DNA directed the expression of a luciferase reporter gene when transfected into HeLa cells. 69 refs., 4 figs., 3 tabs.

  3. Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I.

    PubMed

    Dass, Randall A; Sarshad, Aishe A; Carson, Brittany B; Feenstra, Jennifer M; Kaur, Amanpreet; Obrdlik, Ales; Parks, Matthew M; Prakash, Varsha; Love, Damon K; Pietras, Kristian; Serra, Rosa; Blanchard, Scott C; Percipalle, Piergiorgio; Brown, Anthony M C; Vincent, C Theresa

    2016-08-01

    Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo. PMID:27500936

  4. Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I

    PubMed Central

    Dass, Randall A.; Sarshad, Aishe A.; Feenstra, Jennifer M.; Kaur, Amanpreet; Pietras, Kristian; Serra, Rosa; Blanchard, Scott C.; Percipalle, Piergiorgio; Brown, Anthony M. C.; Vincent, C. Theresa

    2016-01-01

    Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo. PMID:27500936

  5. DNA polymerase-associated lectin (DPAL) and its binding to the galactose-containing glycoconjugate of the replication complex.

    PubMed

    Kelley, T J; St Amand, T; Groll, J M; Ray, S; Basu, S

    1999-10-01

    The highly purified DNA Pol-alpha from rat prostate tumor (PA-3) and human neuroblastoma (IMR-32) cells appeared to be inhibited by Ricin (RCA-II), and Con-A. Loss of activity (40 to 60%) of a specific form of DNA polymerase from IMR-32 was observed when the cells were treated with tunicamycin [Bhattacharya, P. and Basu, S. (1982) Proc. Natl. Acad. Sci., USA 79:1488-1492]. Binding of ConA and RCA to human recombinant DNA polymerase-alpha showed a specific labile site in the N-terminus [Hsi et al.. (1990) Nucleic Acid Res. 18:6231-6237]. The catalytic polypeptide, DNA polymerase-alpha of eukaryotic origin, was isolated from developing tissues or cultured cells as a family of 180 to 120 kDa polypeptides, perhaps derived from a single primary structure. Immunoblot analysis with a monoclonal antibody (SJK-237-71) indicated that the lower molecular weight polypeptides resulted from either proteolytic cleavage of post-translational modification after specific cleavages. Present results suggest DNA polymerase-alpha from embryonic chicken brain (ECB) contains an alpha-galactose-binding subunit which may be involved in developmental regulation of the enzyme. It was shown before that the catalytic subunit of DNA polymerase-alpha reduces from 186 kDa in 11-day-old ECB to 120 kDa in 19-day-old ECB [Ray, S. et al. Cell Growth and Differentiation 2:567-573] by the treatment with methyl-alpha-galactose. The low molecular weight DNA polymerase activity (120 kDa) can be reconstituted to high molecular weight (Mr = 186 kDa) with an alpha-galactose binding, 56kDa lectin-like protein. Polyclonal antibodies raised against the purified lectin were able to precipitate DNA. Pol-alpha as determined by immunostaining with the polymerase-alpha-specific monoclonal antibody SJK 132-20, suggesting this is a DNA polymerase associated-lectin (DPAL). RCA-II and GS-I-Sepharose 4B chromatographies resulted in significant purification of DNA-alpha and a complete separation of polymerase complex and

  6. Structural mimicry in transcription regulation of human RNA polymerase II by the DNA helicase RECQL5

    PubMed Central

    Kassube, Susanne A.; Jinek, Martin; Fang, Jie; Tsutakawa, Susan; Nogales, Eva

    2013-01-01

    RECQL5 is a member of the highly conserved RecQ family of DNA helicases involved in DNA repair. RECQL5 interacts with RNA polymerase II (Pol II) and inhibits transcription of protein–coding genes by an unknown mechanism. We show that RECQL5 contacts the Rpb1 jaw domain of Pol II at a site that overlaps with the binding site for the transcription elongation factor TFIIS. Our cryo–electron microscopy structure of elongating Pol II arrested in complex with RECQL5 shows that the RECQL5 helicase domain is positioned to sterically block elongation. The crystal structure of the RECQL5 KIX domain reveals similarities with TFIIS, and binding of RECQL5 to Pol II interferes with the ability of TFIIS to promote transcriptional read–through in vitro. Together, our findings reveal a dual mode of transcriptional repression by RECQL5 that includes structural mimicry of the Pol II–TFIIS interaction. PMID:23748380

  7. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    PubMed

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution. PMID:23589461

  8. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.

    PubMed

    Oertell, Keriann; Harcourt, Emily M; Mohsen, Michael G; Petruska, John; Kool, Eric T; Goodman, Myron F

    2016-04-19

    What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 10(3)- to 10(4)-fold, corresponding to free energy differences of ΔΔGinc∼ 5.5-7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013)J Am Chem Soc135:1205-1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = -RTlnKeq, indicating ΔΔG° of 3.5-7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore,[Formula: see text]values obtained from such steady-state evaluations ofKeqare not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site.

  9. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity

    PubMed Central

    Oertell, Keriann; Harcourt, Emily M.; Mohsen, Michael G.; Petruska, John; Kool, Eric T.; Goodman, Myron F.

    2016-01-01

    What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 103- to 104-fold, corresponding to free energy differences of ΔΔGinc ∼ 5.5–7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013) J Am Chem Soc 135:1205–1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = −RT ln Keq, indicating ΔΔG° of 3.5–7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore, ΔΔGinc° values obtained from such steady-state evaluations of Keq are not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site. PMID:27044101

  10. Mitochondrial DNA Polymerase POLG1 Disease Mutations and Germline Variants Promote Tumorigenic Properties.

    PubMed

    Singh, Bhupendra; Owens, Kjerstin M; Bajpai, Prachi; Desouki, Mohamed Mokhtar; Srinivasasainagendra, Vinodh; Tiwari, Hemant K; Singh, Keshav K

    2015-01-01

    Germline mutations in mitochondrial DNA polymerase gamma (POLG1) induce mitochondrial DNA (mtDNA) mutations, depletion, and decrease oxidative phosphorylation. Earlier, we identified somatic mutations in POLG1 and the contribution of these mutations in human cancer. However, a role for germline variations in POLG1 in human cancers is unknown. In this study, we examined a role for disease associated germline variants of POLG1, POLG1 gene expression, copy number variation and regulation in human cancers. We analyzed the mutations, expression and copy number variation in POLG1 in several cancer databases and validated the analyses in primary breast tumors and breast cancer cell lines. We discovered 5-aza-2'-deoxycytidine led epigenetic regulation of POLG1, mtDNA-encoded genes and increased mitochondrial respiration. We conducted comprehensive race based bioinformatics analyses of POLG1 gene in more than 33,000 European-Americans and 5,000 African-Americans. We identified a mitochondrial disease causing missense variation in polymerase domain of POLG1 protein at amino acid 1143 (E1143G) to be 25 times more prevalent in European-Americans (allele frequency 0.03777) when compared to African-American (allele frequency 0.00151) population. We identified T251I and P587L missense variations in exonuclease and linker region of POLG1 also to be more prevalent in European-Americans. Expression of these variants increased glucose consumption, decreased ATP production and increased matrigel invasion. Interestingly, conditional expression of these variants revealed that matrigel invasion properties conferred by these germline variants were reversible suggesting a role of epigenetic regulators. Indeed, we identified a set of miRNA whose expression was reversible after variant expression was turned off. Together, our studies demonstrate altered genetic and epigenetic regulation of POLG1 in human cancers and suggest a role for POLG1 germline variants in promoting tumorigenic

  11. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.

    PubMed

    Oertell, Keriann; Harcourt, Emily M; Mohsen, Michael G; Petruska, John; Kool, Eric T; Goodman, Myron F

    2016-04-19

    What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 10(3)- to 10(4)-fold, corresponding to free energy differences of ΔΔGinc∼ 5.5-7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013)J Am Chem Soc135:1205-1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = -RTlnKeq, indicating ΔΔG° of 3.5-7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore,[Formula: see text]values obtained from such steady-state evaluations ofKeqare not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site. PMID:27044101

  12. Allele-specific polymerase chain reaction for detection of a mutation in the relax circular DNA and the covalently closed circular DNA of hepatitis B virus.

    PubMed

    Pan, Wan-Long; Hu, Jie-Li; Fang, Yan; Luo, Qiang; Xu, Ge; Xu, Lei; Jing, Zhou-Hong; Shan, Xue-Feng; Zhu, Yan-Ling; Huang, Ai-Long

    2013-12-01

    The relax circle DNA (rcDNA) sequence and the covalently closed circle DNA (cccDNA) sequence in hepatitis B virus (HBV) are crucial regions for HBV infections. To analyze mutations in rcDNA and cccDNA, DNA sequencing is often used, although it is time-consuming and expensive. Herein, we report a simple, economic, albeit accurate allele-specific polymerase chain reaction (AS-PCR) to detect mutations in these regions of HBV. This method can be extensively used to screen for mutations at specific positions of HBV genome.

  13. DNA Polymerase Conformational Dynamics and the Role of Fidelity-Conferring Residues: Insights from Computational Simulations

    PubMed Central

    Meli, Massimiliano; Sustarsic, Marko; Craggs, Timothy D.; Kapanidis, Achillefs N.; Colombo, Giorgio

    2016-01-01

    Herein we investigate the molecular bases of DNA polymerase I conformational dynamics that underlie the replication fidelity of the enzyme. Such fidelity is determined by conformational changes that promote the rejection of incorrect nucleotides before the chemical ligation step. We report a comprehensive atomic resolution study of wild type and mutant enzymes in different bound states and starting from different crystal structures, using extensive molecular dynamics (MD) simulations that cover a total timespan of ~5 ms. The resulting trajectories are examined via a combination of novel methods of internal dynamics and energetics analysis, aimed to reveal the principal molecular determinants for the (de)stabilization of a certain conformational state. Our results show that the presence of fidelity-decreasing mutations or the binding of incorrect nucleotides in ternary complexes tend to favor transitions from closed toward open structures, passing through an ensemble of semi-closed intermediates. The latter ensemble includes the experimentally observed ajar conformation which, consistent with previous experimental observations, emerges as a molecular checkpoint for the selection of the correct nucleotide to incorporate. We discuss the implications of our results for the understanding of the relationships between the structure, dynamics, and function of DNA polymerase I at the atomistic level. PMID:27303671

  14. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ

    PubMed Central

    Hirota, Kouji; Tsuda, Masataka; Mohiuddin; Tsurimoto, Toshiki; Cohen, Isadora S.; Livneh, Zvi; Kobayashi, Kaori; Narita, Takeo; Nishihara, Kana; Murai, Junko; Iwai, Shigenori; Guilbaud, Guillaume; Sale, Julian E.; Takeda, Shunichi

    2016-01-01

    The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro. These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass. PMID:27185888

  15. Mismatched DNTP Incorporation By DNA Polymerase Beta Does Not Proceed Via Globally Different Conformational Pathways

    SciTech Connect

    Tang, K.-H.; Niebuhr, M.; Tung, C.-S.; Chan, H.-c.; Chou, C.-C.; Tsai, M.-D.

