Multiplex pyrosequencing of InDel markers for forensic DNA analysis.
Bus, Magdalena M; Karas, Ognjen; Allen, Marie
2016-12-01
The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator ® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator ® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof-of-principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost-effective alternative for some applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mitochondrial sequence analysis for forensic identification using pyrosequencing technology.
Andréasson, H; Asp, A; Alderborn, A; Gyllensten, U; Allen, M
2002-01-01
Over recent years, requests for mtDNA analysis in the field of forensic medicine have notably increased, and the results of such analyses have proved to be very useful in forensic cases where nuclear DNA analysis cannot be performed. Traditionally, mtDNA has been analyzed by DNA sequencing of the two hypervariable regions, HVI and HVII, in the D-loop. DNA sequence analysis using the conventional Sanger sequencing is very robust but time consuming and labor intensive. By contrast, mtDNA analysis based on the pyrosequencing technology provides fast and accurate results from the human mtDNA present in many types of evidence materials in forensic casework. The assay has been developed to determine polymorphic sites in the mitochondrial D-loop as well as the coding region to further increase the discrimination power of mtDNA analysis. The pyrosequencing technology for analysis of mtDNA polymorphisms has been tested with regard to sensitivity, reproducibility, and success rate when applied to control samples and actual casework materials. The results show that the method is very accurate and sensitive; the results are easily interpreted and provide a high success rate on casework samples. The panel of pyrosequencing reactions for the mtDNA polymorphisms were chosen to result in an optimal discrimination power in relation to the number of bases determined.
Bacterial identification and subtyping using DNA microarray and DNA sequencing.
Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D
2012-01-01
The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.
Pyrosequencing for Microbial Identification and Characterization
Cummings, Patrick J.; Ahmed, Ray; Durocher, Jeffrey A.; Jessen, Adam; Vardi, Tamar; Obom, Kristina M.
2013-01-01
Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns. PMID:23995536
Pyrosequencing for microbial identification and characterization.
Cummings, Patrick J; Ahmed, Ray; Durocher, Jeffrey A; Jessen, Adam; Vardi, Tamar; Obom, Kristina M
2013-08-22
Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns.
Quantitative DNA Methylation Profiling in Cancer.
Ammerpohl, Ole; Haake, Andrea; Kolarova, Julia; Siebert, Reiner
2016-01-01
Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.
Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R
2014-07-01
Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework. © 2014 American Academy of Forensic Sciences.
Rapid detection of the CYP2A6*12 hybrid allele by Pyrosequencing technology.
Koontz, Deborah A; Huckins, Jacqueline J; Spencer, Antonina; Gallagher, Margaret L
2009-08-24
Identification of CYP2A6 alleles associated with reduced enzyme activity is important in the study of inter-individual differences in drug metabolism. CYP2A6*12 is a hybrid allele that results from unequal crossover between CYP2A6 and CYP2A7 genes. The 5' regulatory region and exons 1-2 are derived from CYP2A7, and exons 3-9 are derived from CYP2A6. Conventional methods for detection of CYP2A6*12 consist of two-step PCR protocols that are laborious and unsuitable for high-throughput genotyping. We developed a rapid and accurate method to detect the CYP2A6*12 allele by Pyrosequencing technology. A single set of PCR primers was designed to specifically amplify both the CYP2A6*1 wild-type allele and the CYP2A6*12 hybrid allele. An internal Pyrosequencing primer was used to generate allele-specific sequence information, which detected homozygous wild-type, heterozygous hybrid, and homozygous hybrid alleles. We first validated the assay on 104 DNA samples that were also genotyped by conventional two-step PCR and by cycle sequencing. CYP2A6*12 allele frequencies were then determined using the Pyrosequencing assay on 181 multi-ethnic DNA samples from subjects of African American, European Caucasian, Pacific Rim, and Hispanic descent. Finally, we streamlined the Pyrosequencing assay by integrating liquid handling robotics into the workflow. Pyrosequencing results demonstrated 100% concordance with conventional two-step PCR and cycle sequencing methods. Allele frequency data showed slightly higher prevalence of the CYP2A6*12 allele in European Caucasians and Hispanics. This Pyrosequencing assay proved to be a simple, rapid, and accurate alternative to conventional methods, which can be easily adapted to the needs of higher-throughput studies.
Use of FTA® classic cards for epigenetic analysis of sperm DNA.
Serra, Olga; Frazzi, Raffaele; Perotti, Alessio; Barusi, Lorenzo; Buschini, Annamaria
2018-02-01
FTA® technologies provide the most reliable method for DNA extraction. Although FTA technologies have been widely used for genetic analysis, there is no literature on their use for epigenetic analysis yet. We present for the first time, a simple method for quantitative methylation assessment based on sperm cells stored on Whatman FTA classic cards. Specifically, elution of seminal DNA from FTA classic cards was successfully tested with an elution buffer and an incubation step in a thermocycler. The eluted DNA was bisulfite converted, amplified by PCR, and a region of interest was pyrosequenced.
Kim, Suk Kyeong; Kim, Dong-Lim; Han, Hye Seung; Kim, Wan Seop; Kim, Seung Ja; Moon, Won Jin; Oh, Seo Young; Hwang, Tae Sook
2008-06-01
Fine-needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant and of guiding therapeutic intervention in thyroid nodules. However, 10% to 30% of cases with indeterminate cytology in FNAB need other diagnostic tools to refine diagnosis. We compared the pyrosequencing method with the conventional direct DNA sequencing analysis and investigated the usefulness of preoperative BRAF mutation analysis as an adjunct diagnostic tool with routine FNAB. A total of 103 surgically confirmed patients' FNA slides were recruited and DNA was extracted after atypical cells were scraped from the slides. BRAF mutation was analyzed by pyrosequencing and direct DNA sequencing. Sixty-three (77.8%) of 81 histopathologically diagnosed malignant nodules revealed positive BRAF mutation on pyrosequencing analysis. In detail, 63 (84.0%) of 75 papillary thyroid carcinoma (PTC) samples showed positive BRAF mutation, whereas 3 follicular thyroid carcinomas, 1 anaplastic carcinoma, 1 medullary thyroid carcinoma, and 1 metastatic lung carcinoma did not show BRAF mutation. None of 22 benign nodules had BRAF mutation in both pyrosequencing and direct DNA sequencing. Out of 27 thyroid nodules classified as 'indeterminate' on cytologic examination preoperatively, 21 (77.8%) cases turned out to be malignant: 18 PTCs (including 2 follicular variant types) and 3 follicular thyroid carcinomas. Among these, 13 (61.9%) classic PTCs had BRAF mutation. None of 6 benign nodules, including 3 follicular adenomas and 3 nodular hyperplasias, had BRAF mutation. Among 63 PTCs with positive BRAF mutation detected by pyrosequencing analysis, 3 cases did not show BRAF mutation by direct DNA sequencing. Although it was not statistically significant, pyrosequencing was superior to direct DNA sequencing in detecting the BRAF mutation of thyroid nodules (P=0.25). Detecting BRAF mutation by pyrosequencing is more sensitive, faster, and less expensive than direct DNA sequencing and is proposed as an adjunct diagnostic tool in evaluating thyroid nodules of indeterminate cytology.
Grasso, Chiara; Trevisan, Morena; Fiano, Valentina; Tarallo, Valentina; De Marco, Laura; Sacerdote, Carlotta; Richiardi, Lorenzo; Merletti, Franco; Gillio-Tos, Anna
2016-01-01
Pyrosequencing has emerged as an alternative method of nucleic acid sequencing, well suited for many applications which aim to characterize single nucleotide polymorphisms, mutations, microbial types and CpG methylation in the target DNA. The commercially available pyrosequencing systems can harbor two different types of software which allow analysis in AQ or CpG mode, respectively, both widely employed for DNA methylation analysis. Aim of the study was to assess the performance for DNA methylation analysis at CpG sites of the two pyrosequencing software which allow analysis in AQ or CpG mode, respectively. Despite CpG mode having been specifically generated for CpG methylation quantification, many investigations on this topic have been carried out with AQ mode. As proof of equivalent performance of the two software for this type of analysis is not available, the focus of this paper was to evaluate if the two modes currently used for CpG methylation assessment by pyrosequencing may give overlapping results. We compared the performance of the two software in quantifying DNA methylation in the promoter of selected genes (GSTP1, MGMT, LINE-1) by testing two case series which include DNA from paraffin embedded prostate cancer tissues (PC study, N = 36) and DNA from blood fractions of healthy people (DD study, N = 28), respectively. We found discrepancy in the two pyrosequencing software-based quality assignment of DNA methylation assays. Compared to the software for analysis in the AQ mode, less permissive criteria are supported by the Pyro Q-CpG software, which enables analysis in CpG mode. CpG mode warns the operators about potential unsatisfactory performance of the assay and ensures a more accurate quantitative evaluation of DNA methylation at CpG sites. The implementation of CpG mode is strongly advisable in order to improve the reliability of the methylation analysis results achievable by pyrosequencing.
Borman, Andrew M.; Linton, Christopher J.; Oliver, Debra; Palmer, Michael D.; Szekely, Adrien; Johnson, Elizabeth M.
2010-01-01
Rapid identification of yeast species isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. Here, we have evaluated the utility of pyrosequencing analysis of a portion of the internal transcribed spacer 2 region (ITS2) for identification of pathogenic yeasts. A total of 477 clinical isolates encompassing 43 different fungal species were subjected to pyrosequencing analysis in a strictly blinded study. The molecular identifications produced by pyrosequencing were compared with those obtained using conventional biochemical tests (AUXACOLOR2) and following PCR amplification and sequencing of the D1-D2 portion of the nuclear 28S large rRNA gene. More than 98% (469/477) of isolates encompassing 40 of the 43 fungal species tested were correctly identified by pyrosequencing of only 35 bp of ITS2. Moreover, BLAST searches of the public synchronized databases with the ITS2 pyrosequencing signature sequences revealed that there was only minimal sequence redundancy in the ITS2 under analysis. In all cases, the pyrosequencing signature sequences were unique to the yeast species (or species complex) under investigation. Finally, when pyrosequencing was combined with the Whatman FTA paper technology for the rapid extraction of fungal genomic DNA, molecular identification could be accomplished within 6 h from the time of starting from pure cultures. PMID:20702674
Duman, Elif Aysimi; Kriaucionis, Skirmantas; Dunn, John J; Hatchwell, Eli
2015-05-01
Variations in DNA methylation have been implicated in a number of disorders. Changes in global DNA methylation levels have long been associated with various types of cancer. One of the recently described methods for determining global DNA methylation levels is the LUminometric Methylation Assay (LUMA), which utilizes methylation sensitive and insensitive restriction endonucleases and pyrosequencing technology for quantification. Here we provide evidence suggesting that the global methylation level reported by LUMA is affected by the integrity of the DNA being analyzed. The less intact the DNA, the lower the global methylation levels reported by LUMA. In order to overcome this problem, we propose the use of undigested DNA alongside digested samples. Finally, we demonstrate that this results in a more accurate assessment of global DNA methylation levels.
Owa, Chie; Poulin, Matthew; Yan, Liying; Shioda, Toshi
2018-01-01
The existence of cytosine methylation in mammalian mitochondrial DNA (mtDNA) is a controversial subject. Because detection of DNA methylation depends on resistance of 5'-modified cytosines to bisulfite-catalyzed conversion to uracil, examined parameters that affect technical adequacy of mtDNA methylation analysis. Negative control amplicons (NCAs) devoid of cytosine methylation were amplified to cover the entire human or mouse mtDNA by long-range PCR. When the pyrosequencing template amplicons were gel-purified after bisulfite conversion, bisulfite pyrosequencing of NCAs did not detect significant levels of bisulfite-resistant cytosines (brCs) at ND1 (7 CpG sites) or CYTB (8 CpG sites) genes (CI95 = 0%-0.94%); without gel-purification, significant false-positive brCs were detected from NCAs (CI95 = 4.2%-6.8%). Bisulfite pyrosequencing of highly purified, linearized mtDNA isolated from human iPS cells or mouse liver detected significant brCs (~30%) in human ND1 gene when the sequencing primer was not selective in bisulfite-converted and unconverted templates. However, repeated experiments using a sequencing primer selective in bisulfite-converted templates almost completely (< 0.8%) suppressed brC detection, supporting the false-positive nature of brCs detected using the non-selective primer. Bisulfite-seq deep sequencing of linearized, gel-purified human mtDNA detected 9.4%-14.8% brCs for 9 CpG sites in ND1 gene. However, because all these brCs were associated with adjacent non-CpG brCs showing the same degrees of bisulfite resistance, DNA methylation in this mtDNA-encoded gene was not confirmed. Without linearization, data generated by bisulfite pyrosequencing or deep sequencing of purified mtDNA templates did not pass the quality control criteria. Shotgun bisulfite sequencing of human mtDNA detected extremely low levels of CpG methylation (<0.65%) over non-CpG methylation (<0.55%). Taken together, our study demonstrates that adequacy of mtDNA methylation analysis using methods dependent on bisulfite conversion needs to be established for each experiment, taking effects of incomplete bisulfite conversion and template impurity or topology into consideration.
Genetic Inventory Task Final Report. Volume 2
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; LaDuc, Myron T.; Vaishampayan, Parag
2012-01-01
Contaminant terrestrial microbiota could profoundly impact the scientific integrity of extraterrestrial life-detection experiments. It is therefore important to know what organisms persist on spacecraft surfaces so that their presence can be eliminated or discriminated from authentic extraterrestrial biosignatures. Although there is a growing understanding of the biodiversity associated with spacecraft and cleanroom surfaces, it remains challenging to assess the risk of these microbes confounding life-detection or sample-return experiments. A key challenge is to provide a comprehensive inventory of microbes present on spacecraft surfaces. To assess the phylogenetic breadth of microorganisms on spacecraft and associated surfaces, the Genetic Inventory team used three technologies: conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-encoded pyrosequencing, together with a methodology to systematically collect, process, and archive nucleic acids. These three analysis methods yielded considerably different results: Traditional approaches provided the least comprehensive assessment of microbial diversity, while PhyloChip and pyrosequencing illuminated more diverse microbial populations. The overall results stress the importance of selecting sample collection and processing approaches based on the desired target and required level of detection. The DNA archive generated in this study can be made available to future researchers as genetic-inventory-oriented technologies further mature.
Picoliter DNA Sequencing Chemistry on an Electrowetting-based Digital Microfluidic Platform
Ferguson Welch, Erin R.; Lin, Yan-You; Madison, Andrew; Fair, R.B.
2011-01-01
The results of investigations into performing DNA sequencing chemistry on a picoliter-scale electrowetting digital microfluidic platform are reported. Pyrosequencing utilizes pyrophosphate produced during nucleotide base addition to initiate a process ending with detection through a chemiluminescence reaction using firefly luciferase. The intensity of light produced during the reaction can be quantified to determine the number of bases added to the DNA strand. The logic-based control and discrete fluid droplets of a digital microfluidic device lend themselves well to the pyrosequencing process. Bead-bound DNA is magnetically held in a single location, and wash or reagent droplets added or split from it to circumvent product dilution. Here we discuss the dispensing, control, and magnetic manipulation of the paramagnetic beads used to hold target DNA. We also demonstrate and characterize the picoliter-scale reaction of luciferase with adenosine triphosphate to represent the detection steps of pyrosequencing and all necessary alterations for working on this scale. PMID:21298802
A Bioluminometric Method of DNA Sequencing
NASA Technical Reports Server (NTRS)
Ronaghi, Mostafa; Pourmand, Nader; Stolc, Viktor; Arnold, Jim (Technical Monitor)
2001-01-01
Pyrosequencing is a bioluminometric single-tube DNA sequencing method that takes advantage of co-operativity between four enzymes to monitor DNA synthesis. In this sequencing-by-synthesis method, a cascade of enzymatic reactions yields detectable light, which is proportional to incorporated nucleotides. Pyrosequencing has the advantages of accuracy, flexibility and parallel processing. It can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides and gel-electrophoresis. In this chapter, the use of this technique for different applications is discussed.
Comparison of large-insert, small-insert and pyrosequencing libraries for metagenomic analysis.
Danhorn, Thomas; Young, Curtis R; DeLong, Edward F
2012-11-01
The development of DNA sequencing methods for characterizing microbial communities has evolved rapidly over the past decades. To evaluate more traditional, as well as newer methodologies for DNA library preparation and sequencing, we compared fosmid, short-insert shotgun and 454 pyrosequencing libraries prepared from the same metagenomic DNA samples. GC content was elevated in all fosmid libraries, compared with shotgun and 454 libraries. Taxonomic composition of the different libraries suggested that this was caused by a relative underrepresentation of dominant taxonomic groups with low GC content, notably Prochlorales and the SAR11 cluster, in fosmid libraries. While these abundant taxa had a large impact on library representation, we also observed a positive correlation between taxon GC content and fosmid library representation in other low-GC taxa, suggesting a general trend. Analysis of gene category representation in different libraries indicated that the functional composition of a library was largely a reflection of its taxonomic composition, and no additional systematic biases against particular functional categories were detected at the level of sequencing depth in our samples. Another important but less predictable factor influencing the apparent taxonomic and functional library composition was the read length afforded by the different sequencing technologies. Our comparisons and analyses provide a detailed perspective on the influence of library type on the recovery of microbial taxa in metagenomic libraries and underscore the different uses and utilities of more traditional, as well as contemporary 'next-generation' DNA library construction and sequencing technologies for exploring the genomics of the natural microbial world.
Kobayashi, Naomi; Bauer, Thomas W; Togawa, Daisuke; Lieberman, Isador H; Sakai, Hiroshige; Fujishiro, Takaaki; Tuohy, Marion J; Procop, Gary W
2005-06-01
The bacteria associated with orthopaedic infections are usually common gram-positive and gram-negative bacteria. This fundamental grouping of bacteria is a necessary first step in the selection of appropriate antibiotics. Since polymerase chain reaction (PCR) is more rapid and may be more sensitive than culture, we developed a postamplification pyrosequencing method to subcategorize bacteria based on a few nucleotide polymorphisms in the 16S rRNA gene. We validated this method using well-characterized strains of bacteria and applied it to specimens from spinal surgery cases with suspected infections. Lysates of 114 bacteria including 75 species were created following standard cultivation to obtain DNA. The DNA was amplified by a broad-range real-time PCR. The amplicons were evaluated by pyrosequencing and were classified as gram-positive, gram-negative, or acid-fast bacilli based on the first three to five nucleotides sequenced. In addition, clinical cases of suspected infection were obtained from spinal surgery. The results of the "molecular Gram stain" were compared with the results of traditional Gram stain and culture. The lysates of 107 (93.9%) of the bacteria extracts tested were appropriately categorized as gram-positive and gram-negative or as acid-fast bacilli on the basis of this assay. The sensitivity and specificity of this assay were 100% and 97.4% for gram-positive and 88.3% and 100% for gram-negative isolates. All of the five clinical samples were appropriately categorized as containing gram-positive or gram-negative bacteria with this assay. This study demonstrates that high sensitivity and specificity of a molecular gram stain may be achieved using broad-range real-time PCR and pyrosequencing.
DNA migration mechanism analyses for applications in capillary and microchip electrophoresis
Forster, Ryan E.; Hert, Daniel G.; Chiesl, Thomas N.; Fredlake, Christopher P.; Barron, Annelise E.
2009-01-01
In 2009, electrophoretically driven DNA separations in slab gels and capillaries have the sepia tones of an old-fashioned technology in the eyes of many, even while they remain ubiquitously used, fill a unique niche, and arguably have yet to reach their full potential. For comic relief, what is old becomes new again: agarose slab gel separations are used to prepare DNA samples for “next-gen” sequencing platforms (e.g., the Illumina and 454 machines)—dsDNA molecules within a certain size range are “cut out” of a gel and recovered for subsequent “massively parallel” pyrosequencing. In this review, we give a Barron lab perspective on how our comprehension of DNA migration mechanisms in electrophoresis has evolved, since the first reports of DNA separations by CE (∼1989) until now, 20 years later. Fused silica capillaries, and borosilicate glass and plastic microchips, quietly offer increasing capacities for fast (and even “ultra-fast”), efficient DNA separations. While the channel-by-channel scaling of both old and new electrophoresis platforms provides key flexibility, it requires each unique DNA sample to be prepared in its own micro- or nanovolume. This Achille's heel of electrophoresis technologies left an opening through which pooled-sample, next-gen DNA sequencing technologies rushed. We shall see, over time, whether sharpening understanding of transitions in DNA migration modes in crosslinked gels, nanogel solutions, and uncrosslinked polymer solutions will allow electrophoretic DNA analysis technologies to flower again. Microchannel electrophoresis, after a quiet period of metamorphosis, may emerge sleeker and more powerful, to claim its own important niche applications. PMID:19582705
Detection of KRAS G12D in colorectal cancer stool by droplet digital PCR
Olmedillas-López, Susana; Lévano-Linares, Dennis César; Alexandre, Carmen Laura Aúz; Vega-Clemente, Luz; Sánchez, Edurne León; Villagrasa, Alejandro; Ruíz-Tovar, Jaime; García-Arranz, Mariano; García-Olmo, Damián
2017-01-01
AIM To assess KRAS G12D mutation detection by droplet digital PCR (ddPCR) in stool-derived DNA from colorectal cancer (CRC) patients. METHODS In this study, tumor tissue and stool samples were collected from 70 patients with stage I-IV CRC diagnosed by preoperative biopsy. KRAS mutational status was determined by pyrosequencing analysis of DNA obtained from formalin-fixed paraffin-embedded (FFPE) tumor tissues. The KRAS G12D mutation was then analyzed by ddPCR in FFPE tumors and stool-derived DNA from patients with this point mutation. Wild-type (WT) tumors, as determined by pyrosequencing, were included as controls; analysis of FFPE tissue and stool-derived DNA by ddPCR was performed for these patients as well. RESULTS Among the total 70 patients included, KRAS mutations were detected by pyrosequencing in 32 (45.71%), whereas 38 (54.29%) had WT tumors. The frequency of KRAS mutations was higher in left-sided tumors (11 located in the right colon, 15 in the left, and 6 in the rectum). The predominant point mutation was KRAS G12D (14.29%, n = 10), which was more frequent in early-stage tumors (I-IIA, n = 7). In agreement with pyrosequencing results, the KRAS G12D mutation was detected by ddPCR in FFPE tumor-derived DNA, and only a residual number of mutated copies was found in WT controls. The KRAS G12D mutation was also detected in stool-derived DNA in 80% of all fecal samples from CRC patients with this point mutation. CONCLUSION ddPCR is a reliable and sensitive method to analyze KRAS G12D mutation in stool-derived DNA from CRC patients, especially at early stages. This non-invasive approach is potentially applicable to other relevant biomarkers for CRC management. PMID:29093617
Sun, Yepeng; Wang, Fawei; Wang, Nan; Dong, Yuanyuan; Liu, Qi; Zhao, Lei; Chen, Huan; Liu, Weican; Yin, Hailong; Zhang, Xiaomei; Yuan, Yanxi; Li, Haiyan
2013-01-01
Background Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. Results We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO3). A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of “log2 Ratio ≥1”, there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. Conclusions This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and constituted a database for future studies. PMID:23365637
Janzen, Timothy W; Thomas, Matthew C; Goji, Noriko; Shields, Michael J; Hahn, Kristen R; Amoako, Kingsley K
2015-02-01
Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV-1) is a cell-associated alphaherpesvirus that induces rapid-onset T-cell lymphomas in poultry. The genomes of 6 strains have been sequenced using both Sanger didoxy sequencing and 454 Life Science pyrosequencing. These genomes largely represent cell culture adapted strains...
Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data.
Rask, Thomas S; Petersen, Bent; Chen, Donald S; Day, Karen P; Pedersen, Anders Gorm
2016-04-22
Amplicon pyrosequencing targets a known genetic region and thus inherently produces reads highly anticipated to have certain features, such as conserved nucleotide sequence, and in the case of protein coding DNA, an open reading frame. Pyrosequencing errors, consisting mainly of nucleotide insertions and deletions, are on the other hand likely to disrupt open reading frames. Such an inverse relationship between errors and expectation based on prior knowledge can be used advantageously to guide the process known as basecalling, i.e. the inference of nucleotide sequence from raw sequencing data. The new basecalling method described here, named Multipass, implements a probabilistic framework for working with the raw flowgrams obtained by pyrosequencing. For each sequence variant Multipass calculates the likelihood and nucleotide sequence of several most likely sequences given the flowgram data. This probabilistic approach enables integration of basecalling into a larger model where other parameters can be incorporated, such as the likelihood for observing a full-length open reading frame at the targeted region. We apply the method to 454 amplicon pyrosequencing data obtained from a malaria virulence gene family, where Multipass generates 20 % more error-free sequences than current state of the art methods, and provides sequence characteristics that allow generation of a set of high confidence error-free sequences. This novel method can be used to increase accuracy of existing and future amplicon sequencing data, particularly where extensive prior knowledge is available about the obtained sequences, for example in analysis of the immunoglobulin VDJ region where Multipass can be combined with a model for the known recombining germline genes. Multipass is available for Roche 454 data at http://www.cbs.dtu.dk/services/MultiPass-1.0 , and the concept can potentially be implemented for other sequencing technologies as well.
Fluorogenic DNA Sequencing in PDMS Microreactors
Sims, Peter A.; Greenleaf, William J.; Duan, Haifeng; Xie, X. Sunney
2012-01-01
We have developed a multiplex sequencing-by-synthesis method combining terminal-phosphate labeled fluorogenic nucleotides (TPLFNs) and resealable microreactors. In the presence of phosphatase, the incorporation of a non-fluorescent TPLFN into a DNA primer by DNA polymerase results in a fluorophore. We immobilize DNA templates within polydimethylsiloxane (PDMS) microreactors, sequentially introduce one of the four identically labeled TPLFNs, seal the microreactors, allow template-directed TPLFN incorporation, and measure the signal from the fluorophores trapped in the microreactors. This workflow allows sequencing in a manner akin to pyrosequencing but without constant monitoring of each microreactor. With cycle times of <10 minutes, we demonstrate 30 base reads with ∼99% raw accuracy. “Fluorogenic pyrosequencing” combines benefits of pyrosequencing, such as rapid turn-around, native DNA generation, and single-color detection, with benefits of fluorescence-based approaches, such as highly sensitive detection and simple parallelization. PMID:21666670
Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing.
Portune, Kevin J; Pérez, M Carmen; Álvarez-Hornos, F Javier; Gabaldón, Carmen
2015-01-01
Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.
Zhao, Yuancun; Chen, Xiaogang; Yang, Yiwen; Zhao, Xiaohong; Zhang, Shu; Gao, Zehua; Fang, Ting; Wang, Yufang; Zhang, Ji
2018-05-07
Diatom examination has always been used for the diagnosis of drowning in forensic practice. However, traditional examination of the microscopic features of diatom frustules is time-consuming and requires taxonomic expertise. In this study, we demonstrate a potential DNA-based method of inferring suspected drowning site using pyrosequencing (PSQ) of the V7 region of 18S ribosome DNA (18S rDNA) as a diatom DNA barcode. By employing a sparse representation-based AdvISER-M-PYRO algorithm, the original PSQ signals of diatom DNA mixtures were deciphered to determine the corresponding taxa of the composite diatoms. Additionally, we evaluated the possibility of correlating water samples to collection sites by analyzing the PSQ signal profiles of diatom mixtures contained in the water samples via multidimensional scaling. The results suggest that diatomaceous PSQ profile analysis could be used as a cost-effective method to deduce the geographical origin of an environmental bio-sample.
Florea, Ana-Maria
2013-01-01
Exposure of cells and organisms to stressors might result in epigenetic changes. Here it is shown that investigation of DNA methylation using pyrosequencing is an alternative for in vitro and in vivo toxicological testing of epigenetic effects induced by chemicals and drugs. An in vitro evaluation of global and CpG site specific DNA methylation upon treatment of cells with chemicals/drugs is shown. Bisulfite genomic sequencing of methylation controls showed high methylation of LINE1 in methylation positive control and low methylation in the negative controls. The CpG sites within the LINE1 element are methylated at different levels. In vitro cell cultures show a methylation level ranging from 56% to 49%. Cultures of drug resistant tumor cells show significant hypomethylation as compared with the originating nonresistant tumor cells. The in vitro testing of epigenetically active chemicals (5-methyl-2'-deoxycytidine and trichostatin A) revealed a significant change of LINE1 methylation status upon treatment, while specific CpG sites were more prone to demethylation than others (focal methylation). In conclusion, DNA methylation using pyrosequencing might be used not only for testing epigenetic toxins/drugs but also in risk assessment of drugs, food, and environmental relevant pollutants. PMID:24093099
Pauchet, Y; Wilkinson, P; Vogel, H; Nelson, D R; Reynolds, S E; Heckel, D G; ffrench-Constant, R H
2010-02-01
The tobacco hornworm Manduca sexta is an important model for insect physiology but genomic and transcriptomic data are currently lacking. Following a recent pyrosequencing study generating immune related expressed sequence tags (ESTs), here we use this new technology to define the M. sexta larval midgut transcriptome. We generated over 387,000 midgut ESTs, using a combination of Sanger and 454 sequencing, and classified predicted proteins into those involved in digestion, detoxification and immunity. In many cases the depth of 454 pyrosequencing coverage allowed us to define the entire cDNA sequence of a particular gene. Many new M. sexta genes are described including up to 36 new cytochrome P450s, some of which have been implicated in the metabolism of host plant-derived nicotine. New lepidopteran gene families such as the beta-fructofuranosidases, previously thought to be restricted to Bombyx mori, are also described. An unexpectedly high number of ESTs were involved in immunity, for example 39 contigs encoding serpins, and the increasingly appreciated role of the midgut in insect immunity is discussed. Similar studies of other tissues will allow for a tissue by tissue description of the M. sexta transcriptome and will form an essential complimentary step on the road to genome sequencing and annotation.
Zu, Qianhui; Fang, Huan; Zhou, Hu; Zhang, Jianwei; Peng, Xinhua; Lin, Xiangui; Feng, Youzhi
2016-01-04
X-ray micro-computed tomography (micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed. To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray--at doses typically used in micro-CT--on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively. In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed. These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.
Development of colonic microflora as assessed by pyrosequencing in dairy calves fed waste milk
USDA-ARS?s Scientific Manuscript database
The objective of the current study was to examine the effect of pasteurization of waste milk used to feed dairy calves on the bacterial diversity of their lower gut. Using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP), fecal samples from dairy calves aging from 1 week to 6 mon...
Pyrosequencing as a tool for the identification of common isolates of Mycobacterium sp.
Tuohy, Marion J; Hall, Gerri S; Sholtis, Mary; Procop, Gary W
2005-04-01
Pyrosequencing technology, sequencing by addition, was evaluated for categorization of mycobacterial isolates. One hundred and eighty-nine isolates, including 18 ATCC and Trudeau Mycobacterial Culture Collection (TMC) strains, were studied. There were 38 Mycobacterium tuberculosis complex, 27 M. kansasii, 27 MAI complex, 21 M. marinum, 14 M. gordonae, 20 M. chelonae-abscessus group, 10 M. fortuitum, 5 M. xenopi, 3 M. celatum, 2 M. terrae complex, 20 M. mucogenicum, and 2 M. scrofulaceum. Nucleic acid extracts were prepared from solid media or MGIT broth. Traditional PCR was performed with one of the primers biotinylated; the assay targeted a portion of the 16S rRNA gene that contains a hypervariable region, which has been previously shown to be useful for the identification of mycobacteria. The PSQ Sample Preparation Kit was used, and the biotinylated PCR product was processed to a single-stranded DNA template. The sequencing primer was hybridized to the DNA template in a PSQ96 plate. Incorporation of the complementary nucleotides resulted in light generation peaks, forming a pyrogram, which was evaluated by the instrument software. Thirty basepairs were used for isolate categorization. Manual interpretation of the sequences was performed if the quality of the 30-bp sequence was in doubt or if more than 4 bp homopolymers were recognized. Sequences with more than 5 bp of bad quality were deemed unacceptable. When blasted against GenBank, 179 of 189 sequences (94.7%) assigned isolates to the correct molecular genus or group. Ten M. gordonae isolates had more than 5 bp of bad quality sequence and were not accepted. Pyrosequencing of this hypervariable region afforded rapid and acceptable characterization of common, routinely isolated clinical Mycobacterium sp. Algorithms are recommended for further differentiation with an additional sequencing primer or additional biochemicals.
Middelbos, Ingmar S.; Vester Boler, Brittany M.; Qu, Ani; White, Bryan A.; Swanson, Kelly S.; Fahey, George C.
2010-01-01
Background Dogs suffer from many of the same maladies as humans that may be affected by the gut microbiome, but knowledge of the canine microbiome is incomplete. This work aimed to use 16S rDNA tag pyrosequencing to phylogenetically characterize hindgut microbiome in dogs and determine how consumption of dietary fiber affects community structure. Principal Findings Six healthy adult dogs were used in a crossover design. A control diet without supplemental fiber and a beet pulp-supplemented (7.5%) diet were fed. Fecal DNA was extracted and the V3 hypervariable region of the microbial 16S rDNA gene amplified using primers suitable for 454-pyrosequencing. Microbial diversity was assessed on random 2000-sequence subsamples of individual and pooled DNA samples by diet. Our dataset comprised 77,771 reads with an average length of 141 nt. Individual samples contained approximately 129 OTU, with Fusobacteria (23 – 40% of reads), Firmicutes (14 – 28% of reads) and Bacteroidetes (31 – 34% of reads) being co-dominant phyla. Feeding dietary fiber generally decreased Fusobacteria and increased Firmicutes, but these changes were not equally apparent in all dogs. UniFrac analysis revealed that structure of the gut microbiome was affected by diet and Firmicutes appeared to play a strong role in by-diet clustering. Conclusions Our data suggest three co-dominant bacterial phyla in the canine hindgut. Furthermore, a relatively small amount of dietary fiber changed the structure of the gut microbiome detectably. Our data are among the first to characterize the healthy canine gut microbiome using pyrosequencing and provide a basis for studies focused on devising dietary interventions for microbiome-associated diseases. PMID:20339542
Hou, X-L; Cao, Q-Y; Jia, H-Y; Chen, Z
2008-07-01
Pathogens causing acute diarrhea include a large variety of species from Enterobacteriaceae and Vibrionaceae. A method based on pyrosequencing was used here to differentiate bacteria commonly associated with diarrhea in China; the method is targeted to a partial amplicon of the gyrB gene, which encodes the B subunit of DNA gyrase. Twenty-eight specific polymorphic positions were identified from sequence alignment of a large sequence dataset and targeted using 17 sequencing primers. Of 95 isolates tested, belonging to 13 species within 7 genera, most could be identified to the species level; O157 type could be differentiated from other E. coli types; Salmonella enterica subsp. enterica could be identified at the serotype level; the genus Shigella, except for S. boydii and S. dysenteriae, could also be identified. All these isolates were also subjected to conventional sequencing of a relatively long ( approximately1.2 kb) region of gyrB DNA; these results confirmed those with pyrosequencing. Twenty-two fecal samples were surveyed, the results of which were concordant with culture-based bacterial identification, and the pathogen detection limit with simulated stool specimens was 10(4) CFU/ml. DNA from different pathogens was also mixed to simulate a case of multibacterial infection, and the generated signals correlated well with the mix ratio. In summary, the gyrB-based pyrosequencing approach proved to have significant reliability and discriminatory power for enteropathogenic bacterial identification and provided a fast and effective method for clinical diagnosis.
USDA-ARS?s Scientific Manuscript database
Genomes from fifteen porcine reproductive and respiratory syndrome virus (PRRSV) isolates were derived simultaneously using 454 pyrosequencing technology. The viral isolates sequenced were from a recent swine study, in which engineered Type 2 prototype PRRSV strain VR-2332 mutants, with 87, 184, 200...
Garcia-Reyero, Natàlia; Griffitt, Robert J.; Liu, Li; Kroll, Kevin J.; Farmerie, William G.; Barber, David S.; Denslow, Nancy D.
2009-01-01
A novel custom microarray for largemouth bass (Micropterus salmoides) was designed with sequences obtained from a normalized cDNA library using the 454 Life Sciences GS-20 pyrosequencer. This approach yielded in excess of 58 million bases of high-quality sequence. The sequence information was combined with 2,616 reads obtained by traditional suppressive subtractive hybridizations to derive a total of 31,391 unique sequences. Annotation and coding sequences were predicted for these transcripts where possible. 16,350 annotated transcripts were selected as target sequences for the design of the custom largemouth bass oligonucleotide microarray. The microarray was validated by examining the transcriptomic response in male largemouth bass exposed to 17β-œstradiol. Transcriptomic responses were assessed in liver and gonad, and indicated gene expression profiles typical of exposure to œstradiol. The results demonstrate the potential to rapidly create the tools necessary to assess large scale transcriptional responses in non-model species, paving the way for expanded impact of toxicogenomics in ecotoxicology. PMID:19936325
Problem-Solving Test: Pyrosequencing
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2013-01-01
Terms to be familiar with before you start to solve the test: Maxam-Gilbert sequencing, Sanger sequencing, gel electrophoresis, DNA synthesis reaction, polymerase chain reaction, template, primer, DNA polymerase, deoxyribonucleoside triphosphates, orthophosphate, pyrophosphate, nucleoside monophosphates, luminescence, acid anhydride bond,…
Application of Pyrosequencing® in Food Biodefense.
Amoako, Kingsley Kwaku
2015-01-01
The perpetration of a bioterrorism attack poses a significant risk for public health with potential socioeconomic consequences. It is imperative that we possess reliable assays for the rapid and accurate identification of biothreat agents to make rapid risk-informed decisions on emergency response. The development of advanced methodologies for the detection of biothreat agents has been evolving rapidly since the release of the anthrax spores in the mail in 2001, and recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence-based approaches such as Pyrosequencing(®), which has the capability to determine short DNA stretches in real time using biotinylated PCR amplicons, have potential biodefense applications. Using markers from the virulence plasmids and chromosomal regions, my laboratory has demonstrated the power of this technology in the rapid, specific, and sensitive detection of B. anthracis spores and Yersinia pestis in food. These are the first applications for the detection of the two organisms in food. Furthermore, my lab has developed a rapid assay to characterize the antimicrobial resistance (AMR) gene profiles for Y. pestis using Pyrosequencing. Pyrosequencing is completed in about 60 min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence, thus enabling rapid risk-informed decisions to be made. A typical run yields 40-84 bp reads with 94-100 % identity to the expected sequence. It also provides a rapid method for determining the AMR profile as compared to the conventional plate method which takes several days. The method described is proposed as a novel detection system for potential application in food biodefense.
Egge, Elianne; Bittner, Lucie; Andersen, Tom; Audic, Stéphane; de Vargas, Colomban; Edvardsen, Bente
2013-01-01
Next generation sequencing of ribosomal DNA is increasingly used to assess the diversity and structure of microbial communities. Here we test the ability of 454 pyrosequencing to detect the number of species present, and assess the relative abundance in terms of cell numbers and biomass of protists in the phylum Haptophyta. We used a mock community consisting of equal number of cells of 11 haptophyte species and compared targeting DNA and RNA/cDNA, and two different V4 SSU rDNA haptophyte-biased primer pairs. Further, we tested four different bioinformatic filtering methods to reduce errors in the resulting sequence dataset. With sequencing depth of 11000–20000 reads and targeting cDNA with Haptophyta specific primers Hap454 we detected all 11 species. A rarefaction analysis of expected number of species recovered as a function of sampling depth suggested that minimum 1400 reads were required here to recover all species in the mock community. Relative read abundance did not correlate to relative cell numbers. Although the species represented with the largest biomass was also proportionally most abundant among the reads, there was generally a weak correlation between proportional read abundance and proportional biomass of the different species, both with DNA and cDNA as template. The 454 sequencing generated considerable spurious diversity, and more with cDNA than DNA as template. With initial filtering based only on match with barcode and primer we observed 100-fold more operational taxonomic units (OTUs) at 99% similarity than the number of species present in the mock community. Filtering based on quality scores, or denoising with PyroNoise resulted in ten times more OTU99% than the number of species. Denoising with AmpliconNoise reduced the number of OTU99% to match the number of species present in the mock community. Based on our analyses, we propose a strategy to more accurately depict haptophyte diversity using 454 pyrosequencing. PMID:24069303
Assessment of replicate bias in 454 pyrosequencing and a multi-purpose read-filtering tool.
Jérôme, Mariette; Noirot, Céline; Klopp, Christophe
2011-05-26
Roche 454 pyrosequencing platform is often considered the most versatile of the Next Generation Sequencing technology platforms, permitting the sequencing of large genomes, the analysis of variations or the study of transcriptomes. A recent reported bias leads to the production of multiple reads for a unique DNA fragment in a random manner within a run. This bias has a direct impact on the quality of the measurement of the representation of the fragments using the reads. Other cleaning steps are usually performed on the reads before assembly or alignment. PyroCleaner is a software module intended to clean 454 pyrosequencing reads in order to ease the assembly process. This program is a free software and is distributed under the terms of the GNU General Public License as published by the Free Software Foundation. It implements several filters using criteria such as read duplication, length, complexity, base-pair quality and number of undetermined bases. It also permits to clean flowgram files (.sff) of paired-end sequences generating on one hand validated paired-ends file and the other hand single read file. Read cleaning has always been an important step in sequence analysis. The pyrocleaner python module is a Swiss knife dedicated to 454 reads cleaning. It includes commonly used filters as well as specialised ones such as duplicated read removal and paired-end read verification.
Sun, Shumei; Zhou, Hao; Zhou, Bin; Hu, Ziyou; Hou, Jinlin; Sun, Jian
2012-05-01
To evaluate the sensitivity and specificity of nested PCR combined with pyrosequencing in the detection of HBV drug-resistance gene. RtM204I (ATT) mutant and rtM204 (ATG) nonmutant plasmids mixed at different ratios were detected for mutations using nested-PCR combined with pyrosequencing, and the results were compared with those by conventional PCR pyrosequencing to analyze the linearity and consistency of the two methods. Clinical specimens with different viral loads were examined for drug-resistant mutations using nested PCR pyrosequencing and nested PCR combined with dideoxy sequencing (Sanger) for comparison of the detection sensitivity and specificity. The fitting curves demonstrated good linearity of both conventional PCR pyrosequencing and nested PCR pyrosequencing (R(2)>0.99, P<0.05). Nested PCR showed a better consistency with the predicted value than conventional PCR, and was superior to conventional PCR for detection of samples containing 90% mutant plasmid. In the detection of clinical specimens, Sanger sequencing had a significantly lower sensitivity than nested PCR pyrosequencing (92% vs 100%, P<0.01). The detection sensitivity of Sanger sequencing varied with the viral loads, especially in samples with low viral copies (HBV DNA ≤3log10 copies/ml), where the sensitivity was 78%, significantly lower than that of pyrosequencing (100%, P<0.01). Neither of the two methods yielded positive results for the negative control samples, suggesting their good specificity. Compared with nested PCR and Sanger sequencing method, nested PCR pyrosequencing has a higher sensitivity especially in clinical specimens with low viral copies, which can be important for early detection of HBV mutant strains and hence more effective clinical management.
Pochon, Xavier; Bott, Nathan J; Smith, Kirsty F; Wood, Susanna A
2013-01-01
Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1-V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide.
Evaluation of two real time PCR assays for the detection of bacterial DNA in amniotic fluid.
Girón de Velasco-Sada, Patricia; Falces-Romero, Iker; Quiles-Melero, Inmaculada; García-Perea, Adela; Mingorance, Jesús
2018-01-01
The aim of this study was to evaluate two non-commercial Real-Time PCR assays for the detection of microorganisms in amniotic fluid followed by identification by pyrosequencing. We collected 126 amniotic fluids from 2010 to 2015 for the evaluation of two Real-Time PCR assays for detection of bacterial DNA in amniotic fluid (16S Universal PCR and Ureaplasma spp. specific PCR). The method was developed in the Department of Microbiology of the University Hospital La Paz. Thirty-seven samples (29.3%) were positive by PCR/pyrosequencing and/or culture, 4 of them were mixed cultures with Ureaplasma urealyticum. The Universal 16S Real-Time PCR was compared with the standard culture (81.8% sensitivity, 97.4% specificity, 75% positive predictive value, 98% negative predictive value). The Ureaplasma spp. specific Real-Time PCR was compared with the Ureaplasma/Mycoplasma specific culture (92.3% sensitivity, 89.4% specificity, 50% positive predictive value, 99% negative predictive value) with statistically significant difference (p=0.005). Ureaplasma spp. PCR shows a rapid response time (5h from DNA extraction until pyrosequencing) when comparing with culture (48h). So, the response time of bacteriological diagnosis in suspected chorioamnionitis is reduced. Copyright © 2017 Elsevier B.V. All rights reserved.
Universal DNA-based methods for assessing the diet of grazing livestock and wildlife from feces.
Pegard, Anthony; Miquel, Christian; Valentini, Alice; Coissac, Eric; Bouvier, Frédéric; François, Dominique; Taberlet, Pierre; Engel, Erwan; Pompanon, François
2009-07-08
Because of the demand for controlling livestock diets, two methods that characterize the DNA of plants present in feces were developed. After DNA extraction from fecal samples, a short fragment of the chloroplastic trnL intron was amplified by PCR using a universal primer pair for plants. The first method generates a signature that is the electrophoretic migration pattern of the PCR product. The second method consists of sequencing several hundred DNA fragments from the PCR product through pyrosequencing. These methods were validated with a blind analysis of feces from concentrate- and pasture-fed lambs. The signature method allowed differentiation of the two diets and confirmed the presence of concentrate in one of them. The pyrosequencing method allowed the identification of up to 25 taxa in a diet. These methods are complementary to the chemical methods already used. They could be applied to the control of diets and the study of food preferences.
Shotgun Pyrosequencing Metagenomic Analyses of Dusts from Swine Confinement and Grain Facilities
Boissy, Robert J.; Romberger, Debra J.; Roughead, William A.; Weissenburger-Moser, Lisa; Poole, Jill A.; LeVan, Tricia D.
2014-01-01
Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses used for such studies must be carefully designed to avoid the potential contribution of non-microbial DNA, e.g. from resident mammals. PMID:24748147
Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities.
Boissy, Robert J; Romberger, Debra J; Roughead, William A; Weissenburger-Moser, Lisa; Poole, Jill A; LeVan, Tricia D
2014-01-01
Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses used for such studies must be carefully designed to avoid the potential contribution of non-microbial DNA, e.g. from resident mammals.
Forensic discrimination of vaginal epithelia by DNA methylation analysis through pyrosequencing.
Antunes, Joana; Silva, Deborah S B S; Balamurugan, Kuppareddi; Duncan, George; Alho, Clarice S; McCord, Bruce
2016-10-01
The accurate identification of body fluids from crime scenes can aid in the discrimination between criminal and innocent intent. This research aimed to determine if the levels of DNA methylation in the locus PFN3A could be used to discriminate vaginal epithelia from other body fluids. In this work we bisulfite-modified and amplified DNA samples from blood, saliva, semen, and vaginal epithelia using primers for PFN3A. Through pyrosequencing we were able to show that vaginal epithelia present distinct methylation levels when compared to other body fluids. Mixtures of different body fluids present methylation values that correlate with single-source body fluid samples and the primers for PFN3A are specific for primates. This report successfully demonstrated that the analysis of methylation in the PFN3A locus can be used for vaginal epithelia discrimination in forensic samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of a Methanogenic Community within an Algal Fed Anaerobic Digester
Ellis, Joshua T.; Tramp, Cody; Sims, Ronald C.; Miller, Charles D.
2012-01-01
The microbial diversity and metabolic potential of a methanogenic consortium residing in a 3785-liter anaerobic digester, fed with wastewater algae, was analyzed using 454 pyrosequencing technology. DNA was extracted from anaerobic sludge material and used in metagenomic analysis through PCR amplification of the methyl-coenzyme M reductase α subunit (mcrA) gene using primer sets ML, MCR, and ME. The majority of annotated mcrA sequences were assigned taxonomically to the genera Methanosaeta in the order Methanosarcinales. Methanogens from the genus Methanosaeta are obligate acetotrophs, suggesting this genus plays a dominant role in methane production from the analyzed fermentation sample. Numerous analyzed sequences within the algae fed anaerobic digester were unclassified and could not be assigned taxonomically. Relative amplicon frequencies were determined for each primer set to determine the utility of each in pyrosequencing. Primer sets ML and MCR performed better quantitatively (representing the large majority of analyzed sequences) than primer set ME. However, each of these primer sets was shown to provide a quantitatively unique community structure, and thus they are of equal importance in mcrA metagenomic analysis. PMID:23724331
Validation of the VE1 Immunostain for the BRAF V600E Mutation in Melanoma
Pearlstein, Michelle V.; Zedek, Daniel C.; Ollila, David W.; Treece, Amanda; Gulley, Margaret L.; Groben, Pamela A.; Thomas, Nancy E.
2014-01-01
BACKGROUND BRAF mutation status, and therefore eligibility for BRAF inhibitors, is currently determined by sequencing methods. We assessed the validity of VE1, a monoclonal antibody against the BRAF V600E mutant protein, in the detection of mutant BRAF V600E melanomas as classified by DNA pyrosequencing. METHODS The cases were 76 metastatic melanoma patients with only one known primary melanoma who had had BRAF codon 600 pyrosequencing of either their primary (n=19), metastatic (n=57) melanoma, or both (n=17). All melanomas (n=93) were immunostained with the BRAF VE1 antibody using a red detection system. The staining intensity of these specimens was scored from 0 – 3+ by a dermatopathologist. Scores of 0 and 1+ were considered as negative staining while scores of 2+ and 3+ were considered positive. RESULTS The VE1 antibody demonstrated a sensitivity of 85% and a specificity of 100% as compared to DNA pyrosequencing results. There was 100% concordance between VE1 immunostaining of primary and metastatic melanomas from the same patient. V600K, V600Q, and V600R BRAF melanomas did not positively stain with VE1. CONCLUSIONS This hospital-based study finds high sensitivity and specificity for the BRAF VE1 immunostain in comparison to pyrosequencing in detection of BRAF V600E in melanomas. PMID:24917033
Bravo, Lulette Tricia C.; Tuohy, Marion J.; Ang, Concepcion; Destura, Raul V.; Mendoza, Myrna; Procop, Gary W.; Gordon, Steven M.; Hall, Geraldine S.; Shrestha, Nabin K.
2009-01-01
After isoniazid and rifampin (rifampicin), the next pivotal drug class in Mycobacterium tuberculosis treatment is the fluoroquinolone class. Mutations in resistance-determining regions (RDR) of the rpoB, katG, and gyrA genes occur with frequencies of 97%, 50%, and 85% among M. tuberculosis isolates resistant to rifampin, isoniazid, and fluoroquinolones, respectively. Sequences are highly conserved, and certain mutations correlate well with phenotypic resistance. We developed a pyrosequencing assay to determine M. tuberculosis genotypic resistance to rifampin, isoniazid, and fluoroquinolones. We characterized 102 M. tuberculosis clinical isolates from the Philippines for susceptibility to rifampin, isoniazid, and ofloxacin by using the conventional submerged-disk proportion method and validated our pyrosequencing assay using these isolates. DNA was extracted and amplified by using PCR primers directed toward the RDR of the rpoB, katG, and gyrA genes, and pyrosequencing was performed on the extracts. The M. tuberculosis H37Rv strain (ATCC 25618) was used as the reference strain. The sensitivities and specificities of pyrosequencing were 96.7% and 97.3%, 63.8% and 100%, and 70.0% and 100% for the detection of resistance to rifampin, isoniazid, and ofloxacin, respectively. Pyrosequencing is thus a rapid and accurate method for detecting M. tuberculosis resistance to these three drugs. PMID:19846642
Assessment of bacterial contamination of lipstick using pyrosequencing.
Lee, So Y; Lee, Si Y
As soon as they are exposed to the environment, cosmetics become contaminated with microorganisms, and this contamination accumulates with increased use. In this study, we employed pyrosequencing to investigate the diversity of bacteria found on lipstick. Bacterial DNA was extracted from 20 lipstick samples and mixed in equal ratios for pyrosequencing analysis. As a result, 105 bacterial genera were detected, four of which ( Leifsonia , Methylobacterium , Streptococcus , and Haemophilus ) were predominant in 92% of the 19,863 total sequence reads. Potentially pathogenic genera such as Staphylococcus , Pseudomonas , Escherichia , Salmonella , Corynebacterium , Mycobacterium , and Neisseria accounted for 27.6% of the 105 genera. The most commonly identified oral bacteria belonged to the Streptococcus genus, although other oral genera such as Actinomyces , Fusobacterium , Porphyromonas , and Lactobacillus were also detected.
2016-07-01
DNA methylation patterns are altered in numerous diseases and often correlate with clinically relevant information such as disease subtypes, prognosis and drug response. With suitable assays and after validation in large cohorts, such associations can be exploited for clinical diagnostics and personalized treatment decisions. Here we describe the results of a community-wide benchmarking study comparing the performance of all widely used methods for DNA methylation analysis that are compatible with routine clinical use. We shipped 32 reference samples to 18 laboratories in seven different countries. Researchers in those laboratories collectively contributed 21 locus-specific assays for an average of 27 predefined genomic regions, as well as six global assays. We evaluated assay sensitivity on low-input samples and assessed the assays' ability to discriminate between cell types. Good agreement was observed across all tested methods, with amplicon bisulfite sequencing and bisulfite pyrosequencing showing the best all-round performance. Our technology comparison can inform the selection, optimization and use of DNA methylation assays in large-scale validation studies, biomarker development and clinical diagnostics.
