Sample records for dna probe specific

  1. Development of Prevotella intermedia-specific PCR primers based on the nucleotide sequences of a DNA probe Pig27.

    PubMed

    Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki

    2011-03-01

    The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  2. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, H.U.G.; Gray, J.W.

    1995-06-27

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.

  3. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, Heinz-Ulrich G.; Gray, Joe W.

    1995-01-01

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.

  4. Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.

    PubMed

    Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I

    2001-08-01

    DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.

  5. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe.

    PubMed

    Ingianni, A; Floris, M; Palomba, P; Madeddu, M A; Quartuccio, M; Pompei, R

    2001-10-01

    Listeria monocytogenes is a frequent contaminant of water and foods. Its rapid detection is needed before some foods can be prepared for marketing. In this work L. monocytogenes has been searched for in foods, by a combination of polymerase chain reaction (PCR) and a DNA probe. Both PCR and the probe were prepared for recognizing a specific region of the internalin gene, which is responsible for the production of one of the most important pathogenic factors of Listeria. The combined use of PCR and the DNA probe was used for the detection of L. monocytogenes in over 180 environmental and food samples. Several detection methods were compared in this study, namely conventional culture methods; direct PCR; PCR after an enrichment step; a DNA probe alone; a DNA probe after enrichment and another commercially available gene-probe. Finally PCR and the DNA probe were used in series on all the samples collected. When the DNA probe was associated with the PCR, specific and accurate detection of listeria in the samples could be obtained in about a working-day. The present molecular method showed some advantages in terms of rapidity and specificity in comparison to the other aforementioned tests. In addition, it resulted as being easy to handle, even for non-specialized personnel in small diagnostic microbiology laboratories. Copyright 2001 Academic Press.

  6. 'FloraArray' for screening of specific DNA probes representing the characteristics of a certain microbial community.

    PubMed

    Yokoi, Takahide; Kaku, Yoshiko; Suzuki, Hiroyuki; Ohta, Masayuki; Ikuta, Hajime; Isaka, Kazuichi; Sumino, Tatsuo; Wagatsuma, Masako

    2007-08-01

    To investigate uncharacterized microbial communities, a custom DNA microarray named 'FloraArray' was developed for screening specific probes that would represent the characteristics of a microbial community. The array was prepared by spotting 2000 plasmid DNAs from a genomic shotgun library of a sludge sample on a DNA microarray. By comparative hybridization of the array with two different samples of genomic DNA, one from the activated sludge and the other from a nonactivated sludge sample of an anaerobic ammonium oxidation (anammox) bacterial community, specific spots were visualized as a definite fluctuating profile in an MA (differential intensity ratio vs. spot intensity) plot. About 300 spots of the array accounted for the candidate probes to represent anammox reaction of the activated sludge. After sequence analysis of the probes and examination of the results of blastn searches against the reported anammox reference sequence, complete matches were found for 161 probes (58.3%) and >90% matches were found for 242 probes (87.1%). These results demonstrate that 'FloraArray' could be a useful tool for screening specific DNA molecules of unknown microbial communities.

  7. Parallel gene analysis with allele-specific padlock probes and tag microarrays

    PubMed Central

    Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats

    2003-01-01

    Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977

  8. Method and apparatus for staining immobilized nucleic acids

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.; Jacobson, Stephen C.

    2000-01-01

    A method for staining immobilized nucleic acids includes the steps of affixing DNA probes to a solid substrate, moving target DNA material into proximity with the DNA probes, whereby the target DNA hybridized with specific ones of the DNA probes, and moving a fluorescent dye into proximity with the hybridized target DNA, whereby the fluorescent dye binds to the hybridized DNA to enable subsequent detection of fluorescence.

  9. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  10. Fluorescent probes for nucleic Acid visualization in fixed and live cells.

    PubMed

    Boutorine, Alexandre S; Novopashina, Darya S; Krasheninina, Olga A; Nozeret, Karine; Venyaminova, Alya G

    2013-12-11

    This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.

  11. Identification and characterization of Serpulina hyodysenteriae by restriction enzyme analysis and Southern blot analysis.

    PubMed Central

    Sotiropoulos, C; Coloe, P J; Smith, S C

    1994-01-01

    Chromosomal DNA restriction enzyme analysis and Southern blot hybridization were used to characterize Serpulina hyodysenteriae strains. When chromosomal DNAs from selected strains (reference serotypes) of S. hyodysenteriae were digested with the restriction endonuclease Sau3A and hybridized with a 1.1-kb S. hyodysenteriae-specific DNA probe, a common 3-kb band was always detected in S. hyodysenteriae strains but was absent from Serpulina innocens strains. When the chromosomal DNA was digested with the restriction endonuclease Asp 700 and hybridized with two S. hyodysenteriae-specific DNA probes (0.75 and 1.1 kb of DNA), distinct hybridization patterns for each S. hyodysenteriae reference strain and the Australian isolate S. hyodysenteriae 5380 were detected. Neither the 1.1-kb nor the 0.75-kb DNA probe hybridized with Asp 700- or Sau3A-digested S. innocens chromosomal DNA. The presence of the 3-kb Sau3A DNA fragment in S. hyodysenteriae reference strains from diverse geographical locations shows that this fragment is conserved among S. hyodysenteriae strains and can be used as a species-specific marker. Restriction endonuclease analysis and Southern blot hybridization with these well-defined DNA probes are reliable and accurate methods for species-specific and strain-specific identification of S. hyodysenteriae. Images PMID:7914209

  12. Single nucleotide polymorphism analysis using different colored dye dimer probes

    NASA Astrophysics Data System (ADS)

    Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter

    2006-09-01

    Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.

  13. Whole genomic DNA probe for detection of Porphyromonas endodontalis.

    PubMed

    Nissan, R; Makkar, S R; Sela, M N; Stevens, R

    2000-04-01

    The purpose of the present study was to develop a DNA probe for Porphyromonas endodontalis. Pure cultures of P. endodontalis were grown in TYP medium, in an anaerobic chamber. DNA was extracted from the P. endodontalis and labeled using the Genius System by Boehringer Mannheim. The labeled P. endodontalis DNA was used in dot-blot hybridization reactions with homologous (P. endodontalis) and unrelated bacterial samples. To determine specificity, strains of 40 other oral bacterial species (e.g. Porphyromonas gingivalis, Porphyromonas asaccharolytica, and Prevotella intermedia) were spotted and reacted with the P. endodontalis DNA probe. None of the panel of 40 oral bacteria hybridized with the P. endodontalis probe, whereas the blot of the homologous organism showed a strong positive reaction. To determine the sensitivity of the probe, dilutions of a P. endodontalis suspension of known concentration were blotted onto a nylon membrane and reacted with the probe. The results of our investigation indicate that the DNA probe that we have prepared specifically detects only P. endodontalis and can detect at least 3 x 10(4) cells.

  14. Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease.

    PubMed

    Graham, Duncan; Stevenson, Ross; Thompson, David G; Barrett, Lee; Dalton, Colette; Faulds, Karen

    2011-01-01

    DNA functionalised nanoparticle probes offer new opportunities in analyte detection. Ultrasensitive, molecularly specific targeting of analytes is possible through the use of metallic nanoparticles and their ability to generate a surface enhanced Raman scattering (SERS) response. This is leading to a new range of diagnostic clinical probes based on SERS detection. Our approaches have shown how such probes can detect specific DNA sequences by using a biomolecular recognition event to 'turn on' a SERS response through a controlled assembly process of the DNA functionalised nanoparticles. Further, we have prepared DNA aptamer functionalised SERS probes and demonstrated how introduction of a protein target can change the aggregation state of the nanoparticles in a dose-dependant manner. These approaches are being used as methods to detect biomolecules that indicate a specific disease being present with a view to improving disease management.

  15. Combined subtraction hybridization and polymerase chain reaction amplification procedure for isolation of strain-specific Rhizobium DNA sequences.

    PubMed Central

    Bjourson, A J; Stone, C E; Cooper, J E

    1992-01-01

    A novel subtraction hybridization procedure, incorporating a combination of four separation strategies, was developed to isolate unique DNA sequences from a strain of Rhizobium leguminosarum bv. trifolii. Sau3A-digested DNA from this strain, i.e., the probe strain, was ligated to a linker and hybridized in solution with an excess of pooled subtracter DNA from seven other strains of the same biovar which had been restricted, ligated to a different, biotinylated, subtracter-specific linker, and amplified by polymerase chain reaction to incorporate dUTP. Subtracter DNA and subtracter-probe hybrids were removed by phenol-chloroform extraction of a streptavidin-biotin-DNA complex. NENSORB chromatography of the sequences remaining in the aqueous layer captured biotinylated subtracter DNA which may have escaped removal by phenol-chloroform treatment. Any traces of contaminating subtracter DNA were removed by digestion with uracil DNA glycosylase. Finally, remaining sequences were amplified by polymerase chain reaction with a probe strain-specific primer, labelled with 32P, and tested for specificity in dot blot hybridizations against total genomic target DNA from each strain in the subtracter pool. Two rounds of subtraction-amplification were sufficient to remove cross-hybridizing sequences and to give a probe which hybridized only with homologous target DNA. The method is applicable to the isolation of DNA and RNA sequences from both procaryotic and eucaryotic cells. Images PMID:1637166

  16. Molecular cytogenetics using fluorescence in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Kuo, Wen-Lin; Lucas, J.

    1990-12-07

    Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences tomore » which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.« less

  17. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  18. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1991-01-01

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.

  19. Development of a DNA-Based Method for Distinguishing the Malaria Vectors, Anopheles Gambiae from Anopheles Arabiensis.

    DTIC Science & Technology

    1987-11-15

    analysis. However, in our preliminary studies, hybridization with the DPro.5ohil actin probe required such low stringency conditions that the signal to...rDNA genes and could therefore contain seOuencec tjhich, under normal DNA hybridization conditions , behave in a species-specific mrnner. We theref’-e...pAGr23B) behave as species-specific probes under the conditions normally used for DNA hybridization. These sequences could be used to design specific

  20. Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids.

    PubMed

    Sun, Zhongyue; Liao, Tangbin; Zhang, Yulin; Shu, Jing; Zhang, Hong; Zhang, Guo-Jun

    2016-12-15

    A very simple sensing device based on biomimetic nanochannels has been developed for label-free, ultrasensitive and highly sequence-specific detection of DNA. Probe DNA was modified on the inner wall of the nanochannel surface by layer-by-layer (LBL) assembly. After probe DNA immobilization, DNA detection was realized by monitoring the rectified ion current when hybridization occurred. Due to three dimensional (3D) nanoscale environment of the nanochannel, this special geometry dramatically increased the surface area of the nanochannel for immobilization of probe molecules on the inner-surface and enlarged contact area between probes and target-molecules. Thus, the unique sensor reached a reliable detection limit of 10 fM for target DNA. In addition, this DNA sensor could discriminate complementary DNA (c-DNA) from non-complementary DNA (nc-DNA), two-base mismatched DNA (2bm-DNA) and one-base mismatched DNA (1bm-DNA) with high specificity. Moreover, the nanochannel-based biosensor was also able to detect target DNA even in an interfering environment and serum samples. This approach will provide a novel biosensing platform for detection and discrimination of disease-related molecular targets and unknown sequence DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comparison of randomly cloned and whole genomic DNA probes for the detection of Porphyromonas gingivalis and Bacteroides forsythus

    PubMed Central

    Wong, M.; DiRienzo, J.M.; Lai, C.-H.; Listgarten, M. A.

    2012-01-01

    Whole genomic and randomly-cloned DNA probes for two fastidious periodontal pathogens, Porphyromonas gingivalis and Bacteroides forsythus were labeled with digoxigenin and detected by a colorimetric method. The specificity and sensitivity of the whole genomic and cloned probes were compared. The cloned probes were highly specific compared to the whole genomic probes. A significant degree of cross-reactivity with Bacteroides species. Capnocytophaga sp. and Prevotella sp. was observed with the whole genomic probes. The cloned probes were less sensitive than the whole genomic probes and required at least 106 target cells or a minimum of 10 ng of target DNA to be detected during hybridization. Although a ten-fold increase in sensitivity was obtained with the whole genomic probes, cross-hybridization to closely related species limits their reliability in identifying target bacteria in subgingival plaque samples. PMID:8636873

  2. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings

  3. ProbeDesigner: for the design of probesets for branched DNA (bDNA) signal amplification assays.

    PubMed

    Bushnell, S; Budde, J; Catino, T; Cole, J; Derti, A; Kelso, R; Collins, M L; Molino, G; Sheridan, P; Monahan, J; Urdea, M

    1999-05-01

    The sensitivity and specificity of branched DNA (bDNA) assays are derived in part through the judicious design of the capture and label extender probes. To minimize non-specific hybridization (NSH) events, which elevate assay background, candidate probes must be computer screened for complementarity with generic sequences present in the assay. We present a software application which allows for rapid and flexible design of bDNA probesets for novel targets. It includes an algorithm for estimating the magnitude of NSH contribution to background, a mechanism for removing probes with elevated contributions, a methodology for the simultaneous design of probesets for multiple targets, and a graphical user interface which guides the user through the design steps. The program is available as a commercial package through the Pharmaceutical Drug Discovery program at Chiron Diagnostics.

  4. The application of magnetic bead hybridization for the recovery and STR amplification of degraded and inhibited forensic DNA.

    PubMed

    Wang, Jing; McCord, Bruce

    2011-06-01

    A common problem in the analysis of forensic DNA evidence is the presence of environmentally degraded and inhibited DNA. Such samples produce a variety of interpretational problems such as allele imbalance, allele dropout and sequence specific inhibition. In an attempt to develop methods to enhance the recovery of this type of evidence, magnetic bead hybridization has been applied to extract and preconcentrate DNA sequences containing short tandem repeat (STR) alleles of interest. In this work, genomic DNA was fragmented by heating, and sequences associated with STR alleles were selectively hybridized to allele-specific biotinylated probes. Each particular biotinylated probe-DNA complex was bound to streptavidin-coated magnetic beads using enabling enrichment of target DNA sequences. Experiments conducted using degraded DNA samples, as well as samples containing a large concentration of inhibitory substances, showed good specificity and recovery of missing alleles. Based on the favorable results obtained with these specific probes, this method should prove useful as a tool to improve the recovery of alleles from degraded and inhibited DNA samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer

    PubMed Central

    Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro

    2001-01-01

    We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011

  6. Isolation of a DNA Probe for Lactobacillus curvatus

    PubMed Central

    Petrick, Hendrik A. R.; Ambrosio, Riccardo E.; Holzapfel, Wilhelm H.

    1988-01-01

    A genomic library of Lactobacillus curvatus DSM 20019 was constructed in bacteriophage λ gt11. A 1.2-kilobase DNA probe specific for L. curvatus was isolated from this library. When this probe was hybridized to DNA from Lactobacillus isolates from different sources classified by conventional techniques, differing degrees of hybridization were obtained. This could imply that these isolates may have been incorrectly classified. Images PMID:16347554

  7. SINE sequences detect DNA fingerprints in salmonid fishes.

    PubMed

    Spruell, P; Thorgaard, G H

    1996-04-01

    DNA probes homologous to two previously described salmonid short interspersed nuclear elements (SINEs) detected DNA fingerprint patterns in 14 species of salmonid fishes. The probes showed more homology to some species than to others and little homology to three nonsalmonid fishes. The DNA fingerprint patterns derived from the SINE probes are individual-specific and inherited in a Mendelian manner. Probes derived from different regions of the same SINE detect only partially overlapping banding patterns, reflecting a more complex SINE structure than has been previously reported. Like the human Alu sequence, the SINEs found in salmonids could provide useful genetic markers and primer sites for PCR-based techniques. These elements may be more desirable for some applications than traditional DNA fingerprinting probes that detect tandemly repeated arrays.

  8. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    NASA Astrophysics Data System (ADS)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  9. DNA origami nanorobot fiber optic genosensor to TMV.

    PubMed

    Torelli, Emanuela; Manzano, Marisa; Srivastava, Sachin K; Marks, Robert S

    2018-01-15

    In the quest of greater sensitivity and specificity of diagnostic systems, one continually searches for alternative DNA hybridization methods, enabling greater versatility and where possible field-enabled detection of target analytes. We present, herein, a hybrid molecular self-assembled scaffolded DNA origami entity, intimately immobilized via capture probes linked to aminopropyltriethoxysilane, onto a glass optical fiber end-face transducer, thus producing a novel biosensor. Immobilized DNA nanorobots with a switchable flap can then be actuated by a specific target DNA present in a sample, by exposing a hemin/G-quadruplex DNAzyme, which then catalyzes the generation of chemiluminescence, once the specific fiber probes are immersed in a luminol-based solution. Integrating organic nanorobots to inorganic fiber optics creates a hybrid system that we demonstrate as a proof-of-principle can be utilized in specific DNA sequence detection. This system has potential applications in a wide range of fields, including point-of-care diagnostics or cellular in vivo biosensing when using ultrathin fiber optic probes for research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Adaptable gene-specific dye bias correction for two-channel DNA microarrays.

    PubMed

    Margaritis, Thanasis; Lijnzaad, Philip; van Leenen, Dik; Bouwmeester, Diane; Kemmeren, Patrick; van Hooff, Sander R; Holstege, Frank C P

    2009-01-01

    DNA microarray technology is a powerful tool for monitoring gene expression or for finding the location of DNA-bound proteins. DNA microarrays can suffer from gene-specific dye bias (GSDB), causing some probes to be affected more by the dye than by the sample. This results in large measurement errors, which vary considerably for different probes and also across different hybridizations. GSDB is not corrected by conventional normalization and has been difficult to address systematically because of its variance. We show that GSDB is influenced by label incorporation efficiency, explaining the variation of GSDB across different hybridizations. A correction method (Gene- And Slide-Specific Correction, GASSCO) is presented, whereby sequence-specific corrections are modulated by the overall bias of individual hybridizations. GASSCO outperforms earlier methods and works well on a variety of publically available datasets covering a range of platforms, organisms and applications, including ChIP on chip. A sequence-based model is also presented, which predicts which probes will suffer most from GSDB, useful for microarray probe design and correction of individual hybridizations. Software implementing the method is publicly available.

  11. Adaptable gene-specific dye bias correction for two-channel DNA microarrays

    PubMed Central

    Margaritis, Thanasis; Lijnzaad, Philip; van Leenen, Dik; Bouwmeester, Diane; Kemmeren, Patrick; van Hooff, Sander R; Holstege, Frank CP

    2009-01-01

    DNA microarray technology is a powerful tool for monitoring gene expression or for finding the location of DNA-bound proteins. DNA microarrays can suffer from gene-specific dye bias (GSDB), causing some probes to be affected more by the dye than by the sample. This results in large measurement errors, which vary considerably for different probes and also across different hybridizations. GSDB is not corrected by conventional normalization and has been difficult to address systematically because of its variance. We show that GSDB is influenced by label incorporation efficiency, explaining the variation of GSDB across different hybridizations. A correction method (Gene- And Slide-Specific Correction, GASSCO) is presented, whereby sequence-specific corrections are modulated by the overall bias of individual hybridizations. GASSCO outperforms earlier methods and works well on a variety of publically available datasets covering a range of platforms, organisms and applications, including ChIP on chip. A sequence-based model is also presented, which predicts which probes will suffer most from GSDB, useful for microarray probe design and correction of individual hybridizations. Software implementing the method is publicly available. PMID:19401678

  12. A low density microarray method for the identification of human papillomavirus type 18 variants.

    PubMed

    Meza-Menchaca, Thuluz; Williams, John; Rodríguez-Estrada, Rocío B; García-Bravo, Aracely; Ramos-Ligonio, Ángel; López-Monteon, Aracely; Zepeda, Rossana C

    2013-09-26

    We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings.

  13. A Low Density Microarray Method for the Identification of Human Papillomavirus Type 18 Variants

    PubMed Central

    Meza-Menchaca, Thuluz; Williams, John; Rodríguez-Estrada, Rocío B.; García-Bravo, Aracely; Ramos-Ligonio, Ángel; López-Monteon, Aracely; Zepeda, Rossana C.

    2013-01-01

    We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings. PMID:24077317

  14. Excited-state solvation and proton transfer dynamics of DAPI in biomimetics and genomic DNA.

    PubMed

    Banerjee, Debapriya; Pal, Samir Kumar

    2008-08-14

    The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.

  15. Sensitive and specific miRNA detection method using SplintR Ligase

    PubMed Central

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M.; Posfai, Janos; McReynolds, Larry A.

    2016-01-01

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR® Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4–6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  16. Two Successive Reactions on a DNA Template: A Strategy for Improving Background and Specificity in Nucleic Acid Detection

    PubMed Central

    Franzini, Raphael M.

    2015-01-01

    We report a new strategy for template-mediated fluorogenic chemistry that results in enhanced performance for the fluorescence detection of nucleic acids. In this approach, two successive templated reactions are required to induce a fluorescence signal, rather than only one. These novel fluorescein-labeled oligonucleotide probes, termed 2-STAR probes, contain two quencher groups tethered by separate reductively cleavable linkers. When a 2-STAR quenched probe binds adjacent to either two successive mono triphenyl-phosphine (TPP)-DNAs or a dual TPP-DNA, the two quenchers are released, resulting in a fluorescence signal. Because of the requirement for two consecutive reactions, 2-STAR probes display an unprecedented level of sequence-specificity for template-mediated probe designs. At the same time, background emission generated by off-template reactions or incomplete quenching is among the lowest of any fluorogenic reactive probes for the detection of DNA or RNA. PMID:21294182

  17. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor.

    PubMed

    Thiruppathiraja, Chinnasamy; Kamatchiammal, Senthilkumar; Adaikkappan, Periyakaruppan; Santhosh, Devakirubakaran Jayakar; Alagar, Muthukaruppan

    2011-10-01

    The present study was aimed at the development and evaluation of a DNA electrochemical biosensor for Mycobacterium sp. genomic DNA detection in a clinical specimen using a signal amplifier as dual-labeled AuNPs. The DNA electrochemical biosensors were fabricated using a sandwich detection strategy involving two kinds of DNA probes specific to Mycobacterium sp. genomic DNA. The probes of enzyme ALP and the detector probe both conjugated on the AuNPs and subsequently hybridized with target DNA immobilized in a SAM/ITO electrode followed by characterization with CV, EIS, and DPV analysis using the electroactive species para-nitrophenol generated by ALP through hydrolysis of para-nitrophenol phosphate. The effect of enhanced sensitivity was obtained due to the AuNPs carrying numerous ALPs per hybridization and a detection limit of 1.25 ng/ml genomic DNA was determined under optimized conditions. The dual-labeled AuNP-facilitated electrochemical sensor was also evaluated by clinical sputum samples, showing a higher sensitivity and specificity and the outcome was in agreement with the PCR analysis. In conclusion, the developed electrochemical sensor demonstrated unique sensitivity and specificity for both genomic DNA and sputum samples and can be employed as a regular diagnostics tool for Mycobacterium sp. monitoring in clinical samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification.

    PubMed

    Li, Shuang; Shang, Xinxin; Liu, Jia; Wang, Yujie; Guo, Yingshu; You, Jinmao

    2017-07-01

    We present a universal amplified-colorimetric for detecting nucleic acid targets or aptamer-specific ligand targets based on gold nanoparticle-DNA (GNP-DNA) hybridization chain reaction (HCR). The universal arrays consisted of capture probe and hairpin DNA-GNP. First, capture probe recognized target specificity and released the initiator sequence. Then dispersed hairpin DNA modified GNPs were cross-linked to form aggregates through HCR events triggered by initiator sequence. As the aggregates accumulate, a significant red-to purple color change can be easily visualized by the naked eye. We used miRNA target sequence (miRNA-203) and aptamer-specific ligand (ATP) as target molecules for this proof-of-concept experiment. Initiator sequence (DNA2) was released from the capture probe (MNP/DNA1/2 conjugates) under the strong competitiveness of miRNA-203. Hairpin DNA (H1 and H2) can be complementary with the help of initiator DNA2 to form GNP-H1/GNP-H2 aggregates. The absorption ratio (A 620 /A 520 ) values of solutions were a sensitive function of miRNA-203 concentration covering from 1.0 × 10 -11  M to 9.0 × 10 -10  M, and as low as 1.0 × 10 -11  M could be detected. At the same time, the color changed from light wine red to purple and then to light blue have occurred in the solution. For ATP, initiator sequence (5'-end of DNA3) was released from the capture probe (DNA3) under the strong combination of aptamer-ATP. The present colorimetric for specific detection of ATP exhibited good sensitivity and 1.0 × 10 -8  M ATP could be detected. The proposed strategy also showed good performances for qualitative analysis and quantitative analysis of intracellular nucleic acids and aptamer-specific ligands. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A DNA microarray-based assay to detect dual infection with two dengue virus serotypes.

    PubMed

    Díaz-Badillo, Alvaro; Muñoz, María de Lourdes; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G; Martínez-Muñoz, Jorge P; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-04-25

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  20. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    PubMed Central

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  1. Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA.

    PubMed

    Ganareal, Thenor Aristotile Charles S; Balbin, Michelle M; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2018-02-12

    Gold nanoparticle (AuNP) is considered to be the most stable metal nanoparticle having the ability to be functionalized with biomolecules. Recently, AuNP-based DNA detection methods captured the interest of researchers worldwide. Paratuberculosis or Johne's disease, a chronic gastroenteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), was found to have negative effect in the livestock industry. In this study, AuNP-based probes were evaluated for the specific and sensitive detection of MAP DNA. AuNP-based probe was produced by functionalization of AuNPs with thiol-modified oligonucleotide and was confirmed by Fourier-Transform Infrared (FTIR) spectroscopy. UV-Vis spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize AuNPs. DNA detection was done by hybridization of 10 μL of DNA with 5 μL of probe at 63 °C for 10 min and addition of 3 μL salt solution. The method was specific to MAP with detection limit of 103 ng. UV-Vis and SEM showed dispersion and aggregation of the AuNPs for the positive and negative results, respectively, with no observed particle growth. This study therefore reports an AuNP-based probes which can be used for the specific and sensitive detection of MAP DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Automated design of genomic Southern blot probes

    PubMed Central

    2010-01-01

    Background Sothern blotting is a DNA analysis technique that has found widespread application in molecular biology. It has been used for gene discovery and mapping and has diagnostic and forensic applications, including mutation detection in patient samples and DNA fingerprinting in criminal investigations. Southern blotting has been employed as the definitive method for detecting transgene integration, and successful homologous recombination in gene targeting experiments. The technique employs a labeled DNA probe to detect a specific DNA sequence in a complex DNA sample that has been separated by restriction-digest and gel electrophoresis. Critically for the technique to succeed the probe must be unique to the target locus so as not to cross-hybridize to other endogenous DNA within the sample. Investigators routinely employ a manual approach to probe design. A genome browser is used to extract DNA sequence from the locus of interest, which is searched against the target genome using a BLAST-like tool. Ideally a single perfect match is obtained to the target, with little cross-reactivity caused by homologous DNA sequence present in the genome and/or repetitive and low-complexity elements in the candidate probe. This is a labor intensive process often requiring several attempts to find a suitable probe for laboratory testing. Results We have written an informatic pipeline to automatically design genomic Sothern blot probes that specifically attempts to optimize the resultant probe, employing a brute-force strategy of generating many candidate probes of acceptable length in the user-specified design window, searching all against the target genome, then scoring and ranking the candidates by uniqueness and repetitive DNA element content. Using these in silico measures we can automatically design probes that we predict to perform as well, or better, than our previous manual designs, while considerably reducing design time. We went on to experimentally validate a number of these automated designs by Southern blotting. The majority of probes we tested performed well confirming our in silico prediction methodology and the general usefulness of the software for automated genomic Southern probe design. Conclusions Software and supplementary information are freely available at: http://www.genes2cognition.org/software/southern_blot PMID:20113467

  3. DNA Probes Show Genetic Variation in Cyanobacterial Symbionts of the Azolla Fern and a Closer Relationship to Free-Living Nostoc Strains than to Free-Living Anabaena Strains

    PubMed Central

    Plazinski, Jacek; Zheng, Qi; Taylor, Rona; Croft, Lynn; Rolfe, Barry G.; Gunning, Brian E. S.

    1990-01-01

    Twenty-two isolates of Anabaena azollae derived from seven Azolla species from various geographic and ecological sources were characterized by DNA-DNA hybridization. Cloned DNA fragments derived from the genomic sequences of three different A. azollae isolates were used to detect restriction fragment length polymorphism among all symbiotic anabaenas. DNA clones were radiolabeled and hybridized against southern blot transfers of genomic DNAs of different isolates of A. azollae digested with restriction endonucleases. Eight DNA probes were selected to identify the Anabaena strains tested. Two were strain specific and hybridized only to A. azollae strains isolated from Azolla microphylla or Azolla caroliniana. One DNA probe was section specific (hybridized only to anabaenas isolated from Azolla ferns representing the section Euazolla), and five other probes gave finer discrimination among anabaenas representing various ecotypes of Azolla species. These cloned genomic DNA probes identified 11 different genotypes of A. azollae isolates. These included three endosymbiotic genotypes within Azolla filiculoides species and two genotypes within both A. caroliniana and Azolla pinnata endosymbionts. Although we were not able to discriminate among anabaenas extracted from different ecotypes of Azolla nilotica, Azolla mexicina, Azolla rubra and Azolla microphylla species, each of the endosymbionts was easily identified as a unique genotype. When total DNA isolated from free-living Anabaena sp. strain PCC7120 was screened, none of the genomic DNA probes gave detectable positive hybridization. Total DNA of Nostoc cycas PCC7422 hybridized with six of eight genomic DNA fragments. These data imply that the dominant symbiotic organism in association with Azolla spp. is more closely related to Nostoc spp. than to free-living Anabaena spp. Images PMID:16348182

  4. Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor

    PubMed Central

    Ricci, Francesco; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Sumner, James J.

    2009-01-01

    E-DNA sensors, the electrochemical equivalent of molecular beacons, appear to be a promising means of detecting oligonucleotides. E-DNA sensors are comprised of a redox-modified (here, methylene blue or ferrocene) DNA stem-loop covalently attached to an interrogating electrode. Because E-DNA signaling arises due to binding-induced changes in the conformation of the stem-loop probe, it is likely sensitive to the nature of the molecular packing on the electrode surface. Here we detail the effects of probe density, target length, and other aspects of molecular crowding on the signaling properties, specificity, and response time of a model E-DNA sensor. We find that the highest signal suppression is obtained at the highest probe densities investigated, and that greater suppression is observed with longer and bulkier targets. In contrast, sensor equilibration time slows monotonically with increasing probe density, and the specificity of hybridization is not significantly affected. In addition to providing insight into the optimization of electrochemical DNA sensors, these results suggest that E-DNA signaling arises due to hybridization-linked changes in the rate, and thus efficiency, with which the redox moiety collides with the electrode and transfers electrons. PMID:17488132

  5. Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe

    NASA Astrophysics Data System (ADS)

    He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing

    2011-11-01

    The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.

  6. Development of a PCR/LDR/flow-through hybridization assay using a capillary tube, probe DNA-immobilized magnetic beads and chemiluminescence detection.

    PubMed

    Hommatsu, Manami; Okahashi, Hisamitsu; Ohta, Keisuke; Tamai, Yusuke; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-01-01

    A polymerase chain reaction (PCR)/ligase detection reaction (LDR)/flow-through hybridization assay using chemiluminescence (CL) detection was developed for analyzing point mutations in gene fragments with high diagnostic value for colorectal cancers. A flow-through hybridization format using a capillary tube, in which probe DNA-immobilized magnetic beads were packed, provided accelerated hybridization kinetics of target DNA (i.e. LDR product) to the probe DNA. Simple fluid manipulations enabled both allele-specific hybridization and the removal of non-specifically bound DNA in the wash step. Furthermore, the use of CL detection greatly simplified the detection scheme, since CL does not require a light source for excitation of the fluorescent dye tags on the LDR products. Preliminary results demonstrated that this analytical system could detect both homozygous and heterozygous mutations, without the expensive instrumentation and cumbersome procedures required by conventional DNA microarray-based methods.

  7. Synthesis of Bipartite Tetracysteine PNA Probes for DNA In Situ Fluorescent Labeling.

    PubMed

    Fang, Ge-Min; Seitz, Oliver

    2017-12-24

    "Label-free" fluorescent probes that avoid additional steps or building blocks for conjugation of fluorescent dyes with oligonucleotides can significantly reduce the time and cost of parallel bioanalysis of a large number of nucleic acid samples. A method for the synthesis of "label-free" bicysteine-modified PNA probes using solid-phase synthesis and procedures for sequence-specific DNA in situ fluorescent labeling is described here. The concept is based on the adjacent alignment of two bicysteine-modified peptide nucleic acids on a DNA target to form a structurally optimized bipartite tetracysteine motif, which induces a sequence-specific fluorogenic reaction with commercially available biarsenic dyes, even in complex media such as cell lysate. This unit will help researchers to quickly synthesize bipartite tetracysteine PNA probes and carry out low-cost DNA in situ fluorescent labeling experiments. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays

    PubMed Central

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  9. DNA fingerprinting of red clover (Trifolium pratense L.) with Jeffrey's probes: detection of somaclonal variation and other applications.

    PubMed

    Nelke, M; Nowak, J; Wright, J M; McLean, N L

    1993-12-01

    DNA fingerprints generated by the Jeffreys' probes, 33.6 and 33.15, indicated the presence of minisatellite-like sequences in the red clover genome. The fingerprints generated by probe 33.6 gave less background and fewer but better defined bands than those obtained with probe 33.15. Assay of a regenerative somaclonal variant (F49R) by DNA fingerprinting with probe 33.6 detected mutation that was unlinked to the regenerative trait. The fingerprints obtained under the applied conditions also demonstrated genetic stability of consecutive generations of the regenerants in tissue culture. DNA fingerprints of F1 plants revealed that each polymorphic band was inherited from either one or the other parent. Both probes distinguished individual-specific genotypes in seven cultivars of red clover. Greater variability in DNA fingerprints was detected between (V=0.899) than within (0.417≤V≤0.548) cultivars.

  10. DNA microdevice for electrochemical detection of Escherichia coli 0157:H7 molecular markers.

    PubMed

    Berganza, J; Olabarria, G; García, R; Verdoy, D; Rebollo, A; Arana, S

    2007-04-15

    An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.

  11. Individual specific DNA fingerprints from a hypervariable region probe: alpha-globin 3'HVR.

    PubMed

    Fowler, S J; Gill, P; Werrett, D J; Higgs, D R

    1988-06-01

    A probe detecting a hypervariable region (HVR) 3' to the alpha globin locus on chromosome 16 has been used to produce DNA fingerprints. Segregation analysis has revealed multiple, randomly dispersed DNA fragments inherited in a Mendelian fashion with minimal allelism and linkage. The fingerprints are highly polymorphic (probability of chance association between random individuals much less than 10(-14]. The probe is, therefore, a powerful discriminating tool: it is envisaged that this probe will have forensic applications, including paternity cases, and will be informative in linkage analysis.

  12. Polymerase chain reaction and DNA probe hybridization to assess the efficacy of diminazene treatment in Trypanosoma brucei-infected cattle.

    PubMed

    Clausen, P H; Waiswa, C; Katunguka-Rwakishaya, E; Schares, G; Steuber, S; Mehlitz, D

    1999-03-01

    Four of eight Ankole longhorn cattle experimentally infected with Trypanosoma brucei were treated with 7 mg/kg diminazene aceturate (Berenil, Hoechst AG, Germany) at day 71 postinfection. The trypanocidal activity was monitored using polymerase chain reaction (PCR) and DNA probe hybridization. When extracted parasite DNA (without host DNA) was used, as little as 1 fg per reaction, which is equivalent to about 1-10% of the DNA in a single trypanosome, produced a specific product that was visible as a 177-bp band in an agarose gel. In infected cattle, specific PCR products could be amplified at as early as 1 day postinfection. PCR signals remained positive during infection, except in one sample, although aparasitemic phases occurred. In cases where treatment resulted in a significant clinical improvement, PCR signals disappeared at 3-4 days after the administration of the drug. By contrast, in cattle that showed clinical signs of CNS involvement after treatment, although aparasitemic, and died before the termination of the experiment, specific products could be amplified on several occasions following treatment. The PCR signals generated after treatment could be further enhanced by subsequent slot-blot hybridization with a T. brucei-specific DNA probe. We conclude that PCR coupled with DNA probe hybridization provides a highly sensitive tool for the assessment of therapeutic efficiency and disease progression in trypanosome infections, especially in chronic infections when the level of parasitemia is low or when trypanosomes are sequestered at cryptic sites.

  13. Z-DNA binding protein from chicken blood nuclei

    NASA Technical Reports Server (NTRS)

    Herbert, A. G.; Spitzner, J. R.; Lowenhaupt, K.; Rich, A.

    1993-01-01

    A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.

  14. DNA Clutch Probes for Circulating Tumor DNA Analysis.

    PubMed

    Das, Jagotamoy; Ivanov, Ivaylo; Sargent, Edward H; Kelley, Shana O

    2016-08-31

    Progress toward the development of minimally invasive liquid biopsies of disease is being bolstered by breakthroughs in the analysis of circulating tumor DNA (ctDNA): DNA released from cancer cells into the bloodstream. However, robust, sensitive, and specific methods of detecting this emerging analyte are lacking. ctDNA analysis has unique challenges, since it is imperative to distinguish circulating DNA from normal cells vs mutation-bearing sequences originating from tumors. Here we report the electrochemical detection of mutated ctDNA in samples collected from cancer patients. By developing a strategy relying on the use of DNA clutch probes (DCPs) that render specific sequences of ctDNA accessible, we were able to readout the presence of mutated ctDNA. DCPs prevent reassociation of denatured DNA strands: they make one of the two strands of a dsDNA accessible for hybridization to a probe, and they also deactivate other closely related sequences in solution. DCPs ensure thereby that only mutated sequences associate with chip-based sensors detecting hybridization events. The assay exhibits excellent sensitivity and specificity in the detection of mutated ctDNA: it detects 1 fg/μL of a target mutation in the presence of 100 pg/μL of wild-type DNA, corresponding to detecting mutations at a level of 0.01% relative to wild type. This approach allows accurate analysis of samples collected from lung cancer and melanoma patients. This work represents the first detection of ctDNA without enzymatic amplification.

  15. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion.

    PubMed

    Akahori, Rena; Yanagi, Itaru; Goto, Yusuke; Harada, Kunio; Yokoi, Takahide; Takeda, Ken-Ichi

    2017-08-22

    To achieve DNA sequencing with solid-state nanopores, the speed of the DNA in the nanopore must be controlled to obtain sequence-specific signals. In this study, we fabricated a nanopore-sensing system equipped with a DNA motion controller. DNA strands were immobilized on a Si probe, and approach of this probe to the nanopore vicinity could be controlled using a piezo actuator and stepper motor. The area of the Si probe was larger than the area of the membrane, which meant that the immobilized DNA could enter the nanopore without the need for the probe to scan to determine the location of the nanopore in the membrane. We demonstrated that a single-stranded DNA could be inserted into and removed from a nanopore in our experimental system. The number of different ionic-current levels observed while DNA remained in the nanopore corresponded to the number of different types of homopolymers in the DNA.

  16. DNA-based species detection capabilities using laser transmission spectroscopy

    PubMed Central

    Mahon, A. R.; Barnes, M. A.; Li, F.; Egan, S. P.; Tanner, C. E.; Ruggiero, S. T.; Feder, J. L.; Lodge, D. M.

    2013-01-01

    Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications. PMID:23015524

  17. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  18. Development of a DNA microarray for species identification of quarantine aphids.

    PubMed

    Lee, Won Sun; Choi, Hwalran; Kang, Jinseok; Kim, Ji-Hoon; Lee, Si Hyeock; Lee, Seunghwan; Hwang, Seung Yong

    2013-12-01

    Aphid pests are being brought into Korea as a result of increased crop trading. Aphids exist on growth areas of plants, and thus plant growth is seriously affected by aphid pests. However, aphids are very small and have several sexual morphs and life stages, so it is difficult to identify species on the basis of morphological features. This problem was approached using DNA microarray technology. DNA targets of the cytochrome c oxidase subunit I gene were generated with a fluorescent dye-labelled primer and were hybridised onto a DNA microarray consisting of specific probes. After analysing the signal intensity of the specific probes, the unique patterns from the DNA microarray, consisting of 47 species-specific probes, were obtained to identify 23 aphid species. To confirm the accuracy of the developed DNA microarray, ten individual blind samples were used in blind trials, and the identifications were completely consistent with the sequencing data of all individual blind samples. A microarray has been developed to distinguish aphid species. DNA microarray technology provides a rapid, easy, cost-effective and accurate method for identifying aphid species for pest control management. © 2013 Society of Chemical Industry.

  19. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification.

    PubMed Central

    Wimpee, C F; Nadeau, T L; Nealson, K H

    1991-01-01

    By using two highly conserved region of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species, Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies. Images PMID:1854194

  20. Electrochemical DNA sensor for anthrax toxin activator gene atxA-detection of PCR amplicons.

    PubMed

    Das, Ritu; Goel, Ajay K; Sharma, Mukesh K; Upadhyay, Sanjay

    2015-12-15

    We report the DNA probe functionalized electrochemical genosensor for the detection of Bacillus anthracis, specific towards the regulatory gene atxA. The DNA sensor is fabricated on electrochemically deposited gold nanoparticle on self assembled layer of (3-Mercaptopropyl) trimethoxysilane (MPTS) on GC electrode. DNA hybridization is monitored by differential pulse voltammogram (DPV). The modified GC electrode is characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) method. We also quantified the DNA probe density on electrode surface by the chronocoulometric method. The detection is specific and selective for atxA gene by DNA probe on the electrode surface. No report is available for the detection of B. anthracis by using atxA an anthrax toxin activator gene. In the light of real and complex sample, we have studied the PCR amplicons of 303, 361 and 568 base pairs by using symmetric and asymmetric PCR approaches. The DNA probe of atxA gene efficiently hybridizes with different base pairs of PCR amplicons. The detection limit is found to be 1.0 pM (S/N ratio=3). The results indicate that the DNA sensor is able to detect synthetic target as well as PCR amplicons of different base pairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. New concepts of fluorescent probes for specific detection of DNA sequences: bis-modified oligonucleotides in excimer and exciplex detection.

    PubMed

    Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt

    2009-12-01

    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.

  2. Analytical cytology applied to detection of prognostically important cytogenetic aberrations: Current status and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Pinkel, D.; Trask, B.

    1987-07-24

    This paper discusses the application of analytical cytology to the detection of clinically important chromosome abnormalities in human tumors. Flow cytometric measurements of DNA distributions have revealed that many human tumors have abnormal (usually elevated) DNA contents and that the occurrence of DNA abnormality may be diagnostically or prognostically important. However, DNA indices (ratio of tumor DNA content to normal DNA content) provide little information about the specific chromosome(s) involved in the DNA content abnormality. Fluorescence in situ hybridization with chromosome specific probes is suggested as a technique to facilitate detection of specific chromosome aneuploidy in interphase and metaphase humanmore » tumor cells. Fluorescence hybridization to nuclei on slides allows enumeration of brightly fluorescent nuclear domains as an estimate of the number of copies of the chromosome type for which the hybridization probe is specific. Fluorescence hybridization can also be made to nuclei in suspension. The fluorescence intensity can then be measured flow cytometrically as an indication of the number of chromosomes in each nucleus carrying the DNA sequence homologous to the probe. In addition, quantitative image analysis may be used to explore the position of chromosomes in interphase nuclei and to look for changes in the order that may eventually permit detection of clinicaly important conditions. 55 refs., 8 figs., 1 tab.« less

  3. Quantum dot-based microfluidic biosensor for cancer detection

    NASA Astrophysics Data System (ADS)

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.

  4. Quantum-dot-based quantitative identification of pathogens in complex mixture

    NASA Astrophysics Data System (ADS)

    Lim, Sun Hee; Bestwater, Felix; Buchy, Philippe; Mardy, Sek; Yu, Alexey Dan Chin

    2010-02-01

    In the present study we describe sandwich design hybridization probes consisting of magnetic particles (MP) and quantum dots (QD) with target DNA, and their application in the detection of avian influenza virus (H5N1) sequences. Hybridization of 25-, 40-, and 100-mer target DNA with both probes was analyzed and quantified by flow cytometry and fluorescence microscopy on the scale of single particles. The following steps were used in the assay: (i) target selection by MP probes and (ii) target detection by QD probes. Hybridization efficiency between MP conjugated probes and target DNA hybrids was controlled by a fluorescent dye specific for nucleic acids. Fluorescence was detected by flow cytometry to distinguish differences in oligo sequences as short as 25-mer capturing in target DNA and by gel-electrophoresis in the case of QD probes. This report shows that effective manipulation and control of micro- and nanoparticles in hybridization assays is possible.

  5. Use of multiplex polymerase chain reaction-based assay to conduct epidemiological studies on bovine hemoparasites in Mexico.

    PubMed

    Figueroa, J V; Alvarez, J A; Ramos, J A; Vega, C A; Buening, G M

    1993-01-01

    A study was conducted to test the applicability of a Polymerase Chain Reaction (PCR)-based approach for the simultaneous detection of the bovine hemoparasites Babesia bigemina, B. bovis and Anaplasma marginale. Bovine blood samples from cattle ranches of a previously determined enzootic zone in the Yucatan Peninsula of Mexico, were collected from peripheral blood and processed for PCR analysis. Blood samples were subjected to DNA amplification by placing an aliquot in a reaction tube containing oligonucleotide primers specific for DNA of each hemoparasite species. The PCR products were detected by Dot-Blot nucleic acid hybridization utilizing nonradioactive, species-specific, digoxigenin PCR-labeled DNA probes. Four hundred twenty one field samples analyzed by the multiplex PCR-DNA probe assay showed 66.7%, 60.1% and 59.6% prevalence rates for B. bigemina, B. bovis and A. marginale, respectively. The multiplex PCR analysis showed that animals with single, double or triple infection could be detected with the parasite specific DNA probes. The procedure is proposed as a valuable tool for the epidemiological analysis in regions where the hemoparasite species are concurrently infecting cattle.

  6. High-sensitive electrochemical detection of point mutation based on polymerization-induced enzymatic amplification.

    PubMed

    Feng, Kejun; Zhao, Jingjin; Wu, Zai-Sheng; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2011-03-15

    Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Rapid real-time diagnostic PCR for Trichophyton rubrum and Trichophyton mentagrophytes in patients with tinea unguium and tinea pedis using specific fluorescent probes.

    PubMed

    Miyajima, Yoshiharu; Satoh, Kazuo; Uchida, Takao; Yamada, Tsuyoshi; Abe, Michiko; Watanabe, Shin-ichi; Makimura, Miho; Makimura, Koichi

    2013-03-01

    Trichophyton rubrum and Trichophyton mentagrophytes human-type (synonym, Trichophyton interdigitale (anthropophilic)) are major causative pathogens of tinea unguium. For suitable diagnosis and treatment, rapid and accurate identification of etiologic agents in clinical samples using reliable molecular based method is required. For identification of organisms causing tinea unguium, we developed a new real-time polymerase chain reaction (PCR) with a pan-fungal primer set and probe, as well as specific primer sets and probes for T. rubrum and T. mentagrophytes human-type. We designed two sets of primers from the internal transcribed spacer 1 (ITS1) region of fungal ribosomal DNA (rDNA) and three quadruple fluorescent probes, one for detection wide range pathogenic fungi and two for classification of T. rubrum and T. mentagrophytes by specific binding to different sites in the ITS1 region. We investigated the specificity of these primer sets and probes using fungal genomic DNA, and also examined 42 clinical specimens with our real-time PCR. The primers and probes specifically detected T. rubrum, T. mentagrophytes, and a wide range of pathogenic fungi. The causative pathogens were identified in 42 nail and skin samples from 32 patients. The total time required for identification of fungal species in each clinical specimen was about 3h. The copy number of each fungal DNA in the clinical specimens was estimated from the intensity of fluorescence simultaneously. This PCR system is one of the most rapid and sensitive methods available for diagnosing dermatophytosis, including tinea unguium and tinea pedis. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Detection of DNA "fingerprints" of cultivated rice by hybridization with a human minisatellite DNA probe.

    PubMed

    Dallas, J F

    1988-09-01

    A human minisatellite DNA probe detects several restriction fragment length polymorphisms in cultivars of Asian and African rice. Certain fragments appear to be inherited in a Mendelian fashion and may represent unlinked loci. The hybridization patterns appear to be cultivar-specific and largely unchanged after the regeneration of plants from tissue culture. The results suggest that these regions of the rice genome may be used to generate cultivar-specific DNA fingerprints. The demonstration of similarity between a human minisatellite sequence and polymorphic regions in the rice genome suggests that such regions also occur in the genomes of many other plant species.

  9. The origin of in situ hybridization - A personal history.

    PubMed

    Gall, Joseph G

    2016-04-01

    In situ hybridization is the technique by which specific RNA or DNA molecules are detected in cytological preparations. Basically it involves formation of a hybrid molecule between an endogenous single-stranded RNA or DNA in the cell and a complementary single-stranded RNA or DNA probe. In its original form the probe was labeled with (3)H and the hybrid was detected by autoradiography. The first successful experiments in 1968 involved detection of the highly amplified ribosomal DNA in oocytes of the frog Xenopus, followed soon after by the reiterated "satellite DNA" in mouse and Drosophila chromosomes. Fluorescent probes were developed about ten years later. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification.

    PubMed

    Park, Jung Hun; Jang, Hyowon; Jung, Yun Kyung; Jung, Ye Lim; Shin, Inkyung; Cho, Dae-Yeon; Park, Hyun Gyu

    2017-05-15

    We herein describe a new mass spectrometry-based method for multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification (SDA) reaction. In this method, allele-specific ligation is first performed to discriminate base sequence variations at the SNP site within the PCR-amplified target DNA. The primary ligation probe is extended by a universal primer annealing site while the secondary ligation probe has base sequences as an overhang with a nicking enzyme recognition site and complementary mass marker sequence. The ligation probe pairs are ligated by DNA ligase only at specific allele in the target DNA and the resulting ligated product serves as a template to promote the SDA reaction using a universal primer. This process isothermally amplifies short DNA fragments, called mass markers, to be analyzed by mass spectrometry. By varying the sizes of the mass markers, we successfully demonstrated the multiplex SNP genotyping capability of this method by reliably identifying several BRCA mutations in a multiplex manner with mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Immobilization of human papillomavirus DNA probe for surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Ji, Yanhong; Ma, Suihua; Liu, Le; Liu, Zhiyi; Li, Yao; He, Yonghong; Guo, Jihua

    2009-08-01

    Human papillomavirus (HPV) is a kind of double-stranded DNA virus whose subspecies have diversity. Near 40 kinds of subspecies can invade reproductive organ and cause some high risk disease, such as cervical carcinoma. In order to detect the type of the subspecies of the HPV DNA, we used the parallel scan spectral surface plasmon resonance (SPR) imaging technique, which is a novel type of two- dimensional bio-sensing method based on surface plasmon resonance and is proposed in our previous work, to study the immobilization of the HPV DNA probes on the gold film. In the experiment, four kinds of the subspecies of the HPV DNA (HPV16, HPV18, HPV31, HPV58) probes are fixed on one gold film, and incubate in the constant temperature condition to get a HPV DNA probe microarray. We use the parallel scan spectral SPR imaging system to detect the reflective indices of the HPV DNA subspecies probes. The benefits of this new approach are high sensitive, label-free, strong specificity and high through-put.

  12. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    NASA Astrophysics Data System (ADS)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  13. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei.

    PubMed

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta; Schmitt, Eberhard; Hausmann, Michael

    2016-07-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes) or TINA-DNA (Twisted Intercalating Nucleic Acids). Gene targets can be specifically labelled with at least about 20 probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3d-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. Copyright © 2016. Published by Elsevier Inc.

  14. A direct detection of Escherichia coli genomic DNA using gold nanoprobes

    PubMed Central

    2012-01-01

    Background In situation like diagnosis of clinical and forensic samples there exists a need for highly sensitive, rapid and specific DNA detection methods. Though conventional DNA amplification using PCR can provide fast results, it is not widely practised in diagnostic laboratories partially because it requires skilled personnel and expensive equipment. To overcome these limitations nanoparticles have been explored as signalling probes for ultrasensitive DNA detection that can be used in field applications. Among the nanomaterials, gold nanoparticles (AuNPs) have been extensively used mainly because of its optical property and ability to get functionalized with a variety of biomolecules. Results We report a protocol for the use of gold nanoparticles functionalized with single stranded oligonucleotide (AuNP- oligo probe) as visual detection probes for rapid and specific detection of Escherichia coli. The AuNP- oligo probe on hybridization with target DNA containing complementary sequences remains red whereas test samples without complementary DNA sequences to the probe turns purple due to acid induced aggregation of AuNP- oligo probes. The color change of the solution is observed visually by naked eye demonstrating direct and rapid detection of the pathogenic Escherichia coli from its genomic DNA without the need for PCR amplification. The limit of detection was ~54 ng for unamplified genomic DNA. The method requires less than 30 minutes to complete after genomic DNA extraction. However, by using unamplified enzymatic digested genomic DNA, the detection limit of 11.4 ng was attained. Results of UV-Vis spectroscopic measurement and AFM imaging further support the hypothesis of aggregation based visual discrimination. To elucidate its utility in medical diagnostic, the assay was validated on clinical strains of pathogenic Escherichia coli obtained from local hospitals and spiked urine samples. It was found to be 100% sensitive and proves to be highly specific without any cross reaction with non-Escherichia coli strains. Conclusion This work gives entry into a new class of DNA/gold nanoparticles hybrid materials which might have optical property that can be controlled for application in diagnostics. We note that it should be possible to extend this strategy easily for developing new types of DNA biosensor for point of care detection. The salient feature of this approach includes low-cost, robust reagents and simple colorimetric detection of pathogen. PMID:22309695

  15. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun

    2010-08-01

    A novel DNA detection platform based on a hairpin-DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a “stem-loop” DNA probe dually labeled with a thiol at its 5’ end and a biotin at its 3’ end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem-loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked-avidin (avidin-HRP) conjugate duemore » to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the avidin-HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3, 3', 5, 5'-tetramethylbenzidine using spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe.« less

  16. New Concepts of Fluorescent Probes for Specific Detection of DNA Sequences: Bis-Modified Oligonucleotides in Excimer and Exciplex Detection

    PubMed Central

    Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT

    2009-01-01

    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539

  17. Method for producing labeled single-stranded nucleic acid probes

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-10-19

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  18. Space pruning monotonic search for the non-unique probe selection problem.