    2009-05-26

    Understanding how DNA polymerases control fidelity requires elucidation of the mechanisms of matched and mismatched dNTP incorporations. Little is known about the latter because mismatched complexes do not crystallize readily. In this report, we employed small-angle X-ray scattering (SAXS) and structural modeling to probe the conformations of different intermediate states of mammalian DNA polymerase {beta} (Pol {beta}) in its wild-type and an error-prone variant, I260Q. Our structural results indicate that the mismatched ternary complex lies in-between the open and the closed forms, but more closely resembles the open form for WT and the closed form for I260Q. On the basis of molecular modeling, this over-stabilization of mismatched ternary complex of I260Q is likely caused by formation of a hydrogen bonding network between the side chains of Gln{sup 260}, Tyr{sup 296}, Glu{sup 295} and Arg{sup 258}, freeing up Asp{sup 192} to coordinate MgdNTP. These results argue against recent reports suggesting that mismatched dNTP incorporations follow a conformational path distinctly different from that of matched dNTP incorporation, or that its conformational closing is a major contributor to fidelity.

  16. Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V.

    PubMed

    Goodman, Myron F; McDonald, John P; Jaszczur, Malgorzata M; Woodgate, Roger

    2016-08-01

    It is now close to 40 years since the isolation of non-mutable umu/uvm strains of Escherichia coli and the realization that damage induced mutagenesis in E.coli is not a passive process. Early models of mutagenesis envisioned the Umu proteins as accessory factors to the cell's replicase that not only reduced its normally high fidelity, but also allowed the enzyme to traverse otherwise replication-blocking lesions in the genome. However, these models underwent a radical revision approximately 15 years ago, with the discovery that the Umu proteins actually encode for a DNA polymerase, E.coli pol V. The polymerase lacks 3'→5' exonucleolytic proofreading activity and is inherently error-prone when replicating both undamaged and damage DNA. So as to limit any "gratuitous" mutagenesis, the activity of pol V is strictly regulated in the cell at multiple levels. This review will summarize our current understanding of the myriad levels of regulation imposed on pol V including transcriptional control, posttranslational modification, targeted proteolysis, activation of the catalytic activity of pol V through protein-protein interactions and the very recently described intracellular spatial regulation of pol V. Remarkably, despite the multiple levels at which pol V is regulated, the enzyme is nevertheless able to contribute to the genetic diversity and evolutionary fitness of E.coli. PMID:27236212

  17. Detection of inteins among diverse DNA polymerase genes of uncultivated members of the Phycodnaviridae.

    PubMed

    Culley, Alexander I; Asuncion, Brenda F; Steward, Grieg F

    2009-04-01

    Viruses in the family Phycodnaviridae infect autotrophic protists in aquatic environments. Application of a PCR assay targeting the DNA polymerase of viruses in this family has revealed that phycodnaviruses are quite diverse and appear to be widespread, but a limited number of environments have been examined so far. In this study, we examined the sequence diversity among viral DNA pol genes amplified by PCR from subtropical coastal waters of O'ahu, Hawai'i. A total of 18 novel prasinovirus-like sequences were detected along with two other divergent sequences that differ at the genus-level relative to other sequences in the family. Of the 20 new sequence types reported here, three were serendipitously found to contain protein introns, or inteins. Sequence analysis of the inteins suggested that all three have self-splicing domains and are apparently capable of removing themselves from the translated polymerase protein. Two of the three also appear to be 'active', meaning they encode all the motifs necessary for a complete dodecapeptide homing endonuclease, and are therefore capable of horizontal transfer. A subsequent PCR survey of our samples with intein-specific primers suggested that intein-containing phycodnaviruses are common in this environment. A search for similar sequences in metagenomic data sets from other oceans indicated that viral inteins are also widespread, but how these genetic parasites might be influencing the ecology and evolution of phycodnaviruses remains unclear.

  18. Zebrafish lacking functional DNA polymerase gamma survive to juvenile stage, despite rapid and sustained mitochondrial DNA depletion, altered energetics and growth

    PubMed Central

    Rahn, Jennifer J.; Bestman, Jennifer E.; Stackley, Krista D.; Chan, Sherine S.L.

    2015-01-01

    DNA polymerase gamma (POLG) is essential for replication and repair of mitochondrial DNA (mtDNA). Mutations in POLG cause mtDNA instability and a diverse range of poorly understood human diseases. Here, we created a unique Polg animal model, by modifying polg within the critical and highly conserved polymerase domain in zebrafish. polg+/− offspring were indistinguishable from WT siblings in multiple phenotypic and biochemical measures. However, polg−/− mutants developed severe mtDNA depletion by one week post-fertilization (wpf), developed slowly and had regenerative defects, yet surprisingly survived up to 4 wpf. An in vivo mtDNA polymerase activity assay utilizing ethidium bromide (EtBr) to deplete mtDNA, showed that polg+/− and WT zebrafish fully recover mtDNA content two weeks post-EtBr removal. EtBr further reduced already low levels of mtDNA in polg−/− animals, but mtDNA content did not recover following release from EtBr. Despite significantly decreased respiration that corresponded with tissue-specific levels of mtDNA, polg−/− animals had WT levels of ATP and no increase in lactate. This zebrafish model of mitochondrial disease now provides unique opportunities for studying mtDNA instability from multiple angles, as polg−/− mutants can survive to juvenile stage, rather than lose viability in embryogenesis as seen in Polg mutant mice. PMID:26519465

  19. Role of the LEXE Motif of Protein-primed DNA Polymerases in the Interaction with the Incoming Nucleotide*

    PubMed Central

    Santos, Eugenia; Lázaro, José M.; Pérez-Arnaiz, Patricia; Salas, Margarita; de Vega, Miguel

    2014-01-01

    The LEXE motif, conserved in eukaryotic type DNA polymerases, is placed close to the polymerization active site. Previous studies suggested that the second Glu was involved in binding a third noncatalytic ion in bacteriophage RB69 DNA polymerase. In the protein-primed DNA polymerase subgroup, the LEXE motif lacks the first Glu in most cases, but it has a conserved Phe/Trp and a Gly preceding that position. To ascertain the role of those residues, we have analyzed the behavior of mutants at the corresponding φ29 DNA polymerase residues Gly-481, Trp-483, Ala-484, and Glu-486. We show that mutations at Gly-481 and Trp-483 hamper insertion of the incoming dNTP in the presence of Mg2+ ions, a reaction highly improved when Mn2+ was used as metal activator. These results, together with previous crystallographic resolution of φ29 DNA polymerase ternary complex, allow us to infer that Gly-481 and Trp-483 could form a pocket that orients Val-250 to interact with the dNTP. Mutants at Glu-486 are also defective in polymerization and, as mutants at Gly-481 and Trp-483, in the pyrophosphorolytic activity with Mg2+. Recovery of both reactions with Mn2+ supports a role for Glu-486 in the interaction with the pyrophosphate moiety of the dNTP. PMID:24324256

  20. A mechanistic view of human mitochondrial DNA polymerase γ: providing insight into drug toxicity and mitochondrial disease

    PubMed Central

    Bailey, Christopher M.; Anderson, Karen S.

    2010-01-01

    Summary Mitochondrial DNA polymerase gamma (Pol γ) is the sole polymerase responsible for replication of the mitochondrial genome. The study of human Pol γ is of key importance to clinically relevant issues such as nucleoside analog toxicity and mitochondrial disorders such as progressive external ophthalmoplegia. The development of a recombinant form of the human Pol γ holoenzyme provided an essential tool in understanding the mechanism of these clinically relevant phenomena using kinetic methodologies. This review will provide a brief history on the discovery and characterization of human mitochondrial DNA polymerase γ, focusing on kinetic analyses of the polymerase and mechanistic data illustrating structure-function relationships to explain drug toxicity and mitochondrial disease. PMID:20083238

  1. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase

    PubMed Central

    James, Tamara D.; Cardozo, Timothy; Abell, Lauren E.; Hsieh, Meng-Lun; Jenkins, Lisa M. Miller; Jha, Saheli S.; Hinton, Deborah M.

    2016-01-01

    The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ70 subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation. PMID:27458207

  2. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase.

    PubMed

    James, Tamara D; Cardozo, Timothy; Abell, Lauren E; Hsieh, Meng-Lun; Jenkins, Lisa M Miller; Jha, Saheli S; Hinton, Deborah M

    2016-09-19

    The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ(70) subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ(70) Region 4, the N-terminal domain of MotA [MotA(NTD)], and the C-terminal domain of MotA [MotA(CTD)]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation. PMID:27458207

  3. Use of neuropathological tissue for molecular genetic studies: parameters affecting DNA extraction and polymerase chain reaction.

    PubMed

    Kösel, S; Graeber, M B

    1994-01-01

    Nuclear and mitochondrial DNA were extracted from gray matter of human cerebral cortex which had either been formalin-fixed and embedded into paraffin or stored in formalin for up to 26 years. Extraction conditions were optimized for proteinase K digestion, i.e., enzyme concentration, digestion temperature and incubation time. Using the polymerase chain reaction (PCR), DNA was successfully amplified from archival material and sequenced employing a direct nonradioactive cycle sequencing protocol. In general, tissue embedded into paraffin following brief fixation in formalin gave good quantitative results, i.e., up to 1 microgram DNA/mg tissue were extracted. This yield was at least one order of magnitude higher than that obtained with tissue stored in formalin. However, paraffin-embedded neuropathological material was found to contain an as-yet-unidentified PCR inhibitor, and a deleterious effect of long-term fixation in unbuffered low-grade formalin was clearly detectable. Importantly, both paraffin-embedded tissue blocks and human brain that had been stored in formalin for many years yielded DNA sufficient for qualitative analysis. The implications of these findings for the use of neuropathological material in molecular genetic studies are discussed.

  4. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction.

    PubMed

    Wilson, K H; Blitchington, R B; Greene, R C

    1990-09-01

    The sequence of small-subunit rRNA varies in an orderly manner across phylogenetic lines and contains segments that are conserved at the species, genus, or kingdom level. By directing oligonucleotide primers at sequences conserved throughout the eubacterial kingdom, we amplified bacterial 16S ribosomal DNA sequences with the polymerase chain reaction. Priming sites were located at the extreme 5' end, the extreme 3' end, and the center of 16S ribosomal DNA. The isolates tested with these primers included members of the genera Staphylococcus, Coxiella, Rickettsia, Clostridium, Neisseria, Mycobacterium, Bilophila, Eubacterium, Fusobacterium, and Lactobacillus and the family Enterobacteriaceae. Initially, the yields from the reactions were erratic because the primers were self-complementary at the 3' ends. Revised primers that were not self-complementary gave more reproducible results. With the latter primers, 0.4 pg of Escherichia coli DNA consistently gave a visible band after amplification. This method should be useful for increasing the amounts of bacterial 16S ribosomal DNA sequences for the purposes of sequencing and probing. It should have a broad range of applications, including the detection and identification of known pathogens that are difficult to culture. This approach may make it possible to identify new, nonculturable bacterial pathogens.