Daniel L. Lindner; Tor Carlsen; Henrik Nilsson; Marie Davey; Trond Schumacher; Havard. Kauserud
2013-01-01
The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular...
Pochon, Xavier; Bott, Nathan J.; Smith, Kirsty F.; Wood, Susanna A.
2013-01-01
Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1–V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide. PMID:24023913
Morin, Alexander M; Gatev, Evan; McEwen, Lisa M; MacIsaac, Julia L; Lin, David T S; Koen, Nastassja; Czamara, Darina; Räikkönen, Katri; Zar, Heather J; Koenen, Karestan; Stein, Dan J; Kobor, Michael S; Jones, Meaghan J
2017-01-01
Cord blood is a commonly used tissue in environmental, genetic, and epigenetic population studies due to its ready availability and potential to inform on a sensitive period of human development. However, the introduction of maternal blood during labor or cross-contamination during sample collection may complicate downstream analyses. After discovering maternal contamination of cord blood in a cohort study of 150 neonates using Illumina 450K DNA methylation (DNAm) data, we used a combination of linear regression and random forest machine learning to create a DNAm-based screening method. We identified a panel of DNAm sites that could discriminate between contaminated and non-contaminated samples, then designed pyrosequencing assays to pre-screen DNA prior to being assayed on an array. Maternal contamination of cord blood was initially identified by unusual X chromosome DNA methylation patterns in 17 males. We utilized our DNAm panel to detect contaminated male samples and a proportional amount of female samples in the same cohort. We validated our DNAm screening method on an additional 189 sample cohort using both pyrosequencing and DNAm arrays, as well as 9 publically available cord blood 450K data sets. The rate of contamination varied from 0 to 10% within these studies, likely related to collection specific methods. Maternal blood can contaminate cord blood during sample collection at appreciable levels across multiple studies. We have identified a panel of markers that can be used to identify this contamination, either post hoc after DNAm arrays have been completed, or in advance using a targeted technique like pyrosequencing.
Aparicio, Ana; North, Brittany; Barske, Lindsey; Wang, Xuemei; Bollati, Valentina; Weisenberger, Daniel; Yoo, Christine; Tannir, Nizar; Horne, Erin; Groshen, Susan; Jones, Peter; Yang, Allen; Issa, Jean-Pierre
2009-04-01
Multiple clinical trials are investigating the use of the DNA methylation inhibitors azacitidine and decitabine for the treatment of solid tumors. Clinical trials in hematological malignancies have shown that optimal activity does not occur at their maximum tolerated doses but selection of an optimal biological dose and schedule for use in solid tumor patients is hampered by the difficulty of obtaining tumor tissue to measure their activity. Here we investigate the feasibility of using plasma DNA to measure the demethylating activity of the DNA methylation inhibitors in patients with solid tumors. We compared four methods to measure LINE-1 and MAGE-A1 promoter methylation in T24 and HCT116 cancer cells treated with decitabine treatment and selected Pyrosequencing for its greater reproducibility and higher signal to noise ratio. We then obtained DNA from plasma, peripheral blood mononuclear cells, buccal mucosa cells and saliva from ten patients with metastatic solid tumors at two different time points, without any intervening treatment. DNA methylation measurements were not significantly different between time point 1 and time point 2 in patient samples. We conclude that measurement of LINE-1 methylation in DNA extracted from the plasma of patients with advanced solid tumors, using Pyrosequencing, is feasible and has low within patient variability. Ongoing studies will determine whether changes in LINE-1 methylation in plasma DNA occur as a result of treatment with DNA methylation inhibitors and parallel changes in tumor tissue DNA.
2013-01-01
Background Genotyping requires biological sample collection that must be reliable, convenient and acceptable for patients and clinicians. Finding the most optimal procedure of sample collection for premature neonates who have a very limited blood volume is a particular challenge. The aim of the current study was to evaluate the use of umbilical cord (UC) tissue and newborn dried blood spot (DBS)-extracted genomic DNA (gDNA) as an alternative to venous blood-derived gDNA from premature neonates for molecular genetic analysis. All samples were obtained from premature newborn infants between 24-32 weeks of gestation. Paired blood and UC samples were collected from 31 study participants. gDNA was extracted from ethylenediaminetetraacetic acid (EDTA) anticoagulant-treated blood samples (~500 μl) and newborn DBSs (n = 723) using QIAamp DNA Micro kit (Qiagen Ltd., Crawley, UK); and from UC using Qiagen DNAeasy Blood and Tissue kit (Qiagen Ltd., Crawley, UK). gDNA was quantified and purity confirmed by measuring the A260:A280 ratio. PCR amplification and pyrosequencing was carried out to determine suitability of the gDNA for molecular genetic analysis. Minor allele frequency of two unrelated single nucleotide polymorphisms (SNPs) was calculated using the entire cohort. Results Both whole blood samples and UC tissue provided good quality and yield of gDNA, which was considerably less from newborn DBS. The gDNA purity was also reduced after 3 years of storage of the newborn DBS. PCR amplification of three unrelated genes resulted in clear products in all whole blood and UC samples and 86%-100% of newborn DBS. Genotyping using pyrosequencing showed 100% concordance in the paired UC and whole blood samples. Minor allele frequencies of the two SNPs indicated that no maternal gDNA contamination occurred in the genotyping of the UC samples. Conclusions gDNAs from all three sources are suitable for standard PCR and pyrosequencing assays. Given that UC provide good quality and quantity gDNA with 100% concordance in the genetic analysis with whole blood, it can replace blood sampling from premature infants. This is likely to reduce the stress and potential side effects associated with invasive sample collection and thus, greatly facilitate participant recruitment for genetic studies. PMID:24168095
Migheli, Francesca; Stoccoro, Andrea; Coppedè, Fabio; Wan Omar, Wan Adnan; Failli, Alessandra; Consolini, Rita; Seccia, Massimo; Spisni, Roberto; Miccoli, Paolo; Mathers, John C.; Migliore, Lucia
2013-01-01
There is increasing interest in the development of cost-effective techniques for the quantification of DNA methylation biomarkers. We analyzed 90 samples of surgically resected colorectal cancer tissues for APC and CDKN2A promoter methylation using methylation sensitive-high resolution melting (MS-HRM) and pyrosequencing. MS-HRM is a less expensive technique compared with pyrosequencing but is usually more limited because it gives a range of methylation estimates rather than a single value. Here, we developed a method for deriving single estimates, rather than a range, of methylation using MS-HRM and compared the values obtained in this way with those obtained using the gold standard quantitative method of pyrosequencing. We derived an interpolation curve using standards of known methylated/unmethylated ratio (0%, 12.5%, 25%, 50%, 75%, and 100% of methylation) to obtain the best estimate of the extent of methylation for each of our samples. We observed similar profiles of methylation and a high correlation coefficient between the two techniques. Overall, our new approach allows MS-HRM to be used as a quantitative assay which provides results which are comparable with those obtained by pyrosequencing. PMID:23326336
Pyrosequencing the Canine Faecal Microbiota: Breadth and Depth of Biodiversity
Hand, Daniel; Wallis, Corrin; Colyer, Alison; Penn, Charles W.
2013-01-01
Mammalian intestinal microbiota remain poorly understood despite decades of interest and investigation by culture-based and other long-established methodologies. Using high-throughput sequencing technology we now report a detailed analysis of canine faecal microbiota. The study group of animals comprised eleven healthy adult miniature Schnauzer dogs of mixed sex and age, some closely related and all housed in kennel and pen accommodation on the same premises with similar feeding and exercise regimes. DNA was extracted from faecal specimens and subjected to PCR amplification of 16S rDNA, followed by sequencing of the 5′ region that included variable regions V1 and V2. Barcoded amplicons were sequenced by Roche-454 FLX high-throughput pyrosequencing. Sequences were assigned to taxa using the Ribosomal Database Project Bayesian classifier and revealed dominance of Fusobacterium and Bacteroidetes phyla. Differences between animals in the proportions of different taxa, among 10,000 reads per animal, were clear and not supportive of the concept of a “core microbiota”. Despite this variability in prominent genera, littermates were shown to have a more similar faecal microbial composition than unrelated dogs. Diversity of the microbiota was also assessed by assignment of sequence reads into operational taxonomic units (OTUs) at the level of 97% sequence identity. The OTU data were then subjected to rarefaction analysis and determination of Chao1 richness estimates. The data indicated that faecal microbiota comprised possibly as many as 500 to 1500 OTUs. PMID:23382835
Genome sequencing in microfabricated high-density picolitre reactors.
Margulies, Marcel; Egholm, Michael; Altman, William E; Attiya, Said; Bader, Joel S; Bemben, Lisa A; Berka, Jan; Braverman, Michael S; Chen, Yi-Ju; Chen, Zhoutao; Dewell, Scott B; Du, Lei; Fierro, Joseph M; Gomes, Xavier V; Godwin, Brian C; He, Wen; Helgesen, Scott; Ho, Chun Heen; Ho, Chun He; Irzyk, Gerard P; Jando, Szilveszter C; Alenquer, Maria L I; Jarvie, Thomas P; Jirage, Kshama B; Kim, Jong-Bum; Knight, James R; Lanza, Janna R; Leamon, John H; Lefkowitz, Steven M; Lei, Ming; Li, Jing; Lohman, Kenton L; Lu, Hong; Makhijani, Vinod B; McDade, Keith E; McKenna, Michael P; Myers, Eugene W; Nickerson, Elizabeth; Nobile, John R; Plant, Ramona; Puc, Bernard P; Ronan, Michael T; Roth, George T; Sarkis, Gary J; Simons, Jan Fredrik; Simpson, John W; Srinivasan, Maithreyan; Tartaro, Karrie R; Tomasz, Alexander; Vogt, Kari A; Volkmer, Greg A; Wang, Shally H; Wang, Yong; Weiner, Michael P; Yu, Pengguang; Begley, Richard F; Rothberg, Jonathan M
2005-09-15
The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.
Song, Qinxin; Wei, Guijiang; Zhou, Guohua
2014-07-01
A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Droplet-based pyrosequencing using digital microfluidics.
Boles, Deborah J; Benton, Jonathan L; Siew, Germaine J; Levy, Miriam H; Thwar, Prasanna K; Sandahl, Melissa A; Rouse, Jeremy L; Perkins, Lisa C; Sudarsan, Arjun P; Jalili, Roxana; Pamula, Vamsee K; Srinivasan, Vijay; Fair, Richard B; Griffin, Peter B; Eckhardt, Allen E; Pollack, Michael G
2011-11-15
The feasibility of implementing pyrosequencing chemistry within droplets using electrowetting-based digital microfluidics is reported. An array of electrodes patterned on a printed-circuit board was used to control the formation, transportation, merging, mixing, and splitting of submicroliter-sized droplets contained within an oil-filled chamber. A three-enzyme pyrosequencing protocol was implemented in which individual droplets contained enzymes, deoxyribonucleotide triphosphates (dNTPs), and DNA templates. The DNA templates were anchored to magnetic beads which enabled them to be thoroughly washed between nucleotide additions. Reagents and protocols were optimized to maximize signal over background, linearity of response, cycle efficiency, and wash efficiency. As an initial demonstration of feasibility, a portion of a 229 bp Candida parapsilosis template was sequenced using both a de novo protocol and a resequencing protocol. The resequencing protocol generated over 60 bp of sequence with 100% sequence accuracy based on raw pyrogram levels. Excellent linearity was observed for all of the homopolymers (two, three, or four nucleotides) contained in the C. parapsilosis sequence. With improvements in microfluidic design it is expected that longer reads, higher throughput, and improved process integration (i.e., "sample-to-sequence" capability) could eventually be achieved using this low-cost platform.
Droplet-Based Pyrosequencing Using Digital Microfluidics
Boles, Deborah J.; Benton, Jonathan L.; Siew, Germaine J.; Levy, Miriam H.; Thwar, Prasanna K.; Sandahl, Melissa A.; Rouse, Jeremy L.; Perkins, Lisa C.; Sudarsan, Arjun P.; Jalili, Roxana; Pamula, Vamsee K.; Srinivasan, Vijay; Fair, Richard B.; Griffin, Peter B.; Eckhardt, Allen E.; Pollack, Michael G.
2013-01-01
The feasibility of implementing pyrosequencing chemistry within droplets using electrowetting-based digital microfluidics is reported. An array of electrodes patterned on a printed-circuit board was used to control the formation, transportation, merging, mixing, and splitting of submicroliter-sized droplets contained within an oil-filled chamber. A three-enzyme pyrosequencing protocol was implemented in which individual droplets contained enzymes, deoxyribonucleotide triphosphates (dNTPs), and DNA templates. The DNA templates were anchored to magnetic beads which enabled them to be thoroughly washed between nucleotide additions. Reagents and protocols were optimized to maximize signal over background, linearity of response, cycle efficiency, and wash efficiency. As an initial demonstration of feasibility, a portion of a 229 bp Candida parapsilosis template was sequenced using both a de novo protocol and a resequencing protocol. The resequencing protocol generated over 60 bp of sequence with 100% sequence accuracy based on raw pyrogram levels. Excellent linearity was observed for all of the homopolymers (two, three, or four nucleotides) contained in the C. parapsilosis sequence. With improvements in microfluidic design it is expected that longer reads, higher throughput, and improved process integration (i.e., “sample-to-sequence” capability) could eventually be achieved using this low-cost platform. PMID:21932784
Pyrosequencing of prey DNA in reptile faeces: analysis of earthworm consumption by slow worms.
Brown, David S; Jarman, Simon N; Symondson, William O C
2012-03-01
Little quantitative ecological information exists on the diets of most invertebrate feeding reptiles, particularly nocturnal or elusive species that are difficult to observe. In the UK and elsewhere, reptiles are legally required to be relocated before land development can proceed, but without knowledge of their dietary requirements, the suitability of receptor sites cannot be known. Here, we tested the ability of non-invasive DNA-based molecular diagnostics (454 pyrosequencing) to analyse reptile diets, with the specific aims of determining which earthworm species are exploited by slow worms (the legless lizard Anguis fragilis) and whether they feed on the deeper-living earthworm species that only come to the surface at night. Slow worm faecal samples from four different habitats were analysed using earthworm-specific PCR primers. We found that 86% of slow worms (N=80) had eaten earthworms. In lowland heath and marshy/acid grassland, Lumbricus rubellus, a surface-dwelling epigeic species, dominated slow worm diet. In two other habitats, riverside pasture and calciferous coarse grassland, diet was dominated by deeper-living anecic and endogeic species. We conclude that all species of earthworm are exploited by these reptiles and lack of specialization allows slow worms to thrive in a wide variety of habitats. Pyrosequencing of prey DNA in faeces showed promise as a practical, rapid and relatively inexpensive means of obtaining detailed and valuable ecological information on the diets of reptiles. © 2011 Blackwell Publishing Ltd.
Pyrosequencing reveals regional differences in fruit-associated fungal communities
Taylor, Michael W; Tsai, Peter; Anfang, Nicole; Ross, Howard A; Goddard, Matthew R
2014-01-01
We know relatively little of the distribution of microbial communities generally. Significant work has examined a range of bacterial communities, but the distribution of microbial eukaryotes is less well characterized. Humans have an ancient association with grape vines (Vitis vinifera) and have been making wine since the dawn of civilization, and fungi drive this natural process. While the molecular biology of certain fungi naturally associated with vines and wines is well characterized, complementary investigations into the ecology of fungi associated with fruiting plants is largely lacking. DNA sequencing technologies allow the direct estimation of microbial diversity from a given sample, avoiding culture-based biases. Here, we use deep community pyrosequencing approaches, targeted at the 26S rRNA gene, to examine the richness and composition of fungal communities associated with grapevines and test for geographical community structure among four major regions in New Zealand (NZ). We find over 200 taxa using this approach, which is 10-fold more than previously recovered using culture-based methods. Our analyses allow us to reject the null hypothesis of homogeneity in fungal species richness and community composition across NZ and reveal significant differences between major areas. PMID:24650123
Performance of commercial platforms for rapid genotyping of polymorphisms affecting warfarin dose.
King, Cristi R; Porche-Sorbet, Rhonda M; Gage, Brian F; Ridker, Paul M; Renaud, Yannick; Phillips, Michael S; Eby, Charles
2008-06-01
Initiation of warfarin therapy is associated with bleeding owing to its narrow therapeutic window and unpredictable therapeutic dose. Pharmacogenetic-based dosing algorithms can improve accuracy of initial warfarin dosing but require rapid genotyping for cytochrome P-450 2C9 (CYP2C9) *2 and *3 single nucleotide polymorphisms (SNPs) and a vitamin K epoxide reductase (VKORC1) SNP. We evaluated 4 commercial systems: INFINITI analyzer (AutoGenomics, Carlsbad, CA), Invader assay (Third Wave Technologies, Madison, WI), Tag-It Mutation Detection assay (Luminex Molecular Diagnostics, formerly Tm Bioscience, Toronto, Canada), and Pyrosequencing (Biotage, Uppsala, Sweden). We genotyped 112 DNA samples and resolved any discrepancies with bidirectional sequencing. The INFINITI analyzer was 100% accurate for all SNPs and required 8 hours. Invader and Tag-It were 100% accurate for CYP2C9 SNPs, 99% accurate for VKORC1 -1639/3673 SNP, and required 3 hours and 8 hours, respectively. Pyrosequencing was 99% accurate for CYP2C9 *2, 100% accurate for CYP2C9 *3, and 100% accurate for VKORC1 and required 4 hours. Current commercial platforms provide accurate and rapid genotypes for pharmacogenetic dosing during initiation of warfarin therapy.
Wang, Ailin; Yao, Zhichao; Zheng, Weiwei; Zhang, Hongyu
2014-01-01
The citrus fruit fly Bactrocera minax is associated with diverse bacterial communities. We used a 454 pyrosequencing technology to study in depth the microbial communities associated with gut and reproductive organs of Bactrocera minax. Our dataset consisted of 100,749 reads with an average length of 400 bp. The saturated rarefaction curves and species richness indices indicate that the sampling was comprehensive. We found highly diverse bacterial communities, with individual sample containing approximately 361 microbial operational taxonomic units (OTUs). A total of 17 bacterial phyla were obtained from the flies. A phylogenetic analysis of 16S rDNA revealed that Proteobacteria was dominant in all samples (75%-95%). Actinobacteria and Firmicutes were also commonly found in the total clones. Klebsiella, Citrobacter, Enterobacter, and Serratia were the major genera. However, bacterial diversity (Chao1, Shannon and Simpson indices) and community structure (PCA analysis) varied across samples. Female ovary has the most diverse bacteria, followed by male testis, and the bacteria diversity of reproductive organs is richer than that of the gut. The observed variation can be caused by sex and tissue, possibly to meet the host's physiological demands.
Kim, Jaeyeon; Kim, Nayoung; Jo, Hyun Jin; Park, Ji Hyun; Nam, Ryoung Hee; Seok, Yeong-Jae; Kim, Yeon-Ran; Kim, Joo Sung; Kim, Jung Mogg; Kim, Jung Min; Lee, Dong Ho; Jung, Hyun Chae
2015-10-01
Sequencing of 16S ribosomal RNA (rRNA) gene has improved the characterization of microbial communities. It enabled the detection of low abundance gastric Helicobacter pylori sequences even in subjects that were found to be H. pylori negative with conventional methods. The objective of this study was to obtain a cutoff value for H. pylori colonization in gastric mucosa samples by pyrosequencing method. Gastric mucosal biopsies were taken from 63 subjects whose H. pylori status was determined by a combination of serology, rapid urease test, culture, and histology. Microbial DNA from mucosal samples was amplified by PCR using universal bacterial primers. 16S rDNA amplicons were pyrosequenced. ROC curve analysis was performed to determine the cutoff value for H. pylori colonization by pyrosequencing. In addition, temporal changes in the stomach microbiota were observed in eight initially H. pylori-positive and eight H. pylori-negative subjects at a single time point 1-8 years later. Of the 63 subjects, the presence of H. pylori sequences was detected in all (28/28) conventionally H. pylori-positive samples and in 60% (21/35) of H. pylori-negative samples. The average percent of H. pylori reads in each sample was 0.67 ± 1.09% in the H. pylori-negative group. Cutoff value for clinically positive H. pylori status was approximately 1.22% based on ROC curve analysis (AUC = 0.957; p < .001). Helicobacter pylori was successfully eradicated in five of seven treated H. pylori-positive subjects (71.4%), and the percentage of H. pylori reads in these five subjects dropped from 1.3-95.18% to 0-0.16% after eradication. These results suggest that the cutoff value of H. pylori sequence percentage for H. pylori colonization by pyrosequencing could be set at approximately 1%. It might be helpful to analyze gastric microbiota related to H. pylori sequence status. © 2015 John Wiley & Sons Ltd.
Switzeny, Olivier J; Christmann, Markus; Renovanz, Mirjam; Giese, Alf; Sommer, Clemens; Kaina, Bernd
2016-01-01
The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) causes resistance of cancer cells to alkylating agents and, therefore, is a well-established predictive marker for high-grade gliomas that are routinely treated with alkylating drugs. Since MGMT is highly epigenetically regulated, the MGMT promoter methylation status is taken as an indicator of MGMT silencing, predicting the outcome of glioma therapy. MGMT promoter methylation is usually determined by methylation specific PCR (MSP), which is a labor intensive and error-prone method often used semi-quantitatively. Searching for alternatives, we used closed-tube high resolution melt (HRM) analysis, which is a quantitative method, and compared it with MSP and pyrosequencing regarding its predictive value. We analyzed glioblastoma cell lines with known MGMT activity and formalin-fixed samples from IDH1 wild-type high-grade glioma patients (WHO grade III/IV) treated with radiation and temozolomide by HRM, MSP, and pyrosequencing. The data were compared as to progression-free survival (PFS) and overall survival (OS) of patients exhibiting the methylated and unmethylated MGMT status. A promoter methylation cut-off level relevant for PFS and OS was determined. In a multivariate Cox regression model, methylation of MGMT promoter of high-grade gliomas analyzed by HRM, but not MSP, was found to be an independent predictive marker for OS. Univariate Kaplan-Meier analyses revealed for PFS and OS a significant and better discrimination between methylated and unmethylated tumors when quantitative HRM was used instead of MSP. Compared to MSP and pyrosequencing, the HRM method is simple, cost effective, highly accurate and fast. HRM is at least equivalent to pyrosequencing in quantifying the methylation level. It is superior in predicting PFS and OS of high-grade glioma patients compared to MSP and, therefore, can be recommended being used routinely for determination of the MGMT status of gliomas.
Zopf, Agnes; Raim, Roman; Danzer, Martin; Niklas, Norbert; Spilka, Rita; Pröll, Johannes; Gabriel, Christian; Nechansky, Andreas; Roucka, Markus
2015-03-01
The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.
Egge, Elianne S; Eikrem, Wenche; Edvardsen, Bente
2015-01-01
Microalgae in the division Haptophyta may be difficult to identify to species by microscopy because they are small and fragile. Here, we used high-throughput sequencing to explore the diversity of haptophytes in outer Oslofjorden, Skagerrak, and supplemented this with electron microscopy. Nano- and picoplanktonic subsurface samples were collected monthly for 2 yr, and the haptophytes were targeted by amplification of RNA/cDNA with Haptophyta-specific 18S ribosomal DNA V4 primers. Pyrosequencing revealed higher species richness of haptophytes than previously observed in the Skagerrak by microscopy. From ca. 400,000 reads we obtained 156 haptophyte operational taxonomic units (OTUs) after rigorous filtering and 99.5% clustering. The majority (84%) of the OTUs matched environmental sequences not linked to a morphological species, most of which were affiliated with the order Prymnesiales. Phylogenetic analyses including Oslofjorden OTUs and available cultured and environmental haptophyte sequences showed that several of the OTUs matched sequences forming deep-branching lineages, potentially representing novel haptophyte classes. Pyrosequencing also retrieved cultured species not previously reported by microscopy in the Skagerrak. Electron microscopy revealed species not yet genetically characterised and some potentially novel taxa. This study contributes to linking genotype to phenotype within this ubiquitous and ecologically important protist group, and reveals great, unknown diversity. PMID:25099994
Draht, Muriel X G; Smits, Kim M; Jooste, Valérie; Tournier, Benjamin; Vervoort, Martijn; Ramaekers, Chantal; Chapusot, Caroline; Weijenberg, Matty P; van Engeland, Manon; Melotte, Veerle
2016-01-01
Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested-MSP, pyrosequencing, and MS-HRM varied, the prognostic effect seemed similar (HR 1.74, 95 % CI 0.97-3.15; HR 1.85, 95 % CI 0.93-3.86; HR 1.83, 95 % CI 0.92-3.65, respectively). Our results show that upon optimizing and aligning four RET methylation assays with regard to primer location and sensitivity, differences in methylation frequencies and clinical sensitivities are observed; however, the effect on the marker's prognostic outcome is minimal.
Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas
2009-06-01
The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.
Ambroise, Jérôme; Butoescu, Valentina; Robert, Annie; Tombal, Bertrand; Gala, Jean-Luc
2015-06-25
Single Nucleotide Polymorphisms (SNPs) identified in Genome Wide Association Studies (GWAS) have generally moderate association with related complex diseases. Accordingly, Multilocus Genetic Risk Scores (MGRSs) have been computed in previous studies in order to assess the cumulative association of multiple SNPs. When several SNPs have to be genotyped for each patient, using successive uniplex pyrosequencing reactions increases analytical reagent expenses and Turnaround Time (TAT). While a set of several pyrosequencing primers could theoretically be used to analyze multiplex amplicons, this would generate overlapping primer-specific pyro-signals that are visually uninterpretable. In the current study, two multiplex assays were developed consisting of a quadruplex (n=4) and a quintuplex (n=5) polymerase chain reaction (PCR) each followed by multiplex pyrosequencing analysis. The aim was to reliably but rapidly genotype a set of prostate cancer-related SNPs (n=9). The nucleotide dispensation order was selected using SENATOR software. Multiplex pyro-signals were analyzed using the new AdvISER-MH-PYRO software based on a sparse representation of the signal. Using uniplex assays as gold standard, the concordance between multiplex and uniplex assays was assessed on DNA extracted from patient blood samples (n = 10). All genotypes (n=90) generated with the quadruplex and the quintuplex pyroquencing assays were perfectly (100 %) concordant with uniplex pyrosequencing. Using multiplex genotyping approach for analyzing a set of 90 patients allowed reducing TAT by approximately 75 % (i.e., from 2025 to 470 min) while reducing reagent consumption and cost by approximately 70 % (i.e., from ~229 US$ /patient to ~64 US$ /patient). This combination of quadruplex and quintuplex pyrosequencing and PCR assays enabled to reduce the amount of DNA required for multi-SNP analysis, and to lower the global TAT and costs of SNP genotyping while providing results as reliable as uniplex analysis. Using this combined multiplex approach also substantially reduced the production of waste material. These genotyping assays appear therefore to be biologically, economically and ecologically highly relevant, being worth to be integrated in genetic-based predictive strategies for better selecting patients at risk for prostate cancer. In addition, the same approach could now equally be transposed to other clinical/research applications relying on the computation of MGRS based on multi-SNP genotyping.
Leite, A M O; Mayo, B; Rachid, C T C C; Peixoto, R S; Silva, J T; Paschoalin, V M F; Delgado, S
2012-09-01
The microbial diversity and community structure of three different kefir grains from different parts of Brazil were examined via the combination of two culture-independent methods: PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. PCR-DGGE showed Lactobacillus kefiranofaciens and Lactobacillus kefiri to be the major bacterial populations in all three grains. The yeast community was dominated by Saccharomyces cerevisiae. Pyrosequencing produced a total of 14,314 partial 16S rDNA sequence reads from the three grains. Sequence analysis grouped the reads into three phyla, of which Firmicutes was dominant. Members of the genus Lactobacillus were the most abundant operational taxonomic units (OTUs) in all samples, accounting for up to 96% of the sequences. OTUs belonging to other lactic and acetic acid bacteria genera, such as Lactococcus, Leuconostoc, Streptococcus and Acetobacter, were also identified at low levels. Two of the grains showed identical DGGE profiles and a similar number of OTUs, while the third sample showed the highest diversity by both techniques. Pyrosequencing allowed the identification of bacteria that were present in small numbers and rarely associated with the microbial community of this complex ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.
Preusser, Matthias; Berghoff, Anna S.; Manzl, Claudia; Filipits, Martin; Weinhäusel, Andreas; Pulverer, Walter; Dieckmann, Karin; Widhalm, Georg; Wöhrer, Adelheid; Knosp, Engelbert; Marosi, Christine; Hainfellner, Johannes A.
2014-01-01
Testing of the MGMT promoter methylation status in glioblastoma is relevant for clinical decision making and research applications. Two recent and independent phase III therapy trials confirmed a prognostic and predictive value of the MGMT promoter methylation status in elderly glioblastoma patients. Several methods for MGMT promoter methylation testing have been proposed, but seem to be of limited test reliability. Therefore, and also due to feasibility reasons, translation of MGMT methylation testing into routine use has been protracted so far. Pyrosequencing after prior DNA bisulfite modification has emerged as a reliable, accurate, fast and easy-to-use method for MGMT promoter methylation testing in tumor tissues (including formalin-fixed and paraffin-embedded samples). We performed an intra- and inter-laboratory ring trial which demonstrates a high analytical performance of this technique. Thus, pyrosequencing-based assessment of MGMT promoter methylation status in glioblastoma meets the criteria of high analytical test performance and can be recommended for clinical application, provided that strict quality control is performed. Our article summarizes clinical indications, practical instructions and open issues for MGMT promoter methylation testing in glioblastoma using pyrosequencing. PMID:24359605
Pilsner, J Richard; Lazarus, Alicia L; Nam, Dong-Ha; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Basu, Niladri
2010-01-01
In this paper we describe a novel approach that may shed light on the genomic DNA methylation of organisms with non-resolved genomes. The LUminometric Methylation Assay (LUMA) is permissive for genomic DNA methylation studies of any genome as it relies on the use of methyl-sensitive and -insensitive restriction enzymes followed by polymerase extension via Pyrosequencing technology. Here, LUMA was used to characterize genomic DNA methylation in the lower brain stem region from 47 polar bears subsistence hunted in central East Greenland between 1999 and 2001. In these samples, average genomic DNA methylation was 57.9% +/- 6.69 (SD; range was 42.0 to 72.4%). When genomic DNA methylation was related to brain mercury (Hg) exposure levels, an inverse association was seen between these two variables for the entire study population (P for trend = 0.17). After dichotomizing animals by gender and controlling for age, a negative trend was seen amongst male animals (P for trend = 0.07) but no associations were found in female bears. Such sexually dimorphic responses have been found in other toxicological studies. Our results show that genomic DNA methylation can be quantitatively studied in a highly reproducible manner in tissue samples from a wild organism with a non-resolved genome. As such, LUMA holds great promise as a novel method to explore consequential questions across the ecological sciences that may require an epigenetic understanding.
Single-cell genomic sequencing using Multiple Displacement Amplification.
Lasken, Roger S
2007-10-01
Single microbial cells can now be sequenced using DNA amplified by the Multiple Displacement Amplification (MDA) reaction. The few femtograms of DNA in a bacterium are amplified into micrograms of high molecular weight DNA suitable for DNA library construction and Sanger sequencing. The MDA-generated DNA also performs well when used directly as template for pyrosequencing by the 454 Life Sciences method. While MDA from single cells loses some of the genomic sequence, this approach will greatly accelerate the pace of sequencing from uncultured microbes. The genetically linked sequences from single cells are also a powerful tool to be used in guiding genomic assembly of shotgun sequences of multiple organisms from environmental DNA extracts (metagenomic sequences).
NASA Astrophysics Data System (ADS)
Liu, Yun; Song, Shuqun; Chen, Tiantian; Li, Caiwen
2017-04-01
Pyrosequencing of the 18S rRNA gene has been widely adopted to study the eukaryotic diversity in various types of environments, and has an advantage over traditional morphology methods in exploring unknown microbial communities. To comprehensively assess the diversity and community composition of marine protists in the coastal waters of China, we applied both morphological observations and high-throughput sequencing of the V2 and V3 regions of 18S rDNA simultaneously to analyze samples collected from the surface layer of the Yellow and East China Seas. Dinoflagellates, diatoms and ciliates were the three dominant protistan groups as revealed by the two methods. Diatoms were the first dominant protistan group in the microscopic observations, with Skeletonema mainly distributed in the nearshore eutrophic waters and Chaetoceros in higher temperature and higher pH waters. The mixotrophic dinoflagellates, Gymnodinium and Gyrodinium, were more competitive in the oligotrophic waters. The pyrosequencing method revealed an extensive diversity of dinoflagellates. Chaetoceros was the only dominant diatom group in the pyrosequencing dataset. Gyrodinium represented the most abundant reads and dominated the offshore oligotrophic protistan community as they were in the microscopic observations. The dominance of parasitic dinoflagellates in the pyrosequencing dataset, which were overlooked in the morphological observations, indicates more attention should be paid to explore the potential role of this group. Both methods provide coherent clustering of samples. Nutrient levels, salinity and pH were the main factors influencing the distribution of protists. This study demonstrates that different primer pairs used in the pyrosequencing will indicate different protistan community structures. A suitable marker may reveal more comprehensive composition of protists and provide valuable information on environmental drivers.
2012-01-01
Background The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI) after BCS (breast conserving surgery). Methods A total of 57 breast cancer patients who underwent SSPBI were genotyped for SNPs (single nucleotide polymorphisms) in XRCC1, XRCC3, GST and RAD51 by Pyrosequencing technology. Univariate analysis (ORs and 95% CI) was performed to correlate SNPs with the risk of developing ≥ G2 fibrosis or fat necrosis. Results A higher significant risk of developing ≥ G2 fibrosis or fat necrosis in patients with: polymorphic variant GSTP1 (Ile105Val) (OR = 2.9; 95%CI, 0.88-10.14, p = 0.047). Conclusions The presence of some SNPs involved in DNA repair or response to oxidative stress seem to be able to predict late toxicity. Trial Registration ClinicalTrials.gov: NCT01316328 PMID:22272830
COLD-PCR Technologies in the Area of Personalized Medicine: Methodology and Applications.
Mauger, Florence; How-Kit, Alexandre; Tost, Jörg
2017-06-01
Somatic mutations bear great promise for use as biomarkers for personalized medicine, but are often present only in low abundance in biological material and are therefore difficult to detect. Many assays for mutation analysis in cancer-related genes (hotspots) have been developed to improve diagnosis, prognosis, prediction of drug resistance, and monitoring of the response to treatment. Two major approaches have been developed: mutation-specific amplification methods and methods that enrich and detect mutations without prior knowledge on the exact location and identity of the mutation. CO-amplification at Lower Denaturation temperature Polymerase Chain Reaction (COLD-PCR) methods such as full-, fast-, ice- (improved and complete enrichment), enhanced-ice, and temperature-tolerant COLD-PCR make use of a critical temperature in the polymerase chain reaction to selectively denature wild-type-mutant heteroduplexes, allowing the enrichment of rare mutations. Mutations can subsequently be identified using a variety of laboratory technologies such as high-resolution melting, digital polymerase chain reaction, pyrosequencing, Sanger sequencing, or next-generation sequencing. COLD-PCR methods are sensitive, specific, and accurate if appropriately optimized and have a short time to results. A large variety of clinical samples (tumor DNA, circulating cell-free DNA, circulating cell-free fetal DNA, and circulating tumor cells) have been studied using COLD-PCR in many different applications including the detection of genetic changes in cancer and infectious diseases, non-invasive prenatal diagnosis, detection of microorganisms, or DNA methylation analysis. In this review, we describe in detail the different COLD-PCR approaches, highlighting their specificities, advantages, and inconveniences and demonstrating their use in different fields of biological and biomedical research.
Morcillo, Sonsoles; Martín-Núñez, Gracia Mª; García-Serrano, Sara; Gutierrez-Repiso, Carolina; Rodriguez-Pacheco, Francisca; Valdes, Sergio; Gonzalo, Montserrat; Rojo-Martinez, Gemma; Moreno-Ruiz, Francisco J.; Rodriguez-Cañete, Alberto; Tinahones, Francisco; García-Fuentes, Eduardo
2017-01-01
Stearoyl CoA Desaturase-1 (SCD) is considered as playing an important role in the explanation of obesity. The aim of this study was to evaluate whether the DNA methylation SCD gene promoter is associated with the metabolic improvement in morbidly obese patients after bariatric surgery. The study included 120 subjects with morbid obesity who underwent a laparoscopic Roux-en Y gastric by-pass (RYGB) and a control group of 30 obese subjects with a similar body mass index (BMI) to that found in morbidly obese subjects six months after RYGB. Fasting blood samples were obtained before and at six months after RYGB. DNA methylation was measured by pyrosequencing technology. DNA methylation levels of the SCD gene promoter were lower in morbidly obese subjects before bariatric surgery but increased after RYGB to levels similar to those found in the control group. Changes of DNA methylation SCD gene were associated with the changes of free fatty acids levels (r = −0.442, p = 0.006) and HOMA-IR (r = −0.249, p = 0.035) after surgery. RYGB produces an increase in the low SCD methylation promoter levels found in morbidly obese subjects. This change of SCD methylation levels is associated with changes in FFA and HOMA-IR. PMID:28393901
Boyer, Stephane; Brown, Samuel D. J.; Collins, Rupert A.; Cruickshank, Robert H.; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Wratten, Stephen D.
2012-01-01
DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential ‘mini-barcodes’ for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation. PMID:22666489
Hajibabaei, Mehrdad; Shokralla, Shadi; Zhou, Xin; Singer, Gregory A. C.; Baird, Donald J.
2011-01-01
Timely and accurate biodiversity analysis poses an ongoing challenge for the success of biomonitoring programs. Morphology-based identification of bioindicator taxa is time consuming, and rarely supports species-level resolution especially for immature life stages. Much work has been done in the past decade to develop alternative approaches for biodiversity analysis using DNA sequence-based approaches such as molecular phylogenetics and DNA barcoding. On-going assembly of DNA barcode reference libraries will provide the basis for a DNA-based identification system. The use of recently introduced next-generation sequencing (NGS) approaches in biodiversity science has the potential to further extend the application of DNA information for routine biomonitoring applications to an unprecedented scale. Here we demonstrate the feasibility of using 454 massively parallel pyrosequencing for species-level analysis of freshwater benthic macroinvertebrate taxa commonly used for biomonitoring. We designed our experiments in order to directly compare morphology-based, Sanger sequencing DNA barcoding, and next-generation environmental barcoding approaches. Our results show the ability of 454 pyrosequencing of mini-barcodes to accurately identify all species with more than 1% abundance in the pooled mixture. Although the approach failed to identify 6 rare species in the mixture, the presence of sequences from 9 species that were not represented by individuals in the mixture provides evidence that DNA based analysis may yet provide a valuable approach in finding rare species in bulk environmental samples. We further demonstrate the application of the environmental barcoding approach by comparing benthic macroinvertebrates from an urban region to those obtained from a conservation area. Although considerable effort will be required to robustly optimize NGS tools to identify species from bulk environmental samples, our results indicate the potential of an environmental barcoding approach for biomonitoring programs. PMID:21533287
Human Parvovirus 4 as Potential Cause of Encephalitis in Children, India
Benjamin, Laura A.; Lewthwaite, Penny; Vasanthapuram, Ravi; Zhao, Guoyan; Sharp, Colin; Simmonds, Peter; Wang, David
2011-01-01
To investigate whether uncharacterized infectious agents were associated with neurologic disease, we analyzed cerebrospinal fluid specimens from 12 children with acute central nervous system infection. A high-throughput pyrosequencing screen detected human parvovirus 4 DNA in cerebrospinal fluid of 2 children with encephalitis of unknown etiology. PMID:21801629
Sánchez, Cecilia Castaño; Smith, Timothy P L; Wiedmann, Ralph T; Vallejo, Roger L; Salem, Mohamed; Yao, Jianbo; Rexroad, Caird E
2009-11-25
To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population. The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme HaeIII; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the validated markers were associated with rainbow trout transcripts. The use of reduced representation libraries and pyrosequencing technology proved to be an effective strategy for the discovery of a high number of putative SNPs in rainbow trout; however, modifications to the technique to decrease the false discovery rate resulting from the evolutionary recent genome duplication would be desirable.
Mao, S Y; Zhang, R Y; Wang, D S; Zhu, W Y
2013-12-01
The objective of this study was to evaluate the changes in bacterial populations in the rumen of dairy cattle following adaptation to subacute ruminal acidosis (SARA) using 16S rRNA gene pyrosequencing. Rumen contents were collected from four cattle adapted to either a 40% (control diet, COD) or 70% (SARA induction diet, SAID) concentrate feeds. DNA was extracted from each of the samples. Bacterial 16S rRNA genes of ruminal DNA extracts were PCR amplified with 2 bar coded primer sets and sequenced by 454 pyrosequencing. At a high taxonomic level, the percentage of Proteobacteria and Bacteroidetes were reduced by SAID feeding, whereas Firmicutes and Actinobacteria were more abundant in the SAID than in the COD group. At the genus level, as compared with the COD group, the abundances of Prevotella, Treponema, Anaeroplasma, Papillibacter, Acinetobacter and unclassified populations including unclassified Lentisphaerae, and unclassified bacteria were lower (P < 0.05), while the percentages of Ruminococcus, Atopobium, unclassified Clostridiales and Bifidobacterium were increased (P < 0.05) in the SAID group. Feeding of SAID reduced (P < 0.001) the diversity of the rumen microbial community. Taken together, our findings provide a comprehensive picture of current knowledge of the community structure of the rumen bacterial ecosystem during SARA, and enhance our understanding about the ruminal microbial ecology that may be useful in the prevention of ruminal acidosis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Logares, Ramiro; Audic, Stephane; Santini, Sebastien; Pernice, Massimo C; de Vargas, Colomban; Massana, Ramon
2012-01-01
Flagellated heterotrophic microeukaryotes have key roles for the functioning of marine ecosystems as they channel large amounts of organic carbon to the upper trophic levels and control the population sizes of bacteria and archaea. Still, we know very little on the diversity patterns of most groups constituting this evolutionary heterogeneous assemblage. Here, we investigate 11 groups of uncultured flagellates known as MArine STramenopiles (MASTs). MASTs are ecologically very important and branch at the base of stramenopiles. We explored the diversity patterns of MASTs using pyrosequencing (18S rDNA) in coastal European waters. We found that MAST groups range from highly to lowly diversified. Pyrosequencing (hereafter ‘454') allowed us to approach to the limits of taxonomic diversity for all MAST groups, which varied in one order of magnitude (tens to hundreds) in terms of operational taxonomic units (98% similarity). We did not evidence large differences in activity, as indicated by ratios of DNA:RNA-reads. Most groups were strictly planktonic, although we found some groups that were active in sediments and even in anoxic waters. The proportion of reads per size fraction indicated that most groups were composed of very small cells (∼2–5 μm). In addition, phylogenetically different assemblages appeared to be present in different size fractions, depths and geographic zones. Thus, MAST diversity seems to be highly partitioned in spatial scales. Altogether, our results shed light on these ecologically very important but poorly known groups of uncultured marine flagellates. PMID:22534609
Genetic identification of missing persons: DNA analysis of human remains and compromised samples.
Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A
2012-01-01
Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers. Copyright © 2012 S. Karger AG, Basel.
Smith, Michael G; Gianoulis, Tara A; Pukatzki, Stefan; Mekalanos, John J; Ornston, L Nicholas; Gerstein, Mark; Snyder, Michael
2007-03-01
Acinetobacter baumannii has emerged as an important and problematic human pathogen as it is the causative agent of several types of infections including pneumonia, meningitis, septicemia, and urinary tract infections. We explored the pathogenic content of this harmful pathogen using a combination of DNA sequencing and insertional mutagenesis. The genome of this organism was sequenced using a strategy involving high-density pyrosequencing, a novel, rapid method of high-throughput sequencing. Excluding the rDNA repeats, the assembled genome is 3,976,746 base pairs (bp) and has 3830 ORFs. A significant fraction of ORFs (17.2%) are located in 28 putative alien islands, indicating that the genome has acquired a large amount of foreign DNA. Consistent with its role in pathogenesis, a remarkable number of the islands (16) contain genes implicated in virulence, indicating the organism devotes a considerable portion of its genes to pathogenesis. The largest island contains elements homologous to the Legionella/Coxiella Type IV secretion apparatus. Type IV secretion systems have been demonstrated to be important for virulence in other organisms and thus are likely to help mediate pathogenesis of A. baumannii. Insertional mutagenesis generated avirulent isolates of A. baumannii and verified that six of the islands contain virulence genes, including two novel islands containing genes that lacked homology with others in the databases. The DNA sequencing approach described in this study allows the rapid elucidation of the DNA sequence of any microbe and, when combined with genetic screens, can identify many novel genes important for microbial pathogenesis.
Oldham, Athenia L; Drilling, Heather S; Stamps, Blake W; Stevenson, Bradley S; Duncan, Kathleen E
2012-11-20
The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.
2012-01-01
The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources. PMID:23168231
USDA-ARS?s Scientific Manuscript database
We used an expressed sequence tag and 454 pyrosequencing approach to initiate a study of the genome of the New World Screwworm, Cochliomyia hominivorax (Coquerel). Two normalized cDNA libraries were constructed from RNA isolated from embryos and 2nd instar larvae from the Panama 95 strain. Approxima...
Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development
Alagna, Fiammetta; D'Agostino, Nunzio; Torchia, Laura; Servili, Maurizio; Rao, Rosa; Pietrella, Marco; Giuliano, Giovanni; Chiusano, Maria Luisa; Baldoni, Luciana; Perrotta, Gaetano
2009-01-01
Background Despite its primary economic importance, genomic information on olive tree is still lacking. 454 pyrosequencing was used to enrich the very few sequence data currently available for the Olea europaea species and to identify genes involved in expression of fruit quality traits. Results Fruits of Coratina, a widely cultivated variety characterized by a very high phenolic content, and Tendellone, an oleuropein-lacking natural variant, were used as starting material for monitoring the transcriptome. Four different cDNA libraries were sequenced, respectively at the beginning and at the end of drupe development. A total of 261,485 reads were obtained, for an output of about 58 Mb. Raw sequence data were processed using a four step pipeline procedure and data were stored in a relational database with a web interface. Conclusion Massively parallel sequencing of different fruit cDNA collections has provided large scale information about the structure and putative function of gene transcripts accumulated during fruit development. Comparative transcript profiling allowed the identification of differentially expressed genes with potential relevance in regulating the fruit metabolism and phenolic content during ripening. PMID:19709400
Mikkelsen, Martin; Frank-Hansen, Rune; Hansen, Anders J; Morling, Niels
2014-09-01
of sequencing of whole mitochondrial genome, HV1 and HV2 DNA with the second generation system (SGS) Roche 454 GS Junior were compared with results of Sanger sequencing and SNP typing with SNaPshot single base extension detected with MALDI-TOF and capillary electrophoresis. We investigated the performance of the software analysis of the data, reproducibility, ability to sequence homopolymeric regions, detection of mixtures and heteroplasmy as well as the implications of the depth of coverage. We found full reproducibility between samples sequenced twice with SGS. We found close to full concordance between the mtDNA sequences of 26 samples obtained with (1) the 454 SGS method using a depth of coverage above 100 and (2) Sanger sequencing and SNP typing. The discrepancies were primarily observed in homopolymeric regions. The 454 SGS method was able to sequence 95% of the reads correctly in homopolymers up to 4 bases, and up to 6 bases could be sequenced with similar success if the results were carefully, visually inspected. The 454 technology was able to detect mixtures or heteroplasmy of approximately 10%. We detected previously unreported heteroplasmy in the GM9947A component of the NIST human mitochondrial DNA SRM-2392 standard reference material. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Koontz, Deborah; Baecher, Kirsten; Kobrynski, Lisa; Nikolova, Stanimila; Gallagher, Margaret
2015-01-01
The 22q11.2 deletion syndrome is one of the most common deletion syndromes in newborns. Some affected newborns may be diagnosed shortly after birth because of the presence of heart defects, palatal defects, or severe immune deficiencies. However, diagnosis is often delayed in patients presenting with other associated conditions that would benefit from early recognition and treatment, such as speech delays, learning difficulties, and schizophrenia. Fluorescence in situ hybridization (FISH) is the gold standard for deletion detection, but it is costly and time consuming and requires a whole blood specimen. Our goal was to develop a suitable assay for population-based screening of easily collectible specimens, such as buccal swabs and dried blood spots (DBS). We designed a pyrosequencing assay and validated it using DNA from FISH–confirmed 22q11 deletion syndrome patients and normal controls. We tested DBS from nine patients and paired buccal cell and venous blood specimens from 20 patients. Results were 100% concordant with FISH assay results. DNA samples from normal controls (n = 180 cell lines, n = 15 DBS, and n = 88 buccal specimens) were negative for the deletion. Limiting dilution experiments demonstrated that accurate results could be obtained from as little as 1 ng of DNA. This method represents a reliable and low-cost alternative for detection of the common 22q11.2 microdeletions and can be adapted to high-throughput population screening. PMID:24973633
Mao, Shengyong; Huo, Wenjie; Zhu, Weiyun
2013-09-01
This study evaluated the effects of an increasing proportion of dietary grain on changes in bacterial populations in the goat ileum. Nine ruminally fistulated, castrated male goats were assigned to three diets in a completely randomized design. Goats were fed three different dietary treatments containing different proportions of corn grain (0, 25, and 50 %). The pH of the ileal contents and rumen fluid (P = 0.015) linearly decreased (P < 0.001), and the acetate, propionate, butyrate, and total volatile fatty acid in ileal contents increased (P < 0.05) with increases in dietary corn, and similar results were also observed in rumen fluid. The barcoded DNA pyrosequencing method was used to reveal 8 phyla, 70 genera, and 1,693 16S operational taxonomic units (OTUs). At the genus level, the proportions of Acetitomaculum, Enterococcus, Atopobium, unclassified Coriobacteriaceae, and unclassified Planctomycetaceae were linearly decreased (P < 0.05) with increases in corn grain. At the species level, high grain feeding linearly decreased the percentage of OTU8686 (unclassified Bacteria) (P = 0.004). To the best of our knowledge, this is the first study using barcoded DNA pyrosequencing method to survey the ileal microbiome of goats and the results suggest that increasing levels of dietary corn change the composition of the ileal bacterial community. These findings provide previously unknown information about the ileal microbiota of goats and a new understanding of the ileal microbial ecology, which may be useful in modulating the gut microbiome.
Differential resistance of drinking water bacterial populations to monochloramine disinfection.
Chiao, Tzu-Hsin; Clancy, Tara M; Pinto, Ameet; Xi, Chuanwu; Raskin, Lutgarde
2014-04-01
The impact of monochloramine disinfection on the complex bacterial community structure in drinking water systems was investigated using culture-dependent and culture-independent methods. Changes in viable bacterial diversity were monitored using culture-independent methods that distinguish between live and dead cells based on membrane integrity, providing a highly conservative measure of viability. Samples were collected from lab-scale and full-scale drinking water filters exposed to monochloramine for a range of contact times. Culture-independent detection of live cells was based on propidium monoazide (PMA) treatment to selectively remove DNA from membrane-compromised cells. Quantitative PCR (qPCR) and pyrosequencing of 16S rRNA genes was used to quantify the DNA of live bacteria and characterize the bacterial communities, respectively. The inactivation rate determined by the culture-independent PMA-qPCR method (1.5-log removal at 664 mg·min/L) was lower than the inactivation rate measured by the culture-based methods (4-log removal at 66 mg·min/L). Moreover, drastic changes in the live bacterial community structure were detected during monochloramine disinfection using PMA-pyrosequencing, while the community structure appeared to remain stable when pyrosequencing was performed on samples that were not subject to PMA treatment. Genera that increased in relative abundance during monochloramine treatment include Legionella, Escherichia, and Geobacter in the lab-scale system and Mycobacterium, Sphingomonas, and Coxiella in the full-scale system. These results demonstrate that bacterial populations in drinking water exhibit differential resistance to monochloramine, and that the disinfection process selects for resistant bacterial populations.
2011-01-01
Abstract Background Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. Results One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s) and 102 glycosyltransferases (GTs) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various B. chinense tissues. Conclusions A collection of high-quality ESTs for B. chinense obtained by 454 pyrosequencing is provided here for the first time. These data should aid further research on the functional genomics of B. chinense and other Bupleurum species. The candidate genes for enzymes involved in saikosaponin biosynthesis, especially the P450s and UGTs, that were revealed provide a substantial foundation for follow-up research on the metabolism and regulation of the saikosaponins. PMID:22047182
USDA-ARS?s Scientific Manuscript database
Black soldier fly (BSF), Hermetia illucens (L.), larvae represent a sustainable method for reducing animal and plant wastes. Larvae reduce dry matter, bacteria, offensive odor, and house fly populations. The prepupae can be self-harvested and used as feedstuff for livestock and poultry. While som...