    PubMed

    Pappalardo, Elisa; Ozkok, Beyza Ahlatcioglu; Pardalos, Panos M

    2014-01-01

    Identification of targets, generally viruses or bacteria, in a biological sample is a relevant problem in medicine. Biologists can use hybridisation experiments to determine whether a specific DNA fragment, that represents the virus, is presented in a DNA solution. A probe is a segment of DNA or RNA, labelled with a radioactive isotope, dye or enzyme, used to find a specific target sequence on a DNA molecule by hybridisation. Selecting unique probes through hybridisation experiments is a difficult task, especially when targets have a high degree of similarity, for instance in a case of closely related viruses. After preliminary experiments, performed by a canonical Monte Carlo method with Heuristic Reduction (MCHR), a new combinatorial optimisation approach, the Space Pruning Monotonic Search (SPMS) method, is introduced. The experiments show that SPMS provides high quality solutions and outperforms the current state-of-the-art algorithms.

  19. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches.

    PubMed

    Idili, Andrea; Plaxco, Kevin W; Vallée-Bélisle, Alexis; Ricci, Francesco

    2013-12-23

    Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.

  20. Open-target sparse sensing of biological agents using DNA microarray

    PubMed Central

    2011-01-01

    Background Current biosensors are designed to target and react to specific nucleic acid sequences or structural epitopes. These 'target-specific' platforms require creation of new physical capture reagents when new organisms are targeted. An 'open-target' approach to DNA microarray biosensing is proposed and substantiated using laboratory generated data. The microarray consisted of 12,900 25 bp oligonucleotide capture probes derived from a statistical model trained on randomly selected genomic segments of pathogenic prokaryotic organisms. Open-target detection of organisms was accomplished using a reference library of hybridization patterns for three test organisms whose DNA sequences were not included in the design of the microarray probes. Results A multivariate mathematical model based on the partial least squares regression (PLSR) was developed to detect the presence of three test organisms in mixed samples. When all 12,900 probes were used, the model correctly detected the signature of three test organisms in all mixed samples (mean(R2)) = 0.76, CI = 0.95), with a 6% false positive rate. A sampling algorithm was then developed to sparsely sample the probe space for a minimal number of probes required to capture the hybridization imprints of the test organisms. The PLSR detection model was capable of correctly identifying the presence of the three test organisms in all mixed samples using only 47 probes (mean(R2)) = 0.77, CI = 0.95) with nearly 100% specificity. Conclusions We conceived an 'open-target' approach to biosensing, and hypothesized that a relatively small, non-specifically designed, DNA microarray is capable of identifying the presence of multiple organisms in mixed samples. Coupled with a mathematical model applied to laboratory generated data, and sparse sampling of capture probes, the prototype microarray platform was able to capture the signature of each organism in all mixed samples with high sensitivity and specificity. It was demonstrated that this new approach to biosensing closely follows the principles of sparse sensing. PMID:21801424

  1. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe.

    PubMed

    Lu, Ying; Li, Xianchan; Zhang, Limin; Yu, Ping; Su, Lei; Mao, Lanqun

    2008-03-15

    This study describes a facile and general strategy for the development of aptamer-based electrochemical sensors with a high specificity toward the targets and a ready regeneration feature. Very different from the existing strategies for the development of electrochemical aptasensors with the aptamers as the probes, the strategy proposed here is essentially based on the utilization of the aptamer-complementary DNA (cDNA) oligonucleotides as the probes for electrochemical sensing. In this context, the sequences at both ends of the cDNA are tailor-made to be complementary and both the redox moiety (i.e., ferrocene in this study) and thiol group are labeled onto the cDNA. The labeled cDNA are hybridized with their respective aptamers (i.e., ATP- and thrombin-binding aptamers in this study) to form double-stranded DNA (ds-DNA) and the electrochemical aptasensors are prepared by self-assembling the labeled ds-DNA onto Au electrodes. Upon target binding, the aptamers confined onto electrode surface dissociate from their respective cDNA oligonucleotides into the solution and the single-stranded cDNA could thus tend to form a hairpin structure through the hybridization of the complementary sequences at both its ends. Such a conformational change of the cDNA resulting from the target binding-induced dissociation of the aptamers essentially leads to the change in the voltammetric signal of the redox moiety labeled onto the cDNA and thus constitutes the mechanism for the electrochemical aptasensors for specific target sensing. The aptasensors demonstrated here with the cDNA as the probe are readily regenerated and show good responses toward the targets. This study may offer a new and relatively general approach to electrochemical aptasensors with good analytical properties and potential applications.

  2. Terahertz spectroscopy for the isothermal detection of bacterial DNA by magnetic bead-based rolling circle amplification.

    PubMed

    Yang, Xiang; Yang, Ke; Zhao, Xiang; Lin, Zhongquan; Liu, Zhiyong; Luo, Sha; Zhang, Yang; Wang, Yunxia; Fu, Weiling

    2017-12-04

    The demand for rapid and sensitive bacterial detection is continuously increasing due to the significant requirements of various applications. In this study, a terahertz (THz) biosensor based on rolling circle amplification (RCA) was developed for the isothermal detection of bacterial DNA. The synthetic bacterium-specific sequence of 16S rDNA hybridized with a padlock probe (PLP) that contains a sequence fully complementary to the target sequence at the 5' and 3' ends. The linear PLP was circularized by ligation to form a circular PLP upon recognition of the target sequence; then the capture probe (CP) immobilized on magnetic beads (MBs) acted as a primer to initialize RCA. As DNA molecules are much less absorptive than water molecules in the THz range, the RCA products on the surface of the MBs cause a significant decrease in THz absorption, which can be sensitively probed by THz spectroscopy. Our results showed that 0.12 fmol of synthetic bacterial DNA and 0.05 ng μL -1 of genomic DNA could be effectively detected using this assay. In addition, the specificity of this strategy was demonstrated by its low signal response to interfering bacteria. The proposed strategy not only represents a new method for the isothermal detection of the target bacterial DNA but also provides a general methodology for sensitive and specific DNA biosensing using THz spectroscopy.

  3. Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer

    USGS Publications Warehouse

    Thiem, S.M.; Krumme, M.L.; Smith, R.L.; Tiedje, J.M.

    1994-01-01

    A PCR primer set and an internal probe that are specific for Pseudomonas sp. strain B13, a 3-chlorobenzoate-metabolizing strain, were developed. Using this primer set and probe, we were able to detect Pseudomonas sp. strain B13 DNA sequences in DNA extracted from aquifer samples 14.5 months after Pseudomonas sp. strain B13 had been injected into a sand and gravel aquifer. This primer set and probe were also used to analyze isolates from 3-chlorobenzoate enrichments of the aquifer samples by Southern blot analysis. Hybridization of Southern blots with the Pseudomonas sp. strain B13-specific probe and a catabolic probe in conjunction with restriction fragment length polymorphism (RFLP) analysis of ribosome genes was used to determine that viable Pseudomonas sp. strain B13 persisted in this environment. We isolated a new 3-chlorobenzoate-degrading strain from one of these enrichment cultures. The B13-specific probe does not hybridize to DNA from this isolate. The new strain could be the result of gene exchange between Pseudomonas sp. strain B13 and an indigenous bacterium. This speculation is based on an RFLP pattern of ribosome genes that differs from that of Pseudomonas sp. strain B13, the fact that identically sized restriction fragments hybridized to the catabolic gene probe, and the absence of any enrichable 3-chlorobenzoate-degrading strains in the aquifer prior to inoculation.

  4. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification

    PubMed Central

    Xia, Ning; Liu, Ke; Zhou, Yingying; Li, Yuanyuan; Yi, Xinyao

    2017-01-01

    miRNAs have emerged as new biomarkers for the detection of a wide variety of cancers. By employing duplex-specific nuclease for signal amplification and gold nanoparticles (AuNPs) as the carriers of detection probes, a novel electrochemical assay of miRNAs was performed. The method is based on conversion of the well-known colorimetric assay into electrochemical analysis with enhanced sensitivity. DNA capture probes immobilized on the electrode surface and ferrocene (Fc)-labeled DNA detection probes (denoted “Fc-DNA-Fc”) presented in the solution induced the assembly of positively charged AuNPs on the electrode surface through the electrostatic interaction. As a result, a large number of Fc-DNA-Fc molecules were attached on the electrode surface, thus amplifying the electrochemical signal. When duplex-specific nuclease was added to recycle the process of miRNA-initiated digestion of the immobilized DNA probes, Fc-DNA-Fc-induced assembly of AuNPs on the electrode surface could not occur. This resulted in a significant fall in the oxidation current of Fc. The current was found to be inversely proportional to the concentration of miRNAs in the range of 0–25 fM, and a detection limit of 0.1 fM was achieved. Moreover, this work presents a new method for converting colorimetric assays into sensitive electrochemical analyses, and thus would be valuable for design of novel chemical/biosensors. PMID:28761341

  5. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  6. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  7. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-09-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.

  8. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    PubMed Central

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-01-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596

  9. Quantum dot-based microfluidic biosensor for cancer detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrera, Aditya Sharma; School of Engineering and Technology, ITM University, Gurgaon-122017; Pandey, Chandra Mouli

    2015-05-11

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system hasmore » been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.« less

  10. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  11. An ultrasensitive label-free biosensor for assaying of sequence-specific DNA-binding protein based on amplifying fluorescent conjugated polymer.

    PubMed

    Liu, Xingfen; Ouyang, Lan; Cai, Xiaohui; Huang, Yanqin; Feng, Xiaomiao; Fan, Quli; Huang, Wei

    2013-03-15

    Sensitive, reliable, and simple detection of sequence-specific DNA-binding proteins (DBP) is of paramount importance in the area of proteomics, genomics, and biomedicine. We describe herein a novel fluorescent-amplified strategy for ultrasensitive, visual, quantitative, and "turn-on" detection of DBP. A Förster resonance energy transfer (FRET) assay utilizing a cationic conjugated polymer (CCP) and an intercalating dye was designed to detect a key transcription factor, nuclear factor-kappa B (NF-κB), the model target. A series of label-free DNA probes bearing one or two protein-binding sites (PBS) were used to identify the target protein specifically. The binding DBP protects the probe from digestion by exonuclease III, resulting in high efficient FRET due to the high affinity between the intercalating dye and duplex DNA, as well as strong electrostatic interactions between the CCP and DNA probe. By using label-free hairpin DNA or double-stranded DNA containing two PBS as probe, we could detect as low as 1 pg/μL of NF-κB in HeLa nuclear extracts, which is 10000-fold more sensitive than the previously reported methods. The approach also allows naked-eye detection by observing fluorescent color of solutions with the assistance of a hand-held UV lamp. Additionally, a less than 10% relative standard deviation was obtained, which offers a new platform for superior precision, low-cost, and simple detection of DBP. The features of our optical biosensor shows promising potential for early diagnosis of many diseases and high-throughput screening of new drugs targeted to DNA-binding proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system.

    PubMed

    Chen, Ming; Liu, Minghua; Yu, Lili; Cai, Guoru; Chen, Qinghai; Wu, Rong; Wang, Feng; Zhang, Bo; Jiang, Tianlun; Fu, Welling

    2005-08-01

    A novel 2 x 5 clamped style piezoelectric gene sensor microarray has been successfully constructed. Every crystal unit of the fabricated gene sensor can oscillate independently without interfering with each other. The bis-peptide nucleic acid (bis-PNA) probe, which can combine with target DNA or RNA sequences more effectively and specifically than a DNA probe, was designed and immobilized on the surface of the gene sensor microarray to substitute the conventional DNA probe for direct detection of the hepatitis B virus (HBV) genomic DNA. Detection conditions were then explored and optimized. Results showed that PBS buffer of pH 6.8, an ion concentration of 20 mmol/liter, and a probe concentration of 1.5 micromol/liter were optimal for the detection system. Under such optimized experimental conditions, the specificity of bis-PNA was proved much higher than that of DNA probe. The relationship between quantity of target and decrease of frequency showed a typical saturation curve when concentrations of target HBV DNA varied from 10 pg/liter to 100 microg/liter, and 10 microg/liter was the watershed, with a statistic linear regression equation of I gC = -2.7455 + 0.0691 deltaF and the correlating coefficient of 0.9923. Fortunately, this is exactly the most ordinary variant range of the HBV virus concentration in clinical hepatitis samples. So, a good technical platform is successfully constructed and it will be applied to detect HBV quantitatively in clinical samples.

  13. Arrays of nucleic acid probes on biological chips

    DOEpatents

    Chee, Mark; Cronin, Maureen T.; Fodor, Stephen P. A.; Huang, Xiaohua X.; Hubbell, Earl A.; Lipshutz, Robert J.; Lobban, Peter E.; Morris, MacDonald S.; Sheldon, Edward L.

    1998-11-17

    DNA chips containing arrays of oligonucleotide probes can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprises probes exactly complementary to the reference sequence, as well as probes that differ by one or more bases from the exactly complementary probes.

  14. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus.

    PubMed

    Manzano, Marisa; Viezzi, Sara; Mazerat, Sandra; Marks, Robert S; Vidic, Jasmina

    2018-02-15

    Diagnostic systems that can deliver highly specific and sensitive detection of hepatitis A virus (HAV) in food and water are of particular interest in many fields including food safety, biosecurity and control of outbreaks. Our aim was the development of an electrochemical method based on DNA hybridization to detect HAV. A ssDNA probe specific for HAV (capture probe) was designed and tested on DNAs from various viral and bacterial samples using Nested-Reverse Transcription Polymerase Chain Reaction (nRT-PCR). To develop the electrochemical device, a disposable gold electrode was functionalized with the specific capture probe and tested on complementary ssDNA and on HAV cDNA. The DNA hybridization on the electrode was measured through the monitoring of the oxidative peak potential of the indicator tripropylamine by cyclic voltammetry. To prevent non-specific binding the gold surface was treated with 3% BSA before detection. High resolution atomic force microscopy (AFM) confirmed the efficiency of electrode functionalization and on-electrode hybridization. The proposed device showed a limit of detection of 0.65pM for the complementary ssDNA and 6.94fg/µL for viral cDNA. For a comparison, nRT-PCR quantified the target HAV cDNA with a limit of detection of 6.4fg/µL. The DNA-sensor developed can be adapted to a portable format to be adopted as an easy-to- use and low cost method for screening HAV in contaminated food and water. In addition, it can be useful for rapid control of HAV infections as it takes only a few minutes to provide the results. Copyright © 2017. Published by Elsevier B.V.

  15. Strand-specific transcriptome profiling with directly labeled RNA on genomic tiling microarrays

    PubMed Central

    2011-01-01

    Background With lower manufacturing cost, high spot density, and flexible probe design, genomic tiling microarrays are ideal for comprehensive transcriptome studies. Typically, transcriptome profiling using microarrays involves reverse transcription, which converts RNA to cDNA. The cDNA is then labeled and hybridized to the probes on the arrays, thus the RNA signals are detected indirectly. Reverse transcription is known to generate artifactual cDNA, in particular the synthesis of second-strand cDNA, leading to false discovery of antisense RNA. To address this issue, we have developed an effective method using RNA that is directly labeled, thus by-passing the cDNA generation. This paper describes this method and its application to the mapping of transcriptome profiles. Results RNA extracted from laboratory cultures of Porphyromonas gingivalis was fluorescently labeled with an alkylation reagent and hybridized directly to probes on genomic tiling microarrays specifically designed for this periodontal pathogen. The generated transcriptome profile was strand-specific and produced signals close to background level in most antisense regions of the genome. In contrast, high levels of signal were detected in the antisense regions when the hybridization was done with cDNA. Five antisense areas were tested with independent strand-specific RT-PCR and none to negligible amplification was detected, indicating that the strong antisense cDNA signals were experimental artifacts. Conclusions An efficient method was developed for mapping transcriptome profiles specific to both coding strands of a bacterial genome. This method chemically labels and uses extracted RNA directly in microarray hybridization. The generated transcriptome profile was free of cDNA artifactual signals. In addition, this method requires fewer processing steps and is potentially more sensitive in detecting small amount of RNA compared to conventional end-labeling methods due to the incorporation of more fluorescent molecules per RNA fragment. PMID:21235785

  16. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction.

    PubMed

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-24

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag(+)-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Electrochemical detection of sequence-specific DNA based on formation of G-quadruplex-hemin through continuous hybridization chain reaction.

    PubMed

    Sun, Xiaofan; Chen, Haohan; Wang, Shuling; Zhang, Yiping; Tian, Yaping; Zhou, Nandi

    2018-08-27

    A high-sensitive detection of sequence-specific DNA was established based on the formation of G-quadruplex-hemin complex through continuous hybridization chain reaction (HCR). Taking HIV DNA sequence as an example, a capture probe complementary to part of HIV DNA was firstly self-assembled onto the surface of Au electrode. Then a specially designed assistant probe with both terminals complementary to the target DNA and a G-quadruplex-forming sequence in the center was introduced into the detection solution. In the presence of both the target DNA and the assistant probe, the target DNA can be captured on the electrode surface and then a continuous HCR can be conducted due to the mutual recognition of the target DNA and the assistant probe, leading to the formation of a large number of G-quadruplex on the electrode surface. With the help of hemin, a pronounced electrochemical signal can be observed in differential pulse voltammetry (DPV), due to the formation of G-quadruplex-hemin complex. The peak current is linearly related with the logarithm of the concentration of the target DNA in the range from 10 fM to 10 pM. The electrochemical sensor has high selectivity to clearly discriminate single-base mismatched and three-base mismatched sequences from the original HIV DNA sequence. Moreover, the established DNA sensor was challenged by detection of HIV DNA in human serum samples, which showed the low detection limit of 6.3 fM. Thus it has great application prospect in the field of clinical diagnosis and environmental monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    NASA Astrophysics Data System (ADS)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-11-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.

  19. Development of Specific Sequence-Characterized Amplified Region Markers for Detecting Histoplasma capsulatum in Clinical and Environmental Samples

    PubMed Central

    Frías De León, María Guadalupe; Arenas López, Gabina; Taylor, Maria Lucia; Acosta Altamirano, Gustavo

    2012-01-01

    Sequence-characterized amplified region (SCAR) markers, generated by randomly amplified polymorphic DNA (RAPD)-PCR, were developed to detect Histoplasma capsulatum selectively in clinical and environmental samples. A 1,200-bp RAPD-PCR-specific band produced with the 1281-1283 primers was cloned, sequenced, and used to design two SCAR markers, 1281-1283220 and 1281-1283230. The specificity of these markers was confirmed by Southern hybridization. To evaluate the relevance of the SCAR markers for the diagnosis of histoplasmosis, another molecular marker (M antigen probe) was used for comparison. To validate 1281-1283220 and 1281-1283230 as new tools for the identification of H. capsulatum, the specificity and sensitivity of these markers were assessed for the detection of the pathogen in 36 clinical (17 humans, as well as 9 experimentally and 10 naturally infected nonhuman mammals) and 20 environmental (10 contaminated soil and 10 guano) samples. Although the two SCAR markers and the M antigen probe identified H. capsulatum isolates from different geographic origins in America, the 1281-1283220 SCAR marker was the most specific and detected the pathogen in all samples tested. In contrast, the 1281-1283230 SCAR marker and the M antigen probe also amplified DNA from Aspergillus niger and Cryptococcus neoformans, respectively. Both SCAR markers detected as little as 0.001 ng of H. capsulatum DNA, while the M antigen probe detected 0.5 ng of fungal DNA. The SCAR markers revealed the fungal presence better than the M antigen probe in contaminated soil and guano samples. Based on our results, the 1281-1283220 marker can be used to detect and identify H. capsulatum in samples from different sources. PMID:22189121

  20. Discriminating a Single Nucleotide Difference for Enhanced miRNA Detection Using Tunable Graphene and Oligonucleotide Nanodevices.

    PubMed

    Robertson, Neil M; Hizir, Mustafa Salih; Balcioglu, Mustafa; Wang, Rui; Yavuz, Mustafa Selman; Yumak, Hasan; Ozturk, Birol; Sheng, Jia; Yigit, Mehmet V

    2015-09-15

    In this study we have reported our efforts to address some of the challenges in the detection of miRNAs using water-soluble graphene oxide and DNA nanoassemblies. Purposefully inserting mismatches at specific positions in our DNA (probe) strands shows increasing specificity against our target miRNA, miR-10b, over miR-10a which varies by only a single nucleotide. This increased specificity came at a loss of signal intensity within the system, but we demonstrated that this could be addressed with the use of DNase I, an endonuclease capable of cleaving the DNA strands of the RNA/DNA heteroduplex and recycling the RNA target to hybridize to another probe strand. As we previously demonstrated, this enzymatic signal also comes with an inherent activity of the enzyme on the surface-adsorbed probe strands. To remove this activity of DNase I and the steady nonspecific increase in the fluorescence signal without compromising the recovered signal, we attached a thermoresponsive PEGMA polymer (poly(ethylene glycol) methyl ether methacrylate) to nGO. This smart polymer is able to shield the probes adsorbed on the nGO surface from the DNase I activity and is capable of tuning the detection capacity of the nGO nanoassembly with a thermoswitch at 39 °C. By utilizing probes with multiple mismatches, DNase I cleavage of the DNA probe strands, and the attachment of PEGMA polymers to graphene oxide to block undesired DNase I activity, we were able to detect miR-10b from liquid biopsy mimics and breast cancer cell lines. Overall we have reported our efforts to improve the specificity, increase the sensitivity, and eliminate the undesired enzymatic activity of DNase I on surface-adsorbed probes for miR-10b detection using water-soluble graphene nanodevices. Even though we have demonstrated only the discrimination of miR-10b from miR-10a, our approach can be extended to other short RNA molecules which differ by a single nucleotide.

  1. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpointmore » mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.« less

  2. Magnetic porous carbon nanocomposites derived from metal-organic frameworks as a sensing platform for DNA fluorescent detection.

    PubMed

    Tan, Hongliang; Tang, Gonge; Wang, Zhixiong; Li, Qian; Gao, Jie; Wu, Shimeng

    2016-10-12

    Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. In-situ investigation of protein and DNA structure using UVRRS

    NASA Astrophysics Data System (ADS)

    Greek, L. Shane; Schulze, H. Georg; Blades, Michael W.; Haynes, Charles A.; Turner, Robin F. B.

    1997-05-01

    Ultraviolet resonance Raman spectroscopy (UVRRS) has the potential to become a sensitive, specific, versatile bioanalytical and biophysical technique for routine investigations of proteins, DNA, and their monomeric components, as well as a variety smaller, physiologically important aromatic molecules. The transition of UVRRS from a complex, specialized spectroscopic method to a common laboratory assay depends upon several developments, including a robust sample introduction method permitting routine, in situ analysis in standard laboratory environments. To this end, we recently reported the first fiber-optic probes suitable for deep-UV pulsed laser UVRRS. In this paper, we extend this work by demonstrating the applicability of such probes to studies of biochemical relevance, including investigations of the resonance enhancement of phosphotyrosine, thermal denaturation of RNase T1, and specific and non-specific protein binding. The advantages and disadvantages of the probes are discussed with reference to sample conditions and probe design considerations.

  4. Utilizing Intrinsic Properties of Polyaniline to Detect Nucleic Acid Hybridization through UV-Enhanced Electrostatic Interaction.

    PubMed

    Sengupta, Partha Pratim; Gloria, Jared N; Amato, Dahlia N; Amato, Douglas V; Patton, Derek L; Murali, Beddhu; Flynt, Alex S

    2015-10-12

    Detection of specific RNA or DNA molecules by hybridization to "probe" nucleic acids via complementary base-pairing is a powerful method for analysis of biological systems. Here we describe a strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA-based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10(-11) M (10 pM) of target oligonucleotides could be detected within 15 min of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to form a target-probe duplex that would dissociate from PANI. Furthermore, this approach is robust and is capable of detecting specific RNAs in extracts from animals. This sensor system improves on previously reported strategies by transducing highly specific probe dissociation events through intrinsic properties of a conducting polymer without the need for additional labels.

  5. Specific identification of human papillomavirus type in cervical smears and paraffin sections by in situ hybridization with radioactive probes: a preliminary communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, J.; Gendelman, H.E.; Naghashfar, Z.

    1985-01-01

    Cervical Papanicolaou smears and paraffin sections of biopsy specimens obtained from women attending dysplasia clinics were examined for viral DNA sequences by in situ hybridization technique using TVS-labeled cloned recombinant DNA probes of human papillomavirus (HPV) types 6, 11, and 16. These and one unrelated DNA probe complementary to measles virus RNA were labeled by nick translation using either one or two TVS-labeled nucleotides. Paraffin sections and cervical smears were collected on pretreated slides, hybridized with the probes under stringent or nonstringent conditions for 50 h, and autoradiographed. Additional cervical specimens from the same women were examined for the presencemore » of genus-specific papillomavirus capsid antigen by the immunoperoxidase technique. Preliminary results may be summarized as follows. The infecting virus could be identified in smears as well as in sections. Viral DNA sequences were detected only when there were condylomatous cells in the specimen and in only a proportion of the condylomatous cells. Even under stringent conditions, some specimens reacted with both HPV-6 and HPV-11. In some instances, the cells did not hybridize with any of the three probes even when duplicate specimens contained frankly condylomatous, capsid antigen-positive cells. In situ hybridization of Papanicolaou smears or of tissue sections is a practical method for diagnosis and follow-up of specific papillomavirus infection using routinely collected material.« less

  6. A nested array of rRNA targeted probes for the detection and identification of enterococci by reverse hybridization.

    PubMed

    Behr, T; Koob, C; Schedl, M; Mehlen, A; Meier, H; Knopp, D; Frahm, E; Obst, U; Schleifer, K; Niessner, R; Ludwig, W

    2000-12-01

    Complete 23S and almost complete 16S rRNA gene sequences were determined for the type strains of the validly described Enterococcus species, Melissococcus pluton and Tetragenococcus halophilus. A comprehensive set of rRNA targeted specific oligonucleotide hybridization probes was designed according to the multiple probe concept. In silico probe design and evaluation was performed using the respective tools of the ARB program package in combination with the ARB databases comprising the currently available 16S as well as 23S rRNA primary structures. The probes were optimized with respect to their application for reverse hybridization in microplate format. The target comprising 16S and 23S rDNA was amplified and labeled by PCR (polymerase chain reaction) using general primers targeting a wide spectrum of bacteria. Alternatively, amplification of two adjacent rDNA fragments of enterococci was performed by using specific primers. In vitro evaluation of the probe set was done including all Enterococcus type strains, and a selection of other representatives of the gram-positive bacteria with a low genomic DNA G+C content. The optimized probe set was used to analyze enriched drinking water samples as well as original samples from waste water treatment plants.

  7. A self-assembled deoxyribonucleic acid concatemer for sensitive detection of single nucleotide polymorphism.

    PubMed

    Wu, Wei; Chen, Junhua; Fang, Zhiyuan; Ge, Chenchen; Xiang, Zhicheng; Ouyang, Chuanyan; Lie, Puchang; Xiao, Zhuo; Yu, Luxin; Wang, Lin; Zeng, Lingwen

    2013-12-04

    Polymerase-free and label-free strategies for DNA detection have shown excellent sensitivity and specificity in various biological samples. Herein, we propose a method for single nucleotide polymorphism (SNP) detection by using self-assembled DNA concatemers. Capture probes, bound to magnetic beads, can joint mediator probes by T4 DNA ligase in the presence of target DNA that is complementary to the capture probe and mediator probe. The mediator probes trigger self-assembly of two auxiliary probes on magnetic beads to form DNA concatemers. Separated by a magnetic rack, the double-stranded concatemers on beads can recruit a great amount of SYBR Green I and eventually result in amplified fluorescent signals. In comparison with reported methods for SNP detection, the concatemer-based approach has significant advantages of low background, simplicity, and ultrasensitivity, making it as a convenient platform for clinical applications. As a proof of concept, BRAF(T1799A) oncogene mutation, a SNP involved in diverse human cancers, was used as a model target. The developed approach using a fluorescent intercalator can detect as low as 0.1 fM target BRAF(T1799A) DNA, which is better than those previously published methods for SNP detection. This method is robust and can be used directly to measure the BRAF(T1799A) DNA in complex human serum with excellent recovery (94-103%). It is expected that this assay principle can be directed toward other SNP genes by simply changing the mediator probe and auxiliary probes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. [Detection of Toxoplasma gondii DNA in human lymph node tissue by in situ hybridization].

    PubMed

    Liu, C; Ke, O; Tan, D; Zhang, Z

    1998-01-01

    To detect the presence of Toxoplasma gondii in lymph node tissue in patients with Toxoplasma infection. T. gondii (RH strain) specific DNA fragment clones were obtained by using PCR and gene recombination technique. The DNA fragments used as hybridization probes were labelled with digoxigenin by random primer method. The technique of in situ hybridization (ISH) was used to detect T. g DNA in the lymph node sections. Four out of 120 samples T. g DNA were found positive, one with Hodgkin's disease (HD) (1/32), one with non-Hodgkin's lymphoma (NHL) (1/41) and 2 with chronic lymphadenitis (CL) (2/47). The total positive rate was 3.3%. It was demonstrated that this highly specific probe could detect 10 pg of the total RH strain T. g DNA. ISH was applicable in detecting pathogens in the lymph node tissues of individuals with Toxoplasma infection.

  9. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1988-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide or Hoechst 33258 is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as halodeoxy-uridine (HdU), more specifically bromodeoxyuridine (BrdU) is used as a probe for the measurement of HdU or BrdU uptake by the cells as a measure of DNA synthesis.

  10. Nonisotopic detection of human papillomavirus DNA in clinical specimens using a consensus PCR and a generic probe mix in an enzyme-linked immunosorbent assay format.

    PubMed

    Kornegay, J R; Shepard, A P; Hankins, C; Franco, E; Lapointe, N; Richardson, H; Coutleé, F

    2001-10-01

    We assessed the value of a new digoxigenin (DIG)-labeled generic probe mix in a PCR-enzyme-linked immunosorbent assay format to screen for the presence of human papillomavirus (HPV) DNA amplified from clinical specimens. After screening with this new generic assay is performed, HPV DNA-positive samples can be directly genotyped using a reverse blotting method with product from the same PCR amplification. DNA from 287 genital specimens was amplified via PCR using biotin-labeled consensus primers directed to the L1 gene. HPV amplicons were captured on a streptavidin-coated microwell plate (MWP) and detected with a DIG-labeled HPV generic probe mix consisting of nested L1 fragments from types 11, 16, 18, and 51. Coamplification and detection of human DNA with biotinylated beta-globin primers served as a control for both sample adequacy and PCR amplification. All specimens were genotyped using a reverse line blot assay (13). Results for the generic assay using MWPs and a DIG-labeled HPV generic probe mix (DIG-MWP generic probe assay) were compared with results from a previous analysis using dot blots with a radiolabeled nested generic probe mix and type-specific probes for genotyping. The DIG-MWP generic probe assay resulted in high intralaboratory concordance in genotyping results (88% versus 73% agreement using traditional methods). There were 207 HPV-positive results using the DIG-MWP method and 196 positives using the radiolabeled generic probe technique, suggesting slightly improved sensitivity. Only one sample failed to test positive with the DIG-MWP generic probe assay in spite of a positive genotyping result. Concordance between the two laboratories was nearly 87%. Approximately 6% of samples that were positive or borderline when tested with the DIG-MWP generic probe assay were not detected with the HPV type-specific panel, perhaps representing very rare or novel HPV types. This new method is easier to perform than traditional generic probe techniques and uses more objective interpretation criteria, making it useful in studies of HPV natural history.

  11. Development of species-specific rDNA probes for Giardia by multiple fluorescent in situ hybridization combined with immunocytochemical identification of cyst wall antigens.

    PubMed

    Erlandsen, Stanley L; Jarroll, Edward; Wallis, Peter; van Keulen, Harry

    2005-08-01

    In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.

  12. Development of DNA probes for Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves.more » It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.« less

  13. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.

  14. Chromosome 16 inversion-associated translocations in acute myeloid leukemia elucidated using a dual-color CBFB DNA probe.

    PubMed

    Aventín, Anna; Espadaler, Montserrat; Casas, Sílvia; Duarte, José; Nomdedéu, Josep; Sierra, Jorge

    2002-04-15

    We describe two cases of acute myelomonocytic leukemia with eosinophilia (AML-M4Eo) that were diagnosed with an inv(16)(p13q22) based on conventional cytogenetics (CC) and fluorescence in situ hybridization (FISH) technique using a chromosome 16p arm specific paint probe. Additional FISH analysis with a dual-color CBFB DNA probe showed that the 3' portion of the CBFB gene was translocated to chromosome 10p13 in the first patient and 1p36 in the other. These two cases indicate that some inv(16)(p13q22) identified by CC and FISH with chromosome arm-specific painting probe may represent cases of inversion-associated translocation. We suggest that all cases with inv(16)(p13q22) should be investigated by FISH with appropriate probes for a possible translocation of 16q22-->qter to another chromosome.

  15. Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin

    NASA Astrophysics Data System (ADS)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2014-10-01

    Convenient and simultaneous detection of multiple biomarkers such as DNA and proteins with biocompatible materials and good analytical performance still remains a challenge. Herein, we report the respective and simultaneous detection of DNA and bovine α-thrombin (thrombin) entirely based on biocompatible carbon materials through a specially designed fluorescence on-off-on process. Colorful fluorescence, high emission efficiency, good photostability and excellent compatibility enables graphene quantum dots (GQDs) as the best choice for fluorophores in bioprobes, and thus two-colored GQDs as labeling fluorophores were chemically bonded with specific oligonucleotide sequence and aptamer to prepare two probes targeting the DNA and thrombin, respectively. Each probe can be assembled on the graphene oxide (GO) platform spontaneously by π-π stacking and electrostatic attraction; as a result, fast electron transfer in the assembly efficiently quenches the fluorescence of probe. The presence of DNA or thrombin can trigger the self-recognition between capturing a nucleotide sequence and its target DNA or between thrombin and its aptamer due to their specific hybridization and duplex DNA structures or the formation of apatamer-substrate complex, which is taken advantage of in order to achieve a separate quantitative analysis of DNA and thrombin. A dual-functional biosensor for simultaneous detection of DNA and thrombin was also constructed by self-assembly of two probes with distinct colors and GO platform, and was further evaluated with the presence of various concentrations of DNA and thrombin. Both biosensors serving as a general detection model for multiple species exhibit outstanding analytical performance, and are expected to be applied in vivo because of the excellent biocompatibility of their used materials.

  16. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    NASA Astrophysics Data System (ADS)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  17. Comparison of the Gen-Probe Aptima HIV-1 and Abbott HIV-1 qualitative assays with the Roche Amplicor HIV-1 DNA assay for early infant diagnosis using dried blood spots.

    PubMed

    Nelson, Julie A E; Hawkins, J Tyler; Schanz, Maria; Mollan, Katie; Miller, Melissa B; Schmitz, John L; Fiscus, Susan A

    2014-08-01

    The current gold standard for infant diagnosis of HIV-1 is the Roche Amplicor Qualitative DNA assay, but it is being phased out. Compare the Abbott qualitative assay and the Gen-Probe Aptima assay to the gold standard Roche DNA assay using dried blood spots (DBS). The Gen-Probe Aptima and Abbott qualitative HIV-1 assays were compared to the Roche DNA assay for early infant diagnosis. Specificity and sensitivity were determined for the three assays using DBS from 50 HIV-exposed uninfected infants and 269 HIV-1 infected adults from North Carolina, respectively. All of the negative and 151 of the positive DBS had valid results on the 3 different assays, and an additional 118 positive DBS had valid results on the Roche DNA and Aptima assays. All three assays were very specific. The Roche DNA assay was the most sensitive (96.7%) over a wide range of HIV PVL, including samples with PVL<400 copies/ml. Restricted to samples with PVL>400 copies/ml, the Gen-Probe Aptima assay had sensitivity (96.5%) comparable to the Roche DNA assay (98.8%). The Abbott Qualitative assay was the least sensitive and only had sensitivity above 95% among samples with PVL over 1000 copies/ml. The Abbott HIV-1 Qualitative assay was not as sensitive as the comparator assays, so it would not be a useful replacement assay, especially for infants taking antiretroviral prophylaxis. The Gen-Probe Aptima assay is an adequate replacement option for infant diagnosis using DBS. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Genetic variation in parthenogenetic Caucasian rock lizards of the genus Lacerta (L. dahli, L. armeniaca, L. unisexualis) analyzed by DNA fingerprinting.

    PubMed

    Tokarskaya, O N; Kan, N G; Petrosyan, V G; Martirosyan, I A; Grechko, V V; Danielyan, F D; Darevsky, I S; Ryskov, A P

    2001-07-01

    Multilocus DNA fingerprinting has been used to study the variability of some mini- and microsatellite sequences in parthenogenetic species of Caucasian rock lizards of the genus Lacerta (L. dahli, L. armeniaca and L. unisexualis). We demonstrate that these clonally reproducing lizards possess species-specific DNA fingerprints with a low degree of intra- and interpopulation variation. Mean indices of similarity obtained using M13 DNA, (GACA)4 and (TCC)50 as probes were 0.962 and 0.966 in L. dahli and L. armeniaca, respectively. The mean index of similarity obtained using M 13 and GATA probes in L. unisexualis was estimated to be 0.95. However, despite the high degree of band-sharing, variable DNA fragments were revealed in all populations with the microsatellite probes. An particularly high level of variability was observed for (TCC)n microsatellites in populations of L. unisexualis. In fact TCC-derived DNA fingerprints were close to being individual-specific, with a mean index of similarity of 0.824. Fingerprint analysis of parthenogenetic families of L. armeniaca showed that all maternal fragments were inherited together by the progeny, and no differences in fingerprint patterns were observed. On the other hand, while identical DNA fingerprints were obtained from L. unisexualis families with M13 and (GATA)4 probes, use of the (TCC)50 probe revealed remarkable intrafamily variation in this species. It is assumed that the genetic heterogeneity observed in parthenogenetic populations may be explained, at least in part, by the existence of genetically unstable microsatellite loci. Our data serve to illustrate processes of spontaneous mutagenesis and the initial stages of clonal differentiation in natural populations of the lizard species studied.

  19. Rapid Identification of Seven Waterborne Exophiala Species by RCA DNA Padlock Probes.

    PubMed

    Najafzadeh, M J; Vicente, V A; Feng, Peiying; Naseri, A; Sun, Jiufeng; Rezaei-Matehkolaei, A; de Hoog, G S

    2018-03-05

    The black yeast genus Exophiala includes numerous potential opportunistic species that potentially cause systematic and disseminated infections in immunocompetent individuals. Species causing systemic disease have ability to grow at 37-40 °C, while others consistently lack thermotolerance and are involved in diseases of cold-blooded, waterborne vertebrates and occasionally invertebrates. We explain a fast and sensitive assay for recognition and identification of waterborne Exophiala species without sequencing. The ITS rDNA region of seven Exophiala species (E. equina, E. salmonis, E. opportunistica, E. pisciphila, E. aquamarina, E. angulospora and E. castellanii) along with the close relative Veronaea botryosa was sequenced and aligned for the design of specific padlock probes for the detection of characteristic single-nucleotide polymorphisms. The assay demonstrated to successfully amplify DNA of target fungi, allowing detection at the species level. Amplification products were visualized on 1% agarose gels to confirm specificity of probe-template binding. Amounts of reagents were reduced to prevent the generation of false positive results. The simplicity, tenderness, robustness and low expenses provide padlock probe assay (RCA) a definite place as a very practical method among isothermal approaches for DNA diagnostics.

  20. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    PubMed Central

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209

  1. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    NASA Astrophysics Data System (ADS)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  2. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification.

    PubMed

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-05

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  3. Fluorescence studies with DNA probes: dynamic aspects of DNA structure and DNA-protein interactions

    NASA Astrophysics Data System (ADS)

    Millar, David P.; Carver, Theodore E.

    1994-08-01

    Time-resolved fluorescence measurements of optical probes incorporated at specific sites in DNA provides a new approach to studies of DNA structure and DNA:protein interactions. This approach can be used to study complex multi-state behavior, such as the folding of DNA into alternative higher order structures or the transfer of DNA between multiple binding sites on a protein. In this study, fluorescence anisotropy decay of an internal dansyl probe attached to 17/27-mer oligonucleotides was used to monitor the distribution of DNA 3' termini bound at either the polymerase of 3' to 5' exonuclease sites of the Klenow fragment of DNA polymerase I. Partitioning of the primer terminus between the two active sites of the enzyme resulted in a heterogeneous probe environment, reflected in the associative behavior of the fluorescence anisotropy decay. Analysis of the anisotropy decay with a two state model of solvent-exposed and protein-associated dansyl probes was used to determine the fraction of DNA bound at each site. We examined complexes of Klenow fragment with DNAs containing various base mismatches. Single mismatches at the primer terminus caused a 3-fold increase in the equilibrium partitioning of DNA into the exonuclease site, while two or more consecutive G:G mismatches caused the DNA to bind exclusively at the exonuclease site, with a partitioning constant at least 250- fold greater than that of the corresponding matched DNA sequence. Internal single mismatches located up to four bases from the primer terminus produced larger effects than the same mismatch at the primer terminus. These results provide insight into the recognition mechanisms that enable DNA polymerases to proofread misincorporated bases during DNA replication.

  4. DNA Microarray for Detection of Macrolide Resistance Genes

    PubMed Central

    Cassone, Marco; D'Andrea, Marco M.; Iannelli, Francesco; Oggioni, Marco R.; Rossolini, Gian Maria; Pozzi, Gianni

    2006-01-01

    A DNA microarray was developed to detect bacterial genes conferring resistance to macrolides and related antibiotics. A database containing 65 nonredundant genes selected from publicly available DNA sequences was constructed and used to design 100 oligonucleotide probes that could specifically detect and discriminate all 65 genes. Probes were spotted on a glass slide, and the array was reacted with DNA templates extracted from 20 reference strains of eight different bacterial species (Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Staphylococcus haemolyticus, Escherichia coli, and Bacteroides fragilis) known to harbor 29 different macrolide resistance genes. Hybridization results showed that probes reacted with, and only with, the expected DNA templates and allowed discovery of three unexpected genes, including msr(SA) in B. fragilis, an efflux gene that has not yet been described for gram-negative bacteria. PMID:16723563

  5. Nucleic acid probes as a diagnostic method for tick-borne hemoparasites of veterinary importance.

    PubMed

    Figueroa, J V; Buening, G M

    1995-03-01

    An increased number of articles on the use of nucleic acid-based hybridization techniques for diagnostic purposes have been recently published. This article reviews nucleic acid-based hybridization as an assay to detect hemoparasite infections of economic relevance in veterinary medicine. By using recombinant DNA techniques, selected clones containing inserts of Anaplasma, Babesia, Cowdria or Theileria genomic DNA sequences have been obtained, and they are now available to be utilized as specific, highly sensitive DNA or RNA probes to detect the presence of the hemoparasite DNA in an infected animal. Either in an isotopic or non-isotopic detection system, probes have allowed scientists to test for--originally in samples collected from experimentally infected animals and later in samples collected in the field--the presence of hemoparasites during the prepatent, patent, convalescent, and chronic periods of the infection in the host. Nucleic acid probes have given researchers the opportunity to carry out genomic analysis of parasite DNA to differentiate hemoparasite species and to identify genetically distinct populations among and within isolates, strains and clonal populations. Prevalence of parasite infection in the tick vector can now be accomplished more specifically with the nucleic acid probes. Lately, with the advent of the polymerase chain reaction technique, small numbers of hemoparasites can be positively identified in the vertebrate host and tick vector. These techniques can be used to assess the veterinary epidemiological situation in a particular geographical region for the planning of control measures.

  6. Multicolour probes for sequence-specific DNA detection based on graphene oxide.

    PubMed

    Zhu, Qing; Xiang, Dongshan; Zhang, Cuiling; Ji, Xinghu; He, Zhike

    2013-09-21

    The bifunctionality of graphene oxide (GO) which can highly adsorb single-stranded DNA (ssDNA) and effectively quench the emission of organic dyes is reasonably utilized in a multiplexed DNA detection system, achieving sensitive and selective detection of HIV, VV and EV, respectively.

  7. Specific DNA duplex formation at an artificial lipid bilayer: towards a new DNA biosensor technology.

    PubMed

    Werz, Emma; Korneev, Sergei; Montilla-Martinez, Malayko; Wagner, Richard; Hemmler, Roland; Walter, Claudius; Eisfeld, Jörg; Gall, Karsten; Rosemeyer, Helmut

    2012-02-01

    A novel technique is described which comprises a base-specific DNA duplex formation at a lipid bilayer-H(2) O-phase boundary layer. Two different probes of oligonucleotides both carrying a double-tailed lipid at the 5'-terminus were incorporated into stable artificial lipid bilayers separating two compartments (cis/trans-channel) of an optically transparent microfluidic sample carrier with perfusion capabilities. Both the cis- and trans-channels are filled with saline buffer. Injection of a cyanine-5-labeled target DNA sequence, which is complementary to only one of the oligonucleotide probes, into the cis-channel, followed by a thorough perfusion, leads to an immobilization of the labeled complementary oligonucleotide on the membrane as detected by single-molecule fluorescence spectroscopy and microscopy. In the case of fluorescent but non-complementary DNA sequences, no immobilized fluorescent oligonucleotide duplex could be detected on the membrane. This clearly verifies a specific duplex formation at the membrane interface. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Detection of beer spoilage bacteria Pectinatus and Megasphaera with acridinium ester labelled DNA probes using a hybridisation protection assay.

    PubMed

    Paradh, A D; Hill, A E; Mitchell, W J

    2014-01-01

    DNA probes specific for rRNA of selected target species were utilised for the detection of beer spoilage bacteria of the genera Pectinatus and Megasphaera using a hybridisation protection assay (HPA). All the probes were modified during synthesis by addition of an amino linker arm at the 5' end or were internally modified by inserting an amine modified thymidine base. Synthesised probes then were labelled with acridinium ester (AE) and purified using reverse phase HPLC. The internally AE labelled probes were able to detect target RNA within the range of 0.016-0.0032pmol. All the designed probes showed high specificity towards target RNA and could detect bacterial contamination within the range of ca. 5×10(2)1×10(3) CFU using the HPA. The developed assay was also compatible with MRS, NBB and SMMP beer enrichment media, routinely used in brewing laboratories. © 2013 Elsevier B.V. All rights reserved.

  9. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  10. [Development of a universal primers PCR-coupled liquid bead array to detect biothreat bacteria].

    PubMed

    Wen, Hai-yan; Wang, Jing; Liu, Heng-chuan; Sun, Xiao-hong; Yang, Yu; Hu, Kong-xin; Shan, Lin-jun

    2009-10-01

    To develop a fast, high-throughput screening method with suspension array technique for simultaneous detection of biothreat bacteria. 16 S rDNA universal primers for Bacillus anthracis, Francisella tularensis, Yersinia pestis, Brucella spp.and Burkholderia pseudomallei were selected to amplify corresponding regions and the genus-specific or species-specific probes were designed. After amplification of chromosomal DNA by 16 S rDNA primers 341A and 519B, the PCR products were detected by suspension array technique. The sensitivity, specificity, reproducibility and detection power were also analyzed. After PCR amplification by 16 S rDNA primers and specific probe hybridization, the target microorganisms could be identified at genus level, cross reaction was recognized in the same genus. The detection sensitivity of the assay was 1.5 pg/microl (Burkholderia pseudomallei), 20 pg/microl (Brucella spp.), 7 pg/microl (Bacillus anthracis), 0.1 pg/microl (Francisella tularensis), and 1.1 pg/microl (Yersinia pestis), respectively. The coefficient of variation for 15 test of different probes was ranged from 5.18% to 17.88%, it showed good reproducibility. The assay could correctly identify Bacillus anthracis and Yersinia pestis strains in simulated white powder samples. The suspension array technique could be served as an opening screening method for biothreat bacteria rapid detection.

  11. Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence-specific DNA detection in blood serum.

    PubMed

    Cash, Kevin J; Heeger, Alan J; Plaxco, Kevin W; Xiao, Yi

    2009-01-15

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem's loop forms part of the second stem, is modified with a methylene blue redox tag at its 3' terminus and covalently attached to a gold electrode via the 5' terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density ( approximately 1.8 x 10(13) molecules/cm(2) apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3' stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3' loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum.

  12. Optimization of a Reusable, DNA Pseudoknot-Based Electrochemical Sensor for Sequence-Specific DNA Detection in Blood Serum

    PubMed Central

    Cash, Kevin J.; Heeger, Alan J.; Plaxco, Kevin W.; Xiao, Yi

    2010-01-01

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem’s loop forms part of the second stem, is modified with a methylene blue redox tag at its 3′ terminus and covalently attached to a gold electrode via the 5′ terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density (~1.8 × 1013 molecules/cm2 apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3′ stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3′ loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum. PMID:19093760

  13. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com; Academy of Scientific and Innovative Research

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to itsmore » complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.« less

  14. Species-Level Identification of Orthopoxviruses with an Oligonucleotide Microchip

    PubMed Central

    Lapa, Sergey; Mikheev, Maxim; Shchelkunov, Sergei; Mikhailovich, Vladimir; Sobolev, Alexander; Blinov, Vladimir; Babkin, Igor; Guskov, Alexander; Sokunova, Elena; Zasedatelev, Alexander; Sandakhchiev, Lev; Mirzabekov, Andrei

    2002-01-01

    A method for species-specific detection of orthopoxviruses pathogenic for humans and animals is described. The method is based on hybridization of a fluorescently labeled amplified DNA specimen with the oligonucleotide DNA probes immobilized on a microchip (MAGIChip). The probes identify species-specific sites within the crmB gene encoding the viral analogue of tumor necrosis factor receptor, one of the most important determinants of pathogenicity in this genus of viruses. The diagnostic procedure takes 6 h and does not require any sophisticated equipment (a portable fluorescence reader can be used). PMID:11880388

  15. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization.

    PubMed

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-12-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  16. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  17. ChIP-chip.

    PubMed

    Kim, Tae Hoon; Dekker, Job

    2018-05-01

    ChIP-chip can be used to analyze protein-DNA interactions in a region-wide and genome-wide manner. DNA microarrays contain PCR products or oligonucleotide probes that are designed to represent genomic sequences. Identification of genomic sites that interact with a specific protein is based on competitive hybridization of the ChIP-enriched DNA and the input DNA to DNA microarrays. The ChIP-chip protocol can be divided into two main sections: Amplification of ChIP DNA and hybridization of ChIP DNA to arrays. A large amount of DNA is required to hybridize to DNA arrays, and hybridization to a set of multiple commercial arrays that represent the entire human genome requires two rounds of PCR amplifications. The relative hybridization intensity of ChIP DNA and that of the input DNA is used to determine whether the probe sequence is a potential site of protein-DNA interaction. Resolution of actual genomic sites bound by the protein is dependent on the size of the chromatin and on the genomic distance between the probes on the array. As with expression profiling using gene chips, ChIP-chip experiments require multiple replicates for reliable statistical measure of protein-DNA interactions. © 2018 Cold Spring Harbor Laboratory Press.

  18. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.

    PubMed

    Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen

    2018-03-26

    A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene.

    PubMed Central

    Walker, M D; Park, C W; Rosen, A; Aronheim, A

    1990-01-01

    Cell specific expression of the insulin gene is achieved through transcriptional mechanisms operating on multiple DNA sequence elements located in the 5' flanking region of the gene. Of particular importance in the rat insulin I gene are two closely similar 9 bp sequences (IEB1 and IEB2): mutation of either of these leads to 5-10 fold reduction in transcriptional activity. We have screened an expression cDNA library derived from mouse pancreatic endocrine beta cells with a radioactive DNA probe containing multiple copies of the IEB1 sequence. A cDNA clone (A1) isolated by this procedure encodes a protein which shows efficient binding to the IEB1 probe, but much weaker binding to either an unrelated DNA probe or to a probe bearing a single base pair insertion within the recognition sequence. DNA sequence analysis indicates a protein belonging to the helix-loop-helix family of DNA-binding proteins. The ability of the protein encoded by clone A1 to recognize a number of wild type and mutant DNA sequences correlates closely with the ability of each sequence element to support transcription in vivo in the context of the insulin 5' flanking DNA. We conclude that the isolated cDNA may encode a transcription factor that participates in control of insulin gene expression. Images PMID:2181401

  20. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer

    NASA Astrophysics Data System (ADS)

    Wu, Chunsheng; Bronder, Thomas; Poghossian, Arshak; Werner, Carl Frederik; Schöning, Michael J.

    2015-03-01

    A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07225a

  1. Photonic Biosensor Assays to Detect and Distinguish Subspecies of Francisella tularensis

    PubMed Central

    Cooper, Kristie L.; Bandara, Aloka B.; Wang, Yunmiao; Wang, Anbo; Inzana, Thomas J.