  5. Detection of human immunodeficiency virus DNA and RNA in semen by the polymerase chain reaction.

    PubMed

    Mermin, J H; Holodniy, M; Katzenstein, D A; Merigan, T C

    1991-10-01

    Peripheral blood mononuclear cells (PBMC) and semen of 23 men infected with human immunodeficiency virus (HIV) were examined for the presence of HIV DNA and RNA using the polymerase chain reaction (PCR) and a nonisotopic detection assay. None of the men was receiving antiretroviral therapy at the time of collection. Semen samples were separated into cell-free seminal fluid, nonspermatozoal mononuclear cells (NSMC), and spermatozoa. All of the PBMC samples, 17 (74%) of 23 NSMC samples, and none of the spermatozoal samples were positive for HIV gag gene DNA. Of 23 cell-free seminal fluid samples, 15 (65%) were positive for HIV gag gene RNA by PCR. Cell-free HIV RNA was more likely to be present in the semen of men with less than 400 than in those with greater than or equal to 400 cells/mm3 (P less than .04) and was present in all patient with p24 antigen in serum. The presence of HIV DNA in NSMC samples was not related to CD4 cell count, disease status, or the presence of p24 antigen in the serum. This study shows that HIV nucleic acid can be detected by PCR in either the cell-free seminal fluid or NSMC of 87% of semen samples but not in the DNA of spermatozoa from HIV-infected men.

  6. Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences.

    PubMed

    Huang, Sijun; Wilhelm, Steven W; Jiao, Nianzhi; Chen, Feng

    2010-10-01

    As a major cyanophage group, cyanobacterial podoviruses are important in regulating the biomass and population structure of picocyanobacteria in the ocean. However, little is known about their biogeography in the open ocean. This study represents the first survey of the biodiversity of cyanopodoviruses in the global oceans based on the viral encoded DNA polymerase (pol) gene. A total of 303 DNA pol sequences were amplified by PCR from 10 virus communities collected in the Atlantic and Pacific oceans and the South China Sea. At least five subclusters of cyanopodoviruses were identified in these samples, and one subcluster (subcluster VIII) was found in all sampling sites and comprised approximately 50% of total sequences. The diversity index based on the DNA pol gene sequences recovered through PCR suggests that cyanopodoviruses are less diverse in these oceanic samples than in a previously studied estuarine environment. Although diverse podoviruses were present in the global ocean, each sample was dominated by one major group of cyanopodoviruses. No clear biogeographic patterns were observed using statistical analysis. A metagenomic analysis based on the Global Ocean Sampling database indicates that other types of cyanopodovirus-like DNA pol sequences were present in the global ocean. Together, our study results suggest that cyanopodoviruses are widely distributed in the ocean but their community composition varies with local environments.

  7. Preparation of fluorinated RNA nucleotide analogs potentially stable to enzymatic hydrolysis in RNA and DNA polymerase assays

    PubMed Central

    Shakhmin, Anton; Jones, John-Paul; Bychinskaya, Inessa; Zibinsky, Mikhail; Oertell, Keriann; Goodman, Myron F.; Prakash, G.K. Surya

    2015-01-01

    Analogs of ribonucleotides (RNA) stable to enzymatic hydrolysis were prepared and characterized. Computational investigations revealed that this class of compounds with a modified triphosphate exhibits the correct polarity and minimal steric effects compared to the natural molecule. Non-hydrolysable properties as well as the ability of the modified nucleotide to be recognized by enzymes were probed by performing single-turnover gap filling assays with T7 RNA polymerase and DNA polymerase β. PMID:26279588

  8. Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk.

    PubMed Central

    Mimura, S; Takisawa, H

    1998-01-01

    At the onset of S phase, chromosomal replication is initiated by the loading of DNA polymerase alpha onto replication origins. However, the molecular mechanisms for controlling the initiation are poorly understood. Using Xenopus egg extract, we report here the identification of a Xenopus homolog of Cdc45, a yeast protein essential for the initiation of replication, which is shown to be an essential molecule for the initiation of replication via the loading of DNA polymerase alpha onto chromatin. XCdc45, by physically interacting with the polymerase in the extract, became associated with chromatin only after nuclear formation. During S phase, XCdc45 co-localized with the polymerase in the nuclei, and the loading of the polymerase, which depended on endogenous XCdc45, was facilitated by exogenously added recombinant XCdc45. These findings, together with the apparent requirement of S-phase-cdk activity for the loading of XCdc45, suggest that XCdc45, under the control of S-phase cdk, plays a pivotal role in the loading of DNA polymerase alpha onto chromatin. PMID:9755170

  9. Base excision repair in early zebrafish development: evidence for DNA polymerase switching and standby AP endonuclease activity.

    PubMed

    Fortier, Sean; Yang, Xiaojie; Wang, Yi; Bennett, Richard A O; Strauss, Phyllis R

    2009-06-16

    The base excision repair (BER) pathway recognizes and repairs most nonbulky lesions, uracil and abasic (AP) sites in DNA. Several participants are embryonic lethals in knockout mice. Since the pathway has never been investigated during embryogenesis, we characterized the first three steps of BER in zebrafish extracts from unfertilized eggs, embryos at different developmental stages, and adults. Using a 45-mer double-stranded substrate with a U/G mispair at position 21, we showed that extracts from all stages are capable of performing BER. Before 3 days postfertilization (dpf), aphidicolin-sensitive polymerases perform most nucleotide insertion. In fact, eggs and early stage embryos lack DNA polymerase-beta protein. After the eggs have hatched at 3 dpf, an aphidicolin-resistant polymerase, probably DNA polymerase-beta, becomes the primary polymerase. Previously, we showed that when the zebrafish AP endonuclease protein (ZAP1) level is knocked down, embryos cease dividing after the initial phase of rapid proliferation and die without apoptosis shortly thereafter. Nevertheless, extracts from embryos in which ZAP1 has been largely depleted process substrate as well as extracts from control embryos. Since apex1 and apex2 are both strongly expressed in early embryos relative to adults, these data indicate that both may play important roles in DNA repair in early development. In brief, the major differences in BER performed by early stage embryos and adults are the absence of DNA polymerase-beta, leading to predominance of replicative polymerases, and the presence of backup Mg(2+)-dependent endonuclease activity in early stage embryos. The switch to normal, adult BER occurs fully when the embryos hatch from the chorionic membrane and encounter normal oxidative stress.

  10. Translesion replication by DNA polymerase beta is modulated by sequence context and stimulated by fork-like flap structures in DNA.

    PubMed

    Daube, S S; Arad, G; Livneh, Z

    2000-01-18

    Mutations in the human genome are clustered in hot-spot regions, suggesting that some sequences are more prone to accumulate mutations than others. These regions are therefore more likely to lead to the development of cancer. Several pathways leading to the creation of mutations may be influenced by the DNA sequence, including sensitivity to DNA damaging agents, and repair mechanisms. We have analyzed sequence context effects on translesion replication, the error-prone repair of single-stranded DNA regions carrying lesions. By using synthetic oligonucleotides containing systematic variations of sequences flanking a synthetic abasic site, we show that translesion replication by the repair polymerase DNA polymerase beta is stimulated to a moderate extent by low stacking levels of the template nucleotides downstream of the lesion, combined with homopolymeric runs flanking the lesion both upstream and downstream. A strong stimulation of translesion replication by DNA polymerase beta was seen when fork-like flap structures were introduced into the DNA substrate downstream of the lesion. Unlike for gapped substrates, this stimulation was independent of the presence of a phosphate group at the 5' terminus of the flap. These results suggest that DNA polymerase beta may participate in cellular DNA transactions involving higher order structures. The significance of these results for in vivo translesion replication is discussed. PMID:10631001

  11. Role of a GAG hinge in the nucleotide-induced conformational change governing nucleotide specificity by T7 DNA polymerase.

    PubMed

    Jin, Zhinan; Johnson, Kenneth A

    2011-01-14

    A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches.

  12. A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair.

    PubMed

    Haracska, Lajos; Prakash, Louise; Prakash, Satya

    2003-11-15

    The human Y-family DNA polymerases, Poliota, Poleta, and Polkappa, function in promoting replication through DNA lesions. However, because of their low fidelity, any involvement of these polymerases in DNA synthesis during base excision repair (BER) would be highly mutagenic. Mechanisms, therefore, must exist to exclude their participation in BER. Here, we show that although Poliota, Poleta, and Polkappa are all able to form a covalent Schiff base intermediate with the 5'-deoxyribose phosphate (5'-dRP) residue that results from the incision of DNA at an abasic site by an AP endonuclease, they all lack the ability for the subsequent catalytic removal of the 5'-dRP group. Instead, the covalent trapping of these polymerases by the 5'-dRP residue inhibits their DNA synthetic activity during BER. The unprecedented ability of these polymerases for robust Schiff base formation without the release of the 5'-dRP product provides a means of preventing their participation in the DNA synthetic step of BER, thereby avoiding the high incidence of mutagenesis and carcinogenesis that would otherwise occur. PMID:14630940

  13. L-Homoserylaminoethanol, a novel dipeptide alcohol inhibitor of eukaryotic DNA polymerase from a plant cultured cells, Nicotina tabacum L.

    PubMed

    Kuriyama, Isoko; Asano, Naoki; Kato, Ikuo; Oshige, Masahiko; Sugino, Akio; Kadota, Yasuhiro; Kuchitsu, Kazuyuki; Yoshida, Hiromi; Sakaguchi, Kengo; Mizushina, Yoshiyuki

    2004-03-01

    We found a novel inhibitor specific to eukaryotic DNA polymerase epsilon(pol epsilon) from plant cultured cells, Nicotina tabacum L. The compound (compound 1) was a dipeptide alcohol, L-homoserylaminoethanol. The 50% inhibition of pol epsilon activity by the compound was 43.6 microg/mL, and it had almost no effect on the activities of the other eukaryotic DNA polymerases such as alpha, beta, gamma and delta, prokaryotic DNA polymerases, nor DNA metabolic enzymes such as human telomerase, human immunodeficiency virus type 1 reverse transcriptase, T7 RNA polymerase, human DNA topoisomerase I and II, T4 polynucleotide kinase and bovine deoxyribonuclease I. Kinetic studies showed that inhibition of pol epsilon by the compound was non-competitive with respect to both template-primer DNA and nucleotide substrate. We succeeded in chemically synthesizing the stereoisomers, L-homoserylaminoethanol and D-homoserylaminoethanol, and found both were effective to the same extent. The IC(50) values of L- and D-homoserylaminoethanols for pol epsilon were 42.0 and 41.5 microg/mL, respectively. This represents the second discovery of a pol epsilon-specific inhibitor, and the first report on a water-soluble peptide-like compound as the inhibitor, which is required in biochemical studies of pol epsilon.

  14. The Arabidopsis DNA Polymerase δ Has a Role in the Deposition of Transcriptionally Active Epigenetic Marks, Development and Flowering

    PubMed Central

    Iglesias, Francisco M.; Bruera, Natalia A.; Dergan-Dylon, Sebastián; Marino-Buslje, Cristina; Lorenzi, Hernán; Mateos, Julieta L.; Turck, Franziska; Coupland, George; Cerdán, Pablo D.

    2015-01-01

    DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes. PMID:25693187

  15. Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA

    SciTech Connect

    Jones, E.V.; Moss, B.

    1984-01-01

    The previous demonstration that a phosphonoacetate (PAA)-resistant (PAA/sup r/) vaccinia virus mutant synthesized an altered DNA polymerase provided the key to mapping this gene. Marker rescue was performed in cells infected with wild-type PAA-sensitive (PAA/sup s/) vaccinia by transfecting with calcium phosphate-precipitated DNA from a PAA/sup r/ mutant virus. Formation of PAA/sup r/ recombinants was measured by plaque assay in the presence of PAA. Of the 12 HindIII fragments cloned in plasmid or cosmid vectors, only fragment E conferred the PAA/sup r/ phenotype. Successive subcloning of the 15-kilobase HindIII fragment E localized the marker within a 7.5-kilobase BamHI-HindIII fragment and then within a 2.9-kilobase EcoRI fragment. The location of the DNA polymerase gene, about 57 kilobases from the left end of the genome, was confirmed by cell-free translation of mRNA selected by hybridization to plasmids containing regions of PAA/sup r/ vaccinia DNA active in marker rescue. A 100,000-dalton polypeptide that comigrated with authentic DNA polymerase was synthesized. Correspondence of the in vitro translation product with purified vaccinia DNA polymerase was established by peptide mapping.