Noguchi, Mana; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki
2014-01-01
To identify the microorganisms involved in benzene degradation, DNA-stable isotope probing (SIP) with 13C-benzene was applied to a methanogenic benzene-degrading enrichment culture. Pyrosequencing of ribosomal RNA (rRNA) gene sequences revealed that the community structure was highly complex in spite of a 3-year incubation only with benzene. The culture degraded 98% of approximately 1 mM 13C-benzene and mineralized 72% of that within 63 d. The terminal restriction fragment length polymorphism (T-RFLP) profiles of the buoyant density fractions revealed the incorporation of 13C into two phylotypes after 64 d. These two phylotypes were determined to be Desulfobacterales- and Coriobacteriaceae-related bacteria by cloning and sequencing of the 16S rRNA gene in the 13C-labeled DNA abundant fraction. Comparative pyrosequencing analysis of the buoyant density fractions of 12C- and 13C-labeled samples indicated the incorporation of 13C into three bacterial and one archaeal OTUs related to Desulfobacterales, Coriobacteriales, Rhodocyclaceae, and Methanosarcinales. The first two OTUs included the bacteria detected by T-RFLP-cloning-sequencing analysis. Furthermore, time-resolved SIP analysis confirmed that the activity of all these microbes appeared at the earliest stage of degradation. In this methanogenic culture, Desulfobacterales- and Coriobacteriaceae-related bacteria were most likely to be the major benzene degraders. PMID:24909708
Quantitative Evaluation of MMP-9 and TIMP-1 Promoter Methylation in Chronic Periodontitis.
Li, Xiting; Lu, Jiaxuan; Teng, Wei; Zhao, Chuanjiang; Ye, Xiaolei
2018-03-01
In this study, we investigated the promoter DNA methylation (DNAm) status of the MMP-9 and TIMP-1 genes in patients with chronic periodontitis to evaluate disease progression. Using pyrosequencing technology, DNAm levels of MMP-9 and TIMP-1 CpG islands were measured in 88 chronic periodontitis patients and 15 healthy controls. We found a positive correlation between methylation levels of MMP-9 CpG islands and the severity of chronic periodontitis. Methylated CpG islands were also closely associated with the duration of chronic periodontitis. Moreover, female patients exhibited lower methylation levels of MMP-9 but higher methylation levels of TIMP-1 compared with male patients, and the methylation levels of TIMP-1 gradually decreased with age. The findings of gender disparity in the DNAm of MMP-9 and TIMP-1 genes provide novel insights into chronic periodontitis.
Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis
2011-01-01
Background Microbial communities inhabiting human mouth are associated with oral health and disease. Previous studies have indicated the general prevalence of adult gingivitis in China to be high. The aim of this study was to characterize in depth the oral microbiota of Chinese adults with or without gingivitis, by defining the microbial phylogenetic diversity and community-structure using highly paralleled pyrosequencing. Methods Six non-smoking Chinese, three with and three without gingivitis (age range 21-39 years, 4 females and 2 males) were enrolled in the present cross-sectional study. Gingival parameters of inflammation and bleeding on probing were characterized by a clinician using the Mazza Gingival Index (MGI). Plaque (sampled separately from four different oral sites) and salivary samples were obtained from each subject. Sequences and relative abundance of the bacterial 16 S rDNA PCR-amplicons were determined via pyrosequencing that produced 400 bp-long reads. The sequence data were analyzed via a computational pipeline customized for human oral microbiome analyses. Furthermore, the relative abundances of selected microbial groups were validated using quantitative PCR. Results The oral microbiomes from gingivitis and healthy subjects could be distinguished based on the distinct community structures of plaque microbiomes, but not the salivary microbiomes. Contributions of community members to community structure divergence were statistically accessed at the phylum, genus and species-like levels. Eight predominant taxa were found associated with gingivitis: TM7, Leptotrichia, Selenomonas, Streptococcus, Veillonella, Prevotella, Lautropia, and Haemophilus. Furthermore, 98 species-level OTUs were identified to be gingivitis-associated, which provided microbial features of gingivitis at a species resolution. Finally, for the two selected genera Streptococcus and Fusobacterium, Real-Time PCR based quantification of relative bacterial abundance validated the pyrosequencing-based results. Conclusions This methods study suggests that oral samples from this patient population of gingivitis can be characterized via plaque microbiome by pyrosequencing the 16 S rDNA genes. Further studies that characterize serial samples from subjects (longitudinal study design) with a larger population size may provide insight into the temporal and ecological features of oral microbial communities in clinically-defined states of gingivitis. PMID:22152152
Yang, Qinghui; Zhao, Yushi; Zhang, Zhijie; Chen, Jianxin
2016-07-01
Background Interleukin-6 (IL-6), a multifunctional cytokine, plays an important role in the development of ischemic heart disease (IHD), and DNA hypomethylation of 2 CpGs, located downstream in the proximity of the IL-6 gene promoter, has been associated with risk factor for IHD. This study was to examine the association of blood leukocyte DNA methylation of the 2 CpGs in IL-6 with the risk of IHD and the serum IL-6 level. Methods IL-6 methylation levels of 582 cases and 673 controls were measured using the bisulfite pyrosequencing technology. Serum level of IL-6 was measured using enzyme-linked immunosorbent assay. Results The IL-6 methylation was significantly lower in IHD cases than in the controls, irrespective of CpG site. After multivariate adjustment, lower (< median) average IL-6 methylation was associated with an increased risk of IHD (OR 1.57, 95% CI 1.22-2.02, p < 0.001). Average IL-6 methylation level was inversely associated with serum IL-6 level (β = -1.02 pg/mL per increase in IL-6 methylation, p = 0.002) among IHD cases. This significant relationship was not observed among controls. Conclusions DNA hypomethylation of IL-6 gene measured in blood leukocytes was associated with increased risk of IHD. IL-6 demethylation may upregulate its expression, whereby exerting its risk effect on the development of IHD.
Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F
2017-09-26
Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.
How-Kit, Alexandre; Dejeux, Emelyne; Dousset, Bertrand; Renault, Victor; Baudry, Marion; Terris, Benoit; Tost, Jörg
2015-01-01
Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.
Gilling, Damian H; Luna, Vicki Ann; Pflugradt, Cori
2014-01-01
The etiologic agents for melioidosis and glanders, Burkholderia mallei and Burkholderia pseudomallei respectively, are genetically similar making identification and differentiation from other Burkholderia species and each other challenging. We used pyrosequencing to determine the presence or absence of an insertion sequence IS407A within the flagellin P (fliP) gene and to exploit the difference in orientation of this gene in the two species. Oligonucleotide primers were designed to selectively target the IS407A-fliP interface in B. mallei and the fliP gene specifically at the insertion point in B. pseudomallei. We then examined DNA from ten B. mallei, ten B. pseudomallei, 14 B. cepacia, eight other Burkholderia spp., and 17 other bacteria. Resultant pyrograms encompassed the target sequence that contained either the fliP gene with the IS407A interruption or the fully intact fliP gene with 100% sensitivity and 100% specificity. These pyrosequencing assays based upon a single gene enable investigators to reliably identify the two species. The information obtained by these assays provides more knowledge of the genomic reduction that created the new species B. mallei from B. pseudomallei and may point to new targets that can be exploited in the future.
Koontz, Deborah; Baecher, Kirsten; Kobrynski, Lisa; Nikolova, Stanimila; Gallagher, Margaret
2014-09-01
The 22q11.2 deletion syndrome is one of the most common deletion syndromes in newborns. Some affected newborns may be diagnosed shortly after birth because of the presence of heart defects, palatal defects, or severe immune deficiencies. However, diagnosis is often delayed in patients presenting with other associated conditions that would benefit from early recognition and treatment, such as speech delays, learning difficulties, and schizophrenia. Fluorescence in situ hybridization (FISH) is the gold standard for deletion detection, but it is costly and time consuming and requires a whole blood specimen. Our goal was to develop a suitable assay for population-based screening of easily collectible specimens, such as buccal swabs and dried blood spots (DBS). We designed a pyrosequencing assay and validated it using DNA from FISH-confirmed 22q11 deletion syndrome patients and normal controls. We tested DBS from nine patients and paired buccal cell and venous blood specimens from 20 patients. Results were 100% concordant with FISH assay results. DNA samples from normal controls (n = 180 cell lines, n = 15 DBS, and n = 88 buccal specimens) were negative for the deletion. Limiting dilution experiments demonstrated that accurate results could be obtained from as little as 1 ng of DNA. This method represents a reliable and low-cost alternative for detection of the common 22q11.2 microdeletions and can be adapted to high-throughput population screening. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Alan; Grigoriev, Igor
2009-04-17
Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentousmore » ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.« less
Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, e.g. Legionella pneumophila, via parasitization of free-living amoebae such as Acanthamoebae. Yet knowledge about the microbial composition of DW biofilms developed on common in-premise pl...
NASA Astrophysics Data System (ADS)
Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan
2014-02-01
We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p < 0.005, all R > 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure assessment.
Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Lieberman, Isador H; Krebs, Viktor; Togawa, Daisuke; Fujishiro, Takaaki; Procop, Gary W
2006-08-01
We have developed a combined real-time PCR and pyrosequencing assay that successfully differentiated the vast majority of gram-positive and gram-negative bacteria when bacterial isolates were tested. The purpose of this study was to evaluate this assay on clinical specimens obtained from orthopedic surgeries, and to prospectively compare the results of "molecular Gram stain" with culture and conventional direct Gram stain. Forty-five surgical specimens were obtained from patients who underwent orthopedic surgery procedures. The DNA was extracted and a set of broad-range PCR primers that targeted a part of the 16S rDNA gene was used for pan-bacterial PCR. The amplicons were submitted for pyrosequencing and the resulting molecular Gram stain characteristics were recorded. Culture and direct Gram staining were performed using standard methods for all cases. Surgical specimens were reviewed histologically for all cases that had a discrepancy between culture and molecular results. There was an 86.7% (39/45) agreement between the traditional and molecular methods. In 12/14 (85.7%) culture-proven cases of bacterial infection, molecular Gram stain characteristics were in agreement with the culture results, while the conventional Gram stain result was in agreement only for five cases (35.7%). In the 31 culture negative cases, 27 cases were also PCR negative, whereas 4 were PCR positive. Three of these were characterized as gram negative and one as gram positive by this molecular method. Molecular determination of the Gram stain characteristics of bacteria that cause orthopedic infections may be achieved, in most instances, by this method. Further studies are necessary to understand the clinical importance of PCR-positive/culture-negative results.
Phylogenetic Diversity and Metabolic Potential Revealed in a Glacier Ice Metagenome▿ †
Simon, Carola; Wiezer, Arnim; Strittmatter, Axel W.; Daniel, Rolf
2009-01-01
The largest part of the Earth's microbial biomass is stored in cold environments, which represent almost untapped reservoirs of novel species, processes, and genes. In this study, the first metagenomic survey of the metabolic potential and phylogenetic diversity of a microbial assemblage present in glacial ice is presented. DNA was isolated from glacial ice of the Northern Schneeferner, Germany. Pyrosequencing of this DNA yielded 1,076,539 reads (239.7 Mbp). The phylogenetic composition of the prokaryotic community was assessed by evaluation of a pyrosequencing-derived data set and sequencing of 16S rRNA genes. The Proteobacteria (mainly Betaproteobacteria), Bacteroidetes, and Actinobacteria were the predominant phylogenetic groups. In addition, isolation of psychrophilic microorganisms was performed, and 13 different bacterial isolates were recovered. Analysis of the 16S rRNA gene sequences of the isolates revealed that all were affiliated to the predominant groups. As expected for microorganisms residing in a low-nutrient environment, a high metabolic versatility with respect to degradation of organic substrates was detected by analysis of the pyrosequencing-derived data set. The presence of autotrophic microorganisms was indicated by identification of genes typical for different ways of carbon fixation. In accordance with the results of the phylogenetic studies, in which mainly aerobic and facultative aerobic bacteria were detected, genes typical for central metabolism of aerobes were found. Nevertheless, the capability of growth under anaerobic conditions was indicated by genes involved in dissimilatory nitrate/nitrite reduction. Numerous characteristics for metabolic adaptations associated with a psychrophilic lifestyle, such as formation of cryoprotectants and maintenance of membrane fluidity by the incorporation of unsaturated fatty acids, were detected. Thus, analysis of the glacial metagenome provided insights into the microbial life in frozen habitats on Earth, thereby possibly shedding light onto microbial life in analogous extraterrestrial environments. PMID:19801459
Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome.
Sergeeva, Ekaterina M; Shcherban, Andrey B; Adonina, Irina G; Nesterov, Michail A; Beletsky, Alexey V; Rakitin, Andrey L; Mardanov, Andrey V; Ravin, Nikolai V; Salina, Elena A
2017-11-14
The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread wheat has been established. These two regions differ in the organization of both 5S rDNA and the neighboring sequences comprised of transposable elements, implying different modes of evolution for these regions.
Lari, Martina; Rizzi, Ermanno; Mona, Stefano; Corti, Giorgio; Catalano, Giulio; Chen, Kefei; Vernesi, Cristiano; Larson, Greger; Boscato, Paolo; De Bellis, Gianluca; Cooper, Alan; Caramelli, David; Bertorelle, Giorgio
2011-01-31
Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments--namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins.
2011-01-01
Background Transcriptome sequencing data has become an integral component of modern genetics, genomics and evolutionary biology. However, despite advances in the technologies of DNA sequencing, such data are lacking for many groups of living organisms, in particular, many plant taxa. We present here the results of transcriptome sequencing for two closely related plant species. These species, Fagopyrum esculentum and F. tataricum, belong to the order Caryophyllales - a large group of flowering plants with uncertain evolutionary relationships. F. esculentum (common buckwheat) is also an important food crop. Despite these practical and evolutionary considerations Fagopyrum species have not been the subject of large-scale sequencing projects. Results Normalized cDNA corresponding to genes expressed in flowers and inflorescences of F. esculentum and F. tataricum was sequenced using the 454 pyrosequencing technology. This resulted in 267 (for F. esculentum) and 229 (F. tataricum) thousands of reads with average length of 341-349 nucleotides. De novo assembly of the reads produced about 25 thousands of contigs for each species, with 7.5-8.2× coverage. Comparative analysis of two transcriptomes demonstrated their overall similarity but also revealed genes that are presumably differentially expressed. Among them are retrotransposon genes and genes involved in sugar biosynthesis and metabolism. Thirteen single-copy genes were used for phylogenetic analysis; the resulting trees are largely consistent with those inferred from multigenic plastid datasets. The sister relationships of the Caryophyllales and asterids now gained high support from nuclear gene sequences. Conclusions 454 transcriptome sequencing and de novo assembly was performed for two congeneric flowering plant species, F. esculentum and F. tataricum. As a result, a large set of cDNA sequences that represent orthologs of known plant genes as well as potential new genes was generated. PMID:21232141
Wen, Xianyu; Jeong, Seorin; Kim, Younghoon; Bae, Jeong Mo; Cho, Nam Yun; Kim, Jung Ho; Kang, Gyeong Hoon
2017-01-01
Formalin-fixed, paraffin-embedded (FFPE) tissues are important resources for profiling DNA methylation changes and for studying a variety of diseases. However, formalin fixation introduces inter-strand crosslinking, which might cause incomplete bisulfite conversion of unmethylated cytosines, which might lead to falsely elevated measurements of methylation levels in pyrosequencing assays. Long interspersed nucleotide element-1 (LINE-1) is a major constituent of repetitive transposable DNA elements, and its methylation is referred to correlates with global DNA methylation. To identify whether formalin fixation might impact the measured values of methylation in LINE-1 repetitive elements and whether prolonged heat-induced denaturation of DNA might reduce the artificial increases in measured values caused by formalin fixation, we analyzed paired fresh-frozen (FF) and FFPE xenograft tissue samples for their methylation levels in LINE-1 using a pyrosequencing assay. To further confirm the effect of a heating step in the measurement of LINE-1 or single gene methylation levels, we analyzed FFPE tissue samples of gastric cancer and colorectal cancer for their methylation status in LINE-1 and eight single genes, respectively. Formalin fixation led to an increase in the measured values of LINE-1 methylation regardless of the duration of fixation. Prolonged heating of the DNA at 95 °C for 30 min before bisulfite conversion was found (1) to decrease the discrepancy in the measured values between the paired FF and FFPE tissue samples, (2) to decrease the standard deviation of the measured value of LINE-1 methylation levels in FFPE tissue samples of gastric cancer, and (3) to improve the performance in the measurement of single gene methylation levels in FFPE tissue samples of colorectal cancer. Formalin fixation leads to artificial increases in the measured values of LINE-1 methylation, and the application of prolonged heating of DNA samples decreases the discrepancy in the measured values of LINE-1 methylation between paired FF and FFPE tissue samples. The application of prolonged heating of DNA samples improves bisulfite conversion-based measurement of LINE-1 or single gene methylation levels in FFPE tissue samples.
Pavanello, Sofia; Bollati, Valentina; Pesatori, Angela Cecilia; Kapka, Lucyna; Bolognesi, Claudia; Bertazzi, Pier Alberto; Baccarelli, Andrea
2009-10-01
We investigated the effect of chronic exposure to polycyclic aromatic hydrocarbons (PAHs) on DNA methylation states (percentage of methylated cytosines (%mC)) in Polish male nonsmoking coke-oven workers and matched controls. Methylation states of gene-specific promoters (p53, p16, HIC1 and IL-6) and of Alu and LINE-1 repetitive elements, as surrogate measures of global methylation, were quantified by pyrosequencing in peripheral blood lymphocytes (PBLs). DNA methylation was evaluated in relation to PAH exposure, assessed by urinary 1-pyrenol and anti-benzo[a]pyrene diolepoxide (anti-B[a]PDE)-DNA adduct levels, a critical genetic damage from B[a]P. We also evaluated whether PAH-induced DNA methylation states were in turn associated with micronuclei in PBLs, an indicator of chromosomal instability.
Hume, Michael E; Barbosa, Nei A; Dowd, Scot E; Sakomura, Nilva K; Nalian, Armen G; Martynova-Van Kley, Alexandra; Oviedo-Rondón, Edgar O
2011-11-01
A protective digestive microflora helps prevent and reduce broiler infection and colonization by enteropathogens. In the current experiment, broilers fed diets supplemented with probiotics and essential oil (EO) blends were infected with a standard mixed Eimeria spp. to determine effects of performance enhancers on ileal and cecal microbial communities (MCs). Eight treatment groups included four controls (uninfected-unmedicated [UU], unmedicated-infected, the antibiotic BMD plus the ionophore Coban as positive control, and the ionophore as negative control), and four treatments (probiotics BC-30 and Calsporin; and EO, Crina Poultry Plus, and Crina PoultryAF). Day-old broilers were raised to 14 days in floor pens on used litter and then were moved to Petersime batteries and inoculated at 15 days with mixed Eimeria spp. Ileal and cecal samples were collected at 14 days and 7 days postinfection. Digesta DNA was subjected to pyrosequencing for sequencing of individual cecal bacteria and denaturing gradient gel electrophoresis (DGGE) for determination of changes in ileal and cecal MC according to percentage similarity coefficient (%SC). Pyrosequencing is very sensitive detecting shifts in individual bacterial sequences, whereas DGGE is able to detect gross shifts in entire MC. These combined techniques offer versatility toward identifying feed additive and mild Eimeria infection modulation of broiler MC. Pyrosequencing detected 147 bacterial species sequences. Additionally, pyrosequencing revealed the presence of relatively low levels of the potential human enteropathogens Campylobacter sp. and four Shigella spp. as well as the potential poultry pathogen Clostridiun perfringens. Pre- and postinfection changes in ileal (56%SC) and cecal (78.5%SC) DGGE profiles resulted from the coccidia infection and with increased broiler age. Probiotics and EO changed MC from those seen in UU ilea and ceca. Results potentially reflect the performance enhancement above expectations in comparison to broilers not given the probiotics or the specific EO blends as feed supplements.
Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni
2013-01-01
Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID:23950653
Smoking-Associated Site-Specific Differential Methylation in Buccal Mucosa in the COPDGene Study
Qiu, Weiliang; Carey, Vincent J.; Morrow, Jarrett; Bacherman, Helene; Foreman, Marilyn G.; Hokanson, John E.; Bowler, Russell P.; Crapo, James D.; DeMeo, Dawn L.
2015-01-01
DNA methylation is a complex, tissue-specific phenomenon that can reflect both endogenous factors and exogenous exposures. Buccal brushings represent an easily accessible source of DNA, which may be an appropriate surrogate tissue in the study of environmental exposures and chronic respiratory diseases. Buccal brushings were obtained from a subset of current and former smokers from the COPDGene study. Genome-wide DNA methylation data were obtained in the discovery cohort (n = 82) using the Illumina HumanMethylation450K array. Empirical Bayes methods were used to test for differential methylation by current smoking status at 468,219 autosomal CpG sites using linear models adjusted for age, sex, and race. Pyrosequencing was performed in a nonoverlapping replication cohort (n = 130). Current smokers were significantly younger than former smokers in both the discovery and replication cohorts. Seven CpG sites were associated with current smoking at a false discovery rate less than 0.05 in the discovery cohort. Six of the seven significant sites were pyrosequenced in the replication cohort; five CpG sites, including sites annotated to CYP1B1 and PARVA, were replicated. Correlations between cumulative smoke exposure and time since smoking cessation were observed in a subset of the significantly associated CpG sites. A significant correlation between reduced lung function and increased radiographic emphysema with methylation at cg02162897 (CYP1B1) was observed among female subjects. Site-specific methylation of DNA isolated from buccal mucosa is associated with exposure to cigarette smoke, and may provide insights into the mechanisms underlying differential susceptibility toward the development of smoking-related chronic respiratory diseases. PMID:25517428
Kuramae, Eiko E.; Hillekens, Remy; de Hollander, Mattias; Kiers, E. Toby; Röling, Wilfred F. M.; Kowalchuk, George A.; van der Heijden, Marcel G. A.
2012-01-01
The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF. PMID:22885748
Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms.
Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso
2012-01-01
While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories.
Gilling, Damian H.; Luna, Vicki Ann; Pflugradt, Cori
2014-01-01
The etiologic agents for melioidosis and glanders, Burkholderia mallei and Burkholderia pseudomallei respectively, are genetically similar making identification and differentiation from other Burkholderia species and each other challenging. We used pyrosequencing to determine the presence or absence of an insertion sequence IS407A within the flagellin P (fliP) gene and to exploit the difference in orientation of this gene in the two species. Oligonucleotide primers were designed to selectively target the IS407A-fliP interface in B. mallei and the fliP gene specifically at the insertion point in B. pseudomallei. We then examined DNA from ten B. mallei, ten B. pseudomallei, 14 B. cepacia, eight other Burkholderia spp., and 17 other bacteria. Resultant pyrograms encompassed the target sequence that contained either the fliP gene with the IS407A interruption or the fully intact fliP gene with 100% sensitivity and 100% specificity. These pyrosequencing assays based upon a single gene enable investigators to reliably identify the two species. The information obtained by these assays provides more knowledge of the genomic reduction that created the new species B. mallei from B. pseudomallei and may point to new targets that can be exploited in the future. PMID:27350960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriyama, Chisako; Tomita, Akihiro, E-mail: atomita@med.nagoya-u.ac.jp; Hoshino, Hideaki
2012-03-23
Highlights: Black-Right-Pointing-Pointer Circulating DNAs (CDs) can be used to detect genetic/epigenetic abnormalities in MDS. Black-Right-Pointing-Pointer Epigenetic changes can be detected more sensitively when using plasma DNA than PBMNC. Black-Right-Pointing-Pointer Mutation ratio in CDs may reflect the ratio in stem cell population in bone marrow. Black-Right-Pointing-Pointer Using CDs can be a safer alternate strategy compared to bone marrow aspiration. -- Abstract: Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder. Several genetic/epigenetic abnormalities are deeply associated with the pathogenesis of MDS. Although bone marrow (BM) aspiration is a common strategy to obtain MDS cells for evaluating their genetic/epigenetic abnormalities, BM aspirationmore » is difficult to perform repeatedly to obtain serial samples because of pain and safety concerns. Here, we report that circulating cell-free DNAs from plasma and serum of patients with MDS can be used to detect genetic/epigenetic abnormalities. The plasma DNA concentration was found to be relatively high in patients with higher blast cell counts in BM, and accumulation of DNA fragments from mono-/di-nucleosomes was confirmed. Using serial peripheral blood (PB) samples from patients treated with hypomethylating agents, global methylation analysis using bisulfite pyrosequencing was performed at the specific CpG sites of the LINE-1 promoter. The results confirmed a decrease of the methylation percentage after treatment with azacitidine (days 3-9) using DNAs from plasma, serum, and PB mono-nuclear cells (PBMNC). Plasma DNA tends to show more rapid change at days 3 and 6 compared with serum DNA and PBMNC. Furthermore, the TET2 gene mutation in DNAs from plasma, serum, and BM cells was quantitated by pyrosequencing analysis. The existence ratio of mutated genes in plasma and serum DNA showed almost equivalent level with that in the CD34+/38- stem cell population in BM. These data suggest that genetic/epigenetic analyses using PB circulating DNA can be a safer and painless alternative to using BM cells.« less
Rapid Molecular Identification of Human Taeniid Cestodes by Pyrosequencing Approach
Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M.; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai
2014-01-01
Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse. PMID:24945530
Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA
Swathi A. Turlapati; Rakesh Minocha; Premsai S. Bhiravarasa; Louise S. Tisa; William K. Thomas; Subhash C. Minocha
2013-01-01
At the Harvard Forest, Petersham, MA, the impact of 20 years of annual ammonium nitrate application to the mixed hardwood stand on soil bacterial communities was studied using 16S rRNA genes pyrosequencing. Amplification of 16S rRNA genes was done using DNA extracted from 30 soil samples (three treatments x two horizons x five subplots) collected from untreated (...
Identification of Methylated Genes Associated with Aggressive Bladder Cancer
Marsit, Carmen J.; Houseman, E. Andres; Christensen, Brock C.; Gagne, Luc; Wrensch, Margaret R.; Nelson, Heather H.; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K.; Andrew, Angeline S.; Schned, Alan R.; Karagas, Margaret R.; Kelsey, Karl T.
2010-01-01
Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment. PMID:20808801
Identification of methylated genes associated with aggressive bladder cancer.
Marsit, Carmen J; Houseman, E Andres; Christensen, Brock C; Gagne, Luc; Wrensch, Margaret R; Nelson, Heather H; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K; Andrew, Angeline S; Schned, Alan R; Karagas, Margaret R; Kelsey, Karl T
2010-08-23
Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.
Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz
2015-04-01
Acetic acid bacteria (AAB) usually develop biofilm on the air-liquid interface of the vinegar elaborated by traditional method. This is the first study in which the AAB microbiota present in a biofilm of vinegar obtained by traditional method was detected by pyrosequencing. Direct genomic DNA extraction from biofilm was set up to obtain suitable quality of DNA to apply in culture-independent molecular techniques. The set of primers and TaqMan--MGB probe designed in this study to enumerate the total AAB population by Real Time--PCR detected between 8 × 10(5) and 1.2 × 10(6) cells/g in the biofilm. Pyrosequencing approach reached up to 10 AAB genera identification. The combination of culture-dependent and culture-independent molecular techniques provided a broader view of AAB microbiota from the strawberry biofilm, which was dominated by Ameyamaea, Gluconacetobacter, and Komagataeibacter genera. Culture-dependent techniques allowed isolating only one genotype, which was assigned into the Ameyamaea genus and which required more analysis for a correct species identification. Furthermore, biofilm visualization by laser confocal microscope and scanning electronic microscope showed different dispositions and cell morphologies in the strawberry vinegar biofilm compared with a grape vinegar biofilm. Copyright © 2014 Elsevier Ltd. All rights reserved.
Primer and platform effects on 16S rRNA tag sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremblay, Julien; Singh, Kanwar; Fern, Alison
Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as wellmore » as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.« less
Primer and platform effects on 16S rRNA tag sequencing
Tremblay, Julien; Singh, Kanwar; Fern, Alison; ...
2015-08-04
Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as wellmore » as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.« less
Lee, Eunyoung; Lee, Kyoung Joo; Park, Hyein; Chung, Jin Young; Lee, Mi-Na; Chang, Myung Hee; Yoo, Jongha; Lee, Hyewon
2018-01-01
Background JAK2 V617F is the most common mutation in myeloproliferative neoplasms (MPNs) and is a major diagnostic criterion. Mutation quantification is useful for classifying patients with MPN into subgroups and for prognostic prediction. Droplet digital PCR (ddPCR) can provide accurate and reproducible quantitative analysis of DNA. This study was designed to verify the correlation of ddPCR with pyrosequencing results in the diagnosis of MPN and to investigate clinical implications of the mutational burden. Methods Peripheral blood or bone marrow samples were obtained from 56 patients newly diagnosed with MPN or previously diagnosed with MPN but not yet indicated for JAK2 inhibitor treatment between 2012 and 2016. The JAK2 V617F mutation was detected by pyrosequencing as a diagnostic work-up. The same samples were used for ddPCR to determine the correlation between assays and establish a detection sensitivity cut-off. Clinical and hematologic aspects were reviewed. Results Forty-two (75%) and 46 (82.1%) patients were positive for JAK2 V617F by pyrosequencing and ddPCR, respectively. The mean mutated allele frequency at diagnosis was 37.5±30.1% and was 40.7±31.2% with ddPCR, representing a strong correlation (r=0.9712, P<0.001). Follow-up samples were available for 12 patients, including eight that were JAK2 V617F-positive. Of these, mutational burden reduction after treatment was observed in six patients (75%), consistent with trends of hematologic improvement. Conclusions Quantitative analysis of the JAK2 V617F mutation using ddPCR was highly correlated with pyrosequencing data and may reflect the clinical response to treatment. PMID:29214759
The Sequence of Two Bacteriophages with Hypermodified Bases Reveals Novel Phage-Host Interactions.
Kropinski, Andrew M; Turner, Dann; Nash, John H E; Ackermann, Hans-Wolfgang; Lingohr, Erika J; Warren, Richard A; Ehrlich, Kenneth C; Ehrlich, Melanie
2018-04-24
Bacteriophages SP-15 and ΦW-14 are members of the Myoviridae infecting Bacillus subtilis and Delftia (formerly Pseudomonas ) acidovorans , respectively. What links them is that in both cases, approximately 50% of the thymine residues are replaced by hypermodified bases. The consequence of this is that the physico-chemical properties of the DNA are radically altered (melting temperature (Tm), buoyant density and susceptibility to restriction endonucleases). Using 454 pyrosequencing technology, we sequenced the genomes of both viruses. Phage ΦW-14 possesses a 157-kb genome (56.3% GC) specifying 236 proteins, while SP-15 is larger at 222 kb (38.6 mol % G + C) and encodes 318 proteins. In both cases, the phages can be considered genomic singletons since they do not possess BLASTn homologs. While no obvious genes were identified as being responsible for the modified base in ΦW-14, SP-15 contains a cluster of genes obviously involved in carbohydrate metabolism.
Herrmann, Alexander; Haake, Andrea; Ammerpohl, Ole; Martin-Guerrero, Idoia; Szafranski, Karol; Stemshorn, Kathryn; Nothnagel, Michael; Kotsopoulos, Steve K; Richter, Julia; Warner, Jason; Olson, Jeff; Link, Darren R; Schreiber, Stefan; Krawczak, Michael; Platzer, Matthias; Nürnberg, Peter; Siebert, Reiner; Hampe, Jochen
2011-01-01
Cytosine methylation provides an epigenetic level of cellular plasticity that is important for development, differentiation and cancerogenesis. We adopted microdroplet PCR to bisulfite treated target DNA in combination with second generation sequencing to simultaneously assess DNA sequence and methylation. We show measurement of methylation status in a wide range of target sequences (total 34 kb) with an average coverage of 95% (median 100%) and good correlation to the opposite strand (rho = 0.96) and to pyrosequencing (rho = 0.87). Data from lymphoma and colorectal cancer samples for SNRPN (imprinted gene), FGF6 (demethylated in the cancer samples) and HS3ST2 (methylated in the cancer samples) serve as a proof of principle showing the integration of SNP data and phased DNA-methylation information into "hepitypes" and thus the analysis of DNA methylation phylogeny in the somatic evolution of cancer.
2011-01-01
Background Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. Results In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments - namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Conclusions Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins. PMID:21281509
Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing.
Vega-Arreguín, Julio C; Ibarra-Laclette, Enrique; Jiménez-Moraila, Beatriz; Martínez, Octavio; Vielle-Calzada, Jean Philippe; Herrera-Estrella, Luis; Herrera-Estrella, Alfredo
2009-07-06
In-depth sequencing analysis has not been able to determine the overall complexity of transcriptional activity of a plant organ or tissue sample. In some cases, deep parallel sequencing of Expressed Sequence Tags (ESTs), although not yet optimized for the sequencing of cDNAs, has represented an efficient procedure for validating gene prediction and estimating overall gene coverage. This approach could be very valuable for complex plant genomes. In addition, little emphasis has been given to efforts aiming at an estimation of the overall transcriptional universe found in a multicellular organism at a specific developmental stage. To explore, in depth, the transcriptional diversity in an ancient maize landrace, we developed a protocol to optimize the sequencing of cDNAs and performed 4 consecutive GS20-454 pyrosequencing runs of a cDNA library obtained from 2 week-old Palomero Toluqueño maize plants. The protocol reported here allowed obtaining over 90% of informative sequences. These GS20-454 runs generated over 1.5 Million reads, representing the largest amount of sequences reported from a single plant cDNA library. A collection of 367,391 quality-filtered reads (30.09 Mb) from a single run was sufficient to identify transcripts corresponding to 34% of public maize ESTs databases; total sequences generated after 4 filtered runs increased this coverage to 50%. Comparisons of all 1.5 Million reads to the Maize Assembled Genomic Islands (MAGIs) provided evidence for the transcriptional activity of 11% of MAGIs. We estimate that 5.67% (86,069 sequences) do not align with public ESTs or annotated genes, potentially representing new maize transcripts. Following the assembly of 74.4% of the reads in 65,493 contigs, real-time PCR of selected genes confirmed a predicted correlation between the abundance of GS20-454 sequences and corresponding levels of gene expression. A protocol was developed that significantly increases the number, length and quality of cDNA reads using massive 454 parallel sequencing. We show that recurrent 454 pyrosequencing of a single cDNA sample is necessary to attain a thorough representation of the transcriptional universe present in maize, that can also be used to estimate transcript abundance of specific genes. This data suggests that the molecular and functional diversity contained in the vast native landraces remains to be explored, and that large-scale transcriptional sequencing of a presumed ancestor of the modern maize varieties represents a valuable approach to characterize the functional diversity of maize for future agricultural and evolutionary studies.
2013-01-01
Background Prosopis alba (Fabaceae) is an important native tree adapted to arid and semiarid regions of north-western Argentina which is of great value as multipurpose species. Despite its importance, the genomic resources currently available for the entire Prosopis genus are still limited. Here we describe the development of a leaf transcriptome and the identification of new molecular markers that could support functional genetic studies in natural and domesticated populations of this genus. Results Next generation DNA pyrosequencing technology applied to P. alba transcripts produced a total of 1,103,231 raw reads with an average length of 421 bp. De novo assembling generated a set of 15,814 isotigs and 71,101 non-assembled sequences (singletons) with an average of 991 bp and 288 bp respectively. A total of 39,000 unique singletons were identified after clustering natural and artificial duplicates from pyrosequencing reads. Regarding the non-redundant sequences or unigenes, 22,095 out of 54,814 were successfully annotated with Gene Ontology terms. Moreover, simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 5,992 and 6,236 markers, respectively, throughout the genome. For the validation of the the predicted SSR markers, a subset of 87 SSRs selected through functional annotation evidence was successfully amplified from six DNA samples of seedlings. From this analysis, 11 of these 87 SSRs were identified as polymorphic. Additionally, another set of 123 nuclear polymorphic SSRs were determined in silico, of which 50% have the probability of being effectively polymorphic. Conclusions This study generated a successful global analysis of the P. alba leaf transcriptome after bioinformatic and wet laboratory validations of RNA-Seq data. The limited set of molecular markers currently available will be significantly increased with the thousands of new markers that were identified in this study. This information will strongly contribute to genomics resources for P. alba functional analysis and genetics. Finally, it will also potentially contribute to the development of population-based genome studies in the genera. PMID:24125525
MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene.
Li, Jie; Zhang, Xinjie; He, Zhini; Sun, Qing; Qin, Fei; Huang, Zhenlie; Zhang, Xiao; Sun, Xin; Liu, Linhua; Chen, Liping; Gao, Chen; Wang, Shan; Wang, Fangping; Li, Daochuan; Zeng, Xiaowen; Deng, Qifei; Wang, Qing; Zhang, Bo; Tang, Huanwen; Chen, Wen; Xiao, Yongmei
2017-07-01
This study aims to assess the effects of low-dose benzene on DNA damage and O 6 -methylguanine-DNA methyltransferase (MGMT) methylation in occupational workers. We recruited 96 nonsmoking male petrochemical industry workers exposed to low-dose benzene and 100 matched control workers. Urinary S-phenylmercapturic acid (SPMA) and S-benzylmercapturic acid (SBMA) were measured for indicating internal exposure of benzene and toluene. The degree of DNA damage was determined by the Comet assay. The levels of MGMT methylation were detected quantitatively by bisulphite-PCR pyrosequencing assay. The benzene-exposed workers had significantly higher levels of urinary SPMA, degree of DNA damage but decreased MGMT methylation than the controls (all p < 0.05). In contrast, the level of urinary SBMA does not differ between benzene-exposed workers and the controls. In all participants, MGMT methylation was negatively associated with the urinary SPMA and the degree of DNA damage, indicating that epigenetic regulation might be involved in response to low-dose benzene exposure-induced genetic damage. MGMT methylation could be a potent biomarker associated with low-dose benzene exposure and benzene-induced DNA damage.
Márquez, Edna J; Castro, Erick R; Alzate, Juan F
2016-01-01
The queen conch Strombus gigas is an endangered marine gastropod of significant economic importance across the Greater Caribbean region. This work reports for the first time the complete mitochondrial genome of S. gigas, obtained by FLX 454 pyrosequencing. The mtDNA genome encodes for 13 proteins, 22 tRNAs and 2 ribosomal RNAs. In addition, the coding sequences and gene synteny were similar to other previously reported mitogenomes of gastropods.
Xu, He; Hao, Wenjing; Zhou, Qiong; Wang, Wenhong; Xia, Zhongkui; Liu, Chuan; Chen, Xiaochi; Qin, Man; Chen, Feng
2014-01-01
Our primary objective is to phylogenetically characterize the supragingival plaque bacterial microbiome of children prior to eruption of second primary molars by pyrosequencing method for studying etiology of early childhood caries. Supragingival plaque samples were collected from 10 caries children and 9 caries-free children. Plaque DNA was extracted, used to generate DNA amplicons of the V1-V3 hypervariable region of the bacterial 16S rRNA gene, and subjected to 454-pyrosequencing. On average, over 22,000 sequences per sample were generated. High bacterial diversity was noted in the plaque of children with caries [170 operational taxonomical units (OTU) at 3% divergence] and caries-free children (201 OTU at 3% divergence) with no significant difference. A total of 8 phyla, 15 classes, 21 orders, 30 families, 41 genera and 99 species were represented. In addition, five predominant phyla (Firmicute, Fusobacteria, Proteobacteria, Bacteroidetes and Actinobacteria) and seven genera (Leptotrichia, Streptococcus, Actinomyces, Prevotella, Porphyromonas, Neisseria, and Veillonella) constituted a majority of contents of the total microbiota, independent of the presence or absence of caries. Principal Component Analysis (PCA) presented that caries-related genera included Streptococcus and Veillonella; while Leptotrichia, Selenomonas, Fusobacterium, Capnocytophaga and Porphyromonas were more related to the caries-free samples. Neisseria and Prevotella presented approximately in between. In both groups, the degree of shared organism lineages (as defined by species-level OTUs) among individual supragingival plaque microbiomes was minimal. Our study represented for the first time using pyrosequencing to elucidate and monitor supragingival plaque bacterial diversity at such young age with second primary molar unerrupted. Distinctions were revealed between caries and caries-free microbiomes in terms of microbial community structure. We observed differences in abundance for several microbial groups between the caries and caries-free host populations, which were consistent with the ecological plaque hypothesis. Our approach and findings could be extended to correlating microbiomic changes after occlusion establishment and caries treatment.
Evaluation of Methods for the Extraction of DNA from Drinking Water Distribution System Biofilms
Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.; Liu, Wen-Tso
2012-01-01
While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories. PMID:22075624
De Novo Transcriptome of the Hemimetabolous German Cockroach (Blattella germanica)
Zhou, Xiaojie; Qian, Kun; Tong, Ying; Zhu, Junwei Jerry; Qiu, Xinghui; Zeng, Xiaopeng
2014-01-01
Background The German cockroach, Blattella germanica, is an important insect pest that transmits various pathogens mechanically and causes severe allergic diseases. This insect has long served as a model system for studies of insect biology, physiology and ecology. However, the lack of genome or transcriptome information heavily hinder our further understanding about the German cockroach in every aspect at a molecular level and on a genome-wide scale. To explore the transcriptome and identify unique sequences of interest, we subjected the B. germanica transcriptome to massively parallel pyrosequencing and generated the first reference transcriptome for B. germanica. Methodology/Principal Findings A total of 1,365,609 raw reads with an average length of 529 bp were generated via pyrosequencing the mixed cDNA library from different life stages of German cockroach including maturing oothecae, nymphs, adult females and males. The raw reads were de novo assembled to 48,800 contigs and 3,961 singletons with high-quality unique sequences. These sequences were annotated and classified functionally in terms of BLAST, GO and KEGG, and the genes putatively coding detoxification enzyme systems, insecticide targets, key components in systematic RNA interference, immunity and chemoreception pathways were identified. A total of 3,601 SSRs (Simple Sequence Repeats) loci were also predicted. Conclusions/Significance The whole transcriptome pyrosequencing data from this study provides a usable genetic resource for future identification of potential functional genes involved in various biological processes. PMID:25265537
Current state of knowledge: the canine gastrointestinal microbiome.
Hooda, Seema; Minamoto, Yasushi; Suchodolski, Jan S; Swanson, Kelly S
2012-06-01
Gastrointestinal (GI) microbes have important roles in the nutritional, immunological, and physiologic processes of the host. Traditional cultivation techniques have revealed bacterial density ranges from 10(4) to 10(5) colony forming units (CFU)/g in the stomach, from 10(5) to 10(7) CFU/g in the small intestine, and from 10(9) to 10(11) CFU/g in the colon of healthy dogs. As a small number of bacterial species can be grown and studied in culture, however, progress was limited until the recent emergence of DNA-based techniques. In recent years, DNA sequencing technology and bioinformatics have allowed for better phylogenetic and functional/metabolic characterization of the canine gut microbiome. Predominant phyla include Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria. Studies using 16S ribosomal RNA (rRNA) gene pyrosequencing have demonstrated spatial differences along the GI tract and among microbes adhered to the GI mucosa compared to those in intestinal contents or feces. Similar to humans, GI microbiome dysbiosis is common in canine GI diseases such as chronic diarrhea and inflammatory bowel diseases. DNA-based assays have also identified key pathogens contributing to such conditions, including various Clostridium, Campylobacter, Salmonella, and Escherichia spp. Moreover, nutritionists have applied DNA-based techniques to study the effects of dietary interventions such as dietary fiber, prebiotics, and probiotics on the canine GI microbiome and associated health indices. Despite recent advances in the field, the canine GI microbiome is far from being fully characterized and a deeper characterization of the phylogenetic and functional/metabolic capacity of the GI microbiome in health and disease is needed. This paper provides an overview of recent studies performed to characterize the canine GI microbiome.
Anderson, Julia; Lemmer, Darrin; Lehmkuhl, Erik; Georghiou, Sophia B.; Heaton, Hannah; Wiggins, Kristin; Gillece, John D.; Schupp, James M.; Catanzaro, Donald G.; Crudu, Valeriu; Cohen, Ted; Rodwell, Timothy C.; Engelthaler, David M.
2016-01-01
Increasingly complex drug-resistant tuberculosis (DR-TB) is a major global health concern and one of the primary reasons why TB is now the leading infectious cause of death worldwide. Rapid characterization of a DR-TB patient's complete drug resistance profile would facilitate individualized treatment in place of empirical treatment, improve treatment outcomes, prevent amplification of resistance, and reduce the transmission of DR-TB. The use of targeted next-generation sequencing (NGS) to obtain drug resistance profiles directly from patient sputum samples has the potential to enable comprehensive evidence-based treatment plans to be implemented quickly, rather than in weeks to months, which is currently needed for phenotypic drug susceptibility testing (DST) results. In this pilot study, we evaluated the performance of amplicon sequencing of Mycobacterium tuberculosis DNA from patient sputum samples using a tabletop NGS technology and automated data analysis to provide a rapid DST solution (the Next Gen-RDST assay). One hundred sixty-six out of 176 (94.3%) sputum samples from the Republic of Moldova yielded complete Next Gen-RDST assay profiles for 7 drugs of interest. We found a high level of concordance of our Next Gen-RDST assay results with phenotypic DST (97.0%) and pyrosequencing (97.8%) results from the same clinical samples. Our Next Gen-RDST assay was also able to estimate the proportion of resistant-to-wild-type alleles down to mixtures of ≤1%, which demonstrates the ability to detect very low levels of resistant variants not detected by pyrosequencing and possibly below the threshold for phenotypic growth methods. The assay as described here could be used as a clinical or surveillance tool. PMID:27225403
Rodriguez-Sanchez, Alejandro; Rodelas, Belén; Abbas, Ben A.; Martinez-Toledo, Maria Victoria; van Loosdrecht, Mark C. M.; Osorio, F.; Gonzalez-Lopez, Jesus
2015-01-01
Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing) of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON) and three full-scale bioreactors (anammox, CANON, and DEMON), was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature). The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C) and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed. PMID:26421306
Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Rodelas, Belén; Abbas, Ben A; Martinez-Toledo, Maria Victoria; van Loosdrecht, Mark C M; Osorio, F; Gonzalez-Lopez, Jesus
2015-01-01
Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing) of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON) and three full-scale bioreactors (anammox, CANON, and DEMON), was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature). The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C) and hence a range of annealing temperatures of 44-49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.
DNA methylation and hydroxymethylation analyses of the active LINE-1 subfamilies in mice.
Murata, Yui; Bundo, Miki; Ueda, Junko; Kubota-Sakashita, Mie; Kasai, Kiyoto; Kato, Tadafumi; Iwamoto, Kazuya
2017-10-19
Retrotransposon long interspersed nuclear element-1 (LINE-1) occupies a large proportion of the mammalian genome, comprising approximately 100,000 genomic copies in mice. Epigenetic status of the 5' untranslated region (5'-UTR) of LINE-1 is critical for its promoter activity. DNA methylation levels in the 5'-UTR of human active LINE-1 subfamily can be measured by well-established methods, such as a pyrosequencing-based assay. However, because of the considerable sequence and structural diversity in LINE-1 among species, methods for such assays should be adapted for the species of interest. Here we developed pyrosequencing-based assays to examine methylcytosine (mC) and hydroxymethylcytosine (hmC) levels of the three active LINE-1 subfamilies in mice (TfI, A, and GfII). Using these assays, we quantified mC and hmC levels in four brain regions and four nonbrain tissues including tail, heart, testis, and ovary. We observed tissue- and subfamily-specific mC and hmC differences. We also found that mC levels were strongly correlated among different brain regions, but mC levels of the testis showed a poor correlation with those of other tissues. Interestingly, mC levels in the A and GfII subfamilies were highly correlated, possibly reflecting their close evolutionary relationship. Our assays will be useful for exploring the epigenetic regulation of the active LINE-1 subfamilies in mice.
Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing.
Wolcott, Randall D; Hanson, John D; Rees, Eric J; Koenig, Lawrence D; Phillips, Caleb D; Wolcott, Richard A; Cox, Stephen B; White, Jennifer S
2016-01-01
The extent to which microorganisms impair wound healing is an ongoing controversy in the management of chronic wounds. Because the high diversity and extreme variability of the microbiota between individual chronic wounds lead to inconsistent findings in small cohort studies, evaluation of a large number of chronic wounds using identical sequencing and bioinformatics methods is necessary for clinicians to be able to select appropriate empiric therapies. In this study, we utilized 16S rDNA pyrosequencing to analyze the composition of the bacterial communities present in samples obtained from patients with chronic diabetic foot ulcers (N = 910), venous leg ulcers (N = 916), decubitus ulcers (N = 767), and nonhealing surgical wounds (N = 370). The wound samples contained a high proportion of Staphylococcus and Pseudomonas species in 63 and 25% of all wounds, respectively; however, a high prevalence of anaerobic bacteria and bacteria traditionally considered commensalistic was also observed. Our results suggest that neither patient demographics nor wound type influenced the bacterial composition of the chronic wound microbiome. Collectively, these findings indicate that empiric antibiotic selection need not be based on nor altered for wound type. Furthermore, the results provide a much clearer understanding of chronic wound microbiota in general; clinical application of this new knowledge over time may help in its translation to improved wound healing outcomes. © 2015 by the Wound Healing Society.
Protist communities in a marine oxygen minimum zone off Costa Rica by 454 pyrosequencing
NASA Astrophysics Data System (ADS)
Jing, H.; Rocke, E.; Kong, L.; Xia, X.; Liu, H.; Landry, M. R.
2015-08-01
Marine planktonic protists, including microalgae and protistan grazers, are an important contributor to global primary production and carbon and mineral cycles, however, little is known about their population shifts along the oxic-anoxic gradient in the water column. We used 454 pyrosequencing of the 18S rRNA gene and gene transcripts to study the community composition of whole and active protists throughout a water column in the Costa Rica Dome, where a stable oxygen minimum zone (OMZ) exists at a depth of 400~700 m. A clear shift of protist composition from photosynthetic Dinoflagellates in the surface to potential parasitic Dinoflagellates and Ciliates in the deeper water was revealed along the vertical profile at both rRNA and rDNA levels. Those protist groups recovered only at the rDNA level represent either lysed aggregates sinking from the upper waters or potential hosts for parasitic groups. UPGMA clustering demonstrated that total and active protists in the anoxic core of OMZ (550 m) were distinct from those in other water depths. The reduced community diversity and presence of a parasitic/symbiotic trophic lifestyle in the OMZ, especially the anoxic core, suggests that OMZs can exert a selective pressure on protist communities. Such changes in community structure and a shift in trophic lifestyle could result in a modulation of the microbial loop and associated biogeochemical cycling.
Development of an ELA-DRA gene typing method based on pyrosequencing technology.
Díaz, S; Echeverría, M G; It, V; Posik, D M; Rogberg-Muñoz, A; Pena, N L; Peral-García, P; Vega-Pla, J L; Giovambattista, G
2008-11-01
The polymorphism of equine lymphocyte antigen (ELA) class II DRA gene had been detected by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) and reference strand-mediated conformation analysis. These methodologies allowed to identify 11 ELA-DRA exon 2 sequences, three of which are widely distributed among domestic horse breeds. Herein, we describe the development of a pyrosequencing-based method applicable to ELA-DRA typing, by screening samples from eight different horse breeds previously typed by PCR-SSCP. This sequence-based method would be useful in high-throughput genotyping of major histocompatibility complex genes in horses and other animal species, making this system interesting as a rapid screening method for animal genotyping of immune-related genes.
Harlid, Sophia; Adgent, Margaret; Jefferson, Wendy N.; Panduri, Vijayalakshmi; Umbach, David M.; Xu, Zongli; Stallings, Virginia A.; Williams, Carmen J.; Rogan, Walter J.; Taylor, Jack A.
2016-01-01
Background: Early-life exposure to estrogenic compounds affects the development of the reproductive system in rodent models and humans. Soy products, which contain phytoestrogens such as genistein, are one source of exposure in infants fed soy formula, and they result in high serum concentrations. Objectives: Our goal was to determine whether soy exposure is associated with differential DNA methylation in vaginal cells from soy-fed infant girls. Methods: Using the Illumina HumanMethylation450 BeadChip, we evaluated epigenome-wide DNA methylation in vaginal cells from four soy formula–fed and six cow formula–fed girls from the Infant Feeding and Early Development (IFED) study. Using pyrosequencing we followed up the two most differentially methylated sites in 214 vaginal cell samples serially collected between birth and 9 months of age from 50 girls (28 soy formula–fed and 22 cow formula–fed). With a mouse model, we examined the effect of neonatal exposure to genistein on gene specific mRNA levels in vaginal tissue. Results: The epigenome-wide scan suggested differences in methylation between soy formula–fed and cow formula–fed infants at three CpGs in the gene proline rich 5 like (PRR5L) (p < 104). Pyrosequencing of the two feeding groups found that methylation levels progressively diverged with age, with pointwise differences becoming statistically significant after 126 days. Genistein-exposed mice showed a 50% decrease in vaginal Prr5l mRNA levels compared to controls. Conclusions: Girls fed soy formula have altered DNA methylation in vaginal cell DNA which may be associated with decreased expression of an estrogen-responsive gene. Citation: Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. 2017. Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125:447–452; http://dx.doi.org/10.1289/EHP428 PMID:27539829
Harlid, Sophia; Adgent, Margaret; Jefferson, Wendy N; Panduri, Vijayalakshmi; Umbach, David M; Xu, Zongli; Stallings, Virginia A; Williams, Carmen J; Rogan, Walter J; Taylor, Jack A
2017-03-01
Early-life exposure to estrogenic compounds affects the development of the reproductive system in rodent models and humans. Soy products, which contain phytoestrogens such as genistein, are one source of exposure in infants fed soy formula, and they result in high serum concentrations. Our goal was to determine whether soy exposure is associated with differential DNA methylation in vaginal cells from soy-fed infant girls. Using the Illumina HumanMethylation450 BeadChip, we evaluated epigenome-wide DNA methylation in vaginal cells from four soy formula-fed and six cow formula-fed girls from the Infant Feeding and Early Development (IFED) study. Using pyrosequencing we followed up the two most differentially methylated sites in 214 vaginal cell samples serially collected between birth and 9 months of age from 50 girls (28 soy formula-fed and 22 cow formula-fed). With a mouse model, we examined the effect of neonatal exposure to genistein on gene specific mRNA levels in vaginal tissue. The epigenome-wide scan suggested differences in methylation between soy formula-fed and cow formula-fed infants at three CpGs in the gene proline rich 5 like ( PRR5L ) ( p < 10 4 ). Pyrosequencing of the two feeding groups found that methylation levels progressively diverged with age, with pointwise differences becoming statistically significant after 126 days. Genistein-exposed mice showed a 50% decrease in vaginal Prr5l mRNA levels compared to controls. Girls fed soy formula have altered DNA methylation in vaginal cell DNA which may be associated with decreased expression of an estrogen-responsive gene. Citation: Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. 2017. Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125:447-452; http://dx.doi.org/10.1289/EHP428.