    2011-01-01

    The application of photonic biosensor assays to diagnose the category-A select agent Francisella tularensis was investigated. Both interferometric and long period fiber grating sensing structures were successfully demonstrated; both these sensors are capable of detecting the optical changes induced by either immunological binding or DNA hybridization. Detection was made possible by the attachment of DNA probes or immunoglobulins (IgG) directly to the fiber surface via layer-by-layer electrostatic self-assembly. An optical fiber biosensor was tested using a standard transmission mode long period fiber grating of length 15 mm and period 260 μm, and coated with the IgG fraction of antiserum to F. tularensis. The IgG was deposited onto the optical fiber surface in a nanostructured film, and the resulting refractive index change was measured using spectroscopic ellipsometry. The presence of F. tularensis was detected from the decrease of peak wavelength caused by binding of specific antigen. Detection and differentiation of F. tularensis subspecies tularensis (type A strain TI0902) and subspecies holarctica (type B strain LVS) was further accomplished using a single-mode multi-cavity fiber Fabry-Perot interferometric sensor. These sensors were prepared by depositing seven polymer bilayers onto the fiber tip followed by attaching one of two DNA probes: (a) a 101-bp probe from the yhhW gene unique to type-A strains, or (b) a 117-bp probe of the lpnA gene, common to both type-A and type-B strains. The yhhW probe was reactive with the type-A, but not the type-B strain. Probe lpnA was reactive with both type-A and type-B strains. Nanogram quantities of the target DNA could be detected, highlighting the sensitivity of this method for DNA detection without the use of PCR. The DNA probe reacted with 100% homologous target DNA, but did not react with sequences containing 2-bp mismatches, indicating the high specificity of the assay. These assays will fill an important void that exists for rapid, culture-free, and field-compatible diagnosis of F. tularensis. PMID:22163782

  2. Polymerase chain reaction-hybridization method using urease gene sequences for high-throughput Ureaplasma urealyticum and Ureaplasma parvum detection and differentiation.

    PubMed

    Xu, Chen; Zhang, Nan; Huo, Qianyu; Chen, Minghui; Wang, Rengfeng; Liu, Zhili; Li, Xue; Liu, Yunde; Bao, Huijing

    2016-04-15

    In this article, we discuss the polymerase chain reaction (PCR)-hybridization assay that we developed for high-throughput simultaneous detection and differentiation of Ureaplasma urealyticum and Ureaplasma parvum using one set of primers and two specific DNA probes based on urease gene nucleotide sequence differences. First, U. urealyticum and U. parvum DNA samples were specifically amplified using one set of biotin-labeled primers. Furthermore, amine-modified DNA probes, which can specifically react with U. urealyticum or U. parvum DNA, were covalently immobilized to a DNA-BIND plate surface. The plate was then incubated with the PCR products to facilitate sequence-specific DNA binding. Horseradish peroxidase-streptavidin conjugation and a colorimetric assay were used. Based on the results, the PCR-hybridization assay we developed can specifically differentiate U. urealyticum and U. parvum with high sensitivity (95%) compared with cultivation (72.5%). Hence, this study demonstrates a new method for high-throughput simultaneous differentiation and detection of U. urealyticum and U. parvum with high sensitivity. Based on these observations, the PCR-hybridization assay developed in this study is ideal for detecting and discriminating U. urealyticum and U. parvum in clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus

    PubMed Central

    Sochorová, Jana; Coriton, Olivier; Kuderová, Alena; Lunerová, Jana; Chèvre, Anne-Marie; Kovařík, Aleš

    2017-01-01

    Background and aims Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. Methods We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. Key Results Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH (‘Darmor’, ‘Yudal’ and ‘Asparagus kale’) harboured the same number (12 per diploid set) of loci. In B. napus ‘Darmor’, the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus ‘Darmor’. In contrast, B. napus ‘Yudal’ showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus ‘Asparagus kale’ showed an intermediate pattern to ‘Darmor’ and ‘Yudal’. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar (‘Norin 9’) showed co-dominance. Conclusions The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates with the direction of expression dominance indicating that gene activity may be needed for interlocus gene conversion. PMID:27707747

  4. Use of DNA probes to study tetracycline resistance determinants in gram-negative bacteria from swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.Y.

    1989-01-01

    Specific {sup 32}P-labeled DNA probes were prepared and used to evaluate the distribution of tetracycline resistance determinants carried by gram-negative enteric bacteria isolated from pigs in 3 swine herds with different histories of antibiotic exposure. Plasmid DNA, ranging in size from 2.1 to 186 Kb, was observed in over 84% of 114 isolates studied. Two of 78 tetracycline resistant strains did not harbor plasmids. The DNA probes were isolated from plasmids pSL18, pRT29/Tn10, pBR322 and pSL106, respectively, and they represented class A, B, C and D tetracycline resistance determinants. Hybridization conditions using 0.5X SSPE at 65{degrees}C minimize cross-hybridization between themore » different class of tetracycline resistance genes. Cross-hybridization between class A and class C determinants could be distinguished by simultaneous comparison of the intensity of their hybridization signals. Plasmids from over 44% of the tetracycline resistant isolates did not hybridize to DNA probes for the determinants tested. Class B determinant occurred more frequently than class A or C. None of the isolates hybridized with the class D probe.« less

  5. Methylation-sensitive enrichment of minor DNA alleles using a double-strand DNA-specific nuclease.

    PubMed

    Liu, Yibin; Song, Chen; Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Makrigiorgos, G Mike

    2017-04-07

    Aberrant methylation changes, often present in a minor allelic fraction in clinical samples such as plasma-circulating DNA (cfDNA), are potentially powerful prognostic and predictive biomarkers in human disease including cancer. We report on a novel, highly-multiplexed approach to facilitate analysis of clinically useful methylation changes in minor DNA populations. Methylation Specific Nuclease-assisted Minor-allele Enrichment (MS-NaME) employs a double-strand-specific DNA nuclease (DSN) to remove excess DNA with normal methylation patterns. The technique utilizes oligonucleotide-probes that direct DSN activity to multiple targets in bisulfite-treated DNA, simultaneously. Oligonucleotide probes targeting unmethylated sequences generate local double stranded regions resulting to digestion of unmethylated targets, and leaving methylated targets intact; and vice versa. Subsequent amplification of the targeted regions results in enrichment of the targeted methylated or unmethylated minority-epigenetic-alleles. We validate MS-NaME by demonstrating enrichment of RARb2, ATM, MGMT and GSTP1 promoters in multiplexed MS-NaME reactions (177-plex) using dilutions of methylated/unmethylated DNA and in DNA from clinical lung cancer samples and matched normal tissue. MS-NaME is a highly scalable single-step approach performed at the genomic DNA level in solution that combines with most downstream detection technologies including Sanger sequencing, methylation-sensitive-high-resolution melting (MS-HRM) and methylation-specific-Taqman-based-digital-PCR (digital Methylight) to boost detection of low-level aberrant methylation-changes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Colorimetric Detection of Ehrlichia Canis via Nucleic Acid Hybridization in Gold Nano-Colloids

    PubMed Central

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-01-01

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease. PMID:25111239

  7. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    PubMed

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  8. DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection.

    PubMed

    Qi, Lin; Xiao, Mingshu; Wang, Xiwei; Wang, Cheng; Wang, Lihua; Song, Shiping; Qu, Xiangmeng; Li, Li; Shi, Jiye; Pei, Hao

    2017-09-19

    The development of highly sensitive and selective methods for the detection of microRNA (miRNA) has attracted tremendous attention because of its importance in fundamental biological studies and diagnostic applications. In this work, we develop DNA-encoded Raman-active anisotropic nanoparticles modified origami paper analytical devices (oPADs) for rapid, highly sensitive, and specific miRNA detection. The Raman-active anisotropic nanoparticles were prepared using 10-mer oligo-A, -T, -C, and -G to mediate the growth of Ag cubic seeds into Ag nanoparticles (AgNPs) with different morphologies. The resulting AgNPs were further encoded with DNA probes to serve as effective surface-enhanced Raman scattering (SERS) probes. The analytical device was then fabricated on a single piece of SERS probes loaded paper-based substrate and assembled based on the principles of origami. The addition of the target analyte amplifies the Raman signals on DNA-encoded AgNPs through a target-dependent, sequence specific DNA hybridization assembly. This simple and low-cost analytical device is generic and applicable to a variety of miRNAs, allowing detection sensitivity down to 1 pM and assay time within 15 min, and therefore holds promising applications in point-of-care diagnostics.

  9. Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms.

    PubMed

    Dinon, Andréia Z; Prins, Theo W; van Dijk, Jeroen P; Arisi, Ana Carolina M; Scholtens, Ingrid M J; Kok, Esther J

    2011-05-01

    Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples.

  10. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform.

    PubMed

    Zhao, Qian; Piao, Jiafang; Peng, Weipan; Wang, Yang; Zhang, Bo; Gong, Xiaoqun; Chang, Jin

    2018-01-31

    Identifying the microRNA (miRNA) expression level can provide critical information for early diagnosis of cancers or monitoring the cancer therapeutic efficacy. This paper focused on a kind of gold-nanoparticle-coated polystyrene microbeads (PS@Au microspheres)-based DNA probe as miRNA capture and duplex-specific nuclease (DSN) signal amplification platform based on an RGB value readout for detection of miRNAs. In virtue of the outstanding selectivity and simple experimental operation, 5'-fluorochrome-labeled molecular beacons (MBs) were immobilized on PS@Au microspheres via their 3'-thiol, in the wake of the fluorescence quenching by nanoparticle surface energy transfer (NSET). Target miRNAs were captured by the PS@Au microspheres-based DNA probe through DNA/RNA hybridization. DSN enzyme subsequently selectively cleaved the DNA to recycle the target miRNA and release of fluorophores, thereby triggering the signal amplification with more free fluorophores. The RGB value measurement enabled a detection limit of 50 fM, almost 4 orders of magnitude lower than PS@Au microspheres-based DNA probe detection without DSN. Meanwhile, by different encoding of dyes, miRNA-21 and miRNA-10b were simultaneously detected in the same sample. Considering the ability for quantitation, high sensitivity, and convenient merits, the PS@Au microspheres-based DNA probe and DSN signal amplification platform supplied valuable information for early diagnosis of cancers.

  11. Use of the polymerase chain reaction to directly detect malaria parasites in blood samples from the Venezuelan Amazon.

    PubMed

    Laserson, K F; Petralanda, I; Hamlin, D M; Almera, R; Fuentes, M; Carrasquel, A; Barker, R H

    1994-02-01

    We have examined the reproducibility, sensitivity, and specificity of detecting Plasmodium falciparum using the polymerase chain reaction (PCR) and the species-specific probe pPF14 under field conditions in the Venezuelan Amazon. Up to eight samples were field collected from each of 48 consenting Amerindians presenting with symptoms of malaria. Sample processing and analysis was performed at the Centro Amazonico para la Investigacion y Control de Enfermedades Tropicales Simon Bolivar. A total of 229 samples from 48 patients were analyzed by PCR methods using four different P. falciparum-specific probes. One P. vivax-specific probe and by conventional microscopy. Samples in which results from PCR and microscopy differed were reanalyzed at a higher sensitivity by microscopy. Results suggest that microscopy-negative, PCR-positive samples are true positives, and that microscopy-positive and PCR-negative samples are true negatives. The sensitivity of the DNA probe/PCR method was 78% and its specificity was 97%. The positive predictive value of the PCR method was 88%, and the negative predictive value was 95%. Through the analysis of multiple blood samples from each individual, the DNA probe/PCR methodology was found to have an inherent reproducibility that was highly statistically significant.

  12. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection.

    PubMed

    Mannelli, Ilaria; Minunni, Maria; Tombelli, Sara; Mascini, Marco

    2003-03-01

    A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.

  13. A specific DNA probe which identifies Babesia bovis in whole blood.

    PubMed

    Petchpoo, W; Tan-ariya, P; Boonsaeng, V; Brockelman, C R; Wilairat, P; Panyim, S

    1992-05-01

    A genomic library of Babesia bovis DNA from the Mexican strain M was constructed in plasmid pUN121 and cloned in Escherichia coli. Several recombinants which hybridized strongly to radioactively labeled B. bovis genomic DNA in an in situ screening were selected and further analyzed for those which specifically hybridized to B. bovis DNA. It was found that pMU-B1 had the highest sensitivity, detecting 25 pg of purified B. bovis DNA, and 300 parasites in 10 microliters of whole infected blood, or 0.00025% parasitemia. pMU-B1 contained a 6.0 kb B. bovis DNA insert which did not cross-hybridize to Babesia bigemina, Trypanosoma evansi, Plasmodium falciparum, Anaplasma marginale, Boophilus microplus and cow DNA. In the Southern blot analysis of genomic DNA, pMU-B1 could differentiate between two B. bovis geographic isolates, Mexican strain M and Thai isolate TS4. Thus, the pMU-B1 probe will be useful in the diagnosis of Babesia infection in cattle and ticks, and in the differentiation of B. bovis strains.

  14. Separation of 1-23-kb complementary DNA strands by urea-agarose gel electrophoresis.

    PubMed

    Hegedüs, Eva; Kókai, Endre; Kotlyar, Alexander; Dombrádi, Viktor; Szabó, Gábor

    2009-09-01

    Double-stranded (ds), as well as denatured, single-stranded (ss) DNA samples can be analyzed on urea-agarose gels. Here we report that after denaturation by heat in the presence of 8 M urea, the two strands of the same ds DNA fragment of approximately 1-20-kb size migrate differently in 1 M urea containing agarose gels. The two strands are readily distinguished on Southern blots by ss-specific probes. The different migration of the two strands could be attributed to their different, base composition-dependent conformation impinging on the electrophoretic mobility of the ss molecules. This phenomenon can be exploited for the efficient preparation of strand-specific probes and for the separation of the complementary DNA strands for subsequent analysis, offering a new tool for various cell biological research areas.

  15. Specific Detection of Clavibacter michiganensis subsp. sepedonicus by Amplification of Three Unique DNA Sequences Isolated by Subtraction Hybridization.

    PubMed

    Mills, D; Russell, B W; Hanus, J W

    1997-08-01

    ABSTRACT Three single-copy, unique DNA fragments, designated Cms50, Cms72, and Cms85, were isolated from strain CS3 of Clavibacter michiganensis subsp. sepedonicus by subtraction hybridization using driver DNA from C. michiganensis subsp. insidiosus, C. michiganensis subsp. michiganensis, and Rhodococcus facians. Radio-labeled probes made of these fragments and used in Southern blot analysis revealed each to be absolutely specific to all North American C. michiganensis subsp. sepedonicus strains tested, including plasmidless and nonmucoid strains. The probes have no homology with genomic DNA from related C. michiganensis subspecies insidiosus, michiganensis, and tessellarius, nor with DNA from 11 additional bacterial species and three unidentified strains, some of which have been previously reported to display cross-reactivity with C. michiganensis subsp. sepedonicus-specific antisera. The three fragments shared no homology, and they appeared to be separated from each other by at least 20 kbp in the CS3 genome. Internal primer sets permitted amplification of each fragment by the polymerase chain reaction (PCR) only from C. michiganensis subsp. sepedonicus DNA. In a PCR-based sensitivity assay using a primer set that amplifies Cms85, the lowest level of detection of C. michiganensis subsp. sepedonicus was 100 CFU per milliliter when cells were added to potato core fluid. Erroneous results that may arise from PCR artifacts and mutational events are, therefore, minimized by the redundancy of the primer sets, and the products should be verifiable with unique capture probes in sequence-based detection systems.

  16. High sensitive and direct fluorescence detection of single viral DNA sequences by integration of double strand probes onto microgels particles.

    PubMed

    Aliberti, A; Cusano, A M; Battista, E; Causa, F; Netti, P A

    2016-02-21

    A novel class of probes for fluorescence detection was developed and combined to microgel particles for a high sensitive fluorescence detection of nucleic acids. A double strand probe with an optimized fluorescent-quencher couple was designed for the detection of different lengths of nucleic acids (39 nt and 100 nt). Such probe proved efficient in target detection in different contests and specific even in presence of serum proteins. The conjugation of double strand probes onto polymeric microgels allows for a sensitive detection of DNA sequences from HIV, HCV and SARS corona viruses with a LOD of 1.4 fM, 3.7 fM and 1.4 fM, respectively, and with a dynamic range of 10(-9)-10(-15) M. Such combination enhances the sensitivity of the detection of almost five orders of magnitude when compared to the only probe. The proposed platform based on the integration of innovative double strand probe into microgels particles represents an attractive alternative to conventional sensitive DNA detection technologies that rely on amplifications methods.

  17. Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus

    NASA Astrophysics Data System (ADS)

    Honorato Castro, Ana C.; França, Erick G.; de Paula, Lucas F.; Soares, Marcia M. C. N.; Goulart, Luiz R.; Madurro, João M.; Brito-Madurro, Ana G.

    2014-09-01

    An electrochemical genosensor was constructed for detection of specific DNA sequence of the hepatitis B virus, based on graphite electrodes modified with poly(4-aminophenol) and incorporating a specific oligonucleotide probe. The modified electrode containing the probe was evaluated by differential pulse voltammetry, before and after incubation with the complementary oligonucleotide target. Detection was performed by monitoring oxidizable DNA bases (direct detection) or using ethidium bromide as indicator of the hybridization process (indirect detection). The device showed a detection limit for the oligonucleotide target of 2.61 nmol L-1. Indirect detection using ethidium bromide was promising in discriminating mismatches, which is a very desirable attribute for detection of disease-related point mutations. In addition, it was possible to observe differences between hybridized and non-hybridized surfaces by atomic force microscopy.

  18. Characterization of rpoB mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from Kuwait and Dubai.

    PubMed

    Ahmad, Suhail; Mokaddas, Eiman; Fares, Esther

    2002-11-01

    Mutations conferring resistance to rifampin in rifampin-resistant clinical Mycobacterium tuberculosis isolates occur mostly in the 81 bp rifampin-resistance-determining region (RRDR) of the rpoB gene. In this study, 29 rifampin-resistant and 12 -susceptible clinical M. tuberculosis isolates were tested for characterization of mutations in the rpoB gene by line probe (INNO-LiPA Rif. TB) assay and the results were confirmed and extended by DNA sequencing of the PCR amplified target DNA. The line probe assay identified all 12 susceptible strains as rifampin-sensitive and the DNA sequence of RRDR in the amplified rpoB gene from two isolates matched perfectly with the wild-type sequence. The line probe assay identified 28 resistant isolates as rifampin-resistant with specific detection of mutation in 22 isolates including one isolate that exhibited hetro-resistance containing both the wild-type pattern as well as a specific mutation within RRDR while one of the rifampin-resistant strain was identified as rifampin-susceptible. DNA sequencing confirmed these results and, in addition, led to the specific detection of mutations in 5 rifampin-resistant isolates in which specific base changes within RRDR could not be determined by the line probe assay. These analyses identified 8 different mutations within RRDR of the rpoB gene including one novel mutation (S522W) that has not been reported so far. The genotyping performed on the isolates carrying similar mutations showed that majority of these isolates were unique as they exhibited varying DNA banding patterns. Correlating the ethnic origin of the infected TB patients with the occurrence of specific mutations at three main codon positions (516, 526 and 531) in the rpoB gene showed that most patients (11 of 15) from South Asian region contained mutations at codon 526 while majority of isolates from patients (6 of 11) of Middle Eastern origin contained mutations at codon 531.

  19. Identification of salivary Lactobacillus rhamnosus species by DNA profiling and a specific probe.

    PubMed

    Richard, B; Groisillier, A; Badet, C; Dorignac, G; Lonvaud-Funel, A

    2001-03-01

    The Lactobacillus genus has been shown to be associated with the dental carious process, but little is known about the species related to the decay, although Lactobacillus rhamnosus is suspected to be the most implicated species. Conventional identification methods based on biochemical criteria lead to ambiguous results, since the Lactobacillus species found in saliva are phenotypically close. To clarify the role of this genus in the evolution of carious disease, this work aimed to find a rapid and reliable method for identifying the L. rhamnosus species. Methods based on hybridization with DNA probes and DNA amplification by PCR were used. The dominant salivary Lactobacillus species (reference strains from the ATCC) were selected for this purpose as well as some wild strains isolated from children's saliva. DNA profiling using semirandom polymorphic DNA amplification (semi-RAPD) generated specific patterns for L. rhamnosus ATCC 7469. The profiles of all L. rhamnosus strains tested were similar and could be grouped; these strains shared four common fragments. Wild strains first identified with classic methods shared common patterns with the L. rhamnosus species and could be reclassified. One fragment of the profile was purified, cloned, used as a probe and found to be specific to the L. rhamnosus species. These results may help to localize this species within its ecological niche and to elucidate the progression of the carious process.

  20. Y chromosome specific nucleic acid probe and method for determining the Y chromosome in situ

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich

    1998-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  1. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich

    1999-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  2. Y chromosome specific nucleic acid probe and method for determining the Y chromosome in situ

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich

    2001-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  3. Y chromosome specific nucleic acid probe and method for determining the Y chromosome in situ

    DOEpatents

    Gray, J.W.; Weier, H.U.

    1998-11-24

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences. 9 figs.

  4. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    DOEpatents

    Gray, J.W.; Weier, H.U.

    1999-03-30

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences. 9 figs.

  5. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  6. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.

  7. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    PubMed

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  8. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays

    PubMed Central

    Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J. L.; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download. PMID:26863543

  9. RNase H-assisted RNA-primed rolling circle amplification for targeted RNA sequence detection.

    PubMed

    Takahashi, Hirokazu; Ohkawachi, Masahiko; Horio, Kyohei; Kobori, Toshiro; Aki, Tsunehiro; Matsumura, Yukihiko; Nakashimada, Yutaka; Okamura, Yoshiko

    2018-05-17

    RNA-primed rolling circle amplification (RPRCA) is a useful laboratory method for RNA detection; however, the detection of RNA is limited by the lack of information on 3'-terminal sequences. We uncovered that conventional RPRCA using pre-circularized probes could potentially detect the internal sequence of target RNA molecules in combination with RNase H. However, the specificity for mRNA detection was low, presumably due to non-specific hybridization of non-target RNA with the circular probe. To overcome this technical problem, we developed a method for detecting a sequence of interest in target RNA molecules via RNase H-assisted RPRCA using padlocked probes. When padlock probes are hybridized to the target RNA molecule, they are converted to the circular form by SplintR ligase. Subsequently, RNase H creates nick sites only in the hybridized RNA sequence, and single-stranded DNA is finally synthesized from the nick site by phi29 DNA polymerase. This method could specifically detect at least 10 fmol of the target RNA molecule without reverse transcription. Moreover, this method detected GFP mRNA present in 10 ng of total RNA isolated from Escherichia coli without background DNA amplification. Therefore, this method can potentially detect almost all types of RNA molecules without reverse transcription and reveal full-length sequence information.

  10. Measurement of locus copy number by hybridisation with amplifiable probes

    PubMed Central

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth

    2000-01-01

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  11. Measurement of locus copy number by hybridisation with amplifiable probes.

    PubMed

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G

    2000-01-15

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  12. [A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].

    PubMed

    Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng

    2013-10-18

    To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.

  13. Highly specific detection of genetic modification events using an enzyme-linked probe hybridization chip.

    PubMed

    Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L

    2015-08-10

    The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.

  14. A Simple Method for Amplifying RNA Targets (SMART)

    PubMed Central

    McCalla, Stephanie E.; Ong, Carmichael; Sarma, Aartik; Opal, Steven M.; Artenstein, Andrew W.; Tripathi, Anubhav

    2012-01-01

    We present a novel and simple method for amplifying RNA targets (named by its acronym, SMART), and for detection, using engineered amplification probes that overcome existing limitations of current RNA-based technologies. This system amplifies and detects optimal engineered ssDNA probes that hybridize to target RNA. The amplifiable probe-target RNA complex is captured on magnetic beads using a sequence-specific capture probe and is separated from unbound probe using a novel microfluidic technique. Hybridization sequences are not constrained as they are in conventional target-amplification reactions such as nucleic acid sequence amplification (NASBA). Our engineered ssDNA probe was amplified both off-chip and in a microchip reservoir at the end of the separation microchannel using isothermal NASBA. Optimal solution conditions for ssDNA amplification were investigated. Although KCl and MgCl2 are typically found in NASBA reactions, replacing 70 mmol/L of the 82 mmol/L total chloride ions with acetate resulted in optimal reaction conditions, particularly for low but clinically relevant probe concentrations (≤100 fmol/L). With the optimal probe design and solution conditions, we also successfully removed the initial heating step of NASBA, thus achieving a true isothermal reaction. The SMART assay using a synthetic model influenza DNA target sequence served as a fundamental demonstration of the efficacy of the capture and microfluidic separation system, thus bridging our system to a clinically relevant detection problem. PMID:22691910

  15. Superiorities of time-correlated single-photon counting against standard fluorimetry in exploiting the potential of fluorochromized oligonucleotide probes for biomedical investigation

    NASA Astrophysics Data System (ADS)

    Lamperti, Marco; Nardo, Luca; Bondani, Maria

    2015-05-01

    Site-specific fluorescence-resonance-energy-transfer donor-acceptor dual-labelled oligonucleotide probes are widely used in state-of-art biotechnological applications. Such applications include their usage as primers in polymerase chain reaction. However, the steady-state fluorescence intensity signal emitted by these molecular tools strongly depends from the specificities of the probe conformation. For this reason, the information which can be reliably inferred by steady-state fluorimetry performed on such samples is forcedly confined to a semi-qualitative level. Namely, fluorescent emission is frequently used as ON/OFF indicator of the probe hybridization state, i.e. detection of fluorescence signals indicates either hybridization to or detachment from the template DNA of the probe. Nonetheless, a fully quantitative analysis of their fluorescence emission properties would disclose other exciting applications of dual-labelled probes in biosensing. Here we show how time-correlated single-photon counting can be applied to get rid of the technical limitations and interpretational ambiguities plaguing the intensity analysis, and to derive information on the template DNA reaching single-base.

  16. Development of Fluorescent Protein Probes Specific for Parallel DNA and RNA G-Quadruplexes.

    PubMed

    Dang, Dung Thanh; Phan, Anh Tuân

    2016-01-01

    We have developed fluorescent protein probes specific for parallel G-quadruplexes by attaching cyan fluorescent protein to the G-quadruplex-binding motif of the RNA helicase RHAU. Fluorescent probes containing RHAU peptide fragments of different lengths were constructed, and their binding to G-quadruplexes was characterized. The selective recognition and discrimination of G-quadruplex topologies by the fluorescent protein probes was easily detected by the naked eye or by conventional gel imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Use of synthetic oligonucleotide DNA probes for the identification of Bacteroides gingivalis.

    PubMed Central

    Moncla, B J; Braham, P; Dix, K; Watanabe, S; Schwartz, D

    1990-01-01

    Six different oligonucleotide probes complementary to the hypervariable regions of 16S rRNA of Bacteroides gingivalis were tested for specificity and sensitivity against 77 field strains of B. gingivalis and 105 strains of 12 other Bacteroides species. The data demonstrated that these probes were very specific (range, 0.85 to 1.00) and sensitive (1.00). Some limited cross-reactions with other Bacteroides species were observed. Four of these probes should be useful for rapid detection and identification of B. gingivalis. Images PMID:1690217

  18. [REAL TIME POLYMERASE CHAIN REACTION IN TULAREMIA LABORATORY DIAGNOSTICS].

    PubMed

    Kormilitsyna, M I; Mescheryakova, I S; Mikhailova, T V; Dobrovolsky, A A

    2015-01-01

    Enhancement of tularemia laboratory diagnostics by F. tularensis DNA determination in blood sera of patients using real time polymerase chain reaction (RT-PCR). 39 blood sera of patients obtained during transmissive epidemic outbreak of tularemia in Khanty-Mansiysk in 2013 were studied in agglutination reaction, passive hemagglutination, RT-PCR. Specific primers and fluorescent probes were used: ISFTu2F/R+ISFTu2P, Tu14GF/R+tul4-PR2. Advantages of using RT-PCR for early diagnostics of tularemia, when specific antibodies are not detected using traditional immunologic methods, were established. Use of a combination of primers and ISFTu2F/R+ISFTu2P probe allowed to detect F. tularensis DNA in 100% of sera, whereas Tul4G F/R+tul4-PR2 combination--92% of sera. The data were obtained when DNA was isolated from sera using "Proba Rapid" express method. Clinical-epidemiologic diagnosis oftularemia was confirmed by both immune-serologic and RT-PCR methods when sera were studied 3-4 weeks after the onset of the disease. RT-PCR with ISFTu2F/R primers and fluorescent probe ISFTu2P, having high sensitivity and specificity, allows to determine F. tularensis DNA in blood sera of patients at both the early stage and 3-4 weeks after the onset of the disease.

  19. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm

    PubMed Central

    Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-01-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443

  20. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex

    NASA Astrophysics Data System (ADS)

    Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum

    2018-04-01

    ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.

  1. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme.

    PubMed

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-15

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50ngmL -1 with the limit detection of 9.899ngmL -1 . Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 10 3 to 10 8 CFUmL -1 in real samples with a detection limit of 320CFUmL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effect of human papilloma virus expression on clinical course of laryngeal papilloma.

    PubMed

    Kim, Kwang Moon; Cho, Nam Hoon; Choi, Hong Shik; Kim, Young Ho; Byeon, Hyung Kwon; Min, Hyun Jin; Kim, Se-Heon

    2008-10-01

    Our observations suggest that human papilloma virus (HPV) 6/11 is the main causative agent of laryngeal papilloma and that detection of active HPV DNA expression may be helpful in identifying patients with aggressive recurrent laryngeal papilloma. HPV is assumed to be the main causative agent of this disease. We investigated the expression of the entire genotype of HPV in cases of laryngeal papilloma and correlated their expression with the clinical course of the disease. Seventy cases of laryngeal papilloma were evaluated for the presence of the HPV genome by in situ hybridization (ISH) using wide-spectrum HPV DNA probe. Specific types of HPV infection were determined by DNA ISH using type-specific HPV DNA probes (HPV 6, 11, 16, 18, 31, 33). Separate analyses were conducted comparing viral types, frequency of recurrences and duration of disease-free periods. We detected HPV DNA in 40 of the 70 laryngeal papilloma cases (57%). In particular, HPV DNA was detected in 75% of the juvenile types. There were significant associations between HPV and laryngeal papilloma (p<0.01). Among the HPV-positive cases, major specific types were HPV 6/11 (97%). Significant associations were also noted between viral expression and clinical course.

  3. Detection and differentiation of coxiella burnetii in biological fluids

    DOEpatents

    Frazier, Marvin E.; Mallavia, Louis P.; Samuel, James E.; Baca, Oswald G.

    1990-01-01

    Methods for detecting the presence of Coxiella burenetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.

  4. Detection and differentiation of coxiella burnetii in biological fluids

    DOEpatents

    Frazier, Marvin E.; Mallavia, Louis P.; Baca, Oswald G.; Samuel, James E.

    1989-01-01

    Methods for detecting the presence of Coxiella burnetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.

  5. Development of a multiplex Q-PCR to detect Trichoderma harzianum Rifai strain T22 in plant roots.

    PubMed

    Horn, Ivo R; van Rijn, Menno; Zwetsloot, Tom J J; Basmagi, Said; Dirks-Mulder, Anita; van Leeuwen, Willem B; Ravensberg, Willem J; Gravendeel, Barbara

    2016-02-01

    The fungal species Trichoderma harzianum is widely used as a biological agent in crop protection. To verify the continued presence of this fungus on plant roots manually inoculated with T. harzianum strain T22, a Q-PCR was designed using specific probes for this particular strain. To develop these molecular diagnostic tools, genome mining was first carried out to retrieve putative new regions by which different strains of T. harzianum could be distinguished. Subsequently, Sanger sequencing of the L-aminoacid oxidase gene (aox1) in T. harzianum was applied to determine the mutations differing between various strains isolated from the Trichoderma collection of Koppert Biological Systems. Based on the sequence information obtained, a set of hydrolysis probes was subsequently developed which discriminated T. harzianum T22 strains varying in only a single nucleotide. Probes designed for two strains uniquely recognized the respective strains in Q-PCR with a detection limit of 12,5ng DNA. Titration assays in which T. harzianum DNA from distinct strains was varied further underscored the specificity of the probes. Lastly, fungal DNA extracted from roots of greenhouse cultured tomato plants was analyzed using the probe-based assay. DNA from T. harzianum strain T22 could readily be identified on roots of greenhouse reared tomato plants inoculated with varying concentrations up to one week after treatment with a detection limit of 3e6 colony forming units of T. harzianum T22. We conclude that the Q-PCR method is a reliable and robust method for assessing the presence and quantity of T. harzianum strain T22 in manually inoculated plant material. Our method provides scope for the development of DNA based strain specific identification of additional strains of Trichoderma and other fungal biological control agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Evaluation of two molecular techniques for rapid detection of the main dermatophytic agents of tinea capitis.

    PubMed

    Deng, S; Zhou, Z; de Hoog, G S; Wang, X; Abliz, P; Sun, J; Najafzadeh, M J; Pan, W; Lei, W; Zhu, S; Hasimu, H; Zhang, P; Guo, Y; Deng, D; Liao, W

    2015-12-01

    Tinea capitis is very common in Western China, with the most widespread aetiological agent being Trichophyton violaceum, while Microsporum canis is prevalent in the remainder of China. Conventional diagnostics and internal transcribed spacer (ITS) sequencing analyses have proven relatively limited due to the close phylogenetic relationship of anthropophilic dermatophytes. Therefore, alternative molecular tools with sufficient specificity, reproducibility and sensitivity are necessary. To evaluate two molecular techniques [multiplex ligation-dependent probe amplification (MLPA) and rolling circle amplification (RCA)] for rapid detection of the aetiological agents of tinea capitis, T. violaceum and M. canis. Probes of RCA and MLPA were designed with target sequences in the rDNA ITS gene region. Strains tested consist of 31 T. violaceum, 22 M. canis and 24 reference strains of species that are taxonomically close to the target species. The specificity and reproducibility of RCA and MLPA in detection of T. violaceum and M. canis were both 100% in both species. Sensitivity testing showed that RCA was positive at concentrations down to 1·68 × 10(6) copies of DNA in the TvioRCA probe, and 2·7 × 10(8) copies of DNA in McRCA. MLPA yielded positive results at concentrations of DNA down to 1·68 × 10(1) copies in the TvioMLPA probe and 2·7 × 10(2) in McMLPA. The two techniques were sufficiently specific and sensitive for discriminating the target DNA of T. violaceum and M. canis from that of closely related dermatophytes. RCA and MLPA are advantageous in their reliability and ease of operation compared with standard polymerase chain reaction and conventional methods. © 2015 British Association of Dermatologists.

  7. Direct Sequence Detection of Structured H5 Influenza Viral RNA

    PubMed Central

    Kerby, Matthew B.; Freeman, Sarah; Prachanronarong, Kristina; Artenstein, Andrew W.; Opal, Steven M.; Tripathi, Anubhav

    2008-01-01

    We describe the development of sequence-specific molecular beacons (dual-labeled DNA probes) for identification of the H5 influenza subtype, cleavage motif, and receptor specificity when hybridized directly with in vitro transcribed viral RNA (vRNA). The cloned hemagglutinin segment from a highly pathogenic H5N1 strain, A/Hanoi/30408/2005(H5N1), isolated from humans was used as template for in vitro transcription of sense-strand vRNA. The hybridization behavior of vRNA and a conserved subtype probe was characterized experimentally by varying conditions of time, temperature, and Mg2+ to optimize detection. Comparison of the hybridization rates of probe to DNA and RNA targets indicates that conformational switching of influenza RNA structure is a rate-limiting step and that the secondary structure of vRNA dominates the binding kinetics. The sensitivity and specificity of probe recognition of other H5 strains was calculated from sequence matches to the National Center for Biotechnology Information influenza database. The hybridization specificity of the subtype probes was experimentally verified with point mutations within the probe loop at five locations corresponding to the other human H5 strains. The abundance frequencies of the hemagglutinin cleavage motif and sialic acid recognition sequences were experimentally tested for H5 in all host viral species. Although the detection assay must be coupled with isothermal amplification on the chip, the new probes form the basis of a portable point-of-care diagnostic device for influenza subtyping. PMID:18403607

  8. Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence.

    PubMed

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2017-06-15

    Bio-barcode DNA based on gold nanoparticle (bDNA-GNPs) as a new generation of biosensor based detection tools, holds promise for biological science studies. They are of enormous importance in the emergence of rapid and sensitive procedures for detecting toxins of microorganisms. Exotoxin A (ETA) is the most toxic virulence factor of Pseudomonas aeruginosa. ETA has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. In the present study, we developed a fluorescence bio-barcode technology to trace P. aeruginosa ETA. The GNPs were coated with the first target-specific DNA probe 1 (1pDNA) and bio-barcode DNA, which acted as a signal reporter. The magnetic nanoparticles (MNPs) were coated with the second target-specific DNA probe 2 (2pDNA) that was able to recognize the other end of the target DNA. After binding the nanoparticles with the target DNA, the following sandwich structure was formed: MNP 2pDNA/tDNA/1pDNA-GNP-bDNA. After isolating the sandwiches by a magnetic field, the DNAs of the probes which have been hybridized to their complementary DNA, GNPs and MNPs, via the hydrogen, electrostatic and covalently bonds, were released from the sandwiches after dissolving in dithiothreitol solution (DTT 0.8M). This bio-barcode DNA with known DNA sequence was then detected by fluorescence spectrophotometry. The findings showed that the new method has the advantages of fast, high sensitivity (the detection limit was 1.2ng/ml), good selectivity, and wide linear range of 5-200ng/ml. The regression analysis also showed that there was a good linear relationship (∆F=0.57 [target DNA]+21.31, R 2 =0.9984) between the fluorescent intensity and the target DNA concentration in the samples. Copyright © 2016. Published by Elsevier B.V.

  9. Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA

    PubMed Central

    Woehrstein, Johannes B.; Strauss, Maximilian T.; Ong, Luvena L.; Wei, Bryan; Zhang, David Y.; Jungmann, Ralf; Yin, Peng

    2017-01-01

    Fluorescence microscopy allows specific target detection down to the level of single molecules and has become an enabling tool in biological research. To transduce the biological information to an imageable signal, we have developed a variety of fluorescent probes, such as organic dyes or fluorescent proteins with different colors. Despite their success, a limitation on constructing small fluorescent probes is the lack of a general framework to achieve precise and programmable control of critical optical properties, such as color and brightness. To address this challenge, we introduce metafluorophores, which are constructed as DNA nanostructure–based fluorescent probes with digitally tunable optical properties. Each metafluorophore is composed of multiple organic fluorophores, organized in a spatially controlled fashion in a compact sub–100-nm architecture using a DNA nanostructure scaffold. Using DNA origami with a size of 90 × 60 nm2, substantially smaller than the optical diffraction limit, we constructed small fluorescent probes with digitally tunable brightness, color, and photostability and demonstrated a palette of 124 virtual colors. Using these probes as fluorescent barcodes, we implemented an assay for multiplexed quantification of nucleic acids. Additionally, we demonstrated the triggered in situ self-assembly of fluorescent DNA nanostructures with prescribed brightness upon initial hybridization to a nucleic acid target. PMID:28691083

  10. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    PubMed

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Improving qPCR methodology for detection of foaming bacteria by analysis of broad-spectrum primers and a highly specific probe for quantification of Nocardia spp. in activated sludge.

    PubMed

    Asvapathanagul, P; Olson, B H

    2017-01-01

    To develop qPCR broad-spectrum primers combined with a Nocardia genus-specific probe for the identification of a broad spectrum of Nocardia spp. and to analyse the effects of using this developed primer and probe set on the ability to quantify Nocardia spp. in mixed DNA. The consequences of using a degenerative primer set and species-specific probe for the genus Nocardia on qPCR assays were examined using DNA extracts of pure cultures and activated sludge. The mixed DNA extracts where the target organism Nocardia flavorosea concentration ranged from 5 × 10 2 to 5 × 10 6 copies per reaction, while the background organism's DNA (Mycobacterium bovis) concentration was held at 5 × 10 6 copies per reaction, only produced comparable cycle threshold florescence levels when N. flavorosea concentration was greater than or equal to the background organism concentration. When concentrations of N. flavorosea were lowered in increments of 1 log, while holding M. bovis concentrations constant at 5 × 10 6 copies per reaction, all assays demonstrated delayed cycle threshold values with a maximum 34·6-fold decrease in cycle threshold at a ratio of 10 6 M. bovis: 10 2 N. flavorosea copies per reaction. The data presented in this study indicated that increasing the ability of a primer set to capture a broad group of organisms can affect the accuracy of quantification even when a highly specific probe is used. This study examined several applications of molecular tools in complex communities such as evaluating the effect of mispriming vs interference. It also elucidates the importance of understanding the community genetic make-up on primer design. Degenerative primers are very useful in amplifying bacterial DNA across genera, but reduce the efficiency of qPCR reactions. Therefore, standards that address closely related background species must be used to obtain accurate qPCR results. © 2016 The Society for Applied Microbiology.

  12. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    PubMed Central

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-01-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673

  13. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification.

    PubMed

    Cheng, Wei; Zhang, Wei; Yan, Yurong; Shen, Bo; Zhu, Dan; Lei, Pinhua; Ding, Shijia

    2014-12-15

    A novel electrochemical biosensing strategy was developed for ultrasensitive and specific detection of target DNA using a cascade signal amplification based on molecular beacon (MB) mediated circular strand displacement (CSD), rolling circle amplification (RCA), biotin-strepavidin system, and enzymatic amplification. The target DNA hybridized with the loop portion of MB probe immobilized on the gold electrode and triggered the CSD, leading to multiple biotin-tagged DNA duplex. Furthermore, via biotin-streptavidin interaction, the RCA was implemented, producing long massive tandem-repeat DNA sequences for binding numerous biotinylated detection probes. This enabled an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor showed very high sensitivity and selectivity with a dynamic response range from 1 fM to 100 pM. The proposed strategy could have the potential for applying in clinical molecular diagnostics and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Identifying the Genotypes of Hepatitis B Virus (HBV) with DNA Origami Label.

    PubMed

    Liu, Ke; Pan, Dun; Wen, Yanqin; Zhang, Honglu; Chao, Jie; Wang, Lihua; Song, Shiping; Fan, Chunhai; Shi, Yongyong

    2018-02-01

    The hepatitis B virus (HBV) genotyping may profoundly affect the accurate diagnosis and antiviral treatment of viral hepatitis. Existing genotyping methods such as serological, immunological, or molecular testing are still suffered from substandard specificity and low sensitivity in laboratory or clinical application. In a previous study, a set of high-efficiency hybridizable DNA origami-based shape ID probes to target the templates through which genetic variation could be determined in an ultrahigh resolution of atomic force microscopy (AFM) nanomechanical imaging are established. Here, as a further confirmatory research to explore the sensitivity and applicability of this assay, differentially predesigned DNA origami shape ID probes are also developed for precisely HBV genotyping. Through the specific identification of visualized DNA origami nanostructure with clinical HBV DNA samples, the genetic variation information of genotypes can be directly identified under AFM. As a proof-of-concept, five genotype B and six genotype C are detected in 11 HBV-infected patients' blood DNA samples of Han Chinese population in the single-blinded test. The AFM image-based DNA origami shape ID genotyping approach shows high specificity and sensitivity, which could be promising for virus infection diagnosis and precision medicine in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Molecular cloning of cDNAs for the nerve-cell specific phosphoprotein, synapsin I.

    PubMed Central

    Kilimann, M W; DeGennaro, L J

    1985-01-01

    To provide access to synapsin I-specific DNA sequences, we have constructed cDNA clones complementary to synapsin I mRNA isolated from rat brain. Synapsin I mRNA was specifically enriched by immunoadsorption of polysomes prepared from the brains of 10-14 day old rats. Employing this enriched mRNA, a cDNA library was constructed in pBR322 and screened by differential colony hybridization with single-stranded cDNA probes made from synapsin I mRNA and total polysomal poly(A)+ RNA. This screening procedure proved to be highly selective. Five independent recombinant plasmids which exhibited distinctly stronger hybridization with the synapsin I probe were characterized further by restriction mapping. All of the cDNA inserts gave restriction enzyme digestion patterns which could be aligned. In addition, some of the cDNA inserts were shown to contain poly(dA) sequences. Final identification of synapsin I cDNA clones relied on the ability of the cDNA inserts to hybridize specifically to synapsin I mRNA. Several plasmids were tested by positive hybridization selection. They specifically selected synapsin I mRNA which was identified by in vitro translation and immunoprecipitation of the translation products. The established cDNA clones were used for a blot-hybridization analysis of synapsin I mRNA. A fragment (1600 bases) from the longest cDNA clone hybridized with two discrete RNA species 5800 and 4500 bases long, in polyadenylated RNA from rat brain and PC12 cells. No hybridization was detected to RNA from rat liver, skeletal muscle or cardiac muscle. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:3933975

  16. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  17. The Relationship Between Human Nucleolar Organizer Regions and Nucleoli, Probed by 3D-ImmunoFISH.

    PubMed

    van Sluis, Marjolein; van Vuuren, Chelly; McStay, Brian

    2016-01-01

    3D-immunoFISH is a valuable technique to compare the localization of DNA sequences and proteins in cells where three-dimensional structure has been preserved. As nucleoli contain a multitude of protein factors dedicated to ribosome biogenesis and form around specific chromosomal loci, 3D-immunoFISH is a particularly relevant technique for their study. In human cells, nucleoli form around transcriptionally active ribosomal gene (rDNA) arrays termed nucleolar organizer regions (NORs) positioned on the p-arms of each of the acrocentric chromosomes. Here, we provide a protocol for fixing and permeabilizing human cells grown on microscope slides such that nucleolar proteins can be visualized using antibodies and NORs visualized by DNA FISH. Antibodies against UBF recognize transcriptionally active rDNA/NORs and NOP52 antibodies provide a convenient way of visualizing the nucleolar volume. We describe a probe designed to visualize rDNA and introduce a probe comprised of NOR distal sequences, which can be used to identify or count individual NORs.

  18. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  19. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  20. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications.

    PubMed

    Suseela, Y V; Narayanaswamy, Nagarjun; Pratihar, Sumon; Govindaraju, Thimmaiah

    2018-02-05

    The structural diversity and functional relevance of nucleic acids (NAs), mainly deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are indispensable for almost all living organisms, with minute aberrations in their structure and function becoming causative factors in numerous human diseases. The standard structures of NAs, termed canonical structures, are supported by Watson-Crick hydrogen bonding. Under special physiological conditions, NAs adopt distinct spatial organisations, giving rise to non-canonical conformations supported by hydrogen bonding other than the Watson-Crick type; such non-canonical structures have a definite function in controlling gene expression and are considered as novel diagnostic and therapeutic targets. Development of molecular probes for these canonical and non-canonical DNA/RNA structures has been an active field of research. Among the numerous probes studied, probes with turn-on fluorescence in the far-red (600-750 nm) region are highly sought-after due to minimal autofluorescence and cellular damage. Far-red fluorescent probes are vital for real-time imaging of NAs in live cells as they provide good resolution and minimal perturbation of the cell under investigation. In this review, we present recent advances in the area of far-red fluorescent probes of DNA/RNA and non-canonical G-quadruplex structures. For the sake of continuity and completeness, we provide a brief overview of visible fluorescent probes. Utmost importance is given to design criteria, characteristic properties and biological applications, including in cellulo imaging, apart from critical discussion on limitations of the far-red fluorescent probes. Finally, we offer current and future prospects in targeting canonical and non-canonical NAs specific to cellular organelles, through sequence- and conformation-specific far-red fluorescent probes. We also cover their implications in chemical and molecular biology, with particular focus on decoding various disease mechanisms involving NAs.

  1. Mismatch and G-Stack Modulated Probe Signals on SNP Microarrays

    PubMed Central

    Binder, Hans; Fasold, Mario; Glomb, Torsten

    2009-01-01

    Background Single nucleotide polymorphism (SNP) arrays are important tools widely used for genotyping and copy number estimation. This technology utilizes the specific affinity of fragmented DNA for binding to surface-attached oligonucleotide DNA probes. We analyze the variability of the probe signals of Affymetrix GeneChip SNP arrays as a function of the probe sequence to identify relevant sequence motifs which potentially cause systematic biases of genotyping and copy number estimates. Methodology/Principal Findings The probe design of GeneChip SNP arrays enables us to disentangle different sources of intensity modulations such as the number of mismatches per duplex, matched and mismatched base pairings including nearest and next-nearest neighbors and their position along the probe sequence. The effect of probe sequence was estimated in terms of triple-motifs with central matches and mismatches which include all 256 combinations of possible base pairings. The probe/target interactions on the chip can be decomposed into nearest neighbor contributions which correlate well with free energy terms of DNA/DNA-interactions in solution. The effect of mismatches is about twice as large as that of canonical pairings. Runs of guanines (G) and the particular type of mismatched pairings formed in cross-allelic probe/target duplexes constitute sources of systematic biases of the probe signals with consequences for genotyping and copy number estimates. The poly-G effect seems to be related to the crowded arrangement of probes which facilitates complex formation of neighboring probes with at minimum three adjacent G's in their sequence. Conclusions The applied method of “triple-averaging” represents a model-free approach to estimate the mean intensity contributions of different sequence motifs which can be applied in calibration algorithms to correct signal values for sequence effects. Rules for appropriate sequence corrections are suggested. PMID:19924253

  2. Deoxyribonucleic Acid Probes Analyses for the Detection of Periodontal Pathogens.

    PubMed

    Al Yahfoufi, Zoubeida; Hadchiti, Wahib; Berberi, Antoine

    2015-09-01

    In clinical microbiology several techniques have been used to identify bacteria. Recently, Deoxyribonucleic acid (DNA)-based techniques have been introduced to detect human microbial pathogens in periodontal diseases. Deoxyribonucleic acid probes can detect bacteria at a very low level if we compared with the culture methods. These probes have shown rapid and cost-effective microbial diagnosis, good sensitivity and specificity for some periodontal pathogens in cases of severe periodontitis. Eighty-five patients were recruited for the study. Twenty-one subjects ranging between 22 and 48 years of age fulfilled the inclusion and exclusion criteria. Seventy-eight samples became available for DNA probe analysis from the deepest pockets in each quadrant. All 21 patients showed positive results for Prevotella intermedia; also, Prevotella gingivalis was identified in 19 subjects, Aggregatibacter actinomycetemcomitans in 6 subjects. P. intermedia was diagnosed positive in 82% of the subgingival samples taken, 79% for P. gingivalis, and 23% for A. actinomycetemcomitans. This study shows a high frequency of putative periodontal pathogens by using DNA probe technology, which is semi-quantitative in this study. Deoxyribonucleic acid probes can detect bacteria at very low level about 10(3) which is below the detection level of culture methods. The detection threshold of cultural methods. The three types of bacteria can be detected rapidly with high sensitivity by using the DNA probe by general practitioners, and thus can help in the diagnosis process and the treatment.

  3. Molecular inversion probe assay for allelic quantitation

    PubMed Central

    Ji, Hanlee; Welch, Katrina

    2010-01-01

    Molecular inversion probe (MIP) technology has been demonstrated to be a robust platform for large-scale dual genotyping and copy number analysis. Applications in human genomic and genetic studies include the possibility of running dual germline genotyping and combined copy number variation ascertainment. MIPs analyze large numbers of specific genetic target sequences in parallel, relying on interrogation of a barcode tag, rather than direct hybridization of genomic DNA to an array. The MIP approach does not replace, but is complementary to many of the copy number technologies being performed today. Some specific advantages of MIP technology include: Less DNA required (37 ng vs. 250 ng), DNA quality less important, more dynamic range (amplifications detected up to copy number 60), allele specific information “cleaner” (less SNP crosstalk/contamination), and quality of markers better (fewer individual MIPs versus SNPs needed to identify copy number changes). MIPs can be considered a candidate gene (targeted whole genome) approach and can find specific areas of interest that otherwise may be missed with other methods. PMID:19488872

  4. Cloning of developmentally regulated flagellin genes from Caulobacter crescentus via immunoprecipitation of polyribosomes.

    PubMed Central

    Milhausen, M; Gill, P R; Parker, G; Agabian, N

    1982-01-01

    Immunoprecipitation of Caulobacter crescentus polyribosomes with antiflagellin antibody provided RNA for the synthesis of cDNA probes that were used to identify three specific EcoRI restriction fragments (6.8, 10, and 22 kilobases) in genomic digests of Caulobacter DNA. The RNA was present only in polyribosomes isolated from a time interval in the Caulobacter cell cycle that was coincident with flagellin polypeptide synthesis. The structural gene for Mr 27,500 flagellin polypeptide was assigned to a region of the 10-kilobase EcoRI restriction fragment by DNA sequence analysis. Analysis of mutants defective in motility further established a correlation between the Mr 27,500 flagellin gene and the flaE gene locus [Johnson, R. C. & Ely, B. (1979) J. Bacteriol. 137, 627-634]. The other EcoRI fragments that hybridize with the immunoprecipitated polyribosome-derived cDNA probe are also temporally regulated and have features that suggest they encode other polypeptides associated with the flagellum. Modifications were required to adapt the procedure of immunoprecipitation of polyribosomes for use with Caulobacter and should be applicable to the production of specific structural gene probes from other prokaryotic systems. Images PMID:6294658

  5. Label-free fluorescence strategy for sensitive detection of adenosine triphosphate using a loop DNA probe with low background noise.

    PubMed

    Lin, Chunshui; Cai, Zhixiong; Wang, Yiru; Zhu, Zhi; Yang, Chaoyong James; Chen, Xi

    2014-07-15

    A simple, rapid, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection was developed using a loop DNA probe with low background noise. In this strategy, a loop DNA probe, which is the substrate for both ligation and digestion enzyme reaction, was designed. SYBR green I (SG I), a double-stranded specific dye, was applied for the readout fluorescence signal. Exonuclease I (Exo I) and exonuclease III (Exo III), sequence-independent nucleases, were selected to digest the loop DNA probe in order to minimize the background fluorescence signal. As a result, in the absence of ATP, the loop DNA was completely digested by Exo I and Exo III, leading to low background fluorescence owing to the weak electrostatic interaction between SG I and mononucleotides. On the other hand, ATP induced the ligation of the nicking site, and the sealed loop DNA resisted the digestion of Exo I and ExoIII, resulting in a remarkable increase of fluorescence response. Upon background noise reduction, the sensitivity of the ATP determination was improved significantly, and the detection limitation was found to be 1.2 pM, which is much lower than that in almost all the previously reported methods. This strategy has promise for wide application in the determination of ATP.

  6. Detection of anthrax lef with DNA-based photonic crystal sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong

    2011-12-01

    Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.

  7. [Utilization of nylon membranes for specific isolation and characterization of verotoxin-producing Escherichia coli using DNA probes].