  16. Computational Investigation of Locked Nucleic Acid (LNA) Nucleotides in the Active Sites of DNA Polymerases by Molecular Docking Simulations

    PubMed Central

    Poongavanam, Vasanthanathan; Madala, Praveen K.; Højland, Torben; Veedu, Rakesh N.

    2014-01-01

    Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5′-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3′-endo conformation which in fact helps better orienting within the active site. PMID:25036012

  17. Photoaffinity labeling of DNA-dependent RNA polymerase from Escherichia coli with 8-azidoadenosine 5'-triphosphate.

    PubMed

    Woody, A Y; Vader, C R; Woody, R W; Haley, B E

    1984-06-19

    A photoaffinity analogue of adenosine 5'-triphosphate (ATP), 8-azidoadenosine 5'-triphosphate (8-N3ATP), has been used to elucidate the role of the various subunits involved in forming the active site of Escherichia coli DNA-dependent RNA polymerase. 8-N3ATP was found to be a competitive inhibitor of the enzyme with respect to the incorporation of ATP with Ki = 42 microM, while uridine 5'-triphosphate (UTP) incorporation was not affected. UV irradiation of the reaction mixture containing RNA polymerase and [gamma-32P]-8-N3ATP induced covalent incorporation of radioactive label into the enzyme. Analysis by gel filtration and nitrocellulose filter binding indicated specific binding. Subunit analysis by sodium dodecyl sulfate and sodium tetradecyl sulfate gel electrophoresis and autoradiography of the labeled enzyme showed that the major incorporation of radioactive label was in beta' and sigma, with minor incorporation in beta and alpha. The same pattern was observed in both the presence and absence of poly[d(A-T)] and poly[d(A-T)] plus ApU. Incorporation of radioactive label in all bands was significantly reduced by 100-150 microM ATP, while 100-200 microM UTP did not show a noticeable effect. Our results indicate major involvement of the beta' and sigma subunits in the active site of RNA polymerase. The observation of a small extent of labeling of the beta and alpha subunits, which was prevented by saturating levels of ATP, suggests that these subunits are in close proximity to the catalytic site.

  18. Deoxyribonucleic acid of Cancer pagurus. II. Tempiate activity for a DNA-dependent DNA polymerase of eukaryotic cells

    PubMed Central

    De Recondo, Anne-Marie; Londos-Gagliardi, Danielle; Aubel-Sadron, Geneviève

    1974-01-01

    The template activity of Cancer pagurus DNA and its two components (poly d(A-T) and main component) in response to a DNA polymerase purified from regenerating rat liver has been studied and compared to the results previously obtained with synthetic templates. In the double-stranded native state, whole crab DNA and the main component were poor templates. Their replication was increased by thermal denaturation and inhibited by actinomycin. Like the synthetic copolymer poly[d(A-T)·d(T-A)], native crab poly d(A-T) could be copied and its duplication was not inhibited by actinomycin. The structural difference between native poly d(A-T) Form I, isolated on a density gradient, and partially renatured poly d(A-T) Form II, isolated on hydroxylapatite, resulted in a modification of their template activity. The kinetic studies of [3H] dGMP and [3H] dAMP incorporation confirmed the importance of single-stranded regions (particulary dC regions) in the initiation of the in vitro duplication. PMID:10793685

  19. A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands

    PubMed Central

    Prakash, Louise; Prakash, Satya

    2015-01-01

    SUMMARY Genetic studies with S. cerevisiae Polδ (pol3-L612M) and Polε (pol2-M644G) mutant alleles, each of which display a higher rate for the generation of a specific mismatch, have led to the conclusion that Polε is the primary leading strand replicase and that Polδ is restricted to replicating the lagging strand template. Contrary to this widely accepted view, here we show that Polδ plays a major role in the replication of both DNA strands, and that the paucity of pol3-L612M generated errors on the leading strand results from their more proficient removal. Thus, the apparent lack of Polδ contribution to leading strand replication is due to differential mismatch removal rather than differential mismatch generation. Altogether, our genetic studies with Pol3 and Pol2 mutator alleles support the conclusion that Polδ, and not Polε, is the major DNA polymerase for carrying out both leading and lagging DNA synthesis. PMID:26145172

  20. Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44

    SciTech Connect

    Silva, Laurie A.; Strang, Blair L.; Lin, Eric W.; Kamil, Jeremy P.; Coen, Donald M.

    2011-09-01

    The human cytomegalovirus DNA polymerase subunit UL44 is a phosphoprotein, but its sites and roles of phosphorylation have not been investigated. We compared sites of phosphorylation of UL44 in vitro by the viral protein kinase UL97 and cyclin-dependent kinase 1 with those in infected cells. Transient treatment of infected cells with a UL97 inhibitor greatly reduced labeling of two minor UL44 phosphopeptides. Viruses containing alanine substitutions of most UL44 residues that are phosphorylated in infected cells exhibited at most modest effects on viral DNA synthesis and yield. However, substitution of highly phosphorylated sites adjacent to the nuclear localization signal abolished viral replication. The results taken together are consistent with UL44 being phosphorylated directly by UL97 during infection, and a crucial role for phosphorylation-mediated nuclear localization of UL44 for viral replication, but lend little support to the widely held hypothesis that UL97-mediated phosphorylation of UL44 is crucial for viral DNA synthesis.

  1. Dynamic Conformational Change Regulates the Protein-DNA Recognition: An Investigation on Binding of a Y-Family Polymerase to Its Target DNA

    PubMed Central

    Chu, Xiakun; Liu, Fei; Maxwell, Brian A.; Wang, Yong; Suo, Zucai; Wang, Haijun; Han, Wei; Wang, Jin

    2014-01-01

    Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4) during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates. PMID:25188490

  2. DNA fragment length polymorphism analysis of Mycobacterium tuberculosis isolates by arbitrarily primed polymerase chain reaction.

    PubMed

    Palittapongarnpim, P; Chomyc, S; Fanning, A; Kunimoto, D

    1993-04-01

    Strain identification of Mycobacterium tuberculosis would prove whether transmission had occurred between individuals. A method to characterize strains of M. tuberculosis has been developed utilizing polymerase chain reaction (PCR). Purified chromosomal DNA of cultured clinical samples of M. tuberculosis were subjected to PCR using short (10-12 nucleotide) oligonucleotide primers. PCR products visualized after agarose gel electrophoresis and ethidium bromide staining demonstrated that different strains of M. tuberculosis give different banding patterns. This technique was used to confirm the relationship between cases of tuberculosis in several clusters, prove the lack of relationship between 2 isolates with the same antibiotic-resistance pattern, confirm a suspected mislabeling event, and suggest the source of infection in a case of tuberculous meningitis. This method is rapid and simple and does not require radioactive probes.

  3. [Downregulation of Human Adenovirus DNA Polymerase Gene by Modified siRNAs].

    PubMed

    Nikitenko, N A; Speiseder, T; Chernolovskaya, E L; Zenkova, M A; Dobner, T; Prassolov, V S

    2016-01-01

    Human adenoviruses, in particular D8, D19, and D37, cause ocular infections. Currently, there is no available causally directed treatment, which efficiently counteracts adenoviral infectious diseases. In our previous work, we showed that gene silencing by means of RNA interference is an effective approach for downregulation of human species D adenoviruses replication. In this study, we compared the biological activity of siRNAs and their modified analogs targeting human species D adenoviruses DNA polymerase. We found that one of selectively 2'-O-methyl modified siRNAs mediates stable and long-lasting suppression of the target gene (12 days post transfection). We suppose that this siRNA can be used as a potential therapeutic agent against human species D adenoviruses.

  4. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication.

    PubMed

    Langston, Lance D; Zhang, Dan; Yurieva, Olga; Georgescu, Roxana E; Finkelstein, Jeff; Yao, Nina Y; Indiani, Chiara; O'Donnell, Mike E

    2014-10-28

    DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG-Pol ε complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes. PMID:25313033

  5. Efficient Gap Repair Catalyzed In Vitro by an Intrinsic DNA Polymerase Activity of Human Immunodeficiency Virus Type 1 Integrase

    PubMed Central

    Acel, Andrea; Udashkin, Brian E.; Wainberg, Mark A.; Faust, Emmanuel A.

    1998-01-01

    Cleavage and DNA joining reactions, carried out by human immunodeficiency virus type 1 (HIV-1) integrase, are necessary to effect the covalent insertion of HIV-1 DNA into the host genome. For the integration of HIV-1 DNA into the cellular genome to be completed, short gaps flanking the integrated proviral DNA must be repaired. It has been widely assumed that host cell DNA repair enzymes are involved. Here we report that HIV-1 integrase multimers possess an intrinsic DNA-dependent DNA polymerase activity. The activity was characterized by its dependence on Mg2+, resistance to N-ethylmaleimide, and inhibition by 3′-azido-2′,3′-dideoxythymidine-5′-triphosphate, coumermycin A1, and pyridoxal 5′-phosphate. The enzyme efficiently utilized poly(dA)-oligo(dT) or self-annealing oligonucleotides as a template primer but displayed relatively low activity with gapped calf thymus DNA and no activity with poly(dA) or poly(rA)-oligo(dT). A monoclonal antibody binding specifically to an epitope comprised of amino acids 264 to 273 near the C terminus of HIV-1 integrase severely inhibited the DNA polymerase activity. A deletion of 50 amino acids at the C terminus of integrase drastically altered the gel filtration properties of the DNA polymerase, although the level of activity was unaffected by this mutation. The DNA polymerase efficiently extended a hairpin DNA primer up to 19 nucleotides on a T20 DNA template, although addition of the last nucleotide occurred infrequently or not at all. The ability of integrase to repair gaps in DNA was also investigated. We designed a series of gapped molecules containing a single-stranded region flanked by a duplex U5 viral arm on one side and by a duplex nonviral arm on the other side. Molecules varied structurally depending on the size of the gap (one, two, five, or seven nucleotides), their content of T’s or C’s in the single-stranded region, whether the CA dinucleotide in the viral arm had been replaced with a nonviral

  6. Molecular recognition of canonical and deaminated bases by P. abyssi family B DNA polymerase.

    PubMed

    Gouge, Jérôme; Ralec, Céline; Henneke, Ghislaine; Delarue, Marc

    2012-10-26

    Euryarchaeal polymerase B can recognize deaminated bases on the template strand, effectively stalling the replication fork 4nt downstream the modified base. Using Pyrococcus abyssi DNA B family polymerase (PabPolB), we investigated the discrimination between deaminated and natural nucleotide(s) by primer extension assays, electrophoretic mobility shift assays, and X-ray crystallography. Structures of complexes between the protein and DNA duplexes with either a dU or a dH in position +4 were solved at 2.3Å and 2.9Å resolution, respectively. The PabPolB is found in the editing mode. A new metal binding site has been uncovered below the base-checking cavity where the +4 base is flipped out; it is fully hydrated in an octahedral fashion and helps guide the strongly kinked template strand. Four other crystal structures with each of the canonical bases were also solved in the editing mode, and the presence of three nucleotides in the exonuclease site caused a shift in the coordination state of its metal A from octahedral to tetrahedral. Surprisingly, we find that all canonical bases also enter the base-checking pocket with very small differences in the binding geometry and in the calculated binding free energy compared to deaminated ones. To explain how this can lead to stalling of the replication fork, the full catalytic pathway and its branches must be taken into account, during which the base is checked several times. Our results strongly suggest a switch from elongation to editing modes right after nucleotide insertion when the modified base is at position +5.