Barault, L; Amatu, A; Bleeker, F E; Moutinho, C; Falcomatà, C; Fiano, V; Cassingena, A; Siravegna, G; Milione, M; Cassoni, P; De Braud, F; Rudà, R; Soffietti, R; Venesio, T; Bardelli, A; Wesseling, P; de Witt Hamer, P; Pietrantonio, F; Siena, S; Esteller, M; Sartore-Bianchi, A; Di Nicolantonio, F
2015-09-01
O(6)-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide. We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor and cell-free circulating DNA (cfDNA) from plasma samples using an ultra-sensitive two-step digital PCR technique (methyl-BEAMing). Results were compared with two established techniques, methylation-specific PCR (MSP) and Bs-pyrosequencing. Thresholds for MGMT methylated status for each technique were established in a training set of 98 glioblastoma (GBM) patients. The prognostic and the predictive value of MGMT methylated status was validated in a second cohort of 66 GBM patients treated with temozolomide in which methyl-BEAMing displayed a better specificity than the other techniques. Cutoff values of MGMT methylation specific for metastatic colorectal cancer (mCRC) tissue samples were established in a cohort of 60 patients treated with dacarbazine. In mCRC, both quantitative assays methyl-BEAMing and Bs-pyrosequencing outperformed MSP, providing better prediction of treatment response and improvement in progression-free survival (PFS) (P < 0.001). Ability of methyl-BEAMing to identify responding patients was validated in a cohort of 23 mCRC patients treated with temozolomide and preselected for MGMT methylated status according to MSP. In mCRC patients treated with dacarbazine, exploratory analysis of cfDNA by methyl-BEAMing showed that MGMT methylation was associated with better response and improved median PFS (P = 0.008). Methyl-BEAMing showed high reproducibility, specificity and sensitivity and was applicable to formalin-fixed paraffin-embedded tissues and cfDNA. This study supports the quantitative assessment of MGMT methylation for clinical purposes since it could refine prediction of response to alkylating agents. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Wu, Gary D; Lewis, James D; Hoffmann, Christian; Chen, Ying-Yu; Knight, Rob; Bittinger, Kyle; Hwang, Jennifer; Chen, Jun; Berkowsky, Ronald; Nessel, Lisa; Li, Hongzhe; Bushman, Frederic D
2010-07-30
Intense interest centers on the role of the human gut microbiome in health and disease, but optimal methods for analysis are still under development. Here we present a study of methods for surveying bacterial communities in human feces using 454/Roche pyrosequencing of 16S rRNA gene tags. We analyzed fecal samples from 10 individuals and compared methods for storage, DNA purification and sequence acquisition. To assess reproducibility, we compared samples one cm apart on a single stool specimen for each individual. To analyze storage methods, we compared 1) immediate freezing at -80 degrees C, 2) storage on ice for 24 or 3) 48 hours. For DNA purification methods, we tested three commercial kits and bead beating in hot phenol. Variations due to the different methodologies were compared to variation among individuals using two approaches--one based on presence-absence information for bacterial taxa (unweighted UniFrac) and the other taking into account their relative abundance (weighted UniFrac). In the unweighted analysis relatively little variation was associated with the different analytical procedures, and variation between individuals predominated. In the weighted analysis considerable variation was associated with the purification methods. Particularly notable was improved recovery of Firmicutes sequences using the hot phenol method. We also carried out surveys of the effects of different 454 sequencing methods (FLX versus Titanium) and amplification of different 16S rRNA variable gene segments. Based on our findings we present recommendations for protocols to collect, process and sequence bacterial 16S rDNA from fecal samples--some major points are 1) if feasible, bead-beating in hot phenol or use of the PSP kit improves recovery; 2) storage methods can be adjusted based on experimental convenience; 3) unweighted (presence-absence) comparisons are less affected by lysis method.
Kitchen, Mark O; Bryan, Richard T; Emes, Richard D; Luscombe, Christopher J; Cheng, KK; Zeegers, Maurice P; James, Nicholas D; Gommersall, Lyndon M; Fryer, Anthony A
2018-01-01
Background: High-risk non-muscle invasive bladder cancer (HR-NMIBC) is a clinically unpredictable disease. Despite clinical risk estimation tools, many patients are undertreated with intra-vesical therapies alone, whereas others may be over-treated with early radical surgery. Molecular biomarkers, particularly DNA methylation, have been reported as predictive of tumour/patient outcomes in numerous solid organ and haematologic malignancies; however, there are few reports in HR-NMIBC and none using genome-wide array assessment. We therefore sought to identify novel DNA methylation markers of HR-NMIBC clinical outcomes that might predict tumour behaviour at initial diagnosis and help guide patient management. Patients and methods: A total of 21 primary initial diagnosis HR-NMIBC tumours were analysed by Illumina HumanMethylation450 BeadChip arrays and subsequently bisulphite Pyrosequencing. In all, 7 had not recurred at 1 year after resection and 14 had recurred and/or progressed despite intra-vesical BCG. A further independent cohort of 32 HR-NMIBC tumours (17 no recurrence and 15 recurrence and/or progression despite BCG) were also assessed by bisulphite Pyrosequencing. Results: Array analyses identified 206 CpG loci that segregated non-recurrent HR-NMIBC tumours from clinically more aggressive recurrence/progression tumours. Hypermethylation of CpG cg11850659 and hypomethylation of CpG cg01149192 in combination predicted HR-NMIBC recurrence and/or progression within 1 year of diagnosis with 83% sensitivity, 79% specificity, and 83% positive and 79% negative predictive values. Conclusions: This is the first genome-wide DNA methylation analysis of a unique HR-NMIBC tumour cohort encompassing known 1-year clinical outcomes. Our analyses identified potential novel epigenetic markers that could help guide individual patient management in this clinically unpredictable disease. PMID:29343995
High-Throughput Analysis of Global DNA Methylation Using Methyl-Sensitive Digestion.
Shiratori, Hiromi; Feinweber, Carmen; Knothe, Claudia; Lötsch, Jörn; Thomas, Dominique; Geisslinger, Gerd; Parnham, Michael J; Resch, Eduard
2016-01-01
DNA methylation is a major regulatory process of gene transcription, and aberrant DNA methylation is associated with various diseases including cancer. Many compounds have been reported to modify DNA methylation states. Despite increasing interest in the clinical application of drugs with epigenetic effects, and the use of diagnostic markers for genome-wide hypomethylation in cancer, large-scale screening systems to measure the effects of drugs on DNA methylation are limited. In this study, we improved the previously established fluorescence polarization-based global DNA methylation assay so that it is more suitable for application to human genomic DNA. Our methyl-sensitive fluorescence polarization (MSFP) assay was highly repeatable (inter-assay coefficient of variation = 1.5%) and accurate (r2 = 0.99). According to signal linearity, only 50-80 ng human genomic DNA per reaction was necessary for the 384-well format. MSFP is a simple, rapid approach as all biochemical reactions and final detection can be performed in one well in a 384-well plate without purification steps in less than 3.5 hours. Furthermore, we demonstrated a significant correlation between MSFP and the LINE-1 pyrosequencing assay, a widely used global DNA methylation assay. MSFP can be applied for the pre-screening of compounds that influence global DNA methylation states and also for the diagnosis of certain types of cancer.
2018-01-01
ABSTRACT The complete genome sequence of Bacillus cereus strain TG1-6, which is a highly salt-tolerant rhizobacterium that enhances plant tolerance to drought stress, is reported here. The sequencing process was performed based on a combination of pyrosequencing and single-molecule sequencing. The complete genome is estimated to be approximately 5.42 Mb, containing a total of 5,610 predicted protein-coding DNA sequences (CDSs). PMID:29748401
Vílchez, Juan Ignacio; Tang, Qiming; Kaushal, Richa; Wang, Wei; Lv, Suhui; He, Danxia; Chu, Zhaoqing; Zhang, Heng; Liu, Renyi; Zhang, Huiming
2018-06-21
Here, we report the complete genome sequence for Bacillus megaterium strain YC4-R4, a highly salt-tolerant rhizobacterium that promotes growth in plants. The sequencing process was performed by combining pyrosequencing and single-molecule sequencing techniques. The complete genome is estimated to be approximately 5.44 Mb, containing a total of 5,673 predicted protein-coding DNA sequences (CDSs). Copyright © 2018 Vílchez et al.
Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru
2018-01-01
Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score ([Formula: see text]) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing [Formula: see text] >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of [Formula: see text] (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 ([Formula: see text] = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). We confirmed the existence of cis-regulated ASM around IBD susceptibility genes and the association between ASM SNP (rs36221701) genotype and SMAD3 expression, a susceptibility gene for IBD. These results give us supporting evidence that DNA methylation mediates genetic effects on disease susceptibility.
Wilson, L E; Harlid, S; Xu, Z; Sandler, D P; Taylor, J A
2017-01-01
The relationship between obesity and chronic disease risk is well-established; the underlying biological mechanisms driving this risk increase may include obesity-related epigenetic modifications. To explore this hypothesis, we conducted a genome-wide analysis of DNA methylation and body mass index (BMI) using data from a subset of women in the Sister Study. The Sister Study is a cohort of 50 884 US women who had a sister with breast cancer but were free of breast cancer themselves at enrollment. Study participants completed examinations which included measurements of height and weight, and provided blood samples. Blood DNA methylation data generated with the Illumina Infinium HumanMethylation27 BeadChip array covering 27,589 CpG sites was available for 871 women from a prior study of breast cancer and DNA methylation. To identify differentially methylated CpG sites associated with BMI, we analyzed this methylation data using robust linear regression with adjustment for age and case status. For those CpGs passing the false discovery rate significance level, we examined the association in a replication set comprised of a non-overlapping group of 187 women from the Sister Study who had DNA methylation data generated using the Infinium HumanMethylation450 BeadChip array. Analysis of this expanded 450 K array identified additional BMI-associated sites which were investigated with targeted pyrosequencing. Four CpG sites reached genome-wide significance (false discovery rate (FDR) q<0.05) in the discovery set and associations for all four were significant at strict Bonferroni correction in the replication set. An additional 23 sites passed FDR in the replication set and five were replicated by pyrosequencing in the discovery set. Several of the genes identified including ANGPT4, RORC, SOCS3, FSD2, XYLT1, ABCG1, STK39, ASB2 and CRHR2 have been linked to obesity and obesity-related chronic diseases. Our findings support the hypothesis that obesity-related epigenetic differences are detectable in blood and may be related to risk of chronic disease.
Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru
2018-01-01
Background Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. Methods CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score (ΔRAS¯) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing ΔRAS¯ >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. Results We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of ΔRAS¯ (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 (ΔRAS¯ = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). Conclusions We confirmed the existence of cis-regulated ASM around IBD susceptibility genes and the association between ASM SNP (rs36221701) genotype and SMAD3 expression, a susceptibility gene for IBD. These results give us supporting evidence that DNA methylation mediates genetic effects on disease susceptibility. PMID:29547621
454-pyrosequencing: A tool for discovery and biomarker development
USDA-ARS?s Scientific Manuscript database
The Roche GS-FLX (454) sequencer has made possible what was thought impossible just a few years ago: sequence >1 million high-quality nucleotide reads (mean 400 bp) in less than 12 h. This technology provides valuable species-specific sequence information, and is a valuable tool to discover and und...
Investigation of microbial diversity in the feces of cattle fed different diets
USDA-ARS?s Scientific Manuscript database
Understanding of the bovine fecal microbiome could contribute to solving issues regarding animal production, cattle health and food safety. The objective of this study was to examine the influence of diet on the fecal microbiome in feedlot cattle. The next-generation pyrosequencing technology was us...
Ultra high-throughput nucleic acid sequencing as a tool for virus discovery in the turkey gut.
USDA-ARS?s Scientific Manuscript database
Recently, the use of the next generation of nucleic acid sequencing technology (i.e., 454 pyrosequencing, as developed by Roche/454 Life Sciences) has allowed an in-depth look at the uncultivated microorganisms present in complex environmental samples, including samples with agricultural importance....
Sugai, Kyoko; Setsuko, Suzuki; Uchiyama, Kentaro; Murakami, Noriaki; Kato, Hidetoshi; Yoshimaru, Hiroshi
2012-02-01
Expressed sequence tag (EST)-derived microsatellite markers were developed for Elaeocarpus photiniifolia, an endemic taxon of the Bonin Islands. Initially, a complementary DNA (cDNA) library was constructed by de novo pyrosequencing of total RNA extracted from a seedling. A total of 267 primer pairs were designed from the library. Of the 48 tested loci, 25 loci were polymorphic among 41 individuals representing the entire geographical range of the species, with the number of alleles per locus and expected heterozygosity ranging from two to 14 and 0.09 to 0.86, respectively. Most loci were transferable to a related species, E. sylvestris. The developed markers will be useful for evaluating the genetic structure of E. photiniifolia.
Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing
Wang, Wei; Wang, Yejun; Zhang, Qing; Qi, Yan; Guo, Dianjing
2009-01-01
Background Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species. Results We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes. Conclusion The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua. PMID:19818120
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gihring, Thomas; Green, Stefan; Schadt, Christopher Warren
2011-01-01
Technologies for massively parallel sequencing are revolutionizing microbial ecology and are vastly increasing the scale of ribosomal RNA (rRNA) gene studies. Although pyrosequencing has increased the breadth and depth of possible rRNA gene sampling, one drawback is that the number of reads obtained per sample is difficult to control. Pyrosequencing libraries typically vary widely in the number of sequences per sample, even within individual studies, and there is a need to revisit the behaviour of richness estimators and diversity indices with variable gene sequence library sizes. Multiple reports and review papers have demonstrated the bias in non-parametric richness estimators (e.g.more » Chao1 and ACE) and diversity indices when using clone libraries. However, we found that biased community comparisons are accumulating in the literature. Here we demonstrate the effects of sample size on Chao1, ACE, CatchAll, Shannon, Chao-Shen and Simpson's estimations specifically using pyrosequencing libraries. The need to equalize the number of reads being compared across libraries is reiterated, and investigators are directed towards available tools for making unbiased diversity comparisons.« less
Kim, Hyun Young; Seo, Jiyoung; Kim, Tae-Hun; Shim, Bomi; Cha, Seok Mun; Yu, Seungho
2017-06-01
This study examined the use of microbial community structure as a bio-indicator of decomposition levels. High-throughput pyrosequencing technology was used to assess the shift in microbial community of leachate from animal carcass lysimeter. The leachate samples were collected monthly for one year and a total of 164,639 pyrosequencing reads were obtained and used in the taxonomic classification and operational taxonomy units (OTUs) distribution analysis based on sequence similarity. Our results show considerable changes in the phylum-level bacterial composition, suggesting that the microbial community is a sensitive parameter affected by the burial environment. The phylum classification results showed that Proteobacteria (Pseudomonas) were the most influential taxa in earlier decomposition stage whereas Firmicutes (Clostridium, Sporanaerobacter, and Peptostreptococcus) were dominant in later stage under anaerobic conditions. The result of this study can provide useful information on a time series of leachate profiles of microbial community structures and suggest patterns of microbial diversity in livestock burial sites. In addition, this result can be applicable to predict the decomposition stages under clay loam based soil conditions of animal livestock. Copyright © 2017 Elsevier B.V. All rights reserved.
De Novo Assembly and Functional Annotation of the Olive (Olea europaea) Transcriptome
Muñoz-Mérida, Antonio; González-Plaza, Juan José; Cañada, Andrés; Blanco, Ana María; García-López, Maria del Carmen; Rodríguez, José Manuel; Pedrola, Laia; Sicardo, M. Dolores; Hernández, M. Luisa; De la Rosa, Raúl; Belaj, Angjelina; Gil-Borja, Mayte; Luque, Francisco; Martínez-Rivas, José Manuel; Pisano, David G.; Trelles, Oswaldo; Valpuesta, Victoriano; Beuzón, Carmen R.
2013-01-01
Olive breeding programmes are focused on selecting for traits as short juvenile period, plant architecture suited for mechanical harvest, or oil characteristics, including fatty acid composition, phenolic, and volatile compounds to suit new markets. Understanding the molecular basis of these characteristics and improving the efficiency of such breeding programmes require the development of genomic information and tools. However, despite its economic relevance, genomic information on olive or closely related species is still scarce. We have applied Sanger and 454 pyrosequencing technologies to generate close to 2 million reads from 12 cDNA libraries obtained from the Picual, Arbequina, and Lechin de Sevilla cultivars and seedlings from a segregating progeny of a Picual × Arbequina cross. The libraries include fruit mesocarp and seeds at three relevant developmental stages, young stems and leaves, active juvenile and adult buds as well as dormant buds, and juvenile and adult roots. The reads were assembled by library or tissue and then assembled together into 81 020 unigenes with an average size of 496 bases. Here, we report their assembly and their functional annotation. PMID:23297299
Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs.
Mann, Evelyne; Wetzels, Stefanie U; Pinior, Beate; Metzler-Zebeli, Barbara U; Wagner, Martin; Schmitz-Esser, Stephan
2016-07-01
The aim of this study was to disentangle the microbial diversity on porcine musculature. The hypervariable V1-V2 region of the 16S rRNA gene was amplified from DNA samples of clinically healthy slaughter pigs (n=8). Pyrosequencing yielded 37,000 quality-controlled reads and a diverse microbiome with 54-159 OTUs per sample was detected. Interestingly, 6 out of 8 samples were strongly dominated by 1-2 highly abundant OTUs (best hits of highly abundant OTUs: Serratia proteamaculans, Pseudomonas syringae, Aeromonas allosaccharophila, Brochothrix thermosphacta, Acidiphilium cryptum and Escherichia coli). In 1g musculature scraping, 3.20E+06 16S rRNA gene copies and 4.45E+01 Enterobacteriaceae rRNA gene copies were detected with qPCR. We conclude that i.) next-generation sequencing technologies help encompass the full content of complex, bacterial contamination, ii.) psychrophile spoilers dominated the microbiota and iii.) E. coli is an effective marker species for pork contamination, as it was one of very few abundant species being present in all samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hurt, Richard A.; Robeson, Michael S.; Shakya, Migun; Moberly, James G.; Vishnivetskaya, Tatiana A.; Gu, Baohua; Elias, Dwayne A.
2014-01-01
Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered. PMID:25033199
Vasiljeviš, Nataڑa; Wu, Keqiang; Brentnall, Adam R.; Kim, Dae Cheol; Thorat, Mangesh A.; Kudahetti, Sakunthala C.; Mao, Xueying; Xue, Liyan; Yu, Yongwei; Shaw, Greg L.; Beltran, Luis; Lu, Yong-Jie; Berney, Daniel M.; Cuzick, Jack; Lorincz, Attila T.
2011-01-01
Aberrant DNA methylation plays a pivotal role in carcinogenesis and its mapping is likely to provide biomarkers for improved diagnostic and risk assessment in prostate cancer (PCa). We quantified and compared absolute methylation levels among 28 candidate genes in 48 PCa and 29 benign prostate hyperplasia (BPH) samples using the pyrosequencing (PSQ) method to identify genes with diagnostic and prognostic potential. RARB, HIN1, BCL2, GSTP1, CCND2, EGFR5, APC, RASSF1A, MDR1, NKX2-5, CDH13, DPYS, PTGS2, EDNRB, MAL, PDLIM4, HLAa, ESR1 and TIG1 were highly methylated in PCa compared to BPH (p < 0.001), while SERPINB5, CDH1, TWIST1, DAPK1, THRB, MCAM, SLIT2, CDKN2a and SFN were not. RARB methylation above 21% completely distinguished PCa from BPH. Separation based on methylation level of SFN, SLIT2 and SERPINB5 distinguished low and high Gleason score cancers, e.g. SFN and SERPINB5 together correctly classified 81% and 77% of high and low Gleason score cancers respectively. Several genes including CDH1 previously reported as methylation markers in PCa were not confirmed in our study. Increasing age was positively associated with gene methylation (p < 0.0001). Accurate quantitative measurement of gene methylation in PCa appears promising and further validation of genes like RARB, HIN1, BCL2, APC and GSTP1 is warranted for diagnostic potential and SFN, SLIT2 and SERPINB5 for prognostic potential. PMID:21694441
Lhomme, Emilie; Orain, Servane; Courcoux, Philippe; Onno, Bernard; Dousset, Xavier
2015-11-20
Fourteen bakeries located in different regions of France were selected. These bakers use natural sourdough and organic ingredients. Consequently, different organic sourdoughs used for the manufacture of French bread were studied by the enumeration of lactic acid bacteria (LAB) and 16S rRNA sequencing of the isolates. In addition, after DNA extraction the bacterial diversity was assessed by pyrosequencing of the 16S rDNA V1-V3 region. Although LAB counts showed significant variations (7.6-9.5log10CFU/g) depending on the sourdough studied, their identification through a polyphasic approach revealed a large predominance of Lactobacillus sanfranciscensis in all samples. In ten sourdoughs, both culture and independent methods identified L. sanfranciscensis as the dominant LAB species identified. In the remaining sourdoughs, culture methods identified 30-80% of the LAB as L. sanfranciscensis whereas more than 95% of the reads obtained by pyrosequencing belonged to L. sanfranciscensis. Other sub-dominant species, such as Lactobacillus curvatus, Lactobacillus hammesii, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei, were also identified. Quantification of L. sanfranciscensis by real-time PCR confirmed the predominance of this species ranging from 8.24 to 10.38log10CFU/g. Regarding the acidification characteristics, sourdough and related bread physico-chemical characteristics varied, questioning the involvement of sub-dominant species or L. sanfranciscensis intra-species diversity and/or the role of the baker's practices. Copyright © 2015 Elsevier B.V. All rights reserved.
Composition and variation of respiratory microbiota in healthy military personnel.
Hang, Jun; Zavaljevski, Nela; Yang, Yu; Desai, Valmik; Ruck, Richard C; Macareo, Louis R; Jarman, Richard G; Reifman, Jaques; Kuschner, Robert A; Keiser, Paul B
2017-01-01
Certain occupational and geographical exposures have been associated with an increased risk of lung disease. As a baseline for future studies, we sought to characterize the upper respiratory microbiomes of healthy military personnel in a garrison environment. Nasal, oropharyngeal, and nasopharyngeal swabs were collected from 50 healthy active duty volunteers eight times over the course of one year (1107 swabs, completion rate = 92.25%) and subjected to pyrosequencing of the V1-V3 region of 16S rDNA. Respiratory bacterial taxa were characterized at the genus level, using QIIME 1.8 and the Ribosomal Database Project classifier. High levels of Staphylococcus, Corynebacterium, and Propionibacterium were observed among both nasal and nasopharyngeal microbiota, comprising more than 75% of all operational taxonomical units (OTUs). In contrast, Streptococcus was the sole dominant bacterial genus (approximately 50% of all OTUs) in the oropharynx. The average bacterial diversity was greater in the oropharynx than in the nasal or nasopharyngeal region at all time points. Diversity analysis indicated a significant overlap between nasal and nasopharyngeal samples, whereas oropharyngeal samples formed a cluster distinct from these two regions. The study produced a large set of pyrosequencing data on the V1-V3 region of bacterial 16S rDNA for the respiratory microbiomes of healthy active duty Service Members. Pre-processing of sequencing reads showed good data quality. The derived microbiome profiles were consistent both internally and with previous reports, suggesting their utility for further analyses and association studies based on sequence and demographic data.
Bens, S; Ammerpohl, O; Martin-Subero, J I; Appari, M; Richter, J; Hiort, O; Werner, R; Riepe, F G; Siebert, R; Holterhus, P-M
2011-01-01
Male external genital differentiation is accompanied by implementation of a long-term, male-specific gene expression pattern indicating androgen programming in cultured genital fibroblasts. We hypothesized the existence of an epigenetic background contributing to this phenomenon. DNA methylation levels in 2 normal scrotal fibroblast strains from 46,XY males compared to 2 labia majora fibroblast strains from 46,XY females with complete androgen insensitivity syndrome (AIS) due to androgen receptor (AR) mutations were analyzed by Illumina GoldenGate methylation arrays®. Results were validated with pyrosequencing in labia majora fibroblast strains from fifteen 46,XY patients and compared to nine normal male scrotal fibroblast strains. HOXA5 showed a significantly higher methylation level in complete AIS. This finding was confirmed by bisulfite pyrosequencing of 14 CpG positions within the HOXA5 promoter in the same strains. Extension of the 2 groups revealed a constant low HOXA5 methylation pattern in the controls in contrast to a highly variable methylation pattern in the AIS patients. HOXA5 represents a candidate gene of androgen-mediated promoter methylation. The constantly low HOXA5 DNA methylation level of normal male scrotal fibroblast strains and the frequently high methylation levels in labia majora fibroblast strains in AIS indicate for the first time that androgen programming in sexual differentiation is not restricted to global gene transcription but also occurs at the epigenetic level. 2011 S. Karger AG, Basel.
USDA-ARS?s Scientific Manuscript database
The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes du...
Korsak, N; Taminiau, B; Leclercq, M; Nezer, C; Crevecoeur, S; Ferauche, C; Detry, E; Delcenserie, V; Daube, G
2015-06-01
Milk kefir is produced by fermenting milk in the presence of kefir grains. This beverage has several benefits for human health. The aim of this experiment was to analyze 5 kefir grains (and their products) using a targeted metagenetic approach. Of the 5 kefir grains analyzed, 1 was purchased in a supermarket, 2 were provided by the Ministry of Agriculture (Namur, Belgium), and 2 were provided by individuals. The metagenetic approach targeted the V1-V3 fragment of the 16S ribosomal (r)DNA for the grains and the resulting beverages at 2 levels of grain incorporation (5 and 10%) to identify the bacterial species population. In contrast, the 26S rDNA pyrosequencing was performed only on kefir grains with the aim of assessing the yeast populations. In parallel, pH measurements were performed on the kefir obtained from the kefir grains using 2 incorporation rates. Regarding the bacterial population, 16S pyrosequencing revealed the presence of 20 main bacterial species, with a dominance of the following: Lactobacillus kefiranofaciens, Lactococcus lactis ssp. cremoris, Gluconobacter frateurii, Lactobacillus kefiri, Acetobacter orientalis, and Acetobacter lovaniensis. An important difference was noticed between the kefir samples: kefir grain purchased from a supermarket (sample E) harbored a much higher proportion of several operational taxonomic units of Lactococcus lactis and Leuconostoc mesenteroides. This sample of grain was macroscopically different from the others in terms of size, apparent cohesion of the grains, structure, and texture, probably associated with a lower level of Lactobacillus kefiranofaciens. The kefir (at an incorporation rate of 5%) produced from this sample of grain was characterized by a lower pH value (4.5) than the others. The other 4 samples of kefir (5%) had pH values above 5. Comparing the kefir grain and the kefir, an increase in the population of Gluconobacter in grain sample B was observed. This was also the case for Acetobacter orientalis in sample D. In relation to 26S pyrosequencing, our study revealed the presence of 3 main yeast species: Naumovozyma spp., Kluyveromyces marxianus, and Kazachastania khefir. For Naumovozyma, further studies are needed to assess the isolation of new species. In conclusion, this study has proved that it is possible to establish the patterns of bacterial and yeast composition of kefir and kefir grain. This was only achieved with the use of high-throughput sequencing techniques. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Croville, Guillaume; Soubies, Sébastien Mathieu; Barbieri, Johanna; Klopp, Christophe; Mariette, Jérôme; Bouchez, Olivier; Camus-Bouclainville, Christelle
2012-01-01
Adaptation of avian influenza viruses (AIVs) from waterfowl to domestic poultry with a deletion in the neuraminidase (NA) stalk has already been reported. The way the virus undergoes this evolution, however, is thus far unclear. We address this question using pyrosequencing of duck and turkey low-pathogenicity AIVs. Ducks and turkeys were sampled at the very beginning of an H6N1 outbreak, and turkeys were swabbed again 8 days later. NA stalk deletions were evidenced in turkeys by Sanger sequencing. To further investigate viral evolution, 454 pyrosequencing was performed: for each set of samples, up to 41,500 reads of ca. 400 bp were generated and aligned. Genetic polymorphisms between duck and turkey viruses were tracked on the whole genome. NA deletion was detected in less than 2% of reads in duck feces but in 100% of reads in turkey tracheal specimens collected at the same time. Further variations in length were observed in NA from turkeys 8 days later. Similarly, minority mutants emerged on the hemagglutinin (HA) gene, with substitutions mostly in the receptor binding site on the globular head. These critical changes suggest a strong evolutionary pressure in turkeys. The increasing performances of next-generation sequencing technologies should enable us to monitor the genomic diversity of avian influenza viruses and early emergence of potentially pathogenic variants within bird flocks. The present study, based on 454 pyrosequencing, suggests that NA deletion, an example of AIV adaptation from waterfowl to domestic poultry, occurs by selection rather than de novo emergence of viral mutants. PMID:22718944
Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method
NASA Astrophysics Data System (ADS)
Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju
2015-10-01
DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers. Electronic supplementary information (ESI) available: Synthesis of CdSe/CdS/ZnS core/shell/shell QDs. Sequences of primers used for amplifying the promoter regions in bisulfate-modified DNA. Comparison of detected methylation levels in different gene promoters using the QD-based FRET method versus bisulfite pyrosequencing. Methylation levels of the RASSF1A gene in one pair of NT and cancer samples as indicated by pyrosequencing. Theoretical calculation of the Förster distance R0. See DOI: 10.1039/c5nr04956c
Foox, Jonathan; Brugler, Mercer; Siddall, Mark Edward; Rodríguez, Estefanía
2016-07-01
Six complete and three partial actiniarian mitochondrial genomes were amplified in two semi-circles using long-range PCR and pyrosequenced in a single run on a 454 GS Junior, doubling the number of complete mitogenomes available within the order. Typical metazoan mtDNA features included circularity, 13 protein-coding genes, 2 ribosomal RNA genes, and length ranging from 17,498 to 19,727 bp. Several typical anthozoan mitochondrial genome features were also observed including the presence of only two transfer RNA genes, elevated A + T richness ranging from 54.9 to 62.4%, large intergenic regions, and group 1 introns interrupting NADH dehydrogenase subunit 5 and cytochrome c oxidase subunit I, the latter of which possesses a homing endonuclease gene. Within the sea anemone Alicia sansibarensis, we report the first mitochondrial gene order rearrangement within the Actiniaria, as well as putative novel non-canonical protein-coding genes. Phylogenetic analyses of all 13 protein-coding and 2 ribosomal genes largely corroborated current hypotheses of sea anemone interrelatedness, with a few lower-level differences.
Sheveleva, Anna; Kudryavtseva, Anna; Speranskaya, Anna; Belenikin, Maxim; Melnikova, Natalia; Chirkov, Sergei
2013-10-01
The near-complete (99.7 %) genome sequence of a novel Russian Plum pox virus (PPV) isolate Pk, belonging to the strain Winona (W), has been determined by 454 pyrosequencing with the exception of the thirty-one 5'-terminal nucleotides. This region was amplified using 5'RACE kit and sequenced by the Sanger method. Genomic RNA released from immunocaptured PPV particles was employed for generation of cDNA library using TransPlex Whole transcriptome amplification kit (WTA2, Sigma-Aldrich). The entire Pk genome has identity level of 92.8-94.5 % when compared to the complete nucleotide sequences of other PPV-W isolates (W3174, LV-141pl, LV-145bt, and UKR 44189), confirming a high degree of variability within the PPV-W strain. The isolates Pk and LV-141pl are most closely related. The Pk has been found in a wild plum (Prunus domestica) in a new region of Russia indicating widespread dissemination of the PPV-W strain in the European part of the former USSR.
Zhao, Chao; Chu, Yanan; Li, Yanhong; Yang, Chengfeng; Chen, Yuqing; Wang, Xumin; Liu, Bin
2017-01-01
To analyze the microbial diversity and gene content of a thermophilic cellulose-degrading consortium from hot springs in Xiamen, China using 454 pyrosequencing for discovering cellulolytic enzyme resources. A thermophilic cellulose-degrading consortium, XM70 that was isolated from a hot spring, used sugarcane bagasse as sole carbon and energy source. DNA sequencing of the XM70 sample resulted in 349,978 reads with an average read length of 380 bases, accounting for 133,896,867 bases of sequence information. The characterization of sequencing reads and assembled contigs revealed that most microbes were derived from four phyla: Geobacillus (Firmicutes), Thermus, Bacillus, and Anoxybacillus. Twenty-eight homologous genes belonging to 15 glycoside hydrolase families were detected, including several cellulase genes. A novel hot spring metagenome-derived thermophilic cellulase was expressed and characterized. The application value of thermostable sugarcane bagasse-degrading enzymes is shown for production of cellulosic biofuel. The practical power of using a short-read-based metagenomic approach for harvesting novel microbial genes is also demonstrated.
Comparison of bacterial communities of conventional and A-stage activated sludge systems
Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.
2016-01-01
The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449
D'Addario, Claudio; Shchetynsky, Klementy; Pucci, Mariangela; Cifani, Carlo; Gunnar, Agneta; Vukojević, Vladana; Padyukov, Leonid; Terenius, Lars
2017-06-02
Dynorphins are critically involved in the development, maintenance and relapse of alcoholism. Alcohol-induced changes in the prodynorphin gene expression may be influenced by both gene polymorphisms and epigenetic modifications. The present study of human alcoholics aims to evaluate DNA methylation patterns in the prodynorphin gene (PDYN) promoter and to identify single nucleotide polymorphisms (SNPs) associated with alcohol dependence and with altered DNA methylation. Genomic DNA was isolated from peripheral blood cells of alcoholics and healthy controls, and DNA methylation was studied in the PDYN promoter by bisulfite pyrosequencing. In alcoholics, DNA methylation increased in three of the seven CpG sites investigated, as well as in the average of the seven CpG sites. Data stratification showed lower increase in DNA methylation levels in individuals reporting craving and with higher levels of alcohol consumption. Association with alcoholism was observed for rs2235751 and the presence of the minor allele G was associated with reduced DNA methylation at PDYN promoter in females and younger subjects. Genetic and epigenetic factors within PDYN are related to risk for alcoholism, providing further evidence of its involvement on ethanol effects. These results might be of relevance for developing new biomarkers to predict disease trajectories and therapeutic outcome. Copyright © 2017 Elsevier Inc. All rights reserved.
Successive DNA extractions improve characterization of soil microbial communities
de Hollander, Mattias; Smidt, Hauke; van Veen, Johannes A.
2017-01-01
Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition. PMID:28168105
2013-06-24
barrier induced by status epilepticus within the rat piriform cortex in interferon-gamma inde- pendent pathway. Brain Res. 1447, 126–134. doi:10.1016...hippocampus following status epilepticus . Neuroscience 170, 711–721. doi:10.1016/j.neuroscience. 2010.07.048 Sananbenesi, F., and Fischer, A. (2009). The...methylation status of each CpG locus was analyzed individually as a T/C SNP using QCpG software (Qiagen Pyrosequencing). The loci of specific CpGs measured
Genome Fragmentation Is Not Confined to the Peridinin Plastid in Dinoflagellates
Espelund, Mari; Minge, Marianne A.; Gabrielsen, Tove M.; Nederbragt, Alexander J.; Shalchian-Tabrizi, Kamran; Otis, Christian; Turmel, Monique; Lemieux, Claude; Jakobsen, Kjetill S.
2012-01-01
When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3′-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates. PMID:22719952
Jones, Ryan T; Robeson, Michael S; Lauber, Christian L; Hamady, Micah; Knight, Rob; Fierer, Noah
2010-01-01
Acidobacteria are ubiquitous and abundant members of soil bacterial communities. However, an ecological understanding of this important phylum has remained elusive because its members have been difficult to culture and few molecular investigations have focused exclusively on this group. We generated an unprecedented number of acidobacterial DNA sequence data using pyrosequencing and clone libraries (39 707 and 1787 sequences, respectively) to characterize the relative abundance, diversity and composition of acidobacterial communities across a range of soil types. To gain insight into the ecological characteristics of acidobacterial taxa, we investigated the large-scale biogeographic patterns exhibited by acidobacterial communities, and related soil and site characteristics to acidobacterial community assemblage patterns. The 87 soils analyzed by pyrosequencing contained more than 8600 unique acidobacterial phylotypes (at the 97% sequence similarity level). One phylotype belonging to Acidobacteria subgroup 1, but not closely related to any cultured representatives, was particularly abundant, accounting for 7.4% of bacterial sequences and 17.6% of acidobacterial sequences, on average, across the soils. The abundance of Acidobacteria relative to other bacterial taxa was highly variable across the soils examined, but correlated strongly with soil pH (R = −0.80, P<0.001). Soil pH was also the best predictor of acidobacterial community composition, regardless of how the communities were characterized, and the relative abundances of the dominant Acidobacteria subgroups were readily predictable. Acidobacterial communities were more phylogenetically clustered as soil pH departed from neutrality, suggesting that pH is an effective habitat filter, restricting community membership to progressively more narrowly defined lineages as pH deviates from neutrality. PMID:19129864
Analysis of bacterial xylose isomerase gene diversity using gene-targeted metagenomics.
Nurdiani, Dini; Ito, Michihiro; Maruyama, Toru; Terahara, Takeshi; Mori, Tetsushi; Ugawa, Shin; Takeyama, Haruko
2015-08-01
Bacterial xylose isomerases (XI) are promising resources for efficient biofuel production from xylose in lignocellulosic biomass. Here, we investigated xylose isomerase gene (xylA) diversity in three soil metagenomes differing in plant vegetation and geographical location, using an amplicon pyrosequencing approach and two newly-designed primer sets. A total of 158,555 reads from three metagenomic DNA replicates for each soil sample were classified into 1127 phylotypes, detected in triplicate and defined by 90% amino acid identity. The phylotype coverage was estimated to be within the range of 84.0-92.7%. The xylA gene phylotypes obtained were phylogenetically distributed across the two known xylA groups. They shared 49-100% identities with their closest-related XI sequences in GenBank. Phylotypes demonstrating <90% identity with known XIs in the database accounted for 89% of the total xylA phylotypes. The differences among xylA members and compositions within each soil sample were significantly smaller than they were between different soils based on a UniFrac distance analysis, suggesting soil-specific xylA genotypes and taxonomic compositions. The differences among xylA members and their compositions in the soil were strongly correlated with 16S rRNA variation between soil samples, also assessed by amplicon pyrosequencing. This is the first report of xylA diversity in environmental samples assessed by amplicon pyrosequencing. Our data provide information regarding xylA diversity in nature, and can be a basis for the screening of novel xylA genotypes for practical applications. Copyright © 2015. Published by Elsevier B.V.
Machado, V S; Oikonomou, G; Bicalho, M L S; Knauer, W A; Gilbert, R; Bicalho, R C
2012-10-12
The objective of this study was the use of metagenomic pyrosequencing of the 16S rRNA gene for the investigation of postpartum dairy cows' uterine bacterial diversity. The effect of subcutaneous supplementation of a trace mineral supplement containing Zn, Mn, Se, and Cu (Multimin North America, Inc., Fort Collins, CO) at 230 days of gestation and 260 days of gestation on dairy cows' uterine microbiota was also evaluated. Uterine lavage samples were collected at 35 DIM and were visually scored for the presence of purulent or mucopurulent secretion. The same samples were also used for the acquisition of bacterial DNA. The 16S rRNA genes were individually amplified from each sample. Pyrosequencing of the samples was carried at the Cornell University Life Sciences Core Laboratories Center using Roche 454 GS-FLX System Titanium Chemistry. The Ribosomal Database Project online tools were used for the analysis of the obtained sequences library. Bacteroides spp., Ureaplasma spp., Fusobacterium spp., Peptostreptococcus spp., Sneathia spp., Prevotella spp. and Arcanobacterium spp. prevalence was significantly (P<0.05) higher in samples derived from cows that had a higher uterine lavage sample score. Bacteroides spp., Ureaplasma spp., Fusobacterium spp., and Arcanobacterium spp. prevalence was significantly (P<0.05) higher in samples derived from cows that were not pregnant by 200 DIM. Anaerococcus spp., Peptostreptococcus spp., Parabacteroides spp., and Propionibacterium spp. prevalence was significantly (P<0.05) lower in samples derived from cows that were trace mineral supplemented. Copyright © 2012 Elsevier B.V. All rights reserved.
Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.
Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong
2017-10-15
Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Molano, Monica; Tabrizi, Sepehr N.; Garland, Suzanne M.; Roberts, Jennifer M.; Machalek, Dorothy A.; Phillips, Samuel; Chandler, David; Hillman, Richard J.; Grulich, Andrew E.; Jin, Fengyi; Poynten, I. Mary; Templeton, David J.; Cornall, Alyssa M.
2016-01-01
Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC) are associated with human papillomavirus (HPV). Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS) and laser capture microdissected (LCM) tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL. PMID:27529629
Molano, Monica; Tabrizi, Sepehr N; Garland, Suzanne M; Roberts, Jennifer M; Machalek, Dorothy A; Phillips, Samuel; Chandler, David; Hillman, Richard J; Grulich, Andrew E; Jin, Fengyi; Poynten, I Mary; Templeton, David J; Cornall, Alyssa M
2016-01-01
Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC) are associated with human papillomavirus (HPV). Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS) and laser capture microdissected (LCM) tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL.
Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis
Zhang, Shaoping; Crivello, Antonino; Offenbacher, Steven; Moretti, Antonio; Paquette, David W.; Barros, Silvana P.
2011-01-01
Aim The goal of this investigation was to determine whether epigenetic modifications in the IFNG promoter are associated with an increase of IFNG transcription in different stages of periodontal diseases. Materials and Methods DNA was extracted from gingival biopsy samples collected from 47 total sites from 47 different subjects: 23 periodontally healthy sites, 12 experimentally induced gingivitis sites and 12 chronic periodontitis sites. Levels of DNA methylation within the IFNG promoter containing six CpG dinucleotides were determined using pyrosequencing technology. Interferon gamma mRNA expression was analysed by quantitative polymerase chain reactions using isolated RNA from part of the biological samples mentioned above. Results The methylation level of all six analysed CpG sites within the IFNG promoter region in the periodontitis biopsies {52% [interquartile range, IQR (43.8%, 63%)]} was significantly lower than periodontally healthy samples {62% [IQR (51.3%, 74%)], p =0.007} and gingivitis biopsies {63% [IQR (55%, 74%)], p =0.02}. The transcriptional level of IFNG in periodontitis biopsies was 1.96-fold and significantly higher than tissues with periodontal health (p =0.04). Although the mRNA level from experimental gingivitis samples exhibited an 8.5-fold increase as compared with periodontally healthy samples, no significant methylation difference was observed in experimental gingivitis sample. Conclusions A hypomethylation profile within IFNG promoter region is related to an increase of IFNG transcription present in the chronic periodontitis biopsies, while such an increase of IFNG in experimentally induced gingivitis seems independent of promoter methylation alteration. PMID:20958339
Nanoliter reactors improve multiple displacement amplification of genomes from single cells.
Marcy, Yann; Ishoey, Thomas; Lasken, Roger S; Stockwell, Timothy B; Walenz, Brian P; Halpern, Aaron L; Beeson, Karen Y; Goldberg, Susanne M D; Quake, Stephen R
2007-09-01
Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA) method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-microl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.
Xiao, Cuicui; Ran, Shujun; Huang, Zhengwei; Liang, Jingping
2016-01-01
Dental caries has a polymicrobial etiology within the complex oral microbial ecosystem. However, the overall diversity and structure of supragingival plaque microbiota in adult dental health and caries are not well understood. Here, 160 supragingival plaque samples from patients with dental health and different severities of dental caries were collected for bacterial genomic DNA extraction, pyrosequencing by amplification of the 16S rDNA V1–V3 hypervariable regions, and bioinformatic analysis. High-quality sequences (2,261,700) clustered into 10,365 operational taxonomic units (OTUs; 97% identity), representing 453 independent species belonging to 122 genera, 66 families, 34 orders, 21 classes, and 12 phyla. All groups shared 7522 OTUs, indicating the presence of a core plaque microbiome. α diversity analysis showed that the microbial diversity in healthy plaques exceeded that of dental caries, with the diversity decreasing gradually with the severity of caries. The dominant phyla of plaque microbiota included Bacteroidetes, Actinobacteria, Proteobacteria, Firmicutes, Fusobacteria, and TM7. The dominant genera included Capnocytophaga, Prevotella, Actinomyces, Corynebacterium, Neisseria, Streptococcus, Rothia, and Leptotrichia. β diversity analysis showed that the plaque microbial community structure was similar in all groups. Using LEfSe analysis, 25 differentially abundant taxa were identified as potential biomarkers. Key genera (27) that potentially contributed to the differential distributions of plaque microbiota between groups were identified by PLS-DA analysis. Finally, co-occurrence network analysis and function predictions were performed. Treatment strategies directed toward modulating microbial interactions and their functional output should be further developed. PMID:27499752
Gutierrez, Tony; Singleton, David R; Berry, David; Yang, Tingting; Aitken, Michael D; Teske, Andreas
2013-01-01
The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil. PMID:23788333
Composition and variation of respiratory microbiota in healthy military personnel
Zavaljevski, Nela; Yang, Yu; Desai, Valmik; Ruck, Richard C.; Macareo, Louis R.; Jarman, Richard G.; Reifman, Jaques; Kuschner, Robert A.; Keiser, Paul B.
2017-01-01
Certain occupational and geographical exposures have been associated with an increased risk of lung disease. As a baseline for future studies, we sought to characterize the upper respiratory microbiomes of healthy military personnel in a garrison environment. Nasal, oropharyngeal, and nasopharyngeal swabs were collected from 50 healthy active duty volunteers eight times over the course of one year (1107 swabs, completion rate = 92.25%) and subjected to pyrosequencing of the V1–V3 region of 16S rDNA. Respiratory bacterial taxa were characterized at the genus level, using QIIME 1.8 and the Ribosomal Database Project classifier. High levels of Staphylococcus, Corynebacterium, and Propionibacterium were observed among both nasal and nasopharyngeal microbiota, comprising more than 75% of all operational taxonomical units (OTUs). In contrast, Streptococcus was the sole dominant bacterial genus (approximately 50% of all OTUs) in the oropharynx. The average bacterial diversity was greater in the oropharynx than in the nasal or nasopharyngeal region at all time points. Diversity analysis indicated a significant overlap between nasal and nasopharyngeal samples, whereas oropharyngeal samples formed a cluster distinct from these two regions. The study produced a large set of pyrosequencing data on the V1–V3 region of bacterial 16S rDNA for the respiratory microbiomes of healthy active duty Service Members. Pre-processing of sequencing reads showed good data quality. The derived microbiome profiles were consistent both internally and with previous reports, suggesting their utility for further analyses and association studies based on sequence and demographic data. PMID:29216202
Phylogenetically Distinct Phylotypes Modulate Nitrification in a Paddy Soil
Zhao, Jun; Wang, Baozhan
2015-01-01
Paddy fields represent a unique ecosystem in which regular flooding occurs, allowing for rice cultivation. However, the taxonomic identity of the microbial functional guilds that catalyze soil nitrification remains poorly understood. In this study, we provide molecular evidence for distinctly different phylotypes of nitrifying communities in a neutral paddy soil using high-throughput pyrosequencing and DNA-based stable isotope probing (SIP). Following urea addition, the levels of soil nitrate increased significantly, accompanied by an increase in the abundance of the bacterial and archaeal amoA gene in microcosms subjected to SIP (SIP microcosms) during a 56-day incubation period. High-throughput fingerprints of the total 16S rRNA genes in SIP microcosms indicated that nitrification activity positively correlated with the abundance of Nitrosospira-like ammonia-oxidizing bacteria (AOB), soil group 1.1b-like ammonia-oxidizing archaea (AOA), and Nitrospira-like nitrite-oxidizing bacteria (NOB). Pyrosequencing of 13C-labeled DNA further revealed that 13CO2 was assimilated by these functional groups to a much greater extent than by marine group 1.1a-associated AOA and Nitrobacter-like NOB. Phylogenetic analysis demonstrated that active AOB communities were closely affiliated with Nitrosospira sp. strain L115 and the Nitrosospira multiformis lineage and that the 13C-labeled AOA were related to phylogenetically distinct groups, including the moderately thermophilic “Candidatus Nitrososphaera gargensis,” uncultured fosmid 29i4, and acidophilic “Candidatus Nitrosotalea devanaterra” lineages. These results suggest that a wide variety of microorganisms were involved in soil nitrification, implying physiological diversification of soil nitrifying communities that are constantly exposed to environmental fluctuations in paddy fields. PMID:25724959
Aberrant Promoter Methylation and Expression of UTF1 during Cervical Carcinogenesis
Deplus, Rachel; Lampe, Xavier; Krusy, Nathalie; Calonne, Emilie; Delbecque, Katty; Kridelka, Frederic; Fuks, François; Ennaji, My Mustapha; Delvenne, Philippe
2012-01-01
Promoter methylation profiles are proposed as potential prognosis and/or diagnosis biomarkers in cervical cancer. Up to now, little is known about the promoter methylation profile and expression pattern of stem cell (SC) markers during tumor development. In this study, we were interested to identify SC genes methylation profiles during cervical carcinogenesis. A genome-wide promoter methylation screening revealed a strong hypermethylation of Undifferentiated cell Transcription Factor 1 (UTF1) promoter in cervical cancer in comparison with normal ectocervix. By direct bisulfite pyrosequencing of DNA isolated from liquid-based cytological samples, we showed that UTF1 promoter methylation increases with lesion severity, the highest level of methylation being found in carcinoma. This hypermethylation was associated with increased UTF1 mRNA and protein expression. By using quantitative RT-PCR and Western Blot, we showed that both UTF1 mRNA and protein are present in epithelial cancer cell lines, even in the absence of its two main described regulators Oct4A and Sox2. Moreover, by immunofluorescence, we confirmed the nuclear localisation of UTF1 in cell lines. Surprisingly, direct bisulfite pyrosequencing revealed that the inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine was associated with decreased UTF1 gene methylation and expression in two cervical cancer cell lines of the four tested. These findings strongly suggest that UTF1 promoter methylation profile might be a useful biomarker for cervical cancer diagnosis and raise the questions of its role during epithelial carcinogenesis and of the mechanisms regulating its expression. PMID:22880087
Frequent silencing of RASSF1A by DNA methylation in thymic neuroendocrine tumours.