    PubMed

    Gallien, P; Klie, H; Perlberg, K W; Protz, D

    1996-01-01

    A method for specific isolation of VT(+)-strains in raw milk is given. DNA-hybridization technique with DIG-labeled PCR-amplificates as probes are the basis. No background is seen by using "DIG Easy Hyb" solution and nylon membranes for colony- and plaque-hybridization (Boehringer Mannheim GmbH). Marked colonies are visible on the membranes after detection. So it is possible to select these colonies from a masterplate. The results are available within one day (without enrichment and membrane preparation). After stripping the membranes can be used for a new hybridisation to detect another factor of virulence.

  8. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.

    PubMed

    Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2013-01-02

    In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors.

  9. Development of propidium iodide as a fluorescence probe for the on-line screening of non-specific DNA-intercalators in Fufang Banbianlian Injection.

    PubMed

    Niu, Yanyan; Li, Sensen; Lin, Zongtao; Liu, Meixian; Wang, Daidong; Wang, Hong; Chen, Shizhong

    2016-09-09

    Fufang Banbianlian Injection (FBI) has been widely used as an anti-inflammatory and anti-tumor prescription. To understand the relationships between its bioactive ingredients and pharmacological efficacies, our previous study has been successfully identified some DNA-binding compounds in FBI using an established on-line screening system, in which 4',6-diamidino-2-phenylindole (DAPI) was developed as a probe. However, DAPI can be only used to screen ATT-specific DNA minor groove binders, leaving the potential active intercalators unknown in FBI. As a continuation of our studies on FBI, here we present a sensitive analytical method for rapid identification and evaluation of DNA-intercalators using propidium iodide (PI) as a fluorescent probe. We have firstly established the technique of high-performance liquid chromatography-diode-array detector-multistage mass spectrometry-deoxyribonucleic acid-propidium iodide-fluorescence detector (HPLC-DAD-MS(n)-DNA-PI-FLD) system. As a result, 38 of 58 previously identified compounds in FBI were DNA-intercalation active. Interestingly, all previously reported DNA-binders also showed intercalative activities, suggesting they are dual-mode DNA-binders. Quantitative study showed that flavonoid glycosides and chlorogenic acids were the main active compounds in FBI, and displayed similar DNA-binding ability using either DAPI or PI. In addition, 13 active compounds were used to establish the structure-activity relationships. In this study, PI was developed into an on-line method for identifying DNA-intercalators for the first time, and thus it will be a useful high-throughput screening technique for other related samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A label-free, fluorescence based assay for microarray

    NASA Astrophysics Data System (ADS)

    Niu, Sanjun

    DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same intensity of excitation light. The fluorescence contrast is used to quantify the amount of probe-target hybridization. A mathematical model that considers multiple reflections and scattering is developed to explain the mechanism of the fluorescence contrast which depends on the thickness of the PS film. Scattering is the dominant factor that contributes to the contrast. The potential of this assay to detect single nucleotide polymorphism is also tested.

  11. Nanoplasmonic biosensor: detection and amplification of dual bio-signatures of circulating tumor DNA.

    PubMed

    Nguyen, Anh H; Sim, Sang Jun

    2015-05-15

    Circulating tumor DNA (ctDNA) bearing tumor-specific mutation and methylation are promising biomarkers for noninvasive cancer assessment. However, existing methods for ctDNA detection are restricted to genetic mutations. Recently, nanoplasmonics has emerged as a platform for one-step dual detection with high sensitivity and specificity. Here we present a strategy for ultrasensitive detection of tumor-specific mutations (E542K and E545K) and methylation of ctDNA of PIK3CA gene based on localized surface plasmon resonance (LSPR) and the coupling plasmon mode of gold nanoparticles (AuNPs). Peptide nucleic acids (PNA) is used as a probe to capture and enrich the 69-bp PIK3CA ctDNA. The exposure of PNA-probed AuNPs to 200 fM ctDNA generates LSPR-peak shift of 4.3 nm, corresponding to the primary response. Immunogold colloids are exploited as methylation detectors and plasmon coupling based enhancement for secondary response. LSPR-peak shifted from 4.3 nm to 11.4 nm upon the immunogold colloids binding to two methylcytosines (mCpG), which is an approximately 107% increase, compared to that of the primary response. This enhancement leads to four times (~50 fM) improvement of sensitivity and because of two mCpG sites, ctDNA was detected. These results demonstrate that the sensor can simultaneously detect the hot-spot mutation and epigenetic changes on the ctDNA. Promisingly, other specific-tumor mutants and epigenetic changes can be detected at low concentration with this platform. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor.

    PubMed

    Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong

    2017-05-15

    A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Accuracy of the clinical diagnosis of vaginitis compared with a DNA probe laboratory standard.

    PubMed

    Lowe, Nancy K; Neal, Jeremy L; Ryan-Wenger, Nancy A

    2009-01-01

    To estimate the accuracy of the clinical diagnosis of the three most common causes of acute vulvovaginal symptoms (bacterial vaginosis, candidiasis vaginitis, and trichomoniasis vaginalis) using a traditional, standardized clinical diagnostic protocol compared with a DNA probe laboratory standard. This prospective clinical comparative study had a sample of 535 active-duty United States military women presenting with vulvovaginal symptoms. Clinical diagnoses were made by research staff using a standardized protocol of history, physical examination including pelvic examination, determination of vaginal pH, vaginal fluid amines test, and wet-prep microscopy. Vaginal fluid samples were obtained for DNA analysis. The research clinicians were blinded to the DNA results. The participants described a presenting symptom of abnormal discharge (50%), itching/irritation (33%), malodor (10%), burning (4%), or others such as vulvar pain and vaginal discomfort. According to laboratory standard, there were 225 cases (42%) of bacterial vaginosis, 76 cases (14%) of candidiasis vaginitis, 8 cases (1.5%) of trichomoniasis vaginalis, 87 cases of mixed infections (16%), and 139 negative cases (26%). For each single infection, the clinical diagnosis had a sensitivity and specificity of 80.8% and 70.0% for bacterial vaginosis, 83.8% and 84.8% for candidiasis vaginitis, and 84.6% and 99.6% for trichomoniasis vaginalis when compared with the DNA probe standard. Compared with a DNA probe standard, clinical diagnosis is 81-85% sensitive and 70-99% specific for bacterial vaginosis, Candida vaginitis, and trichomoniasis. Even under research conditions that provided clinicians with sufficient time and materials to conduct a thorough and standardized clinical evaluation, the diagnosis and, therefore, subsequent treatment of these common vaginal problems remains difficult. II.

  14. Differentiation of respiratory syncytial virus subgroups with cDNA probes in a nucleic acid hybridization assay.

    PubMed Central

    Sullender, W M; Anderson, L J; Anderson, K; Wertz, G W

    1990-01-01

    A new approach to respiratory syncytial (RS) virus subgroup determination was developed by using a simple nucleic acid filter hybridization technique. By this method, virus-infected cells are bound and fixed in a single step, and the viral RNA in the fixed-cell preparation is characterized directly by its ability to hybridize to cDNA probes specific for either the A or B subgroups of RS virus. The subgroup-specific probes were constructed from cDNA clones that corresponded to a portion of the extracellular domain of the RS virus G protein of either a subgroup B RS virus (8/60) or a subgroup A RS virus (A2). The cDNA probes were labeled with 32P and used to analyze RS virus isolates collected over a period of three decades. Replicate templates of infected cell preparations were hybridized with either the subgroup A or B probe. The subgroup assignments of 40 viruses tested by nucleic acid hybridization were in agreement with the results of subgroup determinations based on their reactivities with monoclonal antibodies, which previously has been the only method available for determining the subgroup classification of RS virus isolates. The nucleic acid hybridization assay has the advantage of providing broad-based discrimination of the two subgroups on the basis of nucleic acid homology, irrespective of minor antigenic differences that are detected in assays in which monoclonal antibodies are used. The nucleic acid hybridization technique provides a reliable method for RS virus subgroup characterization. Images PMID:2118548

  15. Novel strategy combining SYBR Green I with carbon nanotubes for highly sensitive detection of Salmonella typhimurium DNA.

    PubMed

    Mao, Pingdao; Ning, Yi; Li, Wenkai; Peng, Zhihui; Chen, Yongzhe; Deng, Le

    2014-01-10

    A simple, selective, sensitive and label-free fluorescent method for detecting trpS-harboring Salmonella typhimurium was developed in this study. This assay used the non-covalent interaction of single-stranded DNA (ssDNA) probes with SWNTs, since SWNTs can quench fluorescence. Fluorescence recovery (78% with 1.8 nM target DNA) was detected in the presence of target DNA as ssDNA probes detached from SWNTs hybridized with target DNA, and the resulting double-stranded DNA (dsDNA) intercalated with SYBR Green I (SG) dyes. The increasing fluorescence intensity reached 4.54-fold. In contrast, mismatched oligonucleotides (1- or 3-nt difference to the target DNA) did not contribute to significant fluorescent recovery, which demonstrated the specificity of the assay. The increasing fluorescence intensity increased 3.15-fold when purified PCR products containing complementary sequences of trpS gene were detected. These results confirmed the ability to use this assay for detecting real samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification

    NASA Astrophysics Data System (ADS)

    Bai, Lijuan; Chai, Yaqin; Pu, Xiaoyun; Yuan, Ruo

    2014-02-01

    Endotoxin, also known as lipopolysaccharide (LPS), is able to induce a strong immune response on its internalization into mammalian cells. To date, aptamer-based biosensors for LPS detection have been rarely reported. This work describes a new signal-on electrochemical aptasensor for the ultrasensitive detection of LPS by combining the three-way DNA hybridization process and nanotechnology-based amplification. With the help of DNA1 (associated with the concentration of target LPS), the capture probe hybridizes with DNA1 and the assistant probe to open its hairpin structure and form a ternary ``Y'' junction structure. The DNA1 can be released from the structure in the presence of nicking endonuclease to initiate the next hybridization process. Then a great deal of cleaved capture probe produced in the cyclic process can bind with DNA2-nanocomposite, which contains the electroactive toluidine blue (Tb) with the amplification materials graphene (Gra) and gold nanoparticles (AuNPs). Thus, an enhanced electrochemical signal can be easily read out. With the cascade signal amplification, this newly designed protocol provides an ultrasensitive electrochemical detection of LPS down to the femtogram level (8.7 fg mL-1) with a linear range of 6 orders of magnitude (from 10 fg mL-1 to 50 ng mL-1). Moreover, the high sensitivity and specificity make this method versatile for the detection of other biomolecules by changing the corresponding sequences of the capture probe and the assistant probe.

  17. Northern blots: capillary transfer of RNA from agarose gels and filter hybridization using standard stringency conditions.

    PubMed

    Rio, Donald C

    2015-03-02

    In this protocol, an RNA sample, fractionated by gel electrophoresis, is transferred from the gel onto a membrane by capillary transfer. Short-wave UV light is used to fix the transferred RNA to the membrane. The membrane is then pretreated to block nonspecific probe-binding sites, and hybridization of the immobilized RNA to a (32)P-labeled DNA or RNA probe specific for the mRNA of interest is performed. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. Because exposure to UV cross-links the RNA to the membrane, the membrane can be stripped and hybridized with other probes. The procedure is suitable for detecting poly(A)(+)-selected mRNA or mRNA in total cellular RNA if the target transcript is relatively abundant. Using DNA or RNA probes labeled to 1 × 10(8)-10 × 10(8) cpm/µg, it should be possible to detect ∼5 pg of a specific RNA. © 2015 Cold Spring Harbor Laboratory Press.

  18. Identification of Vibrio splendidus as a Member of the Planktonic Luminous Bacteria from the Persian Gulf and Kuwait Region with luxA Probes

    PubMed Central

    Nealson, K. H.; Wimpee, B.; Wimpee, C.

    1993-01-01

    Hybridization probes specific for the luxA genes of four groups of luminous bacteria were used to screen luminous isolates obtained from the Persian Gulf, near Al Khiran, Kuwait Nine of these isolates were identified as Vibrio harveyi, a commonly encountered planktonic isolate, while three others showed no hybridization to any of the four probes (V. harveyi, Vibrio fischeri, Photobacterium phosphoreum, or Photobacterium leiognathi) under high-stringency conditions. Polymerase chain reaction amplification was used to prepare a luxA probe against one of these isolates, K-1, and this probe was screened under high-stringency conditions against a collection of DNAs from luminous bacteria; it was found to hybridize specifically to the DNA of the species Vibrio splendidus. A probe prepared against the type strain of V. splendidus (ATCC 33369) was tested against the collection of luminous bacterial DNA preparations and against the Kuwait isolates and was found to hybridize only against the type strain and the three unidentified Kuwait isolates. Extensive taxonomic analysis by standard methods confirmed the identification of the 13 isolates. Images PMID:16349023

  19. Exonuclease III-Assisted Upconversion Resonance Energy Transfer in a Wash-Free Suspension DNA Assay.

    PubMed

    Chen, Yinghui; Duong, Hien T T; Wen, Shihui; Mi, Chao; Zhou, Yingzhu; Shimoni, Olga; Valenzuela, Stella M; Jin, Dayong

    2018-01-02

    Sensitivity is the key in optical detection of low-abundant analytes, such as circulating RNA or DNA. The enzyme Exonuclease III (Exo III) is a useful tool in this regard; its ability to recycle target DNA molecules results in markedly improved detection sensitivity. Lower limits of detection may be further achieved if the detection background of autofluorescence can be removed. Here we report an ultrasensitive and specific method to quantify trace amounts of DNA analytes in a wash-free suspension assay. In the presence of target DNA, the Exo III recycles the target DNA by selectively digesting the dye-tagged sequence-matched probe DNA strand only, so that the amount of free dye removed from the probe DNA is proportional to the number of target DNAs. Remaining intact probe DNAs are then bound onto upconversion nanoparticles (energy donor), which allows for upconversion luminescence resonance energy transfer (LRET) that can be used to quantify the difference between the free dye and tagged dye (energy acceptor). This scheme simply avoids both autofluorescence under infrared excitation and many tedious washing steps, as the free dye molecules are physically located away from the nanoparticle surface, and as such they remain "dark" in suspension. Compared to alternative approaches requiring enzyme-assisted amplification on the nanoparticle surface, introduction of probe DNAs onto nanoparticles only after DNA hybridization and signal amplification steps effectively avoids steric hindrance. Via this approach, we have achieved a detection limit of 15 pM in LRET assays of human immunodeficiency viral DNA.

  20. Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells

    PubMed Central

    Soares, Ricardo J; Maglieri, Giulia; Gutschner, Tony; Lund, Anders H; Nielsen, Boye S

    2018-01-01

    Abstract Deciphering the functions of long non-coding RNAs (lncRNAs) is facilitated by visualization of their subcellular localization using in situ hybridization (ISH) techniques. We evaluated four different ISH methods for detection of MALAT1 and CYTOR in cultured cells: a multiple probe detection approach with or without enzymatic signal amplification, a branched-DNA (bDNA) probe and an LNA-modified probe with enzymatic signal amplification. All four methods adequately stained MALAT1 in the nucleus in all of three cell lines investigated, HeLa, NHDF and T47D, and three of the methods detected the less expressed CYTOR. The sensitivity of the four ISH methods was evaluated by image analysis. In all three cell lines, the two methods involving enzymatic amplification gave the most intense MALAT1 signal, but the signal-to-background ratios were not different. CYTOR was best detected using the bDNA method. All four ISH methods showed significantly reduced MALAT1 signal in knock-out cells, and siRNA-induced knock-down of CYTOR resulted in significantly reduced CYTOR ISH signal, indicating good specificity of the probe designs and detection systems. Our data suggest that the ISH methods allow detection of both abundant and less abundantly expressed lncRNAs, although the latter required the use of the most specific and sensitive probe detection system. PMID:29059327

  1. Identifying Fishes through DNA Barcodes and Microarrays.

    PubMed

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N; Weber, Hannes; Blohm, Dietmar

    2010-09-07

    International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  2. Enrichment of individual KIR2DL4 sequences from genomic DNA using long-template PCR and allele-specific hybridization to magnetic bead-bound oligonucleotide probes.

    PubMed

    Roberts, C H; Turino, C; Madrigal, J A; Marsh, S G E

    2007-06-01

    DNA enrichment by allele-specific hybridization (DEASH) was used as a means to isolate individual alleles of the killer cell immunoglobulin-like receptor (KIR2DL4) gene from heterozygous genomic DNA. Using long-template polymerase chain reaction (LT-PCR), the complete KIR2DL4 gene was amplified from a cell line that had previously been characterized for its KIR gene content by PCR using sequence-specific primers (PCR-SSP). The whole gene amplicons were sequenced and we identified two heterozygous positions in accordance with the predictions of the PCR-SSP. The amplicons were then hybridized to allele-specific, biotinylated oligonucleotide probes and through binding to streptavidin-coated beads, the targeted alleles were enriched. A second PCR amplified only the exonic regions of the enriched allele, and these were then sequenced in full. We show DEASH to be capable of enriching single alleles from a heterozygous PCR product, and through sequencing the enriched DNA, we are able to produce complete coding sequences of the KIR2DL4 alleles in accordance with the typing predicted by PCR-SSP.

  3. Electrokinetic acceleration of DNA hybridization in microsystems.

    PubMed

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Ultrasensitive and selective signal-on electrochemical DNA detection via exonuclease III catalysis and hybridization chain reaction amplification.

    PubMed

    Ren, Wang; Gao, Zhong Feng; Li, Nian Bing; Luo, Hong Qun

    2015-01-15

    This work reported a novel, ultrasensitive, and selective platform for electrochemical detection of DNA, employing an integration of exonuclease III (Exo-III) assisted target recycling and hybridization chain reaction (HCR) for the dual signal amplification strategy. The hairpin capture probe DNA (C-DNA) with an Exo-III 3' overhang end was self-assembled on a gold electrode. In the presence of target DNA (T-DNA), C-DNA hybridized with the T-DNA to form a duplex region, exposing its 5' complementary sequence (initiator). Exo-III was applied to selectively digest duplex region from its 3-hydroxyl termini until the duplex was fully consumed, leaving the remnant initiator. The intact T-DNA spontaneously dissociated from the structure and then initiated the next hybridization process as a result of catalysis of the Exo-III. HCR event was triggered by the initiator and two hairpin helper signal probes labeled with methylene blue, facilitating the polymerization of oligonucleotides into a long nicked dsDNA molecule. The numerous exposed remnant initiators can trigger more HCR events. Because of integration of dual signal amplification and the specific HCR process reaction, the resultant sensor showed a high sensitivity for the detection of the target DNA in a linear range from 1.0 fM to 1.0 nM, and a detection limit as low as 0.2 fM. The proposed dual signal amplification strategy provides a powerful tool for detecting different sequences of target DNA by changing the sequence of capture probe and signal probes, holding a great potential for early diagnosis in gene-related diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments.

    PubMed

    Janvier, Monique; Regnault, Béatrice; Grimont, Patrick

    2003-09-01

    Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.

  6. A PDDA/poly(2,6-pyridinedicarboxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene.

    PubMed

    Yang, Tao; Zhang, Wei; Du, Meng; Jiao, Kui

    2008-05-30

    2,6-Pyridinedicarboxylic acid (PDC) was electropolymerized on the glassy carbon electrode (GCE) surface combined with carboxylic group-functionalized single-walled carbon nanotubes (SWNTs) by cyclic voltammetry (CV) to form PDC-SWNTs composite film, which was rich in negatively charged carboxylic group. Then, poly(diallyldimethyl ammonium chloride) (PDDA), a linear cationic polyelectrolyte, was electrostatically adsorbed on the PDC-SWNTs/GCE surface. DNA probes with negatively charged phosphate group at the 5' end were immobilized on the PDDA/PDC-SWNTs/GCE due to the strong electrostatic attraction between PDDA and phosphate group of DNA. It has been found that modification of the electrode with PDC-SWNTs film has enhanced the effective electrode surface area and electron-transfer ability, in addition to providing negatively charged groups for the electrostatic assembly of cationic polyelectrolyte. PDDA plays a key role in the attachment of DNA probes to the PDC-SWNTs composite film and acts as a bridge to connect DNA with PDC-SWNTs film. The cathodic peak current of methylene blue (MB), an electroactive label, decreased obviously after the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA). This peak current change was used to monitor the recognition of the specific sequences related to PAT gene in the transgenic corn and the polymerase chain reaction (PCR) amplification of NOS gene from the sample of transgenic soybean with satisfactory results. Under optimal conditions, the dynamic detection range of the sensor to PAT gene target sequence was from 1.0x10(-11) to 1.0x10(-6) mol/L with the detection limit of 2.6x10(-12) mol/L.

  7. New environment-sensitive multichannel DNA fluorescent label for investigation of the protein-DNA interactions.

    PubMed

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Vorobjev, Yuri N; Barthes, Nicolas P F; Michel, Benoît Y; Burger, Alain; Fedorova, Olga S

    2014-01-01

    Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5'-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified.

  8. New Environment-Sensitive Multichannel DNA Fluorescent Label for Investigation of the Protein-DNA Interactions

    PubMed Central

    Vorobjev, Yuri N.; Barthes, Nicolas P. F.; Michel, Benoît Y.; Burger, Alain; Fedorova, Olga S.

    2014-01-01

    Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5′-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified. PMID:24925085

  9. Detection of cystic fibrosis mutations in a GeneChip{trademark} assay format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyada, C.G.; Cronin, M.T.; Kim, S.M.

    1994-09-01

    We are developing assays for the detection of cystic fibrosis mutations based on DNA hybridization. A DNA sample is amplified by PCR, labeled by incorporating a fluorescein-tagged dNTP, enzymatically treated to produce smaller fragments and hybridized to a series of short (13-16 bases) oligonucleotides synthesized on a glass surface via photolithography. The hybrids are detected by eqifluorescence and mutations are identified by the specific pattern of hybridization. In a GeneChip assay, the chip surface is composed of a series of subarrays, each being specific for a particular mutation. Each subarray is further subdivided into a series of probes (40 total),more » half based on the mutant sequence and the remainder based on the wild-type sequence. For each of the subarrays, there is a redundancy in the number of probes that should hybridize to either a wild-type or a mutant target. The multiple probe strategy provides sequence information for a short five base region overlapping the mutation site. In addition, homozygous wild-type and mutant as well as heterozygous samples are each identified by a specific pattern of hybridization. The small size of each probe feature (250 x 250 {mu}m{sup 2}) permits the inclusion of additional probes required to generate sequence information by hybridization.« less

  10. Exo-Dye-based assay for rapid, inexpensive, and sensitive detection of DNA-binding proteins.

    PubMed

    Chen, Zaozao; Ji, Meiju; Hou, Peng; Lu, Zuhong

    2006-07-07

    We reported herein a rapid, inexpensive, and sensitive technique for detecting sequence-specific DNA-binding proteins. In this technique, the common exonuclease III (ExoIII) footprinting assay is coupled with simple SYBR Green I staining for monitoring the activities of DNA-binding proteins. We named this technique as ExoIII-Dye-based assay. In this assay, a duplex probe was designed to detect DNA-binding protein. One side of the probe contains one protein-binding site, and another side of it contains five protruding bases at 3' end for protection from ExoIII digestion. If a target protein is present, it will bind to binding sites of probe and produce a physical hindrance to ExoIII, which protects the duplex probe from digestion of ExoIII. SYBR Green I will bind to probe, which results in high fluorescence intensity. On the contrary, in the absence of the target protein, the naked duplex probe will be degraded by ExoIII. SYBR Green I will be released, which results in a low fluorescence intensity. In this study, we employed this technique to successfully detect transcription factor NF-kappaB in crude cell extracts. Moreover, it could also be used to evaluate the binding affinity of NF-kappaB. This technique has therefore wide potential application in research, medical diagnosis, and drug discovery.

  11. Electrochemical DNA biosensor for bovine papillomavirus detection using polymeric film on screen-printed electrode.

    PubMed

    Nascimento, Gustavo A; Souza, Elaine V M; Campos-Ferreira, Danielly S; Arruda, Mariana S; Castelletti, Carlos H M; Wanderley, Marcela S O; Ekert, Marek H F; Bruneska, Danyelly; Lima-Filho, José L

    2012-01-01

    A new electrochemical DNA biosensor for bovine papillomavirus (BPV) detection that was based on screen-printed electrodes was comprehensively studied by electrochemical methods of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A BPV probe was immobilised on a working electrode (gold) modified with a polymeric film of poly-L-lysine (PLL) and chitosan. The experimental design was carried out to evaluate the influence of polymers, probe concentration (BPV probe) and immobilisation time on the electrochemical reduction of methylene blue (MB). The polymer poly-L-lysine (PLL), a probe concentration of 1 μM and an immobilisation time of 60 min showed the best result for the BPV probe immobilisation. With the hybridisation of a complementary target sequence (BPV target), the electrochemical signal decreased compared to a BPV probe immobilised on the modified PLL-gold electrode. Viral DNA that was extracted from cattle with papillomatosis also showed a decrease in the MB electrochemical reduction, which suggested that the decreased electrochemical signal corresponded to a bovine papillomavirus infection. The hybridisation specificity experiments further indicated that the biosensor could discriminate the complementary sequence from the non-complementary sequence. Thus, the results showed that the development of analytical devices, such as a biosensor, could assist in the rapid and efficient detection of bovine papillomavirus DNA and help in the prevention and treatment of papillomatosis in cattle. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Use of RecA protein to enrich for homologous genes in a genomic library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taidi-Laskowski, B.; Grumet, F.C.; Tyan, D.

    1988-08-25

    RecA protein-coated probe has been utilized to enrich genomic digests for desired genes in order to facilitate cloning from genomic libraries. Using a previously cloned HLA-B27 gene as the recA-coated enrichment probe, the authors obtained a mean 108x increase in the ratio of specific to nonspecific plaques in lambda libraries screened for B27 variant alleles of estimated 99% homology to the probe. Class I genes of lesser homology were less enriched. Loss of genomic DNA during the enrichment procedure can, however, restrict application of this technique whenever starting genomic DNA is very limited. Nevertheless, the impressive reduction in cloning effortmore » and material makes recA enrichment a useful new tool for cloning homologous genes from genomic DNA.« less

  13. Individualization and estimation of relatedness in crocodilians by DNA fingerprinting with a Bkm-derived probe.

    PubMed

    Lang, J W; Aggarwal, R K; Majumdar, K C; Singh, L

    1993-04-01

    Individual-specific DNA fingerprints of crocodilians were obtained by the use of Bkm-2(8) probe. Pedigree analyses of Crocodylus palustris, C. porosus and Caiman crocodilus revealed that the multiple bands (22-23 bands with Aludigest) thus obtained were inherited stably in a Mendelian fashion. Unique fingerprints permitted us to identify individuals, assign parentage, and reconstruct the DNA profile of a missing parent. Average band sharing between unrelated crocodiles was found to be 0.37. Band sharing between animals of known pedigrees increased predictably with relatedness and provided a basis for distinguishing relatives from non-relatives. Similar results obtained in other species/genera, using the same probe, suggest that this approach may be applicable to all species of crocodilians, and could facilitate genetic studies of wild and captive populations.

  14. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences.

    PubMed

    Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José

    2015-07-01

    Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses.

  15. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences

    PubMed Central

    Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José

    2015-01-01

    Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses. PMID:26140346

  16. Development of an in situ hybridization assay for the detection of ostreid herpesvirus type 1 mRNAs in the Pacific oyster, Crassostrea gigas.

    PubMed

    Corbeil, Serge; Faury, Nicole; Segarra, Amélie; Renault, Tristan

    2015-01-01

    An in situ hybridization protocol for detecting mRNAs of ostreid herpesvirus type 1 (OsHV-1) which infects Pacific oysters, Crassostrea gigas, was developed. Three RNA probes were synthesized by cloning three partial OsHV-1 genes into plasmids using three specific primer pairs, and performing a transcription in the presence of digoxigenin dUTP. The RNA probes were able to detect the virus mRNAs in paraffin sections of experimentally infected oysters 26 h post-injection. The in situ hybridization showed that the OsHV-1 mRNAs were mainly present in connective tissues in gills, mantle, adductor muscle, digestive gland and gonads. DNA detection by in situ hybridization using a DNA probe and viral DNA quantitation by real-time PCR were also performed and results were compared with those obtained using RNA probes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis.

    PubMed

    Maruyama, Kohei; Takeyama, Haruko; Nemoto, Etsuo; Tanaka, Tsuyoshi; Yoda, Kiyoshi; Matsunaga, Tadashi

    2004-09-20

    Single nucleotide polymorphism (SNP) detection for aldehyde dehydrogenase 2 (ALDH2) gene based on DNA thermal dissociation curve analysis was successfully demonstrated using an automated system with bacterial magnetic particles (BMPs) by developing a new method for avoiding light scattering caused by nanometer-size particles when using commercially available fluorescent dyes such as FITC, Cy3, and Cy5 as labeling chromophores. Biotin-labeled PCR products in ALDH2, two allele-specific probes (Cy3-labeled detection probe for ALDH2*1 and Cy5-labeled detection probe for ALDH2*2), streptavidin-immobilized BMPs (SA-BMPs) were simultaneously mixed. The mixture was denatured at 70 degrees C for 3 min, cooled slowly to 25 degrees C, and incubated for 10 min, allowing the DNA duplex to form between Cy3- or Cy5-labeled detection probes and biotin-labeled PCR products on SA-BMPs. Then duplex DNA-BMP complex was heated to 58 degrees C, a temperature determined by dissociation curve analysis and a dissociated single-base mismatched detection probe was removed at the same temperature under precise control. Furthermore, fluorescence signal from the detection probe was liberated into the supernatant from completely matched duplex DNA-BMP complex by heating to 80 degrees C and measured. In the homozygote target DNA (ALDH2*1/*1 and ALDH2*2/*2), the fluorescence signals from single-base mismatched were decreased to background level, indicating that mismatched hybridization was efficiently removed by the washing process. In the heterozygote target DNA (ALDH2*1/*2), each fluorescence signals was at a similar level. Therefore, three genotypes of SNP in ALDH2 gene were detected using the automated detection system with BMPs. Copyright 2004 Wiley Periodicals, Inc.

  18. Attomolar detection of proteins via cascade strand-displacement amplification and polystyrene nanoparticle enhancement in fluorescence polarization aptasensors.

    PubMed

    Huang, Yong; Liu, Xiaoqian; Huang, Huakui; Qin, Jian; Zhang, Liangliang; Zhao, Shulin; Chen, Zhen-Feng; Liang, Hong

    2015-08-18

    Extremely sensitive and accurate measurements of protein markers for early detection and monitoring of diseases pose a formidable challenge. Herein, we develop a new type of amplified fluorescence polarization (FP) aptasensor based on allostery-triggered cascade strand-displacement amplification (CSDA) and polystyrene nanoparticle (PS NP) enhancement for ultrasensitive detection of proteins. The assay system consists of a fluorescent dye-labeled aptamer hairpin probe and a PS NP-modified DNA duplex (assistant DNA/trigger DNA duplex) probe with a single-stranded part and DNA polymerase. Two probes coexist stably in the absence of target, and the dye exhibits relatively low FP background. Upon recognition and binding with a target protein, the stem of the aptamer hairpin probe is opened, after which the opened hairpin probe hybridizes with the single-stranded part in the PS NP-modified DNA duplex probe and triggers the CSDA reaction through the polymerase-catalyzed recycling of both target protein and trigger DNA. Throughout this CSDA process, numerous massive dyes are assembled onto PS NPs, which results in a substantial FP increase that provides a readout signal for the amplified sensing process. Our newly proposed amplified FP aptasensor enables the quantitative measurement of proteins with the detection limit in attomolar range, which is about 6 orders of magnitude lower than that of traditional homogeneous aptasensors. Moreover, this sensing method also exhibits high specificity for target proteins and can be performed in homogeneous solutions. In addition, the suitability of this method for the quantification of target protein in biological samples has also been shown. Considering these distinct advantages, the proposed sensing method can be expected to provide an ultrasensitive platform for the analysis of various types of target molecules.

  19. Detection and differentiation of Campylobacter jejuni and Campylobacter coli in broiler chicken samples using a PCR/DNA probe membrane based colorimetric detection assay.

    PubMed

    O'Sullivan, N A; Fallon, R; Carroll, C; Smith, T; Maher, M

    2000-02-01

    Campylobacter enteritis in humans has been linked to consumption of poultry meat. Surveys show that 30-100% of poultry harbour Campylobacter as normal flora of the digestive tract which indicates a need to identify prevalent organism types in flocks and trace their epidemiology. In this study we describe a Campylobacter genus specific polymerase chain reaction (PCR) assay, amplifying the 16 S-23 S rRNA intergenic spacer region with an internal Campylobacter genus specific DNA probe and species specific probes for Campylobacter jejuni and Campylobacter coli designed for confirmation of the amplified PCR products by Southern blot and colorimetric reverse hybridization assays. The specificity of this assay was established by testing a range of food pathogens. Broiler chicken samples were tested following presumptive positive identification by the Malthus System V analyser (Malthus Instruments, UK). The combined PCR and colorimetric reverse hybridization assay is easy to perform and faster than conventional methods for confirmation and identification of Campylobacter species. Copyright 2000 Academic Press.

  20. Universal Oligonucleotide Microarray for Sub-Typing of Influenza A Virus

    PubMed Central

    Ryabinin, Vladimir A.; Kostina, Elena V.; Maksakova, Galiya A.; Neverov, Alexander A.; Chumakov, Konstantin M.; Sinyakov, Alexander N.

    2011-01-01

    A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1–H13, H15, H16) and neuraminidase (N1–N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus. PMID:21559081

  1. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences

    PubMed Central

    Mills, Dawn M.; Calvo-Marzal, Percy; Pinzon, Jeffer M.; Armas, Stephanie; Kolpashchikov, Dmitry M.; Chumbimuni-Torres, Karin Y.

    2017-01-01

    Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode’s surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode’s surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets. PMID:29371782

  2. Microbial identification by immunohybridization assay of artificial RNA labels

    NASA Technical Reports Server (NTRS)

    Kourentzi, Katerina D.; Fox, George E.; Willson, Richard C.

    2002-01-01

    Ribosomal RNA (rRNA) and engineered stable artificial RNAs (aRNAs) are frequently used to monitor bacteria in complex ecosystems. In this work, we describe a solid-phase immunocapture hybridization assay that can be used with low molecular weight RNA targets. A biotinylated DNA probe is efficiently hybridized in solution with the target RNA, and the DNA-RNA hybrids are captured on streptavidin-coated plates and quantified using a DNA-RNA heteroduplex-specific antibody conjugated to alkaline phosphatase. The assay was shown to be specific for both 5S rRNA and low molecular weight (LMW) artificial RNAs and highly sensitive, allowing detection of as little as 5.2 ng (0.15 pmol) in the case of 5S rRNA. Target RNAs were readily detected even in the presence of excess nontarget RNA. Detection using DNA probes as small as 17 bases targeting a repetitive artificial RNA sequence in an engineered RNA was more efficient than the detection of a unique sequence.

  3. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    PubMed

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. DNA-PKcs, a novel functional target of acriflavine, mediates acriflavine's p53-dependent synergistic anti-tumor efficiency with melphalan.

    PubMed

    Cao, Ji; Lin, Guanyu; Gong, Yanling; Pan, Peichen; Ma, Yaxi; Huang, Ping; Ying, Meidan; Hou, Tingjun; He, Qiaojun; Yang, Bo

    2016-12-01

    Acriflavine (ACF), a known antibacterial drug, has recently been recognized as a suitable candidate for cancer chemotherapy. However, the molecular target of ACF is not fully understood, which limits its application in cancer therapy. In this study, we established a structure-specific probe-based pull-down approach to comprehensively profile the potential target of ACF, and we identified DNA dependent protein kinase catalytic subunit (DNA-PKcs) as the direct target of ACF. Since DNA-PKcs facilitates the repair process following DNA double-strand breaks, we further developed a drug combination strategy that combined ACF with the bifunctional alkylating agent melphalan, which exerted a p53-dependent synergistic efficacy against human cancer cells both in vitro and in vivo. With these findings, our study demonstrated that structure-specific probe-based pull-down approaches can be used to identify new functional target of drug, and provided novel opportunities for the development of ACF-based antitumor chemotherapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. A rapid low-cost high-density DNA-based multi-detection test for routine inspection of meat species.

    PubMed

    Lin, Chun Chi; Fung, Lai Ling; Chan, Po Kwok; Lee, Cheuk Man; Chow, Kwok Fai; Cheng, Shuk Han

    2014-02-01

    The increasing occurrence of food frauds suggests that species identification should be part of food authentication. Current molecular-based species identification methods have their own limitations or drawbacks, such as relatively time-consuming experimental steps, expensive equipment and, in particular, these methods cannot identify mixed species in a single experiment. This project proposes an improved method involving PCR amplification of the COI gene and detection of species-specific sequences by hybridisation. Major innovative breakthrough lies in the detection of multiple species, including pork, beef, lamb, horse, cat, dog and mouse, from a mixed sample within a single experiment. The probes used are species-specific either in sole or mixed species samples. As little as 5 pg of DNA template in the PCR is detectable in the proposed method. By designing species-specific probes and adopting reverse dot blot hybridisation and flow-through hybridisation, a low-cost high-density DNA-based multi-detection test suitable for routine inspection of meat species was developed. © 2013.

  6. Chemiluminescent DNA optical fibre sensor for Brettanomyces bruxellensis detection.

    PubMed

    Cecchini, Francesca; Manzano, Marisa; Mandabi, Yohai; Perelman, Eddie; Marks, Robert S

    2012-01-01

    Food and beverage industries require rapid tests to limit economic losses and one way to do so is via molecular tests. In the present work, DNA capture and secondary probes, were designed to target the ITS (Internal Transcribed) sequences of Brettanomyces bruxellensis, a yeast responsible for the production of off flavours in both wine and beer. ITS1 and ITS2 were found to contain distinct regions with sufficient sequence divergence to make them suitable as specific identification target sites. The dot blot technique was used to determine the sensitivity and specificity of the capture probe. Both probes were, thereafter, adapted to construct an optical fibre genosensor, which produced neither false positives nor false negatives, and was both repeatable and faster with respect to traditional methods, the latter requiring at least one week to detect B. bruxellensis. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Comparing the Properties of Electrochemical-Based DNA Sensors Employing Different Redox Tags

    PubMed Central

    Kang, Di; Zuo, Xiaolei; Yang, Renqiang; Xia, Fan; Plaxco, Kevin W.; White, Ryan J.

    2009-01-01

    Many electrochemical biosensor approaches developed in recent years utilize redox labeled (most commonly methylene blue or ferrocene) oligonucleotide probes site-specifically attached to an interrogating electrode. Sensors in this class have been reported employing a range of probe architectures, including single- and double-stranded DNA, more complex DNA structures, DNA and RNA aptamers and, most recently, DNA-small molecule chimeras. Signaling in this class of sensors is generally predicated on binding-induced changes in the efficiency with which the covalently attached redox label transfers electrons with the interrogating electrode. Here we have investigated how the properties of the redox tag affect the performance of such sensors. Specifically, we compare the differences in signaling and stability of electrochemical DNA sensors (E-DNA sensors) fabricated using either ferrocene or methylene blue as the signaling redox moiety. We find that while both tags support efficient E-DNA signaling, ferrocene produces slightly improved signal gain and target affinity. These small advantages, however, come at a potentially significant price: the ferrocene-based sensors are far less stable than their methylene blue counterparts, particularly with regards to stability to long-term storage, repeated electrochemical interrogations, repeated sensing/regeneration iterations, and employment in complex sample matrices such as blood serum. PMID:19810694

  8. Spectrophotometric and ultrasensitive DNA bioassay by circular-strand displacement polymerization reaction.

    PubMed

    Yu, Luxin; Wu, Wei; Chen, Junhua; Xiao, Zhuo; Ge, Chenchen; Lie, Puchang; Fang, Zhiyuan; Chen, Lingbo; Zhang, Ya; Zeng, Lingwen

    2013-12-07

    We demonstrated a new spectrophotometric DNA detection approach based on a circular strand-displacement polymerization reaction for the quantitative detection of sequence specific DNA. In this assay, the hybridization of an immobilized hairpin probe on the microtiter plate, to target DNA, results in a conformational change and leads to a stem separation. A short primer thus anneals with the open stem and triggers a polymerization reaction, allowing a cyclic reaction comprising the release of target DNA and hybridization of the target with the remaining immobilized hairpin probe. Through this cyclical process, a large number of duplex DNA complexes are produced. Finally, the biotin modified duplex DNA products can be detected via the HRP catalyzed substrate 3,3',5,5'-tetramethylbenzidine using a spectrophotometer. As a proof of concept, a short DNA sequence (20-nt) related to the South East Asia (SEA) type deletion of α-thalassemia was chosen as the model target. This proposed assay has a very high sensitivity and selectivity with a dynamic response ranging from 0.1 fM to 10 nM and the detection limit was 8 aM. It can be performed within 2 hours, and it can differentiate target SEA DNA from wild-type DNA. By substituting the hairpin probes used in the present work, this assay can be used to detect other subtypes of genetic disorders.

  9. Development and evaluation of probe based real time loop mediated isothermal amplification for Salmonella: A new tool for DNA quantification.

    PubMed

    Mashooq, Mohmad; Kumar, Deepak; Niranjan, Ankush Kiran; Agarwal, Rajesh Kumar; Rathore, Rajesh

    2016-07-01

    A one step, single tube, accelerated probe based real time loop mediated isothermal amplification (RT LAMP) assay was developed for detecting the invasion gene (InvA) of Salmonella. The probe based RT LAMP is a novel method of gene amplification that amplifies nucleic acid with high specificity and rapidity under isothermal conditions with a set of six primers. The whole procedure is very simple and rapid, and amplification can be obtained in 20min. Detection of gene amplification was accomplished by amplification curve, turbidity and addition of DNA binding dye at the end of the reaction results in colour difference and can be visualized under normal day light and in UV. The sensitivity of developed assay was found 10 fold higher than taqman based qPCR. The specificity of the RT LAMP assay was validated by the absence of any cross reaction with other members of enterobacteriaceae family and other gram negative bacteria. These results indicate that the probe based RT LAMP assay is extremely rapid, cost effective, highly specific and sensitivity and has potential usefulness for rapid Salmonella surveillance. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. New Prediction Model for Probe Specificity in an Allele-Specific Extension Reaction for Haplotype-Specific Extraction (HSE) of Y Chromosome Mixtures

    PubMed Central

    Rothe, Jessica; Watkins, Norman E.; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3′ terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3′ terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3′ terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%. PMID:23049901

  11. New prediction model for probe specificity in an allele-specific extension reaction for haplotype-specific extraction (HSE) of Y chromosome mixtures.

    PubMed

    Rothe, Jessica; Watkins, Norman E; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3' terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3' terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3' terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%.

  12. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

    PubMed Central

    Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev

    2012-01-01

    B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350

  13. Toward a Molecular Cytogenetic Map for Cultivated Sunflower (Helianthus annuus L.) by Landed BAC/BIBAC Clones

    PubMed Central

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources. PMID:23316437

  14. Yoctomole electrochemical genosensing of Ebola virus cDNA by rolling circle and circle to circle amplification.

    PubMed

    Carinelli, S; Kühnemund, M; Nilsson, M; Pividori, M I

    2017-07-15

    This work addresses the design of an Ebola diagnostic test involving a simple, rapid, specific and highly sensitive procedure based on isothermal amplification on magnetic particles with electrochemical readout. Ebola padlock probes were designed to detect a specific L-gene sequence present in the five most common Ebola species. Ebola cDNA was amplified by rolling circle amplification (RCA) on magnetic particles. Further re-amplification was performed by circle-to-circle amplification (C2CA) and the products were detected in a double-tagging approach using a biotinylated capture probe for immobilization on magnetic particles and a readout probe for electrochemical detection by square-wave voltammetry on commercial screen-printed electrodes. The electrochemical genosensor was able to detect as low as 200 ymol, corresponding to 120 cDNA molecules of L-gene Ebola virus with a limit of detection of 33 cDNA molecules. The isothermal double-amplification procedure by C2CA combined with the electrochemical readout and the magnetic actuation enables the high sensitivity, resulting in a rapid, inexpensive, robust and user-friendly sensing strategy that offers a promising approach for the primary care in low resource settings, especially in less developed countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection

    PubMed Central

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2008-01-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive and multiplex format, an alternative surface enhanced Raman scattering (SERS) based probe was designed and fabricated to covalently attach both DNA probing sequence and non-fluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the non-fluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA (ssDNA) to its complementary targets was successfully accomplished with a long-term goal to use non-fluorescent RTags in a Raman-based DNA microarray platform. PMID:17465531

  16. Detection of single-nucleotide polymorphisms using an ON-OFF switching of regenerated biosensor based on a locked nucleic acid-integrated and toehold-mediated strand displacement reaction.

    PubMed

    Gao, Zhong Feng; Ling, Yu; Lu, Lu; Chen, Ning Yu; Luo, Hong Qun; Li, Nian Bing

    2014-03-04

    Although various strategies have been reported for single-nucleotide polymorphisms (SNPs) detection, development of a time-saving, specific, and regenerated electrochemical sensing platform still remains a realistic goal. In this study, an ON-OFF switching of a regenerated biosensor based on a locked nucleic acid (LNA)-integrated and toehold-mediated strand displacement reaction technique is constructed for detection of SNPs. The LNA-integrated and methylene blue-labeled capture probe with an external toehold is designed to switch on the sensing system. The mutant-type DNA probe completes complementary with the capture probe to trigger the strand displacement reaction, which switches off the sensing system. However, when the single-base mismatched wild-type DNA probe is presented, the strand displacement reaction cannot be achieved; therefore, the sensing system still keeps the ON state. This DNA sensor is stable over five reuses. We further testify that the LNA-integrated sequence has better recognition ability for SNPs detection compared to the DNA-integrated sequence. Moreover, this DNA senor exhibits a remarkable discrimination capability of SNPs among abundant wild-type targets and 6000-fold (m/m) excess of genomic DNA. In addition, it is selective enough in complex and contaminant-ridden samples, such as human urine, soil, saliva, and beer. Overall, these results demonstrate that this reliable DNA sensor is easy to be fabricated, simple to operate, and stable enough to be readily regenerated.

  17. Gold-mercaptopropionic acid-polyethylenimine composite based DNA sensor for early detection of rheumatic heart disease.

    PubMed

    Singh, Swati; Kaushal, Ankur; Khare, Shashi; Kumar, Pradeep; Kumar, Ashok

    2014-07-21

    The first gold-mercaptopropionic acid-polyethylenimine composite based electrochemical DNA biosensor was fabricated for the early detection of Streptococcus pyogenes infection in humans causing rheumatic heart disease (heart valve damage). No biosensor is available for the detection of rheumatic heart disease (RHD). Therefore, the mga gene based sensor was developed by the covalent immobilization of a 5'-carboxyl modified single stranded DNA probe onto the gold composite electrode. The immobilized probe was hybridized with the genomic DNA (G-DNA) of S. pyogenes from throat swabs and the electrochemical response was measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance (EI). Covalent immobilization of the probe onto the gold composite and its hybridization with G-DNA was characterized by FTIR and SEM. The sensitivity of the sensor was 110.25 μA cm(-2) ng(-1) with DPV and the lower limit of detection was 10 pg per 6 μL. The sensor was validated with patient throat swab samples and results were compared with available methods. The sensor is highly specific to S. pyogenes and can prevent damage to heart valves by the early detection of the infection in only 30 min.

  18. Oligonucleotide probes to the 16S ribosomal RNA: implications of sequence homology and secondary structure with particular reference to the oral species Prevotella intermedia and Prevotella nigrescens.

    PubMed

    Shah, H N; Gharbia, S E; Scully, C; Finegold, S M

    1995-03-01

    Eight oligonucleotides based upon regions of the small subunit 16S ribosomal RNA gene sequences were analysed against a background of their position within the molecule and their two-dimensional structure to rationalise their use in recognising Prevotella intermedia and Prevotella nigrescens. The 41 clinical isolates from both oral and respiratory sites and two reference strains were subjected to DNA-DNA hybridisation and multilocus enzyme electrophoresis to confirm their identity. Alignment of oligonucleotide probes designated I Bi-2 to I Bi-6 (for P. intermedia) and 2Bi-2 (for P. nigrescens) with the 16S rRNA suggested that these probes lacked specificity or were constructed from hypervariable regions. A 52-mer oligonucleotide (designated Bi) reliably detected both species. Because of the high degree of concordance between the 16S rRNAs of both species, it was necessary to vary the stringency of hybridisation conditions for detection of both species. Thus probe I Bi-I recognised P. intermedia while I Bi-I detected both P. intermedia and P. nigrescens at low stringency. However, under conditions of high stringency only P. nigrescens was recognised by probe 2Bi-I. These probes were highly specific and did not hybridise with DNA from the closely related P. corporis, nor other periodontal pathogens such as Fusobacterium nucleatum, Actinobacillus actinomycetemcomitans, Treponema denticola and several pigmented species such as Prevotella melaninogenica, P. denticola, P. loescheii, Porphyromonas asaccharolytica, Py. endodontalis, Py. gingivalis, Py. levii, and Py. macacae.

  19. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Gyoyeon; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon; Lee, Hansol

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Ptmore » conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.« less

  20. Disposable Amperometric Polymerase Chain Reaction-Free Biosensor for Direct Detection of Adulteration with Horsemeat in Raw Lysates Targeting Mitochondrial DNA.

    PubMed

    Ruiz-Valdepeñas Montiel, Víctor; Gutiérrez, María L; Torrente-Rodríguez, Rebeca M; Povedano, Eloy; Vargas, Eva; Reviejo, Á Julio; Linacero, Rosario; Gallego, Francisco J; Campuzano, Susana; Pingarrón, José M

    2017-09-05

    A novel electrochemical disposable nucleic acid biosensor for simple, rapid, and specific detection of adulterations with horsemeat is reported in this work. The biosensing platform involves immobilization of a 40-mer RNA probe specific for a characteristic fragment of the mitochondrial DNA D-loop region of horse onto the surface of magnetic microcarriers. In addition, signal amplification was accomplished by using a commercial antibody specific to RNA/DNA duplexes and a bacterial protein conjugated with a horseradish peroxidase homopolymer (ProtA-HRP40). Amperometric detection at -0.20 V vs Ag pseudoreference electrode was carried out at disposable screen-printed carbon electrodes. The methodology achieved a limit of detection (LOD) of 0.12 pM (3.0 attomoles) for the synthetic target and showed ability to discriminate between raw beef and horsemeat using just 50 ng of total extracted mitochondrial DNA (∼16 660 bp in length) without previous fragmentation. The biosensor also allowed discrimination between 100% raw beef and beef meat samples spiked with only 0.5% (w/w) horse meat (levels established by the European Commission) using raw mitochondrial lysates without DNA extraction or polymerase chain reaction (PCR) amplification in just 75 min. These interesting features made the developed methodology an extremely interesting tool for beef meat screening, and it can be easily adapted to the determination of other meat adulterations by selection of the appropriate specific fragments of the mitochondrial DNA region and capture probes.

  1. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    PubMed

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  2. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions.

    PubMed

    Hume, Maxwell A; Barrera, Luis A; Gisselbrecht, Stephen S; Bulyk, Martha L

    2015-01-01

    The Universal PBM Resource for Oligonucleotide Binding Evaluation (UniPROBE) serves as a convenient source of information on published data generated using universal protein-binding microarray (PBM) technology, which provides in vitro data about the relative DNA-binding preferences of transcription factors for all possible sequence variants of a length k ('k-mers'). The database displays important information about the proteins and displays their DNA-binding specificity data in terms of k-mers, position weight matrices and graphical sequence logos. This update to the database documents the growth of UniPROBE since the last update 4 years ago, and introduces a variety of new features and tools, including a new streamlined pipeline that facilitates data deposition by universal PBM data generators in the research community, a tool that generates putative nonbinding (i.e. negative control) DNA sequences for one or more proteins and novel motifs obtained by analyzing the PBM data using the BEEML-PBM algorithm for motif inference. The UniPROBE database is available at http://uniprobe.org. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Application of DNA probes for rRNA and vanA genes to investigation of a nosocomial cluster of vancomycin-resistant enterococci.

    PubMed Central

    Woodford, N; Morrison, D; Johnson, A P; Briant, V; George, R C; Cookson, B

    1993-01-01

    DNA probes specific for genes encoding rRNA and the glycopeptide resistance gene vanA were used to investigate a cluster of vancomycin-resistant (MICs, > 512 mg/liter) Enterococcus faecalis and Enterococcus faecium isolated from separate patients in a renal unit in a London hospital. When digested with BamHI, 12 of 13 vancomycin-resistant E. faecalis isolates exhibited a common restriction fragment length polymorphism pattern of rRNA genes (ribotype). A vanA probe hybridized with chromosomal DNA in these 12 isolates. The other isolate of vancomycin-resistant E. faecalis had a different ribotype and the vanA gene was located on plasmid DNA. These data suggest that cross-infection with a single strain of vancomycin-resistant E. faecalis occurred in most instances. In contrast, 23 vancomycin-resistant E. faecium isolates showed greater heterogeneity, comprising 8 ribotypes, suggesting that multiple strains were present in the unit. Twenty-one of these 23 isolates harbored a 24-MDa plasmid which hybridized with the vanA probe, implying that interstrain dissemination of a vancomycin resistance plasmid may have occurred among E. faecium isolates in the renal unit. Images PMID:8096216

  4. PCR-enzyme-linked immunosorbent assay and partial rRNA gene sequencing: a rational approach to identifying mycobacteria.