  7. 129-Derived Mouse Strains Express an Unstable but Catalytically Active DNA Polymerase Iota Variant.

    PubMed

    Aoufouchi, Said; De Smet, Annie; Delbos, Frédéric; Gelot, Camille; Guerrera, Ida Chiara; Weill, Jean-Claude; Reynaud, Claude-Agnès

    2015-09-01

    Mice derived from the 129 strain have a nonsense codon mutation in exon 2 of the polymerase iota (Polι) gene and are therefore considered Polι deficient. When we amplified Polι mRNA from 129/SvJ or 129/Ola testes, only a small fraction of the full-length cDNA contained the nonsense mutation; the major fraction corresponded to a variant Polι isoform lacking exon 2. Polι mRNA lacking exon 2 contains an open reading frame, and the corresponding protein was detected using a polyclonal antibody raised against the C terminus of the murine Polι protein. The identity of the corresponding protein was further confirmed by mass spectrometry. Although the variant protein was expressed at only 5 to 10% of the level of wild-type Polι, it retained de novo DNA synthesis activity, the capacity to form replication foci following UV irradiation, and the ability to rescue UV light sensitivity in Polι(-/-) embryonic fibroblasts derived from a new, fully deficient Polι knockout (KO) mouse line. Furthermore, in vivo treatment of 129-derived male mice with Velcade, a drug that inhibits proteasome function, stabilized and restored a substantial amount of the variant Polι in these animals, indicating that its turnover is controlled by the proteasome. An analysis of two xeroderma pigmentosum-variant (XPV) cases corresponding to missense mutants of Polη, a related translesion synthesis (TLS) polymerase in the same family, similarly showed a destabilization of the catalytically active mutant protein by the proteasome. Collectively, these data challenge the prevailing hypothesis that 129-derived strains of mice are completely deficient in Polι activity. The data also document, both for 129-derived mouse strains and for some XPV patients, new cases of genetic defects corresponding to the destabilization of an otherwise functional protein, the phenotype of which is reversible by proteasome inhibition.

  8. The E249K mutator mutant of DNA polymerase beta extends mispaired termini.

    PubMed

    Kosa, J L; Sweasy, J B

    1999-12-10

    The DNA polymerase beta mutant enzyme, which is altered from glutamic acid to lysine at position 249, exhibits a mutator phenotype in primer extension assays and in the herpes simplex virus-thymidine kinase (HSV-tk) forward mutation assay. The basis for this loss of accuracy was investigated by measurement of misincorporation fidelity in single turnover conditions. For the four misincorporation reactions investigated, the fidelity of the E249K mutant was not significantly different from wild type, implying that the mutator phenotype was not caused by a general inability to distinguish between correct and incorrect bases during the incorporation reaction. However, the discrimination between correct and incorrect substrates by the E249K enzyme occurred less during the conformational change and chemical steps and more during the initial binding step, compared with pol beta wild type. This implies that the E249K mutation alters the kinetic mechanism of nucleotide discrimination without reducing misincorporation fidelity. In a missing base primer extension assay, we observed that the mutant enzyme produced mispairs and extended them. This indicates that the altered fidelity of E249K could be due to loss of discrimination against mispaired primer termini. This was supported by the finding that the E249K enzyme extended a G:A mispair 8-fold more efficiently than wild type and a C:T mispair 4-fold more efficiently. These results demonstrate that an enhanced ability to extend mispairs can produce a mutator phenotype and that the Glu-249 side chain of DNA polymerase beta is critical for mispair extension fidelity. PMID:10585471

  9. DNA polymerase kappa microsatellite synthesis: two distinct mechanisms of slippage-mediated errors.

    PubMed

    Baptiste, Beverly A; Eckert, Kristin A

    2012-12-01

    Microsatellite tandem repeats are frequent sites of strand slippage mutagenesis in the human genome. Microsatellite mutations often occur as insertion/deletion of a repeat motif (unit-based indels), and increase in frequency with increasing repeat length after a threshold is reached. We recently demonstrated that DNA polymerase κ (Pol κ) produces fewer unit-based indel errors within dinucleotide microsatellites than does polymerase δ. Here, we examined human Pol κ's error profile within microsatellite alleles of varying sequence composition and length, using an in vitro HSV-tk gap-filling assay. We observed that Pol κ displays relatively accurate synthesis for unit-based indels, using di- and tetranucleotide repeat templates longer than the threshold length. We observed an abrupt increase in the unit-based indel frequency when the total microsatellite length exceeds 28 nucleotides, suggesting that extended Pol κ protein-DNA interactions enhance fidelity of the enzyme when synthesizing these microsatellite alleles. In contrast, Pol κ is error-prone within the HSV-tk coding sequence, producing frequent single-base errors in a manner that is highly biased with regard to sequence context. Single-nucleotide errors are also created by Pol κ within di- and tetranucleotide repeats, independently of the microsatellite allele length and at a frequency per nucleotide similar to the frequency of single base errors within the coding sequence. These single-base errors represent the mutational signature of Pol κ, and we propose them a mechanism independent of homology-stabilized slippage. Pol κ's dual fidelity nature provides a unique research tool to explore the distinct mechanisms of slippage-mediated mutagenesis. PMID:22965905

  10. Evidence for Moonlighting Functions of the θ Subunit of Escherichia coli DNA Polymerase III

    PubMed Central

    Dietrich, M.; Pedró, L.; García, J.; Pons, M.; Hüttener, M.; Paytubi, S.; Madrid, C.

    2014-01-01

    The holE gene is an enterobacterial ORFan gene (open reading frame [ORF] with no detectable homology to other ORFs in a database). It encodes the θ subunit of the DNA polymerase III core complex. The precise function of the θ subunit within this complex is not well established, and loss of holE does not result in a noticeable phenotype. Paralogs of holE are also present on many conjugative plasmids and on phage P1 (hot gene). In this study, we provide evidence indicating that θ (HolE) exhibits structural and functional similarities to a family of nucleoid-associated regulatory proteins, the Hha/YdgT-like proteins that are also encoded by enterobacterial ORFan genes. Microarray studies comparing the transcriptional profiles of Escherichia coli holE, hha, and ydgT mutants revealed highly similar expression patterns for strains harboring holE and ydgT alleles. Among the genes differentially regulated in both mutants were genes of the tryptophanase (tna) operon. The tna operon consists of a transcribed leader region, tnaL, and two structural genes, tnaA and tnaB. Further experiments with transcriptional lacZ fusions (tnaL::lacZ and tnaA::lacZ) indicate that HolE and YdgT downregulate expression of the tna operon by possibly increasing the level of Rho-dependent transcription termination at the tna operon's leader region. Thus, for the first time, a regulatory function can be attributed to HolE, in addition to its role as structural component of the DNA polymerase III complex. PMID:24375106

  11. Lateral Gene Transfer of Family A DNA Polymerases between Thermophilic Viruses, Aquificae, and Apicomplexa

    PubMed Central

    Schoenfeld, Thomas W.; Murugapiran, Senthil K.; Dodsworth, Jeremy A.; Floyd, Sally; Lodes, Michael; Mead, David A.; Hedlund, Brian P.

    2013-01-01

    Bioinformatics and functional screens identified a group of Family A-type DNA Polymerase (polA) genes encoded by viruses inhabiting circumneutral and alkaline hot springs in Yellowstone National Park and the US Great Basin. The proteins encoded by these viral polA genes (PolAs) shared no significant sequence similarity with any known viral proteins but were remarkably similar to PolAs encoded by two of three families of the bacterial phylum Aquificae and by several apicoplast-targeted PolA-like proteins found in the eukaryotic phylum Apicomplexa, which includes the obligate parasites Plasmodium, Babesia, and Toxoplasma. The viral gene products share signature elements previously associated only with Aquificae and Apicomplexa PolA-like proteins and were similar to proteins encoded by prophage elements of a variety of otherwise unrelated Bacteria, each of which additionally encoded a prototypical bacterial PolA. Unique among known viral DNA polymerases, the viral PolA proteins of this study share with the Apicomplexa proteins large amino-terminal domains with putative helicase/primase elements but low primary sequence similarity. The genomic context and distribution, phylogeny, and biochemistry of these PolA proteins suggest that thermophilic viruses transferred polA genes to the Apicomplexa, likely through secondary endosymbiosis of a virus-infected proto-apicoplast, and to the common ancestor of two of three Aquificae families, where they displaced the orthologous cellular polA gene. On the basis of biochemical activity, gene structure, and sequence similarity, we speculate that the xenologous viral-type polA genes may have functions associated with diversity-generating recombination in both Bacteria and Apicomplexa. PMID:23608703

  12. Evaluation of the Role of the Vaccinia Virus Uracil DNA Glycosylase and A20 Proteins as Intrinsic Components of the DNA Polymerase Holoenzyme*

    PubMed Central

    Boyle, Kathleen A.; Stanitsa, Eleni S.; Greseth, Matthew D.; Lindgren, Jill K.; Traktman, Paula

    2011-01-01

    The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ∼1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N′ terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site. PMID:21572084

  13. RNA cleavage and chain elongation by Escherichia coli DNA-dependent RNA polymerase in a binary enzyme.RNA complex.

    PubMed Central

    Altmann, C R; Solow-Cordero, D E; Chamberlin, M J

    1994-01-01

    In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the sigma factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA.RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein. Images PMID:7513426

  14. Computational Evaluation of Nucleotide Insertion Opposite Expanded and Widened DNA by the Translesion Synthesis Polymerase Dpo4.