Kajiura, Koichiro; Takizawa, Hiromitsu; Morimoto, Yuki; Masuda, Kiyoshi; Tsuboi, Mitsuhiro; Kishibuchi, Reina; Wusiman, Nuliamina; Sawada, Toru; Kawakita, Naoya; Toba, Hiroaki; Yoshida, Mitsuteru; Kawakami, Yukikiyo; Naruto, Takuya; Imoto, Issei; Tangoku, Akira; Kondo, Kazuya
2017-09-01
Aberrant methylation of promoter CpG islands (CGIs) of tumour suppressor genes is a common epigenetic mechanism underlying cancer pathogenesis. The methylation patterns of thymic tumours have not been studied in detail since such tumours are rare. Herein, we sought to identify genes that could serve as epigenetic targets for thymic neuroendocrine tumour (NET) therapy. Genome-wide screening for aberrantly methylated CGIs was performed in three NET samples, seven thymic carcinoma (TC) samples, and eight type-B3 thymoma samples. The methylation status of thymic epithelial tumours (TETs) samples was validated by pyrosequencing in a larger cohort. The expression status was analysed by quantitative polymerase chain reaction (PCR) and immunohistochemistry. We identified a CGI on a novel gene, RASSF1A, which was strongly hypermethylated in NET, but not in thymic carcinoma or B3 thymoma. RASSF1A was identified as a candidate gene statistically and bibliographically, as it showed frequent CGI hypermethylation in NET by genome-wide screening. Pyrosequencing confirmed significant hypermethylation of a RASSF1A CGI in NET. Low-grade NET tissue was more strongly methylated than high-grade NET. Quantitative PCR and immunohistochemical staining revealed that RASSF1A mRNA and protein expression levels were negatively regulated by DNA methylation. RASSF1A is a tumour suppressor gene epigenetically dysregulated in NET. Aberrant methylation of RASSF1A has been reported in various tumours, but this is the first report of RASSF1A hypermethylation in TETs. RASSF1A may represent an epigenetic therapeutic target in thymic NET. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimized DNA extraction from neonatal dried blood spots: application in methylome profiling
2014-01-01
Background Neonatal dried blood spots (DBS) represent an inexpensive method for long-term biobanking worldwide and are considered gold mines for research for several human diseases, including those of metabolic, infectious, genetic and epigenetic origin. However, the utility of DBS is restricted by the limited amount and quality of extractable biomolecules (including DNA), especially for genome wide profiling. Degradation of DNA in DBS often occurs during storage and extraction. Moreover, amplifying small quantities of DNA often leads to a bias in subsequent data, particularly in methylome profiles. Thus it is important to develop methodologies that maximize both the yield and quality of DNA from DBS for downstream analyses. Results Using combinations of in-house-derived and modified commercial extraction kits, we developed a robust and efficient protocol, compatible with methylome studies, many of which require stringent bisulfite conversion steps. Several parameters were tested in a step-wise manner, including blood extraction, cell lysis, protein digestion, and DNA precipitation, purification and elution. DNA quality was assessed based on spectrophotometric measurements, DNA detectability by PCR, and DNA integrity by gel electrophoresis and bioanalyzer analyses. Genome scale Infinium HumanMethylation450 and locus-specific pyrosequencing data generated using the refined DBS extraction protocol were of high quality, reproducible and consistent. Conclusions This study may prove useful to meet the increased demand for research on prenatal, particularly epigenetic, origins of human diseases and for newborn screening programs, all of which are often based on DNA extracted from DBS. PMID:24980254
2010-01-01
Intense interest centers on the role of the human gut microbiome in health and disease, but optimal methods for analysis are still under development. Here we present a study of methods for surveying bacterial communities in human feces using 454/Roche pyrosequencing of 16S rRNA gene tags. We analyzed fecal samples from 10 individuals and compared methods for storage, DNA purification and sequence acquisition. To assess reproducibility, we compared samples one cm apart on a single stool specimen for each individual. To analyze storage methods, we compared 1) immediate freezing at -80°C, 2) storage on ice for 24 or 3) 48 hours. For DNA purification methods, we tested three commercial kits and bead beating in hot phenol. Variations due to the different methodologies were compared to variation among individuals using two approaches--one based on presence-absence information for bacterial taxa (unweighted UniFrac) and the other taking into account their relative abundance (weighted UniFrac). In the unweighted analysis relatively little variation was associated with the different analytical procedures, and variation between individuals predominated. In the weighted analysis considerable variation was associated with the purification methods. Particularly notable was improved recovery of Firmicutes sequences using the hot phenol method. We also carried out surveys of the effects of different 454 sequencing methods (FLX versus Titanium) and amplification of different 16S rRNA variable gene segments. Based on our findings we present recommendations for protocols to collect, process and sequence bacterial 16S rDNA from fecal samples--some major points are 1) if feasible, bead-beating in hot phenol or use of the PSP kit improves recovery; 2) storage methods can be adjusted based on experimental convenience; 3) unweighted (presence-absence) comparisons are less affected by lysis method. PMID:20673359
Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy
Declerck, Ken; Traen, Sophie; Koppen, Gudrun; Van Camp, Guy; Schoeters, Greet; Vanden Berghe, Wim; De Boever, Patrick
2016-01-01
The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field of respiratory allergy. PMID:26999364
Fotouhi, Omid; Adel Fahmideh, Maral; Kjellman, Magnus; Sulaiman, Luqman; Höög, Anders; Zedenius, Jan; Hashemi, Jamileh; Larsson, Catharina
2014-07-01
Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2-3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2-3, and CXCL14 expression was reduced in metastases vs. primary tumors (P<0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.
Llera-Herrera, Raúl; García-Gasca, Alejandra; Abreu-Goodger, Cei; Huvet, Arnaud; Ibarra, Ana M.
2013-01-01
Despite the great advances in sequencing technologies, genomic and transcriptomic information for marine non-model species with ecological, evolutionary, and economical interest is still scarce. In this work we aimed to identify genes expressed during spermatogenesis in the functional hermaphrodite scallop Nodipecten subnodosus (Mollusca: Bivalvia: Pectinidae), with the purpose of obtaining a panel of genes that would allow for the study of differentially transcribed genes between diploid and triploid scallops in the context of meiotic arrest and reproductive sterility. Because our aim was to isolate genes involved in meiosis and other testis maturation-related processes, we generated suppressive subtractive hybridization libraries of testis vs. inactive gonad. We obtained 352 and 177 ESTs by clone sequencing, and using pyrosequencing (454-Roche) we maximized the identified ESTs to 34,276 reads. A total of 1,153 genes from the testis library had a blastx hit and GO annotation, including genes specific for meiosis, spermatogenesis, sex-differentiation, and transposable elements. Some of the identified meiosis genes function in chromosome pairing (scp2, scp3), recombination and DNA repair (dmc1, rad51, ccnb1ip1/hei10), and meiotic checkpoints (rad1, hormad1, dtl/cdt2). Gene expression analyses in different gametogenic stages in both sexual regions of the gonad of meiosis genes confirmed that the expression was specific or increased towards the maturing testis. Spermatogenesis genes included known testis-specific ones (kelch-10, shippo1, adad1), with some of these known to be associated to sterility. Sex differentiation genes included one of the most conserved genes at the bottom of the sex-determination cascade (dmrt1). Transcript from transposable elements, reverse transcriptase, and transposases in this library evidenced that transposition is an active process during spermatogenesis in N. subnodosus. In relation to the inactive library, we identified 833 transcripts with functional annotation related to activation of the transcription and translation machinery, as well as to germline control and maintenance. PMID:24066034
O'Doherty, Alan M; McGettigan, Paul; Irwin, Rachelle E; Magee, David A; Gagne, Dominic; Fournier, Eric; Al-Naib, Abdullah; Sirard, Marc-André; Walsh, Colum P; Robert, Claude; Fair, Trudee
2018-06-05
Assisted reproductive technologies (ART) are widely used to treat fertility issues in humans and for the production of embryos in mammalian livestock. The use of these techniques, however, is not without consequence as they are often associated with inauspicious pre- and postnatal outcomes including premature birth, intrauterine growth restriction and increased incidence of epigenetic disorders in human and large offspring syndrome in cattle. Here, global DNA methylation profiles in the trophectoderm and embryonic discs of in vitro produced (IVP), superovulation-derived (SOV) and unstimulated, synchronised control day 17 bovine conceptuses (herein referred to as AI) were interrogated using the EmbryoGENE DNA Methylation Array (EDMA). Pyrosequencing was used to validate four loci identified as differentially methylated on the array and to assess the differentially methylated regions (DMRs) of six imprinted genes in these conceptuses. The impact of embryo-production induced DNA methylation aberrations was determined using Ingenuity Pathway Analysis, shedding light on the potential functional consequences of these differences. Of the total number of differentially methylated loci identified (3140) 77.3 and 22.7% were attributable to SOV and IVP, respectively. Differential methylation was most prominent at intragenic sequences within the trophectoderm of IVP and SOV-derived conceptuses, almost a third (30.8%) of the differentially methylated loci mapped to intragenic regions. Very few differentially methylated loci were detected in embryonic discs (ED); 0.16 and 4.9% of the differentially methylated loci were located in the ED of SOV-derived and IVP conceptuses, respectively. The overall effects of SOV and IVP on the direction of methylation changes were associated with increased methylation; 70.6% of the differentially methylated loci in SOV-derived conceptuses and 57.9% of the loci in IVP-derived conceptuses were more methylated compared to AI-conceptuses. Ontology analysis of probes associated with intragenic sequences suggests enrichment for terms associated with cancer, cell morphology and growth. By examining (1) the effects of superovulation and (2) the effects of an in vitro system (oocyte maturation, fertilisation and embryo culture) we have identified that the assisted reproduction process of superovulation alone has the largest impact on the DNA methylome of subsequent embryos.
Hot-Alkaline DNA Extraction Method for Deep-Subseafloor Archaeal Communities
Terada, Takeshi; Hoshino, Tatsuhiko; Inagaki, Fumio
2014-01-01
A prerequisite for DNA-based microbial community analysis is even and effective cell disruption for DNA extraction. With a commonly used DNA extraction kit, roughly two-thirds of subseafloor sediment microbial cells remain intact on average (i.e., the cells are not disrupted), indicating that microbial community analyses may be biased at the DNA extraction step, prior to subsequent molecular analyses. To address this issue, we standardized a new DNA extraction method using alkaline treatment and heating. Upon treatment with 1 M NaOH at 98°C for 20 min, over 98% of microbial cells in subseafloor sediment samples collected at different depths were disrupted. However, DNA integrity tests showed that such strong alkaline and heat treatment also cleaved DNA molecules into short fragments that could not be amplified by PCR. Subsequently, we optimized the alkaline and temperature conditions to minimize DNA fragmentation and retain high cell disruption efficiency. The best conditions produced a cell disruption rate of 50 to 80% in subseafloor sediment samples from various depths and retained sufficient DNA integrity for amplification of the complete 16S rRNA gene (i.e., ∼1,500 bp). The optimized method also yielded higher DNA concentrations in all samples tested compared with extractions using a conventional kit-based approach. Comparative molecular analysis using real-time PCR and pyrosequencing of bacterial and archaeal 16S rRNA genes showed that the new method produced an increase in archaeal DNA and its diversity, suggesting that it provides better analytical coverage of subseafloor microbial communities than conventional methods. PMID:24441163
Oh, Yejin; Song, Ik-Chan; Kim, Jimyung; Kwon, Gye Cheol; Koo, Sun Hoe; Kim, Seon Young
2018-05-01
We developed a pyrosequencing-based method for the quantification of CALR mutations and compared the results using Sanger sequencing, fragment length analysis (FLA), digital-droplet PCR (ddPCR), and next-generation sequencing (NGS). Method validation studies were performed using cloned plasmid controls. Samples from 24 patients with myeloproliferative neoplasms were evaluated. Among the 24 patients, 15 had CALR mutations (7 type 1, 2 type 2, and 6 other mutations). The type 1 or type 2 mutation-positive results from pyrosequencing exhibited 100% concordance with the Sanger sequencing results. One novel CALR mutation was not detected by pyrosequencing. The CALR mutation allele burdens measured by pyrosequencing were slightly lower than those measured by FLA but slightly higher than the results obtained using ddPCR. Pyrosequencing exhibited high correlations with both methods. The mutation allele burdens estimated by NGS were significantly lower than those measured by pyrosequencing. An increased CALR mutation allele burden was associated with overt primary myelofibrosis. Patients with >70% mutation allele burdens in myeloid cells had a significantly longer time from diagnosis (P = 0.007), more bone marrow fibrosis (P = 0.010), and lower hemoglobin (P = 0.007). Pyrosequencing was a useful rapid sequencing method to determine the burden of CALR mutations. Copyright © 2018 Elsevier B.V. All rights reserved.
Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352
Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.
Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun; ...
2014-07-14
Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na 2SO 4 and NH 4H 2PO 4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25more » g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun
Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na 2SO 4 and NH 4H 2PO 4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25more » g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.« less
Gilbert, Jack A; Field, Dawn; Huang, Ying; Edwards, Rob; Li, Weizhong; Gilna, Paul; Joint, Ian
2008-08-22
Sequencing the expressed genetic information of an ecosystem (metatranscriptome) can provide information about the response of organisms to varying environmental conditions. Until recently, metatranscriptomics has been limited to microarray technology and random cloning methodologies. The application of high-throughput sequencing technology is now enabling access to both known and previously unknown transcripts in natural communities. We present a study of a complex marine metatranscriptome obtained from random whole-community mRNA using the GS-FLX Pyrosequencing technology. Eight samples, four DNA and four mRNA, were processed from two time points in a controlled coastal ocean mesocosm study (Bergen, Norway) involving an induced phytoplankton bloom producing a total of 323,161,989 base pairs. Our study confirms the finding of the first published metatranscriptomic studies of marine and soil environments that metatranscriptomics targets highly expressed sequences which are frequently novel. Our alternative methodology increases the range of experimental options available for conducting such studies and is characterized by an exceptional enrichment of mRNA (99.92%) versus ribosomal RNA. Analysis of corresponding metagenomes confirms much higher levels of assembly in the metatranscriptomic samples and a far higher yield of large gene families with >100 members, approximately 91% of which were novel. This study provides further evidence that metatranscriptomic studies of natural microbial communities are not only feasible, but when paired with metagenomic data sets, offer an unprecedented opportunity to explore both structure and function of microbial communities--if we can overcome the challenges of elucidating the functions of so many never-seen-before gene families.
Considerations for standardizing predictive molecular pathology for cancer prognosis.
Fiorentino, Michelangelo; Scarpelli, Marina; Lopez-Beltran, Antonio; Cheng, Liang; Montironi, Rodolfo
2017-01-01
Molecular tests that were once ancillary to the core business of cyto-histopathology are becoming the most relevant workload in pathology departments after histopathology/cytopathology and before autopsies. This has resulted from innovations in molecular biology techniques, which have developed at an incredibly fast pace. Areas covered: Most of the current widely used techniques in molecular pathology such as FISH, direct sequencing, pyrosequencing, and allele-specific PCR will be replaced by massive parallel sequencing that will not be considered next generation, but rather, will be considered to be current generation sequencing. The pre-analytical steps of molecular techniques such as DNA extraction or sample preparation will be largely automated. Moreover, all the molecular pathology instruments will be part of an integrated workflow that traces the sample from extraction to the analytical steps until the results are reported; these steps will be guided by expert laboratory information systems. In situ hybridization and immunohistochemistry for quantification will be largely digitalized as much as histology will be mostly digitalized rather than viewed using microscopy. Expert commentary: This review summarizes the technical and regulatory issues concerning the standardization of molecular tests in pathology. A vision of the future perspectives of technological changes is also provided.
Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance.
Schmidt, Felix; Efferth, Thomas
2016-06-16
Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1) single cell isolation (e.g., by laser-capture microdissection), fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase), and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems). Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.
A significant association between BDNF promoter methylation and the risk of drug addiction.
Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei
2016-06-10
As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction. Copyright © 2016. Published by Elsevier B.V.
Liu, Xin; Kuda, Takashi; Takahashi, Hajime; Kimura, Bon
2018-06-01
The Rubing milk cake from Yunnan and the Yan-cai vegetable pickles from Guangdong are traditional spontaneously fermented foods in China. We evaluated the microbial properties of these products with the analysis of their bacterial and fungal microbiota using classical culture-dependent and culture-independent methods, including a 16S rDNA gene (V4) and an internal transcribed spacer (ITS) region pyrosequencing method with MiSeq system. The viable lactic acid bacteria (LAB) count was 8 and 6 log colony-forming units (CFU)/g in Rubing and Yan-cai samples, respectively. The yeast count was approximately 100-1000 times less than the LAB count in most samples, except one Yan-cai sample. In addition, the gram-negative rod count in half of the samples was similar to the LAB count. Pyrosequencing results revealed the high abundance (10%-20%) of gram-negative Pseudomonas spp. and Enterobacteriaceae in these samples. These results suggest that some of these traditional foods are undesirable as ready-to-eat (RTE) foods, even when these are typical lactic acid fermented foods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tun, Hein Min; Mauroo, Nathalie France; Yuen, Chan San; Ho, John Chi Wang; Wong, Mabel Ting; Leung, Frederick Chi-Ching
2014-01-01
Recent studies have described the bacterial community residing in the guts of giant pandas, together with the presence of lignocellulolytic enzymes. However, a more comprehensive understanding of the intestinal microbial composition and its functional capacity in giant pandas remains a major goal. Here, we conducted a comparison of bacterial, fungal and homoacetogenic microbial communities from fecal samples taken from two geriatric and two adult captive giant pandas. 16S rDNA amplicon pyrosequencing revealed that Firmicutes and Proteobacteria are the most abundant microbiota in both geriatric and adult giant pandas. However, members of phylum Actinobacteria found in adult giant pandas were absent in their geriatric counterparts. Similarly, ITS1 amplicon pyrosequencing identified developmental changes in the most abundant fungal classes from Sordariomycetes in adult pandas to Saccharomycetes in geriatric pandas. Geriatric pandas exhibited significantly higher abundance of a potential probiotic fungus (Candida tropicalis) as compared to adult pandas, indicating their importance in the normal digestive physiology of aged pandas. Our study also reported the presence of a lignocellulolytic white-rot fungus, Perenniporia medulla-panis, and the evidence of novel homoacetogens residing in the guts of giant pandas.
Frank, Renee; Baloch, Zubair W; Gentile, Caren; Watt, Christopher D; LiVolsi, Virginia A
2014-09-01
Multifocal fibrosing thyroiditis (MFT) is characterized by numerous foci of fibrosis in a stellate configuration with fibroelastotic and fibroblastic centers entrapping epithelial structures. MFT has been proposed as a risk factor for papillary thyroid carcinoma (PTC) development. We attempted to identify whether MFT showed such molecular changes and could possibly be related to PTC. We identified seven cases of PTC with MFT in our institutional pathology database and personal consult service of one of the authors (VAL) for the years 1999 to 2012. Areas of PTC, MFT, and normal tissue were selected for BRAF analysis. Macro-dissection, DNA extraction and PCR amplification, and pyrosequencing were performed to detect BRAF mutations in codon 600. All of the MFT lesions and normal thyroid tissue were negative for BRAF mutations. Of the seven PTCs analyzed, five (71 %) were negative for BRAF mutations, while two cases were positive. In our study, none of the MFT lesions harbored BRAF mutations, whereas 29 % (two of seven) PTCs in the same gland were positive. Hence, in this small study, we found no evidence that the MFT lesion is a direct precursor to PTC. It is likely an incidental bystander in the process and a reflection of the background thyroiditis.
Changes in the bacterial community of soybean rhizospheres during growth in the field.
Sugiyama, Akifumi; Ueda, Yoshikatsu; Zushi, Takahiro; Takase, Hisabumi; Yazaki, Kazufumi
2014-01-01
Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during growth in the field. The physiological properties of the bacterial communities were analyzed by a community-level substrate utilization assay with BioLog Eco plates, and the composition of the communities was assessed by gene pyrosequencing. Higher metabolic capabilities were found in rhizosphere soil than in bulk soil during all stages of the BioLog assay. Pyrosequencing analysis revealed that differences between the bacterial communities of rhizosphere and bulk soils at the phylum level; i.e., Proteobacteria were increased, while Acidobacteria and Firmicutes were decreased in rhizosphere soil during growth. Analysis of operational taxonomic units showed that the bacterial communities of the rhizosphere changed significantly during growth, with a higher abundance of potential plant growth promoting rhizobacteria, including Bacillus, Bradyrhizobium, and Rhizobium, in a stage-specific manner. These findings demonstrated that rhizosphere bacterial communities were changed during soybean growth in the field.
Tun, Hein Min; Mauroo, Nathalie France; Yuen, Chan San; Ho, John Chi Wang; Wong, Mabel Ting; Leung, Frederick Chi-Ching
2014-01-01
Recent studies have described the bacterial community residing in the guts of giant pandas, together with the presence of lignocellulolytic enzymes. However, a more comprehensive understanding of the intestinal microbial composition and its functional capacity in giant pandas remains a major goal. Here, we conducted a comparison of bacterial, fungal and homoacetogenic microbial communities from fecal samples taken from two geriatric and two adult captive giant pandas. 16S rDNA amplicon pyrosequencing revealed that Firmicutes and Proteobacteria are the most abundant microbiota in both geriatric and adult giant pandas. However, members of phylum Actinobacteria found in adult giant pandas were absent in their geriatric counterparts. Similarly, ITS1 amplicon pyrosequencing identified developmental changes in the most abundant fungal classes from Sordariomycetes in adult pandas to Saccharomycetes in geriatric pandas. Geriatric pandas exhibited significantly higher abundance of a potential probiotic fungus (Candida tropicalis) as compared to adult pandas, indicating their importance in the normal digestive physiology of aged pandas. Our study also reported the presence of a lignocellulolytic white-rot fungus, Perenniporia medulla-panis, and the evidence of novel homoacetogens residing in the guts of giant pandas. PMID:24475017
Suchodolski, Jan S.; Dowd, Scot E.; Wilke, Vicky; Steiner, Jörg M.; Jergens, Albert E.
2012-01-01
Background Canine idiopathic inflammatory bowel disease (IBD) is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. Methodology/Principal Findings Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6) and dogs with moderate IBD (n = 7) or severe IBD (n = 7) as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, p<0.001). Proportions of Fusobacteria (p = 0.010), Bacteroidaceae (p = 0.015), Prevotellaceae (p = 0.022), and Clostridiales (p = 0.019) were significantly more abundant in healthy dogs. In contrast, specific bacterial genera within Proteobacteria, including Diaphorobacter (p = 0.044) and Acinetobacter (p = 0.040), were either more abundant or more frequently identified in IBD dogs. Conclusions/Significance In conclusion, dogs with spontaneous IBD exhibit alterations in microbial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation. PMID:22720094
Suchodolski, Jan S; Dowd, Scot E; Wilke, Vicky; Steiner, Jörg M; Jergens, Albert E
2012-01-01
Canine idiopathic inflammatory bowel disease (IBD) is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6) and dogs with moderate IBD (n = 7) or severe IBD (n = 7) as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, p<0.001). Proportions of Fusobacteria (p = 0.010), Bacteroidaceae (p = 0.015), Prevotellaceae (p = 0.022), and Clostridiales (p = 0.019) were significantly more abundant in healthy dogs. In contrast, specific bacterial genera within Proteobacteria, including Diaphorobacter (p = 0.044) and Acinetobacter (p = 0.040), were either more abundant or more frequently identified in IBD dogs. In conclusion, dogs with spontaneous IBD exhibit alterations in microbial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation.
Vaishampayan, Parag; Nilsson, Henrik R.; Torok, Tamas; Venkateswaran, Kasthuri
2012-01-01
Spacecraft hardware and assembly cleanroom surfaces (233 m2 in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m2) than colocated spacecraft hardware (187 OTU; 162 m2). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space. PMID:22729532
Hu, H; Johani, K; Gosbell, I B; Jacombs, A S W; Almatroudi, A; Whiteley, G S; Deva, A K; Jensen, S; Vickery, K
2015-09-01
Hospital-associated infections cause considerable morbidity and mortality, and are expensive to treat. Organisms causing these infections can be sourced from the inanimate environment around a patient. Could the difficulty in eradicating these organisms from the environment be because they reside in dry surface biofilms? The intensive care unit (ICU) of a tertiary referral hospital was decommissioned and the opportunity to destructively sample clinical surfaces was taken in order to investigate whether multidrug-resistant organisms (MDROs) had survived the decommissioning process and whether they were present in biofilms. The ICU had two 'terminal cleans' with 500 ppm free chlorine solution; items from bedding, surrounds, and furnishings were then sampled with cutting implements. Sections were sonicated in tryptone soya broth and inoculated on to chromogenic plates to demonstrate MDROs, which were confirmed with the Vitek2 system. Genomic DNA was extracted directly from ICU samples, and subjected to polymerase chain reaction (PCR) for femA to detect Staphylococcus aureus and the microbiome by bacterial tag-encoded FLX amplicon pyrosequencing. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were performed on environmental samples. Multidrug-resistant bacteria were cultured from 52% (23/44) of samples cultured. S. aureus PCR was positive in 50%. Biofilm was demonstrated in 93% (41/44) of samples by CLSM and/or SEM. Pyrosequencing demonstrated that the biofilms were polymicrobial and contained species that had multidrug-resistant strains. Dry surface biofilms containing MDROs are found on ICU surfaces despite terminal cleaning with chlorine solution. How these arise and how they might be removed requires further study. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Office space bacterial abundance and diversity in three metropolitan areas.
Hewitt, Krissi M; Gerba, Charles P; Maxwell, Sheri L; Kelley, Scott T
2012-01-01
People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009).
Microbiome Analysis of Stool Samples from African Americans with Colon Polyps
Brim, Hassan; Yooseph, Shibu; Zoetendal, Erwin G.; Lee, Edward; Torralbo, Manolito; Laiyemo, Adeyinka O.; Shokrani, Babak; Nelson, Karen; Ashktorab, Hassan
2013-01-01
Background Colonic polyps are common tumors occurring in ~50% of Western populations with ~10% risk of malignant progression. Dietary agents have been considered the primary environmental exposure to promote colorectal cancer (CRC) development. However, the colonic mucosa is permanently in contact with the microbiota and its metabolic products including toxins that also have the potential to trigger oncogenic transformation. Aim To analyze fecal DNA for microbiota composition and functional potential in African Americans with pre-neoplastic lesions. Materials & Methods We analyzed the bacterial composition of stool samples from 6 healthy individuals and 6 patients with colon polyps using 16S ribosomal RNA-based phylogenetic microarray; the Human intestinal Tract Chip (HITChip) and 16S rRNA gene barcoded 454 pyrosequencing. The functional potential was determined by sequence-based metagenomics using 454 pyrosequencing. Results Fecal microbiota profiling of samples from the healthy and polyp patients using both a phylogenetic microarraying (HITChip) and barcoded 454 pyrosequencing generated similar results. A distinction between both sets of samples was only obtained when the analysis was performed at the sub-genus level. Most of the species leading to the dissociation were from the Bacteroides group. The metagenomic analysis did not reveal major differences in bacterial gene prevalence/abundances between the two groups even when the analysis and comparisons were restricted to available Bacteroides genomes. Conclusion This study reveals that at the pre-neoplastic stages, there is a trend showing microbiota changes between healthy and colon polyp patients at the sub-genus level. These differences were not reflected at the genome/functions levels. Bacteria and associated functions within the Bacteroides group need to be further analyzed and dissected to pinpoint potential actors in the early colon oncogenic transformation in a large sample size. PMID:24376500
Using pyrosequencing to shed light on deep mine microbial ecology
Edwards, Robert A; Rodriguez-Brito, Beltran; Wegley, Linda; Haynes, Matthew; Breitbart, Mya; Peterson, Dean M; Saar, Martin O; Alexander, Scott; Alexander, E Calvin; Rohwer, Forest
2006-01-01
Background Contrasting biological, chemical and hydrogeological analyses highlights the fundamental processes that shape different environments. Generating and interpreting the biological sequence data was a costly and time-consuming process in defining an environment. Here we have used pyrosequencing, a rapid and relatively inexpensive sequencing technology, to generate environmental genome sequences from two sites in the Soudan Mine, Minnesota, USA. These sites were adjacent to each other, but differed significantly in chemistry and hydrogeology. Results Comparisons of the microbes and the subsystems identified in the two samples highlighted important differences in metabolic potential in each environment. The microbes were performing distinct biochemistry on the available substrates, and subsystems such as carbon utilization, iron acquisition mechanisms, nitrogen assimilation, and respiratory pathways separated the two communities. Although the correlation between much of the microbial metabolism occurring and the geochemical conditions from which the samples were isolated could be explained, the reason for the presence of many pathways in these environments remains to be determined. Despite being physically close, these two communities were markedly different from each other. In addition, the communities were also completely different from other microbial communities sequenced to date. Conclusion We anticipate that pyrosequencing will be widely used to sequence environmental samples because of the speed, cost, and technical advantages. Furthermore, subsystem comparisons rapidly identify the important metabolisms employed by the microbes in different environments. PMID:16549033
Cardinali-Rezende, Juliana; Rojas-Ojeda, Patricia; Nascimento, Andréa M A; Sanz, José L
2016-03-01
Biomethanization entails a good means to reduce the organic fraction (OF) derived from municipal solid wastes (MSW). The bacterial diversity of a full scale MSW anaerobic reactor located in Madrid (Spain) was investigated using high-throughput 454 pyrosequencing. Even though the proteolytic bacteria prevailed throughout all of the process, community shifts were observed from the start-up to the steady-state conditions, with an increasing biodiversity displayed over time. The Bacteroidetes and the Firmicutes were the majority phyla: 55.1 and 40.2% (start-up) and 18.7 and 78.7 (steady-state) of the total reads. The system's lack of evenness remains noteworthy as the sequences affiliated to the proteolytic non-saccharolytic Proteiniphylum, Gallicola and Fastidiosipila genera, together with the saccharolytic Saccharofermentans, were predominant on the system and this predominance appears to correlate with the presence of a high ammonium concentration. The 454 pyrosequencing revealed a great diversity of rare organisms which seemingly do not sustain any metabolic roles in the course of the OF-MSW degradation. However, this scarce and unique microbiota can confer great resilience to the system as a buffer against nutritional and environmental changing conditions, thus opening the door to increase the current knowledge about the bacterial community dynamics taking place during MSW treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Identification of body fluid-specific DNA methylation markers for use in forensic science.
Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung
2014-11-01
DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The Influence of Metabolic Syndrome and Sex on the DNA Methylome in Schizophrenia
Lines, Brittany N.
2018-01-01
Introduction The mechanism by which metabolic syndrome occurs in schizophrenia is not completely known; however, previous work suggests that changes in DNA methylation may be involved which is further influenced by sex. Within this study, the DNA methylome was profiled to identify altered methylation associated with metabolic syndrome in a schizophrenia population on atypical antipsychotics. Methods Peripheral blood from schizophrenia subjects was utilized for DNA methylation analyses. Discovery analyses (n = 96) were performed using an epigenome-wide analysis on the Illumina HumanMethylation450K BeadChip based on metabolic syndrome diagnosis. A secondary discovery analysis was conducted based on sex. The top hits from the discovery analyses were assessed in an additional validation set (n = 166) using site-specific methylation pyrosequencing. Results A significant increase in CDH22 gene methylation in subjects with metabolic syndrome was identified in the overall sample. Additionally, differential methylation was found within the MAP3K13 gene in females and the CCDC8 gene within males. Significant differences in methylation were again observed for the CDH22 and MAP3K13 genes, but not CCDC8, in the validation sample set. Conclusions This study provides preliminary evidence that DNA methylation may be associated with metabolic syndrome and sex in schizophrenia. PMID:29850476
Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers.
Benitez-Trinidad, Alma Betsaida; Medina-Díaz, Irma Martha; Bernal-Hernández, Yael Yvette; Barrón-Vivanco, Briscia Socorro; González-Arias, Cyndia Azucena; Herrera-Moreno, José Francisco; Alvarado-Cruz, Isabel; Quintanilla-Vega, Betzabet; Rojas-García, Aurora Elizabeth
2018-03-01
Recently a relationship has been reported between pesticide exposure and changes in global DNA methylation patterns. Urban sprayers are a particularly vulnerable population because of the high risk of pesticide exposure that their work implies. Therefore, the aim of this study was to estimate the changes in the Long Interspersed Nucleotide Element (LINE-1) in urban sprayers and its relationship with pesticide exposure. The study population consisted of 190 individuals stratified into three study groups: no occupational pesticide exposure; moderate exposure, and high exposure. Pesticide exposure and other external factors such as diet, lifestyle, and others were evaluated through a validated questionnaire, and the butyrylcholinesterase enzyme activity was evaluated spectrophotometrically and used as exposure biomarker. DNA methylation was evaluated by pyrosequencing on bisulfite-treated DNA. The results showed a significant decrease of %5mC in both the moderate- and high-exposure groups with respect to the non-exposed group (p < 0.05). In addition, alcohol intake was associated with a higher percentage of LINE- 1 methylation. In conclusion, our results suggest that occupational pesticide exposure and external factors appears to modify the DNA methylation pattern measured through LINE-1. Copyright © 2018 Elsevier Ltd. All rights reserved.
Newton, K; Jorgensen, NM; Wallace, AJ; Buchanan, DD; Lalloo, F; McMahon, RFT; Hill, J; Evans, DG
2016-01-01
Background & Aims Lynch syndrome patients have DNA mismatch repair deficiency and up to 80% life-time risk of colorectal cancer. Screening of mutation carriers reduces colorectal cancer incidence and mortality. Selection for constitutional mutation testing relies on family history (Amsterdam and Bethesda Guidelines) and tumour derived biomarkers. Initial biomarker analysis uses mismatch repair protein immunohistochemistry and microsatellite instability. Abnormalities in either identify mismatch repair deficiency but do not differentiate sporadic epigenetic defects, due to MLH1 promoter region methylation (13% of CRCs) from Lynch Syndrome (4% of CRCs). A diagnostic biomarker capable of making this distinction would be valuable. This study compared two biomarkers in tumours with mismatch repair deficiency; quantification of methylation of the MLH1 promoter region using a novel assay and BRAF c.1799T>A, p.(Val600Glu) mutation status in the identification of constitutional mutations. Methods Tumour DNA was extracted (FFPE tissue) and pyrosequencing used to test for MLH1 promoter methylation and presence of the BRAF c.1799T>A, p.(Val600Glu) mutation 71 CRCs from individuals with pathogenic MLH1 mutations and 73 CRCs with sporadic MLH1 loss. Specificity and sensitivity was compared. Findings Unmethylated MLH1 promoter: sensitivity 94.4% (95% CI 86.2–98.4%), specificity 87.7% (95% CI 77.9–94.2%), Wild-type BRAF (codon 600): sensitivity 65.8% (95% CI 53.7–76.5%), specificity 98.6% (95% CI 92.4–100.0%) for the identification of those with pathogenic MLH1 mutations. Conclusions Quantitative MLH1 promoter region methylation using pyrosequencing is superior to BRAF codon 600 mutation status in identifying constitutional mutations in mismatch repair deficient tumours. PMID:25280751
He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth
2012-01-01
Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperaturesincrease, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is importantto predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), andpyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C,and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH4 oxidation activitywas measured in microcosm incubations containing sediments at all temperatures, with the highest CH4 oxidation potential of37.5 mol g1 day1 in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and ofthe 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in 13C-labeled DNA obtained bySIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisitionfrom CH4 in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature.Methylotrophs were also abundant in the microbial community that derived carbon from CH4, especially in the deeper sediments(depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R0.82) with the relativeabundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophiccommunities in arctic lake sediments respond to temperature variations.
Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.
Lu, Lu; Jia, Zhongjun
2013-06-01
The metabolic traits of ammonia-oxidizing archaea (AOA) and bacteria (AOB) interacting with their environment determine the nitrogen cycle at the global scale. Ureolytic metabolism has long been proposed as a mechanism for AOB to cope with substrate paucity in acid soil, but it remains unclear whether urea hydrolysis could afford AOA greater ecological advantages. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, here we show that autotrophic ammonia oxidation in two acid soils was predominately driven by AOA that contain ureC genes encoding the alpha subunit of a putative archaeal urease. In urea-amended SIP microcosms of forest soil (pH 5.40) and tea orchard soil (pH 3.75), nitrification activity was stimulated significantly by urea fertilization when compared with water-amended soils in which nitrification resulted solely from the oxidation of ammonia generated through mineralization of soil organic nitrogen. The stimulated activity was paralleled by changes in abundance and composition of archaeal amoA genes. Time-course incubations indicated that archaeal amoA genes were increasingly labelled by (13) CO2 in both microcosms amended with water and urea. Pyrosequencing revealed that archaeal populations were labelled to a much greater extent in soils amended with urea than water. Furthermore, archaeal ureC genes were successfully amplified in the (13) C-DNA, and acetylene inhibition suggests that autotrophic growth of urease-containing AOA depended on energy generation through ammonia oxidation. The sequences of AOB were not detected, and active AOA were affiliated with the marine Group 1.1a-associated lineage. The results suggest that ureolytic N metabolism could afford AOA greater advantages for autotrophic ammonia oxidation in acid soil, but the mechanism of how urea activates AOA cells remains unclear. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Walker, Deena M.; Zama, Aparna M.; Armenti, AnnMarie E.; Uzumcu, Mehmet
2011-01-01
Gestational exposure to the estrogenic endocrine disruptor methoxychlor (MXC) disrupts the female reproductive system at the molecular, physiological, and behavioral levels in adulthood. The current study addressed whether perinatal exposure to endocrine disruptors reprograms expression of a suite of genes expressed in the hypothalamus that control reproductive function and related these molecular changes to premature reproductive aging. Fischer rats were exposed daily for 12 consecutive days to vehicle (dimethylsulfoxide), estradiol benzoate (EB) (1 mg/kg), and MXC (low dose, 20 μg/kg or high dose, 100 mg/kg), beginning on embryonic d 19 through postnatal d 7. The perinatally exposed females were aged to 16–17 months and monitored for reproductive senescence. After euthanasia, hypothalamic regions [preoptic area (POA) and medial basal hypothalamus] were dissected for real-time PCR of gene expression or pyrosequencing to assess DNA methylation of the Esr1 gene. Using a 48-gene PCR platform, two genes (Kiss1 and Esr1) were significantly different in the POA of endocrine-disrupting chemical-exposed rats compared with vehicle-exposed rats after Bonferroni correction. Fifteen POA genes were up-regulated by at least 50% in EB or high-dose MXC compared with vehicle. To understand the epigenetic basis of the increased Esr1 gene expression, we performed bisulfite conversion and pyrosequencing of the Esr1 promoter. EB-treated rats had significantly higher percentage of methylation at three CpG sites in the Esr1 promoter compared with control rats. Together with these molecular effects, perinatal MXC and EB altered estrous cyclicity and advanced reproductive senescence. Thus, early life exposure to endocrine disruptors has lifelong effects on neuroendocrine gene expression and DNA methylation, together with causing the advancement of reproductive senescence. PMID:22016562
Nagata, Hiroaki; Kozaki, Ken-Ichi; Muramatsu, Tomoki; Hiramoto, Hidekazu; Tanimoto, Kousuke; Fujiwara, Naoto; Imoto, Seiya; Ichikawa, Daisuke; Otsuji, Eigo; Miyano, Satoru; Kawano, Tatsuyuki; Inazawa, Johji
2017-06-06
Lymph node metastasis (LNM) of esophageal squamous cell carcinoma (ESCC) is well-known to be an early event associated with poor prognosis in patients with ESCC. Recently, tumor-specific aberrant DNA methylation of CpG islands around the promoter regions of tumor-related genes has been investigated as a possible biomarker for use in early diagnosis and prediction of prognosis. However, there are few DNA methylation markers able to predict the presence of LNM in ESCC. To identify DNA methylation markers associated with LNM of ESCC, we performed a genome-wide screening of DNA methylation status in a discovery cohort of 67 primary ESCC tissues and their paired normal esophageal tissues using the Illumina Infinium HumanMethylation450 BeadChip. In this screening, we focused on differentially methylated regions (DMRs) that were associated with LNM of ESCC, as prime candidates for DNA methylation markers. We extracted three genes, HOXB2, SLC15A3, and SEPT9, as candidates predicting LNM of ESCC, using pyrosequencing and several statistical analyses in the discovery cohort. We confirmed that HOXB2 and SEPT9 were highly methylated in LNM-positive tumors in 59 ESCC validation samples. These results suggested that HOXB2 and SEPT9 may be useful epigenetic biomarkers for the prediction of the presence of LNM in ESCC.
Nagata, Hiroaki; Kozaki, Ken-Ichi; Muramatsu, Tomoki; Hiramoto, Hidekazu; Tanimoto, Kousuke; Fujiwara, Naoto; Imoto, Seiya; Ichikawa, Daisuke; Otsuji, Eigo; Miyano, Satoru; Kawano, Tatsuyuki; Inazawa, Johji
2017-01-01
Lymph node metastasis (LNM) of esophageal squamous cell carcinoma (ESCC) is well-known to be an early event associated with poor prognosis in patients with ESCC. Recently, tumor-specific aberrant DNA methylation of CpG islands around the promoter regions of tumor-related genes has been investigated as a possible biomarker for use in early diagnosis and prediction of prognosis. However, there are few DNA methylation markers able to predict the presence of LNM in ESCC. To identify DNA methylation markers associated with LNM of ESCC, we performed a genome-wide screening of DNA methylation status in a discovery cohort of 67 primary ESCC tissues and their paired normal esophageal tissues using the Illumina Infinium HumanMethylation450 BeadChip. In this screening, we focused on differentially methylated regions (DMRs) that were associated with LNM of ESCC, as prime candidates for DNA methylation markers. We extracted three genes, HOXB2, SLC15A3, and SEPT9, as candidates predicting LNM of ESCC, using pyrosequencing and several statistical analyses in the discovery cohort. We confirmed that HOXB2 and SEPT9 were highly methylated in LNM-positive tumors in 59 ESCC validation samples. These results suggested that HOXB2 and SEPT9 may be useful epigenetic biomarkers for the prediction of the presence of LNM in ESCC. PMID:28465481
Systematic evaluation of bias in microbial community profiles induced by whole genome amplification.
Direito, Susana O L; Zaura, Egija; Little, Miranda; Ehrenfreund, Pascale; Röling, Wilfred F M
2014-03-01
Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplification (MDA)] and one new primer-free method [primase-based whole genome amplification (pWGA)] were compared using a polymerase chain reaction (PCR)-based method as control. Pyrosequencing of an environmental sample and principal component analysis revealed that MDA impacted community profiles more strongly than pWGA and indicated that this related to species GC content, although an influence of DNA integrity could not be excluded. Subsequently, biases by species GC content, DNA integrity and fragment size were separately analysed using defined mixtures of DNA from various species. We found significantly less amplification of species with the highest GC content for MDA-based templates and, to a lesser extent, for pWGA. DNA fragmentation also interfered severely: species with more fragmented DNA were less amplified with MDA and pWGA. pWGA was unable to amplify low molecular weight DNA (< 1.5 kb), whereas MDA was inefficient. We conclude that pWGA is the most promising method for characterization of microbial communities in low-biomass environments and for currently planned astrobiological missions to Mars. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Massana, Ramon; Gobet, Angélique; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Chambouvet, Aurélie; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Forn, Irene; Forster, Dominik; Guillou, Laure; Jaillon, Olivier; Kooistra, Wiebe H C F; Logares, Ramiro; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Probert, Ian; Romac, Sarah; Richards, Thomas; Santini, Sébastien; Shalchian-Tabrizi, Kamran; Siano, Raffaele; Simon, Nathalie; Stoeck, Thorsten; Vaulot, Daniel; Zingone, Adriana; de Vargas, Colomban
2015-10-01
Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C
2011-07-01
DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (p<0.05). Blood-derived DNA methylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jordan, Jeanne A; Ibe, Christine O; Moore, Miranda S; Host, Christel; Simon, Gary L
2012-05-01
In resource-limited settings (RLS) dried blood spots (DBS) are collected on infants and transported through provincial laboratories to a central facility where HIV-1 DNA PCR testing is performed using specialized equipment. Implementing a simpler approach not requiring such equipment or skilled personnel could allow the more numerous provincial laboratories to offer testing, improving turn-around-time to identify and treat infected infants sooner. Assess performances of a manual DNA extraction method and helicase-dependent amplification (HDA) assay for detecting HIV-1 DNA from DBS. 60 HIV-1 infected adults were enrolled, blood samples taken and DBS made. DBS extracts were assessed for DNA concentration and beta globin amplification using PCR and melt-curve analysis. These same extracts were then tested for HIV-1 DNA using HDA and compared to results generated by PCR and pyrosequencing. Finally, HDA limit of detection (LOD) studies were performed using DBS extracts prepared with known numbers of 8E5 cells. The manual extraction protocol consistently yielded high concentrations of amplifiable DNA from DBS. LOD assessment demonstrated HDA detected ∼470 copies/ml of HIV-1 DNA extracts in 4/4 replicates. No statistical difference was found using the McNemar's test when comparing HDA to PCR for detecting HIV-1 DNA from DBS. Using just a magnet, heat block and pipettes, the manual extraction protocol and HDA assay detected HIV-1 DNA from DBS at levels that would be useful for early infant diagnosis. Next steps will include assessing HDA for non-B HIV-1 subtypes recognition and comparison to Roche HIV-1 DNA v1.5 PCR assay. Copyright © 2012 Elsevier B.V. All rights reserved.
A genetic inventory of spacecraft and associated surfaces.
La Duc, Myron T; Venkateswaran, Kasthuri; Conley, Catharine A
2014-01-01
Terrestrial organisms or other contaminants that are transported to Mars could interfere with efforts to study the potential for indigenous martian life. Similarly, contaminants that make the round-trip to Mars and back to Earth could compromise the ability to discriminate an authentic martian biosignature from a terrestrial organism. For this reason, it is important to develop a comprehensive inventory of microbes that are present on spacecraft to avoid interpreting their traces as authentic extraterrestrial biosignatures. Culture-based methods are currently used by NASA to assess spacecraft cleanliness but deliberately detect only a very small subset of total organisms present. The National Research Council has recommended that molecular (DNA)-based identification techniques should be developed as one aspect of managing the risk that terrestrial contamination could interfere with detection of life on (or returned from) Mars. The current understanding of the microbial diversity associated with spacecraft and clean room surfaces is expanding, but the capability to generate a comprehensive inventory of the microbial populations present on spacecraft outbound from Earth would address multiple considerations in planetary protection, relevant to both robotic and human missions. To this end, a 6-year genetic inventory study was undertaken by a NASA/JPL team. It was completed in 2012 and included delivery of a publicly available comprehensive final report. The genetic inventory study team evaluated the utility of three analytical technologies (conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-pyrosequencing) and combined them with a systematic methodology to collect, process, and archive nucleic acids as the first steps in assessing the phylogenetic breadth of microorganisms on spacecraft and associated surfaces.
Smith, Rick W A; Monroe, Cara; Bolnick, Deborah A
2015-01-01
While cytosine methylation has been widely studied in extant populations, relatively few studies have analyzed methylation in ancient DNA. Most existing studies of epigenetic marks in ancient DNA have inferred patterns of methylation in highly degraded samples using post-mortem damage to cytosines as a proxy for cytosine methylation levels. However, this approach limits the inference of methylation compared with direct bisulfite sequencing, the current gold standard for analyzing cytosine methylation at single nucleotide resolution. In this study, we used direct bisulfite sequencing to assess cytosine methylation in ancient DNA from the skeletal remains of 30 Native Americans ranging in age from approximately 230 to 4500 years before present. Unmethylated cytosines were converted to uracils by treatment with sodium bisulfite, bisulfite products of a CpG-rich retrotransposon were pyrosequenced, and C-to-T ratios were quantified for a single CpG position. We found that cytosine methylation is readily recoverable from most samples, given adequate preservation of endogenous nuclear DNA. In addition, our results indicate that the precision of cytosine methylation estimates is inversely correlated with aDNA preservation, such that samples of low DNA concentration show higher variability in measures of percent methylation than samples of high DNA concentration. In particular, samples in this study with a DNA concentration above 0.015 ng/μL generated the most consistent measures of cytosine methylation. This study presents evidence of cytosine methylation in a large collection of ancient human remains, and indicates that it is possible to analyze epigenetic patterns in ancient populations using direct bisulfite sequencing approaches.
Lee, Soo Eon; Nam, Ok Hyung; Lee, Hyo-Seol; Choi, Sung Chul
2016-07-01
Objectives The purpose of this study was designed to identify the oral microbiota in healthy Korean pre-school children using pyrosequencing. Materials and methods Dental plaque samples were obtained form 10 caries-free pre-school children. The samples were analysed using pyrosequencing. Results The pyrosequencing analysis revealed that, at the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria showed high abundance. Also, predominant genera were identified as core microbiome, such as Streptococcus, Neisseria, Capnocytophaga, Haemophilus and Veilonella. Conclusions The diversity and homogeneity was shown in the dental plaque microbiota in healthy Korean pre-school children.
Improving diversity in cultures of bacteria from an extreme environment.
Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter
2013-08-01
The ikaite columns in the Ikka Fjord in Greenland represent one of the few permanently cold and alkaline environments on Earth, and the interior of the columns is home to a bacterial community adapted to these extreme conditions. The community is characterized by low cell numbers imbedded in a calcium carbonate matrix, making extraction of bacterial cells and DNA a challenge and limiting molecular and genomic studies of this environment. To utilize this genetic resource, cultivation at high pH and low temperature was studied as a method for obtaining biomass and DNA from the fraction of this community that would not otherwise be amenable to genetic analyses. The diversity and community dynamics in mixed cultures of bacteria from ikaite columns was investigated using denaturing gradient gel electrophoresis and pyrosequencing of 16S rDNA. Both medium composition and incubation time influenced the diversity of the culture and many hitherto uncharacterized genera could be brought into culture by extended incubation time. Extended incubation time also gave rise to a more diverse community with a significant number of rare species not detected in the initial community.
The microbiome of neotropical ticks parasitizing on passerine migratory birds.
Budachetri, Khemraj; Williams, Jaclyn; Mukherjee, Nabanita; Sellers, Michael; Moore, Frank; Karim, Shahid
2017-01-01
Seasonal migration of passerine birds between temperate North America and tropical Central and South America is an ecological phenomenon. Migration of birds has been associated with the introduction of ectoparasites like ticks or tick-borne pathogens across the avian migration routes. In this study, the microbial diversity was determined in the ticks and bird DNA samples using 454 pyrosequencing of bacterial 16S rRNA gene. Tick DNA samples showed the dominance of genera Lactococcus, Francisella, Raoultella, Wolbachia and Rickettsia across all the ticks, but birds DNA did not share common microbial diversity with ticks. Furthermore, "Candidatus Rickettsia amblyommii" infection in the 91 ticks collected off the songbirds was also quantified by qPCR assay. Interestingly, "Candidatus R. amblyommii" was tested positive in 24 ticks (26% infection), and infection varied from as low as three copies to thousands of copies, but bird blood samples showed no amplification. Our results provide evidence that songbirds serve as transport carrier for immature ticks, and less likely to be a reservoir for "Candidatus R. amblyommii". Copyright © 2016 Elsevier GmbH. All rights reserved.
Pandey, Ram Vinay; Pulverer, Walter; Kallmeyer, Rainer; Beikircher, Gabriel; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas
2016-01-01
Bisulfite (BS) conversion-based and methylation-sensitive restriction enzyme (MSRE)-based PCR methods have been the most commonly used techniques for locus-specific DNA methylation analysis. However, both methods have advantages and limitations. Thus, an integrated approach would be extremely useful to quantify the DNA methylation status successfully with great sensitivity and specificity. Designing specific and optimized primers for target regions is the most critical and challenging step in obtaining the adequate DNA methylation results using PCR-based methods. Currently, no integrated, optimized, and high-throughput methylation-specific primer design software methods are available for both BS- and MSRE-based methods. Therefore an integrated, powerful, and easy-to-use methylation-specific primer design pipeline with great accuracy and success rate will be very useful. We have developed a new web-based pipeline, called MSP-HTPrimer, to design primers pairs for MSP, BSP, pyrosequencing, COBRA, and MSRE assays on both genomic strands. First, our pipeline converts all target sequences into bisulfite-treated templates for both forward and reverse strand and designs all possible primer pairs, followed by filtering for single nucleotide polymorphisms (SNPs) and known repeat regions. Next, each primer pairs are annotated with the upstream and downstream RefSeq genes, CpG island, and cut sites (for COBRA and MSRE). Finally, MSP-HTPrimer selects specific primers from both strands based on custom and user-defined hierarchical selection criteria. MSP-HTPrimer produces a primer pair summary output table in TXT and HTML format for display and UCSC custom tracks for resulting primer pairs in GTF format. MSP-HTPrimer is an integrated, web-based, and high-throughput pipeline and has no limitation on the number and size of target sequences and designs MSP, BSP, pyrosequencing, COBRA, and MSRE assays. It is the only pipeline, which automatically designs primers on both genomic strands to increase the success rate. It is a standalone web-based pipeline, which is fully configured within a virtual machine and thus can be readily used without any configuration. We have experimentally validated primer pairs designed by our pipeline and shown a very high success rate of primer pairs: out of 66 BSP primer pairs, 63 were successfully validated without any further optimization step and using the same qPCR conditions. The MSP-HTPrimer pipeline is freely available from http://sourceforge.net/p/msp-htprimer.
Pereiro, Patricia; Balseiro, Pablo; Romero, Alejandro; Dios, Sonia; Forn-Cuni, Gabriel; Fuste, Berta; Planas, Josep V.; Beltran, Sergi; Novoa, Beatriz; Figueras, Antonio
2012-01-01
Background Turbot (Scophthalmus maximus L.) is an important aquacultural resource both in Europe and Asia. However, there is little information on gene sequences available in public databases. Currently, one of the main problems affecting the culture of this flatfish is mortality due to several pathogens, especially viral diseases which are not treatable. In order to identify new genes involved in immune defense, we conducted 454-pyrosequencing of the turbot transcriptome after different immune stimulations. Methodology/Principal Findings Turbot were injected with viral stimuli to increase the expression level of immune-related genes. High-throughput deep sequencing using 454-pyrosequencing technology yielded 915,256 high-quality reads. These sequences were assembled into 55,404 contigs that were subjected to annotation steps. Intriguingly, 55.16% of the deduced protein was not significantly similar to any sequences in the databases used for the annotation and only 0.85% of the BLASTx top-hits matched S. maximus protein sequences. This relatively low level of annotation is possibly due to the limited information for this specie and other flatfish in the database. These results suggest the identification of a large number of new genes in turbot and in fish in general. A more detailed analysis showed the presence of putative members of several innate and specific immune pathways. Conclusions/Significance To our knowledge, this study is the first transcriptome analysis using 454-pyrosequencing for turbot. Previously, there were only 12,471 EST and less of 1,500 nucleotide sequences for S. maximus in NCBI database. Our results provide a rich source of data (55,404 contigs and 181,845 singletons) for discovering and identifying new genes, which will serve as a basis for microarray construction, gene expression characterization and for identification of genetic markers to be used in several applications. Immune stimulation in turbot was very effective, obtaining an enormous variety of sequences belonging to genes involved in the defense mechanisms. PMID:22629298
Tanase, Koji; Nishitani, Chikako; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Ohmiya, Akemi; Onozaki, Takashi
2012-07-02
Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. We constructed a normalized cDNA library and a 3'-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.