    PubMed Central

    Patel, S; Yates, M; Saunders, N A

    1997-01-01

    A PCR-enzyme-linked immunosorbent assay (ELISA) for amplification and rapid identification of mycobacterial DNA coding for 16S rRNA was developed. The PCR selectively targeted and amplified part of the 16S rRNA gene from all mycobacteria while simultaneously labelling one strand of the amplified product with a 5' fluorescein-labelled primer. The identity of the labelled strand was subsequently determined by hybridization to a panel of mycobacterial species-specific capture probes, which were immobilized via their 5' biotin ends to a streptavidin-coated microtiter plate. Specific hybridization of a 5' fluorescein-labelled strand to a species probe was detected colorimetrically with an anti-fluorescein enzyme conjugate. The assay was able to identify 10 Mycobacterium spp. A probe able to hybridize to all Mycobacterium species (All1) was also included. By a heminested PCR, the assay was sensitive enough to detect as little as 10 fg of DNA, which is equivalent to approximately three bacilli. The assay was able to detect and identify mycobacteria directly from sputa. The specificities of the capture probes were assessed by analysis of 60 mycobacterial strains corresponding to 18 species. Probes Avi1, Int1, Kan1, Xen1, Che1, For1, Mal1, Ter1, and Gor1 were specific. The probe Tbc1 cross-hybridized with the Mycobacterium terrae amplicon. Analysis of 35 strains tested blind resulted in 34 strains being correctly identified. This method could be used for rapid identification of early cultures and may be suitable for the detection and concurrent identification of mycobacteria within clinical specimens. PMID:9276419

  5. Signal amplification of padlock probes by rolling circle replication.

    PubMed Central

    Banér, J; Nilsson, M; Mendel-Hartvig, M; Landegren, U

    1998-01-01

    Circularizing oligonucleotide probes (padlock probes) have the potential to detect sets of gene sequences with high specificity and excellent selectivity for sequence variants, but sensitivity of detection has been limiting. By using a rolling circle replication (RCR) mechanism, circularized but not unreacted probes can yield a powerful signal amplification. We demonstrate here that in order for the reaction to proceed efficiently, the probes must be released from the topological link that forms with target molecules upon hybridization and ligation. If the target strand has a nearby free 3' end, then the probe-target hybrids can be displaced by the polymerase used for replication. The displaced probe can then slip off the targetstrand and a rolling circle amplification is initiated. Alternatively, the target sequence itself can prime an RCR after its non-base paired 3' end has been removed by exonucleolytic activity. We found the Phi29 DNA polymerase to be superior to the Klenow fragment in displacing the target DNA strand, and it maintained the polymerization reaction for at least 12 h, yielding an extension product that represents several thousand-fold the length of the padlock probe. PMID:9801302

  6. Comparison of peroxidase-labeled DNA probes with radioactive RNA probes for detection of human papillomaviruses by in situ hybridization in paraffin sections.

    PubMed

    Park, J S; Kurman, R J; Kessis, T D; Shah, K V

    1991-01-01

    A study comparing in situ hybridization using nonradioactive DNA probes directly conjugated with horseradish peroxidase (HRP), and 35S-labeled antisense RNA probes for human papillomavirus (HPV) types 6/11, 16, and 18 was performed on formalin-fixed, paraffin-embedded tissue from 34 lesions of the cervix and vulva. These lesions included exophytic condylomas and intraepithelial and invasive neoplasms. HPV 6/11 was detected in two of four condylomata acuminata by both in situ techniques. HPV 16 was detected in 13 of 30 cases of intraepithelial and invasive neoplasms by both methods. Discordance between the two methods occurred in two instances. The radiolabeled probe but not the HRP probe detected HPV 16 in one case of cervical intraepithelial neoplasia (CIN 3), whereas the converse occurred in one case of vulvar intraepithelial neoplasia (VIN 3). HPV 18 was not detected in any of the specimens by either method. This study demonstrates that nonradioactive HRP-labeled probes for the detection of specific HPV types are as sensitive as the more laborious and potentially hazardous radioactive probes.

  7. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology.

    PubMed

    Liu, Liqin; Luo, Qiaoling; Teng, Wan; Li, Bin; Li, Hongwei; Li, Yiwen; Li, Zhensheng; Zheng, Qi

    2018-05-01

    Based on SLAF-seq, 67 Thinopyrum ponticum-specific markers and eight Th. ponticum-specific FISH probes were developed, and these markers and probes could be used for detection of alien chromatin in a wheat background. Decaploid Thinopyrum ponticum (2n = 10x = 70) is a valuable gene reservoir for wheat improvement. Identification of Th. ponticum introgression would facilitate its transfer into diverse wheat genetic backgrounds and its practical utilization in wheat improvement. Based on specific-locus-amplified fragment sequencing (SLAF-seq) technology, 67 new Th. ponticum-specific molecular markers and eight Th. ponticum-specific fluorescence in situ hybridization (FISH) probes have been developed from a tiny wheat-Th. ponticum translocation line. These newly developed molecular markers allowed the detection of Th. ponticum DNA in a variety of materials specifically and steadily at high throughput. According to the hybridization signal pattern, the eight Th. ponticum-specific probes could be divided into two groups. The first group including five dispersed repetitive sequence probes could identify Th. ponticum chromatin more sensitively and accurately than genomic in situ hybridization (GISH). Whereas the second group having three tandem repetitive sequence probes enabled the discrimination of Th. ponticum chromosomes together with another clone pAs1 in wheat-Th. ponticum partial amphiploid Xiaoyan 68.

  8. BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing

    PubMed Central

    Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph

    2011-01-01

    Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797

  9. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    PubMed

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  10. Trypanosomatidae: a spliced-leader-derived probe specific for the genus Phytomonas.

    PubMed

    Teixeira, M M; Serrano, M G; Nunes, L R; Campaner, M; Buck, G A; Camargo, E P

    1996-12-01

    We probed DNA from all trypanosomatid genera by slot blot hybridization with an oligonucleotide (SL3') complementary to a sequence of the Phytomonas spliced-leader or mini-exon RNA. The 19-nucleotide probe target site was previously shown to be highly conserved among a limited number of Phytomonas isolates, but diverges in other kinetoplastid genera. Our examination of 84 isolates of various genera of trypanosomatids showed hybridization of this probe exclusively with isolates from plants or insects which could, by morphological, biochemical, and molecular criteria, be considered to belong to the genus Phytomonas. In contrast, no hybridization was observed with flagellates of the genera Blastocrithidia, Crithidia, Endotrypanum, Herpetomonas, Leptomonas, Leishmania, and Trypanosoma. The method detected DNA quantities as low as 50 ng using either radioactive or nonradioactive probes, and was effective with as few as 10(4) intact flagellates. Together, these results suggest that this probe will serve as a convenient marker for taxonomic and epidemiological studies requiring reliable identification of Phytomonas spp. in plants or in putative insect vectors.

  11. The early days of blotting.

    PubMed

    Southern, Edwin

    2015-01-01

    The history of the development of DNA blotting is described in this chapter. DNA blotting, involving the transfer of electrophoretically separated DNA fragments to a membrane support through capillary action, is also known as Southern blotting. This procedure enables the detection of a specific DNA sequence by hybridization with probes. The term Southern blotting led to a "geographic" naming tradition, with RNA blotting bearing the name Northern blotting and protein transfer to membranes becoming known as Western blotting.

  12. Strand-invading linear probe combined with unmodified PNA.

    PubMed

    Asanuma, Hiroyuki; Niwa, Rie; Akahane, Mariko; Murayama, Keiji; Kashida, Hiromu; Kamiya, Yukiko

    2016-09-15

    Efficient strand invasion by a linear probe to fluorescently label double-stranded DNA has been implemented by employing a probe and unmodified PNA. As a fluorophore, we utilized ethynylperylene. Multiple ethynylperylene residues were incorporated into the DNA probe via a d-threoninol scaffold. The ethynylperylene did not significantly disrupt hybridization with complementary DNA. The linear probe self-quenched in the absence of target DNA and did not hybridize with PNA. A gel-shift assay revealed that linear probe and PNA combination invaded the central region of double-stranded DNA upon heat-shock treatment to form a double duplex. To further suppress the background emission and increase the stability of the probe/DNA duplex, a probe containing anthraquinones as well as ethynylperylene was synthesized. This probe and PNA invader pair detected an internal sequence in a double-stranded DNA with high sensitivity when heat shock treatment was used. The probe and PNA pair was able to invade at the terminus of a long double-stranded DNA at 40°C at 100mM NaCl concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. DNA fingerprinting of Brassica juncea cultivars using microsatellite probes.

    PubMed

    Bhatia, S; Das, S; Jain, A; Lakshmikumaran, M

    1995-09-01

    The genetic variability in the Brassica juncea cultivars was detected by employing in-gel hybridization of restricted DNA to simple repetitive sequences such as (GATA)4, (GACA)4 and (CAC)5. The most informative probe/enzyme combination was (GATA)4/EcoRI, yielding highly polymorphic fingerprint patterns for the B. juncea cultivars. This technique was found to be dependable for establishing the variety specific patterns for most of the cultivars studied, a prerequisite for germplasm preservation. The results of the present study were compared with those reported in our earlier study in which random amplification of polymorphic DNA (RAPD) was used for assessing the genetic variability in the B. juncea cultivars.

  14. High-resolution mapping and sequence analysis of 597 cDNA clones transcribed from the 1 Mb region in human chromosome 4q16.3 containing Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadano, S.; Ishida, Y.; Tomiyasu, H.

    1994-09-01

    To complete a transcription map of the 1 Mb region in human chromosome 4p16.3 containing the Huntington disease (HD) gene, the isolation of cDNA clones are being performed throughout. Our method relies on a direct screening of the cDNA libraries probed with single copy microclones from 3 YAC clones spanning 1 Mbp of the HD gene region. AC-DNAs were isolated by a preparative pulsed-field gel electrophoresis, amplified by both a single unique primer (SUP)-PCR and a linker ligation PCR, and 6 microclone-DNA libraries were generated. Then, 8,640 microclones from these libraries were independently amplified by PCR, and arrayed onto themore » membranes. 800-900 microclones that were not cross-hybridized with total human and yeast genomic DNA, TAC vector DNA, and ribosomal cDNA on a dot hybridization (putatively carrying single copy sequences) were pooled to make 9 probe pools. A total of {approximately}1.8x10{sup 7} plaques from the human brain cDNA libraries was screened with 9 pool-probes, and then 672 positive cDNA clones were obtained. So far, 597 cDNA clones were defined and arrayed onto a map of the 1 Mbp of the HD gene region by hybridization with HD region-specific cosmid contigs and YAC clones. Further characterization including a DNA sequencing and Northern blot analysis is currently underway.« less

  15. Electrochemical DNA sensor for Neisseria meningitidis detection.

    PubMed

    Patel, Manoj K; Solanki, Pratima R; Kumar, Ashok; Khare, Shashi; Gupta, Sunil; Malhotra, Bansi D

    2010-08-15

    Meningitis sensor based on nucleic acid probe of Neisseria meningitidis has been fabricated by immobilization of 5'-thiol end labeled single stranded deoxyribonucleic acid probe (ssDNA-SH) onto gold (Au) coated glass electrode. This ssDNA-SH/Au electrode hybridized with the genomic DNA (G-dsDNA/Au) and amplified DNA (PCR-dsDNA/Au) has been characterized using atomic force microscopy (AFM), Fourier transforms infrared spectroscopy (FT-IR) and electrochemical techniques. The ssDNA-SH/Au electrode can specifically detect upto 10-60 ng/microl of G-dsDNA-SH/Au and PCR-dsDNA-SH/Au of meningitis within 60s of hybridization time at 25 degrees C by cyclic voltammetry (CV) using methylene blue (MB) as electro-active DNA hybridization indicator. The values of sensitivities of the G-dsDNA-SH/Au and PCR-dsDNA-SH/Au electrodes have been determined as 0.0115 microA/ng cm(-2) and 0.0056 microA/ng cm(-2), respectively with regression coefficient (R) as 0.999. This DNA bioelectrode is stable for about 4 months when stored at 4 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Detection and differentiation of coxiella burnetii in biological fluids

    DOEpatents

    Frazier, Marvin E.; Mallavia, Louis P.; Samuel, James E.; Baca, Oswald G.

    1993-01-01

    Methods for detecting the presence of Coxiella burnetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA with a DNA probe containing DNA sequences that specifically hybridize with C. burnetii DNA of strains associated with the capacity to cause acute or chronic disease.

  17. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms

    PubMed Central

    Thavanathan, Jeevan; Huang, Nay Ming; Thong, Kwai Lin

    2015-01-01

    We have developed a colorimetric biosensor using a dual platform of gold nanoparticles and graphene oxide sheets for the detection of Salmonella enterica. The presence of the invA gene in S. enterica causes a change in color of the biosensor from its original pinkish-red to a light purplish solution. This occurs through the aggregation of the primary gold nanoparticles–conjugated DNA probe onto the surface of the secondary graphene oxide–conjugated DNA probe through DNA hybridization with the targeted DNA sequence. Spectrophotometry analysis showed a shift in wavelength from 525 nm to 600 nm with 1 μM of DNA target. Specificity testing revealed that the biosensor was able to detect various serovars of the S. enterica while no color change was observed with the other bacterial species. Sensitivity testing revealed the limit of detection was at 1 nM of DNA target. This proves the effectiveness of the biosensor in the detection of S. enterica through DNA hybridization. PMID:25897217

  18. DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor

    NASA Astrophysics Data System (ADS)

    Hien, L. T.; Quynh, L. K.; Huyen, V. T.; Tu, B. D.; Hien, N. T.; Phuong, D. M.; Nhung, P. H.; Giang, D. T. H.; Duc, N. H.

    2016-12-01

    A disposable card incorporating specific DNA probes targeting the 16 S rRNA gene of Streptococcus suis was developed for magnetically labeled target DNA detection. A single-stranded target DNA was hybridized with the DNA probe on the SPA/APTES/PDMS/Si as-prepared card, which was subsequently magnetically labeled with superparamagnetic beads for detection using an anisotropic magnetoresistive (AMR) sensor. An almost linear response between the output signal of the AMR sensor and amount of single-stranded target DNA varied from 4.5 to 18 pmol was identified. From the sensor output signal response towards the mass of magnetic beads which were directly immobilized on the disposable card surface, the limit of detection was estimated about 312 ng ferrites, which corresponds to 3.8 μemu. In comparison with DNA detection by conventional biosensor based on magnetic bead labeling, disposable cards are featured with higher efficiency and performances, ease of use and less running cost with respects to consumables for biosensor in biomedical analysis systems operating with immobilized bioreceptor.

  19. Development of Active DNA Control Technique for DNA Sequencer With a Solid-state Nanopore

    NASA Astrophysics Data System (ADS)

    Akahori, Rena; Harada, Kunio; Goto, Yusuke; Yanagi, Itaru; Yokoi, Takahide; Oura, Takeshi; Shibahara, Masashi; Takeda, Ken-Ichi

    We have developed a technique that can control the arbitrary speeds of DNA passing through a solid-state nanopore of a DNA sequencer. For this active DNA control technique, we used a DNA-immobilized Si probe, larger than the membrane with a nanopore, and used a piezoelectric actuator and stepper motor to drive the probe. This probe enables a user to adjust the relative position between the nanopore and DNA immobilized on the probe without the need for precise lateral control. In this presentation, we demonstrate how DNA (block copolymer ([(dT)25-(dC)25-(dA)50]m)), immobilized on the probe, slid through a nanopore and was pulled out using the active DNA control technique. As the DNA-immobilized probe was being pulled out, we obtained various ion-current signal levels corresponding to the number of different nucleotides in a single strand of DNA.

  20. Ultrasensitive and Multiple Disease-Related MicroRNA Detection Based on Tetrahedral DNA Nanostructures and Duplex-Specific Nuclease-Assisted Signal Amplification.

    PubMed

    Xu, Fang; Dong, Haifeng; Cao, Yu; Lu, Huiting; Meng, Xiangdan; Dai, Wenhao; Zhang, Xueji; Al-Ghanim, Khalid Abdullah; Mahboob, Shahid

    2016-12-14

    A highly sensitive and multiple microRNA (miRNA) detection method by combining three-dimensional (3D) DNA tetrahedron-structured probes (TSPs) to increase the probe reactivity and accessibility with duplex-specific nuclease (DSN) for signal amplification for sensitive miRNA detection was proposed. Briefly, 3D DNA TSPs labeled with different fluorescent dyes for specific target miRNA recognition were modified on a gold nanoparticle (GNP) surface to increase the reactivity and accessibility. Upon hybridization with a specific target, the TSPs immobilized on the GNP surface hybridized with the corresponding target miRNA to form DNA-RNA heteroduplexes, and the DSN can recognize the formed DNA-RNA heteroduplexes to hydrolyze the DNA in the heteroduplexes to produce a specific fluorescent signal corresponding to a specific miRNA, while the released target miRNA strands can initiate another cycle, resulting in a significant signal amplification for sensitive miRNA detection. Different targets can produce different fluorescent signals, leading to the development of a sensitive detection for multiple miRNAs in a homogeneous solution. Under optimized conditions, the proposed assay can simultaneously detect three different miRNAs in a homogeneous solution with a logarithmic linear range spanning 5 magnitudes (10 -12 -10 -16 ) and achieving a limit of detection down to attomolar concentrations. Meanwhile, the proposed miRNA assay exhibited the capability of discriminating single bases (three bases mismatched miRNAs) and showed good eligibility in the analysis of miRNAs extracted from cell lysates and miRNAs in cell incubation media, which indicates its potential use in biomedical research and clinical analysis.

  1. Event-specific qualitative and quantitative PCR detection of the GMO carnation (Dianthus caryophyllus) variety Moonlite based upon the 5'-transgene integration sequence.

    PubMed

    Li, P; Jia, J W; Jiang, L X; Zhu, H; Bai, L; Wang, J B; Tang, X M; Pan, A H

    2012-04-27

    To ensure the implementation of genetically modified organism (GMO)-labeling regulations, an event-specific detection method was developed based on the junction sequence of an exogenous integrant in the transgenic carnation variety Moonlite. The 5'-transgene integration sequence was isolated by thermal asymmetric interlaced PCR. Based upon the 5'-transgene integration sequence, the event-specific primers and TaqMan probe were designed to amplify the fragments, which spanned the exogenous DNA and carnation genomic DNA. Qualitative and quantitative PCR assays were developed employing the designed primers and probe. The detection limit of the qualitative PCR assay was 0.05% for Moonlite in 100 ng total carnation genomic DNA, corresponding to about 79 copies of the carnation haploid genome; the limit of detection and quantification of the quantitative PCR assay were estimated to be 38 and 190 copies of haploid carnation genomic DNA, respectively. Carnation samples with different contents of genetically modified components were quantified and the bias between the observed and true values of three samples were lower than the acceptance criterion (<25%) of the GMO detection method. These results indicated that these event-specific methods would be useful for the identification and quantification of the GMO carnation Moonlite.

  2. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.

    2010-07-23

    Research highlights: {yields} Successful fusion of GFP to M.EcoKI DNA methyltransferase. {yields} GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. {yields} FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerstermore » resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.« less

  3. Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode.

    PubMed

    Daneshpour, Maryam; Moradi, Leila Syed; Izadi, Pantea; Omidfar, Kobra

    2016-03-15

    The alterations in DNA methylation pattern have been identified as one of the most frequent molecular phenomenon in human cancers. The RASSF1A tumor suppressor gene was shown to be often inactivated by hypermethylation of its promoter region. In the present study, a novel chip format sandwich electrochemical genosensor has been developed for the analysis of gene-specific methylation using Fe3O4/N-trimethyl chitosan/gold (Fe3O4/TMC/Au) nanocomposite as tracing tag to label DNA probe and polythiophene (PT) as immobilization platform of sensing element. However, no attempt has yet been made to conjugate DNA probe to Fe3O4/TMC/Au nanocomposite as electrochemical label for strip-based genosensing. Cyclic voltammetric (CV) analysis indicated that modification procedure was well performed. Differential pulse voltammetry (DPV) was employed for quantitative assessment of RASSF1A DNA promoter methylation. The electrochemical measurements accomplished using non-specific DNA fragments mixed with samples, revealed the high specificity and selectivity in methylation analysis by means of this DNA nanobiosensor. With the linear range of concentration from 1 × 10(-14)M to 5 × 10(-9)M and the detection limit of 2 × 10(-15)M, this new strategy has shown such a promising application to be used for universal analysis of any DNA sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III-aided cycling amplification.

    PubMed

    Zeng, Yan; Wan, Yi; Zhang, Dun; Qi, Peng

    2015-01-01

    A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III (Exo-III) aided cycling amplification has been developed. This magneto-DNA duplex probe contains a partly hybrid fluorophore-modified capture probe and a fluorophore-modified signal probe with magnetic microparticle as carrier. In the presence of a perfectly matched target bacterial DNA, blunt 3'-terminus of the capture probe is formed, activating the Exo-III aided cycling amplification. Thus, Exo-III catalyzes the stepwise removal of mononucleotides from this terminus, releasing both fluorophore-modified signal probe, fluorescent dyes of the capture probe and target DNA. The released target DNA then starts a new cycle, while released fluorescent fragments are recovered with magnetic separation for fluorescence signal collection. This system exhibited sensitive detection of bacterial DNA, with a detection limit of 14 pM because of the unique cleavage function of Exo-III, high fluorescence intensity, and separating function of magneto-DNA duplex probes. Besides this sensitivity, this strategy exhibited excellent selectivity with mismatched bacterial DNA targets and other bacterial species targets and good applicability in real seawater samples, hence, this strategy could be potentially used for qualitative and quantitative analysis of bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A novel sensitive pathogen detection system based on Microbead Quantum Dot System.

    PubMed

    Wu, Tzong-Yuan; Su, Yi-Yu; Shu, Wei-Hsien; Mercado, Augustus T; Wang, Shi-Kwun; Hsu, Ling-Yi; Tsai, Yow-Fu; Chen, Chung-Yung

    2016-04-15

    A fast and accurate detection system for pathogens can provide immediate measurements for the identification of infectious agents. Therefore, the Microbead Quantum-dots Detection System (MQDS) was developed to identify and measure target DNAs of pathogenic microorganisms and eliminated the need of PCR amplifications. This nanomaterial-based technique can detect different microorganisms by flow cytometry measurements. In MQDS, pathogen specific DNA probes were designed to form a hairpin structure and conjugated on microbeads. In the presence of the complementary target DNA sequence, the probes will compete for binding with the reporter probes but will not interfere with the binding between the probe and internal control DNA. To monitor the binding process by flow cytometry, both the reporter probes and internal control probes were conjugated with Quantum dots that fluoresce at different emission wavelengths using the click reaction. When MQDS was used to detect the pathogens in environmental samples, a high correlation coefficient (R=0.994) for Legionella spp., with a detection limit of 0.1 ng of the extracted DNAs and 10 CFU/test, can be achieved. Thus, this newly developed technique can also be applied to detect other pathogens, particularly viruses and other genetic diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay

    PubMed Central

    Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility. PMID:26544710

  7. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    PubMed

    Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  8. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors

    PubMed Central

    2018-01-01

    All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity. PMID:29768011

  9. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors.

    PubMed

    Gao, Zhaoli; Xia, Han; Zauberman, Jonathan; Tomaiuolo, Maurizio; Ping, Jinglei; Zhang, Qicheng; Ducos, Pedro; Ye, Huacheng; Wang, Sheng; Yang, Xinping; Lubna, Fahmida; Luo, Zhengtang; Ren, Li; Johnson, Alan T Charlie

    2018-06-13

    All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity.

  10. Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity

    PubMed Central

    Wilcox, Taylor M.; McKelvey, Kevin S.; Young, Michael K.; Jane, Stephen F.; Lowe, Winsor H.; Whiteley, Andrew R.; Schwartz, Michael K.

    2013-01-01

    Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method’s sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design. PMID:23555689

  11. Robust detection of rare species using environmental DNA: the importance of primer specificity.

    PubMed

    Wilcox, Taylor M; McKelvey, Kevin S; Young, Michael K; Jane, Stephen F; Lowe, Winsor H; Whiteley, Andrew R; Schwartz, Michael K

    2013-01-01

    Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method's sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design.

  12. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    PubMed

    Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  13. Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2014-05-01

    Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials. Electronic supplementary information (ESI) available: Methods, additional gels, kinetics, mass spectrum. See DOI: 10.1039/c4nr00867g

  14. Nonradioactive Screening Method for Isolation of Disease-Specific Probes To Diagnose Plant Diseases Caused by Mycoplasmalike Organisms

    PubMed Central

    Lee, Ing-Ming; Davis, Robert E.; DeWitt, Natalie D.

    1990-01-01

    DNA fragments of tomato big bud (BB) mycoplasmalike organism (MLO) in diseased periwinkle plants (Catharanthus roseus L.) were cloned to pSP6 plasmid vectors and amplified in Escherichia coli JM83. A nonradioactive method was developed and used to screen for MLO-specific recombinants. Cloned DNA probes were prepared by nick translation of the MLO recombinant plasmids by using biotinylated nucleotides. The probes all hybridized with nucleic acid from BB MLO-infected, but not healthy, plants. Results from dot hybridization analyses indicated that several MLOs, e.g., those of Italian tomato big bud, periwinkle little leaf, and clover phyllody, are closely related to BB MLO. The Maryland strain of aster yellows and maize bushy stunt MLOs are also related to BB MLO. Among the remaining MLOs used in this study, Vinca virescence and elm yellows MLOs may be very distantly related, if at all, to BB MLO. Potato witches' broom, clover proliferation, ash yellows, western X, and Canada X MLOs are distantly related to BB MLO. Southern hybridization analyses revealed that BB MLO contains extrachromosomal DNA that shares sequence homologies with extrachromosomal DNAs from aster yellows and periwinkle little leaf MLOs. Images PMID:16348195

  15. An Elegant Biosensor Molecular Beacon Probe: Challenges and Recent Solutions

    PubMed Central

    Kolpashchikov, Dmitry M.

    2012-01-01

    Molecular beacon (MB) probes are fluorophore- and quencher-labeled short synthetic DNAs folded in a stem-loop shape. Since the first report by Tyagi and Kramer, it has become a widely accepted tool for nucleic acid analysis and triggered a cascade of related developments in the field of molecular sensing. The unprecedented success of MB probes stems from their ability to detect specific DNA or RNA sequences immediately after hybridization with no need to wash out the unbound probe (instantaneous format). Importantly, the hairpin structure of the probe is responsible for both the low fluorescent background and improved selectivity. Furthermore, the signal is generated in a reversible manner; thus, if the analyte is removed, the signal is reduced to the background. This paper highlights the advantages of MB probes and discusses the approaches that address the challenges in MB probe design. Variations of MB-based assays tackle the problem of stem invasion, improve SNP genotyping and signal-to-noise ratio, as well as address the challenges of detecting folded RNA and DNA. PMID:24278758

  16. Synthetic-Molecule/Protein Hybrid Probe with Fluorogenic Switch for Live-Cell Imaging of DNA Methylation.

    PubMed

    Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya

    2018-02-07

    Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.

  17. Highly Sensitive Detection of Target Biomolecules on Cell Surface Using Gold Nanoparticle Conjugated with Aptamer Probe

    NASA Astrophysics Data System (ADS)

    Kim, Hyonchol; Terazono, Hideyuki; Hayashi, Masahito; Takei, Hiroyuki; Yasuda, Kenji

    2012-06-01

    A method of gold nanoparticle (Au NP) labeling with backscattered electron (BE) imaging of field emission scanning electron microscopy (FE-SEM) was applied for specific detection of target biomolecules on a cell surface. A single-stranded DNA aptamer, which specifically binds to the target molecule on a human acute lymphoblastic leukemia cell, was conjugated with a 20 nm Au NP and used as a probe to label its target molecule on the cell. The Au NP probe was incubated with the cell, and the interaction was confirmed using BE imaging of FE-SEM through direct counting of the number of Au NPs attached on the target cell surface. Specific Au NP-aptamer probes were observed on a single cell surface and their spatial distributions including submicron-order localizations were also clearly visualized, whereas the nonspecific aptamer probes were not observed on it. The aptamer probe can be potentially dislodged from the cell surface with treatment of nucleases, indicating that Au NP-conjugated aptamer probes can be used as sensitive and reversible probes to label target biomolecules on cells.

  18. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.

    PubMed

    Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

    2014-08-15

    The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Simultaneous direct detection of Shiga-toxin producing Escherichia coli (STEC) strains by optical biosensing with oligonucleotide-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Quintela, Irwin A.; de Los Reyes, Benildo G.; Lin, Chih-Sheng; Wu, Vivian C. H.

    2015-01-01

    A simultaneous direct detection of Shiga-toxin producing strains of E. coli (STEC; ``Big Six'' - O26, O45, O103, O111, O121, and O145) as well as O157 strains by optical biosensing with oligonucleotide-functionalized gold nanoparticles (AuNPs) was developed. Initially, conserved regions of stx genes were amplified by asymmetric polymerase chain reaction (asPCR). Pairs of single stranded thiol-modified oligonucleotides (30-mer) were immobilized onto AuNPs and used as probes to capture regions of stx1 (119-bp) and/or stx2 (104-bp) genes from STEC strains. DNA samples from pure cultures and food samples were sandwich hybridized with AuNP-oligo probes at optimal conditions (50 °C, 30 min). A complex was formed from the hybridization of AuNP-probes and target DNA fragments that retained the initial red color of the reaction solutions. For non-target DNA, a color change from red to purplish-blue was observed following an increase in salt concentration, thus providing the basis of simultaneous direct colorimetric detection of target DNA in the samples. Enrichment and pooling systems were incorporated to efficiently process a large number of food samples (ground beef and blueberries) and detection of live targets. The detection limit was <1 log CFU g-1, requiring less than 1 h to complete after DNA sample preparation with 100% specificity. Gel electrophoresis verified AuNP-DNA hybridization while spectrophotometric data and transmission electron microscope (TEM) images supported color discrimination based on the occurrence of molecular aggregation. In conclusion, the significant features of this approach took advantage of the unique colorimetric properties of AuNPs as a low-cost and simple approach yet with high specificity for simultaneous detection of STEC strains.A simultaneous direct detection of Shiga-toxin producing strains of E. coli (STEC; ``Big Six'' - O26, O45, O103, O111, O121, and O145) as well as O157 strains by optical biosensing with oligonucleotide-functionalized gold nanoparticles (AuNPs) was developed. Initially, conserved regions of stx genes were amplified by asymmetric polymerase chain reaction (asPCR). Pairs of single stranded thiol-modified oligonucleotides (30-mer) were immobilized onto AuNPs and used as probes to capture regions of stx1 (119-bp) and/or stx2 (104-bp) genes from STEC strains. DNA samples from pure cultures and food samples were sandwich hybridized with AuNP-oligo probes at optimal conditions (50 °C, 30 min). A complex was formed from the hybridization of AuNP-probes and target DNA fragments that retained the initial red color of the reaction solutions. For non-target DNA, a color change from red to purplish-blue was observed following an increase in salt concentration, thus providing the basis of simultaneous direct colorimetric detection of target DNA in the samples. Enrichment and pooling systems were incorporated to efficiently process a large number of food samples (ground beef and blueberries) and detection of live targets. The detection limit was <1 log CFU g-1, requiring less than 1 h to complete after DNA sample preparation with 100% specificity. Gel electrophoresis verified AuNP-DNA hybridization while spectrophotometric data and transmission electron microscope (TEM) images supported color discrimination based on the occurrence of molecular aggregation. In conclusion, the significant features of this approach took advantage of the unique colorimetric properties of AuNPs as a low-cost and simple approach yet with high specificity for simultaneous detection of STEC strains. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05869k

  20. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagan, Patricia A.

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1more » ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.« less

  1. Metatranscriptomics of Soil Eukaryotic Communities.

    PubMed

    Yadav, Rajiv K; Bragalini, Claudia; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2016-01-01

    Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.

  2. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    PubMed

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  3. DNA microarrays for identifying fishes.

    PubMed

    Kochzius, M; Nölte, M; Weber, H; Silkenbeumer, N; Hjörleifsdottir, S; Hreggvidsson, G O; Marteinsson, V; Kappel, K; Planes, S; Tinti, F; Magoulas, A; Garcia Vazquez, E; Turan, C; Hervet, C; Campo Falgueras, D; Antoniou, A; Landi, M; Blohm, D

    2008-01-01

    In many cases marine organisms and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. In this study, a DNA microarray has been developed to be able to investigate its potential as a tool for the identification of fish species from European seas based on mitochondrial 16S rDNA sequences. Eleven commercially important fish species were selected for a first prototype. Oligonucleotide probes were designed based on the 16S rDNA sequences obtained from 230 individuals of 27 fish species. In addition, more than 1200 sequences of 380 species served as sequence background against which the specificity of the probes was tested in silico. Single target hybridisations with Cy5-labelled, PCR-amplified 16S rDNA fragments from each of the 11 species on microarrays containing the complete set of probes confirmed their suitability. True-positive, fluorescence signals obtained were at least one order of magnitude stronger than false-positive cross-hybridisations. Single nontarget hybridisations resulted in cross-hybridisation signals at approximately 27% of the cases tested, but all of them were at least one order of magnitude lower than true-positive signals. This study demonstrates that the 16S rDNA gene is suitable for designing oligonucleotide probes, which can be used to differentiate 11 fish species. These data are a solid basis for the second step to create a "Fish Chip" for approximately 50 fish species relevant in marine environmental and fisheries research, as well as control of fisheries products.

  4. Ion-channel genosensor for the detection of specific DNA sequences derived from Plum Pox Virus in plant extracts.

    PubMed

    Malecka, Kamila; Michalczuk, Lech; Radecka, Hanna; Radecki, Jerzy

    2014-10-09

    A DNA biosensor for detection of specific oligonucleotides sequences of Plum Pox Virus (PPV) in plant extracts and buffer is proposed. The working principles of a genosensor are based on the ion-channel mechanism. The NH2-ssDNA probe was deposited onto a glassy carbon electrode surface to form an amide bond between the carboxyl group of oxidized electrode surface and amino group from ssDNA probe. The analytical signals generated as a result of hybridization were registered in Osteryoung square wave voltammetry in the presence of [Fe(CN)6]3-/4- as a redox marker. The 22-mer and 42-mer complementary ssDNA sequences derived from PPV and DNA samples from plants infected with PPV were used as targets. Similar detection limits of 2.4 pM (31.0 pg/mL) and 2.3 pM (29.5 pg/mL) in the concentration range 1-8 pM were observed in the presence of the 22-mer ssDNA and 42-mer complementary ssDNA sequences of PPV, respectively. The genosensor was capable of discriminating between samples consisting of extracts from healthy plants and leaf extracts from infected plants in the concentration range 10-50 pg/mL. The detection limit was 12.8 pg/mL. The genosensor displayed good selectivity and sensitivity. The 20-mer partially complementary DNA sequences with four complementary bases and DNA samples from healthy plants used as negative controls generated low signal.

  5. A minor groove binder probe real-time PCR assay for discrimination between type 2-based vaccines and field strains of canine parvovirus.

    PubMed

    Decaro, Nicola; Elia, Gabriella; Desario, Costantina; Roperto, Sante; Martella, Vito; Campolo, Marco; Lorusso, Alessio; Cavalli, Alessandra; Buonavoglia, Canio

    2006-09-01

    A minor groove binder (MGB) probe assay was developed to discriminate between type 2-based vaccines and field strains of canine parvovirus (CPV). Considering that most of the CPV vaccines contain the old type 2, no longer circulating in canine population, two MGB probes specific for CPV-2 and the antigenic variants (types 2a, 2b and 2c), respectively, were labeled with different fluorophores. The MGB probe assay was able to discriminate correctly between the old type and the variants, with a detection limit of 10(1) DNA copies and a good reproducibility. Quantitation of the viral DNA loads was accurate, as demonstrated by comparing the CPV DNA titres to those calculated by means of the TaqMan assay recognising all CPV types. This assay will ensure resolution of most diagnostic problems in dogs showing CPV disease shortly after CPV vaccination, although it does not discriminate between field strains and type 2b-based vaccines, recently licensed to market in some countries.

  6. A DNA microarray for identification of selected Korean birds based on mitochondrial cytochrome c oxidase I gene sequences.

    PubMed

    Chung, In-Hyuk; Yoo, Hye Sook; Eah, Jae-Yong; Yoon, Hyun-Kyu; Jung, Jin-Wook; Hwang, Seung Yong; Kim, Chang-Bae

    2010-10-01

    DNA barcoding with the gene encoding cytochrome c oxidase I (COI) in the mitochondrial genome has been proposed as a standard marker to identify and discover animal species. Some migratory wild birds are suspected of transmitting avian influenza and pose a threat to aircraft safety because of bird strikes. We have previously reported the COI gene sequences of 92 Korean bird species. In the present study, we developed a DNA microarray to identify 17 selected bird species on the basis of nucleotide diversity. We designed and synthesized 19 specific oligonucleotide probes; these probes were arrayed on a silylated glass slide. The length of the probes was 19-24 bps. The COI sequences amplified from the tissues of the selected birds were labeled with a fluorescent probe for microarray hybridization, and unique hybridization patterns were detected for each selected species. These patterns may be considered diagnostic patterns for species identification. This microarray system will provide a sensitive and a high-throughput method for identification of Korean birds.

  7. Development of a photodiode array biochip using a bipolar semiconductor and its application to detection of human papilloma virus.

    PubMed

    Baek, Taek Jin; Park, Pan Yun; Han, Kwi Nam; Kwon, Ho Taik; Seong, Gi Hun

    2008-03-01

    We describe a DNA microarray system using a bipolar integrated circuit photodiode array (PDA) chip as a new platform for DNA analysis. The PDA chip comprises an 8 x 6 array of photodiodes each with a diameter of 600 microm. Each photodiode element acts both as a support for an immobilizing probe DNA and as a two-dimensional photodetector. The usefulness of the PDA microarray platform is demonstrated by the detection of high-risk subtypes of human papilloma virus (HPV). The polymerase chain reaction (PCR)-amplified biotinylated HPV target DNA was hybridized with the immobilized probe DNA on the photodiode surface, and the chip was incubated in an anti-biotin antibody-conjugated gold nanoparticle solution. The silver enhancement by the gold nanoparticles bound to the biotin of the HPV target DNA precipitates silver metal particles at the chip surfaces, which block light irradiated from above. The resulting drop in output voltage depends on the amount of target DNA present in the sample solution, which allows the specific detection and the quantitative analysis of the complementary target DNA. The PDA chip showed high relative signal ratios of HPV probe DNA hybridized with complementary target DNA, indicating an excellent capability in discriminating HPV subtypes. The detection limit for the HPV target DNA analysis improved from 1.2 nM to 30 pM by changing the silver development time from 5 to 10 min. Moreover, the enhanced silver development promoted by the gold nanoparticles could be applied to a broader range of target DNA concentration by controlling the silver development time.

  8. DNA-based authentication method for detection of yak (Bos grunniens) in meat products.

    PubMed

    Wang, Ping; Hu, Yue; Yang, Hairong; Han, Jiangxun; Zhao, Yongsheng; Chen, Ying

    2013-01-01

    A TaqMan probe real-time PCR method was developed for rapid detection of yak component in raw and cooked meat products. Specific primers and TaqMan probes of yak (Bos grunniens) were designed in the cytochrome b gene. The specificity of the method was evaluated using pure meat of eight yak breeds (Jiulong, Qinghai plateau, Maiwa, Gannan, Bazhou, Sibu, Zhongdian, and Jiali) samples and nine non-Bos grunniens animals (sheep, goat, pig, chicken, cattle, water buffalo, donkey, horse, and rabbit). DNA showed no cross-reaction with non-Bos grunniens animal DNA. This method proved to be sensitive in detecting the presence of low levels of target DNA obtained from 0.001% (w/w) component in a mixed meat sample. The method also successfully identified commercial yak meat products. The results showed that some yak meat might be involved in business fraud by using cattle meat (in this paper, cattle meat means meat of Bos taurus) instead of yak meat. In conclusion, real-time PCR assay used in this study was shown to be a rapid and sensitive method for detection of yak DNA in fresh meat and cooked meat products.

  9. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    USDA-ARS?s Scientific Manuscript database

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  10. Rapid, sensitive and label-free detection of Shiga-toxin producing Escherichia coli O157 using carbon nanotube biosensors.

    PubMed

    Subramanian, Sowmya; Aschenbach, Konrad H; Evangelista, Jennifer P; Najjar, Mohamed Badaoui; Song, Wenxia; Gomez, Romel D

    2012-02-15

    An electronic platform to detect very small amounts of genomic DNA from bacteria without the need for PCR amplification and molecular labeling is described. The system uses carbon nanotube field-effect transistor (FET) arrays whose electrical properties are affected by minute electrical charges localized on their active regions. Two pathogenic strains of E. coli are used to evaluate the detection properties of the transistor arrays. Described herein are the results for detection of synthetic oligomers, unpurified and highly purified genomic DNA at various concentrations and their comparison against non-specific binding. In particular, the capture of genomic DNA of E. coli O157:H7 by a specific oligonucleotide probe coated onto the transistor array results in a significant shift in the threshold (gate-source) voltage (V(th)). By contrast the signal under the same procedure using a different strain, E. coli O45 that is non-complementary to the probe remained nearly constant. This work highlights the detection sensitivity and efficacy of this biosensor without stringent requirement for DNA sample preparation. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection.

    PubMed

    Song, Linan; Ahn, Soohyoun; Walt, David R

    2006-02-15

    We report a multiplexed high-density DNA array capable of rapid, sensitive, and reliable identification of potential biological warfare agents. An optical fiber bundle containing 6000 individual 3.1-mum-diameter fibers was chemically etched to yield microwells and used as the substrate for the array. Eighteen different 50-mer single-stranded DNA probes were covalently attached to 3.1-mum microspheres. Probe sequences were designed for Bacillus anthracis, Yersinia pestis, Francisella tularensis, Brucella melitensis, Clostridium botulinum, Vaccinia virus, and one biological warfare agent (BWA) simulant, Bacillus thuringiensis kurstaki. The microspheres were distributed into the microwells to form a randomized multiplexed high-density DNA array. A detection limit of 10 fM in a 50-microL sample volume was achieved within 30 min of hybridization for B. anthracis, Y. pestis, Vaccinia virus, and B. thuringiensis kurstaki. We used both specific responses of probes upon hybridization to complementary targets as well as response patterns of the multiplexed array to identify BWAs with high accuracy. We demonstrated the application of this multiplexed high-density DNA array for parallel identification of target BWAs in spiked sewage samples after PCR amplification. The array's miniaturized feature size, fabrication flexibility, reusability, and high reproducibility may enable this array platform to be integrated into a highly sensitive, specific, and reliable portable instrument for in situ BWA detection.

  12. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  13. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  14. Silver-dendrimer nanocomposites as oligonucleotide labels for electrochemical stripping detection of DNA hybridization.

    PubMed

    Jin, Xin; Zhou, Ling; Zhu, Bo; Jiang, Xue; Zhu, Ningning

    2018-06-01

    Silver-dendrimer nanocomposites were synthesized and used as oligonucleotide labels for electrochemical stripping detection of DNA hybridization. The synthesized silver-dendrimer nanocomposites were characterized by UV-vis spectrophotometry, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Ratios of silver/dendrimer were optimized in order to obtain stable nanocomposites with maximal silver loading in the interior of a polymeric shell. The silver-dendrimer nanocomposites were attached to sequence-known DNA probes specific to colitoxin, and used to detect probe hybridization by dissolution of the silver nanoparticles in the interior of dendrimer in a diluted nitric acid, followed by measurement of Ag + ions by anodic stripping voltammetry (ASV). Use of differential pulse voltammetry for the stripping step, along with optimization of the ASV conditions, enabled a detection limit of 0.78 pM. The present strategy, in combination with dendrimer-encapsulated copper labeled oligonucleotides probe reported previously, could potentially be used to detect single or multiple DNA targets in one sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. DNA Microarray for Rapid Detection and Identification of Food and Water Borne Bacteria: From Dry to Wet Lab.

    PubMed

    Ranjbar, Reza; Behzadi, Payam; Najafi, Ali; Roudi, Raheleh

    2017-01-01

    A rapid, accurate, flexible and reliable diagnostic method may significantly decrease the costs of diagnosis and treatment. Designing an appropriate microarray chip reduces noises and probable biases in the final result. The aim of this study was to design and construct a DNA Microarray Chip for a rapid detection and identification of 10 important bacterial agents. In the present survey, 10 unique genomic regions relating to 10 pathogenic bacterial agents including Escherichia coli (E.coli), Shigella boydii, Sh.dysenteriae, Sh.flexneri, Sh.sonnei, Salmonella typhi, S.typhimurium, Brucella sp., Legionella pneumophila, and Vibrio cholera were selected for designing specific long oligo microarray probes. For this reason, the in-silico operations including utilization of the NCBI RefSeq database, Servers of PanSeq and Gview, AlleleID 7.7 and Oligo Analyzer 3.1 was done. On the other hand, the in-vitro part of the study comprised stages of robotic microarray chip probe spotting, bacterial DNAs extraction and DNA labeling, hybridization and microarray chip scanning. In wet lab section, different tools and apparatus such as Nexterion® Slide E, Qarray mini spotter, NimbleGen kit, TrayMix TM S4, and Innoscan 710 were used. A DNA microarray chip including 10 long oligo microarray probes was designed and constructed for detection and identification of 10 pathogenic bacteria. The DNA microarray chip was capable to identify all 10 bacterial agents tested simultaneously. The presence of a professional bioinformatician as a probe designer is needed to design appropriate multifunctional microarray probes to increase the accuracy of the outcomes.

  16. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    PubMed

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A molecular switch sensor for detection of PRSS1 genotype based on site-specific DNA cleavage of restriction endonuclease.

    PubMed

    Liu, Qicai; Gao, Feng; Weng, Shaohuang; Peng, Huaping; Lin, Liqing; Zhao, Chengfei; Lin, Xinhua

    2015-01-01

    PRSS1 mutations or polymorphism in the peripheral blood of patients can be used as susceptible molecular markers to pancreatic cancer. A sensor for selective electrochemical detection of PRSS1 genotypes was developed based on site-specific DNA cleavage of restriction endonuclease EcoRI. A mercapto-modified hairpin probe was immobilized on a gold electrode. The probe's neck can be cleaved by EcoRI in the absence of rs10273639 C/C of PRSS1 genotype, but it cannot be cleaved in the presence of T/T. The difference in quantity of electric charge was monitored by biosensors before and after enzymatic cleavage. Electrochemical signals are generated by differential pulse voltammetry interrogation of methylene blue (MB) that quantitatively binds to surface-confined hairpin probe via electrostatic interactions. The results suggested this method had a good specificity in distinguishing PRSS1 genotypes. There was a good linear relationship between the charge and the logarithmic function of PRSS1 rs10273639 T/T type DNA concentration (current=120.6303+8.8512log C, R=0.9942). The detection limit was estimated at 0.5 fM. The molecular switch sensor has several advantages, and it is possible to qualitatively, quantitatively, and noninvasively detect PRSS1 genotypes in the blood of patients with pancreatic cancer. © 2015 by the Association of Clinical Scientists, Inc.

  18. Assignment of xeroderma pigmentosum group C(XPC) gene to chromosome 3p25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legerski, R.J.; Liu, P.; Li, L.

    1994-05-01

    The human gene XPC (formerly designated XPCC), which corrects the repair deficiency of xeroderma pigmentosum (XP) group C cells, was mapped to 3p25. A cDNA probe for Southern blot hybridization and diagnostic PCR analyses of hybrid clone panels informative for human chromosomes in general and portions of chromosome 3 in particular produced the initial results. Fluorescence in situ hybridization utilizing both a yeast artificial chromosome DNA containing the gene and XPC cDNA as probes provided verification and specific regional assignment. A conflicting assignment of XPC to chromosome 5 is discussed in light of inadequacies in the exclusive use of microcell-mediatedmore » chromosome transfer for gene mapping. 12 refs., 3 figs.« less

  19. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII.

    PubMed

    Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu

    2015-01-01

    DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes

    PubMed Central

    Wang, Dan Ohtan; Matsuno, Hitomi; Ikeda, Shuji; Nakamura, Akiko; Yanagisawa, Hiroyuki; Hayashi, Yasunori; Okamoto, Akimitsu

    2012-01-01

    Fluorescence in situ hybridization (FISH) is a powerful tool used in karyotyping, cytogenotyping, cancer diagnosis, species specification, and gene-expression analysis. Although widely used, conventional FISH protocols are cumbersome and time consuming. We have now developed a FISH method using exciton-controlled hybridization-sensitive fluorescent oligodeoxynucleotide (ECHO) probes. ECHO–FISH uses a 25-min protocol from fixation to mounting that includes no stringency washing steps. We use ECHO–FISH to detect both specific DNA and RNA sequences with multicolor probes. ECHO–FISH is highly reproducible, stringent, and compatible with other fluorescent cellular labeling techniques. The resolution allows detection of intranuclear speckles of poly(A) RNA in HeLa cells and dissociated hippocampal primary cultures, and mRNAs in the distal dendrites of hippocampal neurons. We also demonstrate detection of telomeric and centromeric DNA on metaphase mouse chromosomes. The simplicity of the ECHO–FISH method will likely accelerate cytogenetic and gene-expression analysis with high resolution. PMID:22101241

  1. Apricot DNA as an indicator for persipan: detection and quantitation in marzipan using ligation-dependent probe amplification.

    PubMed

    Luber, Florian; Demmel, Anja; Hosken, Anne; Busch, Ulrich; Engel, Karl-Heinz

    2012-06-13

    The confectionery ingredient marzipan is exclusively prepared from almond kernels and sugar. The potential use of apricot kernels, so-called persipan, is an important issue for the quality assessment of marzipan. Therefore, a ligation-dependent probe amplification (LPA) assay was developed that enables a specific and sensitive detection of apricot DNA, as an indicator for the presence of persipan. The limit of detection was determined to be 0.1% persipan in marzipan. The suitability of the method was confirmed by the analysis of 20 commercially available food samples. The integration of a Prunus -specific probe in the LPA assay as a reference allowed for the relative quantitation of persipan in marzipan. The limit of quantitation was determined to be 0.5% persipan in marzipan. The analysis of two self-prepared mixtures of marzipan and persipan demonstrated the applicability of the quantitation method at concentration levels of practical relevance for quality control.

  2. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e.

    2016-03-01

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4- [4-(N-methyl)styrene] -benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2.

  3. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.

    PubMed

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e

    2016-03-05

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).

    PubMed

    Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E

    2017-01-01

    Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.

  5. Comparison of peroxidase-labeled DNA probes with radioactive RNA probes for detection of human papillomaviruses by in situ hybridization in paraffin sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.S.; Kurman, R.J.; Kessis, T.D.

    1991-01-01

    A study comparing in situ hybridization using nonradioactive DNA probes directly conjugated with horseradish peroxidase (HRP), and {sup 35}S-labeled antisense RNA probes for human papillomavirus (HPV) types 6/11, 16, and 18 was performed on formalin-fixed, paraffin-embedded tissue from 34 lesions of the cervix and vulva. These lesions included exophytic condylomas and intraepithelial and invasive neoplasms. HPV 6/11 was detected in two of four condylomata acuminata by both in situ techniques. HPV 16 was detected in 13 of 30 cases of intraepithelial and invasive neoplasms by both methods. Discordance between the two methods occurred in two instances. The radiolabeled probe butmore » not the HRP probe detected HPV 16 in one case of cervical intraepithelial neoplasia (CIN 3), whereas the converse occurred in one case of vulvar intraepithelial neoplasia (VIN 3). HPV 18 was not detected in any of the specimens by either method. This study demonstrates that nonradioactive HRP-labeled probes for the detection of specific HPV types are as sensitive as the more laborious and potentially hazardous radioactive probes.« less

  6. Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles.

    PubMed

    Paliwoda, Rebecca E; Li, Feng; Reid, Michael S; Lin, Yanwen; Le, X Chris

    2014-06-17

    Functionalizing nanomaterials for diverse analytical, biomedical, and therapeutic applications requires determination of surface coverage (or density) of DNA on nanomaterials. We describe a sequential strand displacement beacon assay that is able to quantify specific DNA sequences conjugated or coconjugated onto gold nanoparticles (AuNPs). Unlike the conventional fluorescence assay that requires the target DNA to be fluorescently labeled, the sequential strand displacement beacon method is able to quantify multiple unlabeled DNA oligonucleotides using a single (universal) strand displacement beacon. This unique feature is achieved by introducing two short unlabeled DNA probes for each specific DNA sequence and by performing sequential DNA strand displacement reactions. Varying the relative amounts of the specific DNA sequences and spacing DNA sequences during their coconjugation onto AuNPs results in different densities of the specific DNA on AuNP, ranging from 90 to 230 DNA molecules per AuNP. Results obtained from our sequential strand displacement beacon assay are consistent with those obtained from the conventional fluorescence assays. However, labeling of DNA with some fluorescent dyes, e.g., tetramethylrhodamine, alters DNA density on AuNP. The strand displacement strategy overcomes this problem by obviating direct labeling of the target DNA. This method has broad potential to facilitate more efficient design and characterization of novel multifunctional materials for diverse applications.

  7. Discrepancy between culture and DNA probe analysis for the detection of periodontal bacteria.

    PubMed

    van Steenbergen, T J; Timmerman, M F; Mikx, F H; de Quincey, G; van der Weijden, G A; van der Velden, U; de Graaff, J

    1996-10-01

    The purpose of this study was to compare a commercially available DNA probe technique with conventional cultural techniques for the detection of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia in subgingival plaque samples. Samples from 20 patients with moderate to severe periodontitis were evaluated at baseline and during a 15 months period of periodontal treatment. Paperpoints from 4 periodontal pockets per patient were forwarded to Omnigene for DNA probe analysis, and simultaneously inserted paperpoints from the same pockets were analyzed by standard culture techniques. In addition, mixed bacterial samples were constructed harbouring known proportions of 25 strains of A. actinomycetemcomitans, P. gingivalis and P. intermedia each. A relatively low concordance was found between both methods. At baseline a higher detection frequency was found for A. actinomycetemcomitans and P. gingivalis for the DNA probe technique; for P. intermedia the detection frequency by culture was higher. For A. actinomycetemcomitans, 21% of the culture positive samples was positive with the DNA probe. Testing the constructed bacterial samples with the DNA probe method resulted in about 16% false positive results for the 3 species tested. Furthermore, 40% of P. gingivalis strains were not detected by the DNA probe. The present data suggest that at least part of the discrepancies found between the DNA probe technique used and cultural methods are caused by false positive and false negative DNA probe results. Therefore, the value of this DNA probe method for the detection of periodontal pathogens is questionable.