    PubMed

    Albrecht, Laura; Wilson, Katie A; Wetmore, Stacey D

    2016-01-01

    Expanded (x) and widened (y) deoxyribose nucleic acids (DNA) have an extra benzene ring incorporated either horizontally (xDNA) or vertically (yDNA) between a natural pyrimidine base and the deoxyribose, or between the 5- and 6-membered rings of a natural purine. Far-reaching applications for (x,y)DNA include nucleic acid probes and extending the natural genetic code. Since modified nucleobases must encode information that can be passed to the next generation in order to be a useful extension of the genetic code, the ability of translesion (bypass) polymerases to replicate modified bases is an active area of research. The common model bypass polymerase DNA polymerase IV (Dpo4) has been previously shown to successfully replicate and extend past a single modified nucleobase on a template DNA strand. In the current study, molecular dynamics (MD) simulations are used to evaluate the accommodation of expanded/widened nucleobases in the Dpo4 active site, providing the first structural information on the replication of (x,y)DNA. Our results indicate that the Dpo4 catalytic (palm) domain is not significantly impacted by the (x,y)DNA bases. Instead, the template strand is displaced to accommodate the increased C1'-C1' base-pair distance. The structural insights unveiled in the present work not only increase our fundamental understanding of Dpo4 replication, but also reveal the process by which Dpo4 replicates (x,y)DNA, and thereby will contribute to the optimization of high fidelity and efficient polymerases for the replication of modified nucleobases. PMID:27347908

  15. Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis

    PubMed Central

    Maor-Shoshani, Ayelet; Reuven, Nina Bacher; Tomer, Guy; Livneh, Zvi

    2000-01-01

    When challenged by DNA-damaging agents, Escherichia coli cells respond by inducing the SOS stress response, which leads to an increase in mutation frequency by two mechanisms: translesion replication, a process that causes mutations because of misinsertion opposite the lesions, and an inducible mutator activity, which acts at undamaged sites. Here we report that DNA polymerase V (pol V; UmuC), which previously has been shown to be a lesion-bypass DNA polymerase, was highly mutagenic during in vitro gap-filling replication of a gapped plasmid carrying the cro reporter gene. This reaction required, in addition to pol V, UmuD′, RecA, and single-stranded DNA (ssDNA)-binding protein. pol V produced point mutations at a frequency of 2.1 × 10−4 per nucleotide (2.1% per cro gene), 41-fold higher than DNA polymerase III holoenzyme. The mutational spectrum of pol V was dominated by transversions (53%), which were formed at a frequency of 1.3 × 10−4 per nucleotide (1.1% per cro gene), 74-fold higher than with pol III holoenzyme. The prevalence of transversions and the protein requirements of this system are similar to those of in vivo untargeted mutagenesis (SOS mutator activity). This finding suggests that replication by pol V, in the presence of UmuD′, RecA, and ssDNA-binding protein, is the basis of chromosomal SOS untargeted mutagenesis. PMID:10639119

  16. The Second Subunit of DNA Polymerase Delta Is Required for Genomic Stability and Epigenetic Regulation1[OPEN

    PubMed Central

    Cheng, Jinkui; Lai, Jinsheng; Gong, Zhizhong

    2016-01-01

    DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α. The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression. PMID:27208288

  17. The K167I variant of DNA polymerase β that is found in Esophageal Carcinoma patients impairs polymerase activity and BER

    PubMed Central

    Wang, Yuanyuan; Zang, Wenqiao; Du, Yuwen; Chen, Xiaonan; Zhao, Guoqiang

    2015-01-01

    DNA polymerase β (pol β) is a key enzyme in DNA base excision repair, and an important factor for maintaining genomic integrity and stability. Esophageal carcinoma (EC) patients who have been identified as carrying the K167I variant of pol β have been shown to have decreased life expectancy. However, it is unknown if the variant affects pol β’s functions and/or how it contributes to the initiation and progression of cancer. In this study, we expressed and purified the K167I variant. Moreover, we found that K167I significantly reduced polymerase activity. As a result, the K167I substitution reduced base excision repair (BER) efficiency when assayed in a reconstitution assay or when using cellular extracts. Finally, we observed EC cells expressing the K167I variant to be sensitive to DNA damaging agents. These results suggest the K167I variant affected pol β biochemical activity resulting in impaired BER function, which might subsequently contribute to genomic instability and cancer development. PMID:26527528

  18. Elongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein.

    PubMed Central

    Reines, D; Mote, J

    1993-01-01

    In eukaryotes the genetic material is contained within a coiled, protein-coated structure known as chromatin. RNA polymerases must recognize specific nucleoprotein assemblies and maintain contact with the underlying DNA duplex for many thousands of base pairs. Template-bound lac operon repressor from Escherichia coli arrests RNA polymerase II in vitro and in vivo [Kuhn, A., Bartsch, I. & Grummt, I. (1990) Nature (London) 344, 559-562; Deuschele, U., Hipskind, R. A. & Bujard, H. (1990) Science 248, 480-483]. We show that in a reconstituted transcription system, elongation factor SII enables RNA polymerase II to proceed through this blockage at high efficiency. lac repressor-arrested elongation complexes display an SII-activated transcript cleavage reaction, an activity associated with transcriptional read-through of a previously characterized region of bent DNA. This demonstrates factor-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein. Nascent transcript cleavage may be a general mechanism by which RNA polymerase II can bypass many transcriptional impediments. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8446609

  19. Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins

    PubMed Central

    Guilliam, Thomas A.; Jozwiakowski, Stanislaw K.; Ehlinger, Aaron; Barnes, Ryan P.; Rudd, Sean G.; Bailey, Laura J.; Skehel, J. Mark; Eckert, Kristin A.; Chazin, Walter J.; Doherty, Aidan J.

    2015-01-01

    PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication. PMID:25550423

  20. In silico screening for novel inhibitors of DNA polymerase III alpha subunit of Mycobacterium tuberculosis (MtbDnaE2, H37Rv).

    PubMed

    Jadaun, Alka; Sudhakar D, Raja; Subbarao, N; Dixit, Aparna

    2015-01-01

    Tuberculosis, a pandemic disease is caused by Mycobacterium tuberculosis (Mtb). DNA polymerase III encoded by DnaE2 of Mtb is specifically required for its survival in vivo, and hence can be considered to be a potential drug target. Amino acid sequence analysis of the MtbDnaE2 and its human counterpart does not show any significant similarity. Therefore, a 3D model of the MtbDnaE2 was generated using Modeller 9v10 with the template structure of E. Coli DNA polymerase III alpha subunit (2HNH_A). The generated models were validated using a number of programmes such as RAMPAGE/PROCHECK, VERIFY_3D, and ProSA. MtbDnaE2 has few conserved residues and four conserved domains similar to that present in DNA polymerase III of E. coli. In silico screening was performed with bioactive anti-tuberculosis compounds and 6-AU (a known inhibitor of DNA polymerase III of Bacillus subtilis) and its analogues against the modeled MtbDnaE2 structure. Docking was performed using GOLD v5.2 software which resulted in the identification of top ten compounds with high GOLD fitness scores and binding affinity (X-Score). To further evaluate the efficacy of these compounds, in silico ADMET analysis was performed using MedChem Designer v3. Given their high binding affinity to the targeted MtbDnaE2, which is essential for DNA replication in the Mtb and good ADMET properties, these compounds are promising candidates for further evaluation and development as anti-tubercular agents.

  1. In Silico Screening for Novel Inhibitors of DNA Polymerase III Alpha Subunit of Mycobacterium tuberculosis (MtbDnaE2, H37Rv)

    PubMed Central

    Jadaun, Alka; Sudhakar D, Raja; Subbarao, N.; Dixit, Aparna

    2015-01-01

    Tuberculosis, a pandemic disease is caused by Mycobacterium tuberculosis (Mtb). DNA polymerase III encoded by DnaE2 of Mtb is specifically required for its survival in vivo, and hence can be considered to be a potential drug target. Amino acid sequence analysis of the MtbDnaE2 and its human counterpart does not show any significant similarity. Therefore, a 3D model of the MtbDnaE2 was generated using Modeller 9v10 with the template structure of E. Coli DNA polymerase III alpha subunit (2HNH_A). The generated models were validated using a number of programmes such as RAMPAGE/PROCHECK, VERIFY_3D, and ProSA. MtbDnaE2 has few conserved residues and four conserved domains similar to that present in DNA polymerase III of E. coli. In silico screening was performed with bioactive anti-tuberculosis compounds and 6-AU (a known inhibitor of DNA polymerase III of Bacillus subtilis) and its analogues against the modeled MtbDnaE2 structure. Docking was performed using GOLD v5.2 software which resulted in the identification of top ten compounds with high GOLD fitness scores and binding affinity (X-Score). To further evaluate the efficacy of these compounds, in silico ADMET analysis was performed using MedChem Designer v3. Given their high binding affinity to the targeted MtbDnaE2, which is essential for DNA replication in the Mtb and good ADMET properties, these compounds are promising candidates for further evaluation and development as anti-tubercular agents. PMID:25811866

  2. The use of an artificial nucleotide for polymerase-based recognition of carcinogenic O6-alkylguanine DNA adducts.

    PubMed

    Wyss, Laura A; Nilforoushan, Arman; Williams, David M; Marx, Andreas; Sturla, Shana J

    2016-08-19

    Enzymatic approaches for locating alkylation adducts at single-base resolution in DNA could enable new technologies for understanding carcinogenesis and supporting personalized chemotherapy. Artificial nucleotides that specifically pair with alkylated bases offer a possible strategy for recognition and amplification of adducted DNA, and adduct-templated incorporation of an artificial nucleotide has been demonstrated for a model DNA adduct O(6)-benzylguanine by a DNA polymerase. In this study, DNA adducts of biological relevance, O(6)-methylguanine (O(6)-MeG) and O(6)-carboxymethylguanine (O(6)-CMG), were characterized to be effective templates for the incorporation of benzimidazole-derived 2'-deoxynucleoside-5'-O-triphosphates ( BENZI: TP and BIM: TP) by an engineered KlenTaq DNA polymerase. The enzyme catalyzed specific incorporation of the artificial nucleotide BENZI: opposite adducts, with up to 150-fold higher catalytic efficiency for O(6)-MeG over guanine in the template. Furthermore, addition of artificial nucleotide BENZI: was required for full-length DNA synthesis during bypass of O(6)-CMG. Selective incorporation of the artificial nucleotide opposite an O(6)-alkylguanine DNA adduct was verified using a novel 2',3'-dideoxy derivative of BENZI: TP. The strategy was used to recognize adducts in the presence of excess unmodified DNA. The specific processing of BENZI: TP opposite biologically relevant O(6)-alkylguanine adducts is characterized herein as a basis for potential future DNA adduct sequencing technologies. PMID:27378785

  3. Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases.

    PubMed

    Liao, Chia-Sheng; Lee, Gwo-Bin; Wu, Jiunn-Jong; Chang, Chih-Ching; Hsieh, Tsung-Min; Huang, Fu-Chun; Luo, Ching-Hsing

    2005-01-15

    This paper presents a micro polymerase chain reaction (PCR) chip for the DNA-based diagnosis of microorganism genes and the detection of their corresponding antibiotic-resistant genes. The micro PCR chip comprises cheap biocompatible soda-lime glass substrates with integrated thin-film platinum resistors as heating/sensing elements, and is fabricated using micro-electro-mechanical-system (MEMS) techniques in a reliable batch-fabrication process. The heating and temperature sensing elements are made of the same material and are located inside the reaction chamber in order to ensure a uniform temperature distribution. This study performs the detection of several genes associated with upper respiratory tract infection microorganisms, i.e. Streptococcus pneumoniae, Haemopilus influenze, Staphylococcu aureus, Streptococcus pyogenes, and Neisseria meningitides, together with their corresponding antibiotic-resistant genes. The lower thermal inertia of the proposed micro PCR chip relative to conventional bench-top PCR systems enables a more rapid detection operation with reduced sample and reagent consumption. The experimental data reveal that the high heating and cooling rates of the system (20 and 10 degrees C/s, respectively) permit successful DNA amplification within 15 min. The micro PCR chip is also capable of performing multiple DNA amplification, i.e. the simultaneous duplication of multiple genes under different conditions in separate reaction wells. Compared with the large-scale PCR system, it is greatly advantageous for fast diagnosis of multiple infectious diseases. Multiplex PCR amplification of two DNA segments in the same well is also feasible using the proposed micro device. The developed micro PCR chip provides a crucial tool for genetic analysis, molecular biology, infectious disease detection, and many other biomedical applications. PMID:15590288

  4. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ

    PubMed Central

    Fernandez-Leiro, Rafael; Conrad, Julian; Scheres, Sjors HW; Lamers, Meindert H

    2015-01-01

    The replicative DNA polymerase PolIIIα from Escherichia coli is a uniquely fast and processive enzyme. For its activity it relies on the DNA sliding clamp β, the proofreading exonuclease ε and the C-terminal domain of the clamp loader subunit τ. Due to the dynamic nature of the four-protein complex it has long been refractory to structural characterization. Here we present the 8 Å resolution cryo-electron microscopy structures of DNA-bound and DNA-free states of the PolIII-clamp-exonuclease-τc complex. The structures show how the polymerase is tethered to the DNA through multiple contacts with the clamp and exonuclease. A novel contact between the polymerase and clamp is made in the DNA bound state, facilitated by a large movement of the polymerase tail domain and τc. These structures provide crucial insights into the organization of the catalytic core of the replisome and form an important step towards determining the structure of the complete holoenzyme. DOI: http://dx.doi.org/10.7554/eLife.11134.001 PMID:26499492

  5. Evidence that a critical threshold of DNA polymerase-alpha activity may be required for the initiation of DNA synthesis in mammalian cell heterokaryons.