2012-01-01
Background Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. Results We constructed a normalized cDNA library and a 3’-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. Conclusions We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant. PMID:22747974
Ulrich, Cornelia M; Toriola, Adetunji T; Koepl, Lisel M; Sandifer, Tracy; Poole, Elizabeth M; Duggan, Catherine; McTiernan, Anne; Issa, Jean-Pierre J
2012-09-01
DNA methylation is an epigenetic modification essential for the regulation of gene expression that has been implicated in many diseases, including cancer. Few studies have investigated the wide range of potential predictors of global DNA methylation, including biomarkers. Here, we investigated associations between DNA methylation and dietary factors, sex-steroid hormones, metabolic, lipid, inflammation, immune and one-carbon biomarkers. Data and baseline biomarker measurements were obtained from 173 overweight/obese postmenopausal women. Global DNA methylation in lymphocyte DNA was measured using the pyrosequencing assay for LINE-1 repeats. We used correlations and linear regression analyses to investigate associations between continuous data and DNA methylation, while t-tests were used for categorical data. Secondary analyses stratified by serum folate levels and multivitamin use were also conducted. There was little variability in LINE-1 methylation (66.3-79.5%). Mean LINE-1 methylation was significantly higher among women with elevated glucose levels. Mean LINE-1 methylation was also higher among women with high CD4+/CD8+ ratio, and lower among women with elevated vitamin B6, but neither reached statistical significance. In analyses stratified by folate status, DNA methylation was negatively associated with sex hormone concentrations (estrone, estradiol, testosterone and sex hormone binding globulin) among women with low serum folate levels (n = 53). Conversely, among women with high serum folate levels (n = 53), DNA methylation was positively associated with several immune markers (CD4/CD8 ratio, NK1656/lymphocytes and IgA). Results from this screening suggest that global DNA methylation is generally stable, with differential associations for sex hormones and immune markers depending on one-carbon status.
Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere.
Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea
2014-01-01
Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.
Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing.
Qian, Pei-Yuan; Wang, Yong; Lee, On On; Lau, Stanley C K; Yang, Jiangke; Lafi, Feras F; Al-Suwailem, Abdulaziz; Wong, Tim Y H
2011-03-01
The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (20 [corrected] and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea.
Flanagan, James M; Wilson, Angela; Koo, Chail; Masrour, Nahal; Gallon, John; Loomis, Erick; Flower, Kirsty; Wilhelm-Benartzi, Charlotte; Hergovich, Alexander; Cunnea, Paula; Gabra, Hani; Braicu, Elena Ioana; Sehouli, Jalid; Darb-Esfahani, Silvia; Vanderstichele, Adriaan; Vergote, Ignace; Kreuzinger, Caroline; Castillo-Tong, Dan Cacsire; Wisman, G Bea A; Berns, Els Mjj; Siddiqui, Nadeem; Paul, James; Brown, Robert
2017-05-01
Purpose: DNA damage repair can lead to epigenetic changes. DNA mismatch repair proteins bind to platinum DNA adducts and at sites of DNA damage can recruit the DNA methylating enzyme DNMT1, resulting in aberrant methylation. We hypothesised that DNA damage repair during platinum-based chemotherapy may cause aberrant DNA methylation in normal tissues of patients such as blood. Experimental Design: We used Illumina 450k methylation arrays and bisulphite pyrosequencing to investigate methylation at presentation and relapse in blood DNA from patients with ovarian cancer enrolled in the SCOTROC1 trial ( n = 247) and in a cohort of ovarian tumor DNA samples collected at first relapse ( n = 46). We used an ovarian cancer cell line model to investigate the role of the DNA mismatch repair gene MLH1 in platinum-induced methylation changes. Results: Specific CpG methylation changes in blood at relapse are observed following platinum-based chemotherapy and are associated with patient survival, independent of other clinical factors [hazard ratio, 3.7; 95% confidence interval, 1.8-7.6, P = 2.8 × 10 -4 ]. Similar changes occur in ovarian tumors at relapse, also associated with patient survival (hazard ratio, 2.6; 95% confidence interval, 1.0-6.8, P = 0.048). Using an ovarian cancer cell line model, we demonstrate that functional mismatch repair increases the frequency of platinum-induced methylation. Conclusions: DNA methylation in blood at relapse following chemotherapy, and not at presentation, is informative regarding survival of patients with ovarian cancer. Functional DNA mismatch repair increases the frequency of DNA methylation changes induced by platinum. DNA methylation in blood following chemotherapy could provide a noninvasive means of monitoring patients' epigenetic responses to treatment without requiring a tumor biopsy. Clin Cancer Res; 23(9); 2213-22. ©2016 AACR . ©2016 American Association for Cancer Research.
Trumbić, Željka; Bekaert, Michaël; Taggart, John B; Bron, James E; Gharbi, Karim; Mladineo, Ivona
2015-11-25
The largest of the tuna species, Atlantic bluefin tuna (Thunnus thynnus), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely a consequence of overfishing. T. thynnus aquaculture, referred to as fattening or farming, is a capture based activity dependent on yearly renewal from the wild. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. The development of such practices is today greatly assisted by large scale transcriptomic studies. We have used pyrosequencing technology to sequence a mixed-tissue normalised cDNA library, derived from adult T. thynnus. A total of 976,904 raw sequence reads were assembled into 33,105 unique transcripts having a mean length of 893 bases and an N50 of 870. Of these, 33.4% showed similarity to known proteins or gene transcripts and 86.6% of them were matched to the congeneric Pacific bluefin tuna (Thunnus orientalis) genome, compared to 70.3% for the more distantly related Nile tilapia (Oreochromis niloticus) genome. Transcript sequences were used to develop a novel 15 K Agilent oligonucleotide DNA microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes. Functional contrasts were strongest between gills and ovaries. Gills were particularly associated with immune system, signal transduction and cell communication, while ovaries displayed signatures of glycan biosynthesis, nucleotide metabolism, transcription, translation, replication and repair. Sequence data generated from a novel mixed-tissue T. thynnus cDNA library provide an important transcriptomic resource that can be further employed for study of various aspects of T. thynnus ecology and genomics, with strong applications in aquaculture. Tissue-specific gene expression profiles inferred through the use of novel oligo-microarray can serve in the design of new and more focused transcriptomic studies for future research of tuna physiology and assessment of the welfare in a production environment.
Janecek, Elisabeth; Streichan, Sabine; Strube, Christina
2012-10-18
Rickettsioses are caused by pathogenic species of the genus Rickettsia and play an important role as emerging diseases. The bacteria are transmitted to mammal hosts including humans by arthropod vectors. Since detection, especially in tick vectors, is usually based on PCR with genus-specific primers to include different occurring Rickettsia species, subsequent species identification is mainly achieved by Sanger sequencing. In the present study a real-time pyrosequencing approach was established with the objective to differentiate between species occurring in German Ixodes ticks, which are R. helvetica, R. monacensis, R. massiliae, and R. felis. Tick material from a quantitative real-time PCR (qPCR) based study on Rickettsia-infections in I. ricinus allowed direct comparison of both sequencing techniques, Sanger and real-time pyrosequencing. A sequence stretch of rickettsial citrate synthase (gltA) gene was identified to contain divergent single nucleotide polymorphism (SNP) sites suitable for Rickettsia species differentiation. Positive control plasmids inserting the respective target sequence of each Rickettsia species of interest were constructed for initial establishment of the real-time pyrosequencing approach using Qiagen's PSQ 96MA Pyrosequencing System operating in a 96-well format. The approach included an initial amplification reaction followed by the actual pyrosequencing, which is traceable by pyrograms in real-time. Afterwards, real-time pyrosequencing was applied to 263 Ixodes tick samples already detected Rickettsia-positive in previous qPCR experiments. Establishment of real-time pyrosequencing using positive control plasmids resulted in accurate detection of all SNPs in all included Rickettsia species. The method was then applied to 263 Rickettsia-positive Ixodes ricinus samples, of which 153 (58.2%) could be identified for their species (151 R. helvetica and 2 R. monacensis) by previous custom Sanger sequencing. Real-time pyrosequencing identified all Sanger-determined ticks as well as 35 previously undifferentiated ticks resulting in a total number of 188 (71.5%) identified samples. Pyrosequencing sensitivity was found to be strongly dependent on gltA copy numbers in the reaction setup. Whereas less than 101 copies in the initial amplification reaction resulted in identification of 15.1% of the samples only, the percentage increased to 54.2% at 101-102 copies, to 95.6% at >102-103 copies and reached 100% samples identified for their Rickettsia species if more than 103 copies were present in the template. The established real-time pyrosequencing approach represents a reliable method for detection and differentiation of Rickettsia spp. present in I. ricinus diagnostic material and prevalence studies. Furthermore, the method proved to be faster, more cost-effective as well as more sensitive than custom Sanger sequencing with simultaneous high specificity.
Blanch, Marta; Mosquera, Jose Luis; Ansoleaga, Belén; Ferrer, Isidre; Barrachina, Marta
2016-02-01
Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Heterogeneity of DNA methylation in multifocal prostate cancer.
Serenaite, Inga; Daniunaite, Kristina; Jankevicius, Feliksas; Laurinavicius, Arvydas; Petroska, Donatas; Lazutka, Juozas R; Jarmalaite, Sonata
2015-01-01
Most prostate cancer (PCa) cases are multifocal, and separate foci display histological and molecular heterogeneity. DNA hypermethylation is a frequent alteration in PCa, but interfocal heterogeneity of these changes has not been extensively investigated. Ten pairs of foci from multifocal PCa and 15 benign prostatic hyperplasia (BPH) samples were obtained from prostatectomy specimens, resulting altogether in 35 samples. Methylation-specific PCR (MSP) was used to evaluate methylation status of nine tumor suppressor genes (TSGs), and a set of selected TSGs was quantitatively analyzed for methylation intensity by pyrosequencing. Promoter sequences of the RASSF1 and ESR1 genes were methylated in all paired PCa foci, and frequent (≥75 %) DNA methylation was detected in RARB, GSTP1, and ABCB1 genes. MSP revealed different methylation status of at least one gene in separate foci in 8 out of 10 multifocal tumors. The mean methylation level of ESR1, GSTP1, RASSF1, and RARB differed between the paired foci of all PCa cases. The intensity of DNA methylation in these TSGs was significantly higher in PCa cases than in BPH (p < 0.001). Hierarchical cluster analysis revealed a divergent methylation profile of paired PCa foci, while the foci from separate cases with biochemical recurrence showed similar methylation profile and the highest mean levels of DNA methylation. Our findings suggest that PCa tissue is heterogeneous, as between paired foci differences in DNA methylation status were found. Common epigenetic profile of recurrent tumors can be inferred from our data.
Sergeant, Martin J.; Constantinidou, Chrystala; Cogan, Tristan; Penn, Charles W.; Pallen, Mark J.
2012-01-01
The analysis of 16S-rDNA sequences to assess the bacterial community composition of a sample is a widely used technique that has increased with the advent of high throughput sequencing. Although considerable effort has been devoted to identifying the most informative region of the 16S gene and the optimal informatics procedures to process the data, little attention has been paid to the PCR step, in particular annealing temperature and primer length. To address this, amplicons derived from 16S-rDNA were generated from chicken caecal content DNA using different annealing temperatures, primers and different DNA extraction procedures. The amplicons were pyrosequenced to determine the optimal protocols for capture of maximum bacterial diversity from a chicken caecal sample. Even at very low annealing temperatures there was little effect on the community structure, although the abundance of some OTUs such as Bifidobacterium increased. Using shorter primers did not reveal any novel OTUs but did change the community profile obtained. Mechanical disruption of the sample by bead beating had a significant effect on the results obtained, as did repeated freezing and thawing. In conclusion, existing primers and standard annealing temperatures captured as much diversity as lower annealing temperatures and shorter primers. PMID:22666455
Epigenetic alterations of the BDNF gene in combat-related post-traumatic stress disorder.
Kim, T Y; Kim, S J; Chung, H G; Choi, J H; Kim, S H; Kang, J I
2017-02-01
Brain-derived neurotrophic factor (BDNF) plays a crucial role in modulating resilience and vulnerability to stress. The aim of this study was to investigate whether epigenetic regulation of the BDNF gene is a biomarker of post-traumatic stress disorder (PTSD) development among veterans exposed to combat in the Vietnam War. Using the Clinician-Administered PTSD Scale, combat veterans were grouped into those with (n = 126) and without (n = 122) PTSD. DNA methylation levels at four CpG sites within the BDNF promoter I region were quantified in the peripheral blood using pyrosequencing. The effects of BDNF DNA methylation levels and clinical variables on the diagnosis of PTSD were tested using binary logistic regression analysis. Subjects with PTSD showed a higher DNA methylation of four CpG sites at the BDNF promoter compared with those without PTSD. High methylation levels at the BDNF promoter CpG site, high combat exposure, and alcohol problems were significantly associated with PTSD diagnosis. This study demonstrated an association between higher DNA methylation of the BDNF promoter and PTSD diagnosis in combat-exposed individuals. Our findings suggest that altered BDNF methylation may be a valuable biomarker of PTSD after trauma exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sergeant, Martin J; Constantinidou, Chrystala; Cogan, Tristan; Penn, Charles W; Pallen, Mark J
2012-01-01
The analysis of 16S-rDNA sequences to assess the bacterial community composition of a sample is a widely used technique that has increased with the advent of high throughput sequencing. Although considerable effort has been devoted to identifying the most informative region of the 16S gene and the optimal informatics procedures to process the data, little attention has been paid to the PCR step, in particular annealing temperature and primer length. To address this, amplicons derived from 16S-rDNA were generated from chicken caecal content DNA using different annealing temperatures, primers and different DNA extraction procedures. The amplicons were pyrosequenced to determine the optimal protocols for capture of maximum bacterial diversity from a chicken caecal sample. Even at very low annealing temperatures there was little effect on the community structure, although the abundance of some OTUs such as Bifidobacterium increased. Using shorter primers did not reveal any novel OTUs but did change the community profile obtained. Mechanical disruption of the sample by bead beating had a significant effect on the results obtained, as did repeated freezing and thawing. In conclusion, existing primers and standard annealing temperatures captured as much diversity as lower annealing temperatures and shorter primers.
Hanks, Joanna; Ayed, Iyeman; Kukreja, Neil; Rogers, Chris; Harris, Jessica; Gheorghiu, Alina; Liu, Chee Ling; Emery, Peter; Pufulete, Maria
2013-12-01
Decreased genomic and increased gene-specific DNA methylation predispose to colorectal cancer. Dietary folate intake and the methylenetetrahydrofolate reductase polymorphism (MTHFR 677C>T) may influence risk by modifying DNA methylation. We investigated the associations between MTHFR 677C>T genotype, folate status, and DNA methylation in the colon. We conducted a cross-sectional study of 336 men and women (age 19-92 y) in the United Kingdom without colorectal neoplasia. We obtained blood samples for measurement of serum and red blood cell folate, plasma homocysteine, and MTHFR 677C>T genotype and colonic tissue biopsies for measurement of colonic tissue folate and DNA methylation (genomic- and gene-specific, estrogen receptor 1, ESR1; myoblast determination protein 1, MYOD1; insulin-like growth factor II, IGF2; tumor suppressor candidate 33, N33; adenomatous polyposis coli, APC; mut-L homolog 1, MLH1; and O(6)-methylguanine-DNA methyltransferase, MGMT) by liquid chromatography/electrospray ionization mass spectrometry and pyrosequencing, respectively. Of the 336 subjects recruited, 185 (55%) carried the CC, 119 (35%) the CT, and 32 (10%) the TT alleles. No significant differences in systemic markers of folate status and colonic tissue folate between genotypes were found. The MTHFR TT genotype was not associated with genomic or gene-specific DNA methylation. Biomarkers of folate status were not associated with genomic DNA methylation. Relations between biomarkers of folate status and gene-specific methylation were inconsistent. However, low serum folate was associated with high MGMT methylation (P = 0.001). MTHFR 677C>T genotype and folate status were generally not associated with DNA methylation in the colon of a folate-replete population without neoplasia.
Surfactant-associated bacteria in the near-surface layer of the ocean.
Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William
2016-01-12
Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.
Surfactant-associated bacteria in the near-surface layer of the ocean
Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William
2016-01-01
Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514
Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview.
Deshmukh, Rehan A; Joshi, Kopal; Bhand, Sunil; Roy, Utpal
2016-12-01
Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture-based methods are laborious, time-consuming, and yield false-positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid-based, immunology-based, and biosensor-based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real-time PCR, multiplex PCR, DNA microarray, Next-generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid-based methods. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology-based methods. Optical, electrochemical, and mass-based biosensors are grouped into biosensor-based methods. Overall, these methods are sensitive, specific, time-effective, and important in prevention and diagnosis of waterborne bacterial diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Wüst, Pia K.; Nacke, Heiko; Kaiser, Kristin; Marhan, Sven; Sikorski, Johannes; Kandeler, Ellen; Daniel, Rolf
2016-01-01
Modern sequencing technologies allow high-resolution analyses of total and potentially active soil microbial communities based on their DNA and RNA, respectively. In the present study, quantitative PCR and 454 pyrosequencing were used to evaluate the effects of different extraction methods on the abundance and diversity of 16S rRNA genes and transcripts recovered from three different types of soils (leptosol, stagnosol, and gleysol). The quality and yield of nucleic acids varied considerably with respect to both the applied extraction method and the analyzed type of soil. The bacterial ribosome content (calculated as the ratio of 16S rRNA transcripts to 16S rRNA genes) can serve as an indicator of the potential activity of bacterial cells and differed by 2 orders of magnitude between nucleic acid extracts obtained by the various extraction methods. Depending on the extraction method, the relative abundances of dominant soil taxa, in particular Actinobacteria and Proteobacteria, varied by a factor of up to 10. Through this systematic approach, the present study allows guidelines to be deduced for the selection of the appropriate extraction protocol according to the specific soil properties, the nucleic acid of interest, and the target organisms. PMID:26896137
Bustamante, Angela C; Aiello, Allison E; Guffanti, Guia; Galea, Sandro; Wildman, Derek E; Uddin, Monica
2018-01-01
Exposure to childhood maltreatment increases the risk of developing mental illness later in life. Childhood maltreatment and depression have both been associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis-a key regulator of the body's stress response. Additionally, HPA axis dysregulation has been implicated in the etiology of a range of mental illnesses. A substantial body of work has shown history of childhood maltreatment alters DNA methylation levels within key HPA axis genes. We therefore investigated whether one of these key genes, FKBP5 mediates the relationship between childhood maltreatment and depression, and assessed FKBP5 DNA methylation and gene expression within 112 adults from the Detroit Neighborhood Health Study (DNHS). DNA methylation was assessed in 4 regions, including the upstream promoter, downstream promoter, and two glucocorticoid response elements (GREs) via pyrosequencing using whole blood derived DNA; Taqman assays measured relative RNA expression from leukocytes. Mediation analyses were conducted using sequential linear regression. Childhood maltreatment was significantly associated with depression symptom severity (FDR < 0.006), but was not a significant predictor of DNA methylation in any of the four loci examined. FKBP5 showed elevated expression levels in participants with vs. without a history of depression (p < 0.001); no significant difference in gene expression levels was observed in relation to childhood maltreatment (p > 0.05). Our results suggest DNA methylation does not mediate the childhood maltreatment-depression association in the DNHS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Tae Gwan; Kim, Sun-Hye; Cho, Kyung-Suk
2014-01-01
Effects of ultrasonic pretreatment on bacterial DNA recovery from granular activated carbon (GAC) were investigated. GAC (Calgon F400), biologically activated, was sampled from an actual drinking water plant. Different ultrasonic energy densities (0-400 J·cm(-3)) were applied with agitation (250 rpm for 30 min), and recovered bacterial DNA was quantified using quantitative PCR. Energy density was linearly correlated with the concentration of carbon fines produced from GAC during ultrasonication. Ultrasonication alone had no effect on DNA recovery at ≤60 J·cm(-3), but a strongly adverse effect at >67 J·cm(-3) due to the produced carbon fines. Agitation along with ultrasonication strongly enhanced the bacterial DNA recovery when ≤40 J·cm(-3) was applied, although it did not affect the production of carbon fines. Ribosomal tag pyrosequencing was used to compare recovered bacterial communities (0, 20 and 30 J·cm(-3) with or without agitation). Ultrasonication allowed for obtaining a more diverse and richer bacterial community from GAC, compared with the control. Agitation did not show a positive effect on community organization (richness and diversity). Consistently, canonical correspondence analysis indicated that the energy density was associated with the relative abundances of particular bacterial members (P < 0.05), while agitation did not. Correspondence analysis revealed that the recovered bacterial communities were grouped according to the applied energy densities. In conclusion, ultrasonication and agitation influence the recovered DNA in quality and quantity, respectively, and carbon fines as a by-product by ultrasonication interfere with the DNA recovery.
Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace.
Ghosh, Manosij; Öner, Deniz; Poels, Katrien; Tabish, Ali M; Vlaanderen, Jelle; Pronk, Anjoeka; Kuijpers, Eelco; Lan, Qing; Vermeulen, Roel; Bekaert, Bram; Hoet, Peter Hm; Godderis, Lode
This study was designed to assess the epigenetic alterations in blood cells, induced by occupational exposure to multi-wall carbon nanotubes (MWCNT). The study population comprised of MWCNT-exposed workers (n=24) and unexposed controls (n=43) from the same workplace. We measured global DNA methylation/hydroxymethylation levels on the 5th cytosine residues using a validated liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. Sequence-specific methylation of LINE1 retrotransposable element 1 (L1RE1) elements, and promoter regions of functionally important genes associated with epigenetic regulation [DNA methyltransferase-1 (DNMT1) and histone deacetylase 4 (HDAC4)], DNA damage/repair and cell cycle pathways [nuclear protein, coactivator of histone transcription/ATM serine/threonine kinase (NPAT/ATM)], and a potential transforming growth factor beta (TGF-β) repressor [SKI proto-oncogene (SKI)] were studied using bisulfite pyrosequencing. Analysis of global DNA methylation levels and hydroxymethylation did not reveal significant difference between the MWCNT-exposed and control groups. No significant changes in Cytosine-phosphate-Guanine (CpG) site methylation were observed for the LINE1 (L1RE1) elements. Further analysis of gene-specific DNA methylation showed a significant change in methylation for DNMT1, ATM, SKI, and HDAC4 promoter CpGs in MWCNT-exposed workers. Since DNA methylation plays an important role in silencing/regulation of the genes, and many of these genes have been associated with occupational and smoking-induced diseases and cancer (risk), aberrant methylation of these genes might have a potential effect in MWCNT-exposed workers.
Feng, Lei; Peng, Fuduan; Li, Shanfei; Jiang, Li; Sun, Hui; Ji, Anquan; Zeng, Changqing; Li, Caixia; Liu, Fan
2018-03-23
Estimating individual age from biomarkers may provide key information facilitating forensic investigations. Recent progress has shown DNA methylation at age-associated CpG sites as the most informative biomarkers for estimating the individual age of an unknown donor. Optimal feature selection plays a critical role in determining the performance of the final prediction model. In this study we investigate methylation levels at 153 age-associated CpG sites from 21 previously reported genomic regions using the EpiTYPER system for their predictive power on individual age in 390 Han Chinese males ranging from 15 to 75 years of age. We conducted a systematic feature selection using a stepwise backward multiple linear regression analysis as well as an exhaustive searching algorithm. Both approaches identified the same subset of 9 CpG sites, which in linear combination provided the optimal model fitting with mean absolute deviation (MAD) of 2.89 years of age and explainable variance (R 2 ) of 0.92. The final model was validated in two independent Han Chinese male samples (validation set 1, N = 65, MAD = 2.49, R 2 = 0.95, and validation set 2, N = 62, MAD = 3.36, R 2 = 0.89). Other competing models such as support vector machine and artificial neural network did not outperform the linear model to any noticeable degree. The validation set 1 was additionally analyzed using Pyrosequencing technology for cross-platform validation and was termed as validation set 3. Directly applying our model, in which the methylation levels were detected by the EpiTYPER system, to the data from pyrosequencing technology showed, however, less accurate results in terms of MAD (validation set 3, N = 65 Han Chinese males, MAD = 4.20, R 2 = 0.93), suggesting the presence of a batch effect between different data generation platforms. This batch effect could be partially overcome by a z-score transformation (MAD = 2.76, R 2 = 0.93). Overall, our systematic feature selection identified 9 CpG sites as the optimal subset for forensic age estimation and the prediction model consisting of these 9 markers demonstrated high potential in forensic practice. An age estimator implementing our prediction model allowing missing markers is freely available at http://liufan.big.ac.cn/AgePrediction. Copyright © 2018 Elsevier B.V. All rights reserved.
Sugarcane giant borer transcriptome analysis and identification of genes related to digestion.
Fonseca, Fernando Campos de Assis; Firmino, Alexandre Augusto Pereira; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; de Souza Júnior, José Dijair Antonino; de Sousa Júnior, José Dijair Antonino; Silva-Junior, Orzenil Bonfim; Togawa, Roberto Coiti; Pappas, Georgios Joannis; de Góis, Luiz Avelar Brandão; da Silva, Maria Cristina Mattar; Grossi-de-Sá, Maria Fátima
2015-01-01
Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.
Sugarcane Giant Borer Transcriptome Analysis and Identification of Genes Related to Digestion
de Assis Fonseca, Fernando Campos; Firmino, Alexandre Augusto Pereira; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; de Sousa Júnior, José Dijair Antonino; Silva-Junior, Orzenil Bonfim; Togawa, Roberto Coiti; Pappas, Georgios Joannis; de Góis, Luiz Avelar Brandão; da Silva, Maria Cristina Mattar; Grossi-de-Sá, Maria Fátima
2015-01-01
Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect’s biology and to guide the development of new strategies for insect-pest control. PMID:25706301
Zeng, Digang; Chen, Xiuli; Xie, Daxiang; Zhao, Yongzhen; Yang, Chunling; Li, Yongmei; Ma, Ning; Peng, Min; Yang, Qiong; Liao, Zhenping; Wang, Hui; Chen, Xiaohan
2013-01-01
The Pacific white shrimp, Litopenaeus vannamei, is a worldwide cultured crustacean species with important commercial value. Over the last two decades, Taura syndrome virus (TSV) has seriously threatened the shrimp aquaculture industry in the Western Hemisphere. To better understand the interaction between shrimp immune and TSV, we performed a transcriptome analysis in the hepatopancreas of L. vannamei challenged with TSV, using the 454 pyrosequencing (Roche) technology. We obtained 126919 and 102181 high-quality reads from TSV-infected and non-infected (control) L. vannamei cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 15004 unigenes, with an average length of 507 bp. Based on BLASTX search (E-value <10-5) against NR, Swissprot, GO, COG and KEGG databases, 10425 unigenes (69.50% of all unigenes) were annotated with gene descriptions, gene ontology terms, or metabolic pathways. In addition, we identified 770 microsatellites and designed 497 sets of primers. Comparative genomic analysis revealed that 1311 genes differentially expressed in the infected shrimp compared to the controls, including 559 up- and 752 down- regulated genes. Among the differentially expressed genes, several are involved in various animal immune functions, such as antiviral, antimicrobial, proteases, protease inhibitors, signal transduction, transcriptional control, cell death and cell adhesion. This study provides valuable information on shrimp gene activities against TSV infection. Results can contribute to the in-depth study of candidate genes in shrimp immunity, and improves our current understanding of this host-virus interaction. In addition, the large amount of transcripts reported in this study provide a rich source for identification of novel genes in shrimp.
Sasaki, Katsutomo; Mitsuda, Nobutaka; Nashima, Kenji; Kishimoto, Kyutaro; Katayose, Yuichi; Kanamori, Hiroyuki; Ohmiya, Akemi
2017-09-04
Chrysanthemum morifolium is one of the most economically valuable ornamental plants worldwide. Chrysanthemum is an allohexaploid plant with a large genome that is commercially propagated by vegetative reproduction. New cultivars with different floral traits, such as color, morphology, and scent, have been generated mainly by classical cross-breeding and mutation breeding. However, only limited genetic resources and their genome information are available for the generation of new floral traits. To obtain useful information about molecular bases for floral traits of chrysanthemums, we read expressed sequence tags (ESTs) of chrysanthemums by high-throughput sequencing using the 454 pyrosequencing technology. We constructed normalized cDNA libraries, consisting of full-length, 3'-UTR, and 5'-UTR cDNAs derived from various tissues of chrysanthemums. These libraries produced a total number of 3,772,677 high-quality reads, which were assembled into 213,204 contigs. By comparing the data obtained with those of full genome-sequenced species, we confirmed that our chrysanthemum contig set contained the majority of all expressed genes, which was sufficient for further molecular analysis in chrysanthemums. We confirmed that our chrysanthemum EST set (contigs) contained a number of contigs that encoded transcription factors and enzymes involved in pigment and aroma compound metabolism that was comparable to that of other species. This information can serve as an informative resource for identifying genes involved in various biological processes in chrysanthemums. Moreover, the findings of our study will contribute to a better understanding of the floral characteristics of chrysanthemums including the myriad cultivars at the molecular level.
Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation
Tarantini, Letizia; Bonzini, Matteo; Apostoli, Pietro; Pegoraro, Valeria; Bollati, Valentina; Marinelli, Barbara; Cantone, Laura; Rizzo, Giovanna; Hou, Lifang; Schwartz, Joel; Bertazzi, Pier Alberto; Baccarelli, Andrea
2009-01-01
Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM. PMID:19270791
DNA hypomethylation at ALOX12 is associated with persistent wheezing in childhood.
Morales, Eva; Bustamante, Mariona; Vilahur, Nadia; Escaramis, Georgia; Montfort, Magda; de Cid, Rafael; Garcia-Esteban, Raquel; Torrent, Maties; Estivill, Xavier; Grimalt, Joan O; Sunyer, Jordi
2012-05-01
Epigenetic changes may play a role in the occurrence of asthma-related phenotypes. To identify epigenetic marks in terms of DNA methylation of asthma-related phenotypes in childhood, and to assess the effect of prenatal exposures and genetic variation on these epigenetic marks. Data came from two cohorts embedded in the Infancia y Medio Ambiente (INMA) PROJECT: Menorca (n = 122) and Sabadell (n = 236). Wheezing phenotypes were defined at age 4-6 years. Cytosine-guanine (CpG) dinucleotide site DNA methylation differences associated with wheezing phenotypes were screened in children of the Menorca study using the Illumina GoldenGate Panel I. Findings were validated and replicated using pyrosequencing. Information on maternal smoking and folate supplement use was obtained through questionnaires. Dichlorodiphenyldichloroethylene was measured in cord blood or maternal serum. Genotypes were extracted from genome-wide data. Screening identified lower DNA methylation at a CpG site in the arachidonate 12-lipoxygenase (ALOX12) gene in children having persistent wheezing compared with those never wheezed (P = 0.003). DNA hypomethylation at ALOX12 loci was associated with higher risk of persistent wheezing in the Menorca study (odds ratio per 1% methylation decrease, 1.13; 95% confidence interval, 0.99-1.29; P = 0.077) and in the Sabadell study (odds ratio, 1.16; 95% confidence interval, 1.03-1.37; P = 0.017). Higher levels of prenatal dichlorodiphenyldichloroethylene were associated with DNA hypomethylation of ALOX12 in the Menorca study (P = 0.033), but not in the Sabadell study (P = 0.377). ALOX12 DNA methylation was strongly determined by underlying genetic polymorphisms. DNA methylation of ALOX12 may be an epigenetic biomarker for the risk of asthma-related phenotypes.
Salamon, Sylwia; Flisikowski, Krzysztof; Switonski, Marek
2017-01-01
Ovotesticular or testicular disorder of sexual development in dogs with female karyotype and lack of SRY (XX DSD) is a common sexual anomaly diagnosed in numerous breeds. The molecular background, however, remains unclear, and epigenetic mechanisms, including DNA methylation, have not been studied. The aim of our study was comparative methylation analysis of CpG islands in promoters of candidate genes for XX DSD: SOX9, SOX3, and WNT4. Methylation studies were performed on DNA extracted from formalin-fixed/paraffin-embedded or frozen gonads from 2 dogs with ovotesticular and 2 dogs with testicular XX DSD as well as control females (n = 4) and males (n = 2). Bisulfite-converted DNA was used for CpG methylation analysis using quantitative pyrosequencing. Promoter regions of SOX9 and WNT4 showed similar CpG methylation in each group, ranging from 0 to 5.5% and from 39 to 74%, respectively. The SOX3 promoter showed significantly higher methylation in the ovotesticular XX DSD cases and the testicular XX DSD and control males, suggesting that SOX3 methylation may play a role in canine XX DSD pathogenesis. © 2017 S. Karger AG, Basel.
Developing High-Throughput HIV Incidence Assay with Pyrosequencing Platform
Park, Sung Yong; Goeken, Nolan; Lee, Hyo Jin; Bolan, Robert; Dubé, Michael P.
2014-01-01
ABSTRACT Human immunodeficiency virus (HIV) incidence is an important measure for monitoring the epidemic and evaluating the efficacy of intervention and prevention trials. This study developed a high-throughput, single-measure incidence assay by implementing a pyrosequencing platform. We devised a signal-masking bioinformatics pipeline, which yielded a process error rate of 5.8 × 10−4 per base. The pipeline was then applied to analyze 18,434 envelope gene segments (HXB2 7212 to 7601) obtained from 12 incident and 24 chronic patients who had documented HIV-negative and/or -positive tests. The pyrosequencing data were cross-checked by using the single-genome-amplification (SGA) method to independently obtain 302 sequences from 13 patients. Using two genomic biomarkers that probe for the presence of similar sequences, the pyrosequencing platform correctly classified all 12 incident subjects (100% sensitivity) and 23 of 24 chronic subjects (96% specificity). One misclassified subject's chronic infection was correctly classified by conducting the same analysis with SGA data. The biomarkers were statistically associated across the two platforms, suggesting the assay's reproducibility and robustness. Sampling simulations showed that the biomarkers were tolerant of sequencing errors and template resampling, two factors most likely to affect the accuracy of pyrosequencing results. We observed comparable biomarker scores between AIDS and non-AIDS chronic patients (multivariate analysis of variance [MANOVA], P = 0.12), indicating that the stage of HIV disease itself does not affect the classification scheme. The high-throughput genomic HIV incidence marks a significant step toward determining incidence from a single measure in cross-sectional surveys. IMPORTANCE Annual HIV incidence, the number of newly infected individuals within a year, is the key measure of monitoring the epidemic's rise and decline. Developing reliable assays differentiating recent from chronic infections has been a long-standing quest in the HIV community. Over the past 15 years, these assays have traditionally measured various HIV-specific antibodies, but recent technological advancements have expanded the diversity of proposed accurate, user-friendly, and financially viable tools. Here we designed a high-throughput genomic HIV incidence assay based on the signature imprinted in the HIV gene sequence population. By combining next-generation sequencing techniques with bioinformatics analysis, we demonstrated that genomic fingerprints are capable of distinguishing recently infected patients from chronically infected patients with high precision. Our high-throughput platform is expected to allow us to process many patients' samples from a single experiment, permitting the assay to be cost-effective for routine surveillance. PMID:24371062
Beck, Rose C; Kohn, Debra J; Tuohy, Marion J; Prayson, Richard A; Yen-Lieberman, Belinda; Procop, Gary W
2004-03-01
We evaluated 2 methods, a LightCycler PCR assay and pyrosequencing for the detection of the JC polyoma virus (JCV) in fixed brain tissue of 10 patients with and 3 control patients without progressive multifocal leukoencephalopathy (PML). Nucleic acid extraction was performed after deparaffinization and proteinase K digestion. The LightCycler assay differentiates the BK virus (BKV), JCV, and SV40 using melt curve analysis. Conventional PCR was used with the same primers to generate products for pyrosequencing. Two sequencing primers were used that differentiate the polyoma viruses. Seven of 11 biopsies (1 patient had 2 biopsies) with PML were positive for JCV by real-time PCR and/or PCR/pyrosequencing. Three of 4 remaining biopsies were positive by real-time PCR but had melting points between JCV and SV40. The 4 specimens that were negative or atypical by LightCycler PCR were positive by traditional PCR, but 1 had an amplicon of lower molecular weight by gel electrophoresis. These were shown to represent JCV by at least 1 of the 2 pyrosequencing primers. The biopsies from patients without PML were PCR negative. Both the LightCycler and pyrosequencing assays are useful for confirming JCV in brain biopsies from patients with PML, but variant JCVs may require supplementary methods to confirm JCV infection.
Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan
2012-10-01
Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.
Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz
2012-01-01
Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078
Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre
2015-01-01
HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds. PMID:26585833
Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre
2015-11-20
HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.
Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet
2017-01-01
DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J.; Waghorn, Garry C.; Janssen, Peter H.
2013-01-01
Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided. PMID:24040342
Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J; Waghorn, Garry C; Janssen, Peter H
2013-01-01
Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided.
Gao, Li; Hu, Yuejian; Wang, Yuxia; Jiang, Wenxin; He, Zhiyan; Zhu, Cailian; Ma, Rui; Huang, Zhengwei
2015-09-01
The aim of this article was to study the variation in oral microflora of the subgingival plaque during and after radiotherapy. During and after radiotherapy, microbial samples were collected at seven time points (early stage, medium stage, and later stage of radiotherapy, and 1 month, 3 months, 6 months, and 1 year after radiotherapy) in three subjects for a total of 21 samples. Polymerase chain reaction (PCR) amplification was carried out on the 16S rDNA hypervariable V1-V3 region, and then the PCR products were determined by high-throughput pyrosequencing. The rarefaction curve indicating the richness of the microflora demonstrated that the number of operational taxonomic units (OTUs) was in decline from the early stage of radiotherapy to the time point 1 month after radiotherapy and then trended upward. The Shannon diversity index declined during radiotherapy (ranging from 4.59 to 3.73), and generally rose after radiotherapy, with the lowest value of 3.5 (1 month after radiotherapy) and highest value of 4.75 (6 months after radiotherapy). A total of 120 genera were found; five genera (Actinomyces, Veillonella, Prevotella, Streptococcus, Campylobacter) were found in all subjects across all time points. The richness and diversity of oral ecology decreased with increased radiation dose, and it was gradually restored with time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Campana, Davide; Walter, Thomas; Pusceddu, Sara; Gelsomino, Fabio; Graillot, Emmanuelle; Prinzi, Natalie; Spallanzani, Andrea; Fiorentino, Michelangelo; Barritault, Marc; Dall'Olio, Filippo; Brighi, Nicole; Biasco, Guido
2018-06-01
Temozolomide (TEM) based therapy has been reported being effective in the treatment of metastatic neuroendocrine neoplasms (NEN), with response rates ranging from 30 to 70%. Among patients affected by advanced glioblastoma or melanoma and treated with TEM, loss of tumoral O6-methylguanine DNA methyltransferase (MGMT) is correlated with improved survival. In NEN patients, the role of MGMT deficiency in predicting clinical outcomes of TEM treatment is still under debate. In this study we evaluated 95 patients with advanced NENs undergoing treatment with TEM-based therapy. MGMT promoter methylation status was evaluated with two techniques: methylation specific-polymerase chain reaction or pyrosequencing. Treatment with TEM-based therapy was associated with an overall response rate of 27.4% according to RECIST criteria (51.8% of patients with and 17.7% without MGMT promoter methylation). Response to therapy, progression free survival and overall survival was correlated to MGMT status at univariate and multivariate analysis. Methylation of MGMT promoter could be a strong predictive factor of objective response and an important prognostic factor of a longer PFS and OS. According to our results, MGMT methylation status, evaluated with methylation specific-polymerase chain reaction or pyrosequencing, should have an important role in patients with metastatic NENs, in order to guide therapeutic options. These results need further confirmation with prospective studies.
SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read
2010-01-01
Background High-throughput automated sequencing has enabled an exponential growth rate of sequencing data. This requires increasing sequence quality and reliability in order to avoid database contamination with artefactual sequences. The arrival of pyrosequencing enhances this problem and necessitates customisable pre-processing algorithms. Results SeqTrim has been implemented both as a Web and as a standalone command line application. Already-published and newly-designed algorithms have been included to identify sequence inserts, to remove low quality, vector, adaptor, low complexity and contaminant sequences, and to detect chimeric reads. The availability of several input and output formats allows its inclusion in sequence processing workflows. Due to its specific algorithms, SeqTrim outperforms other pre-processors implemented as Web services or standalone applications. It performs equally well with sequences from EST libraries, SSH libraries, genomic DNA libraries and pyrosequencing reads and does not lead to over-trimming. Conclusions SeqTrim is an efficient pipeline designed for pre-processing of any type of sequence read, including next-generation sequencing. It is easily configurable and provides a friendly interface that allows users to know what happened with sequences at every pre-processing stage, and to verify pre-processing of an individual sequence if desired. The recommended pipeline reveals more information about each sequence than previously described pre-processors and can discard more sequencing or experimental artefacts. PMID:20089148
Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere
Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea
2014-01-01
Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment. PMID:25071740
Oakley, Brian B; Line, J Eric; Berrang, Mark E; Johnson, Jessica M; Buhr, R Jeff; Cox, Nelson A; Hiett, Kelli L; Seal, Bruce S
2012-02-01
Although Campylobacter is an important food-borne human pathogen, there remains a lack of molecular diagnostic assays that are simple to use, cost-effective, and provide rapid results in research, clinical, or regulatory laboratories. Of the numerous Campylobacter assays that do exist, to our knowledge none has been empirically tested for specificity using high-throughput sequencing. Here we demonstrate the power of next-generation sequencing to determine the specificity of a widely cited Campylobacter-specific polymerase chain reaction (PCR) assay and describe a rapid method for direct cell suspension PCR to quickly and easily screen samples for Campylobacter. We present a specific protocol which eliminates the need for time-consuming and expensive genomic DNA extractions and, using a high-processivity polymerase, demonstrate conclusive screening of samples in <1 h. Pyrosequencing results show the assay to be extremely (>99%) sensitive, and spike-back experiments demonstrated a detection threshold of <10(2) CFU mL(-1). Additionally, we present 2 newly designed broad-range bacterial primer sets targeting the 23S rRNA gene that have wide applicability as internal amplification controls. Empirical testing of putative taxon-specific assays using high-throughput sequencing is an important validation step that is now financially feasible for research, regulatory, or clinical applications. Published by Elsevier Inc.
Jan, Catherine
2016-01-01
The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species. PMID:27688959
Jan, Catherine; Fumagalli, Luca
2016-01-01
The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species.
Newton, K; Jorgensen, N M; Wallace, A J; Buchanan, D D; Lalloo, F; McMahon, R F T; Hill, J; Evans, D G
2014-12-01
Lynch syndrome (LS) patients have DNA mismatch repair deficiency and up to 80% lifetime risk of colorectal cancer (CRC). Screening of mutation carriers reduces CRC incidence and mortality. Selection for constitutional mutation testing relies on family history (Amsterdam and Bethesda Guidelines) and tumour-derived biomarkers. Initial biomarker analysis uses mismatch repair protein immunohistochemistry and microsatellite instability. Abnormalities in either identify mismatch repair deficiency but do not differentiate sporadic epigenetic defects, due to MLH1 promoter region methylation (13% of CRCs) from LS (4% of CRCs). A diagnostic biomarker capable of making this distinction would be valuable. This study compared two biomarkers in tumours with mismatch repair deficiency; quantification of methylation of the MLH1 promoter region using a novel assay and BRAF c.1799T>A, p.(Val600Glu) mutation status in the identification of constitutional mutations. Tumour DNA was extracted (formalin fixed, paraffin embedded, FFPE tissue) and pyrosequencing used to test for MLH1 promoter methylation and presence of the BRAF c.1799T>A, p.(Val600Glu) mutation 71 CRCs from individuals with pathogenic MLH1 mutations and 73 CRCs with sporadic MLH1 loss. Specificity and sensitivity was compared. Unmethylated MLH1 promoter: sensitivity 94.4% (95% CI 86.2% to 98.4%), specificity 87.7% (95% CI 77.9% to 94.2%), Wild-type BRAF (codon 600): sensitivity 65.8% (95% CI 53.7% to 76.5%), specificity 98.6% (95% CI 92.4% to 100.0%) for the identification of those with pathogenic MLH1 mutations. Quantitative MLH1 promoter region methylation using pyrosequencing is superior to BRAF codon 600 mutation status in identifying constitutional mutations in mismatch repair deficient tumours. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Vezzulli, Luigi; Pezzati, Elisabetta; Huete-Stauffer, Carla; Pruzzo, Carla; Cerrano, Carlo
2013-01-01
Mass mortality events of benthic invertebrates in the Mediterranean Sea are becoming an increasing concern with catastrophic effects on the coastal marine environment. Sea surface temperature anomalies leading to physiological stress, starvation and microbial infections were identified as major factors triggering animal mortality. However the highest occurrence of mortality episodes in particular geographic areas and occasionally in low temperature deep environments suggest that other factors play a role as well. We conducted a comparative analysis of bacterial communities associated with the purple gorgonian Paramuricea clavata, one of the most affected species, collected at different geographic locations and depth, showing contrasting levels of anthropogenic disturbance and health status. Using massive parallel 16SrDNA gene pyrosequencing we showed that the bacterial community associated with healthy P. clavata in pristine locations was dominated by a single genus Endozoicomonas within the order Oceanospirillales which represented ∼90% of the overall bacterial community. P. clavata samples collected in human impacted areas and during disease events had higher bacterial diversity and abundance of disease-related bacteria, such as vibrios, than samples collected in pristine locations whilst showed a reduced dominance of Endozoicomonas spp. In contrast, bacterial symbionts exhibited remarkable stability in P. clavata collected both at euphotic and mesophotic depths in pristine locations suggesting that fluctuations in environmental parameters such as temperature have limited effect in structuring the bacterial holobiont. Interestingly the coral pathogen Vibrio coralliilyticus was not found on diseased corals collected during a deep mortality episode suggesting that neither temperature anomalies nor recognized microbial pathogens are solely sufficient to explain for the events. Overall our data suggest that anthropogenic influence may play a significant role in determining the coral health status by affecting the composition of the associated microbial community. Environmental stressful events and microbial infections may thus be superimposed to compromise immunity and trigger mortality outbreaks. PMID:23840768
Wiestler, Benedikt; Capper, David; Hovestadt, Volker; Sill, Martin; Jones, David T.W.; Hartmann, Christian; Felsberg, Joerg; Platten, Michael; Feiden, Wolfgang; Keyvani, Kathy; Pfister, Stefan M.; Wiestler, Otmar D.; Meyermann, Richard; Reifenberger, Guido; Pietsch, Thorsten; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang
2014-01-01
Background Molecular biomarkers including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q codeletion, and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation may improve prognostication and guide treatment decisions for patients with World Health Organization (WHO) anaplastic gliomas. At present, each marker is individually tested by distinct assays. Illumina Infinium HumanMethylation450 BeadChip arrays (HM450) enable the determination of large-scale methylation profiles and genome-wide DNA copy number changes. Algorithms have been developed to detect the glioma CpG island methylator phenotype (G-CIMP) associated with IDH1/2 mutation, 1p/19q codeletion, and MGMT promoter methylation using a single assay. Methods Here, we retrospectively investigated the diagnostic and prognostic performance of these algorithms in comparison to individual marker testing and patient outcome in the biomarker cohort (n = 115 patients) of the NOA-04 trial. Results Concordance for IDH and 1p/19q status was very high: In 92% of samples, the HM450 and reference data agreed. In discordant samples, survival analysis by Kaplan-Meier and Cox regression analyses suggested a more accurate assessment of biological phenotype by the HM450 analysis. The HM450-derived MGMT-STP27 model to calculate MGMT promoter methylation probability revealed this aberration in a significantly higher fraction of samples than conventional methylation-specific PCR, with 87 of 91 G-CIMP tumors predicted as MGMT promoter-methylated. Pyrosequencing of discordant samples confirmed the HM450 assessment in 14 of 17 cases. Conclusions G-CIMP and 1p/19q codeletion are reliably detectable by HM450 analysis and are associated with prognosis in the NOA-04 trial. For MGMT, HM450 suggests promoter methylation in the vast majority of G-CIMP tumors, which is supported by pyrosequencing. PMID:25028501
NASA Astrophysics Data System (ADS)
Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.
2014-06-01
Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These results suggest that type I methanotrophs can outcompete type II methane oxidizers in nitrogen-rich environments, rendering the interactions among methane and ammonia oxidizers more complicated than previously appreciated.
DNA methylome signature in rheumatoid arthritis.
Nakano, Kazuhisa; Whitaker, John W; Boyle, David L; Wang, Wei; Firestein, Gary S
2013-01-01
Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed. Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini-Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern. Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.
Campbell, Barbara J; Kirchman, David L
2013-01-01
Very little is known about growth rates of individual bacterial taxa and how they respond to environmental flux. Here, we characterized bacterial community diversity, structure and the relative abundance of 16S rRNA and 16S rRNA genes (rDNA) using pyrosequencing along the salinity gradient in the Delaware Bay. Indices of diversity, evenness, structure and growth rates of the surface bacterial community significantly varied along the transect, reflecting active mixing between the freshwater and marine ends of the estuary. There was no positive correlation between relative abundances of 16S rRNA and rDNA for the entire bacterial community, suggesting that abundance of bacteria does not necessarily reflect potential growth rate or activity. However, for almost half of the individual taxa, 16S rRNA positively correlated with rDNA, suggesting that activity did follow abundance in these cases. The positive relationship between 16S rRNA and rDNA was less in the whole water community than for free-living taxa, indicating that the two communities differed in activity. The 16S rRNA:rDNA ratios of some typically marine taxa reflected differences in light, nutrient concentrations and other environmental factors along the estuarine gradient. The ratios of individual freshwater taxa declined as salinity increased, whereas the 16S rRNA:rDNA ratios of only some typical marine bacteria increased as salinity increased. These data suggest that physical and other bottom-up factors differentially affect growth rates, but not necessarily abundance of individual taxa in this highly variable environment. PMID:22895159
Effects of age, sex, and persistent organic pollutants on DNA methylation in children
Huen, Karen; Yousefi, Paul; Bradman, Asa; Yan, Liying; Harley, Kim G.; Kogut, Katherine; Eskenazi, Brenda; Holland, Nina
2015-01-01
Epigenetic changes such as DNA methylation may be a molecular mechanism through which environmental exposures affect health. Methylation of Alu and long interspersed nucleotide elements (LINE-1) is a well-established measure of DNA methylation often used in epidemiologic studies. Yet, few studies have examined the effects of host factors on LINE-1 and Alu methylation in children. We characterized the relationship of age, sex, and prenatal exposure to persistent organic pollutants (POPs), dichlorodiphenyl trichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and polybrominated diphenyl ethers (PBDEs), with DNA methylation in a birth cohort of Mexican-American children participating in the CHAMACOS study. We measured Alu and LINE-1 methylation by pyrosequencing bisulfite-treated DNA isolated from whole blood samples collected from newborns and 9-year old children (n=358). POPs were measured in maternal serum during late pregnancy. Levels of DNA methylation were lower in 9-year olds compared to newborns and were higher in boys compared to girls. Higher prenatal DDT/E exposure was associated with lower Alu methylation at birth, particularly after adjusting for cell type composition (p=0.02 for o,p′ -DDT). Associations of POPs with LINE-1 methylation were only identified after examining the co-exposure of DDT/E with PBDEs simultaneously. Our data suggest that repeat element methylation can be an informative marker of epigenetic differences by age and sex and that prenatal exposure to POPs may be linked to hypomethylation in fetal blood. Accounting for co-exposure to different types of chemicals and adjusting for blood cell types may increase sensitivity of epigenetic analyses for epidemiological studies. PMID:24375655
Kolarova, Julia; Tangen, Imke; Bens, Susanne; Gillessen-Kaesbach, Gabriele; Gutwein, Jana; Kautza, Monika; Rydzanicz, Malgorzata; Stephani, Ulrich; Siebert, Reiner; Ammerpohl, Ole; Caliebe, Almuth
2015-08-01
Despite recent progress in molecular karyotyping and clinical sequencing the cause of intellectual disability in a considerable subset of individuals affected by this phenotype remains elusive. As intellectual disability is also a feature of various imprinting disorders and some monogenic forms of intellectual disability are caused by epigenetic modifiers we hypothesized that changes in DNA methylation might be associated with or even causative in some cases of intellectual disability. Therefore, we performed a DNA methylation analysis of peripheral blood samples from 82 patients with intellectual disability and additional features using the HumanMethylation450 BeadChip. The findings were compared to that of 19 normal controls. Differentially methylated loci were validated by bisulfite pyrosequencing. On a global level, we failed to detect a robust DNA methylation signature segregating individuals with intellectual disability from controls. Using an individual approach, we identified 157 regions showing individual DNA methylation changes in at least one patient. These correlated to 107 genes including genes linked to conditions associated with intellectual disability, namely COLEC11, SHANK2, GLI2 and KCNQ2, as well as imprinted genes like FAM50B and MEG3. The latter was suggestive of an undiagnosed Temple syndrome which could be confirmed by diagnostic tests. Subsequent in-depth analysis of imprinted loci revealed DNA methylation changes at additional imprinted loci, i.e. PPIEL, IGF2R, MEG8 and MCTS2/HM13, in up to five patients. Our findings indicate that imprinting disorders are rare but probably under-diagnosed in patients with intellectual disability and moreover point to DNA methylation changes as potential alternative means to identify deregulated genes involved in the pathogenesis of intellectual disability. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
IGF2 DNA methylation is a modulator of newborn's fetal growth and development.