  8. The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology.

    PubMed

    Shariati, Mohsen

    2018-05-15

    In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10µM. The detection limit of the DNA biosensor was about 1fM. The time of the hybridization process for defined single strand was 90min. The switching ratio of the biosensor between "on" and "off" state was ~ 1.1 × 10 5 . For sensing the specificity of the biosensor, non-complementary, mismatch and complementary DNA oligonucleotide sequences were clearly discriminated. The HBV biosensor confirmed the highly satisfied specificity for differentiating complementary sequences from non-complementary and the mismatch oligonucleotides. The response time of the DNA sensor was 37s with a high reproducibility. The stability and repeatability of the DNA biosensor showed that the peak current of the biosensor retained 98% and 96% of its initial response for measurements after three and five weeks, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Development of a Diagnostic Tool to Detect DNA Methylation Biomarkers for Early-Stage Lung Cancer

    DTIC Science & Technology

    2015-02-01

    include: 1) a DNA recognition domain that recognizes the specific DNA sequence of interest and 2) one half of the leucine zipper pair. The second...piece will include 1) the second half of the leucine zipper pair, 2) a flexible linker flanked by a FRET pair that determines the local (within 30 bp...each other to determine the resolution of our probes. All DNA fragments are methylated using bacterial methyltransferase. Since only a single CG

  10. Ultrasensitive determination of DNA sequences by flow injection chemiluminescence using silver ions as labels.

    PubMed

    Zheng, Lichun; Liu, Xiuhui; Zhou, Min; Ma, Yongjun; Wu, Guofan; Lu, Xiaoquan

    2014-10-27

    We presented a new strategy for ultrasensitive detection of DNA sequences based on the novel detection probe which was labeled with Ag(+) using metallothionein (MT) as a bridge. The assay relied on a sandwich-type DNA hybridization in which the DNA targets were first hybridized to the captured oligonucleotide probes immobilized on Fe3O4@Au composite magnetic nanoparticles (MNPs), and then the Ag(+)-modified detection probes were used to monitor the presence of the specific DNA targets. After being anchored on the hybrids, Ag(+) was released down through acidic treatment and sensitively determined by a coupling flow injection-chemiluminescent reaction system (Ag(+)-Mn(2+)-K2S2O8-H3PO4-luminol) (FI-CL). The experiment results showed that the CL intensities increased linearly with the concentrations of DNA targets in the range from 10 to 500 pmol L(-1) with a detection limit of 3.3 pmol L(-1). The high sensitivity in this work may be ascribed to the high molar ratio of Ag(+)-MT, the sensitive determination of Ag(+) by the coupling FI-CL reaction system and the perfect magnetic separation based on Fe3O4@Au composite MNPs. Moreover, the proposed strategy exhibited excellent selectivity against the mismatched DNA sequences and could be applied to real samples analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences

    PubMed Central

    Gerasimova, Yulia V.; Hayson, Aaron; Ballantyne, Jack; Kolpashchikov, Dmitry M.

    2010-01-01

    Molecular beacon (MB) probes are dual-labeled hairpin-shaped oligodeoxyribonucleotides that are extensively used for real-time detection of specific RNA/DNA analytes. In the MB probe, the loop fragment is complementary to the analyte: therefore, a unique probe is required for the analysis of each new analyte sequence. The conjugation of an oligonucleotide with two dyes and subsequent purification procedures add to the cost of MB probes, thus reducing their application in multiplex formats. Here we demonstrate how one MB probe can be used for the analysis of an arbitrary nucleic acid. The approach takes advantage of two oligonucleotide adaptor strands, each of which contains a fragment complementary to the analyte and a fragment complementary to an MB probe. The presence of the analyte leads to association of MB probe and the two DNA strands in quadripartite complex. The MB probe fluorescently reports the formation of this complex. In this design, the MB does not bind the analyte directly; therefore, the MB sequence is independent of the analyte. In this study one universal MB probe was used to genotype three human polymorphic sites. This approach promises to reduce the cost of multiplex real-time assays and improve the accuracy of single-nucleotide polymorphism genotyping. PMID:20665615

  12. Phylogenetic Analysis of Marine Picoplankton Using Tau RNA Sequences.

    DTIC Science & Technology

    1991-02-01

    Pacific Ocean (Aloha Station). DNA prepared from both populations was analyzed by hybridization using kingdom -specific probes complementary to 16S rRNA...euba:-teria. Few eukaryotes, no archaebacteria detected (at low resolution). "* Fluorescendly labeled phylogenetir group-specific oligon ucleotfides

  13. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    PubMed

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  14. Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing.

    PubMed

    Wang, Quanbo; Xu, Nan; Gui, Zhen; Lei, Jianping; Ju, Huangxian; Yan, Feng

    2015-10-07

    To efficiently regulate the catalytic activity of the peroxidase mimic hemin, this work designs a double-stranded DNA probe containing an intermolecular dimer of hemin, whose peroxidase activity can be activated by a DNA strand displacement reaction. The double-stranded probe is prepared by annealing two strands of hemin labelled DNA oligonucleotides. Using the fluorescent oxidation product of tyramine by H2O2 as a tracing molecule, the low peroxidase activity of the hemin dimer ensures a low fluorescence background. The strand displacement reaction of the target DNA dissociates the hemin dimer and thus significantly increases the catalytic activity of hemin to produce a large amount of dityramine for fluorescence signal readout. Based on the strand displacement regulated peroxidase activity, a simple and sensitive homogeneous fluorescent DNA sensing method is proposed. The detection can conveniently be carried out in a 96-well plate within 20 min with a detection limit of 0.18 nM. This method shows high specificity, which can effectively distinguish single-base mismatched DNA from perfectly matched target DNA. The DNA strand displacement regulated catalytic activity of hemin has promising application in the determination of various DNA analytes.

  15. Understanding the structural and dynamic consequences of DNA epigenetic modifications: Computational insights into cytosine methylation and hydroxymethylation

    PubMed Central

    Carvalho, Alexandra T P; Gouveia, Leonor; Kanna, Charan Raju; Wärmländer, Sebastian K T S; Platts, Jamie A; Kamerlin, Shina Caroline Lynn

    2014-01-01

    We report a series of molecular dynamics (MD) simulations of up to a microsecond combined simulation time designed to probe epigenetically modified DNA sequences. More specifically, by monitoring the effects of methylation and hydroxymethylation of cytosine in different DNA sequences, we show, for the first time, that DNA epigenetic modifications change the molecule's dynamical landscape, increasing the propensity of DNA toward different values of twist and/or roll/tilt angles (in relation to the unmodified DNA) at the modification sites. Moreover, both the extent and position of different modifications have significant effects on the amount of structural variation observed. We propose that these conformational differences, which are dependent on the sequence environment, can provide specificity for protein binding. PMID:25625845

  16. Winnowing DNA for Rare Sequences: Highly Specific Sequence and Methylation Based Enrichment

    PubMed Central

    Thompson, Jason D.; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue. PMID:22355378

  17. rmpM genosensor for detection of human brain bacterial meningitis in cerebrospinal fluid.

    PubMed

    Dash, Sandip Kumar; Sharma, Minakshi; Khare, Shashi; Kumar, Ashok

    2013-09-01

    Human brain bacterial meningitis is a life-threatening disease caused mainly by Neisseria meningitidis, lead to damage of the outer membrane covering (meninges) of brain or even death. The usual methods of diagnosis are either time-consuming or have some limitations. The specific rmpM (reduction-modifiable protein M) virulent gene based genosensor is more sensitive, specific, and can detect N. meningitidis directly from the patient cerebrospinal fluid in 30 min including 1-min response time. 5'-Thiol-labeled single-stranded DNA (ssDNA) probe was immobilized onto screen-printed gold electrode (SPGE) and hybridized with denatured (95 °C) single-stranded genomic DNA (ssG-DNA) for 10 min at 25 °C. The electrochemical response was measured by cyclic voltammetry, differential pulse voltammetry (DPV) and electrochemical impedance using redox indicators. The sensitivity of the genosensor was 9.5087 (μA/cm(2))/ng with DPV and limit of detection was 3 ng/6 μL ssG-DNA. The immobilization of the ssDNA probe and hybridization with ssG-DNA from N. meningitidis was characterized by atomic force microscopy and Fourier transform infrared spectroscopy. The rmpM genosensor was stable for 6 months at 4 °C with 10 % loss in initial DPV current. The advantage of rmpM genosensor is to detect bacterial meningitis simultaneously in multiple patients using SPGE array during an outbreak of the disease.

  18. Real-Time Study of the Interaction between G-Rich DNA Oligonucleotides and Lead Ion on DNA Tetrahedron-Functionalized Sensing Platform by Dual Polarization Interferometry.

    PubMed

    Wang, Shuang; Lu, Shasha; Zhao, Jiahui; Huang, Jianshe; Yang, Xiurong

    2017-11-29

    G-quadruplex plays roles in numerous physiological and pathological processes of organisms. Due to the unique properties of G-quadruplex (e.g., forming G4/hemin complexes with catalytic activity and electron acceptability, binding with metal ions, proteins, fluorescent ligands, and so on), it has been widely applied in biosensing. But the formation process of G-quadruplex is not yet fully understood. Here, a DNA tetrahedron platform with higher reproducibility, regenerative ability, and time-saving building process was coupled with dual polarization interferometry technique for the real-time and label-free investigation of the specific interaction process of guanine-rich singled-stranded DNA (G-rich ssDNA) and Pb 2+ . The oriented immobilization of probes greatly decreased the spatial hindrance effect and improved the accessibility of the probes to the Pb 2+ ions. Through real-time monitoring of the whole formation process of the G-quadruplex, we speculated that the probes on the tetrahedron platform initially stood on the sensing surface with a random coil conformation, then the G-rich ssDNA preliminarily formed unstable G-quartets by H-bonding and cation binding, subsequently forming a completely folded and stable quadruplex structure through relatively slow strand rearrangements. On the basis of these studies, we also developed a novel sensing platform for the specific and sensitive determination of Pb 2+ and its chelating agent ethylenediaminetetraacetic acid. This study not only provides a proof-of-concept for conformational dynamics of G-quadruplex-related drugs and pathogenes, but also enriches the biosensor tools by combining nanomaterial with interfaces technique.

  19. Electrophoretic mobility shift scanning using an automated infrared DNA sequencer.

    PubMed

    Sano, M; Ohyama, A; Takase, K; Yamamoto, M; Machida, M

    2001-11-01

    Electrophoretic mobility shift assay (EMSA) is widely used in the study of sequence-specific DNA-binding proteins, including transcription factors and mismatch binding proteins. We have established a non-radioisotope-based protocol for EMSA that features an automated DNA sequencer with an infrared fluorescent dye (IRDye) detection unit. Our modification of the elec- trophoresis unit, which includes cooling the gel plates with a reduced well-to-read length, has made it possible to detect shifted bands within 1 h. Further, we have developed a rapid ligation-based method for generating IRDye-labeled probes with an approximately 60% cost reduction. This method has the advantages of real-time scanning, stability of labeled probes, and better safety associated with nonradioactive methods of detection. Analysis of a promoter from an industrially important filamentous fungus, Aspergillus oryzae, in a prototype experiment revealed that the method we describe has potential for use in systematic scanning and identification of the functionally important elements to which cellular factors bind in a sequence-specific manner.

  20. Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985.

    PubMed

    Jiang, Lingxi; Yang, Litao; Rao, Jun; Guo, Jinchao; Wang, Shu; Liu, Jia; Lee, Seonghun; Zhang, Dabing

    2010-02-01

    To implement genetically modified organism (GMO) labeling regulations, an event-specific analysis method based on the junction sequence between exogenous integration and host genomic DNA has become the preferential approach for GMO identification and quantification. In this study, specific primers and TaqMan probes based on the revealed 5'-end junction sequence of GM cotton MON15985 were designed, and qualitative and quantitative polymerase chain reaction (PCR) assays were established employing the designed primers and probes. In the qualitative PCR assay, the limit of detection (LOD) was 0.5 g kg(-1) in 100 ng total cotton genomic DNA, corresponding to about 17 copies of haploid cotton genomic DNA, and the LOD and limit of quantification (LOQ) for quantitative PCR assay were 10 and 17 copies of haploid cotton genomic DNA, respectively. Furthermore, the developed quantitative PCR assays were validated in-house by five different researchers. Also, five practical samples with known GM contents were quantified using the developed PCR assay in in-house validation, and the bias between the true and quantification values ranged from 2.06% to 12.59%. This study shows that the developed qualitative and quantitative PCR methods are applicable for the identification and quantification of GM cotton MON15985 and its derivates.

  1. Molecular probes and microarrays for the detection of toxic algae in the genera Dinophysis and Phalacroma (Dinophyta).

    PubMed

    Edvardsen, Bente; Dittami, Simon M; Groben, René; Brubak, Sissel; Escalera, Laura; Rodríguez, Francisco; Reguera, Beatriz; Chen, Jixin; Medlin, Linda K

    2013-10-01

    Dinophysis and Phalacroma species containing diarrheic shellfish toxins and pectenotoxins occur in coastal temperate waters all year round and prevent the harvesting of mussels during several months each year in regions in Europe, Chile, Japan, and New Zealand. Toxicity varies among morphologically similar species, and a precise identification is needed for early warning systems. Molecular techniques using ribosomal DNA sequences offer a means to identify and detect precisely the potentially toxic species. We designed molecular probes targeting the 18S rDNA at the family and genus levels for Dinophysis and Phalacroma and at the species level for Dinophysis acuminata, Dinophysis acuta, and Dinophysis norvegica, the most commonly occurring, potentially toxic species of these genera in Western European waters. Dot blot hybridizations with polymerase chain reaction (PCR)-amplified rDNA from 17 microalgae were used to demonstrate probe specificity. The probes were modified along with other published fluorescence in situ hybridization and PCR probes and tested for a microarray platform within the MIDTAL project ( http://www.midtal.com ). The microarray was applied to field samples from Norway and Spain and compared to microscopic cell counts. These probes may be useful for early warning systems and monitoring and can also be used in population dynamic studies to distinguish species and life cycle stages, such as cysts, and their distribution in time and space.

  2. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    PubMed

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The vector homology problem in diagnostic nucleic acid hybridization of clinical specimens.

    PubMed Central

    Ambinder, R F; Charache, P; Staal, S; Wright, P; Forman, M; Hayward, S D; Hayward, G S

    1986-01-01

    Nucleic acid hybridization techniques using cloned probes are finding application in assays of clinical specimens in research and diagnostic laboratories. The probes that we and others have used are recombinant plasmids composed of viral inserts and bacterial plasmid vectors such as pBR322. We suspected that there was material homologous to pBR322 present in many clinical samples. because hybridization occurred in samples which lacked evidence of virus by other techniques. If the presence of this vector-homologous material was unrecognized, hybridization in the test sample might erroneously be interpreted as indicating the presence of viral sequences. In this paper we demonstrate specific hybridization of labeled pBR322 DNA with DNA from various clinical samples. Evidence is presented that nonspecific probe trapping could not account for this phenomenon. In mixing experiments, it is shown that contamination of clinical samples with bacteria would explain such a result. Approaches tested to circumvent this problem included the use of isolated insert probes, alternate cloning vectors, and cold competitor pBR322 DNA in prehybridization and hybridization mixes. None proved entirely satisfactory. We therefore emphasize that it is essential that all hybridization detection systems use a control probe of the vector alone in order to demonstrate the absence of material with vector homology in the specimen tested. Images PMID:3013928

  4. Detection of single base mismatches of thymine and cytosine residues by potassium permanganate and hydroxylamine in the presence of tetralkylammonium salts.

    PubMed Central

    Gogos, J A; Karayiorgou, M; Aburatani, H; Kafatos, F C

    1990-01-01

    In the presence of tetramethylammonium chloride, potassium permanganate specifically modifies mismatched thymines. Similarly, the modification of mismatched cytosines by hydroxylamine was enhanced by tetraethylammonium chloride. Modification followed by piperidine cleavage permits specific identification of the T and C mismatches and by extension, when the opposite DNA strand is analyzed, of A and G mismatches as well. These reactions can be performed conveniently with DNA immobilized on Hybond M-G paper. We describe conditions that exploit these reactions to detect mismatches, e.g. point mutations or genetic polymorphisms, using either synthetic oligonucleotide probes or PCR amplification of specific genomic DNA sequences. Images PMID:2263445

  5. Use of random amplified polymorphic DNA (RAPD) for generating specific DNA probes for oxyuroid species (Nematoda).

    PubMed

    Jobet, E; Bougnoux, M E; Morand, S; Rivault, C; Cloarec, A; Hugot, J P

    1998-03-01

    Random amplified DNA markers (RAPD; Williams et al., 1990) were used to obtained specific RAPD fragments characterising different species of oxyuroids. We tested six species of worms parasitizing vertebrates or invertebrates: Passalurus ambiguus Rudolphi, 1819, parasite of Leporids; Syphacia obvelata (Rudolphi, 1802) Seurat, 1916, a parasite of rodents; Blatticola blattae (Graeffe, 1860) Chitwood, 1932 parasite of the cockroach Blattella germanica; Hammerschmidtiella diesingi (Hammerschmidt, 1838) Chitwood, 1932 and Thelastoma bulhoesi (Magalhaes, 1990) Travassos, 1929, parasites of the cockroach Periplaneta americana, and an undescribed parasite species of a passalid insect from New Caledonia. Among 15 oligonucleotides tested, nine produced several specific bands allowing the interspecific discrimination.

  6. [A new class of exciplex-formed probe detect of specific sequence DNA].

    PubMed

    Li, Qing-Yong; Zu, Yuan-Gang; Lü, Hong-Yan; Wang, Li-Min

    2009-07-01

    The present research was to develop the exciplex-based fluorescence detection of DNA. A SNP-containing region of cytochrome P450 2C9 DNA systems was evaluated to define some of the structural and associated requirement of this new class of exciplex-formed probe, and a 24-base target was selected which contains single-nucleotide polymorphisms (SNP) in genes coding for cytochrome P450. The two probes were all 12-base to give coverage of a 24-base target region to ensure specificity within the human genome. Exciplex partners used in this study were prepared using analogous phosphoramide attachment to the 3'- or 5'-phosphate group of the appropriate oligonucleotide probes. The target effectively assembled its own detector by hybridization from components which were non-fluorescent at the detection wavelength, leading to the huge improvement in terms of decreased background. This research provides details of the effects of different partner, position of partners and different excitation wavelengths for the split-oligonucleotide probe system for exciplex-based fluorescence detection of DNA. This study demonstrates that the emission intensity of the excimer formed by new pyrene derivative is the highest in these excimer and exciplex, and the excimer is easy to be formed and not sensitive to the position of partners. However the exciplex formed by the new pyrene derivative and naphthalene emitted strongly at -505 nm with large Stokes shifts (120-130 nm), and the monomer emission at 390 and 410 nm is nearly zero. Excitation wavelength of 400 nm is the best for I(e505)/I(m410) (exciplex emission at 505 nm/monomer emission at 410 nm) of the exciplex. This method features lower background and high sensitivity. Moreover the exciplex is sensitive to the steric factor, different position of partners and microenvironment, so this exciplex system is promising and could be tried to identify the SNP genes.

  7. Selection and characterization of a DNA aptamer to crystal violet.

    PubMed

    Chen, Yang; Wang, Jine; Zhang, Yajie; Xu, Lijun; Gao, Tian; Wang, Bing; Pei, Renjun

    2018-06-13

    Aptamers are short single-stranded DNA or RNA, which can be selected in vitro by systematic evolution of ligands by exponential enrichment (SELEX). In order to develop novel light-up probes to substitute G-quadruplex (G4), we selected a DNA aptamer for crystal violet (CV), a triphenylmethane light-up dye, by a modified affinity chromatography-based SELEX. The ssDNA pool was first coupled on streptavidin-coated agarose beads through a biotin labeled complementary oligonucleotide, and then the aptamer sequences would be released from agarose beads by CV affinity. This method is simple, straightforward and effective. The aptamer sequence with a low micromolar dissociation constant (Kd) and good specificity was achieved after 11 rounds of selection. The light-up properties of the CV-aptamer were also investigated, and the CV showed dramatic fluorescence enhancement. The CV-aptamer pair could be further used as a novel light-up fluorescent probe to design biosensors.

  8. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    PubMed

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  9. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Bakhori, Noremylia Mohd; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-12

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10-9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  10. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  11. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    NASA Astrophysics Data System (ADS)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  12. Fluorescent triplex-forming DNA oligonucleotides labeled with a thiazole orange dimer unit

    PubMed Central

    Ikeda, Shuji; Yanagisawa, Hiroyuki; Yuki, Mizue; Okamoto, Akimitsu

    2013-01-01

    Fluorescent probes for the detection of a double-stranded DNA were prepared by labeling a triplex-forming DNA oligonucleotide with a thiazole orange (TO) dimer unit. They belong to ECHO (exciton-controlled hybridization-sensitive fluorescent oligonucleotide) probes which we have previously reported. The excitonic interaction between the two TO molecules was expected to effectively suppress the background fluorescence of the probes. The applicability of the ECHO probes for the detection of double-stranded DNA was confirmed by examining the thermal stability and photophysical and kinetic properties of the DNA triplexes formed by the ECHO probes. PMID:23445822

  13. High-performance analysis of single interphase cells with custom DNA probes spanning translocation break points

    NASA Astrophysics Data System (ADS)

    Weier, Heinz-Ulli G.; Munne, S.; Lersch, Robert A.; Marquez, C.; Wu, J.; Pedersen, Roger A.; Fung, Jingly

    1999-06-01

    The chromatin organization of interphase cell nuclei, albeit an object of intense investigation, is only poorly understood. In the past, this has hampered the cytogenetic analysis of tissues derived from specimens where only few cells were actively proliferating or a significant number of metaphase cells could be obtained by induction of growth. Typical examples of such hard to analyze cell systems are solid tumors, germ cells and, to a certain extent, fetal cells such as amniocytes, blastomeres or cytotrophoblasts. Balanced reciprocal translocations that do not disrupt essential genes and thus do not led to disease symptoms exit in less than one percent of the general population. Since the presence of translocations interferes with homologue pairing in meiosis, many of these individuals experience problems in their reproduction, such as reduced fertility, infertility or a history of spontaneous abortions. The majority of translocation carriers enrolled in our in vitro fertilization (IVF) programs carry simple translocations involving only two autosomes. While most translocations are relatively easy to spot in metaphase cells, the majority of cells biopsied from embryos produced by IVF are in interphase and thus unsuitable for analysis by chromosome banding or FISH-painting. We therefore set out to analyze single interphase cells for presence or absence of specific translocations. Our assay, based on fluorescence in situ hybridization (FISH) of breakpoint-spanning DNA probes, detects translocations in interphase by visual microscopic inspection of hybridization domains. Probes are prepared so that they span a breakpoint and cover several hundred kb of DNA adjacent to the breakpoint. On normal chromosomes, such probes label a contiguous stretch of DNA and produce a single hybridization domain per chromosome in interphase cells. The translocation disrupts the hybridization domain and the resulting two fragments appear as physically separated hybridization domains in the nucleus. To facilitate the detection, DNA probes for breakpoints on different chromosomes are labeled in different colors, so the translocation event can be detected as a fusion of red and green hybridization domains. We applied this scheme successfully for the analysis of somatic and germ cells from more than 20 translocation patients, each with individual breakpoints, and provide summaries of our experience as well as strategies, cost and time frames to prepare case-specific translocation probes.

  14. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes.

    PubMed

    Zhang, Ziping; Tao, Cancan; Yin, Jungang; Wang, Yunhui; Li, Yanshen

    2018-04-30

    Electrochemical aptamer (EA) sensors based on aptamer-cDNA duplex probes (cDNA: complementary DNA) and target induced strand displacement (TISD) recognition are sensitive, selective and capable of detecting a wide variety of target analytes. While substantial research efforts have focused on engineering of new signaling mechanisms for the improvement of sensor sensitivity, little attention was paid to the enhancement of sensor response rate. Typically, the previous TISD based EA sensors exhibited relatively long response times larger than 30min, which mainly resulted from the suboptimal aptamer-cDNA probe structure in which most of aptamer bases were paired to the cDNA bases. In an effort to improve the response rate of this type of sensors, we report here the rational engineering of a quickly responsive and sensitive aptamer-cDNA probe by employing the conception of bivalent interaction in supramolecular chemistry. We design a bivalent cDNA strand through linking two short monovalent cDNA sequences, and it is simultaneously hybridized to two electrode-immobilized aptamer probes to form a bivalent binding (BB) aptamer-cDNA probe. This class of BB probe possesses the advantages of less aptamer bases paired to the cDNA bases for quick response rate and good structural stability for high sensor sensitivity. By use of the rationally designed BB aptamer-cDNA probe, a TISD based EA sensor against ATP with significantly enhanced response rate (with a displacement equilibrium time of 4min) and high sensitivity was successfully constructed. We believe that our BB probe conception will help guide future designs and applications of TISD based EA sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A cascade signal amplification strategy for sensitive and label-free DNA detection based on Exo III-catalyzed recycling coupled with rolling circle amplification.

    PubMed

    Liu, Xingti; Xue, Qingwang; Ding, Yongshun; Zhu, Jing; Wang, Lei; Jiang, Wei

    2014-06-07

    A sensitive and label-free fluorescence assay for DNA detection has been developed based on cascade signal amplification combining exonuclease III (Exo III)-catalyzed recycling with rolling circle amplification. In this assay, probe DNA hybridized with template DNA was coupled onto magnetic nanoparticles to prepare a magnetic bead-probe (MNB-probe)-template complex. The complex could hybridize with the target DNA, which transformed the protruding 3' terminus of template DNA into a blunt end. Exo III could then digest template DNA, liberating the MNB-probe and target DNA. The intact target DNA then hybridized with other templates and released more MNB-probes. The liberated MNB-probe captured the primer, circular DNA and then initiated the rolling circle amplification (RCA) reaction, realizing a cascade signal amplification. Using this cascade amplification strategy, a sensitive DNA detection method was developed which was superior to many existing Exo III-based signal amplification methods. Moreover, N-methyl mesoporphyrin IX, which had a pronounced structural selectivity for the G-quadruplex, was used to combine with the G-quadruplex RCA products and generate a fluorescence signal, avoiding the need for any fluorophore-label probes. The spike and recovery experiments in a human serum sample indicated that our assay also had great potential for DNA detection in real biological samples.

  16. Analysis of β-Subgroup Proteobacterial Ammonia Oxidizer Populations in Soil by Denaturing Gradient Gel Electrophoresis Analysis and Hierarchical Phylogenetic Probing

    PubMed Central

    Stephen, John R.; Kowalchuk, George A.; Bruns, Mary-Ann V.; McCaig, Allison E.; Phillips, Carol J.; Embley, T. Martin; Prosser, James I.

    1998-01-01

    A combination of denaturing gradient gel electrophoresis (DGGE) and oligonucleotide probing was used to investigate the influence of soil pH on the compositions of natural populations of autotrophic β-subgroup proteobacterial ammonia oxidizers. PCR primers specific to this group were used to amplify 16S ribosomal DNA (rDNA) from soils maintained for 36 years at a range of pH values, and PCR products were analyzed by DGGE. Genus- and cluster-specific probes were designed to bind to sequences within the region amplified by these primers. A sequence specific to all β-subgroup ammonia oxidizers could not be identified, but probes specific for Nitrosospira clusters 1 to 4 and Nitrosomonas clusters 6 and 7 (J. R. Stephen, A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley, Appl. Environ. Microbiol. 62:4147–4154, 1996) were designed. Elution profiles of probes against target sequences and closely related nontarget sequences indicated a requirement for high-stringency hybridization conditions to distinguish between different clusters. DGGE banding patterns suggested the presence of Nitrosomonas cluster 6a and Nitrosospira clusters 2, 3, and 4 in all soil plots, but results were ambiguous because of overlapping banding patterns. Unambiguous band identification of the same clusters was achieved by combined DGGE and probing of blots with the cluster-specific radiolabelled probes. The relative intensities of hybridization signals provided information on the apparent selection of different Nitrosospira genotypes in samples of soil of different pHs. The signal from the Nitrosospira cluster 3 probe decreased significantly, relative to an internal control probe, with decreasing soil pH in the range of 6.6 to 3.9, while Nitrosospira cluster 2 hybridization signals increased with increasing soil acidity. Signals from Nitrosospira cluster 4 were greatest at pH 5.5, decreasing at lower and higher values, while Nitrosomonas cluster 6a signals did not vary significantly with pH. These findings are in agreement with a previous molecular study (J. R. Stephen, A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley, Appl. Environ. Microbiol 62:4147–4154, 1996) of the same sites, which demonstrated the presence of the same four clusters of ammonia oxidizers and indicated that selection might be occurring for clusters 2 and 3 at acid and neutral pHs, respectively. The two studies used different sets of PCR primers for amplification of 16S rDNA sequences from soil, and the similar findings suggest that PCR bias was unlikely to be a significant factor. The present study demonstrates the value of DGGE and probing for rapid analysis of natural soil communities of β-subgroup proteobacterial ammonia oxidizers, indicates significant pH-associated differences in Nitrosospira populations, and suggests that Nitrosospira cluster 2 may be of significance for ammonia-oxidizing activity in acid soils. PMID:9687457

  17. Optimizing the specificity of nucleic acid hybridization.

    PubMed

    Zhang, David Yu; Chen, Sherry Xi; Yin, Peng

    2012-01-22

    The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.

  18. Non-invasive prenatal diagnosis.

    PubMed

    Meaney, Cathy; Norbury, Gail

    2011-01-01

    The discovery of cell-free fetal DNA in the maternal plasma of pregnant women has facilitated the development of non-invasive prenatal diagnosis (NIPD). This has been successfully implemented in diagnostic laboratories for Rhesus typing and fetal sex determination for X-linked disorders and congenital adrenal hyperplasia (CAH) from 7 weeks gestation. Using real-time PCR, fluorescently labelled target gene specific probes can identify and quantify low copy number fetal-specific sequences in a high background of maternal DNA in the cell-free DNA extracted from maternal plasma.NIPD to detect specific fetal mutations in single gene disorders, currently by standard PCR techniques, can only be undertaken for paternally derived or de novo mutations because of the background maternal DNA. For routine use, this testing is limited by the large amounts of cell-free maternal DNA in the sample, the lack of universal fetal markers, and appropriate reference materials.

  19. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism.

    PubMed

    Zou, Zhen; Qing, Zhihe; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Shi, Hui; Yang, Xue; Qing, Taiping; Yang, Xiaoxiao

    2014-07-01

    A novel approach for highly sensitive and selective genotyping of single-nucleotide polymorphism (SNP) has been developed based on ligation-rolling circle amplification (L-RCA) and stemless molecular beacon. In this approach, two tailored DNA probes were involved. The stemless molecular beacon, formed through the inclusion interactions of γ-cyclodextrin (γ-CD) and bis-pyrene labeled DNA fragment, was served as signal probe. In the absence of mutant target, the two pyrene molecules were bound in the γ-CD cavity to form an excimer and showed a strong fluorescence at 475 nm. It was here named γ-CD-P-MB. The padlock DNA probe was designed as recognition probe. Upon the recognition of a point mutation DNA targets, the padlock probe was ligated to generate a circular template. An RCA amplification was then initiated using the circular template in the presence of Phi29 polymerase and dNTPs. The L-RCA products, containing repetitive sequence units, subsequently hybridized with the γ-CD-P-MB. This made pyrene molecules away from γ-CD cavity and caused a decrease of excimer fluorescence. As a proof-of-concept, SNP typing of β-thalassemia gene at position -28 was investigated using this approach. The detection limit of mutated target was determined to be 40 fM. In addition, DNA ligase offered high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant target even when the ratio of the wildtype to the mutant is 999:1. Given these attractive characteristics, the developed approach might provide a great genotyping platform for pathogenic diagnosis and genetic analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Co-amplification at lower denaturation-temperature PCR combined with unlabled-probe high-resolution melting to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma cases.

    PubMed

    Wu, Jiong; Zhou, Yan; Zhang, Chun-Yan; Song, Bin-Bin; Wang, Bei-Li; Pan, Bai-Shen; Lou, Wen-Hui; Guo, Wei

    2014-01-01

    The aim of our study was to establish COLD-PCR combined with an unlabeled-probe HRM approach for detecting KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma (PA) cases as a novel and effective diagnostic technique. We tested the sensitivity and specificity of this approach with dilutions of known mutated cell lines. We screened 36 plasma-circulating DNA samples, 24 from the disease control group and 25 of a healthy group, to be subsequently sequenced to confirm mutations. Simultaneously, we tested the specimens using conventional PCR followed by HRM and then used target-DNA cloning and sequencing for verification. The ROC and respective AUC were calculated for KRAS mutations and/or serum CA 19-9. It was found that the sensitivity of Sanger reached 0.5% with COLD- PCR, whereas that obtained after conventional PCR did 20%; that of COLD-PCR based on unlabeled-probe HRM, 0.1%. KRAS mutations were identified in 26 of 36 PA cases (72.2%), while none were detected in the disease control and/or healthy group. KRAS mutations were identified both in 26 PA tissues and plasma samples. The AUC of COLD-PCR based unlabeled probe HRM turned out to be 0.861, which when combined with CA 19-9 increased to 0.934. It was concluded that COLD-PCR with unlabeled-probe HRM can be a sensitive and accurate screening technique to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA for diagnosing and treating PA.

  1. Dual-probe real-time PCR assay for detection of variola or other orthopoxviruses with dried reagents.

    PubMed

    Aitichou, Mohamed; Saleh, Sharron; Kyusung, Park; Huggins, John; O'Guinn, Monica; Jahrling, Peter; Ibrahim, Sofi

    2008-11-01

    A real-time, multiplexed polymerase chain reaction (PCR) assay based on dried PCR reagents was developed. Only variola virus could be specifically detected by a FAM (6-carboxyfluorescein)-labeled probe while camelpox, cowpox, monkeypox and vaccinia viruses could be detected by a TET (6-carboxytetramethylrhodamine)-labeled probe in a single PCR reaction. Approximately 25 copies of cloned variola virus DNA and 50 copies of genomic orthopoxviruses DNA could be detected with high reproducibility. The assay exhibited a dynamic range of seven orders of magnitude with a correlation coefficient value greater than 0.97. The sensitivity and specificity of the assay, as determined from 100 samples that contained nucleic acids from a multitude of bacterial and viral species were 96% and 98%, respectively. The limit of detection, sensitivity and specificity of the assay were comparable to standard real-time PCR assays with wet reagents. Employing a multiplexed format in this assay allows simultaneous discrimination of the variola virus from other closely related orthopoxviruses. Furthermore, the implementation of dried reagents in real-time PCR assays is an important step towards simplifying such assays and allowing their use in areas where cold storage is not easily accessible.

  2. Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting the 26S rRNA.

    PubMed

    Röder, Christoph; König, Helmut; Fröhlich, Jürgen

    2007-09-01

    Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.

  3. Two-Way Gold Nanoparticle Label-Free Sensing of Specific Sequence and Small Molecule Targets Using Switchable Concatemers.

    PubMed

    Zhu, Longjiao; Shao, Xiangli; Luo, Yunbo; Huang, Kunlung; Xu, Wentao

    2017-05-19

    A two-way colorimetric biosensor based on unmodified gold nanoparticles (GNPs) and a switchable double-stranded DNA (dsDNA) concatemer have been demonstrated. Two hairpin probes (H1 and H2) were first designed that provided the fuels to assemble the dsDNA concatemers via hybridization chain reaction (HCR). A functional hairpin (FH) was rationally designed to recognize the target sequences. All the hairpins contained a single-stranded DNA (ssDNA) loop and sticky end to prevent GNPs from salt-induced aggregation. In the presence of target sequence, the capture probe blocked in the FH recognizes the target to form a duplex DNA, which causes the release of the initiator probe by FH conformational change. This process then starts the alternate-opening of H1 and H2 through HCR, and dsDNA concatemers grow from the target sequence. As a result, unmodified GNPs undergo salt-induced aggregation because the formed dsDNA concatemers are stiffer and provide less stabilization. A light purple-to-blue color variation was observed in the bulk solution, termed the light-off sensing way. Furthermore, H1 ingeniously inserted an aptamer sequence to generate dsDNA concatemers with multiple small molecule binding sites. In the presence of small molecule targets, concatemers can be disassembled into mixtures with ssDNA sticky ends. A blue-to-purple reverse color variation was observed due to the regeneration of the ssDNA, termed the light-on way. The two-way biosensor can detect both nucleic acids and small molecule targets with one sensing device. This switchable sensing element is label-free, enzyme-free, and sophisticated-instrumentation-free. The detection limits of both targets were below nanomolar.

  4. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.

    PubMed

    Chen, Sherry Xi; Seelig, Georg

    2016-04-20

    Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology.

  5. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB

    PubMed Central

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R.; Stedtfeld, Robert D.; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A.

    2017-01-01

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131). PMID:28555058

  6. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB.

    PubMed

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A

    2017-05-29

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R² = 0.8131).

  7. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    NASA Astrophysics Data System (ADS)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  8. Experimental mapping of DNA duplex shape enabled by global lineshape analyses of a nucleotide-independent nitroxide probe

    PubMed Central

    Ding, Yuan; Zhang, Xiaojun; Tham, Kenneth W.; Qin, Peter Z.

    2014-01-01

    Sequence-dependent variation in structure and dynamics of a DNA duplex, collectively referred to as ‘DNA shape’, critically impacts interactions between DNA and proteins. Here, a method based on the technique of site-directed spin labeling was developed to experimentally map shapes of two DNA duplexes that contain response elements of the p53 tumor suppressor. An R5a nitroxide spin label, which was covalently attached at a specific phosphate group, was scanned consecutively through the DNA duplex. X-band continuous-wave electron paramagnetic resonance spectroscopy was used to monitor rotational motions of R5a, which report on DNA structure and dynamics at the labeling site. An approach based on Pearson's coefficient analysis was developed to collectively examine the degree of similarity among the ensemble of R5a spectra. The resulting Pearson's coefficients were used to generate maps representing variation of R5a mobility along the DNA duplex. The R5a mobility maps were found to correlate with maps of certain DNA helical parameters, and were capable of revealing similarity and deviation in the shape of the two closely related DNA duplexes. Collectively, the R5a probe and the Pearson's coefficient-based lineshape analysis scheme yielded a generalizable method for examining sequence-dependent DNA shapes. PMID:25092920

  9. Recent patents on self-quenching DNA probes.

    PubMed

    Knemeyer, Jens-Peter; Marmé, Nicole

    2007-01-01

    In this review, we report on patents concerning self-quenching DNA probes for assaying DNA during or after amplification as well as for direct assaying DNA or RNA, for example in living cells. Usually the probes consist of fluorescently labeled oligonucleotides whose fluorescence is quenched in the absence of the matching target DNA. Thereby the fluorescence quenching is based on fluorescence resonance energy transfer (FRET), photoinduced electron transfer (PET), or electronically interactions between dye and quencher. However, upon hybridization to the target or after the degradation during a PCR, the fluorescence of the dye is restored. Although the presented probes were originally developed for use in homogeneous assay formats, most of them are also appropriate to improve surface-based assay methods. In particular we describe patents for self-quenching primers, self-quenching probes for TaqMan assays, probes based on G-quartets, Molecular Beacons, Smart Probes, and Pleiades Probes.

  10. Development of the polymerase chain reaction for diagnosis of chancroid.

    PubMed Central

    Chui, L; Albritton, W; Paster, B; Maclean, I; Marusyk, R

    1993-01-01

    The published nucleotide sequences of the 16S rRNA gene of Haemophilus ducreyi were used to develop primer sets and probes for the diagnosis of chancroid by polymerase chain reaction (PCR) DNA amplification. One set of broad specificity primers yielded a 303-bp PCR product from all bacteria tested. Two 16-base probes internal to this sequence were species specific for H. ducreyi when tested with 12 species of the families Pasteurellaceae and Enterobacteriaceae. The two probes in combination with the broad specificity primers were 100% sensitive with 51 strains of H. ducreyi isolated from six continents over a 15-year period. The direct detection of H. ducreyi from 100 clinical specimens by PCR showed a sensitivity of 83 to 98% and a specificity of 51 to 67%, depending on the number of amplification cycles. Images PMID:8458959

  11. Chromosome-specific physical localisation of expressed sequence tag loci in Corchorus olitorius L.

    PubMed

    Joshi, A; Das, S K; Samanta, P; Paria, P; Sen, S K; Basu, A

    2014-11-01

    Jute (Corchorus spp.), as a natural fibre-producing species, ranks next only to cotton. Inadequate understanding of its genetic architecture is a major lacuna for genetic improvement of this crop in terms of yield and quality. Establishment of a physical map provides a genomic tool that helps in positional cloning of valuable genes. In this report, an attempt was initiated to study association and localisation of single copy expressed sequence tag (EST) loci in the genome of Corchorus olitorius. The chromosome-specific association of EST was determined based on the appearance of an extra signal for a single copy cDNA probe in mitotic interphase nuclei of specific trisomic(s) for fluorescence in situ hybridisation, and validated using a cDNA fragment of the 26S rRNA gene (600 bp) as molecular probe. The probe exhibited three signals in meiotic interphase nuclei of trisomic 5, instead of two as observed in diploids and other trisomics, indicating its association with chromosome 5. Subsequent hybridisation of the same probe on the pachytene chromosomes of diploids confirmed that 26S rRNA occupies the terminal end of the short arm of chromosome 5 in C. olitorius. Subsequently, chromosome-specific association of 63 single copy EST and their physical localisation were determined on chromosomes 2, 4, 5 and 7. The study describes chromosome-specific physical localisation of genes in jute. The approach used here could be a step towards construction of genome-wide physical maps for any recalcitrant plant species like jute. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Simple methodology to directly genotype Trypanosoma cruzi discrete typing units in single and mixed infections from human blood samples.

    PubMed

    Bontempi, Iván A; Bizai, María L; Ortiz, Sylvia; Manattini, Silvia; Fabbro, Diana; Solari, Aldo; Diez, Cristina

    2016-09-01

    Different DNA markers to genotype Trypanosoma cruzi are now available. However, due to the low quantity of parasites present in biological samples, DNA markers with high copy number like kinetoplast minicircles are needed. The aim of this study was to complete a DNA assay called minicircle lineage specific-PCR (MLS-PCR) previously developed to genotype the T. cruzi DTUs TcV and TcVI, in order to genotype DTUs TcI and TcII and to improve TcVI detection. We screened kinetoplast minicircle hypervariable sequences from cloned PCR products from reference strains belonging to the mentioned DTUs using specific kDNA probes. With the four highly specific sequences selected, we designed primers to be used in the MLS-PCR to directly genotype T. cruzi from biological samples. High specificity and sensitivity were obtained when we evaluated the new approach for TcI, TcII, TcV and TcVI genotyping in twenty two T. cruzi reference strains. Afterward, we compared it with hybridization tests using specific kDNA probes in 32 blood samples from chronic chagasic patients from North Eastern Argentina. With both tests we were able to genotype 94% of the samples and the concordance between them was very good (kappa=0.855). The most frequent T. cruzi DTUs detected were TcV and TcVI, followed by TcII and much lower TcI. A unique T. cruzi DTU was detected in 18 samples meantime more than one in the remaining; being TcV and TcVI the most frequent association. A high percentage of mixed detections were obtained with both assays and its impact was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. "Gap hunting" to characterize clustered probe signals in Illumina methylation array data.

    PubMed

    Andrews, Shan V; Ladd-Acosta, Christine; Feinberg, Andrew P; Hansen, Kasper D; Fallin, M Daniele

    2016-01-01

    The Illumina 450k array has been widely used in epigenetic association studies. Current quality-control (QC) pipelines typically remove certain sets of probes, such as those containing a SNP or with multiple mapping locations. An additional set of potentially problematic probes are those with DNA methylation distributions characterized by two or more distinct clusters separated by gaps. Data-driven identification of such probes may offer additional insights for downstream analyses. We developed a procedure, termed "gap hunting," to identify probes showing clustered distributions. Among 590 peripheral blood samples from the Study to Explore Early Development, we identified 11,007 "gap probes." The vast majority (9199) are likely attributed to an underlying SNP(s) or other variant in the probe, although SNP-affected probes exist that do not produce a gap signals. Specific factors predict which SNPs lead to gap signals, including type of nucleotide change, probe type, DNA strand, and overall methylation state. These expected effects are demonstrated in paired genotype and 450k data on the same samples. Gap probes can also serve as a surrogate for the local genetic sequence on a haplotype scale and can be used to adjust for population stratification. The characteristics of gap probes reflect potentially informative biology. QC pipelines may benefit from an efficient data-driven approach that "flags" gap probes, rather than filtering such probes, followed by careful interpretation of downstream association analyses. Our results should translate directly to the recently released Illumina EPIC array given the similar chemistry and content design.

  14. New redox-active layer create via epoxy-amine reaction - The base of genosensor for the detection of specific DNA and RNA sequences of avian influenza virus H5N1.

    PubMed

    Malecka, Kamila; Stachyra, Anna; Góra-Sochacka, Anna; Sirko, Agnieszka; Zagórski-Ostoja, Włodzimierz; Dehaen, Wim; Radecka, Hanna; Radecki, Jerzy

    2015-03-15

    This paper concerns the development of a redox-active monolayer and its application for the construction of an electrochemical genosensor designed for the detection of specific DNA and RNA oligonucleotide sequences related to the avian influenza virus (AIV) type H5N1. This new redox layer was created on a gold electrode surface step by step. Cyclic Voltammetry, Osteryoung Square-Wave Voltammetry and Differential Pulse Voltammetry were used for its characterization. This new redox-active layer was applied for the construction of the DNA biosensor. The NH2-NC3 probe (20-mer) was covalently attached to the gold electrode surface via a "click" reaction between the amine and an epoxide group. The hybridization process was monitored using the Osteryoung Square-Wave Voltammetry. The 20-mer DNA and ca. 280-mer RNA oligonucleotides were used as the targets. The constructed genosensor was capable to determine complementary oligonucleotide sequences with a detection limit in the pM range. It is able to distinguish the different position of the part RNA complementary to the DNA probe. The genosensor was very selective. The 20-mer DNA as well as the 280-mer RNA oligonucleotides without a complementary sequence generated a weak signal. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DNA biosensors implemented on PNA-functionalized microstructured optical fibers Bragg gratings

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Giannetti, S.; Cucinotta, A.; Bertucci, A.; Manicardi, A.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Corradini, R.; Selleri, S.

    2013-05-01

    A novel DNA sensing platform based on a Peptide Nucleic Acid - functionalized Microstructured Optical Fibers gratings has been demonstrated. The inner surface of different MOFs has been functionalized using PNA probes, OligoNucleotides mimic that are well suited for specific DNA target sequences detection. The hybrid sensing systems were tested for optical DNA detection of targets of relevance in biomedical application, using the cystic fibrosis gene mutation, and food-analysis, using the genomic DNA from genetic modified organism soy flour. After the solutions of DNA molecules has been infiltrated inside the fibers capillaries and hybridization has occurred, oligonucleotidefunctionalized gold nanoparticles were infiltrated and used to form a sandwich-like system to achieve signal amplification. Spectral measurements of the reflected signal reveal a clear wavelength shift of the reflected modes when the infiltrated complementary DNA matches with the PNA probes placed on the inner fiber surface. Measurements have also been made using the mismatched DNA solution for the c, containing a single nucleotide polymorphism, showing no significant changes in the reflected spectrum. Several experiments have been carried out demonstrating the reproducibility of the results and the high selectivity of the sensors, showing the simplicity and the potential of this approach.

  16. Oligonucleotide-stabilized fluorescent silver nanoclusters for the specific and sensitive detection of biotin.

    PubMed

    Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin

    2016-02-21

    A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.

  17. Specific Detection and Identification of Herpes B Virus by a PCR-Microplate Hybridization Assay

    PubMed Central

    Oya, Chika; Ochiai, Yoshitsugu; Taniuchi, Yojiro; Takano, Takashi; Ueda, Fukiko; Yoshikawa, Yasuhiro; Hondo, Ryo

    2004-01-01

    Herpes B virus DNA was specifically amplified by PCR, targeting the regions that did not cross-react with herpes simplex virus (HSV). The amplified products, which were shown to be highly genetic polymorphisms among herpes B virus isolates, were identified by microplate hybridization with probes generated by PCR. The products immobilized in microplate wells were hybridized with the biotin-labeled probes derived from the SMHV strain of herpes B virus. The amplified products derived from the SMHV and E2490 strains of herpes B virus were identified by microplate hybridization. PCR products amplified from the trigeminal ganglia of seropositive cynomolgus macaques were identified as herpes B virus DNA. The utility of the PCR-microplate hybridization assay for genetic detection and identification of the polymorphic region of herpes B virus was determined. PMID:15131142

  18. Multiplexed Elimination of Wild-Type DNA and High-Resolution Melting Prior to Targeted Resequencing of Liquid Biopsies.

    PubMed

    Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Song, Chen; Adalsteinsson, Viktor A; Parsons, Heather A; Lin, Nancy U; Wagle, Nikhil; Makrigiorgos, G Mike

    2017-10-01

    The use of clinical samples and circulating cell-free DNA (cfDNA) collected from liquid biopsies for diagnostic and prognostic applications in cancer is burgeoning, and improved methods that reduce the influence of excess wild-type (WT) portion of the sample are desirable. Here we present enrichment of mutation-containing sequences using enzymatic degradation of WT DNA. Mutation enrichment is combined with high-resolution melting (HRM) performed in multiplexed closed-tube reactions as a rapid, cost-effective screening tool before targeted resequencing. We developed a homogeneous, closed-tube approach to use a double-stranded DNA-specific nuclease for degradation of WT DNA at multiple targets simultaneously. The No Denaturation Nuclease-assisted Minor Allele Enrichment with Probe Overlap (ND-NaME-PrO) uses WT oligonucleotides overlapping both strands on putative DNA targets. Under conditions of partial denaturation (DNA breathing), the oligonucleotide probes enhance double-stranded DNA-specific nuclease digestion at the selected targets, with high preference toward WT over mutant DNA. To validate ND-NaME-PrO, we used multiplexed HRM, digital PCR, and MiSeq targeted resequencing of mutated genomic DNA and cfDNA. Serial dilution of KRAS mutation-containing DNA shows mutation enrichment by 10- to 120-fold and detection of allelic fractions down to 0.01%. Multiplexed ND-NaME-PrO combined with multiplexed PCR-HRM showed mutation scanning of 10-20 DNA amplicons simultaneously. ND-NaME-PrO applied on cfDNA from clinical samples enables mutation enrichment and HRM scanning over 10 DNA targets. cfDNA mutations were enriched up to approximately 100-fold (average approximately 25-fold) and identified via targeted resequencing. Closed-tube homogeneous ND-NaME-PrO combined with multiplexed HRM is a convenient approach to efficiently enrich for mutations on multiple DNA targets and to enable prescreening before targeted resequencing. © 2017 American Association for Clinical Chemistry.

  19. EFFECT OF DIFFERENT REGIONS OF AMPLIFIED 16S RDNA ON A PERFORMANCE OF A MULTIPLEXED, BEAD-BASED METHOD FOR ANALYSIS OF DNA SEQUENCES IN ENVIRONMENTAL SAMPLES.

    EPA Science Inventory

    Using a bead-based method for multiplexed analysis of community DNA, the dynamics of aquatic microbial communities can be assessed. Capture probes, specific for a genus or species of bacteria, are attached to the surface of uniquely labeled, microscopic polystyrene beads. Primers...

  20. Development of swine-specific DNA markers for biosensor-based halal authentication.

    PubMed

    Ali, M E; Hashim, U; Kashif, M; Mustafa, S; Che Man, Y B; Abd Hamid, S B

    2012-06-29

    The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.

  1. Electrochemical detection of glutathione based on Hg(2+)-mediated strand displacement reaction strategy.

    PubMed

    Lv, Yun; Yang, Lili; Mao, Xiaoxia; Lu, Mengjia; Zhao, Jing; Yin, Yongmei

    2016-11-15

    Glutathione (GSH) plays an important role in numerous cellular functions, and the abnormal GSH expression is closely related with many dangerous human diseases. In this work, we have proposed a simple but sensitive electrochemical method for quantitative detection of GSH based on an Hg(2+)-mediated strand displacement reaction. Owing to the specific binding of Hg(2+) with T-T mismatches, helper DNA can bind to 3' terminal of probe DNA 1 and initiate the displacement of probe DNA 2 immobilized on an electrode surface. However, Hg(2+)-mediated strand displacement reaction can be inhibited by the chelation of GSH with Hg(2+), thereby leading to an obvious electrochemical response obtained from methylene blue that is modified onto the probe DNA. Our method can sensitively detect GSH in a wide linear range from 0.5nM to 5μM with a low detection limit of 0.14nM, which can also easily distinguish target molecules in complex serum samples and even cell extractions. Therefore, this method may have great potential to monitor GSH in the physiological and pathological condition in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes

    NASA Astrophysics Data System (ADS)

    Qi, Yingying; Li, Li; Li, Baoxin

    2009-09-01

    A simple and sensitive label-free colorimetric detection of telomere DNA has been developed. It was based on the color change of gold nanoparticles (AuNPs) due to DNA hybridization. UV-vis spectra and transmission electron microscopy (TEM) were used to investigate the change of AuNPs. Under the optimized conditions, the linear range for determination of telomere DNA was 5.7 × 10 -13 to 4.5 × 10 -6 mol/L. The detection limit (3 σ) of this method has decreased to pico-molar level.

  3. Development of uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification coupled with nanogold probe (UDG-LAMP-AuNP) for specific detection of Pseudomonas aeruginosa.

    PubMed

    Manajit, Orapan; Longyant, Siwaporn; Sithigorngul, Paisarn; Chaivisuthangkura, Parin

    2018-04-01

    Pseudomonas aeruginosa (P. aeruginosa) is an important opportunistic pathogen that causes serious infections in humans, including keratitis in contact lens wearers. Therefore, establishing a rapid, specific and sensitive method for the identification of P. aeruginosa is imperative. In the present study, the uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification combined with nanogold labeled hybridization probe (UDG-LAMP-AuNP) was developed for the detection of P. aeruginosa. UDG-LAMP was performed to prevent carry over contamination and the LAMP reactions can be readily observed using the nanogold probe. A set of 4 primers and a hybridization probe were designed based on the ecfX gene. The UDG-LAMP reactions were performed at 65˚C for 60 min using the ratio of 40% deoxyuridine triphosphate to 60% deoxythymidine triphosphate. The detection of UDG-LAMP products using the nanogold labeled hybridization probe, which appeared as a red-purple color, was examined at 65˚C for 5 min with 40 mM MgSO4. The UDG-LAMP-AuNP demonstrated specificity to all tested isolates of P. aeruginosa without cross reaction to other bacteria. The sensitivity for the detection of pure culture was 1.6x103 colony-forming units (CFU) ml-1 or equivalent to 3 CFU per reaction while that of polymerase chain reaction was 30 CFU per reaction. The detection limit of spiked contact lenses was 1.1x103 CFU ml-1 or equivalent to 2 CFU per reaction. In conclusion, the UDG-LAMP-AuNP assay was rapid, simple, specific and was effective for the identification of P. aeruginosa in contaminated samples.