    PubMed

    Pendergrass, W R; Saulewicz, A C; Burmer, G C; Rabinovitch, P S; Norwood, T H; Martin, G M

    1982-10-01

    The specific activity of DNA polymerase (90% alpha) was determined in nine "neoplastoid" cell lines (Martin and Sprague, 1973) and in three different strains of HDF (human diploid fibroblast-like cells), all examined in logarithmic phases of growth. This was compared to the ability of each cell type to "rescue" (reinitiate DNA synthesis in) senescent HDF cells subsequent to polyethylene glycol-mediated cell fusions. A sharp "threshold" value of DNA polymerase activity was observed below which reinitiation of DNA synthesis in heterokaryons with senescent HDF does not occur. This threshold was especially obvious when the specific activity of DNA polymerase (p moles dTTP incorporated per mg protein or per cell) was divided by the percent of S-phase cells present in each culture as determined by flow microfluorometry. Our results indicate that the specific activity of DNA polymerase-alpha (or some other factor tightly coregulated with it) in "recessive" cell types (those unable to rescue senescent cells) is only about two times this theoretical "threshold" value, and that fusion of recessive cell types to senescent HDF cells reduces the specific activity in the heterokaryon to below this minimum, thus preventing the cells from entering S phase.

  6. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η.

    PubMed

    Genna, Vito; Gaspari, Roberto; Dal Peraro, Matteo; De Vivo, Marco

    2016-04-01

    Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases.

  7. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η.

    PubMed

    Genna, Vito; Gaspari, Roberto; Dal Peraro, Matteo; De Vivo, Marco

    2016-04-01

    Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases. PMID:26935581

  8. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase

    PubMed Central

    Genna, Vito; Gaspari, Roberto; Dal Peraro, Matteo; De Vivo, Marco

    2016-01-01

    Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases. PMID:26935581

  9. Protein-Template-Directed Synthesis across an Acrolein-Derived DNA Adduct by Yeast Rev1 DNA Polymerase

    SciTech Connect

    Nair, Deepak T.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2008-07-08

    Acrolein is generated as the end product of lipid peroxidation and is also a ubiquitous environmental pollutant. Its reaction with the N{sup 2} of guanine leads to a cyclic {gamma}-HOPdG adduct that presents a block to normal replication. We show here the yeast Rev1 incorporates the correct nucleotide C opposite a permanently ring-closed form of {gamma}-HOPdG (PdG) with nearly the same efficiency as opposite an undamaged G. The structural bais of this action lies in the eviction of PdG adduct from the Rev1 active site, and the pairing of incoming dCTP with a surrogate' arginine residue. We also show that yeast Pol{zeta} can carry out the subsequent extension reaction. Together, our studies reveal how the exocyclic PdG adduct is accommodated in a DNA polymerase active site, and they show that the combined action of Rev1 and Pol{zeta} provides for accurate and efficient synthesis through this potentially carcinogenic DNA lesion.

  10. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase {alpha}

    SciTech Connect

    Maeda, Naoki; Kokai, Yasuo; Ohtani, Seiji; Sahara, Hiroeki; Kuriyama, Isoko; Kamisuki, Shinji; Takahashi, Shunya; Sakaguchi, Kengo; Sugawara, Fumio; Yoshida, Hiromi; Sato, Noriyuki; Mizushina, Yoshiyuki . E-mail: mizushin@nutr.kobegakuin.ac.jp

    2007-01-12

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol {alpha} from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol {alpha} with IC{sub 50} value of 0.5 {mu}M, and did not influence the activities of other replicative pols such as pols {delta} and {epsilon}, but also showed no effect on pol {alpha} activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD{sub 50} values of 38.0-44.4 {mu}M. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol {alpha}-specific inhibitor, but also as a candidate drug for anti-cancer treatment.

  11. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability

    PubMed Central

    Salinas-Rios, Viviana; Belotserkovskii, Boris P.; Hanawalt, Philip C.

    2011-01-01

    The abnormal number of repeats found in triplet repeat diseases arises from ‘repeat instability’, in which the repetitive section of DNA is subject to a change in copy number. Recent studies implicate transcription in a mechanism for repeat instability proposed to involve RNA polymerase II (RNAPII) arrest caused by a CTG slip-out, triggering transcription-coupled repair (TCR), futile cycles of which may lead to repeat expansion or contraction. In the present study, we use defined DNA constructs to directly test whether the structures formed by CAG and CTG repeat slip-outs can cause transcription arrest in vitro. We found that a slip-out of (CAG)20 or (CTG)20 repeats on either strand causes RNAPII arrest in HeLa cell nuclear extracts. Perfect hairpins and loops on either strand also cause RNAPII arrest. These findings are consistent with a transcription-induced repeat instability model in which transcription arrest in mammalian cells may initiate a ‘gratuitous’ TCR event leading to a change in repeat copy number. An understanding of the underlying mechanism of repeat instability could lead to intervention to slow down expansion and delay the onset of many neurodegenerative diseases in which triplet repeat expansion is implicated. PMID:21666257

  12. A power-efficient thermocycler based on induction heating for DNA amplification by polymerase chain reaction

    NASA Astrophysics Data System (ADS)

    Pal, Debjani; Venkataraman, V.; Mohan, K. Naga; Chandra, H. Sharat; Natarajan, Vasant

    2004-09-01

    We have built a thermocycler based on the principles of induction heating for polymerase chain reaction (PCR) of target sequences in DNA samples of interest. The cycler has an average heating rate of ˜0.8 °C/s and a cooling rate of ˜0.5 °C/s, and typically takes ˜4 h to complete a 40-cycle PCR protocol. It is power-efficient (˜6 W per reaction tube), micro-processor controlled, and can be adapted for battery operation. Using this instrument, we have successfully amplified a 350 bp segment from a plasmid and SRY, the human sex determining gene, which occurs as a single-copy sequence in genomic DNA of human males. The PCR products from this thermocycler are comparable to those obtained by the use of commercially available machines. Its easy front-end operation, low-power design, portability and low cost makes it suitable for diagnostic field applications of PCR.

  13. Effect of reference database on frequency estimates of polymerase chain reaction (PCR)-based DNA profiles.

    PubMed

    Monson, K L; Budowle, B

    1998-05-01

    A variety of general, regional, ancestral and ethnic databases is available for the polymerase chain reaction (PCR)-based loci LDLR, GYPA, HBGG, D7S8, Gc, DQA1, and D1S80. Generally, we observed greater differences in frequency estimations of DNA profiles between racial groups than between ethnic or geographic subgroups. Analysis revealed few forensically significant differences within ethnic subgroups, particularly within general United States groups, and multi-locus frequency estimates typically differ by less than a factor of ten. Using a database different from the one to which a target profile belongs tends to overestimate rarity. Implementation of the general correction of homozygote frequencies for a population substructure, advised by the 1996 National Research Council report, The Evaluation of Forensic DNA Evidence, has a minimal effect on profile frequencies. Even when it is known that both the suspect and all possible perpetrators must belong to the same isolated population, the special correction for inbreeding, which was proposed by the 1996 National Research Council report for this special case, has a relatively modest effect, typically a factor of two or less for 1% inbreeding. The effect becomes more substantial (exceeding a factor of ten) for inbreeding of 3% or more in multi-locus profiles rarer than about one in a million. PMID:9608687

  14. Series DNA Amplification Using the Continuous-Flow Polymerase Chain Reaction Chip

    NASA Astrophysics Data System (ADS)

    Joung, Seung-Ryong; Kang, Chi Jung; Kim, Yong-Sang

    2008-02-01

    We proposed a continuous-flow polymerase chain reaction (PCR) chip that can be used for series DNA amplification. The continuous-flow PCR chip has several advantages such as fast thermal cycling, series of amplifications, cost-effective fabrication, portability, and fluorescence detection. The continuous-flow PCR chip is composed of two parts namely poly(dimethylsiloxane) (PDMS) microchannel for sample injection and indium-tin-oxide (ITO) heater/glass chip for thermal cycling. The fabricated microchannel width and depth are 250 and 200 µm, respectively. Also, the total working length of the PDMS microchannel is 1340 mm which is equivalent for 20 cycles of amplification. A 2:2:3 microchannel length ratio for three different temperature zones namely denaturation, annealing, and extension was assigned, respectively. Upon the operation of the fabricated continuous-flow PCR chip, the amplification of plasmid DNA pKS-GFP with 720 base pairs and PG-noswsi with 300 base pairs were found successfully with a total reaction time of 15 min.

  15. Sample preparation and DNA extraction procedures for polymerase chain reaction identification of Listeria monocytogenes in seafoods.

    PubMed

    Agersborg, A; Dahl, R; Martinez, I

    1997-04-15

    Five grams of seafood products were inoculated with one to 500 viable or 10(9) heat-killed cells of Listeria monocytogenes. The presence of the pathogen was detected by the polymerase chain reaction (PCR) with primers specific for fragments of the listeriolysin O (hly) gene (two sets) and for the invasion-associated protein (iap) gene (one set). For DNA preparation, boiling, either alone or in combination with lysozyme and proteinase K treatment, was not always sufficient to lyse L. monocytogenes, while treatment with Triton X-100 produced consistently good DNA suitable for amplification. To avoid false-negative and false-positive results, 48 h incubations were necessary and a subculturing step after an initial 24 h incubation greatly improved the results. The primers that amplified regions of the listeriolysin O gene gave clearer and stronger products than primers for the invasion-associated protein gene. Using this method we were able to detect one to five L. monocytogenes cells in 5 g of product in a total of 55 h.

  16. USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability

    PubMed Central

    Qian, Jiang; Pentz, Kyle; Zhu, Qianzheng; Wang, Qien; He, Jinshan; Srivastava, Amit K.; Wani, Altaf A.