St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi
2012-10-01
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn's fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn's weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn's fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.
In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.
Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E
2018-01-01
DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.
Prenatal antidepressant exposure associated with CYP2E1 DNA methylation change in neonates
Gurnot, Cécile; Martin-Subero, Ignacio; Mah, Sarah M; Weikum, Whitney; Goodman, Sarah J; Brain, Ursula; Werker, Janet F; Kobor, Michael S; Esteller, Manel; Oberlander, Tim F; Hensch, Takao K
2015-01-01
Some but not all neonates are affected by prenatal exposure to serotonin reuptake inhibitor antidepressants (SRI) and maternal mood disturbances. Distinguishing the impact of these 2 exposures is challenging and raises critical questions about whether pharmacological, genetic, or epigenetic factors can explain the spectrum of reported outcomes. Using unbiased DNA methylation array measurements followed by a detailed candidate gene approach, we examined whether prenatal SRI exposure was associated with neonatal DNA methylation changes and whether such changes were associated with differences in birth outcomes. Prenatal SRI exposure was first associated with increased DNA methylation status primarily at CYP2E1(βNon-exposed = 0.06, βSRI-exposed = 0.30, FDR = 0); however, this finding could not be distinguished from the potential impact of prenatal maternal depressed mood. Then, using pyrosequencing of CYP2E1 regulatory regions in an expanded cohort, higher DNA methylation status—both the mean across 16 CpG sites (P < 0.01) and at each specific CpG site (P < 0.05)—was associated with exposure to lower 3rd trimester maternal depressed mood symptoms only in the SRI-exposed neonates, indicating a maternal mood x SRI exposure interaction. In addition, higher DNA methylation levels at CpG2 (P = 0.04), CpG9 (P = 0.04) and CpG10 (P = 0.02), in the interrogated CYP2E1 region, were associated with increased birth weight independently of prenatal maternal mood, SRI drug exposure, or gestational age at birth. Prenatal SRI antidepressant exposure and maternal depressed mood were associated with altered neonatal CYP2E1 DNA methylation status, which, in turn, appeared to be associated with birth weight. PMID:25891251
Li, Jian-Jun; Zheng, Ping Chen Jue-Ru; Wang, Yao-Zong
2017-06-06
This study aims at exploring the correlations between DNA methylation and polymorphisms in the promoter region of the human telomerase reverse transcriptase (hTERT) gene and postoperative recurrence in patients with thyroid carcinoma (TC). A total of 312 patients diagnosed with TC were chosen for the study and categorized into recurrence (n = 75) and non-recurrence (n = 237) groups. The hTERT rs2736100 and rs2736098 polymorphisms were detected by performing polymerase chain reaction-restriction fragment length polymorphism. DNA methylation in the promoter region of hTERT gene was evaluated by pyrosequencing. A telephonic and/or outpatient follow-up was conducted for all patients. The correlations of DNA methylation and polymorphisms in the promoter region of hTERT with postoperative recurrence of TC patients underwent analysis. The patient in the recurrence group showed evidently different pathological types and tumor stages in comparison to the non-recurrence group. The GG genotype of hTERT rs2736100 might increase the recurrence risk of TC patients. No correlations between hTERT rs2736098 polymorphisms and recurrence risk were observed. Compared to the TT + TG genotype frequency, the rs2736100 GG genotype frequency increased in patients without multicentricity, patients with extrathyroidal invasion, patients with lymph node metastasis, patients with undifferentiated carcinoma, and patients in the III + IV stage. The recurrence group showed significantly higher DNA methylation level compared to the non-recurrence group. The DNA methylation level was closely associated to tumor stage and lymph node metastasis of TC patients in the recurrence group. The DNA methylation and rs2736100 polymorphisms in the promoter region of hTERT gene might be in correlation to postoperative recurrence of TC patients.
IGF2 DNA methylation is a modulator of newborn’s fetal growth and development
St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi
2012-01-01
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity. PMID:22907587
Strickland, Faith M.; Hewagama, Anura; Wu, Ailing; Sawalha, Amr H.; Delaney, Colin; Hoeltzel, Mark F.; Yung, Raymond; Johnson, Kent; Mickelson, Barbara; Richardson, Bruce C.
2013-01-01
Objective Lupus flares when genetically predisposed people encounter appropriate environmental agents. Current evidence indicates that the environment contributes by inhibiting T cell DNA methylation, causing overexpression of normally silenced genes. DNA methylation depends on both dietary transmethylation micronutrients and Erk-regulated DNA methyltransferase 1 (Dnmt1) levels. We used transgenic mice to study interactions between diet, Dnmt1 levels and genetic predisposition on the development and severity of lupus. Methods A doxycycline-inducible Erk defect was bred into lupus-resistant (C57BL/6) or lupus-susceptible (C57BL/6xSJL) mouse strains. Doxycycline treated mice were fed a standard commercial diet for eighteen weeks then switched to diets supplemented(MS) or restricted(MR) intransmethylation micronutrients. Disease severity was assessed by anti-dsDNA antibodies, proteinuria, hematuria and histopathology of kidney tissues. Pyrosequencing was used to determine micronutrient effects on DNA methylation. Results Doxycycline induced modest levels of anti-dsDNA antibodies in C57BL/6 mice and higher levels in C57BL/6xSJL mice. Doxycycline-treated C57BL/6xSJL mice developed hematuria and glomerulonephritis on the MR and standard but not the MS diet. In contrast C57BL/6 mice developed kidney disease only on the MR diet. Decreasing Erk signaling and methyl donors also caused demethylation and overexpression of the CD40lg gene in female mice, consistent with demethylation of the second X chromosome. Both the dietary methyl donor content and duration of treatment influenced methylation and expression of the CD40lg gene. Conclusions Dietary micronutrients that affect DNA methylation can exacerbate or ameliorate SLE disease in this transgenic murine lupus model, and contribute to lupus susceptibility and severity through genetic/epigenetic interactions. PMID:23576011
2011-01-01
Background Bituminaria bituminosa is a perennial legume species from the Canary Islands and Mediterranean region that has potential as a drought-tolerant pasture species and as a source of pharmaceutical compounds. Three botanical varieties have previously been identified in this species: albomarginata, bituminosa and crassiuscula. B. bituminosa can be considered a genomic 'orphan' species with very few genomic resources available. New DNA sequencing technologies provide an opportunity to develop high quality molecular markers for such orphan species. Results 432,306 mRNA molecules were sampled from a leaf transcriptome of a single B. bituminosa plant using Roche 454 pyrosequencing, resulting in an average read length of 345 bp (149.1 Mbp in total). Sequences were assembled into 3,838 isotigs/contigs representing putatively unique gene transcripts. Gene ontology descriptors were identified for 3,419 sequences. Raw sequence reads containing simple sequence repeat (SSR) motifs were identified, and 240 primer pairs flanking these motifs were designed. Of 87 primer pairs developed this way, 75 (86.2%) successfully amplified primarily single fragments by PCR. Fragment analysis using 20 primer pairs in 79 accessions of B. bituminosa detected 130 alleles at 21 SSR loci. Genetic diversity analyses confirmed that variation at these SSR loci accurately reflected known taxonomic relationships in original collections of B. bituminosa and provided additional evidence that a division of the botanical variety bituminosa into two according to geographical origin (Mediterranean region and Canary Islands) may be appropriate. Evidence of cross-pollination was also found between botanical varieties within a B. bituminosa breeding programme. Conclusions B. bituminosa can no longer be considered a genomic orphan species, having now a large (albeit incomplete) repertoire of expressed gene sequences that can serve as a resource for future genetic studies. This experimental approach was effective in developing codominant and polymorphic SSR markers for application in diverse genetic studies. These markers have already given new insight into genetic variation in B. bituminosa, providing evidence that a division of the botanical variety bituminosa may be appropriate. This approach is commended to those seeking to develop useful markers for genomic orphan species. PMID:22171578
Molina-Estevez, F Javier; Nowrouzi, Ali; Lozano, M Luz; Galy, Anne; Charrier, Sabine; von Kalle, Christof; Guenechea, Guillermo; Bueren, Juan A; Schmidt, Manfred
2015-01-01
Fanconi anemia is a DNA repair-deficiency syndrome mainly characterized by cancer predisposition and bone marrow failure. Trying to restore the hematopoietic function in these patients, lentiviral vector-mediated gene therapy trials have recently been proposed. However, because no insertional oncogenesis studies have been conducted so far in DNA repair-deficiency syndromes such as Fanconi anemia, we have carried out a genome-wide screening of lentiviral insertion sites after the gene correction of Fanca(-/-) hematopoietic stem cells (HSCs), using LAM-PCR and 454-pyrosequencing. Our studies first demonstrated that transduction of Fanca(-/-) HSCs with a lentiviral vector designed for clinical application efficiently corrects the phenotype of Fanconi anemia repopulating cells without any sign of toxicity. The identification of more than 6,500 insertion sites in primary and secondary recipients showed a polyclonal pattern of reconstitution, as well as a continuous turnover of corrected Fanca(-/-) HSC clones, without evidences of selection towards specific common integration sites. Taken together our data show, for the first time in a DNA repair-deficiency syndrome, that lentiviral vector-mediated gene therapy efficiently corrects the phenotype of affected HSCs and promotes a healthy pattern of clonal turnover in vivo. These studies will have a particular impact in the development of new gene therapy trials in patients affected by DNA repair syndromes, particularly in Fanconi anemia.
DNA Modification Study of Major Depressive Disorder: Beyond Locus-by-Locus Comparisons
Oh, Gabriel; Wang, Sun-Chong; Pal, Mrinal; Chen, Zheng Fei; Khare, Tarang; Tochigi, Mamoru; Ng, Catherine; Yang, Yeqing A.; Kwan, Andrew; Kaminsky, Zachary A.; Mill, Jonathan; Gunasinghe, Cerisse; Tackett, Jennifer L.; Gottesman, Irving I.; Willemsen, Gonneke; de Geus, Eco J.C.; Vink, Jacqueline M.; Slagboom, P. Eline; Wray, Naomi R.; Heath, Andrew C.; Montgomery, Grant W.; Turecki, Gustavo; Martin, Nicholas G.; Boomsma, Dorret I.; McGuffin, Peter; Kustra, Rafal; Petronis, Art
2014-01-01
Background Major depressive disorder (MDD) exhibits numerous clinical and molecular features that are consistent with putative epigenetic misregulation. Despite growing interest in epigenetic studies of psychiatric diseases, the methodologies guiding such studies have not been well defined. Methods We performed DNA modification analysis in white blood cells from monozygotic twins discordant for MDD, in brain prefrontal cortex, and germline (sperm) samples from affected individuals and control subjects (total N = 304) using 8.1K CpG island microarrays and fine mapping. In addition to the traditional locus-by-locus comparisons, we explored the potential of new analytical approaches in epigenomic studies. Results In the microarray experiment, we detected a number of nominally significant DNA modification differences in MDD and validated selected targets using bisulfite pyrosequencing. Some MDD epigenetic changes, however, overlapped across brain, blood, and sperm more often than expected by chance. We also demonstrated that stratification for disease severity and age may increase the statistical power of epimutation detection. Finally, a series of new analytical approaches, such as DNA modification networks and machine-learning algorithms using binary and quantitative depression phenotypes, provided additional insights on the epigenetic contributions to MDD. Conclusions Mapping epigenetic differences in MDD (and other psychiatric diseases) is a complex task. However, combining traditional and innovative analytical strategies may lead to identification of disease-specific etiopathogenic epimutations. PMID:25108803
DNA modification study of major depressive disorder: beyond locus-by-locus comparisons.
Oh, Gabriel; Wang, Sun-Chong; Pal, Mrinal; Chen, Zheng Fei; Khare, Tarang; Tochigi, Mamoru; Ng, Catherine; Yang, Yeqing A; Kwan, Andrew; Kaminsky, Zachary A; Mill, Jonathan; Gunasinghe, Cerisse; Tackett, Jennifer L; Gottesman, Irving I; Willemsen, Gonneke; de Geus, Eco J C; Vink, Jacqueline M; Slagboom, P Eline; Wray, Naomi R; Heath, Andrew C; Montgomery, Grant W; Turecki, Gustavo; Martin, Nicholas G; Boomsma, Dorret I; McGuffin, Peter; Kustra, Rafal; Petronis, Art
2015-02-01
Major depressive disorder (MDD) exhibits numerous clinical and molecular features that are consistent with putative epigenetic misregulation. Despite growing interest in epigenetic studies of psychiatric diseases, the methodologies guiding such studies have not been well defined. We performed DNA modification analysis in white blood cells from monozygotic twins discordant for MDD, in brain prefrontal cortex, and germline (sperm) samples from affected individuals and control subjects (total N = 304) using 8.1K CpG island microarrays and fine mapping. In addition to the traditional locus-by-locus comparisons, we explored the potential of new analytical approaches in epigenomic studies. In the microarray experiment, we detected a number of nominally significant DNA modification differences in MDD and validated selected targets using bisulfite pyrosequencing. Some MDD epigenetic changes, however, overlapped across brain, blood, and sperm more often than expected by chance. We also demonstrated that stratification for disease severity and age may increase the statistical power of epimutation detection. Finally, a series of new analytical approaches, such as DNA modification networks and machine-learning algorithms using binary and quantitative depression phenotypes, provided additional insights on the epigenetic contributions to MDD. Mapping epigenetic differences in MDD (and other psychiatric diseases) is a complex task. However, combining traditional and innovative analytical strategies may lead to identification of disease-specific etiopathogenic epimutations. Copyright © 2015 Society of Biological Psychiatry. All rights reserved.
Curcumin modulates DNA methylation in colorectal cancer cells.
Link, Alexander; Balaguer, Francesc; Shen, Yan; Lozano, Juan Jose; Leung, Hon-Chiu E; Boland, C Richard; Goel, Ajay
2013-01-01
Recent evidence suggests that several dietary polyphenols may exert their chemopreventive effect through epigenetic modifications. Curcumin is one of the most widely studied dietary chemopreventive agents for colon cancer prevention, however, its effects on epigenetic alterations, particularly DNA methylation, remain unclear. Using systematic genome-wide approaches, we aimed to elucidate the effect of curcumin on DNA methylation alterations in colorectal cancer cells. To evaluate the effect of curcumin on DNA methylation, three CRC cell lines, HCT116, HT29 and RKO, were treated with curcumin. 5-aza-2'-deoxycytidine (5-aza-CdR) and trichostatin A treated cells were used as positive and negative controls for DNA methylation changes, respectively. Methylation status of LINE-1 repeat elements, DNA promoter methylation microarrays and gene expression arrays were used to assess global methylation and gene expression changes. Validation was performed using independent microarrays, quantitative bisulfite pyrosequencing, and qPCR. As expected, genome-wide methylation microarrays revealed significant DNA hypomethylation in 5-aza-CdR-treated cells (mean β-values of 0.12), however, non-significant changes in mean β-values were observed in curcumin-treated cells. In comparison to mock-treated cells, curcumin-induced DNA methylation alterations occurred in a time-dependent manner. In contrast to the generalized, non-specific global hypomethylation observed with 5-aza-CdR, curcumin treatment resulted in methylation changes at selected, partially-methylated loci, instead of fully-methylated CpG sites. DNA methylation alterations were supported by corresponding changes in gene expression at both up- and down-regulated genes in various CRC cell lines. Our data provide previously unrecognized evidence for curcumin-mediated DNA methylation alterations as a potential mechanism of colon cancer chemoprevention. In contrast to non-specific global hypomethylation induced by 5-aza-CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical.
Curcumin Modulates DNA Methylation in Colorectal Cancer Cells
Link, Alexander; Balaguer, Francesc; Shen, Yan; Lozano, Juan Jose; Leung, Hon-Chiu E.; Boland, C. Richard; Goel, Ajay
2013-01-01
Aim Recent evidence suggests that several dietary polyphenols may exert their chemopreventive effect through epigenetic modifications. Curcumin is one of the most widely studied dietary chemopreventive agents for colon cancer prevention, however, its effects on epigenetic alterations, particularly DNA methylation, remain unclear. Using systematic genome-wide approaches, we aimed to elucidate the effect of curcumin on DNA methylation alterations in colorectal cancer cells. Materials and Methods To evaluate the effect of curcumin on DNA methylation, three CRC cell lines, HCT116, HT29 and RKO, were treated with curcumin. 5-aza-2′-deoxycytidine (5-aza-CdR) and trichostatin A treated cells were used as positive and negative controls for DNA methylation changes, respectively. Methylation status of LINE-1 repeat elements, DNA promoter methylation microarrays and gene expression arrays were used to assess global methylation and gene expression changes. Validation was performed using independent microarrays, quantitative bisulfite pyrosequencing, and qPCR. Results As expected, genome-wide methylation microarrays revealed significant DNA hypomethylation in 5-aza-CdR-treated cells (mean β-values of 0.12), however, non-significant changes in mean β-values were observed in curcumin-treated cells. In comparison to mock-treated cells, curcumin-induced DNA methylation alterations occurred in a time-dependent manner. In contrast to the generalized, non-specific global hypomethylation observed with 5-aza-CdR, curcumin treatment resulted in methylation changes at selected, partially-methylated loci, instead of fully-methylated CpG sites. DNA methylation alterations were supported by corresponding changes in gene expression at both up- and down-regulated genes in various CRC cell lines. Conclusions Our data provide previously unrecognized evidence for curcumin-mediated DNA methylation alterations as a potential mechanism of colon cancer chemoprevention. In contrast to non-specific global hypomethylation induced by 5-aza-CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical. PMID:23460897
Horning, Aaron M; Awe, Julius A; Wang, Chiou-Miin; Liu, Joseph; Lai, Zhao; Wang, Vickie Yao; Jadhav, Rohit R; Louie, Anna D; Lin, Chun-Lin; Kroczak, Tad; Chen, Yidong; Jin, Victor X; Abboud-Werner, Sherry L; Leach, Robin J; Hernandez, Javior; Thompson, Ian M; Saranchuk, Jeff; Drachenberg, Darrel; Chen, Chun-Liang; Mai, Sabine; Huang, Tim Hui-Ming
2015-11-01
Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. . © 2015 Wiley Periodicals, Inc.
Pyrosequencing for detection of lamivudine-resistant hepatitis B virus.
Lindström, Anna; Odeberg, Jacob; Albert, Jan
2004-10-01
Chronic hepatitis B virus (HBV) infection can cause severe liver disease, including cirrhosis and hepatocellular carcinoma. Lamivudine is a relatively recent alternative to alpha interferon for the treatment of HBV infection, but unfortunately, resistance to lamivudine commonly develops during monotherapy. Lamivudine-resistant HBV mutants display specific mutations in the YMDD (tyrosine, methionine, aspartate, aspartate) motif of the viral polymerase (reverse transcriptase [rt]), which is the catalytic site of the enzyme, i.e., methionine 204 to isoleucine (rtM204I) or valine (rtM204V). The latter mutation is often accompanied by a compensatory leucine-to-methionine change at codon 180 (rtL180M). In the present study, a novel sequencing method, pyrosequencing, was applied to the detection of lamivudine resistance mutations and was compared with direct Sanger sequencing. The new pyrosequencing method had advantages in terms of throughput. Experiments with mixtures of wild-type and resistant viruses indicated that pyrosequencing can detect minor sequence variants in heterogeneous virus populations. The new pyrosequencing method was evaluated with a small number of patient samples, and the results showed that the method could be a useful tool for the detection of lamivudine resistance in the clinical setting.
Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes
The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...
Nanopore Technology: A Simple, Inexpensive, Futuristic Technology for DNA Sequencing.
Gupta, P D
2016-10-01
In health care, importance of DNA sequencing has been fully established. Sanger's Capillary Electrophoresis DNA sequencing methodology is time consuming, cumbersome, hence become more expensive. Lately, because of its versatility DNA sequencing became house hold name, and therefore, there is an urgent need of simple, fast, inexpensive, DNA sequencing technology. In the beginning of this century efforts were made, and Nanopore DNA sequencing technology was developed; still it is infancy, nevertheless, it is the futuristic technology.
Prest, E I; El-Chakhtoura, J; Hammes, F; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S
2014-10-15
The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5 min intervals for 1 h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345 ± 15 × 10(3) to 425 ± 35 × 10(3) cells mL(-1)) and in the percentage of intact bacterial cells (from 39 ± 3.5% to 53 ± 4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Kyoung-Ah; Song, Wan-Geun; Lee, Hae-Mi; Joo, Hyun-Jin; Park, Ji-Young
2014-11-01
Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.
Moreira, Rebeca; Balseiro, Pablo; Planas, Josep V.; Fuste, Berta; Beltran, Sergi; Novoa, Beatriz; Figueras, Antonio
2012-01-01
Background The Manila clam (Ruditapes philippinarum) is a worldwide cultured bivalve species with important commercial value. Diseases affecting this species can result in large economic losses. Because knowledge of the molecular mechanisms of the immune response in bivalves, especially clams, is scarce and fragmentary, we sequenced RNA from immune-stimulated R. philippinarum hemocytes by 454-pyrosequencing to identify genes involved in their immune defense against infectious diseases. Methodology and Principal Findings High-throughput deep sequencing of R. philippinarum using 454 pyrosequencing technology yielded 974,976 high-quality reads with an average read length of 250 bp. The reads were assembled into 51,265 contigs and the 44.7% of the translated nucleotide sequences into protein were annotated successfully. The 35 most frequently found contigs included a large number of immune-related genes, and a more detailed analysis showed the presence of putative members of several immune pathways and processes like the apoptosis, the toll like signaling pathway and the complement cascade. We have found sequences from molecules never described in bivalves before, especially in the complement pathway where almost all the components are present. Conclusions This study represents the first transcriptome analysis using 454-pyrosequencing conducted on R. philippinarum focused on its immune system. Our results will provide a rich source of data to discover and identify new genes, which will serve as a basis for microarray construction and the study of gene expression as well as for the identification of genetic markers. The discovery of new immune sequences was very productive and resulted in a large variety of contigs that may play a role in the defense mechanisms of Ruditapes philippinarum. PMID:22536348
2011-01-01
Background Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. The paucity of microalgae genome sequences, however, limits gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for the non-model microalgae species, Dunaliella tertiolecta, and identify pathways and genes of importance related to biofuel production. Results Next generation DNA pyrosequencing technology applied to D. tertiolecta transcripts produced 1,363,336 high quality reads with an average length of 400 bases. Following quality and size trimming, ~ 45% of the high quality reads were assembled into 33,307 isotigs with a 31-fold coverage and 376,482 singletons. Assembled sequences and singletons were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) identifiers. These analyses identified the majority of lipid and starch biosynthesis and catabolism pathways in D. tertiolecta. Conclusions The construction of metabolic pathways involved in the biosynthesis and catabolism of fatty acids, triacylglycrols, and starch in D. tertiolecta as well as the assembled transcriptome provide a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock. PMID:21401935
Dopamine receptor D4 promoter hypermethylation increases the risk of drug addiction.
Ji, Huihui; Xu, Xuting; Liu, Guili; Liu, Huifen; Wang, Qinwen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Hu, Haochang; Xu, Lei; Zhou, Wenhua; Duan, Shiwei
2018-02-01
Heroin and methylamphetamine (METH) are two addictive drugs that cause serious problems for society. Dopamine receptor D4 (DRD4), a key receptor in the dopaminergic system, may facilitate the development of drug addiction. The aim of the present study was to investigate the association between the promoter methylation level of DRD4 gene and drug addiction. Bisulfite pyrosequencing technology was used to measure the methylation levels of DRD4 promoter in 60 drug addicts and 52 matched controls. Significantly higher levels of DRD4 CpG1 and CpG4 methylation were detected in METH and heroin drug addicts compared with controls (P<0.05). Male METH addicts exhibited significantly higher DRD4 CpG1, CpG2 and CpG4 methylation levels compared with sex-matched controls (P<0.05). In heroin addicts, a positive correlation was observed between depression-dejection and DRD4 CpG5 methylation (r=0.537, P=0.039) whereas there was a negative correlation between drug usage frequency and CpG1 methylation (r=-0.632, P=0.011). In METH addicts, methylation levels were not significantly associated with depression-dejection and drug usage frequency. In addition, luciferase assays demonstrated that the target sequence of the DRD4 promoter upregulates gene expression. The results of the present study suggest that DNA methylation of DRD4 may be responsible for the pathophysiology of drug addiction.
A role for the endometrial microbiome in dysfunctional menstrual bleeding.
Pelzer, Elise S; Willner, Dana; Buttini, Melissa; Huygens, Flavia
2018-06-01
This study aimed to characterise the microbial community within the endometrial cavity and endocervix in women with menorrhagia or dysmenorrhea. Paired endocervical and endometrial biopsy samples were collected from women undergoing operative hysteroscopy and/or laparoscopy. Samples were cohorted based on pathology, indications for surgery, and histological dating of the endometrium. Samples were interrogated for the presence of microbial DNA using a two-step next generation sequencing technology approach to exploit the V5-V8 regions of the 16S rRNA gene. Pyrosequencing revealed that the endocervix and endometrium share a minor microbial community, but that each site harbours a separate and distinct microbial population (p = 0.024). This was also the case for women with menorrhagia and dysmenorrhea (p = 0.017). Lactobacillus spp. were the most abundant microbial taxa present in 50% of the cohorts, and across all endocervical groups. Members of the genera Prevotella, Fusobacterium and Jonquetella were the most abundant taxa identified in samples collected from nulliparous women. It can be concluded that the female upper genital tract is not sterile. Microbial community profiling revealed differences in the endometrial microbial community profiles for: (1) the endocervix compared to the endometrium, and (2), women with menorrhagia versus dysmenorrhea. The distinct microbial community profiles in these women may offer insight into the pathology and clinical management of dysfunctional menstrual bleeding.
Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer.
Xu, Jingwei; Li, Muzhi; He, Qiang; Sun, Xingfu; Zhou, Xiangren; Su, Zhenping; Ai, Hainan
2017-01-01
The function of sewer as reactors must rely on the biofilm in it. In this paper, the formation, structure, oxygen transfer, and activity of the biofilm under different hydraulic conditions were studied by the microelectrode technology, oxygen uptake rate (OUR) technology, and 454 high-throughput pyrosequencing technology. Results showed that when the wall-shear stresses were 1.12, 1.29, and 1.45 Pa, the porosity of the steady-state biofilm were 69.1, 64.4, and 55.1 %, respectively. The maximum values of OUR were 0.033, 0.027, and 0.022 mg/(L*s), respectively, and the COD removal efficiency in the sewers reached 40, 35, and 32 %, respectively. The research findings had an important significance on how to improve the treatment efficiency of the sewers. Fig. a Graphical Abstract.
Characteristics of DNA methylation changes induced by traffic-related air pollution.
Ding, Rui; Jin, Yongtang; Liu, Xinneng; Zhu, Ziyi; Zhang, Yuan; Wang, Ting; Xu, Yinchun
2016-01-15
Traffic-related air pollution (TRAP) is a potential risk factor for numerous respiratory disorders, including lung cancer, while alteration of DNA methylation may be one of the underlying mechanisms. However, the effects of TRAP mixtures on DNA methylation have not been investigated. We have studied the effects of brief or prolonged TRAP exposures on DNA methylation in the rat. The exposures were performed in spring and autumn, with identical study procedures. In each season, healthy Wistar rats were exposed to TRAP at for 4 h, 7 d, 14 d, or 28 d. Global DNA methylation (LINE-1 and Alu) and specific gene methylation (p16(CDKN2A), APC, and iNOS) in the DNA from blood and lung tissues were quantified by pyrosequencing. Multiple linear regression was applied to assess the influence of air pollutants on DNA methylation levels. The levels of PM2.5, PM10, and NO2 in the high and moderate groups were significantly higher than in the control group. The DNA methylation levels were not significantly different between spring and autumn. When spring and autumn data were analyzed together, PM2.5, PM10, and NO2 exposures were associated with changes in%5mC (95% CI) in LINE-1, iNOS, p16(CDKN2A), and APC ranging from -0.088 (-0.150, -0.026) to 0.102 (0.049, 0.154) per 1 μg/m(3) increase in the pollutant concentration. Prolonged exposure to a high level of TRAP was negatively associated with LINE-1 and iNOS methylation, and positively associated with APC methylations in the DNA from lung tissues but not blood. These findings show that TRAP exposure is associated with decreased methylation of LINE-1 and iNOS, and increased methylation of p16(CDKN2A) and APC. Copyright © 2015 Elsevier B.V. All rights reserved.
Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles
Pearce, Mark S; McConnell, James C; Potter, Catherine; Barrett, Laura M; Parker, Louise; Mathers, John C; Relton, Caroline L
2012-01-01
Background Patterns of DNA methylation change with age and these changes are believed to be associated with the development of common complex diseases. The hypothesis that Long Interspersed Nucleotide Element 1 (LINE-1) DNA methylation (an index of global DNA methylation) is associated with biomarkers of metabolic health was investigated in this study. Methods Global LINE-1 DNA methylation was quantified by pyrosequencing in blood-derived DNA samples from 228 individuals, aged 49–51 years, from the Newcastle Thousand Families Study (NTFS). Associations between log-transformed LINE-1 DNA methylation levels and anthropometric and blood biochemical measurements, including triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, fasting glucose and insulin secretion and resistance were examined. Results Linear regression, after adjustment for sex, demonstrated positive associations between log-transformed LINE-1 DNA methylation and fasting glucose {coefficient 2.80 [95% confidence interval (CI) 0.39–5.22]}, total cholesterol [4.76 (95% CI 1.43–8.10)], triglycerides [3.83 (95% CI 1.30–6.37)] and LDL-cholesterol [5.38 (95% CI 2.12–8.64)] concentrations. A negative association was observed between log-transformed LINE-1 methylation and both HDL cholesterol concentration [−1.43 (95% CI −2.38 to −0.48)] and HDL:LDL ratio [−1.06 (95% CI −1.76 to −0.36)]. These coefficients reflect the millimoles per litre change in biochemical measurements per unit increase in log-transformed LINE-1 methylation. Conclusions These novel associations between global LINE-1 DNA methylation and blood glycaemic and lipid profiles highlight a potential role for epigenetic biomarkers as predictors of metabolic disease and may be relevant to future diagnosis, prevention and treatment of this group of disorders. Further work is required to establish the role of confounding and reverse causation in the observed associations. PMID:22422454
Kennedy, Nicholas A; Walker, Alan W; Berry, Susan H; Duncan, Sylvia H; Farquarson, Freda M; Louis, Petra; Thomson, John M; Satsangi, Jack; Flint, Harry J; Parkhill, Julian; Lees, Charlie W; Hold, Georgina L
2014-01-01
Determining bacterial community structure in fecal samples through DNA sequencing is an important facet of intestinal health research. The impact of different commercially available DNA extraction kits upon bacterial community structures has received relatively little attention. The aim of this study was to analyze bacterial communities in volunteer and inflammatory bowel disease (IBD) patient fecal samples extracted using widely used DNA extraction kits in established gastrointestinal research laboratories. Fecal samples from two healthy volunteers (H3 and H4) and two relapsing IBD patients (I1 and I2) were investigated. DNA extraction was undertaken using MoBio Powersoil and MP Biomedicals FastDNA SPIN Kit for Soil DNA extraction kits. PCR amplification for pyrosequencing of bacterial 16S rRNA genes was performed in both laboratories on all samples. Hierarchical clustering of sequencing data was done using the Yue and Clayton similarity coefficient. DNA extracted using the FastDNA kit and the MoBio kit gave median DNA concentrations of 475 (interquartile range 228-561) and 22 (IQR 9-36) ng/µL respectively (p<0.0001). Hierarchical clustering of sequence data by Yue and Clayton coefficient revealed four clusters. Samples from individuals H3 and I2 clustered by patient; however, samples from patient I1 extracted with the MoBio kit clustered with samples from patient H4 rather than the other I1 samples. Linear modelling on relative abundance of common bacterial families revealed significant differences between kits; samples extracted with MoBio Powersoil showed significantly increased Bacteroidaceae, Ruminococcaceae and Porphyromonadaceae, and lower Enterobacteriaceae, Lachnospiraceae, Clostridiaceae, and Erysipelotrichaceae (p<0.05). This study demonstrates significant differences in DNA yield and bacterial DNA composition when comparing DNA extracted from the same fecal sample with different extraction kits. This highlights the importance of ensuring that samples in a study are prepared with the same method, and the need for caution when cross-comparing studies that use different methods.
Vierheilig, J.; Savio, D.; Ley, R. E.; Mach, R. L.; Farnleitner, A. H.
2016-01-01
The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multicompartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems. PMID:26606090
Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams.
Wilhelm, Linda; Besemer, Katharina; Fasching, Christina; Urich, Tim; Singer, Gabriel A; Quince, Christopher; Battin, Tom J
2014-08-01
Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing
Brady, Allyson L.; Sharp, Christine E.; Grasby, Stephen E.; Dunfield, Peter F.
2015-01-01
Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g−1 (wet weight) day−1 within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850
Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing.
Brady, Allyson L; Sharp, Christine E; Grasby, Stephen E; Dunfield, Peter F
2015-01-01
Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g(-1) (wet weight) day(-1) within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using (13)CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in (13)CO incubations. The predominant bacteria that assimilated (13)C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.
Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-Yu; Cooper, Thomas B; Burke, Ainsley K; Oquendo, Maria A; Mann, J John; Sublette, M Elizabeth
2015-01-01
Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention.
Hassan, Hazem E.; Keita, Jean-Arnaud; Narayan, Lawrence; Brady, Sean M.; Frederick, Richard; Carlson, Samuel; C. Glass, Karen; Natesan, Senthil; Buttolph, Thomm; Fandy, Tamer E.
2016-01-01
ABSTRACT Curcumin and its analogs exhibited antileukemic activity either as single agent or in combination therapy. Dimethoxycurcumin (DMC) is a more metabolically stable curcumin analog that was shown to induce the expression of promoter-methylated genes without reversing DNA methylation. Accordingly, co-treatment with DMC and DNA methyltransferase (DNMT) inhibitors could hypothetically enhance the re-expression of promoter-methylated tumor suppressor genes. In this study, we investigated the cytotoxic effects and epigenetic changes associated with the combination of DMC and the DNMT inhibitor decitabine (DAC) in primary leukemia samples and cell lines. The combination demonstrated antagonistic cytotoxic effects and was minimally cytotoxic to primary leukemia cells. The combination did not affect the metabolic stability of DMC. Although the combination enhanced the downregulation of nuclear DNMT proteins, the hypomethylating activity of the combination was not increased significantly compared to DAC alone. On the other hand, the combination significantly increased H3K27 acetylation (H3K27Ac) compared to the single agents near the promoter region of promoter-methylated genes. Furthermore, sequential chromatin immunoprecipitation (ChIP) and DNA pyrosequencing of the chromatin-enriched H3K27Ac did not show any significant decrease in DNA methylation compared to other regions. Consequently, the enhanced induction of promoter-methylated genes by the combination compared to DAC alone is mediated by a mechanism that involves increased histone acetylation and not through potentiation of the DNA hypomethylating activity of DAC. Collectively, our results provide the mechanistic basis for further characterization of this combination in leukemia animal models and early phase clinical trials. PMID:27588609
Jelinek, Jaroslav; Liang, Shoudan; Lu, Yue; He, Rong; Ramagli, Louis S.; Shpall, Elizabeth J.; Estecio, Marcos R.H.; Issa, Jean-Pierre J.
2012-01-01
Genome wide analysis of DNA methylation provides important information in a variety of diseases, including cancer. Here, we describe a simple method, Digital Restriction Enzyme Analysis of Methylation (DREAM), based on next generation sequencing analysis of methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and XmaI enzymes. DREAM provides information on 150,000 unique CpG sites, of which 39,000 are in CpG islands and 30,000 are at transcription start sites of 13,000 RefSeq genes. We analyzed DNA methylation in healthy white blood cells and found methylation patterns to be remarkably uniform. Inter individual differences > 30% were observed only at 227 of 28,331 (0.8%) of autosomal CpG sites. Similarly, > 30% differences were observed at only 59 sites when we comparing the cord and adult blood. These conserved methylation patterns contrasted with extensive changes affecting 18–40% of CpG sites in a patient with acute myeloid leukemia and in two leukemia cell lines. The method is cost effective, quantitative (r2 = 0.93 when compared with bisulfite pyrosequencing) and reproducible (r2 = 0.997). Using 100-fold coverage, DREAM can detect differences in methylation greater than 10% or 30% with a false positive rate below 0.05 or 0.001, respectively. DREAM can be useful in quantifying epigenetic effects of environment and nutrition, correlating developmental epigenetic variation with phenotypes, understanding epigenetics of cancer and chronic diseases, measuring the effects of drugs on DNA methylation or deriving new biological insights into mammalian genomes. PMID:23075513
DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors.
Amatruda, James F; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh; Frazier, A Lindsay; Poynter, Jenny N
2013-06-27
Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy.
Code of Federal Regulations, 2011 CFR
2011-04-01
... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...
Code of Federal Regulations, 2013 CFR
2013-04-01
... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...
Code of Federal Regulations, 2014 CFR
2014-04-01
... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...
Code of Federal Regulations, 2012 CFR
2012-04-01
... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...
Code of Federal Regulations, 2010 CFR
2010-04-01
... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...
Al-Sadi, A M; Al-Mazroui, S S; Phillips, A J L
2015-08-01
Potting media and organic fertilizers (OFs) are commonly used in agricultural systems. However, there is a lack of studies on the efficiency of culture-based techniques in assessing the level of fungal diversity in these products. A study was conducted to investigate the efficiency of seven culture-based techniques and pyrosequencing for characterizing fungal diversity in potting media and OFs. Fungal diversity was evaluated using serial dilution, direct plating and baiting with carrot slices, potato slices, radish seeds, cucumber seeds and cucumber cotyledons. Identity of all the isolates was confirmed on the basis of the internal transcribed spacer region of the ribosomal RNA (ITS rRNA) sequence data. The direct plating technique was found to be superior over other culture-based techniques in the number of fungal species detected. It was also found to be simple and the least time consuming technique. Comparing the efficiency of direct plating with 454 pyrosequencing revealed that pyrosequencing detected 12 and 15 times more fungal species from potting media and OFs respectively. Analysis revealed that there were differences between potting media and OFs in the dominant phyla, classes, orders, families, genera and species detected. Zygomycota (52%) and Chytridiomycota (60%) were the predominant phyla in potting media and OFs respectively. The superiority of pyrosequencing over cultural methods could be related to the ability to detect obligate fungi, slow growing fungi and fungi that exist at low population densities. The evaluated methods in this study, especially direct plating and pyrosequencing, may be used as tools to help detect and reduce movement of unwanted fungi between countries and regions. © 2015 The Society for Applied Microbiology.
Debode, Frederic; Janssen, Eric; Bragard, Claude; Berben, Gilbert
2017-08-01
The presence of genetically modified organisms (GMOs) in food and feed is mainly detected by the use of targets focusing on promoters and terminators. As some genes are frequently used in genetically modified (GM) construction, they also constitute excellent screening elements and their use is increasing. In this paper we propose a new target for the detection of cry1Ab and cry1Ac genes by real-time polymerase chain reaction (PCR) and pyrosequencing. The specificity, sensitivity and robustness of the real-time PCR method were tested following the recommendations of international guidelines and the method met the expected performance criteria. This paper also shows how the robustness testing was assessed. This new cry1Ab/Ac method can provide a positive signal with a larger number of GM events than do the other existing methods using double dye-probes. The method permits the analysis of results with less ambiguity than the SYBRGreen method recommended by the European Reference Laboratory (EURL) GM Food and Feed (GMFF). A pyrosequencing method was also developed to gain additional information thanks to the sequence of the amplicon. This method of sequencing-by-synthesis can determine the sequence between the primers used for PCR. Pyrosequencing showed that the sequences internal to the primers present differences following the GM events considered and three different sequences were observed. The sensitivity of the pyrosequencing was tested on reference flours with a low percentage GM content and different copy numbers. Improvements in the pyrosequencing protocol provided correct sequences with 50 copies of the target. Below this copy number, the quality of the sequence was more random.
Romani Vestman, Nelly; Chen, Tsute; Lif Holgerson, Pernilla; Öhman, Carina; Johansson, Ingegerd
2015-01-01
Background Lactobacillus spp. potentially contribute to health by modulating bacterial biofilm formation, but their effects on the overall oral microbiota remain unclear. Methods and Findings Oral microbiota was characterized via 454-pyrosequencing of the 16S rDNA hypervariable region V3-V4 after 12 weeks of daily Lactobacillus reuteri DSM 17938 and PTA 5289 consumption. Forty-four adults were assigned to a test group (n = 22) that received lactobacilli lozenges (108 CFU of each strain/lozenge) or a control group that received placebo (n = 22). Presence of L. reuteri was confirmed by cultivation and species specific PCR. Tooth biofilm samples from 16 adults before, during, and after exposure were analyzed by pyrosequencing. A total of 1,310,292 sequences were quality filtered. After removing single reads, 257 species or phylotypes were identified at 98.5% identity in the Human Oral Microbiome Database. Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria were the most abundant phyla. Streptococcus was the most common genus and the S. oralis/S. mitis/S. mitis bv2/S. infantis group comprised the dominant species. The number of observed species was unaffected by L. reuteri exposure. However, subjects who had consumed L. reuteri were clustered in a principal coordinates analysis relative to scattering at baseline, and multivariate modeling of pyrosequencing microbiota, and culture and PCR detected L. reuteri separated baseline from 12-week samples in test subjects. L. reuteri intake correlated with increased S. oralis/S. mitis/S. mitis bv2/S. infantis group and Campylobacter concisus, Granulicatella adiacens, Bergeyella sp. HOT322, Neisseria subflava, and SR1 [G-1] sp. HOT874 detection and reduced S. mutans, S. anginosus, N. mucosa, Fusobacterium periodicum, F. nucleatum ss vincentii, and Prevotella maculosa detection. This effect had disappeared 1 month after exposure was terminated. Conclusions L. reuteri consumption did not affect species richness but induced a shift in the oral microbiota composition. The biological relevance of this remains to be elucidated. Trial Registration ClinicalTrials.gov NCT02311218 PMID:25946126
Huang, Qianqian; Holman, Devin B; Alexander, Trevor; Hu, Tianming; Jin, Long; Xu, Zhongjun; McAllister, Tim A; Acharya, Surya; Zhao, Guoqi; Wang, Yuxi
2018-01-01
The present study assessed the effect of purple prairie clover (PPC) and PPC condensed tannins (CT) on the fecal microbiota of lambs using high-throughput 16S rRNA gene pyrosequencing. A total of 18 individual lambs were randomly divided into three groups and fed either green chop alfalfa (Alf), a 40:60 (DM basis; Mix) mixture of Alf and PPC, or Mix supplemented with polyethylene glycol (Mix-P) for 18 days. Fecal samples were collected on days 13 through 18 using digital rectal retrieval. The DNA of fecal samples was extracted and the microbial 16S rRNA gene amplicons were sequenced using 454 pyrosequencing. Regardless of diet, the bacterial community was dominated by Firmicutes and Bacteroidetes with many sequences unclassified at the genus level. Forage type and CT had no effect on the fecal microbial composition at the phylum level or on α-diversity. Compared to the Alf diet, the Mix diet reduced the relative abundance of Akkermansia (P = 0.03) and Asteroleplasma (P = 0.05). Fecal microbial populations in Alf and Mix-P clustered separately from each other when assessed using unweighted UniFrac (P < 0.05). These results indicate that PPC CT up to 36 g/kg DM in the diet had no major effect on fecal microbial flora at the phyla level and exerted only minor effects on the genera composition of fecal microbiota in lambs.
Li, Yuanyuan; Chen, Longqian; Wen, Hongyu; Zhou, Tianjian; Zhang, Ting; Gao, Xiali
2014-03-28
Significant alteration in the microbial community can occur across reclamation areas suffering subsidence from mining. A reclamation site undergoing fertilization practices and an adjacent coal-excavated subsidence site (sites A and B, respectively) were examined to characterize the bacterial diversity using 454 high-throughput 16S rDNA sequencing. The dominant taxonomic groups in both the sites were Proteobacteria, Acidobacteria, Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, and Firmicutes. However, the bacterial communities' abundance, diversity, and composition differed significantly between the sites. Site A presented higher bacterial diversity and more complex community structures than site B. The majority of sequences related to Proteobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Firmicutes, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae were from site A; whereas those related to Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Nitriliruptoria, Alphaproteobacteria, and Phycisphaerae originated from site B. The distribution of some bacterial groups and subgroups in the two sites correlated with soil properties and vegetation due to reclamation practice. Site A exhibited enriched bacterial community, soil organic matter (SOM), and total nitrogen (TN), suggesting the presence of relatively diverse microorganisms. SOM and TN were important factors shaping the underlying microbial communities. Furthermore, the specific plant functional group (legumes) was also an important factor influencing soil microbial community composition. Thus, the effectiveness of 454 pyrosequencing in analyzing soil bacterial diversity was validated and an association between land ecological system restoration, mostly mediated by microbial communities, and an improvement in soil properties in coalmining reclamation areas was suggested.
Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S
2016-08-01
Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.
Levipan, Héctor A; Molina, Verónica; Anguita, Cristóbal; Rain-Franco, Angel; Belmar, Lucy; Fernandez, Camila
2016-08-03
We report the seasonal and single-diurnal variability of potentially active members of the prokaryote community in coastal surface waters off central Chile and the relationship between nitrifiers and solar radiation by combining 16S cDNA-based pyrosequencing, RT-qPCR of specific gene markers for nitrifiers (amoA, for general AOA, AOA-A, AOA-B, Nitrosopumilus maritimus and beta-AOB; and 16S rRNA gene for Nitrospina-like NOB), and solar irradiance measurements. We also evaluated the effects of artificial UVA-PAR and PAR spectra on nitrifiers by RT-qPCR. All nitrifiers (except AOA-B ecotype) were detected via RT-qPCR but AOA was the only group detected by pyrosequencing. Results showed high variability in their transcriptional levels during the day which could be associated to sunlight intensity thresholds in winter although AOA and Nitrospina-like NOB transcript number were also potentially related with environmental substrate availability. Only N. maritimus amoA transcripts showed a significant negative correlation with solar irradiances in both periods. During spring-summer, Nitrospina transcripts decreased at higher sunlight intensities, whereas the opposite was found during winter under natural (in situ) and artificial light experiments. In summary, a nitrifying community with variable tolerance to solar radiation is responsible for daily nitrification, and was particularly diverse during winter in the study area. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Pagenkopp Lohan, K M; Fleischer, R C; Carney, K J; Holzer, K K; Ruiz, G M
2016-04-01
Ships' ballast water (BW) commonly moves macroorganisms and microorganisms across the world's oceans and along coasts; however, the majority of these microbial transfers have gone undetected. We applied high-throughput sequencing methods to identify microbial eukaryotes, specifically emphasizing the protistan parasites, in ships' BW collected from vessels calling to the Chesapeake Bay (Virginia and Maryland, USA) from European and Eastern Canadian ports. We utilized tagged-amplicon 454 pyrosequencing with two general primer sets, amplifying either the V4 or V9 domain of the small subunit (SSU) of the ribosomal RNA (rRNA) gene complex, from total DNA extracted from water samples collected from the ballast tanks of bulk cargo vessels. We detected a diverse group of protistan taxa, with some known to contain important parasites in marine systems, including Apicomplexa (unidentified apicomplexans, unidentified gregarines, Cryptosporidium spp.), Dinophyta (Blastodinium spp., Euduboscquella sp., unidentified syndinids, Karlodinium spp., Syndinium spp.), Perkinsea (Parvilucifera sp.), Opisthokonta (Ichthyosporea sp., Pseudoperkinsidae, unidentified ichthyosporeans), and Stramenopiles (Labyrinthulomycetes). Further characterization of groups with parasitic taxa, consisting of phylogenetic analyses for four taxa (Cryptosporidium spp., Parvilucifera spp., Labyrinthulomycetes, and Ichthyosporea), revealed that sequences were obtained from both known and novel lineages. This study demonstrates that high-throughput sequencing is a viable and sensitive method for detecting parasitic protists when present and transported in the ballast water of ships. These data also underscore the potential importance of human-aided dispersal in the biogeography of these microbes and emerging diseases in the world's oceans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottesen, Elizabeth A.; Marin, Roman; Preston, Christina M.
Planktonic microbial activity and community structure is dynamic, and can change dramatically on time scales of hours to days. Yet for logistical reasons, this temporal scale is typically undersampled in the marine environment. In order to facilitate higher-resolution, long-term observation of microbial diversity and activity, we developed a protocol for automated collection and fixation of marine microbes using the Environmental Sample Processor (ESP) platform. The protocol applies a preservative (RNALater) to cells collected on filters, for long-term storage and preservation of total cellular RNA. Microbial samples preserved using this protocol yielded high-quality RNA after 30 days of storage at roommore » temperature, or onboard the ESP at in situ temperatures. Pyrosequencing of complementary DNA libraries generated from ESP-collected and preserved samples yielded transcript abundance profiles nearly indistinguishable from those derived from conventionally treated replicate samples. To demonstrate the utility of the method, we used a moored ESP to remotely and autonomously collect Monterey Bay seawater for metatranscriptomic analysis. Community RNA was extracted and pyrosequenced from samples collected at four time points over the course of a single day. In all four samples, the oxygenic photoautotrophs were predominantly eukaryotic, while the bacterial community was dominated by Polaribacter-like Flavobacteria and a Rhodobacterales bacterium sharing high similarity with Rhodobacterales sp. HTCC2255. However, each time point was associated with distinct species abundance and gene transcript profiles. These laboratory and field tests confirmed that autonomous collection and preservation is a feasible and useful approach for characterizing the expressed genes and environmental responses of marine microbial communities.« less
Molecular techniques are an alternative to culturing and counting methods in quantifying indoor fungal contamination. Pyrosequencing offers the possibility of identifying unexpected indoor fungi. In this study, 50 house dust samples were collected from homes in the Yakima Valley,...
Reduced DNA methylation of FKBP5 in Cushing's syndrome.
Resmini, Eugenia; Santos, Alicia; Aulinas, Anna; Webb, Susan M; Vives-Gilabert, Yolanda; Cox, Olivia; Wand, Gary; Lee, Richard S
2016-12-01
FKBP5 encodes a co-chaperone of HSP90 protein that regulates intracellular glucocorticoid receptor sensitivity. When it is bound to the glucocorticoid receptor complex, cortisol binds with lower affinity to glucocorticoid receptor. Cushing's syndrome is associated with memory deficits, smaller hippocampal volumes, and wide range of cognitive impairments. We aimed at evaluating blood DNA methylation of FKBP5 and its relationship with memory and hippocampal volumes in Cushing's syndrome patients. Polymorphism rs1360780 in FKBP5 has also been assessed to determine whether genetic variations can also govern CpG methylation. Thirty-two Cushing's syndrome patients and 32 matched controls underwent memory tests, 3-Tesla MRI of the brain, and DNA extraction from total leukocytes. DNA samples were bisulfite treated, PCR amplified, and pyrosequenced to assess a total of 41CpG-dinucleotides in the introns 1, 2, 5, and 7 of FKBP5. Significantly lower intronic FKBP5 DNA methylation in CS patients compared to controls was observed in ten CpG-dinucleotides. DNA methylation at these CpGs correlated with left and right HV (Intron-2-Region-2-CpG-3: LHV, r = 0.73, p = 0.02; RHV, r = 0.58, p = 0.03). Cured and active CS patients showed both lower methylation of intron 2 (92.37, 91.8, and 93.34 %, respectively, p = 0.03 for both) and of intron 7 (77.08, 73.74, and 79.71 %, respectively, p = 0.02 and p < 0.01) than controls. Twenty-two subjects had the CC genotype, 34 had the TC genotype, and eight had the TT genotype. Lower average DNA methylation in intron 7 was observed in the TT subjects compared to CC (72.5vs. 79.5 %, p = 0.02) and to TC (72.5 vs. 79.0 %, p = 0.03). Our data demonstrate, for the first time, a reduction of intronic DNA methylation of FKBP5 in CS patients.