  4. Development of uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification coupled with nanogold probe (UDG-LAMP-AuNP) for specific detection of Pseudomonas aeruginosa

    PubMed Central

    Manajit, Orapan; Longyant, Siwaporn; Sithigorngul, Paisarn; Chaivisuthangkura, Parin

    2018-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is an important opportunistic pathogen that causes serious infections in humans, including keratitis in contact lens wearers. Therefore, establishing a rapid, specific and sensitive method for the identification of P. aeruginosa is imperative. In the present study, the uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification combined with nanogold labeled hybridization probe (UDG-LAMP-AuNP) was developed for the detection of P. aeruginosa. UDG-LAMP was performed to prevent carry over contamination and the LAMP reactions can be readily observed using the nanogold probe. A set of 4 primers and a hybridization probe were designed based on the ecfX gene. The UDG-LAMP reactions were performed at 65°C for 60 min using the ratio of 40% deoxyuridine triphosphate to 60% deoxythymidine triphosphate. The detection of UDG-LAMP products using the nanogold labeled hybridization probe, which appeared as a red-purple color, was examined at 65°C for 5 min with 40 mM MgSO4. The UDG-LAMP-AuNP demonstrated specificity to all tested isolates of P. aeruginosa without cross reaction to other bacteria. The sensitivity for the detection of pure culture was 1.6×103 colony-forming units (CFU) ml−1 or equivalent to 3 CFU per reaction while that of polymerase chain reaction was 30 CFU per reaction. The detection limit of spiked contact lenses was 1.1×103 CFU ml−1 or equivalent to 2 CFU per reaction. In conclusion, the UDG-LAMP-AuNP assay was rapid, simple, specific and was effective for the identification of P. aeruginosa in contaminated samples. PMID:29436623

  5. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH

    PubMed Central

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G . incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G . raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution. PMID:23826377

  6. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH.

    PubMed

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution.

  7. SPR-DNA array for detection of methicillin-resistant Staphylococcus aureus (MRSA) in combination with loop-mediated isothermal amplification.

    PubMed

    Nawattanapaiboon, Kawin; Kiatpathomchai, Wansika; Santanirand, Pitak; Vongsakulyanon, Apirom; Amarit, Ratthasart; Somboonkaew, Armote; Sutapun, Boonsong; Srikhirin, Toemsak

    2015-12-15

    In this study, we evaluated surface plasmon resonance imaging (SPR imaging) as a DNA biosensor for the detection of methicillin-resistant Staphylococcus aureus (MRSA) which is one of the most common causes of nosocomial infections. The DNA sample were collected from clinical specimens, including sputum and blood hemoculture were undergone LAMP amplification for 0.18 kbp and 0.23 kbp DNA fragments of femB and mecA genes, respectively. The self-assembled monolayer surface (SAMs) was used for immobilized streptavidin-biotinylated probes on the sensor surface for the detection of LAMP amplicons from MRSA. Both LAMP amplicons were simultaneously hybridized with ssDNA probes immobilized onto a bio-functionalized surface to detect specific targets in the multiplex DNA array platform. In addition, the sensor surface could be regenerated allowing at least five cycles of use with a shortened assay time. The detection limit of LAMP-SPR sensing was 10 copies/µl and LAMP-SPR sensing system showed a good selectivity toward the MRSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands.

    PubMed

    Shen, Zhanhang; Mulholland, Kelly A; Zheng, Yujun; Wu, Chun

    2017-09-01

    DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations.

  9. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  10. Digital detection of multiple minority mutants in stool DNA for noninvasive colorectal cancer diagnosis.

    PubMed

    Deng, Lili; Qi, Zongtai; Zou, Binjie; Wu, Haiping; Huang, Huan; Kajiyama, Tomoharu; Kambara, Hideki; Zhou, Guohua

    2012-07-03

    Somatic mutations in stool DNA are quite specific to colorectal cancer (CRC), but a method being able to detect the extraordinarily low amounts of mutants is challengeable in sensitivity. We proposed a hydrogel bead-array to digitally count CRC-specific mutants in stool at a low cost. At first, multiplex amplification of targets containing multiple mutation loci of interest is carried out by a target enriched multiplex PCR (Tem-PCR), yielding the templates qualified for emulsion PCR (emPCR). Then, after immobilizing the beads from emPCR on a glass surface, the incorporation of Cy3-dUTP into the mutant-specific probes, which are specifically hybridized with the amplified beads from emPCR, is used to color the beads coated with mutants. As all amplified beads are hybridized with the Cy5-labeled universal probe, a mutation rate is readily obtained by digitally counting the beads with different colors (yellow and red). A high specificity of the method is achieved by removing the mismatched probes in a bead-array with electrophoresis. The approach has been used to simultaneously detect 8 mutation loci within the APC, TP53, and KRAS genes in stools from eight CRC patients, and 50% of CRC patients were positively diagnosed; therefore, our method can be a potential tool for the noninvasive diagnosis of CRC.

  11. Electroactive chitosan nanoparticles for the detection of single-nucleotide polymorphisms using peptide nucleic acids.

    PubMed

    Kerman, Kagan; Saito, Masato; Tamiya, Eiichi

    2008-08-01

    Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at approximately 0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biomaterials for various analytical and pharmaceutical applications.

  12. Label-free logic modules and two-layer cascade based on stem-loop probes containing a G-quadruplex domain.

    PubMed

    Guo, Yahui; Cheng, Junjie; Wang, Jine; Zhou, Xiaodong; Hu, Jiming; Pei, Renjun

    2014-09-01

    A simple, versatile, and label-free DNA computing strategy was designed by using toehold-mediated strand displacement and stem-loop probes. A full set of logic gates (YES, NOT, OR, NAND, AND, INHIBIT, NOR, XOR, XNOR) and a two-layer logic cascade were constructed. The probes contain a G-quadruplex domain, which was blocked or unfolded through inputs initiating strand displacement and the obviously distinguishable light-up fluorescent signal of G-quadruplex/NMM complex was used as the output readout. The inputs are the disease-specific nucleotide sequences with potential for clinic diagnosis. The developed versatile computing system based on our label-free and modular strategy might be adapted in multi-target diagnosis through DNA hybridization and aptamer-target interaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrophoretic and field-effect graphene for all-electrical DNA array technology.

    PubMed

    Xu, Guangyu; Abbott, Jeffrey; Qin, Ling; Yeung, Kitty Y M; Song, Yi; Yoon, Hosang; Kong, Jing; Ham, Donhee

    2014-09-05

    Field-effect transistor biomolecular sensors based on low-dimensional nanomaterials boast sensitivity, label-free operation and chip-scale construction. Chemical vapour deposition graphene is especially well suited for multiplexed electronic DNA array applications, since its large two-dimensional morphology readily lends itself to top-down fabrication of transistor arrays. Nonetheless, graphene field-effect transistor DNA sensors have been studied mainly at single-device level. Here we create, from chemical vapour deposition graphene, field-effect transistor arrays with two features representing steps towards multiplexed DNA arrays. First, a robust array yield--seven out of eight transistors--is achieved with a 100-fM sensitivity, on par with optical DNA microarrays and at least 10 times higher than prior chemical vapour deposition graphene transistor DNA sensors. Second, each graphene acts as an electrophoretic electrode for site-specific probe DNA immobilization, and performs subsequent site-specific detection of target DNA as a field-effect transistor. The use of graphene as both electrode and transistor suggests a path towards all-electrical multiplexed graphene DNA arrays.

  14. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.

    PubMed

    Wu, Yushu; Wang, Lei; Jiang, Wei

    2017-03-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is beneficial for evaluating the repairing process of DNA lesions. Here, toehold-mediated strand displacement reaction (TSDR)-dependent fluorescent strategy was constructed for sensitive detection of UDG activity. A single-stranded DNA (ssDNA) probe with two uracil bases and a trigger sequence were designed. A hairpin probe with toehold domain was designed, and a reporter probe was also designed. Under the action of UDG, two uracil bases were removed from ssDNA probe, generating apurinic/apyrimidinic (AP) sites. Then, the AP sites could inhibit the TSDR between ssDNA probe and hairpin probe, leaving the trigger sequence in ssDNA probe still free. Subsequently, the trigger sequence was annealed with the reporter probe, initiating the polymerization and nicking amplification reaction. As a result, numerous G-quadruplex (G4) structures were formed, which could bind with N-methyl-mesoporphyrin IX (NMM) to generate enhanced fluorescent signal. In the absence of UDG, the ssDNA probe could hybridize with the toehold domain of the hairpin probe to initiate TSDR, blocking the trigger sequence, and then the subsequent amplification reaction would not occur. The proposed strategy was successfully implemented for detecting UDG activity with a detection limit of 2.7×10 -5 U/mL. Moreover, the strategy could distinguish UDG well from other interference enzymes. Furthermore, the strategy was also applied for detecting UDG activity in HeLa cells lysate with low effect of cellular components. These results indicated that the proposed strategy offered a promising tool for sensitive quantification of UDG activity in UDG-related function study and disease prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Water-soluble mercury ion sensing based on the thymine-Hg2+-thymine base pair using retroreflective Janus particle as an optical signaling probe.

    PubMed

    Chun, Hyeong Jin; Kim, Saemi; Han, Yong Duk; Kim, Dong Woo; Kim, Ka Ram; Kim, Hyo-Sop; Kim, Jae-Ho; Yoon, Hyun C

    2018-05-01

    Herein, we report an optical sensing platform for mercury ions (Hg 2+ ) in water based on the integration of Hg 2+ -mediated thymine-thymine (T-T) stabilization, a biotinylated stem-loop DNA probe, and a streptavidin-modified retroreflective Janus particle (SA-RJP). Two oligonucleotide probes, including a stem-loop DNA probe and an assistant DNA probe, were utilized. In the absence of Hg 2+ , the assistant DNA probe does not hybridize with the stem-loop probe due to their T-T mismatch, so the surface-immobilized stem-loop DNA probe remains a closed hairpin structure. In the presence of Hg 2+ , the DNA forms a double-stranded structure with the loop region via Hg 2+ -mediated T-T stabilization. This DNA hybridization induces stretching of the stem-loop DNA probe, exposing biotin. To translate these Hg 2+ -mediated structural changes in DNA probe into measurable signal, SA-RJP, an optical signaling label, is applied to recognize the exposed biotin. The number of biospecifically bound SA-RJPs is proportional to the concentration of Hg 2+ , so that the concentration of Hg 2+ can be quantitatively analyzed by counting the number of RJPs. Using the system, a highly selective and sensitive measurement of Hg 2+ was accomplished with a limit of detection of 0.027nM. Considering the simplified optical instrumentation required for retroreflection-based RJP counting, RJP-assisted Hg 2+ measurement can be accomplished in a much easier and inexpensive manner. Moreover, the detection of Hg 2+ in real drinking water samples including tap and commercial bottled water was successfully carried out. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Different strategies for the detection of bioagents using electrochemical and photoelectrochemical genosensors

    NASA Astrophysics Data System (ADS)

    Voccia, Diego; Bettazi, Francesca; Palchetti, Ilaria

    2015-10-01

    In recent years various kinds of biosensors for the detection of pathogens have been developed. A genosensor consists in the immobilization, onto the surface of a chosen transducer, of an oligonucleotide with a specific base sequence called capture probe. The complementary sequence (the analytical target, i.e. a specific sequence of the DNA/RNA of the pathogen) present in the sample is recognized and captured by the probe through the hybridization reaction. The evaluation of the extent of the hybridization allows one to confirm whether the sample contains the complementary sequence of the probe or not. Electrochemical transducers have received considerable attention in connection with the detection of DNA hybridization. Moreover, recently, with the emergence of novel photoelectrochemically active species and new detection schemes, photoelectrochemistry has resulted in substantial progress in its analytical performance for biosensing applications. In this paper, some examples of electrochemical genosensors for multiplexed pathogen detection are shown. Moreover, the preliminary experiments towards the development of a photoelectrochemical genosensor using a TiO2 - nanocrystal-modified ITO electrode are discussed.

  17. Fluorescent "on-off-on" switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean.

    PubMed

    Li, Yaqi; Sun, Li; Qian, Jing; Long, Lingliang; Li, Henan; Liu, Qian; Cai, Jianrong; Wang, Kun

    2017-06-15

    With the increasing concern of potential health and environmental risk, it is essential to develop reliable methods for transgenic soybean detection. Herein, a simple, sensitive and selective assay was constructed based on homogeneous fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) and multiwalled carbon nanotubes@graphene oxide nanoribbons (MWCNTs@GONRs) to form the fluorescent "on-off-on" switching for simultaneous monitoring dual target DNAs of promoter cauliflower mosaic virus 35s (P35s) and terminator nopaline synthase (TNOS) from transgenic soybean. The capture DNAs were immobilized with corresponding QDs to obtain strong fluorescent signals (turning on). The strong π-π stacking interaction between single-stranded DNA (ssDNA) probes and MWCNTs@GONRs led to minimal background fluorescence due to the FRET process (turning off). The targets of P35s and TNOS were recognized by dual fluorescent probes to form double-stranded DNA (dsDNA) through the specific hybridization between target DNAs and ssDNA probes. And the dsDNA were released from the surface of MWCNTs@GONRs, which leaded the dual fluorescent probes to generate the strong fluorescent emissions (turning on). Therefore, this proposed homogeneous assay can be achieved to detect P35s and TNOS simultaneously by monitoring the relevant fluorescent emissions. Moreover, this assay can distinguish complementary and mismatched nucleic acid sequences with high sensitivity. The constructed approach has the potential to be a tool for daily detection of genetically modified organism with the merits of feasibility and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples

    NASA Astrophysics Data System (ADS)

    Ali, M. E.; Hashim, U.; Mustafa, S.; Che Man, Y. B.; Yusop, M. H. M.; Bari, M. F.; Islam, Kh N.; Hasan, M. F.

    2011-05-01

    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml - 1 swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  19. Prognostic Classifier Based on Genome-Wide DNA Methylation Profiling in Well-Differentiated Thyroid Tumors.

    PubMed

    Bisarro Dos Reis, Mariana; Barros-Filho, Mateus Camargo; Marchi, Fábio Albuquerque; Beltrami, Caroline Moraes; Kuasne, Hellen; Pinto, Clóvis Antônio Lopes; Ambatipudi, Srikant; Herceg, Zdenko; Kowalski, Luiz Paulo; Rogatto, Silvia Regina

    2017-11-01

    Even though the majority of well-differentiated thyroid carcinoma (WDTC) is indolent, a number of cases display an aggressive behavior. Cumulative evidence suggests that the deregulation of DNA methylation has the potential to point out molecular markers associated with worse prognosis. To identify a prognostic epigenetic signature in thyroid cancer. Genome-wide DNA methylation assays (450k platform, Illumina) were performed in a cohort of 50 nonneoplastic thyroid tissues (NTs), 17 benign thyroid lesions (BTLs), and 74 thyroid carcinomas (60 papillary, 8 follicular, 2 Hürthle cell, 1 poorly differentiated, and 3 anaplastic). A prognostic classifier for WDTC was developed via diagonal linear discriminant analysis. The results were compared with The Cancer Genome Atlas (TCGA) database. A specific epigenetic profile was detected according to each histological subtype. BTLs and follicular carcinomas showed a greater number of methylated CpG in comparison with NTs, whereas hypomethylation was predominant in papillary and undifferentiated carcinomas. A prognostic classifier based on 21 DNA methylation probes was able to predict poor outcome in patients with WDTC (sensitivity 63%, specificity 92% for internal data; sensitivity 64%, specificity 88% for TCGA data). High-risk score based on the classifier was considered an independent factor of poor outcome (Cox regression, P < 0.001). The methylation profile of thyroid lesions exhibited a specific signature according to the histological subtype. A meaningful algorithm composed of 21 probes was capable of predicting the recurrence in WDTC. Copyright © 2017 Endocrine Society

  20. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay.

    PubMed

    Maksyutov, Rinat A; Gavrilova, Elena V; Shchelkunov, Sergei N

    2016-10-01

    A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Differentiating RNA from DNA by a molecular fluorescent probe based on the "door-bolt" mechanism biomaterials.

    PubMed

    Yao, Qichao; Li, Haidong; Xian, Liman; Xu, Feng; Xia, Jing; Fan, Jiangli; Du, Jianjun; Wang, Jingyun; Peng, Xiaojun

    2018-09-01

    Although excellent florescent probes have been developed for DNA, good probes for RNA remain lacking. The shortage of reported and commercial RNA probes is attributable to their severe interference from DNA. As DNA and RNA have similar structures but different functions, it has been an imperative challenge to develop RNA probes that differentiate from DNA. In this study, an NIR fluorescent probe, NBE, is described, which contains a bulky julolidine group that can fit in a spacious RNA pocket and emit intense fluorescence. However, NBE has no response to DNA, as it cannot intercalate into the double strands or even in the DNA minor groove. The sensing mechanism is similar to the effect of a door-bolt. NBE shows excellent performance in RNA sensing (outstanding photostability, high selectivity and fast response), whether in aqueous buffers, fixed cells or living cells. These findings might provide not only a potential imaging tool but also a new design strategy for the recognition of RNA while avoiding interference from DNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents.

    PubMed

    Yang, Samuel; Rothman, Richard E; Hardick, Justin; Kuroki, Marcos; Hardick, Andrew; Doshi, Vishal; Ramachandran, Padmini; Gaydos, Charlotte A

    2008-04-01

    To design and evaluate a rapid polymerase chain reaction (PCR)-based assay for detecting Eubacteria and performing early screening for selected Class A biothreat bacterial pathogens. The authors designed a two-step PCR-based algorithm consisting of an initial broad-based universal detection step, followed by specific pathogen identification targeted for identification of the Class A bacterial biothreat agents. A region in the bacterial 16S rRNA gene containing a highly variable sequence flanked by clusters of conserved sequences was chosen as the target for the PCR assay design. A previously described highly conserved region located within the 16S rRNA amplicon was selected as the universal probe (UniProbe, Integrated DNA Technology, Coralville, IA). Pathogen-specific TaqMan probes were designed for Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Performance of the assay was assessed using genomic DNA extracted from the aforementioned biothreat-related organisms (inactivated or surrogate) and other common bacteria. The UniProbe detected the presence of all tested Eubacteria (31/31) with high analytical sensitivity. The biothreat-specific probes accurately identified organisms down to the closely related species and genus level, but were unable to discriminate between very close surrogates, such as Yersinia philomiragia and Bacillus cereus. A simple, two-step PCR-based assay proved capable of both universal bacterial detection and identification of select Class A bacterial biothreat and biothreat-related pathogens. Although this assay requires confirmatory testing for definitive species identification, the method has great potential for use in ED-based settings for rapid diagnosis in cases of suspected Category A bacterial biothreat agents.

  3. Detection of Multiple Waterborne Pathogens Using Microsequencing Arrays

    EPA Science Inventory

    Aims: A microarray was developed to simultaneously detect Cryptosporidium parvum, Cryptosporidium hominis, Enterococcus faecium, Bacillus anthracis and Francisella tularensis in water. Methods and Results: A DNA microarray was designed to contain probes that specifically dete...

  4. Knowledge-based image processing for on-off type DNA microarray

    NASA Astrophysics Data System (ADS)

    Kim, Jong D.; Kim, Seo K.; Cho, Jeong S.; Kim, Jongwon

    2002-06-01

    This paper addresses the image processing technique for discriminating whether the probes are hybrized with target DNA in the Human Papilloma Virus (HPV) DNA Chip designed for genotyping HPV. In addition to the probes, the HPV DNA chip has markers that always react with the sample DNA. The positions of probe-dots in the final scanned image are fixed relative to the marker-dot locations with a small variation according to the accuracy of the dotter and the scanner. The probes are duplicated 4 times for the diagnostic stability. The prior knowledges such as the maker relative distance and the duplication information of probes is integrated into the template matching technique with the normalized correlation measure. Results show that the employment of both of the prior knowledges is to simply average the template matching measures over the positions of the markers and probes. The eventual proposed scheme yields stable marker locating and probe classification.

  5. Modified beacon probe assisted dual signal amplification for visual detection of microRNA.

    PubMed

    Sun, Xiuwei; Ying, Na; Ju, Chuanjing; Li, Zhongyi; Xu, Na; Qu, Guijuan; Liu, Wensen; Wan, Jiayu

    2018-06-01

    In a recent study, we reported a novel assay for the detection of microRNA-21 based on duplex-specific nuclease (DSN)-assisted isothermal cleavage and hybridization chain reaction (HCR) dual signal amplification. The Fam modified double-stranded DNA products were generated after the HCR, another biotin modified probe was digested by DSN and released from the magnetic beads after the addition of the target miRNA. The released sequence was then combined with HCR products to form a double-tagging dsDNA, which can be recognized by the lateral flow strips. In this study, we introduced a 2-OMethyl-RNA modified beacon probe (2-OMe-MB) to make some improvements based on the previous study. Firstly, the substitution of modified probe combined on magnetic beads avoids the fussy washing steps for the separation of un-reacted probes. Furthermore, the modification of 2-OMe on the stem of the probe avoided the unnecessary cleavage by DSN, which greatly reduce the background signal. Compared to the previous work, these improvements save us a lot of steps but possess the comparable sensitivity and selectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.

    PubMed

    Okamura, Yukio; Watanabe, Yuichiro

    2006-01-01

    Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.

  7. Detection of human papillomavirus (HPV) DNA in human prostatic tissues by polymerase chain reaction (PCR).

    PubMed

    Sarkar, F H; Sakr, W A; Li, Y W; Sreepathi, P; Crissman, J D

    1993-01-01

    Human papillomavirus (HPV) infections are strongly linked to the pathogenesis of uterine cervical neoplasms, and have been implicated in other cancers of the female genital tract. In contrast, the association of HPV with the cancers of the male urogenital tract is less evident, except in anal and penile cancers. However, recent studies reporting the prevalence of HPV infections in human prostate cancers (60-100% HPV 16 positive vs. no infection of HPV) have raised controversies regarding the prevalence of HPV in benign and neoplastic human prostate. We investigated the prevalence of HPV infections in prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinomas in 23 surgically resected prostates. Polymerase chain reaction (PCR) was used to amplify HPV 6b/11, 16, and 18 specific DNA sequences, using type specific HPV primers selected from the transforming gene E6-E7. The areas of PIN and cancer in 6 microns H&E stained tissue sections were identified, and respective areas of PIN and cancer were isolated from the adjacent serial sections and used for DNA amplification and HPV detection (Fig. 1). Our results demonstrated the presence of HPV 16 in three carcinomas (13%), using type specific primers in PCR amplified samples. We were not able to demonstrate the presence of other HPV types (HPV 6b/11 or HPV 18) in any of the samples using specific primers. Two of these prostates showed relatively strong positive signals by dot blot analysis, when hybridized with a 32P-labeled HPV 16 type specific oligonucleotide probe. One more sample showed weak positivity, when hybridized with a 32P-labeled HPV 16 type specific oligonucleotide probe. Subsequently, we have confirmed these results by Southern hybridization of the samples transferred to nylon membrane after agarose gel electrophoresis and detected by HPV 16 type specific oligonucleotide probe, using chemiluminescent assay. We, therefore, conclude that HPV infections of the prostate in general are not as common as has been previously claimed by other investigators.

  8. Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan

    NASA Astrophysics Data System (ADS)

    Sakata, Masayuki K.; Maki, Nobutaka; Sugiyama, Hideki; Minamoto, Toshifumi

    2017-12-01

    Freshwater biodiversity has been severely threatened in recent years, and to conserve endangered species, their distribution and breeding habitats need to be clarified. However, identifying breeding sites in a large area is generally difficult. Here, by combining the emerging environmental DNA (eDNA) analysis with subsequent traditional collection surveys, we successfully identified a breeding habitat for the critically endangered freshwater fish Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan, which is one of the original habitats of this species. Based on DNA cytochrome B sequences of A. typus and closely related species, we developed species-specific primers and a probe that were used in real-time PCR for detecting A. typus eDNA. After verifying the specificity and applicability of the primers and probe on water samples from known artificial habitats, eDNA analysis was applied to water samples collected at 99 sites along Omono River. Two of the samples were positive for A. typus eDNA, and thus, small fixed nets and bottle traps were set out to capture adult fish and verify egg deposition in bivalves (the preferred breeding substrate for A. typus) in the corresponding regions. Mature female and male individuals and bivalves containing laid eggs were collected at one of the eDNA-positive sites. This was the first record of adult A. typus in Omono River in 11 years. This study highlights the value of eDNA analysis to guide conventional monitoring surveys and shows that combining both methods can provide important information on breeding sites that is essential for species' conservation.

  9. Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan.

    PubMed

    Sakata, Masayuki K; Maki, Nobutaka; Sugiyama, Hideki; Minamoto, Toshifumi

    2017-11-14

    Freshwater biodiversity has been severely threatened in recent years, and to conserve endangered species, their distribution and breeding habitats need to be clarified. However, identifying breeding sites in a large area is generally difficult. Here, by combining the emerging environmental DNA (eDNA) analysis with subsequent traditional collection surveys, we successfully identified a breeding habitat for the critically endangered freshwater fish Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan, which is one of the original habitats of this species. Based on DNA cytochrome B sequences of A. typus and closely related species, we developed species-specific primers and a probe that were used in real-time PCR for detecting A. typus eDNA. After verifying the specificity and applicability of the primers and probe on water samples from known artificial habitats, eDNA analysis was applied to water samples collected at 99 sites along Omono River. Two of the samples were positive for A. typus eDNA, and thus, small fixed nets and bottle traps were set out to capture adult fish and verify egg deposition in bivalves (the preferred breeding substrate for A. typus) in the corresponding regions. Mature female and male individuals and bivalves containing laid eggs were collected at one of the eDNA-positive sites. This was the first record of adult A. typus in Omono River in 11 years. This study highlights the value of eDNA analysis to guide conventional monitoring surveys and shows that combining both methods can provide important information on breeding sites that is essential for species' conservation.

  10. Coupling Spore Traps and Quantitative PCR Assays for Detection of the Downy Mildew Pathogens of Spinach (Peronospora effusa) and Beet (P. schachtii)

    PubMed Central

    Klosterman, Steven J.; Anchieta, Amy; McRoberts, Neil; Koike, Steven T.; Subbarao, Krishna V.; Voglmayr, Hermann; Choi, Young-Joon; Thines, Marco; Martin, Frank N.

    2016-01-01

    Downy mildew of spinach (Spinacia oleracea), caused by Peronospora effusa, is a production constraint on production worldwide, including in California, where the majority of U.S. spinach is grown. The aim of this study was to develop a real-time quantitative polymerase chain reaction (qPCR) assay for detection of airborne inoculum of P. effusa in California. Among oomycete ribosomal DNA (rDNA) sequences examined for assay development, the highest nucleotide sequence identity was observed between rDNA sequences of P. effusa and P. schachtii, the cause of downy mildew on sugar beet and Swiss chard in the leaf beet group (Beta vulgaris subsp. vulgaris). Single-nucleotide polymorphisms were detected between P. effusa and P. schachtii in the 18S rDNA regions for design of P. effusa- and P. schachtii-specific TaqMan probes and reverse primers. An allele-specific probe and primer amplification method was applied to determine the frequency of both P. effusa and P. schachtii rDNA target sequences in pooled DNA samples, enabling quantification of rDNA of P. effusa from impaction spore trap samples collected from spinach production fields. The rDNA copy numbers of P. effusa were, on average, ≈3,300-fold higher from trap samples collected near an infected field compared with those levels recorded at a site without a nearby spinach field. In combination with disease-conducive weather forecasting, application of the assays may be helpful to time fungicide applications for disease management. PMID:24964150

  11. Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection.

    PubMed

    Zhang, Yi; Zeng, Guang Ming; Tang, Lin; Chen, Jun; Zhu, Yuan; He, Xiao Xiao; He, Yan

    2015-01-20

    An electrochemical sensor was developed for attomolar Hg(2+) detection. Three single-stranded DNA probes were rationally designed for selective and sensitive detection of the target, which combined T-Hg(2+)-T coordination chemistry and the characteristic of convenient modification of electrochemical signal indicator. Graphene and nanoAu were successively electrodeposited on a glass carbon electrode surface to improve the electrode conductivity and functionalize with the 10-mer thymine-rich DNA probe (P1). NanoAu carriers functionalized with 29-mer guanine-rich DNA probe (P3) labeled methyl blue (MB-nanoAu-P 3s) were used to further strengthen signal response. In the presence of Hg(2+), a T-T mismatched dsDNA would occur between P1 and a 22-mer thymine-rich DNA probe (P2) on the electrode surface due to T-Hg(2+)-T coordination chemistry. Followed by adding the MB-nanoAu-P 3s for hybridization with P2, square wave voltammetry was executed. Under optimal conditions, Hg(2+) could be detected in the range from 1.0 aM to 100 nM with a detection limit of 0.001 aM. Selectivity measurements reveal that the sensor is specific for Hg(2+) even with interference by high concentrations of other metal ions. Three different environmental samples were analyzed by the sensor and the results were compared with that from an atomic fluorescence spectrometry. The developed sensor was demonstrated to achieve excellent detectability. It may be applied to development of ultrasensitive detection strategies.

  12. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense

    PubMed Central

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-01-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense. PMID:25587406

  13. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array.

    PubMed

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F

    2017-09-26

    Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.

  14. A method to identify and characterize Z-DNA binding proteins using a linear oligodeoxynucleotide

    NASA Technical Reports Server (NTRS)

    Herbert, A. G.; Rich, A.

    1993-01-01

    An oligodeoxynucleotide that readily flips to the Z-DNA conformation in 10mM MgCl2 was produced by using Klenow enzyme to incorporate 5-bromodeoxycytosine and deoxyguanosine into a (dC-dG)22 template. During synthesis the oligomer can be labeled with 32P to high specific activity. The labeled oligodeoxynucleotide can be used in bandshift experiment to detect proteins that bind Z-DNA. This allows the binding specificity of such proteins to be determined with high reliability using unlabeled linear and supercoiled DNA competitors. In addition, because the radioactive oligodeoxynucleotide contains bromine atoms, DNA-protein complexes can be readily crosslinked using UV light. This allows an estimate to be made of the molecular weight of the proteins that bind to the radioactive probe. Both techniques are demonstrated using a goat polyclonal anti-Z-DNA antiserum.

  15. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans.

    PubMed

    Biggar, Kyle K; Storey, Kenneth B

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans . Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G 1 arrest for the duration of stress survival.

  16. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans

    PubMed Central

    Biggar, Kyle K.

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans. Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G1 arrest for the duration of stress survival. PMID:29770276

  17. Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shuren; Zhao, Y.; Retterer, Scott T

    2013-01-01

    We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.

  18. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao

    2015-02-01

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.

  19. Towards a transcription map spanning a 250 kb area within the DiGeorge syndrome chromosome region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, W.; Emanuel, B.S.; Siegert, J.

    1994-09-01

    DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS) are congenital anomalies affecting predominantly the thymus, parathyroid glands, heart and craniofacial development. Detection of 22q11.2 deletions in the majority of DGS and VCFS patients implicate 22q11 haploinsufficiency in the etiology of these disorders. The VCFS/DGS critical region lies within the proximal portion of a commonly deleted 1.2 Mb region in 22q11. A 250 kb cosmid contig covering this critical region and containing D22S74 (N25) has been established. From this contig, eleven cosmids with minimal overlap were biotinylated by nick translation, and hybridized to PCR-amplified cDNAs prepared from different tissues. The use ofmore » cDNAs from a variety of tissues increases the likelihood of identifying low abundance transcripts and tissue-specific expressed sequences. A DGCR-specific cDNA sublibrary consisting of 670 cDNA clones has been constructed. To date, 49 cDNA clones from this sub-library have been identified with single copy probes and cosmids containing putative CpG islands. Based on sequence analysis, 25 of the clones contain regions of homology to several cDNAs which map within the proximal contig. LAN is a novel partial cDNA isolated from a fetal brain library probed with one of the cosmids in the proximal contig. Using LAN as a probe, we have found 19 positive clones in the DGCR-specific cDNA sub-library (4 clones from fetal brain, 14 from adult skeletal muscle and one from fetal liver). Some of the LAN-positive clones extend the partial cDNA in the 5{prime} direction and will be useful in assembling a full length transcript. This resource will be used to develop a complete transcriptional map of the critical region in order to identify candidate gene(s) involved in the etiology of DGS/VCFS and to determine the relationship between the transcriptional and physical maps of 22q11.« less

  20. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    PubMed

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.

  1. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.

    PubMed

    Hu, Hongyan; Huang, Xiangyi; Ren, Jicun

    2016-05-01

    Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA-based nanomaterials because of its direct recognition of natural double-stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single-strand DNA (ssDNA) fluorescent probes and fluorescent probe-double-strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (K(a)) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20-mer perfectly matched ssDNA probe and three single-base mismatched ssDNA probes with 146-mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single-base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.

  2. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with atmore » least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.« less

  3. Development of goose- and duck-specific DNA markers to determine sources of Escherichia coli in waterways.

    PubMed

    Hamilton, Matthew J; Yan, Tao; Sadowsky, Michael J

    2006-06-01

    The contamination of waterways with fecal material is a persistent threat to public health. Identification of the sources of fecal contamination is a vital component for abatement strategies and for determination of total maximum daily loads. While phenotypic and genotypic techniques have been used to determine potential sources of fecal bacteria in surface waters, most methods require construction of large known-source libraries, and they often fail to adequately differentiate among environmental isolates originating from different animal sources. In this study, we used pooled genomic tester and driver DNAs in suppression subtractive hybridizations to enrich for host source-specific DNA markers for Escherichia coli originating from locally isolated geese. Seven markers were identified. When used as probes in colony hybridization studies, the combined marker DNAs identified 76% of the goose isolates tested and cross-hybridized, on average, with 5% of the human E. coli strains and with less than 10% of the strains obtained from other animal hosts. In addition, the combined probes identified 73% of the duck isolates examined, suggesting that they may be useful for determining the contribution of waterfowl to fecal contamination. However, the hybridization probes reacted mainly with E. coli isolates obtained from geese in the upper midwestern United States, indicating that there is regional specificity of the markers identified. Coupled with high-throughput, automated macro- and microarray screening, these markers may provide a quantitative, cost-effective, and accurate library-independent method for determining the sources of genetically diverse E. coli strains for use in source-tracking studies. However, future efforts to generate DNA markers specific for E. coli must include isolates obtained from geographically diverse animal hosts.

  4. Development of dansyl-modified oligonucleotide probes responding to structural changes in a duplex.

    PubMed

    Suzuki, Yoshio; Kowata, Keiko; Komatsu, Yasuo

    2013-11-15

    We have synthesized a nonnucleoside amidite block of dansyl fluorophore to prepare dansyl-modified oligonucleotides (ONTs). The fluorescence intensities of dansyl-ONT specifically increased by the presence of adjacent guanosine residues but, significantly reduced in a dansyl-flipping duplex. These changes were caused by solvatochromism effect due to the number of guanine which is hydrophobic functional group and the external environment of dansyl group. The fluorescence intensities could be plotted as a function of the ONTs concentrations and the increase in the fluorescence was observed to equimolar concentrations of target DNA. This duplex exhibited higher melting temperature relative to the corresponding duplexes containing other base pairs. Similar changes in fluorescence could be detected upon hybridization with complementary RNAs. Thus, the dansyl-modified ONTs provide sequence specific fluorescent probe of DNA and RNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences.

    PubMed

    Ye, Yu-Dan; Xia, Li; Xu, Dang-Dang; Xing, Xiao-Jing; Pang, Dai-Wen; Tang, Hong-Wu

    2016-11-15

    Based on the remarkable difference between the interactions of carbon nanoparticles (CNPs) oxide with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and the fact that fluorescence of DNA-stabilized silver nanoclusters (AgNCs) can be quenched by CNPs oxide, DNA-functionalized AgNCs were applied as label-free fluorescence probes and a novel fluorescence resonance energy transfer (FRET) sensor was successfully constructed for the detection of human immunodeficiency virus (HIV) DNA sequences. CNPs oxide were prepared with the oxidation of candle soot, hence it is simple, time-saving and low-cost. The strategy of dual AgNCs probes was applied to improve the detection sensitivity by using dual- probe capturing the same target DNA in a sandwich mode and as the fluorescence donor, and using CNPs oxide as the acceptor. In the presence of target DNA, a dsDNA hybrid forms, leading to the desorption of the ssDNA-AgNCs probes from CNPs oxide, and the recovering of fluorescence of the AgNCs in a HIV-DNA concentration-dependent manner. The results show that HIV-DNA can be detected in the range of 1-50nM with a detection limit of 0.40nM in aqueous buffer. The method is simple, rapid and sensitive with no need of labeled fluorescent probes, and moreover, the design of fluorescent dual-probe makes full use of the excellent fluorescence property of AgNCs and further improves the detection sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, and GA21 maize and transgenic GT73 canola.

    PubMed

    Taverniers, Isabel; Windels, Pieter; Vaïtilingom, Marc; Milcamps, Anne; Van Bockstaele, Erik; Van den Eede, Guy; De Loose, Marc

    2005-04-20

    Since the 18th of April 2004, two new regulations, EC/1829/2003 on genetically modified food and feed products and EC/1830/2003 on traceability and labeling of GMOs, are in force in the EU. This new, comprehensive regulatory framework emphasizes the need of an adequate tracing system. Unique identifiers, such as the transgene genome junction region or a specific rearrangement within the transgene DNA, should form the basis of such a tracing system. In this study, we describe the development of event-specific tracing systems for transgenic maize lines Bt11, Bt176, and GA21 and for canola event GT73. Molecular characterization of the transgene loci enabled us to clone an event-specific sequence into a plasmid vector, to be used as a marker, and to develop line-specific primers. Primer specificity was tested through qualitative PCRs and dissociation curve analysis in SYBR Green I real-time PCRs. The primers were then combined with event-specific TaqMan probes in quantitative real-time PCRs. Calibration curves were set up both with genomic DNA samples and the newly synthesized plasmid DNA markers. It is shown that cloned plasmid GMO target sequences are perfectly suitable as unique identifiers and quantitative calibrators. Together with an event-specific primer pair and a highly specific TaqMan probe, the plasmid markers form crucial components of a unique and straighforward tracing system for Bt11, Bt176, and GA21 maize and GT73 canola events.

  7. Synthesis and evaluation of a photoresponsive quencher for fluorescent hybridization probes.

    PubMed

    Kovaliov, Marina; Wachtel, Chaim; Yavin, Eylon; Fischer, Bilha

    2014-10-21

    Nowadays, most nucleic acid detections using fluorescent probes rely on quenching of fluorescence by energy transfer from one fluorophore to another or to a non-fluorescent molecule (quencher). The most widely used quencher in fluorescent probes is 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL). We targeted a nucleoside-DABCYL analogue which could be incorporated anywhere in an oligonucleotide sequence and in any number, and used as a quencher in different hybridization sensitive probes. Specifically, we introduced a 5-(4-((dimethylamino)phenyl)azo)benzene)-2'-deoxy-uridine (dU(DAB)) quencher. The photoisomerization and dU(DAB)'s ability to quench fluorescein emission have been investigated. We incorporated dU(DAB) into a series of oligonucleotide (ON) probes including strand displacement probes, labeled with both fluorescein (FAM) and dU(DAB), and TaqMan probes bearing one or two dU(DAB) and a FAM fluorophore. We used these probes for the detection of a DNA target in real-time PCR (RT-PCR). All probes showed amplification of targeted DNA. A dU(DAB) modified TaqMan RT-PCR probe was more efficient as compared to a DABCYL bearing probe (93% vs. 87%, respectively). Furthermore, dU(DAB) had a stabilizing effect on the duplex, causing an increase in Tm up to 11 °C. In addition we showed the photoisomerisation of the azobenzene moiety of dU(DAB) and the dU(DAB) triply-labeled oligonucleotide upon irradiation. These findings suggest that dU(DAB) modified probes are promising probes for gene quantification in real-time PCR detection and as photoswitchable devices.

  8. Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice

    PubMed Central

    Pathak, Rupak; Koturbash, Igor; Hauer-Jensen, Martin

    2017-01-01

    Ionizing radiation (IR) induces numerous stable and unstable chromosomal aberrations. Unstable aberrations, where chromosome morphology is substantially compromised, can easily be identified by conventional chromosome staining techniques. However, detection of stable aberrations, which involve exchange or translocation of genetic materials without considerable modification in the chromosome morphology, requires sophisticated chromosome painting techniques that rely on in situ hybridization of fluorescently labeled DNA probes, a chromosome painting technique popularly known as fluorescence in situ hybridization (FISH). FISH probes can be specific for whole chromosome/s or precise sub-region on chromosome/s. The method not only allows visualization of stable aberrations, but it can also allow detection of the chromosome/s or specific DNA sequence/s involved in a particular aberration formation. A variety of chromosome painting techniques are available in cytogenetics; here two highly sensitive methods, multiple fluorescence in situ hybridization (mFISH) and spectral karyotyping (SKY), are discussed to identify inter-chromosomal stable aberrations that form in the bone marrow cells of mice after exposure to total body irradiation. Although both techniques rely on fluorescent labeled DNA probes, the method of detection and the process of image acquisition of the fluorescent signals are different. These two techniques have been used in various research areas, such as radiation biology, cancer cytogenetics, retrospective radiation biodosimetry, clinical cytogenetics, evolutionary cytogenetics, and comparative cytogenetics. PMID:28117817

  9. Detection of Z DNA binding proteins in tissue culture cells.

    PubMed Central

    Leith, I R; Hay, R T; Russell, W C

    1988-01-01

    A gel electrophoresis DNA binding assay to detect Z DNA binding proteins has been developed utilising [32P] labelled poly [d(G-C)] which was converted to the Z form by incubation in 100 microM Co(NH3)6Cl3. The parameters of the assay were established using a Z DNA antibody as a model system and then applied to extracts of Hela and BHK21 cells. Using an anti-Z DNA antibody conditions were established which allowed resolution of antibody-DNA complexes and free DNA in the presence of 100 microM Co(NH3)6Cl3. The inclusion of unlabelled complementary homopolymers eliminated non-specific binding to the labelled Z-DNA probe. Competition experiments demonstrated that the assay was highly specific for double stranded non-B DNA. Application of the technique to extracts of mammalian cells demonstrated that human and hamster cells contain Z-DNA binding proteins; further characterisation by a blotting technique indicated that a 56,000 molecular weight cell protein preferentially binds Z-DNA. Images PMID:3419919

  10. UV-vis spectroscopy and dynamic light scattering study of gold nanorods aggregation.

    PubMed

    Kanjanawarut, Roejarek; Yuan, Bo; XiaoDi, Su

    2013-08-01

    Gold nanorods (AuNRs) were used as spectroscopic sensing elements to detect specific DNA sequences with a single-base mismatch sensitivity. The assay was based on the observation that the stabilizing repulsive forces between CTA(+)-coated AuNRs can be removed by citrate ions, which causes aggregation among AuNRs; whereas nucleic acids of different structures[ i.e., peptide nucleic acid (PNA), single-stranded DNA (ssDNA), PNA-DNA complex, and double-stranded DNA (dsDNA)] can retard the aggregation. Moreover, the dsDNA PNA-DNA duplexes provide larger retardation than that by unhybridized ssDNA and PNA probe. This assay can differentiate single-base mismatched targets with base substitution at different locations (center and end) with AuNRs of a larger aspect ratio. Besides ultraviolet-visable spectroscopy measurement of particle assembly-induced plasmonic coupling that in turn provides a spectroscopic detection of the specific DNA, dynamic light scattering and transmission electron microscope (TEM) were used to measure smaller degree of aggregation that can reveal sodium citrate- and dsDNA-AuNRs interactions in fine detail.

  11. Human papillomavirus hpv-16 DNA as an epitheliotropic virus that induces hyperproliferation in squamous penile tissue.

    PubMed

    Salazar, Edith L; Mercado, E; Calzada, L

    2005-01-01

    The prevalence of human papillomavirus HPV-16DNA sequences in 57 penile carcinoma biopsies was examined using the polymerase chain reaction (PCR) with type specific internal probes, employing HPV consensus primers from the L1 region. The cases comprised 39 typical squamous cell carcinoma and 18 specimens with different subtype. PCR products were analyzed and HPV-16DNA was detected in a high percentage of specimens. Thirty-eight biopsies were HPV-16DNA positive. This determination was correlated with cellular differentiation and growth pattern. Our data corroborates that squamous cell carcinoma was invariably associated with HPV-16DNA.

  12. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Wu, L.; Gentry, T.

    2006-04-05

    To effectively monitor microbial populations involved in various important processes, a 50-mer-based oligonucleotide microarray was developed based on known genes and pathways involved in: biodegradation, metal resistance and reduction, denitrification, nitrification, nitrogen fixation, methane oxidation, methanogenesis, carbon polymer decomposition, and sulfate reduction. This array contains approximately 2000 unique and group-specific probes with <85% similarity to their non-target sequences. Based on artificial probes, our results showed that at hybridization conditions of 50 C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appearedmore » to be specific to their corresponding target genes. Detection limits were about 5-10ng genomic DNA in the absence of background DNA, and 50-100ng ({approx}1.3{sup o} 10{sup 7} cells) in the presence background DNA. Strong linear relationships between signal intensity and target DNA and RNA concentration were observed (r{sup 2} = 0.95-0.99). Application of this microarray to naphthalene-amended enrichments and soil microcosms demonstrated that composition of the microflora varied depending on incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in enrichments, the genes involved in naphthalene degradation from Gram-negative microorganisms such as Ralstonia, Comamonas, and Burkholderia were most abundant in the soil microcosms (as well as those for polyaromatic hydrocarbon and nitrotoluene degradation). Although naphthalene degradation is widely known and studied in Pseudomonas, Pseudomonas genes were not detected in either system. Real-time PCR analysis of 4 representative genes was consistent with microarray-based quantification (r{sup 2} = 0.95). Currently, we are also applying this microarray to the study of several different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.« less

  13. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7.

    PubMed

    Nadzirah, Sh; Azizah, N; Hashim, Uda; Gopinath, Subash C B; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.

  14. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7

    PubMed Central

    Nadzirah, Sh.; Azizah, N.; Hashim, Uda; Gopinath, Subash C. B.; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system’s physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  15. Assessment of Telomere Length, Phenotype, and DNA Content

    PubMed Central

    Kelesidis, Theodoros; Schmid, Ingrid

    2017-01-01

    Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. PMID:28055113

  16. Assessment of Telomere Length, Phenotype, and DNA Content.

    PubMed

    Kelesidis, Theodoros; Schmid, Ingrid

    2017-01-05

    Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G 0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Simple diazonium chemistry to develop specific gene sensing platforms.

    PubMed

    Revenga-Parra, M; García-Mendiola, T; González-Costas, J; González-Romero, E; Marín, A García; Pau, J L; Pariente, F; Lorenzo, E

    2014-02-27

    A simple strategy for covalent immobilizing DNA sequences, based on the formation of stable diazonized conducting platforms, is described. The electrochemical reduction of 4-nitrobenzenediazonium salt onto screen-printed carbon electrodes (SPCE) in aqueous media gives rise to terminal grafted amino groups. The presence of primary aromatic amines allows the formation of diazonium cations capable to react with the amines present at the DNA capture probe. As a comparison a second strategy based on the binding of aminated DNA capture probes to the developed diazonized conducting platforms through a crosslinking agent was also employed. The resulting DNA sensing platforms were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and spectroscopic ellipsometry. The hybridization event with the complementary sequence was detected using hexaamineruthenium (III) chloride as electrochemical indicator. Finally, they were applied to the analysis of a 145-bp sequence from the human gene MRP3, reaching a detection limit of 210 pg μL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Quantum dot-fluorescence in situ hybridisation for Ectromelia virus detection based on biotin-streptavidin interactions.

    PubMed

    Wang, Ting; Zheng, Zhenhua; Zhang, Xian-En; Wang, Hanzhong

    2016-09-01

    Ectromelia virus (ECTV) is an pathogen that can lead to a lethal, acute toxic disease known as mousepox in mice. Prevention and control of ECTV infection requires the establishment of a rapid and sensitive diagnostic system for detecting the virus. In the present study, we developed a method of quantum-dot-fluorescence based in situ hybridisation for detecting ECTV genome DNA. Using biotin-dUTP to replace dTTP, biotin was incorporated into a DNA probe during polymerase chain reaction. High sensitivity and specificity of ECTV DNA detection were displayed by fluorescent quantum dots based on biotin-streptavidin interactions. ECTV DNA was then detected by streptavidin-conjugated quantum dots that bound the biotin-labelled probe. Results indicated that the established method can visualise ECTV genomic DNA in both infected cells and mouse tissues. To our knowledge, this is the first study reporting quantum-dot-fluorescence based in situ hybridisation for the detection of viral nucleic acids, providing a reference for the identification and detection of other viruses. Copyright © 2016. Published by Elsevier B.V.

  19. Isolation and characterization of cDNA clones for human erythrocyte beta-spectrin.

    PubMed Central

    Prchal, J T; Morley, B J; Yoon, S H; Coetzer, T L; Palek, J; Conboy, J G; Kan, Y W

    1987-01-01

    Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical alpha (Mr 240,000) and beta (Mr 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. We report here the isolation and characterization of a human erythroid-specific beta-spectrin cDNA clone that encodes parts of the beta-9 through beta-12 repeat segments. This cDNA was used as a hybridization probe to assign the beta-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte beta-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the beta-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities. Images PMID:3478706

  20. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    NASA Technical Reports Server (NTRS)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  1. Parallel Characterization of Anaerobic Toluene- and Ethylbenzene-Degrading Microbial Consortia by PCR-Denaturing Gradient Gel Electrophoresis, RNA-DNA Membrane Hybridization, and DNA Microarray Technology

    PubMed Central

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Saïd; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis. PMID:12088997

  2. A new cationic porphyrin derivative (TMPipEOPP) with large side arm substituents: a highly selective G-quadruplex optical probe.

    PubMed

    Zhu, Li-Na; Zhao, Shu-Juan; Wu, Bin; Li, Xiao-Zeng; Kong, De-Ming

    2012-01-01

    The discovery of uncommon DNA structures and speculation about their potential functions in genes has brought attention to specific DNA structure recognition. G-quadruplexes are four-stranded nucleic acid structures formed by G-rich DNA (or RNA) sequences. G-rich sequences with a high potential to form G-quadruplexes have been found in many important genomic regions. Porphyrin derivatives with cationic side arm substituents are important G-quadruplex-binding ligands. For example, 5,10,15,20-Tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin (TMPyP4), interacts strongly with G-quadruplexes, but has poor selectivity for G-quadruplex versus duplex DNA. To increase the G-quadruplex recognition specificity, a new cationic porphyrin derivative, 5,10,15,20-tetra-{4-[2-(1-methyl-1-piperidinyl)ethoxy]phenyl} porphyrin (TMPipEOPP), with large side arm substituents was synthesized, and the interactions between TMPipEOPP and different DNA structures were compared. The results show that G-quadruplexes cause large changes in the UV-Vis absorption and fluorescence spectra of TMPipEOPP, but duplex and single-stranded DNAs do not, indicating that TMPipEOPP can be developed as a highly specific optical probe for discriminating G-quadruplex from duplex and single-stranded DNA. Visual discrimination is also possible. Job plot and Scatchard analysis suggest that a complicated binding interaction occurs between TMPipEOPP and G-quadruplexes. At a low [G-quadruplex]/[TMPipEOPP] ratio, one G-quadruplex binds two TMPipEOPP molecules by end-stacking and outside binding modes. At a high [G-quadruplex]/[TMPipEOPP] ratio, two G-quadruplexes bind to one TMPipEOPP molecule in a sandwich-like end-stacking mode.

  3. Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification.

    PubMed

    Sabaté Del Río, Jonathan; Steylaerts, Tim; Henry, Olivier Y F; Bienstman, Peter; Stakenborg, Tim; Van Roy, Wim; O'Sullivan, Ciara K

    2015-11-15

    In this work we present the use of a silicon-on-insulator (SOI) chip featuring an array of 64 optical ring resonators used as refractive index sensors for real-time and label-free DNA detection. Single ring functionalisation was achieved using a click reaction after precise nanolitre spotting of specific hexynyl-terminated DNA capture probes to link to an azido-silanised chip surface. To demonstrate detectability using the ring resonators and to optimise conditions for solid-phase amplification, hybridisation between short 25-mer single stranded DNA (ssDNA) fragments and a complementary capture probe immobilised on the surface of the ring resonators was carried out and detected through the shift in the resonant wavelength. Using the optimised conditions demonstrated via the solid-phase hybridisation, a 144-bp double stranded DNA (dsDNA) was then detected directly using recombinase and polymerase proteins through on-chip target amplification and solid-phase elongation of immobilised forward primers on specific rings, at a constant temperature of 37°C and in less than 60min, achieving a limit of detection of 7.8·10(-13)M (6·10(5) copies in 50µL). The use of an automatic liquid handler injection instrument connected to an integrated resealable chip interface (RCI) allowed programmable multiple injection protocols. Air plugs between different solutions were introduced to prevent intermixing and a proportional-integral-derivative (PID) temperature controller minimised temperature based drifts. Published by Elsevier B.V.