    2014-01-01

    DNA polymerase eta (Polη) plays unique and pivotal functions in several DNA damage-tolerance pathways. Steady-state level of this short-lived protein is tightly controlled by multiple mechanisms including proteolysis. Here, we have identified the deubiquitinating enzyme, ubiquitin-specific protease 7 (USP7), as a novel regulator of Polη stability. USP7 regulates Polη stability through both indirect and direct mechanisms. Knockout of USP7 increased the steady-state level of Polη and slowed down the turnover of both Polη and p53 proteins through destabilizing their E3 ligase Mdm2. Also, USP7 physically binds Polη in vitro and in vivo. Overexpression of wild-type USP7 but not its catalytically-defective mutants deubiquitinates Polη and increases its cellular steady-state level. Thus, USP7 directly serves as a specific deubiquitinating enzyme for Polη. Furthermore, ectopic expression of USP7 promoted the UV-induced PCNA monoubiquitination in Polη-proficient but not Polη-deficient XPV cells, suggesting that USP7 facilitates UV-induced PCNA monoubiquitination by stabilizing Polη. Taken together, our findings reveal a modulatory role of USP7 in PCNA ubiquitination-mediated stress-tolerance pathways by fine-tuning Polη turnover. PMID:25435364

  17. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification.

    PubMed

    Boyle, David S; Lehman, Dara A; Lillis, Lorraine; Peterson, Dylan; Singhal, Mitra; Armes, Niall; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie

    2013-04-02

    Early diagnosis and treatment of human immunodeficiency virus type 1 (HIV-1) infection in infants can greatly reduce mortality rates. However, current infant HIV-1 diagnostics cannot reliably be performed at the point of care, often delaying treatment and compromising its efficacy. Recombinase polymerase amplification (RPA) is a novel technology that is ideal for an HIV-1 diagnostic, as it amplifies target DNA in <20 min at a constant temperature, without the need for complex thermocycling equipment. Here we tested 63 HIV-1-specific primer and probe combinations and identified two RPA assays that target distinct regions of the HIV-1 genome (long terminal repeat [LTR] and pol) and can reliably detect 3 copies of proviral DNA by the use of fluorescence detection and lateral-flow strip detection. These pol and LTR primers amplified 98.6% and 93%, respectively, of the diverse HIV-1 variants tested. This is the first example of an isothermal assay that consistently detects all of the major HIV-1 global subtypes.

  18. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase iota.

    PubMed

    Tissier, A; Frank, E G; McDonald, J P; Iwai, S; Hanaoka, F; Woodgate, R

    2000-10-01

    Human DNA polymerase iota (pol(iota)) is a recently discovered enzyme that exhibits extremely low fidelity on undamaged DNA templates. Here, we show that poliota is able to facilitate limited translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). More importantly, however, the bypass event is highly erroneous. Gel kinetic assays reveal that pol(iota) misinserts T or G opposite the 3' T of the CPD approximately 1.5 times more frequently than the correct base, A. While pol(iota) is unable to extend the T.T mispair significantly, the G.T mispair is extended and the lesion completely bypassed, with the same efficiency as that of the correctly paired A. T base pair. By comparison, pol(iota) readily misinserts two bases opposite a 6-4 thymine-thymine pyrimidine-pyrimidone photoproduct (6-4PP), but complete lesion bypass is only a fraction of that observed with the CPD. Our data indicate, therefore, that poliota possesses the ability to insert nucleotides opposite UV photoproducts as well as to perform unassisted translesion replication that is likely to be highly mutagenic.

  19. Novel groups of cyanobacterial podovirus DNA polymerase (pol) genes exist in paddy waters in northeast China.

    PubMed

    Wang, Xinzhen; Liu, Junjie; Yu, Zhenhua; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2016-12-01

    In this study, we surveyed cyanopodovirus DNA polymerase (pol) sequences in paddy waters using the culture-independent PCR and Sanger sequencing methods. Four paddy waters generated from a pot experiment with different soil types collected from op E: n paddy fields in northeast China were used in this study. A total of 438 DNA pol clones were identified as cyanopodoviruses. The clones from the paddy waters formed nine unique groups of cyanopodoviruses either exclusively or with clones from East Lake in China (subclusters α-1 to α-8 and cluster β). None of the clones from open oceans or coastal waters fell into these unique groups. Additionally, the distribution proportions of the clones into different cyanopodovirus groups varied among paddy water samples, which suggested that the cyanopodovirus compositions were spatially distributed in the paddy fields. The comparison of clone libraries in different studies indicated that the diversity of cyanopodoviruses in paddy waters was comparable to the diversity in the open oceans but was less than the diversity in the coastal estuary of Chesapeake Bay. Non-metric multidimensional scaling analysis indicated that the cyanopodovirus communities in paddy waters were similar to those in lake freshwater but distinct from the communities in marine and coastal waters. PMID:27612493

  20. Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells.

    PubMed

    Fortini, P; Pascucci, B; Parlanti, E; Sobol, R W; Wilson, S H; Dogliotti, E

    1998-03-17

    Mammalian cells possess two distinct pathways for completion of base excision repair (BER): the DNA polymerase beta (Pol beta)-dependent short-patch pathway (replacement of one nucleotide), which is the main route, and the long-patch pathway (resynthesis of 2-6 nucleotides), which is PCNA-dependent. To address the issue of how these two pathways share their role in BER the ability of Pol beta-defective mammalian cell extracts to repair a single abasic site constructed in a circular duplex plasmid molecule was tested in a standard in vitro repair reaction. Pol beta-deficient extracts were able to perform both BER pathways. However, in the case of the short-patch BER, the repair kinetics was significantly slower than with Pol beta-proficient extracts, while the efficiency of the long-patch synthesis was unaffected by the loss of Pol beta. The repair synthesis was fully dependent on PCNA for the replacement of long patches. These data give the first evidence that in cell extracts DNA polymerases other than Pol beta are specifically involved in the long-patch BER. These DNA polymerases are also able to perform short-patch BER in the absence of PCNA, although less efficiently than Pol beta. These findings lead to a novel model whereby the two BER pathways are characterized by different protein requirements, and a functional redundancy at the level of DNA polymerases provides cells with backup systems.

  1. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    SciTech Connect

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  2. Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli.

    PubMed

    Hu, Jian-Hua; Wang, Feng; Liu, Chun-Zhao

    2015-04-01

    An efficient induction strategy that consisted of multiple additions of small doses of isopropyl-β-D-thiogalactopyranoside (IPTG) in the early cell growth phase was developed for enhancing Pfu DNA polymerase production in Escherichia coli. In comparison to the most commonly used method of a single induction of 1 mM IPTG, the promising induction strategy resulted in an increase in the Pfu activity of 13.5% in shake flasks, while simultaneously decreasing the dose of IPTG by nearly half. An analysis of the intracellular IPTG concentrations indicated that the cells need to maintain an optimum intracellular IPTG concentration after 6 h for efficient Pfu DNA polymerase production. A significant increase in the Pfu DNA polymerase activity of 31.5% under the controlled dissolved oxygen concentration of 30% in a 5 L fermentor was achieved using the multiple IPTG induction strategy in comparison with the single IPTG induction. The induction strategy using multiple inputs of IPTG also avoided over accumulation of IPTG and reduced the cost of Pfu DNA polymerase production.

  3. Binding of Mn-deoxyribonucleoside triphosphates to the active site of the DNA polymerase of bacteriophage T7

    PubMed Central

    Akabayov, Barak; Richardson, Charles C.

    2013-01-01

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg2+, as an example, mediates binding of deoxyribonucleoside 5′-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg2+ to an active site because Mg2+ is spectroscopically silent and Mg2+ binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg2+ with Mn2+:Mn2+ that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn2+ is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn2+ that is free in solution and Mn2+ bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor. PMID:23761703

  4. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence.

    PubMed

    Gawel, Damian; Seed, Patrick C

    2011-01-01

    Uropathogenic Escherichia coli (UPEC) produces ~80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ~100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress.

  5. Nucleotide sequence of the DNA polymerase gene of herpes simplex virus type 2 and comparison with the type 1 counterpart.

    PubMed

    Tsurumi, T; Maeno, K; Nishiyama, Y

    1987-01-01

    The complete nucleotide sequence of the DNA polymerase gene of herpes simplex virus (HSV) type 2 strain 186 has been determined. The gene included a 3720-bp major open reading frame capable of encoding 1240 amino acids. The predicted primary translation product had an Mr of 137,354, which was slightly larger than its HSV-1 counterpart. A comparison of the predicted functional amino acid sequences of the HSV-1 and HSV-2 DNA polymerases revealed 95.5% overall amino acid homology, the value of which was the highest among those of the other known polypeptides encoded by HSV-1 and HSV-2. The functional amino acid changes were spread in the N-terminal one-third of the protein, whereas the C-terminal two-third was almost identical between the two types except a particular hydrophilic region. A highly conserved sequence of 6 aa, YGDTDS, which has been observed in DNA polymerases of HSV-1, Epstein-Barr virus, adenovirus, and vaccinia virus, was also present at positions 889 to 894 in the C-terminal region of HSV-2 DNA polymerase.

  6. Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA

    PubMed Central

    Lagunavicius, Arunas; Merkiene, Egle; Kiveryte, Zivile; Savaneviciute, Agne; Zimbaite-Ruskuliene, Vilma; Radzvilavicius, Tomas; Janulaitis, Arvydas

    2009-01-01

    We present a novel Phi29 DNA polymerase application in RCA-based target RNA detection and analysis. The 3′→5′ RNase activity of Phi29 DNA polymerase converts target RNA into a primer and the polymerase uses this newly generated primer for RCA initiation. Therefore, using target RNA-primed RCA, padlock probes may be targeted to inner RNA sequences and their peculiarities can be analyzed directly. We demonstrate that the exoribonucleolytic activity of Phi29 DNA polymerase can be successfully applied in vitro and in situ. These findings expand the potential for detection and analysis of RNA sequences distanced from 3′-end. PMID:19244362

  7. Extraction of DNA from exfoliative cytology specimens and its suitability for analysis by the polymerase chain reaction.

    PubMed

    Jackson, D P; Payne, J; Bell, S; Lewis, F A; Taylor, G R; Peel, K R; Sutton, J; Quirke, P

    1990-01-01

    The extraction of DNA from archival exfoliative cytology samples would allow the molecular biological analysis of this readily available material using the polymerase chain reaction (PCR). We have quantitatively and qualitatively studied the extraction of DNA from a variety of cytological preparations. For both fresh and archival cervical smears, overnight incubation with proteinase K produces high yields of high molecular weight DNA, but simply boiling the samples produces DNA suitable for PCR amplification of a single copy gene. Increasing the proteinase K incubation to several days allows the extraction of DNA from fixed and stained archival cytology slides from a variety of sites. The extracted DNA was again suitable for PCR analysis. Fresh and archival cytological material can be utilized for molecular biological study of disease processes using PCR. Archival cytological material is probably the best source of DNA and RNA after stored frozen tissue.

  8. Binding parameters and thermodynamics of the interaction of the human cytomegalovirus DNA polymerase accessory protein, UL44, with DNA: implications for the processivity mechanism.

    PubMed

    Loregian, Arianna; Sinigalia, Elisa; Mercorelli, Beatrice; Palù, Giorgio; Coen, Donald M

    2007-01-01

    The mechanisms of processivity factors of herpesvirus DNA polymerases remain poorly understood. The proposed processivity factor for human cytomegalovirus DNA polymerase is a DNA-binding protein, UL44. Previous findings, including the crystal structure of UL44, have led to the hypothesis that UL44 binds DNA as a dimer via lysine residues. To understand how UL44 interacts with DNA, we used filter-binding and electrophoretic mobility shift assays and i