  4. Optimizing the specificity of nucleic acid hybridization

    PubMed Central

    Zhang, David Yu; Chen, Sherry Xi; Yin, Peng

    2014-01-01

    The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg2+ to 47 mM Mg2+, and with nucleic acid concentrations from 1 nM to 5 μM. Experiments with RNA also showed effective single-base change discrimination. PMID:22354435

  5. Development of DNA biosensor based on TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A novel technique of DNA hybridization on the TiO2 nanoparticles film was developed by dropping a single droplet of target DNA onto the surface of TiO2 for the study of various concentrations of target DNA. The surface of TiO2 nanoparticle film was functionalized with APTES and covalently immobilized with 1 µM probe DNA on the silanized TiO2 nanoparticles surface. The effect of silanization, immobilization and hybridization were quantitatively measured by the output current signal obtained using a picoammeter. The 1 µM target DNA was found to be the most effective target towards the 1 µM probe DNA as the output current signal was within range; while the output current signal of the 10 µM target DNA was observed to beyond the range of the probe DNA control due to the excessive concentration as compared to the probe DNA. This approach has several advantages such as rapid, simple, low cost, and sensitive current signal during detection of different target DNA concentrations.

  6. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    PubMed

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.

  7. Universal ligation-detection-reaction microarray applied for compost microbes

    PubMed Central

    Hultman, Jenni; Ritari, Jarmo; Romantschuk, Martin; Paulin, Lars; Auvinen, Petri

    2008-01-01

    Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR) based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS) area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities. PMID:19116002

  8. Community Analysis of Biofilters Using Fluorescence In Situ Hybridization Including a New Probe for the Xanthomonas Branch of the Class Proteobacteria

    PubMed Central

    Friedrich, Udo; Naismith, Michèle M.; Altendorf, Karlheinz; Lipski, André

    1999-01-01

    Domain-, class-, and subclass-specific rRNA-targeted probes were applied to investigate the microbial communities of three industrial and three laboratory-scale biofilters. The set of probes also included a new probe (named XAN818) specific for the Xanthomonas branch of the class Proteobacteria; this probe is described in this study. The members of the Xanthomonas branch do not hybridize with previously developed rRNA-targeted oligonucleotide probes for the α-, β-, and γ-Proteobacteria. Bacteria of the Xanthomonas branch accounted for up to 4.5% of total direct counts obtained with 4′,6-diamidino-2-phenylindole. In biofilter samples, the relative abundance of these bacteria was similar to that of the γ-Proteobacteria. Actinobacteria (gram-positive bacteria with a high G+C DNA content) and α-Proteobacteria were the most dominant groups. Detection rates obtained with probe EUB338 varied between about 40 and 70%. For samples with high contents of gram-positive bacteria, these percentages were substantially improved when the calculations were corrected for the reduced permeability of gram-positive bacteria when formaldehyde was used as a fixative. The set of applied bacterial class- and subclass-specific probes yielded, on average, 58.5% (± a standard deviation of 23.0%) of the corrected eubacterial detection rates, thus indicating the necessity of additional probes for studies of biofilter communities. The Xanthomonas-specific probe presented here may serve as an efficient tool for identifying potential phytopathogens. In situ hybridization proved to be a practical tool for microbiological studies of biofiltration systems. PMID:10427047

  9. Characterization of an In Vivo Z-DNA Detection Probe Based on a Cell Nucleus Accumulating Intrabody.

    PubMed

    Gulis, Galina; Silva, Izabel Cristina Rodrigues; Sousa, Herdson Renney; Sousa, Isabel Garcia; Bezerra, Maryani Andressa Gomes; Quilici, Luana Salgado; Maranhao, Andrea Queiroz; Brigido, Marcelo Macedo

    2016-09-01

    Left-handed Z-DNA is a physiologically unstable DNA conformation, and its existence in vivo can be attributed to localized torsional distress. Despite evidence for the existence of Z-DNA in vivo, its precise role in the control of gene expression is not fully understood. Here, an in vivo probe based on an anti-Z-DNA intrabody is proposed for native Z-DNA detection. The probe was used for chromatin immunoprecipitation of potential Z-DNA-forming sequences in the human genome. One of the isolated putative Z-DNA-forming sequences was cloned upstream of a reporter gene expression cassette under control of the CMV promoter. The reporter gene encoded an antibody fragment fused to GFP. Transient co-transfection of this vector along with the Z-probe coding vector improved reporter gene expression. This improvement was demonstrated by measuring reporter gene mRNA and protein levels and the amount of fluorescence in co-transfected CHO-K1 cells. These results suggest that the presence of the anti-Z-DNA intrabody can interfere with a Z-DNA-containing reporter gene expression. Therefore, this in vivo probe for the detection of Z-DNA could be used for global correlation of Z-DNA-forming sequences and gene expression regulation.

  10. Probing the dynamics of restriction endonuclease NgoMIV-DNA interaction by single-molecule FRET.

    PubMed

    Tutkus, Marijonas; Sasnauskas, Giedrius; Rutkauskas, Danielis

    2017-12-01

    Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single-molecule Förster resonance energy transfer (smFRET) of surface-immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein-induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA-NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA-protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites ("slow" trajectories) or by semi-specific interactions of two DNA-bound NgoMIV tetramers ("fast" trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules. © 2017 Wiley Periodicals, Inc.

  11. UV-Vis Spectroscopy and Dynamic Light Scattering Study of Gold Nanorods Aggregation

    PubMed Central

    Kanjanawarut, Roejarek; Yuan, Bo

    2013-01-01

    Gold nanorods (AuNRs) were used as spectroscopic sensing elements to detect specific DNA sequences with a single-base mismatch sensitivity. The assay was based on the observation that the stabilizing repulsive forces between CTA+-coated AuNRs can be removed by citrate ions, which causes aggregation among AuNRs; whereas nucleic acids of different structures[ i.e., peptide nucleic acid (PNA), single-stranded DNA (ssDNA), PNA-DNA complex, and double-stranded DNA (dsDNA)] can retard the aggregation. Moreover, the dsDNA PNA-DNA duplexes provide larger retardation than that by unhybridized ssDNA and PNA probe. This assay can differentiate single-base mismatched targets with base substitution at different locations (center and end) with AuNRs of a larger aspect ratio. Besides ultraviolet–visable spectroscopy measurement of particle assembly-induced plasmonic coupling that in turn provides a spectroscopic detection of the specific DNA, dynamic light scattering and transmission electron microscope (TEM) were used to measure smaller degree of aggregation that can reveal sodium citrate– and dsDNA–AuNRs interactions in fine detail. PMID:23902360

  12. DNA Photolithography with Cinnamate Crosslinkers

    NASA Technical Reports Server (NTRS)

    Feng, Lang (Inventor); Chaikin, Paul Michael (Inventor)

    2016-01-01

    The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration.

  13. Highly sensitive DNA sensors based on cerium oxide nanorods

    NASA Astrophysics Data System (ADS)

    Nguyet, Nguyen Thi; Hai Yen, Le Thi; Van Thu, Vu; lan, Hoang; Trung, Tran; Vuong, Pham Hung; Tam, Phuong Dinh

    2018-04-01

    In this work, a CeO2 nanorod (NR)-based electrochemical DNA sensor was developed to identify Salmonella that causes food-borne infections. CeO2 NRs were synthesized without templates via a simple and unexpensive hydrothermal approach at 170 °C for 12 h by using CeO(NO3)3·6H2O as a Ce source. The DNA probe was immobilized onto the CeO2 NR-modified electrode through covalent attachment. The characteristics of the hybridized DNA were analyzed through electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]3-/4- as a redox probe. Experimental results showed that electron transfer resistance (Ret) increased after the DNA probe was attached to the electrode surface and increased further after the DNA probe hybridized with its complementary sequence. A linear response of Ret to the target DNA concentration was found from 0.01 μM to 2 μM. The detection limit and sensitivity of the DNA sensor were 0.01 μM and 3362.1 Ω μM-1 cm-2, respectively. Various parameters, such as pH value, ionic strength, DNA probe concentration, and hybridization time, influencing DNA sensor responses were also investigated.

  14. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  15. Ordered mapping of 3 alphoid DNA subsets on human chromosome 22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonacci, R.; Baldini, A.; Archidiacono, N.

    1994-09-01

    Alpha satellite DNA consists of tandemly repeated monomers of 171 bp clustered in the centromeric region of primate chromosomes. Sequence divergence between subsets located in different human chromosomes is usually high enough to ensure chromosome-specific hybridization. Alphoid probes specific for almost every human chromosome have been reported. A single chromosome can carry different subsets of alphoid DNA and some alphoid subsets can be shared by different chromosomes. We report the physical order of three alphoid DNA subsets on human chromosome 22 determined by a combination of low and high resolution cytological mapping methods. Results visually demonstrate the presence of threemore » distinct alphoid DNA domains at the centromeric region of chromosome 22. We have measured the interphase distances between the three probes in three-color FISH experiments. Statistical analysis of the results indicated the order of the subsets. Two color experiments on prometaphase chromosomes established the order of the three domains relative to the arms of chromosome 22 and confirmed the results obtained using interphase mapping. This demonstrates the applicability of interphase mapping for alpha satellite DNA orderering. However, in our experiments, interphase mapping did not provide any information about the relationship between extremities of the repeat arrays. This information was gained from extended chromatin hybridization. The extremities of two of the repeat arrays were seen to be almost overlapping whereas the third repeat array was clearly separated from the other two. Our data show the value of extended chromatin hybridization as a complement of other cytological techniques for high resolution mapping of repetitive DNA sequences.« less

  16. A Highly Sensitive Electrochemical DNA Biosensor from Acrylic-Gold Nano-composite for the Determination of Arowana Fish Gender

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh; Rashid, Zulkafli A.; Ling, Tan Ling

    2017-08-01

    The present research describes a simple method for the identification of the gender of arowana fish ( Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nanoparticle (AcMP-AuNP) hybrid composite was fabricated. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesised with a facile and well-established one-step photopolymerization procedure and physically adsorbed on the AuNPs at the surface of a carbon screen printed electrode (SPE). The DNA biosensor was constructed simply by grafting an aminated DNA probe on the succinimide functionalised AcMPs via a strong covalent attachment. DNA hybridisation response was determined by differential pulse voltammetry (DPV) technique using anthraquinone monosulphonic acid redox probe as an electroactive oligonucleotide label (Table 1). A low detection limit at 1.0 × 10-18 M with a wide linear calibration range of 1.0 × 10-18 to 1.0 × 10-8 M ( R 2 = 0.99) can be achieved by the proposed DNA biosensor under optimal conditions. Electrochemical detection of arowana DNA can be completed within 1 hour. Due to its small size and light weight, the developed DNA biosensor holds high promise for the development of functional kit for fish culture usage.

  17. Single palindromic molecular beacon-based amplification for genetic analysis of cancers.

    PubMed

    Li, Feng; Zhao, Hui; Wang, Zheng-Yong; Wu, Zai-Sheng; Yang, Zhe; Li, Cong-Cong; Xu, Huo; Lyu, Jian-Xin; Shen, Zhi-Fa

    2017-05-15

    The detection of biomarkers is of crucial importance in reducing the morbidity and mortality of complex diseases. Thus, there is a great desire to develop highly efficient and simple sensing methods to fulfill the different diagnostic and therapeutic purposes. Herein, using tumor suppressor p53 gene as model target DNA, we developed a novel palindromic fragment-incorporated molecular beacon (P-MB) that can perform multiple functions, including recognition element, signal reporter, polymerization template and primer. Upon specific hybridization with target DNA, P-MBs can interact with each other and are extended by polymerase without any additional probes. As a result, hybridized targets are peeled off from P-MBs and initiate the next round of reactions, leading to the unique strand displacement amplification (SDA). The newly-proposed enzymatic amplification displays the detection limit as low as 100pM and excellent selectivity in distinguishing single-base mutation with the linear response range from 100pM to 75nM. This is the simplest SDA sensing system so far because of only involving one type of DNA probe. This impressive sensing paradigm is expected to provide new insight into developing new-type of DNA probes that hold tremendous potential with important applications in molecular biology research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dramatic Increase in the Signal and Sensitivity of Detection via Self-Assembly of Branched DNA

    PubMed Central

    Kim, Kyung-Tae; Chae, Chi-Bom

    2011-01-01

    In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA. PMID:21870112

  19. A Real-Time PCR Assay to Identify and Discriminate Among Wild-Type and Vaccine Strains of Varicella-Zoster Virus and Herpes Simplex Virus in Clinical Specimens, and Comparison With the Clinical Diagnoses

    PubMed Central

    Harbecke, Ruth; Oxman, Michael N.; Arnold, Beth A.; Ip, Charlotte; Johnson, Gary R.; Levin, Myron J.; Gelb, Lawrence D.; Schmader, Kenneth E.; Straus, Stephen E.; Wang, Hui; Wright, Peter F.; Pachucki, Constance T.; Gershon, Anne A.; Arbeit, Robert D.; Davis, Larry E.; Simberkoff, Michael S.; Weinberg, Adriana; Williams, Heather M.; Cheney, Carol; Petrukhin, Luba; Abraham, Katalin G.; Shaw, Alan; Manoff, Susan; Antonello, Joseph M.; Green, Tina; Wang, Yue; Tan, Charles; Keller, Paul M.

    2014-01-01

    A real-time PCR assay was developed to identify varicella-zoster virus (VZV) and herpes simplex virus (HSV) DNA in clinical specimens from subjects with suspected herpes zoster (HZ; shingles). Three sets of primers and probes were used in separate PCR reactions to detect and discriminate among wild-type VZV (VZV-WT), Oka vaccine strain VZV (VZV-Oka), and HSV DNA, and the reaction for each virus DNA was multiplexed with primers and probe specific for the human β-globin gene to assess specimen adequacy. Discrimination of all VZV-WT strains, including Japanese isolates and the Oka parent strain, from VZV-Oka was based upon a single nucleotide polymorphism at position 106262 in ORF 62, resulting in preferential amplification by the homologous primer pair. The assay was highly sensitive and specific for the target virus DNA, and no cross-reactions were detected with any other infectious agent. With the PCR assay as the gold standard, the sensitivity of virus culture was 53% for VZV and 77% for HSV. There was 92% agreement between the clinical diagnosis of HZ by the Clinical Evaluation Committee and the PCR assay results. PMID:19475609

  20. Multiple pathogen biomarker detection using an encoded bead array in droplet PCR.

    PubMed

    Periyannan Rajeswari, Prem Kumar; Soderberg, Lovisa M; Yacoub, Alia; Leijon, Mikael; Andersson Svahn, Helene; Joensson, Haakan N

    2017-08-01

    We present a droplet PCR workflow for detection of multiple pathogen DNA biomarkers using fluorescent color-coded Luminex® beads. This strategy enables encoding of multiple singleplex droplet PCRs using a commercially available bead set of several hundred distinguishable fluorescence codes. This workflow provides scalability beyond the limited number offered by fluorescent detection probes such as TaqMan probes, commonly used in current multiplex droplet PCRs. The workflow was validated for three different Luminex bead sets coupled to target specific capture oligos to detect hybridization of three microorganisms infecting poultry: avian influenza, infectious laryngotracheitis virus and Campylobacter jejuni. In this assay, the target DNA was amplified with fluorescently labeled primers by PCR in parallel in monodisperse picoliter droplets, to avoid amplification bias. The color codes of the Luminex detection beads allowed concurrent and accurate classification of the different bead sets used in this assay. The hybridization assay detected target DNA of all three microorganisms with high specificity, from samples with average target concentration of a single DNA template molecule per droplet. This workflow demonstrates the possibility of increasing the droplet PCR assay detection panel to detect large numbers of targets in parallel, utilizing the scalability offered by the color-coded Luminex detection beads. Copyright © 2017. Published by Elsevier B.V.

  1. Relaxation dynamics of internal segments of DNA chains in nanochannels

    NASA Astrophysics Data System (ADS)

    Jain, Aashish; Muralidhar, Abhiram; Dorfman, Kevin; Dorfman Group Team

    We will present relaxation dynamics of internal segments of a DNA chain confined in nanochannel. The results have direct application in genome mapping technology, where long DNA molecules containing sequence-specific fluorescent probes are passed through an array of nanochannels to linearize them, and then the distances between these probes (the so-called ``DNA barcode'') are measured. The relaxation dynamics of internal segments set the experimental error due to dynamic fluctuations. We developed a multi-scale simulation algorithm, combining a Pruned-Enriched Rosenbluth Method (PERM) simulation of a discrete wormlike chain model with hard spheres with Brownian dynamics (BD) simulations of a bead-spring chain. Realistic parameters such as the bead friction coefficient and spring force law parameters are obtained from PERM simulations and then mapped onto the bead-spring model. The BD simulations are carried out to obtain the extension autocorrelation functions of various segments, which furnish their relaxation times. Interestingly, we find that (i) corner segments relax faster than the center segments and (ii) relaxation times of corner segments do not depend on the contour length of DNA chain, whereas the relaxation times of center segments increase linearly with DNA chain size.

  2. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, Adam F.; Otting, Gottfried; Folmer, Rutger H.A.

    2005-09-23

    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in {sup 1}H-{sup 15}N correlation spectra of a {sup 15}N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the {sup 1}H-{sup 15}N correlations was achieved using a suite of triple resonance NMR experiments with {sup 15}N,{sup 13}C,70% {sup 2}H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbationsmore » to {sup 1}H-{sup 15}N spectra revealed that the N-termini, {alpha}3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface.« less

  3. Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers.

    PubMed

    Xu, Xumin; Ma, Xiaoyuan; Wang, Haitao; Wang, Zhouping

    2018-06-12

    The authors describe a surface-enhanced Raman scattering (SERS) based aptasensor for Salmonella typhimurium (S. typhimurium). Gold nanoparticles (AuNPs; 35 nm i.d.) were functionalized with the aptamer (ssDNA 1) and used as the capture probe, while smaller (15 nm) AuNPs were modified with a Cy3-labeled complementary sequence (ssDNA 2) and used as the signalling probe. The asymmetric gold nanodimers (AuNDs) were assemblied with the Raman signal probe and the capture probe via hybridization of the complementary ssDNAs. The gap between two nanoparticles is a "hot spot" in which the Raman reporter Cy3 is localized. It experiences a strong enhancement of the electromagnetic field around the particle. After addition of S. typhimurium, it will be bound by the aptamer which therefore is partially dehybridized from its complementary sequence. Hence, Raman intensity drops. Under the optimal experimental conditions, the SERS signal at 1203 cm -1 increases linearly with the logarithm of the number of colonies in the 10 2 to 10 7  cfu·mL -1 concentration range, and the limit of detection is 35 cfu·mL -1 . The method can be performed within 1 h and was successfully applied to the analysis of spiked milk samples and performed very well and with high specificity. Graphical abstract DNA-assembled asymmetric gold nanodimers (AuNDs) were synthesized and appllied in a SERS-based aptasensor for S. typhimurium. Capture probe was preferentially combined with S. typhimurium and the structure of the AuNDs was destroyed. The "hot spot" vanished partly, this resulting in the decreased Raman intensity of Cy3.

  4. Enzyme- and label-free electrochemical aptasensor for kanamycin detection based on double stir bar-assisted toehold-mediated strand displacement reaction for dual-signal amplification.

    PubMed

    Hong, Feng; Chen, Xixue; Cao, Yuting; Dong, Youren; Wu, Dazhen; Hu, Futao; Gan, Ning

    2018-07-30

    It is critically important to detect antibiotic residues for monitoring food safety. In this study, an enzyme- and label-free electrochemical aptasensor for antibiotics, with kanamycin (Kana) as a typical analyte, was developed based on a double stir bar-assisted toehold-mediated strand displacement reaction (dSB-TMSDR) for dual-signal amplification. First, we modified two gold electrodes (E-1 and E-2) with different DNA probes (S1/S2 hybrid probe in E-1 and DNA fuel strand S3 in E-2). In the presence of Kana, an S1/S2 probe can be disassembled from E-1 to form an S2/Kana complex in supernatant. The S2/Kana could react with S3 on E-2 to form S2/S3 hybrid and release Kana through TMSDR. After then, the target recycling was triggered. Subsequently, the formed S2/S3 hybrid can also trigger a hybridization chain reaction (HCR). Consequently, the dual-signal amplification strategy was established, which resulted in many long dsDNA chains on E-2. The chains can associate with methylene blue (MB) as redox probes to produce a current response for the quantification of Kana. The assay exhibited high sensitivity and specificity with a detection limit at 16 fM Kana due to the dual-signal amplification. The double stir bars system can both increase phase separation and prevent leakage of DNA fuel to reduce background interference. Moreover, it allows flexible sequence design of the TMSDR probes. The assay was successfully employed to detect Kana residues in food and showed potential application value in food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. cDNA cloning and analysis of RNA 2 of a Prunus stem pitting isolate of tomato ringspot virus.

    PubMed

    Hadidi, A; Powell, C A

    1991-10-01

    Recombinant plasmids containing sequences derived from the genome of a tomato ringspot virus (TomRSV) isolate associated with both stem pitting disease of stone fruits and apple union necrosis and decline were constructed. Selected inserts were subcloned into the polylinker region of the SP6 transcription vector pSP64. Using the SP6 promoter flanking this region, high specific activity 32P-labelled cRNA probes were generated by SP6 RNA polymerase. cRNA probes were specific for TomRSV RNA 2 present in purified virions or in extracts from woody and herbacous hosts. No sequence relatedness was detected between TomRSV RNA 2 and genomic RNA from tobacco ringspot, arabis mosaic, strawberry latent ringspot, or cucumber mosaic virus in Northern blot analysis using TomRSV cRNA probes. These probes detected TomRSV infection in woody and herbaceous hosts in dot-blot hybridization assays.

  6. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification.

    PubMed

    Luan, Qian; Gan, Ning; Cao, Yuting; Li, Tianhua

    2017-07-19

    A mimicking-enzyme-based colorimetric aptasensor was developed for the detection of kanamycin (KANA) in milk using magnetic loop-DNA-NMOF-Pt (m-L-DNA) probes and catalytic hairpin assembly (CHA)-assisted target recycling for signal amplification. The m-L-DNA probes were constructed via hybridization of hairpin DNA H1 (containing aptamer sequence) immobilized magnetic beads (m-H1) and signal DNA (sDNA, partial hybridization with H1) labeled nano Fe-MIL-88NH 2 -Pt (NMOF-Pt-sDNA). In the presence of KANA and complementary hairpin DNA H2, the m-L-DNA probes decomposed and formed an m-H1/KANA intermediate, which triggered the CHA reaction to form a stable duplex strand (m-H1-H2) while releasing KANA again for recycling. Consequently, numerous NMOF-Pt-sDNA as mimicking enzymes can synergistically catalyze 3,3',5,5'-tetramethylbenzidine (TMB) for color development. The aptasensor exhibited high selectivity and sensitivity for KANA in milk with a detection limit of 0.2 pg mL -1 within 30 min. The assay can be conveniently extended for on-site screening of other antibiotics in foods by simply changing the base sequence of the probes.

  7. Integrated in silico and biological validation of the blocking effect of Cot-1 DNA on Microarray-CGH.

    PubMed

    Kang, Seung-Hui; Park, Chan Hee; Jeung, Hei Cheul; Kim, Ki-Yeol; Rha, Sun Young; Chung, Hyun Cheol

    2007-06-01

    In array-CGH, various factors may act as variables influencing the result of experiments. Among them, Cot-1 DNA, which has been used as a repetitive sequence-blocking agent, may become an artifact-inducing factor in BAC array-CGH. To identify the effect of Cot-1 DNA on Microarray-CGH experiments, Cot-1 DNA was labeled directly and Microarray-CGH experiments were performed. The results confirmed that probes which hybridized more completely with Cot-1 DNA had a higher sequence similarity to the Alu element. Further, in the sex-mismatched Microarray-CGH experiments, the variation and intensity in the fluorescent signal were reduced in the high intensity probe group in which probes were better hybridized with Cot-1 DNA. Otherwise, those of the low intensity probe group showed no alterations regardless of Cot-1 DNA. These results confirmed by in silico methods that Cot-1 DNA could block repetitive sequences in gDNA and probes. In addition, it was confirmed biologically that the blocking effect of Cot-1 DNA could be presented via its repetitive sequences, especially Alu elements. Thus, in contrast to BAC-array CGH, the use of Cot-1 DNA is advantageous in controlling experimental variation in Microarray-CGH.

  8. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments.

    PubMed

    Youngblut, Nicholas D; Barnett, Samuel E; Buckley, Daniel H

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments.

  9. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments

    PubMed Central

    Youngblut, Nicholas D.; Barnett, Samuel E.; Buckley, Daniel H.

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments. PMID:29643843

  10. Characterization of two nisin-producing Lactococcus lactis subsp. lactis strains isolated from a commercial sauerkraut fermentation.

    PubMed Central

    Harris, L J; Fleming, H P; Klaenhammer, T R

    1992-01-01

    Two Lactococcus lactis subsp. lactis strains, NCK400 and LJH80, isolated from a commercial sauerkraut fermentation were shown to produce nisin. LJH80 was morphologically unstable and gave rise to two stable, nisin-producing (Nip+) derivatives, NCK318-2 and NCK318-3. NCK400 and derivatives of LJH80 exhibited identical morphological and metabolic characteristics, but could be distinguished on the basis of plasmid profiles and genomic hybridization patterns to a DNA probe specific for the iso-ISS1 element, IS946. NCK318-2 and NCK318-3 harbored two and three plasmids, respectively, which hybridized with IS946. Plasmid DNA was not detected in NCK400, and DNA from this strain failed to hybridize with IS946. Despite the absence of detectable plasmid DNA in NCK400, nisin-negative derivatives (NCK402 and NCK403) were isolated after repeated transfer in broth at 37 degrees C. Nisin-negative derivatives concurrently lost the ability to ferment sucrose and became sensitive to nisin. A 4-kbp HindIII fragment containing the structural gene for nisin (spaN), cloned from L. lactis subsp. lactis ATCC 11454, was used to probe genomic DNA of NCK318-2, NCK318-3, NCK400, and NCK402 digested with EcoRI or HindIII. The spaN probe hybridized to an 8.8-kbp EcoRI fragment and a 10-kbp HindIII fragment in the Nip+ sauerkraut isolates, but did not hybridize to the Nip- derivative, NCK402. A different hybridization pattern was observed when the same probe was used against Nip+ L. lactis subsp. lactis ATCC 11454 and ATCC 7962. These phenotypic and genetic data confirmed that unique Nip+ L. lactis subsp. lactis strains were isolated from fermenting sauerkraut. Images PMID:1622214

  11. A duplex DNA-gold nanoparticle probe composed as a colorimetric biosensor for sequence-specific DNA-binding proteins.

    PubMed

    Ahn, Junho; Choi, Yeonweon; Lee, Ae-Ree; Lee, Joon-Hwa; Jung, Jong Hwa

    2016-03-21

    Using duplex DNA-AuNP aggregates, a sequence-specific DNA-binding protein, SQUAMOSA Promoter-binding-Like protein 12 (SPL-12), was directly determined by SPL-12-duplex DNA interaction-based colorimetric actions of DNA-Au assemblies. In order to prepare duplex DNA-Au aggregates, thiol-modified DNA 1 and DNA 2 were attached onto the surface of AuNPs, respectively, by the salt-aging method and then the DNA-attached AuNPs were mixed. Duplex-DNA-Au aggregates having the average size of 160 nm diameter and the maximum absorption at 529 nm were able to recognize SPL-12 and reached the equivalent state by the addition of ∼30 equivalents of SPL-12 accompanying a color change from red to blue with a red shift of the maximum absorption at 570 nm. As a result, the aggregation size grew to about 247 nm. Also, at higher temperatures of the mixture of duplex-DNA-Au aggregate solution and SPL-12, the equivalent state was reached rapidly. On the contrary, in the control experiment using Bovine Serum Albumin (BSA), no absorption band shift of duplex-DNA-Au aggregates was observed.

  12. Robust and specific ratiometric biosensing using a copper-free clicked quantum dot-DNA aptamer sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Feng, Guoqiang; Guo, Yuan; Zhou, Dejian

    2013-10-01

    We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate.We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate. Electronic supplementary information (ESI) available: Details on the synthesis, purification and characterisation of the DHLA-PEG600-N3, cyclooctyne-DNA, and QD-TBA20 conjugates as well as all supporting figures and tables. See DOI: 10.1039/c3nr02897f

  13. Detection of viral genomes in the liver by in situ hybridization using 35S-, bromodeoxyuridine-, and biotin-labeled probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedobitek, G.; Finn, T.; Herbst, H.

    1989-03-01

    Methods employing /sup 35/S-, biotin-, and bromodeoxyuridine (BrdUrd)-labeled DNA probes were compared for the detection of hepatitis B virus (HBV) and cytomegalovirus (CMV) in the liver. The results demonstrate that: 1) HBV can be detected reliably only by the use of radiolabeled probes, whereas methods employing nonradioactive probes obviously are not sensitive enough for this virus. The use of /sup 35/S-labeled probes shortens the exposure times considerably in comparison to tritiated probes. 2) Biotin-labeled probes are of limited value for in situ hybridization on liver tissues because the presence of endogenous avidin-binding activity often leads to false positive results. 3)more » Brd-Urd-labeled probes are a useful alternative to biotinylated probes for the detection of CMV. In comparison with biotinylated probes, BrdUrd-labeled probes produce a specific signal of similar staining intensity in the absence of background staining in the liver.« less

  14. Site-Directed Photoproteolysis of 8-Oxoguanine DNA Glycosylase 1 (OGG1) by Specific Porphyrin-Protein Probe Conjugates: A Strategy to Improve the Effectiveness of Photodynamic Therapy for Cancer

    PubMed Central

    Conlon, Kimberly A.; Berrios, Miguel

    2007-01-01

    The specific light-induced, non-enzymatic photolysis of mOGG1 by porphyrin-conjugated or rose bengal-conjugated streptavidin and porphyrin-conjugated or rose bengal-conjugated first specific or secondary anti-IgG antibodies is reported. The porphyrin chlorin e6 and rose bengal were conjugated to either streptavidin, rabbit anti-mOGG1 primary specific antibody fractions or goat anti-rabbit IgG secondary antibody fractions. Under our experimental conditions, visible light of wavelengths greater than 600 nm induced the non-enzymatic degradation of mOGG1 when this DNA repair enzyme either directly formed a complex with chlorin e6-conjugated anti-mOGG1 primary specific antibodies or indirectly formed complexes with either streptavidin-chlorin e6 conjugates and biotinylated first specific anti-mOGG1 antibodies or first specific anti-mOGG1antibodies and chlorin e6-conjugated anti-rabbit IgG secondary antibodies. Similar results were obtained when rose bengal was used as photosensitizer instead of chlorine e6. The rate of the photochemical reaction of mOGG1 site-directed by all three chlorine e6 antibody complexes was not affected by the presence of the singlet oxygen scavenger sodium azide. Site-directed photoactivatable probes having the capacity to generate reactive oxygen species (ROS) while destroying the DNA repair system in malignant cells and tumors may represent a powerful strategy to boost selectivity, penetration and efficacy of current photodynamic (PDT) therapy methodologies. PMID:17251034

  15. Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex.

    PubMed

    Gabelica, Valérie; Maeda, Ryuichi; Fujimoto, Takeshi; Yaku, Hidenobu; Murashima, Takashi; Sugimoto, Naoki; Miyoshi, Daisuke

    2013-08-20

    Thioflavin T (ThT), a typical probe for protein fibrils, also binds human telomeric G-quadruplexes with a fluorescent light-up signal change and high specificity against DNA duplexes. Cell penetration and low cytotoxicity of fibril probes having been widely established, modifying ThT and other fibril probes is an attractive means of generating new G-quadruplex ligands. Thus, elucidating the binding mechanism is important for the design of new drugs and fluorescent probes based on ThT. Here, we investigated the binding mechanism of ThT with several variants of the human telomeric sequence in the presence of monovalent cations. Fluorescence titrations and electrospray ionization mass spectrometry (ESI-MS) analyses demonstrated that each G-quadruplex unit cooperatively binds to several ThT molecules. ThT brightly fluoresces when a single ligand is bound to the G-quadruplex and is quenched as ligand binding stoichiometry increases. Both the light-up signal and the dissociation constants are exquisitely sensitive to the base sequence and to the G-quadruplex structure. These results are crucial for the sensible design and interpretation of G-quadruplex detection assays using fluorescent ligands in general and ThT in particular.

  16. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs.

    PubMed Central

    Travis, G H; Sutcliffe, J G

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033

  17. Application of a unique server-based oligonucleotide probe selection tool toward a novel biosensor for the detection of Streptococcus pyogenes.

    PubMed

    Nugen, Sam R; Leonard, Barbara; Baeumner, Antje J

    2007-05-15

    We developed a software program for the rapid selection of detection probes to be used in nucleic acid-based assays. In comparison to commercially available software packages, our program allows the addition of oligotags as required by nucleic acid sequence-based amplification (NASBA) as well as automatic BLAST searches for all probe/primer pairs. We then demonstrated the usefulness of the program by designing a novel lateral flow biosensor for Streptococcus pyogenes that does not rely on amplification methods such as the polymerase chain reaction (PCR) or NASBA to obtain low limits of detection, but instead uses multiple reporter and capture probes per target sequence and an instantaneous amplification via dye-encapsulating liposomes. These assays will decrease the detection time to just a 20 min hybridization reaction and avoid costly enzymatic gene amplification reactions. The lateral flow assay was developed quantifying the 16S rRNA from S. pyogenes by designing reporter and capture probes that specifically hybridize with the RNA and form a sandwich. DNA reporter probes were tagged with dye-encapsulating liposomes, biotinylated DNA oligonucleotides were used as capture probes. From the initial number of capture and reporter probes chosen, a combination of two capture and three reporter probes were found to provide optimal signal generation and significant enhancement over single capture/reporter probe combinations. The selectivity of the biosensor was proven by analyzing organisms closely related to S. pyogenes, such as other Streptococcus and Enterococcus species. All probes had been selected by the software program within minutes and no iterative optimization and re-design of the oligonucleotides was required which enabled a very rapid biosensor prototyping. While the sensitivity obtained with the biosensor was only 135 ng, future experiments will decrease this significantly by the addition of more reporter and capture probes for either the same rRNA or a different nucleic acid target molecule. This will lead to the possibility of detecting S. pyogenes with a rugged assay that does not require a cell culturing or gene amplification step and will therefore enable rapid, specific and sensitive onsite testing.

  18. Development of a Loop Mediated Isothermal Amplification (LAMP) - Surface Enhanced Raman spectroscopy (SERS) Assay for the Detection of Salmonella Enterica Serotype Enteritidis.

    PubMed

    Draz, Mohamed Shehata; Lu, Xiaonan

    2016-01-01

    As a major foodborne pathogen, Salmonella enterica serotype Enteritidis is increasingly rising as a global health concern. Here, we developed an integrated assay that combines loop mediated isothermal amplification (LAMP) and surface enhanced Raman spectroscopy (SERS) for DNA detection of S. Enteritidis using specifically designed Raman active Au-nanoprobes. The target DNA was amplified by LAMP and then labeled with Au-nanoprobes comprised of gold nanoparticle-modified with specific cy5/DNA probes to allow the detection by SERS. The sensitivity of the developed LAMP-SERS detection assay (66 CFU/mL) was ~100-fold higher than the conventional polymerase chain reaction (PCR) method. Significantly, this technique allowed highly specific detection of the target DNA of S. Enteritidis and could differentiate it from the DNA of closely related bacterial species or non-specific contamination, making it more accurate and reliable than the standard LAMP technique. The applicability of detection of S. Enteritidis in milk samples using LAMP-SERS assay was validated as well. In sum, the developed LAMP-SERS assay is highly specific and sensitive, and has the potential to be applied for rapid detection of different foodborne pathogens and other microbial contaminants.

  19. Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler.

    PubMed

    Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei

    2016-12-15

    An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Use of restriction fragment length polymorphisms to investigate strain variation within Neisseria meningitidis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, S.D.

    1989-01-01

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collectionmore » of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty-six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P{sup 32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analyzed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population.« less

  1. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen.

    PubMed

    Cao, Jun-Tao; Yang, Jiu-Jun; Zhao, Li-Zhen; Wang, Yu-Ling; Wang, Hui; Liu, Yan-Ming; Ma, Shu-Hui

    2018-01-15

    A novel and competitive electrochemiluminescence (ECL) aptasensor for prostate specific antigen (PSA) assay was constructed using gold nanorods functionalized graphene oxide (GO@AuNRs) multilabeled with glucose oxidase (GOD) and streptavidin (SA) toward luminol-based ECL system. A strong initial ECL signal was achieved by electrodeposited gold (DpAu) on the electrode because of gold nanoparticles (AuNPs) motivating the luminol ECL signal. The signal probes prepared by loading GOD and SA-biotin-DNA on GO@AuNRs were used for achieving multiple signal amplification. In the absence of PSA, the signal probes can be attached on the electrode by hybridization reaction between PSA aptamer and biotin-DNA. In this state, the GOD loaded on the probe could catalyze glucose to in situ produce H 2 O 2 and then AuNRs catalyze H 2 O 2 to generate abundant reactive oxygen species (ROSs) in luminol ECL reaction. Both the high-content GOD and AuNRs in the signal probe amplified the ECL signal in the ECL system. Moreover, the combination of SA with biotin-DNA further expands ECL intensity. The integration of such amplifying effects in this protocol endows the aptasensor with high sensitivity and good selectivity for PSA detection. This aptasensor exhibits a linear relation in the range of 0.5pgmL -1 to 5.0ngmL -1 with the detection limit of 0.17pgmL -1 (S/N = 3). Besides, the strategy was successfully applied in determination of human serum samples with recovery of 81.4-116.0%. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    PubMed

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  3. Sensitive detection of multiple pathogens using a single DNA probe.

    PubMed

    Nordin, Noordiana; Yusof, Nor Azah; Abdullah, Jaafar; Radu, Son; Hushiarian, Roozbeh

    2016-12-15

    A simple but promising electrochemical DNA nanosensor was designed, constructed and applied to differentiate a few food-borne pathogens. The DNA probe was initially designed to have a complementary region in Vibrio parahaemolyticus (VP) genome and to make different hybridization patterns with other selected pathogens. The sensor was based on a screen printed carbon electrode (SPCE) modified with polylactide-stabilized gold nanoparticles (PLA-AuNPs) and methylene blue (MB) was employed as the redox indicator binding better to single-stranded DNA. The immobilization and hybridization events were assessed using differential pulse voltammetry (DPV). The fabricated biosensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0×10(-9)-2.0×10(-13)M with a detection limit of 5.3×10(-12)M. The relative standard deviation for 6 replications of DPV measurement of 0.2µM complementary DNA was 4.88%. The fabricated DNA biosensor was considered stable and portable as indicated by a recovery of more than 80% after a storage period of 6 months at 4-45°C. Cross-reactivity studies against various food-borne pathogens showed a reliably sensitive detection of VP. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Diagnostic application of polymerase chain reaction for detection of Ehrlichia risticii in equine monocytic ehrlichiosis (Potomac horse fever).

    PubMed

    Biswas, B; Mukherjee, D; Mattingly-Napier, B L; Dutta, S K

    1991-10-01

    Genomic amplification by the polymerase chain reaction (PCR) was used to identify a unique genomic sequence of Ehrlichia risticii directly in DNA isolated from peripheral-blood buffy coat cells of E. risticii-infected horses (Potomac horse fever) and from infected cell cultures. A specific primer pair, selected from a cloned, species-specific, 1-kb DNA fragment of the E. risticii genome as a template, was used for the amplification of the target DNA of 247 bp. The optimal number of 40 PCR cycles, determined by analyzing an amplification profile obtained with a constant Taq polymerase concentration, was used to achieve maximum amplification of the E. risticii DNA segment. Efficient amplification of target DNA was achieved with specimens processed by either the phenol extraction or rapid lysis method. The specificity of the amplified DNA product was confirmed by the proper size (247 bp) and appropriate restriction enzyme cleavage pattern of the amplified target DNA, as well as by the specific hybridization signal obtained by using a PCR-amplified 185-bp internal DNA probe. A 10(5)- to 10(6)-fold amplification of target DNA, which allowed detection of E. risticii from as few as two to three infected cells in culture and from a very small volume of buffy coat cells from infected horses, was achieved. This PCR amplification procedure was found to be highly specific and sensitive for the detection of E. risticii for the study of Potomac horse fever.

  5. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.

    PubMed

    Pang, Jie; Zhang, Ziping; Jin, Haizhu

    2016-03-15

    Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. eSensor®: A Microarray Technology Based on Electrochemical Detection of Nucleic Acids and Its Application to Cystic Fibrosis Carrier Screening

    NASA Astrophysics Data System (ADS)

    Reed, Michael R.; Coty, William A.

    We have developed a test for identification of carriers for cystic fibrosis using the eSensor® DNA detection technology. Oligonucleotide probes are deposited within self-assembled monolayers on gold electrodes arrayed upon printed circuit boards. These probes allow sequence-specific capture of amplicons containing a panel of mutation sites associated with cystic fibrosis. DNA targets are detected and mutations genotyped using a “sandwich” assay methodology employing electrochemical detection of ferrocene-labeled oligonucleotides for discrimination of carrier and non-carrier alleles. Performance of the cystic fibrosis application demonstrates sufficient accuracy and reliability for clinical diagnostic use, and the procedure can be performed by trained medical technologists available in the hospital laboratory.

  7. An active fluorescent probe based on aggregation-induced emission for intracellular bioimaging of Zn2+ and tracking of interactions with single-stranded DNA.

    PubMed

    Wen, Xiaoye; Wang, Qi; Fan, Zhefeng

    2018-07-12

    A novel dual-sensing fluorescence probe L was designed and synthesized for highly selective and sensitive detection of Zn 2+ and DNA. The probe L achieved a detection limit of 3.8 nM for Zn 2+ , which is lower than the acceptable level of Zn 2+ in living cells. The probe L displayed high selectivity toward Zn 2+ over other interference metal ions and amino acids. Moreover, the probe L displayed low cytotoxicity and good cell permeability, indicating its potential for detecting and bio-imaging of Zn 2+ . In addition, the probe L-Zn 2+ exhibited enhanced fluorescence signal for DNA detection through the metal-coordination interaction between Zn 2+ and DNA. The enhanced signal is higher than that of the classical ethidium bromide probe. The experiments in aqueous media verified the feasibility of applying probe L in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation

    NASA Astrophysics Data System (ADS)

    Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei

    2016-06-01

    The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met- p16). The probe, paired with Met- p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.

  9. A new general model for predicting melting thermodynamics of complementary and mismatched B-form duplexes containing locked nucleic acids: application to probe design for digital PCR detection of somatic mutations.

    PubMed

    Hughesman, Curtis; Fakhfakh, Kareem; Bidshahri, Roza; Lund, H Louise; Haynes, Charles

    2015-02-17

    Advances in real-time polymerase chain reaction (PCR), as well as the emergence of digital PCR (dPCR) and useful modified nucleotide chemistries, including locked nucleic acids (LNAs), have created the potential to improve and expand clinical applications of PCR through their ability to better quantify and differentiate amplification products, but fully realizing this potential will require robust methods for designing dual-labeled hydrolysis probes and predicting their hybridization thermodynamics as a function of their sequence, chemistry, and template complementarity. We present here a nearest-neighbor thermodynamic model that accurately predicts the melting thermodynamics of a short oligonucleotide duplexed either to its perfect complement or to a template containing mismatched base pairs. The model may be applied to pure-DNA duplexes or to duplexes for which one strand contains any number and pattern of LNA substitutions. Perturbations to duplex stability arising from mismatched DNA:DNA or LNA:DNA base pairs are treated at the Gibbs energy level to maintain statistical significance in the regressed model parameters. This approach, when combined with the model's accounting of the temperature dependencies of the melting enthalpy and entropy, permits accurate prediction of T(m) values for pure-DNA homoduplexes or LNA-substituted heteroduplexes containing one or two independent mismatched base pairs. Terms accounting for changes in solution conditions and terminal addition of fluorescent dyes and quenchers are then introduced so that the model may be used to accurately predict and thereby tailor the T(m) of a pure-DNA or LNA-substituted hydrolysis probe when duplexed either to its perfect-match template or to a template harboring a noncomplementary base. The model, which builds on classic nearest-neighbor thermodynamics, should therefore be of use to clinicians and biologists who require probes that distinguish and quantify two closely related alleles in either a quantitative PCR or dPCR assay. This potential is demonstrated by using the model to design allele-specific probes that completely discriminate and quantify clinically relevant mutant alleles (BRAF V600E and KIT D816V) in a dPCR assay.

  10. An alternative method for processing northern blots after capillary transfer.

    PubMed

    Nilsen, Timothy W

    2015-03-02

    Different laboratories use different methods for the prehybridization, hybridization, and washing steps of the northern blotting procedure. In this protocol, a northern blot is pretreated with Church and Gilbert hybridization buffer to block nonspecific probe-binding sites. The immobilized RNA is then hybridized to a DNA probe specific for the RNA of interest. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. The solutions and conditions described here may be ideal for those who prefer to use fewer ingredients in their solutions. This protocol is designed to achieve the same goals as other northern blotting approaches. It minimizes background (nonspecific adherence of probe to membrane and nonspecific hybridization) and maximizes specific hybridization to RNAs immobilized on a membrane. © 2015 Cold Spring Harbor Laboratory Press.

  11. Ultrasensitive quantum dots-based DNA detection and hybridization kinetics analysis with evanescent wave biosensing platform.

    PubMed

    Long, Feng; Wu, Shuxu; He, Miao; Tong, Tiezheng; Shi, Hanchang

    2011-01-15

    Ultrasensitive DNA detection was achieved using a new biosensing platform based on quantum dots (QDs) and total internal reflection fluorescence, which featured an exceptional detection limit of 3.2 amol of bound target DNA. The reusable sensor surface was produced by covalently immobilizing streptavidin onto a self-assembled alkanethiol monolayer of fiber optic probe through a heterobifunctional reagent. Streptavidin served as a versatile binding element for biotinylated single-strand DNA (ssDNA). The ssDNA-coated fiber probe was evaluated as a nucleic acid biosensor through a DNA-DNA hybridization assay for a 30-mer ssDNA, which were the segments of the uidA gene of Escherichia coli and labeled by QDs using avidin-biotin interaction. Several negative control tests revealed the absence of significant non-specific binding. It also showed that bound target DNA could easily be eluted from the sensor surface using SDS solution (pH 1.9) without any significant loss of performance after more than 30 assay cycles. A quantitative measurement of DNA binding kinetics was achieved with high accuracy, indicating an association rate of 1.38×10(6) M(-1) s(-1) and a dissociation rate of 4.67×10(-3) s(-1). The proposed biosensing platform provides a simple, cheap, fast, and robust solution for many potential applications including clinical diagnosis, pathology, and genetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Label-free technology for the amplified detection of microRNA based on the allosteric hairpin DNA switch and hybridization chain reaction.

    PubMed

    Cai, Sheng; Cao, Zhijuan; Lau, Choiwan; Lu, Jianzhong

    2014-11-21

    By using the allosteric hairpin DNA switch, a novel assay for the detection of microRNA (miRNA) let-7a via a hybridization chain reaction (HCR) was introduced. Briefly, the hairpin DNA switch probe is a single-stranded DNA consisting of a streptavidin (SA) aptamer sequence, a target binding sequence and a certain sequence that acts as a trigger of the HCR. In the presence of target let-7a, the hairpin DNA switch would open and expose the stem region sequences, where a part of this sequence acts as initiator sequence strands for the HCR and triggers a cascade of hybridization events that yields nicked double helices analogous to alternating copolymers, another part is the SA aptamer sequence which activates its binding affinity to SA on SA-coated magnetic particles. The hybridization event could be sensitively detected via an instantaneous derivatization reaction between a special chemiluminescence (CL) reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG) and the guanine nucleotides within the target, the hairpin DNA switch probe, and HCR helices to form an unstable CL intermediate for the generation of light. Our results show that the coupling of the hairpin DNA switch probe and the HCR for the amplified detection of let-7a achieves a better performance (e.g. wide linear response range: 0.1-1000 fmol, low detection limit: 0.1 fmol, and high specificity). Furthermore, this approach could be easily applied to the detection of let-7a in human lung cells, and extended to detect other types of miRNA and proteins such as PDGF based on aptamers. We believe such advancements will represent a significant step towards improved diagnostics and more personalized medical treatment.

  13. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast, reversible format with the detection limit of a few hundred molecules.

  14. Study on the SPR responses of various DNA probe concentrations by parallel scan spectral SPR imaging

    NASA Astrophysics Data System (ADS)

    Ma, Suihua; Liu, Le; Lu, Weiping; Zhang, Yaou; He, Yonghong; Guo, Jihua

    2008-12-01

    SPR sensors have become a high sensitive and label free method for characterizing and quantifying chemical and biochemical interactions. However, the relations between the SPR refractive index response and the property (such as concentrations) of biochemical probes are still lacking. In this paper, an experimental study on the SPR responses of varies concentrations of Legionella pneumophila mip DNA probes is presented. We developed a novel two-dimensional SPR sensing technique-parallel scan spectral SPR imaging-to detect an array of mip gene probes. This technique offers quantitative refractive index information with a high sensing throughput. By detecting mip DNA probes with different concentrations, we obtained the relations between the SPR refractive index response and the concentrations of mip DNA probes. These results are valuable for design and developing SPR based mip gene biochips.

  15. A multi-spectroscopic and molecular docking approach to investigate the interaction of antiviral drug oseltamivir with ct-DNA.

    PubMed

    Moghadam, Neda Hosseinpour; Salehzadeh, Sadegh; Shahabadi, Nahid; Golbedaghi, Reza

    2017-07-03

    The possible interaction between the antiviral drug oseltamivir and calf thymus DNA at physiological pH was studied by spectrophotometry, competitive spectrofluorimetry, differential pulse voltammogram (DPV), circular dichroism spectroscopy (CD), viscosity measurements, salt effect, and computational studies. Intercalation of oseltamivir between the base pairs of DNA was shown by a sharp increase in specific viscosity of DNA and a decrease of the peak current and a positive shift in differential pulse voltammogram. Competitive fluorescence experiments were performed using neutral red (NR) as a probe for the intercalation binding mode. The studies showed that oseltamivir is able to release the NR.

  16. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.

    PubMed

    Zheng, Wenjun

    2017-02-01

    In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.

    PubMed

    Deng, Wulan; Shi, Xinghua; Tjian, Robert; Lionnet, Timothée; Singer, Robert H

    2015-09-22

    Direct visualization of genomic loci in the 3D nucleus is important for understanding the spatial organization of the genome and its association with gene expression. Various DNA FISH methods have been developed in the past decades, all involving denaturing dsDNA and hybridizing fluorescent nucleic acid probes. Here we report a novel approach that uses in vitro constituted nuclease-deficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated caspase 9 (Cas9) complexes as probes to label sequence-specific genomic loci fluorescently without global DNA denaturation (Cas9-mediated fluorescence in situ hybridization, CASFISH). Using fluorescently labeled nuclease-deficient Cas9 (dCas9) protein assembled with various single-guide RNA (sgRNA), we demonstrated rapid and robust labeling of repetitive DNA elements in pericentromere, centromere, G-rich telomere, and coding gene loci. Assembling dCas9 with an array of sgRNAs tiling arbitrary target loci, we were able to visualize nonrepetitive genomic sequences. The dCas9/sgRNA binary complex is stable and binds its target DNA with high affinity, allowing sequential or simultaneous probing of multiple targets. CASFISH assays using differently colored dCas9/sgRNA complexes allow multicolor labeling of target loci in cells. In addition, the CASFISH assay is remarkably rapid under optimal conditions and is applicable for detection in primary tissue sections. This rapid, robust, less disruptive, and cost-effective technology adds a valuable tool for basic research and genetic diagnosis.

  18. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus

    PubMed Central

    Cao, Xiaoxiao; Li, Shaohua; Chen, Liucun; Ding, Hongmei; Xu, Hua; Huang, Yanping; Li, Jie; Liu, Nongle; Cao, Weihong; Zhu, Yanjun; Shen, Beifen; Shao, Ningsheng

    2009-01-01

    In this article, a panel of ssDNA aptamers specific to Staphylococcus aureus was obtained by a whole bacterium-based SELEX procedure and applied to probing S. aureus. After several rounds of selection with S. aureus as the target and Streptococcus and S. epidermidis as counter targets, the highly enriched oligonucleic acid pool was sequenced and then grouped under different families on the basis of the homology of the primary sequence and the similarity of the secondary structure. Eleven sequences from different families were selected for further characterization by confocal imaging and flow cytometry analysis. Results showed that five aptamers demonstrated high specificity and affinity to S. aureus individually. The five aptamers recognize different molecular targets by competitive experiment. Combining these five aptamers had a much better effect than the individual aptamer in the recognition of different S. aureus strains. In addition, the combined aptamers can probe single S. aureus in pyogenic fluids. Our work demonstrates that a set of aptamers specific to one bacterium can be used in combination for the identification of the bacterium instead of a single aptamer. PMID:19498077

  19. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus.

    PubMed

    Cao, Xiaoxiao; Li, Shaohua; Chen, Liucun; Ding, Hongmei; Xu, Hua; Huang, Yanping; Li, Jie; Liu, Nongle; Cao, Weihong; Zhu, Yanjun; Shen, Beifen; Shao, Ningsheng

    2009-08-01

    In this article, a panel of ssDNA aptamers specific to Staphylococcus aureus was obtained by a whole bacterium-based SELEX procedure and applied to probing S. aureus. After several rounds of selection with S. aureus as the target and Streptococcus and S. epidermidis as counter targets, the highly enriched oligonucleic acid pool was sequenced and then grouped under different families on the basis of the homology of the primary sequence and the similarity of the secondary structure. Eleven sequences from different families were selected for further characterization by confocal imaging and flow cytometry analysis. Results showed that five aptamers demonstrated high specificity and affinity to S. aureus individually. The five aptamers recognize different molecular targets by competitive experiment. Combining these five aptamers had a much better effect than the individual aptamer in the recognition of different S. aureus strains. In addition, the combined aptamers can probe single S. aureus in pyogenic fluids. Our work demonstrates that a set of aptamers specific to one bacterium can be used in combination for the identification of the bacterium instead of a single aptamer.

  20. Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.

    PubMed

    Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel

    2007-04-01

    Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.

Top