Cheriro, Winfrida; Kiptoo, Michael; Kikuvi, Gideon; Mining, Simeon; Emonyi, Wilfred; Songok, Elijah
2015-12-01
The advent of antiretroviral treatment (ART) has resulted in a dramatic reduction in AIDS-related morbidity and mortality. However, the emergence and spread of antiretroviral drug resistance (DR) threaten to negatively impact treatment regimens and compromise efforts to control the epidemic. It is recommended that surveillance of drug resistance occur in conjunction with scale-up efforts to ensure that appropriate first-line therapy is offered relative to the resistance that exists. However, standard resistance testing methods used in Sub-Saharan Africa rely on techniques that do not include low abundance DR variants (LADRVs) that have been documented to contribute to treatment failure. The use of next generation sequencing (NGS) has been shown to be more sensitive to LADRVS. We have carried out a preliminary investigation using NGS to determine the prevalence of LDRVS among a drug-naive population in North Rift Kenya. Antiretroviral-naive patients attending a care clinic in North Rift Kenya were requested to provide and with consent provided blood samples for DR analysis. DNA was extracted and amplified and nested PCR was conducted on the pol RT region using primers tagged with multiplex identifiers (MID). Resulting PCR amplicons were purified, quantified, and pyrosequenced using a GS FLX Titanium PicoTiterPlate (Roche). Valid pyrosequencing reads were aligned with HXB-2 and the frequency and distribution of nucleotide and amino acid changes were determined using an in-house Perl script. DR mutations were identified using the IAS-USA HIV DR mutation database. Sixty samples were successfully sequenced of which 26 were subtype A, 9 were subtype D, 2 were subtype C, and the remaining were recombinants. Forty-six (76.6%) had at least one drug resistance mutation, with 25 (41.6%) indicated as major and the remaining 21 (35%) indicated as minor. The most prevalent mutation was NRTI position K219Q/R (11/46, 24%) followed by NRTI M184V (5/46, 11%) and NNRTI K103N (4/46, 9%). Our use of NGS technology revealed a high prevalence of LADRVs among drug-naive populations in Kenya, a region with predominantly non-B subtypes. The impact of these mutations on the clinical outcome of ART can be ascertained only through long-term follow-up.
Application of forensic DNA testing in the legal system.
Primorac, D; Schanfield, M S
2000-03-01
DNA technology has taken an irreplaceable position in the field of the forensic sciences. Since 1985, when Peter Gill and Alex Jeffreys first applied DNA technology to forensic problems, to the present, more than 50,000 cases worldwide have been solved through the use of DNA based technology. Although the development of DNA typing in forensic science has been extremely rapid, today we are witnessing a new era of DNA technology including automation and miniaturization. In forensic science, DNA analysis has become "the new form of scientific evidence" and has come under public scrutiny and the demand to show competence. More and more courts admit the DNA based evidence. We believe that in the near future this technology will be generally accepted in the legal system. There are two main applications of DNA analysis in forensic medicine: criminal investigation and paternity testing. In this article we present background information on DNA, human genetics, and the application of DNA analysis to legal problems, as well as the commonly applied respective mathematics.
2012-01-01
Background Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. Methods We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. Results When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. Conclusions The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease. PMID:23116433
Zhao, Jinying; Forsberg, Christopher W; Goldberg, Jack; Smith, Nicholas L; Vaccarino, Viola
2012-11-02
Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease.
The Knowledge of DNA and DNA Technologies among Pre-Service Science Teachers
ERIC Educational Resources Information Center
Cardak, Osman; Dikmenli, Musa
2008-01-01
The purpose of this study is to determine the alternative conceptions of elementary school pre-service science teachers regarding DNA and DNA technologies. The questions asked in the study related to subjects including the structure and role of DNA molecule, structure of genes, some genetic technologies, Genetically Modified Organism (GMO) plants,…
The molecular analysis of drinking water microbial communities has focused primarily on 16S rRNA gene sequence analysis. Since this approach provides limited information on function potential of microbial communities, analysis of whole-metagenome pyrosequencing data was used to...
Attomole-level Genomics with Single-molecule Direct DNA, cDNA and RNA Sequencing Technologies.
Ozsolak, Fatih
2016-01-01
With the introduction of next-generation sequencing (NGS) technologies in 2005, the domination of microarrays in genomics quickly came to an end due to NGS's superior technical performance and cost advantages. By enabling genetic analysis capabilities that were not possible previously, NGS technologies have started to play an integral role in all areas of biomedical research. This chapter outlines the low-quantity DNA and cDNA sequencing capabilities and applications developed with the Helicos single molecule DNA sequencing technology.
Criminal genomic pragmatism: prisoners' representations of DNA technology and biosecurity.
Machado, Helena; Silva, Susana
2012-01-01
Within the context of the use of DNA technology in crime investigation, biosecurity is perceived by different stakeholders according to their particular rationalities and interests. Very little is known about prisoners' perceptions and assessments of the uses of DNA technology in solving crime. To propose a conceptual model that serves to analyse and interpret prisoners' representations of DNA technology and biosecurity. A qualitative study using an interpretative approach based on 31 semi-structured tape-recorded interviews was carried out between May and September 2009, involving male inmates in three prisons located in the north of Portugal. The content analysis focused on the following topics: the meanings attributed to DNA and assessments of the risks and benefits of the uses of DNA technology and databasing in forensic applications. DNA was described as a record of identity, an exceptional material, and a powerful biometric identifier. The interviewees believed that DNA can be planted to incriminate suspects. Convicted offenders argued for the need to extend the criteria for the inclusion of DNA profiles in forensic databases and to restrict the removal of profiles. The conceptual model entitled criminal genomic pragmatism allows for an understanding of the views of prison inmates regarding DNA technology and biosecurity.
Janssen, Bram G; Gyselaers, Wilfried; Byun, Hyang-Min; Roels, Harry A; Cuypers, Ann; Baccarelli, Andrea A; Nawrot, Tim S
2017-01-04
Maternal smoking during pregnancy results in an increased risk of low birth weight through perturbations in the utero-placental exchange. Epigenetics and mitochondrial function in fetal tissues might be molecular signatures responsive to in utero tobacco smoke exposure. In the framework of the ENVIRONAGE birth cohort, we investigated the effect of self-reported tobacco smoke exposure during pregnancy on birth weight and the relation with placental tissue markers such as, (1) relative mitochondrial DNA (mtDNA) content as determined by real-time quantitative PCR, (2) DNA methylation of specific loci of mtDNA (D-loop and MT-RNR1), and (3) DNA methylation of the biotransformation gene CYP1A1 (the last two determined by bisulfite-pyrosequencing). The total pregnant mother sample included 255 non-smokers, 65 former-smokers who had quit smoking before pregnancy, and 62 smokers who continued smoking during pregnancy. Smokers delivered newborns with a birth weight on average 208 g lower [95% confidence interval (CI) -318 to -99, p = 0.0002] than mothers who did not smoke during pregnancy. In the smoker group, the relative mtDNA content was lower (-21.6%, 95% CI -35.4 to -4.9%, p = 0.01) than in the non-smoker group; whereas, absolute mtDNA methylation levels of MT-RNR1 were higher (+0.62%, 95% CI 0.21 to 1.02%, p = 0.003). Lower CpG-specific methylation of CYP1A1 in placental tissue (-4.57%, 95% CI -7.15 to -1.98%, p < 0.0001) were observed in smokers compared with non-smokers. Nevertheless, no mediation of CYP1A1 methylation nor any other investigated molecular signature was observed for the association between tobacco smoke exposure and birth weight. mtDNA content, methylation of specific loci of mtDNA, and CYP1A1 methylation in placental tissue may serve as molecular signatures for the association between gestational tobacco smoke exposure and low birth weight.
Magazani, Edmond K.; Garin, Daniel; Muyembe, Jean-Jacques T.; Bentahir, Mostafa; Gala, Jean-Luc
2014-01-01
Background In case of outbreak of rash illness in remote areas, clinically discriminating monkeypox (MPX) from severe form of chickenpox and from smallpox remains a concern for first responders. Objective The goal of the study was therefore to use MPX and chickenpox outbreaks in Democratic Republic of Congo (DRC) as a test case for establishing a rapid and specific diagnosis in affected remote areas. Methods In 2008 and 2009, successive outbreaks of presumed MPX skin rash were reported in Bena Tshiadi, Yangala and Ndesha healthcare districts of the West Kasai province (DRC). Specimens consisting of liquid vesicle dried on filter papers or crusted scabs from healing patients were sampled by first responders. A field analytical facility was deployed nearby in order to carry out a real-time PCR (qPCR) assay using genus consensus primers, consensus orthopoxvirus (OPV) and smallpox-specific probes spanning over the 14 kD fusion protein encoding gene. A PCR-restriction fragment length polymorphism was used on-site as backup method to confirm the presence of monkeypox virus (MPXV) in samples. To complete the differential diagnosis of skin rash, chickenpox was tested in parallel using a commercial qPCR assay. In a post-deployment step, a MPXV-specific pyrosequencing was carried out on all biotinylated amplicons generated on-site in order to confirm the on-site results. Results Whereas MPXV proved to be the agent causing the rash illness outbreak in the Bena Tshiadi, VZV was the causative agent of the disease in Yangala and Ndesha districts. In addition, each on-site result was later confirmed by MPXV-specific pyrosequencing analysis without any discrepancy. Conclusion This experience of rapid on-site dual use DNA-based differential diagnosis of rash illnesses demonstrates the potential of combining tests specifically identifying bioterrorism agents and agents causing natural outbreaks. This opens the way to rapid on-site DNA-based identification of a broad spectrum of causative agents in remote areas. PMID:24841633
Vento-Tormo, Roser; Álvarez-Errico, Damiana; Garcia-Gomez, Antonio; Hernández-Rodríguez, José; Buján, Segundo; Basagaña, Maria; Méndez, Maria; Yagüe, Jordi; Juan, Manel; Aróstegui, Juan I; Ballestar, Esteban
2017-01-01
Inflammasomes are cytosolic multiprotein complexes in macrophages. They assemble after infection- or stress-associated stimuli, activating both caspase-1-mediated inflammatory cytokine secretion and pyroptosis. Increased inflammasome activity resulting from gene mutations is related to monogenic autoinflammatory syndromes. However, variable penetrance among patients with the same gene mutations suggests involvement of additional mechanisms associated with inflammasome gene regulation. We sought to investigate the role of DNA demethylation in activating inflammasome genes during macrophage differentiation and monocyte activation in healthy control subjects and patients with autoinflammatory syndrome. Inflammasome-related genes were tested for DNA methylation and mRNA levels by using bisulfite pyrosequencing and quantitative RT-PCR in monocytes in vitro differentiated to macrophages and exposed to inflammatory conditions. The contribution of Tet methylcytosine dioxygenase 2 (TET2) and nuclear factor κB to DNA demethylation was tested by using chromatin immunoprecipitation, small interfering RNA-mediated downregulation, and pharmacologic inhibition. We observed that inflammasome-related genes are rapidly demethylated in both monocyte-to-macrophage differentiation and on monocyte activation. Demethylation associates with increased gene expression, and both mechanisms are impaired when TET2 and nuclear factor κB are downregulated. We analyzed DNA methylation levels of inflammasome-related genes in patients with cryopyrin-associated periodic syndromes (CAPS) and familial Mediterranean fever, 2 archetypical monogenic autoinflammatory syndromes. Under the above conditions, monocytes from untreated patients with CAPS undergo more efficient DNA demethylation than those of healthy subjects. Interestingly, patients with CAPS treated with anti-IL-1 drugs display methylation levels similar to those of healthy control subjects. Our study is the first to demonstrate the involvement of DNA methylation-associated alterations in patients with monogenic autoinflammatory disease and opens up possibilities for novel clinical markers. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Hayashi, Yoshinobu; Shigenobu, Shuji; Watanabe, Dai; Toga, Kouhei; Saiki, Ryota; Shimada, Keisuke; Bourguignon, Thomas; Lo, Nathan; Hojo, Masaru; Maekawa, Kiyoto; Miura, Toru
2013-01-01
In termites, division of labor among castes, categories of individuals that perform specialized tasks, increases colony-level productivity and is the key to their ecological success. Although molecular studies on caste polymorphism have been performed in termites, we are far from a comprehensive understanding of the molecular basis of this phenomenon. To facilitate future molecular studies, we aimed to construct expressed sequence tag (EST) libraries covering wide ranges of gene repertoires in three representative termite species, Hodotermopsis sjostedti, Reticulitermes speratus and Nasutitermes takasagoensis. We generated normalized cDNA libraries from whole bodies, except for guts containing microbes, of almost all castes, sexes and developmental stages and sequenced them with the 454 GS FLX titanium system. We obtained >1.2 million quality-filtered reads yielding >400 million bases for each of the three species. Isotigs, which are analogous to individual transcripts, and singletons were produced by assembling the reads and annotated using public databases. Genes related to juvenile hormone, which plays crucial roles in caste differentiation of termites, were identified from the EST libraries by BLAST search. To explore the potential for DNA methylation, which plays an important role in caste differentiation of honeybees, tBLASTn searches for DNA methyltransferases (dnmt1, dnmt2 and dnmt3) and methyl-CpG binding domain (mbd) were performed against the EST libraries. All four of these genes were found in the H. sjostedti library, while all except dnmt3 were found in R. speratus and N. takasagoensis. The ratio of the observed to the expected CpG content (CpG O/E), which is a proxy for DNA methylation level, was calculated for the coding sequences predicted from the isotigs and singletons. In all of the three species, the majority of coding sequences showed depletion of CpG O/E (less than 1), and the distributions of CpG O/E were bimodal, suggesting the presence of DNA methylation.
Hayashi, Yoshinobu; Shigenobu, Shuji; Watanabe, Dai; Toga, Kouhei; Saiki, Ryota; Shimada, Keisuke; Bourguignon, Thomas; Lo, Nathan; Hojo, Masaru; Maekawa, Kiyoto; Miura, Toru
2013-01-01
In termites, division of labor among castes, categories of individuals that perform specialized tasks, increases colony-level productivity and is the key to their ecological success. Although molecular studies on caste polymorphism have been performed in termites, we are far from a comprehensive understanding of the molecular basis of this phenomenon. To facilitate future molecular studies, we aimed to construct expressed sequence tag (EST) libraries covering wide ranges of gene repertoires in three representative termite species, Hodotermopsis sjostedti , Reticulitermessperatus and Nasutitermestakasagoensis . We generated normalized cDNA libraries from whole bodies, except for guts containing microbes, of almost all castes, sexes and developmental stages and sequenced them with the 454 GS FLX titanium system. We obtained >1.2 million quality-filtered reads yielding >400 million bases for each of the three species. Isotigs, which are analogous to individual transcripts, and singletons were produced by assembling the reads and annotated using public databases. Genes related to juvenile hormone, which plays crucial roles in caste differentiation of termites, were identified from the EST libraries by BLAST search. To explore the potential for DNA methylation, which plays an important role in caste differentiation of honeybees, tBLASTn searches for DNA methyltransferases (dnmt1, dnmt2 and dnmt3) and methyl-CpG binding domain (mbd) were performed against the EST libraries. All four of these genes were found in the H . sjostedti library, while all except dnmt3 were found in R . speratus and N . takasagoensis . The ratio of the observed to the expected CpG content (CpG O/E), which is a proxy for DNA methylation level, was calculated for the coding sequences predicted from the isotigs and singletons. In all of the three species, the majority of coding sequences showed depletion of CpG O/E (less than 1), and the distributions of CpG O/E were bimodal, suggesting the presence of DNA methylation. PMID:24098800
Rachik, Sara; Christaki, Urania; Li, Luen Luen; Genitsaris, Savvas; Breton, Elsa
2018-01-01
The diversity of planktonic eukaryotic microbes was studied at a coastal station of the eastern English Channel (EEC) from March 2011 to July 2015 (77 samples) using high throughput sequencing (454-pyrosequencing and Illumina) of the V2-V3 hypervariable region of the 18S SSU rDNA gene. Similar estimations of OTU relative abundance and taxonomic distribution for the dominant higher taxonomic groups (contributing >1% of the total number of OTUs) were observed with the two methods (Kolmogorov-Smirnov p-value = 0.22). Eight super-groups were identified throughout all samples: Alveolata, Stramenopiles, Opisthokonta, Hacrobia, Archeaplastida, Apusozoa, Rhizaria, and Amoebozoa (ordered by decreasing OTU richness). To gain further insight into microbial activity in the EEC, ribosomal RNA was extracted for samples from 2013–2015 (30 samples). Analysis of 18S rDNA and rRNA sequences led to the detection of 696 and 700 OTUs, respectively. Cluster analysis based on OTUs’ abundance indicated three major seasonal groups that were associated to spring, winter/autumn, and summer conditions. The clusters inferred from rRNA data showed a clearer seasonal representation of the community succession than the one based on rDNA. The rRNA/rDNA ratio was used as a proxy for relative cell activity. When all OTUs were considered, the average rRNA:rDNA ratio showed a linear trend around the 1:1 line, suggesting a linear relation between OTU abundance (rDNA) and activity (rRNA). However, this ratio was highly variable over time when considering individual OTUs. Interestingly, the OTU affiliated with P. globosa displayed rRNA:rDNA ratio that allowed to delimit high vs low abundance and high vs low activity periods. It unveiled quite well the Phaeocystis bloom dynamic regarding cell proliferation and activity, and could even be used as early indicator of an upcoming bloom. PMID:29746519
Rachik, Sara; Christaki, Urania; Li, Luen Luen; Genitsaris, Savvas; Breton, Elsa; Monchy, Sébastien
2018-01-01
The diversity of planktonic eukaryotic microbes was studied at a coastal station of the eastern English Channel (EEC) from March 2011 to July 2015 (77 samples) using high throughput sequencing (454-pyrosequencing and Illumina) of the V2-V3 hypervariable region of the 18S SSU rDNA gene. Similar estimations of OTU relative abundance and taxonomic distribution for the dominant higher taxonomic groups (contributing >1% of the total number of OTUs) were observed with the two methods (Kolmogorov-Smirnov p-value = 0.22). Eight super-groups were identified throughout all samples: Alveolata, Stramenopiles, Opisthokonta, Hacrobia, Archeaplastida, Apusozoa, Rhizaria, and Amoebozoa (ordered by decreasing OTU richness). To gain further insight into microbial activity in the EEC, ribosomal RNA was extracted for samples from 2013-2015 (30 samples). Analysis of 18S rDNA and rRNA sequences led to the detection of 696 and 700 OTUs, respectively. Cluster analysis based on OTUs' abundance indicated three major seasonal groups that were associated to spring, winter/autumn, and summer conditions. The clusters inferred from rRNA data showed a clearer seasonal representation of the community succession than the one based on rDNA. The rRNA/rDNA ratio was used as a proxy for relative cell activity. When all OTUs were considered, the average rRNA:rDNA ratio showed a linear trend around the 1:1 line, suggesting a linear relation between OTU abundance (rDNA) and activity (rRNA). However, this ratio was highly variable over time when considering individual OTUs. Interestingly, the OTU affiliated with P. globosa displayed rRNA:rDNA ratio that allowed to delimit high vs low abundance and high vs low activity periods. It unveiled quite well the Phaeocystis bloom dynamic regarding cell proliferation and activity, and could even be used as early indicator of an upcoming bloom.
Identification of an Epigenetic Signature of Osteoporosis in Blood DNA of Post-menopausal Women.
Cheishvili, David; Parashar, Surabhi; Mahmood, Niaz; Arakelian, Ani; Kremer, Richard; Goltzman, David; Szyf, Moshe; Rabbani, Shafaat A
2018-06-20
Osteoporosis is one of the most common age-related progressive bone diseases in elderly people. Approximately one in three women and one in five men are predisposed to developing OP. In postmenopausal women a reduction in bone mineral density (BMD) leads to an increased risk of fractures. In the current study we delineated the DNA methylation signatures in whole blood samples of postmenopausal osteoporotic women. We obtained whole blood DNA from 22 normal women and 22 postmenopausal osteoporotic women (51-89 years) from the Canadian Multicenter Osteoporosis Study (CaMos) cohort. These DNA samples were subjected to Illumina Infinium Human Methylation 450 K analysis. Illumina 450K raw data was analyzed by Genome Studio software. Analysis of the female participants with early and advanced osteoporosis resulted in the generation of a list of 1233 differentially methylated CpG sites when compared with age matched normal females. T-test, ANOVA and post-hoc statistical analyses were performed and 77 significantly differentially methylated CpG sites were identified. From the 13 most significant genes, ZNF267, ABLIM2, RHOJ, CDKL5, PDCD1 were selected for their potential role in bone biology. A weighted polygenic DNA methylation score of these genes predicted osteoporosis at an early stage with high sensitivity and specificity and correlated with measures of bone density. Pyrosequencing analysis of these genes was performed to validate the results obtained from Illumina 450 K methylation analysis. The current study provides proof of principal for the role of DNA methylation in osteoporosis. Using whole blood DNA methylation analysis, women at risk of developing osteoporosis can be identified before a diagnosis of osteoporosis is made using BMD as a screening method. Early diagnosis will help to select patients that might benefit from early therapeutic intervention. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Adams, Alex T.; Kennedy, Nicholas A.; Hansen, Richard; Ventham, Nicholas T.; O'Leary, Kate R.; Drummond, Hazel E.; Noble, Colin L.; El-Omar, Emad; Russell, Richard K.; Wilson, David C.; Nimmo, Elaine R.; Hold, Georgina L.
2014-01-01
Background: As a result of technological and analytical advances, genome-wide characterization of key epigenetic alterations is now feasible in complex diseases. We hypothesized that this may provide important insights into gene-environmental interactions in Crohn's disease (CD) and is especially pertinent to early onset disease. Methods: The Illumina 450K platform was applied to assess epigenome-wide methylation profiles in circulating leukocyte DNA in discovery and replication pediatric CD cohorts and controls. Data were corrected for differential leukocyte proportions. Targeted replication was performed in adults using pyrosequencing. Methylation changes were correlated with gene expression in blood and intestinal mucosa. Results: We identified 65 individual CpG sites with methylation alterations achieving epigenome-wide significance after Bonferroni correction (P < 1.1 × 10−7), and 19 differently methylated regions displaying unidirectional methylation change. There was a highly significant enrichment of methylation changes around GWAS single nucleotide polymorphisms (P = 3.7 × 10−7), notably the HLA region and MIR21. Two-locus discriminant analysis in the discovery cohort predicted disease in the pediatric replication cohort with high accuracy (area under the curve, 0.98). The findings strongly implicate the transcriptional start site of MIR21 as a region of extended epigenetic alteration, containing the most significant individual probes (P = 1.97 × 10−15) within a GWAS risk locus. In extension studies, we confirmed hypomethylation of MIR21 in adults (P = 6.6 × 10−5, n = 172) and show increased mRNA expression in leukocytes (P < 0.005, n = 66) and in the inflamed intestine (P = 1.4 × 10−6, n = 99). Conclusions: We demonstrate highly significant and replicable differences in DNA methylation in CD, defining the disease-associated epigenome. The data strongly implicate known GWAS loci, with compelling evidence implicating MIR21 and the HLA region. PMID:25144570
Leese, Florian; Mayer, Christoph; Agrawal, Shobhit; Dambach, Johannes; Dietz, Lars; Doemel, Jana S.; Goodall-Copstake, William P.; Held, Christoph; Jackson, Jennifer A.; Lampert, Kathrin P.; Linse, Katrin; Macher, Jan N.; Nolzen, Jennifer; Raupach, Michael J.; Rivera, Nicole T.; Schubart, Christoph D.; Striewski, Sebastian; Tollrian, Ralph; Sands, Chester J.
2012-01-01
High throughput sequencing technologies are revolutionizing genetic research. With this “rise of the machines”, genomic sequences can be obtained even for unknown genomes within a short time and for reasonable costs. This has enabled evolutionary biologists studying genetically unexplored species to identify molecular markers or genomic regions of interest (e.g. micro- and minisatellites, mitochondrial and nuclear genes) by sequencing only a fraction of the genome. However, when using such datasets from non-model species, it is possible that DNA from non-target contaminant species such as bacteria, viruses, fungi, or other eukaryotic organisms may complicate the interpretation of the results. In this study we analysed 14 genomic pyrosequencing libraries of aquatic non-model taxa from four major evolutionary lineages. We quantified the amount of suitable micro- and minisatellites, mitochondrial genomes, known nuclear genes and transposable elements and searched for contamination from various sources using bioinformatic approaches. Our results show that in all sequence libraries with estimated coverage of about 0.02–25%, many appropriate micro- and minisatellites, mitochondrial gene sequences and nuclear genes from different KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways could be identified and characterized. These can serve as markers for phylogenetic and population genetic analyses. A central finding of our study is that several genomic libraries suffered from different biases owing to non-target DNA or mobile elements. In particular, viruses, bacteria or eukaryote endosymbionts contributed significantly (up to 10%) to some of the libraries analysed. If not identified as such, genetic markers developed from high-throughput sequencing data for non-model organisms may bias evolutionary studies or fail completely in experimental tests. In conclusion, our study demonstrates the enormous potential of low-coverage genome survey sequences and suggests bioinformatic analysis workflows. The results also advise a more sophisticated filtering for problematic sequences and non-target genome sequences prior to developing markers. PMID:23185309
[Current applications of high-throughput DNA sequencing technology in antibody drug research].
Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong
2012-03-01
Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.
USDA-ARS?s Scientific Manuscript database
Impacts of integrated livestock-crop production systems compared to specialized systems on soil bacterial diversity have not been well documented. We used a bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) method to evaluate bacterial diversity of a clay loam soil (Fine, mixed, thermic To...
Guo, Yue; Wu, Renyi; Gaspar, John M; Sargsyan, Davit; Su, Zheng-Yuan; Zhang, Chengyue; Gao, Linbo; Cheng, David; Li, Wenji; Wang, Chao; Yin, Ran; Fang, Mingzhu; Verzi, Michael P; Hart, Ronald P; Kong, Ah-Ng
2018-05-03
Inflammation is highly associated with colon carcinogenesis. Epigenetic mechanisms could play an important role in the initiation and progression of colon cancer. Curcumin, a dietary phytochemical, shows promising effects in suppressing colitis-associated colon cancer in azoxymethane-dextran sulfate sodium (AOM-DSS) mice. However, the potential epigenetic mechanisms of curcumin in colon cancer remain unknown. In this study, the anticancer effect of curcumin in suppressing colon cancer in an 18-week AOM-DSS colon cancer mouse model was confirmed. We identified lists of differentially expressed and differentially methylated genes in pairwise comparisons and several pathways involved in the potential anticancer effect of curcumin. These pathways include LPS/IL-1-mediated inhibition of RXR function, Nrf2-mediated oxidative stress response, production of NO and ROS in macrophages and IL-6 signaling. Among these genes, Tnf stood out with decreased DNA CpG methylation of Tnf in the AOM-DSS group and reversal of the AOM-DSS induced Tnf demethylation by curcumin. These observations in Tnf methylation correlated with increased and decreased Tnf expression in RNA-seq. The functional role of DNA methylation of Tnf was further confirmed by in vitro luciferase transcriptional activity assay. In addition, the DNA methylation level in a group of inflammatory genes was decreased in the AOM+DSS group but restored by curcumin and was validated by pyrosequencing. This study shows for the first time epigenomic changes in DNA CpG methylation in the inflammatory response from colitis-associated colon cancer and the reversal of their CpG methylation changes by curcumin. Future clinical epigenetic studies with curcumin in inflammation-associated colon cancer would be warranted.
Frodl, Thomas; Szyf, Moshe; Carballedo, Angela; Ly, Victoria; Dymov, Sergiy; Vaisheva, Farida; Morris, Derek; Fahey, Ciara; Meaney, James; Gill, Michael; Booij, Linda
2015-09-01
The aim of the present study was to investigate the association of fMRI blood oxygen-level dependent (BOLD) reactivity with the level of epigenetic methylation of SLC6A4 in blood DNA from a sample of healthy participants and patients with major depressive disorder (MDD). We investigated patients with MDD and healthy controls using fMRI and an emotional attention-shifting task. We assessed site-specific DNA methylation of a previously characterized SLC6A4 region in peripheral blood DNA using pyrosequencing. Our study involved 25 patients with MDD and 35 healthy controls. Activation in the anterior insula elicited by negative emotional content was significantly positively associated with the degree of SLC6A4 methylation. Significantly negative associations were observed between activation in the posterior insula and the degree of SLC6A4 methylation when judging the geometry of pictures after seeing negative in contrast to positive emotional stimuli. Healthy controls with a high degree of SLC6A4 methylation depicted significantly more activity elicited by positive stimuli in limbic regions and more activity elicited by negative stimuli in limbic as well as cognitive control regions than those with a low degree of SLC6A4 methylation. It is impossible to measure methylation directly in the brain and thus we assessed peripheral methylation of SLC6A4. Since the association was cross-sectional, no conclusion about cause and effect can be drawn. Our study provides further support to the hypothesis that particular DNA methylation states that are associated with brain function during emotion processing are detectable in the periphery.
Prenatal Arsenic Exposure and DNA Methylation in Maternal and Umbilical Cord Blood Leukocytes
Baccarelli, Andrea; Hoffman, Elaine; Tarantini, Letizia; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Hsueh, Yu-Mei; Wright, Robert O.; Christiani, David C.
2012-01-01
Background: Arsenic is an epigenetic toxicant and could influence fetal developmental programming. Objectives: We evaluated the association between arsenic exposure and DNA methylation in maternal and umbilical cord leukocytes. Methods: Drinking-water and urine samples were collected when women were at ≤ 28 weeks gestation; the samples were analyzed for arsenic using inductively coupled plasma mass spectrometry. DNA methylation at CpG sites in p16 (n = 7) and p53 (n = 4), and in LINE-1 and Alu repetitive elements (3 CpG sites in each), was quantified using pyrosequencing in 113 pairs of maternal and umbilical blood samples. We used general linear models to evaluate the relationship between DNA methylation and tertiles of arsenic exposure. Results: Mean (± SD) drinking-water arsenic concentration was 14.8 ± 36.2 μg/L (range: < 1–230 μg/L). Methylation in LINE-1 increased by 1.36% [95% confidence interval (CI): 0.52, 2.21%] and 1.08% (95% CI: 0.07, 2.10%) in umbilical cord and maternal leukocytes, respectively, in association with the highest versus lowest tertile of total urinary arsenic per gram creatinine. Arsenic exposure was also associated with higher methylation of some of the tested CpG sites in the promoter region of p16 in umbilical cord and maternal leukocytes. No associations were observed for Alu or p53 methylation. Conclusions: Exposure to higher levels of arsenic was positively associated with DNA methylation in LINE-1 repeated elements, and to a lesser degree at CpG sites within the promoter region of the tumor suppressor gene p16. Associations were observed in both maternal and fetal leukocytes. Future research is needed to confirm these results and determine if these small increases in methylation are associated with any health effects. PMID:22466225
Michel, S; Busato, F; Genuneit, J; Pekkanen, J; Dalphin, J-C; Riedler, J; Mazaleyrat, N; Weber, J; Karvonen, A M; Hirvonen, M-R; Braun-Fahrländer, C; Lauener, R; von Mutius, E; Kabesch, M; Tost, J
2013-03-01
Genetic susceptibility and environmental influences are important contributors to the development of asthma and atopic diseases. Epigenetic mechanisms may facilitate gene by environment interactions in these diseases. We studied the rural birth cohort PASTURE (Protection against allergy: study in rural environments) to investigate (a) whether epigenetic patterns in asthma candidate genes are influenced by farm exposure in general, (b) change over the first years of life, and (c) whether these changes may contribute to the development of asthma. DNA was extracted from cord blood and whole blood collected at the age of 4.5 years in 46 samples per time point. DNA methylation in 23 regions in ten candidate genes (ORMDL1, ORMDL2, ORMDL3, CHI3L1, RAD50, IL13, IL4, STAT6, FOXP3, and RUNX3) was assessed by pyrosequencing, and differences between strata were analyzed by nonparametric Wilcoxon-Mann-Whitney tests. In cord blood, regions in ORMDL1 and STAT6 were hypomethylated in DNA from farmers' as compared to nonfarmers' children, while regions in RAD50 and IL13 were hypermethylated (lowest P-value (STAT6) = 0.001). Changes in methylation over time occurred in 15 gene regions (lowest P-value (IL13) = 1.57*10(-8)). Interestingly, these differences clustered in the genes highly associated with asthma (ORMDL family) and IgE regulation (RAD50, IL13, and IL4), but not in the T-regulatory genes (FOXP3, RUNX3). In this first pilot study, DNA methylation patterns change significantly in early childhood in specific asthma- and allergy-related genes in peripheral blood cells, and early exposure to farm environment seems to influence methylation patterns in distinct genes. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
DNA methylation epigenotype and clinical features of NRAS-mutation(+) colorectal cancer.
Takane, Kiyoko; Akagi, Kiwamu; Fukuyo, Masaki; Yagi, Koichi; Takayama, Tadatoshi; Kaneda, Atsushi
2017-05-01
Sporadic colorectal cancer (CRC) is classified into several molecular subtypes. We previously established two groups of DNA methylation markers through genome-wide DNA methylation analysis to classify CRC into distinct subgroups: high-, intermediate-, and low-methylation epigenotypes (HME, IME, and LME, respectively). HME CRC, also called CpG island methylator phenotype (CIMP)-high CRC, shows methylation of both Group 1 markers (CIMP markers) and Group 2 markers, while IME/CIMP-low CRC shows methylation of Group 2, but not of Group 1 markers, and LME CRC shows no methylation of either Group 1 or Group 2 markers. While BRAF- and KRAS-mutation(+) CRC strongly correlated with HME and IME, respectively, clinicopathological features of NRAS-mutation(+) CRC, including association with DNA methylation, remain unclear. To characterize NRAS-mutation(+) CRC, the methylation levels of 19 methylation marker genes (6 Group 1 and 13 Group 2) were analyzed in 61 NRAS-mutation(+) and 144 NRAS-mutation(-) CRC cases by pyrosequencing, and their correlation with clinicopathological features was investigated. Different from KRAS-mutation(+) CRC, NRAS-mutation(+) CRC significantly correlated with LME. NRAS-mutation(+) CRC showed significantly better prognosis than KRAS-mutation(+) CRC (P = 3 × 10 -4 ). NRAS-mutation(+) CRC preferentially occurred in elder patients (P = 0.02) and at the distal colon (P = 0.006), showed significantly less lymph vessel invasion (P = 0.002), and correlated with LME (P = 8 × 10 -5 ). DNA methylation significantly accumulated at the proximal colon. NRAS-mutation(+) CRC may constitute a different subgroup from KRAS-mutation(+) CRC, showing significant correlation with LME, older age, distal colon, and relatively better prognosis. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Comparison and Validation of Some ITS Primer Pairs Useful for Fungal Metabarcoding Studies
Op De Beeck, Michiel; Lievens, Bart; Busschaert, Pieter; Declerck, Stéphan; Vangronsveld, Jaco; Colpaert, Jan V.
2014-01-01
Current metabarcoding studies aiming to characterize microbial communities generally rely on the amplification and sequencing of relatively short DNA regions. For fungi, the internal transcribed spacer (ITS) region in the ribosomal RNA (rRNA) operon has been accepted as the formal fungal barcode. Despite an increasing number of fungal metabarcoding studies, the amplification efficiency of primers is generally not tested prior to their application in metabarcoding studies. Some of the challenges that metabarcoding primers should overcome efficiently are the amplification of target DNA strands in samples rich in non-target DNA and environmental pollutants, such as humic acids, that may have been co-extracted with DNA. In the current study, three selected primer pairs were tested for their suitability as fungal metabarcoding primers. The selected primer pairs include two primer pairs that have been frequently used in fungal metabarcoding studies (ITS1F/ITS2 and ITS3/ITS4) and a primer pair (ITS86F/ITS4) that has been shown to efficiently amplify the ITS2 region of a broad range of fungal taxa in environmental soil samples. The selected primer pairs were evaluated in a 454 amplicon pyrosequencing experiment, real-time PCR (qPCR) experiments and in silico analyses. Results indicate that experimental evaluation of primers provides valuable information that could aid in the selection of suitable primers for fungal metabarcoding studies. Furthermore, we show that the ITS86F/ITS4 primer pair outperforms other primer pairs tested in terms of in silico primer efficiency, PCR efficiency, coverage, number of reads and number of species-level operational taxonomic units (OTUs) obtained. These traits push the ITS86F/ITS4 primer pair forward as highly suitable for studying fungal diversity and community structures using DNA metabarcoding. PMID:24933453
Jones, Sadie E F; Hibbitts, Samantha; Hurt, Christopher N; Bryant, Dean; Fiander, Alison N; Powell, Ned; Tristram, Amanda J
2017-09-15
Purpose: Response rates to treatment of vulval intraepithelial neoplasia (VIN) with imiquimod and cidofovir are approximately 57% and 61%, respectively. Treatment is associated with significant side effects and, if ineffective, risk of malignant progression. Treatment response is not predicted by clinical factors. Identification of a biomarker that could predict response is an attractive prospect. This work investigated HPV DNA methylation as a potential predictive biomarker in this setting. Experimental Design: DNA from 167 cases of VIN 3 from the RT3 VIN clinical trial was assessed. HPV-positive cases were identified using Greiner PapilloCheck and HPV 16 type-specific PCR. HPV DNA methylation status was assessed in three viral regions: E2, L1/L2, and the promoter, using pyrosequencing. Results: Methylation of the HPV E2 region was associated with response to treatment. For cidofovir ( n = 30), median E2 methylation was significantly higher in patients who responded ( P ≤ 0.0001); E2 methylation >4% predicted response with 88.2% sensitivity and 84.6% specificity. For imiquimod ( n = 33), median E2 methylation was lower in patients who responded to treatment ( P = 0.03; not significant after Bonferroni correction); E2 methylation <4% predicted response with 70.6% sensitivity and 62.5% specificity. Conclusions: These data indicate that cidofovir and imiquimod may be effective in two biologically defined groups. HPV E2 DNA methylation demonstrated potential as a predictive biomarker for the treatment of VIN with cidofovir and may warrant investigation in a biomarker-guided clinical trial. Clin Cancer Res; 23(18); 5460-8. ©2017 AACR . ©2017 American Association for Cancer Research.
Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Sanghyun; Son, Ui-Han; Yun, Hae Soo; Joo, So-Young; Jeong, Sookwan; Rhee, Man Hee; Kwak, Dongmi; Xuan, Xuenan; Hong, Yeonchul; Chung, Dong-Il; Goo, Youn-Kyoung
2017-12-01
Allelic diversity leading to multiple gene polymorphisms of vivax malaria parasites has been shown to greatly contribute to antigenic variation and drug resistance, increasing the potential for multiple-clone infections within the host. Therefore, to identify multiple-clone infections and the predominant haplotype of Plasmodium vivax in a South Korean population, P. vivax merozoite surface protein-1 (PvMSP-1) was analyzed by pyrosequencing. Pyrosequencing of 156 vivax malaria-infected samples yielded 97 (62.18%) output pyrograms showing two main types of peak patterns of the dimorphic allele for threonine and alanine (T1476A). Most of the samples evaluated (88.66%) carried multiple-clone infections (wild- and mutant-types), whereas 11.34% of the same population carried only the mutant-type (1476A). In addition, each allele showed a high frequency of guanine (G) base substitution at both the first and third positions (86.07% and 81.13%, respectively) of the nucleotide combinations. Pyrosequencing of the PvMSP-1 42-kDa fragment revealed a heterogeneous parasite population, with the mutant-type dominant compared to the wild-type. Understanding the genetic diversity and multiple-clone infection rates may lead to improvements in vivax malaria prevention and strategic control plans. Further studies are needed to improve the efficacy of the pyrosequencing assay with large sample sizes and additional nucleotide positions. Copyright © 2017 Elsevier B.V. All rights reserved.
[Applications of DNA identification technology in protection of wild animals].
Ni, Ping-Ya; Pei, Li; Ge, Wen-Dong; Zhang, Ying; Yang, Xue-Ying; Xu, Xiao-Yu; Tu, Zheng
2011-12-01
With the development of biotechnology, forensic DNA identification technology in protection of wild animals has been used more and more widely. This review introduces the global status of wildlife crime and the relevant protection to wildlife, outlines the practical applications of forensic DNA identification technology with regard to species identification, determination of geographic origin, individual identification and paternity identification. It focus on the techniques commonly used in DNA typing and their merits and demerits, as well as the problems and prospects of forensic DNA technology for wildlife conservation.
Wang, Ting; Liu, Jin-Hui; Zhang, Jie; Wang, Le; Chen, Chao; Dai, Peng-Gao
2015-04-01
Acquired resistance to endocrine-based therapies occurs in virtually all estrogen receptor-α (ERα, encoded by ESR1) positive breast cancer patients. The underlying molecular mechanism is attributed to the activating mutations in ESR1. These mutations provide an exciting opportunity for the development of new antagonists that specifically inhibit the mutant proteins. Therefore, accurate detection of ESR1 mutations is of critical importance in clinical practice. We carried out a single tube, multiplex allele-specific real-time PCR assay for the detection of four ESR1 mutations (Y537S, Y537C, Y537N, and D538G). The assay was found to be highly specific and sensitive. With this assay, as low as 1% mutant DNA template in wild type DNA could be detected. Fifteen DNA samples were prepared from archived formalin-fixed paraffin-embedded metastatic breast cancer biopsies. They were further screened with this assay, and three samples were identified as ESR1 mutant. The results were validated with pyrosequencing and complete concordance was observed between the two assays. The multiplex allele-specific real-time PCR assay provides a rapid and reliable diagnostic tool for accurate detection of ESR1 mutations. This procedure may be used in the clinical treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhu, Zaihua; Meng, Weida; Liu, Peiru; Zhu, Xiaoxia; Liu, Yun; Zou, Hejian
2017-01-01
Genome-wide association studies (GWASs) have identified dozens of loci associated with gout, but for most cases, the risk genes and the underlying molecular mechanisms contributing to these associations are unknown. This study sought to understand the molecular mechanism of a common genetic variant, rs780093, in the development of gout, both in vitro and in vivo. Nuclear receptor binding protein 1 ( NRBP1 ), as a gout risk gene, and its regulatory region, 72 bp upstream of the transcription start site, designated as B1, were identified through integrative analyses of genome-wide genotype and DNA methylation data. We observed elevated NRBP1 expression in human peripheral blood mononuclear cells (PBMCs) from gout patients. In vitro luciferase reporter and protein pulldown assay results showed that DNA methylation could increase the binding of the transcription factor TFAP2A to B1, leading to suppressed gene expression. There results were further confirmed by in vivo bisulfite pyrosequencing showing that hypomethylation on B1 is associated with increased NRBP1 expression in gout patients. Hypomethylation at the promoter region of NRBP1 reduces the binding of TFAP2A and thus leads to elevated NRBP1 expression, which might contribute to the development of gout.
Mairinger, Fabian D; Vollbrecht, Claudia; Streubel, Anna; Roth, Andreas; Landt, Olfert; Walter, Henry F R; Kollmeier, Jens; Mairinger, Thomas
2014-01-01
Activating epidermal growth factor receptor (EGFR) gene mutations can be successfully treated by EGFR tyrosine kinase inhibitors (EGFR-TKIs), but nearly 50% of all patients' exhibit progression of the disease until treatment because of T790M mutations. It is proposed that this is mostly caused by therapy-resistant tumor clones harboring a T790M mutation. Until now no cost-effective routine-diagnostic method for EGFR-resistance mutation status analysis is available leaving long-time response to TKI treatment to chance. Unambiguous identification of T790M EGFR mutations is mandatory to optimize initial treatment strategies. Artificial EGFR T790M mutations and human wild-type gDNA were prepared in several dilution series. Preferential amplification using coamplification at lower denaturation temperature-PCR (COLD-PCR) of the mutant sequence and subsequent HybProbe melting curve detection or pyrosequencing were performed in comparison to normal processing. COLD-PCR-based amplification allowed the detection of 0.125% T790M mutant DNA in a background of wild-type DNA in comparison to 5% while normal processing. These results were reproducible. COLD-PCR is a powerful and cost-effective tool for routine diagnostic to detect underrepresented tumor clones in clinical samples. A diagnostic tool for unambiguous identification of T790M-mutated minor tumor clones is now available enabling optimized therapy.
Zhu, H; Senalik, D; McCown, B H; Zeldin, E L; Speers, J; Hyman, J; Bassil, N; Hummer, K; Simon, P W; Zalapa, J E
2012-01-01
The American cranberry (Vaccinium macrocarpon Ait.) is a major commercial fruit crop in North America, but limited genetic resources have been developed for the species. Furthermore, the paucity of codominant DNA markers has hampered the advance of genetic research in cranberry and the Ericaceae family in general. Therefore, we used Roche 454 sequencing technology to perform low-coverage whole genome shotgun sequencing of the cranberry cultivar 'HyRed'. After de novo assembly, the obtained sequence covered 266.3 Mb of the estimated 540-590 Mb in cranberry genome. A total of 107,244 SSR loci were detected with an overall density across the genome of 403 SSR/Mb. The AG repeat was the most frequent motif in cranberry accounting for 35% of all SSRs and together with AAG and AAAT accounted for 46% of all loci discovered. To validate the SSR loci, we designed 96 primer-pairs using contig sequence data containing perfect SSR repeats, and studied the genetic diversity of 25 cranberry genotypes. We identified 48 polymorphic SSR loci with 2-15 alleles per locus for a total of 323 alleles in the 25 cranberry genotypes. Genetic clustering by principal coordinates and genetic structure analyzes confirmed the heterogeneous nature of cranberries. The parentage composition of several hybrid cultivars was evident from the structure analyzes. Whole genome shotgun 454 sequencing was a cost-effective and efficient way to identify numerous SSR repeats in the cranberry sequence for marker development.
Animal Rennets as Sources of Dairy Lactic Acid Bacteria
Cruciata, Margherita; Sannino, Ciro; Ercolini, Danilo; Scatassa, Maria L.; De Filippis, Francesca; Mancuso, Isabella; La Storia, Antonietta; Moschetti, Giancarlo
2014-01-01
The microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB), Streptococcus thermophilus and some lactobacilli, mainly Lactobacillus crispatus and Lactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, as Enterococcus casseliflavus, Enterococcus faecium, Enterococcus faecalis, Enterococcus lactis, Lactobacillus delbrueckii, and Streptococcus thermophilus, while the other strains, all belonging to the genus Enterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions. PMID:24441167
Self-regulation of recombinant DNA technology in Japan in the 1970s.
Nagai, Hiroyuki; Nukaga, Yoshio; Saeki, Koji; Akabayashi, Akira
2009-07-01
Recombinant DNA technology was developed in the United States in the early 1970s. Leading scientists held an international Asilomar Conference in 1975 to examine the self regulation of recombinant DNA technology, followed by the U.S. National Institutes of Health drafting the Recombinant DNA Research Guidelines in 1976. The result of this conference significantly affected many nations, including Japan. However, there have been few historical studies on the self-regulation of recombinant technologies conducted by scientists and government officials in Japan. The purpose of this paper is to analyze how the Science Council of Japan, the Ministry of Education, Science adn Culture, and the Science and Technology Agency developed self-regulation policies for recombinant DNA technology in Japan in the 1970s. Groups of molecular biologist and geneticists played a key role in establishing guidelines in cooperation with government officials. Our findings suggest that self-regulation policies on recombinant DNA technology have influenced safety management for the life sciences and establishment of institutions for review in Japan.
454 pyrosequencing project identifying expressed genes from the horn fly, Haematobia irritans
USDA-ARS?s Scientific Manuscript database
We used an EST approach to initiate a study of the genome of the horn fly, Haematobia irritans and have used 454 pyrosequencing techniques to sequence 73,512, 100,603, 71,550, and 85,769 expressed genes from the egg, first instar larvae, adult male, and adult female lifestages of the horn fly. cD...
Lisa W. Alexander; Keith E. Woeste
2014-01-01
Given the low intraspecific chloroplast diversity detected in northern red oak (Quercus rubra L.), more powerful genetic tools are necessary to accurately characterize Q. rubra chloroplast diversity and structure. We report the sequencing, assembly, and annotation of the chloroplast genome of northern red oak via pyrosequencing and...
Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying
2015-01-01
This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416
Xiao, Yong; Zheng, Yue; Wu, Song; Zhang, En-Hua; Chen, Zheng; Liang, Peng; Huang, Xia; Yang, Zhao-Hui; Ng, I-Son; Chen, Bor-Yann; Zhao, Feng
2015-01-01
Bioelectrochemical systems (BESs) are promising technologies for energy and product recovery coupled with wastewater treatment, and the core microbial community in electrochemically active biofilm in BESs remains controversy. In the present study, 7 anodic communities from 6 bioelectrochemical systems in 4 labs in southeast, north and south-central of China are explored by 454 pyrosequencing. A total of 251,225 effective sequences are obtained for 7 electrochemically active biofilm samples at 3% cutoff level. While Alpha-, Beta-, and Gamma-proteobacteria are the most abundant classes (averaging 16.0–17.7%), Bacteroidia and Clostridia are the two sub-dominant and commonly shared classes. Six commonly shared genera i.e., Azospira, Azospirillum, Acinetobacter, Bacteroides, Geobacter, Pseudomonas, and Rhodopseudomonas dominate the electrochemically active communities and are defined as core genera. A total of 25 OTUs with average relative abundance >0.5% were selected and designated as core OTUs, and some species relating to these OTUs have been reported electrochemically active. Furthermore, cyclic voltammetry and chronoamperometry tests show that two strains from Acinetobacter guillouiae and Stappia indica, bacteria relate to two core OTUs, are electrochemically active. Using randomly selected bioelectrochemical systems, the study has presented extremely diverse bacterial communities in anodic biofilms, though, we still can suggest some potentially microbes for investigating the electrochemical mechanisms in bioelectrochemical systems. PMID:26733958
Kimura, Tomoaki; Yamamoto, Eiichiro; Yamano, Hiro-O; Suzuki, Hiromu; Kamimae, Seiko; Nojima, Masanori; Sawada, Takeshi; Ashida, Masami; Yoshikawa, Kenjiro; Takagi, Ryo; Kato, Ryusuke; Harada, Taku; Suzuki, Ryo; Maruyama, Reo; Kai, Masahiro; Imai, Kohzoh; Shinomura, Yasuhisa; Sugai, Tamotsu; Toyota, Minoru
2012-03-01
Sessile serrated adenomas (SSAs) are known to be precursors of sporadic colorectal cancers (CRCs) with microsatellite instability (MSI), and to be tightly associated with BRAF mutation and the CpG island methylator phenotype (CIMP). Consequently, colonoscopic identification of SSAs has important implications for preventing CRCs, but accurate endoscopic diagnosis is often difficult. Our aim was to clarify which endoscopic findings are specific to SSAs. The morphological, histological and molecular features of 261 specimens from 226 colorectal tumors were analyzed. Surface microstructures were analyzed using magnifying endoscopy. Mutation in BRAF and KRAS was examined by pyrosequencing. Methylation of p16, IGFBP7, MLH1 and MINT1, -2, -12 and -31 was analyzed using bisulfite pyrosequencing. Through retrospective analysis of a training set (n=145), we identified a novel surface microstructure, the Type II open-shape pit pattern (Type II-O), which was specific to SSAs with BRAF mutation and CIMP. Subsequent prospective analysis of an independent validation set (n=116) confirmed that the Type II-O pattern is highly predictive of SSAs (sensitivity, 65.5%; specificity, 97.3%). BRAF mutation and CIMP occurred with significant frequency in Type II-O-positive serrated lesions. Progression of SSAs to more advanced lesions was associated with further accumulation of aberrant DNA methylation and additional morphological changes, including the Type III, IV and V pit patterns. Our results suggest the Type II-O pit pattern is a useful hallmark of the premalignant stage of CRCs with MSI and CIMP, which could serve to improve the efficacy of colonoscopic surveillance.
2010-01-01
Background The Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients. Results We present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources. In the genomes of clinical isolates several antibiotic resistance genes were identified, including the vanA transposon that confers resistance to vancomycin in two strains. A functional comparison between E. faecium and the related opportunistic pathogen E. faecalis based on differences in the presence of protein families, revealed divergence in plant carbohydrate metabolic pathways and oxidative stress defense mechanisms. The E. faecium pan-genome was estimated to be essentially unlimited in size, indicating that E. faecium can efficiently acquire and incorporate exogenous DNA in its gene pool. One of the most prominent sources of genomic diversity consists of bacteriophages that have integrated in the genome. The CRISPR-Cas system, which contributes to immunity against bacteriophage infection in prokaryotes, is not present in the sequenced strains. Three sequenced isolates carry the esp gene, which is involved in urinary tract infections and biofilm formation. The esp gene is located on a large pathogenicity island (PAI), which is between 64 and 104 kb in size. Conjugation experiments showed that the entire esp PAI can be transferred horizontally and inserts in a site-specific manner. Conclusions Genes involved in environmental persistence, colonization and virulence can easily be aquired by E. faecium. This will make the development of successful treatment strategies targeted against this organism a challenge for years to come. PMID:20398277
Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi
2012-01-01
To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan’s coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH4) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan. PMID:22970260
Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi
2012-01-01
To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.
Harris, Stephen; Croft, Julie; O’Flynn, Ciaran; Deusch, Oliver; Colyer, Alison; Allsopp, Judi; Milella, Lisa; Davis, Ian J.
2015-01-01
Periodontitis is the most frequently diagnosed health problem in cats yet little is known about the bacterial species important for the disease. The objective of this study was to identify bacterial species associated with health, gingivitis or mild periodontitis (<25% attachment loss) in feline plaque. Knowledge of these species is a first step in understanding the potential for improving oral health of cats via dietary interventions that alter the proportions of influential species. Subgingival plaque samples were collected from 92 cats with healthy gingiva, gingivitis or mild periodontitis. Pyrosequencing of the V1-V3 region of the 16S rDNA from these plaque samples generated more than one million reads and identified a total of 267 operational taxonomic units after bioinformatic and statistical analysis. Porphyromonas was the most abundant genus in all gingival health categories, particularly in health along with Moraxella and Fusobacteria. The Peptostreptococcaceae were the most abundant family in gingivitis and mild periodontitis. Logistic regression analysis identified species from various genera that were significantly associated with health, gingivitis or mild periodontitis. The species identified were very similar to those observed in canine plaque in the corresponding health and disease states. Such similarities were not observed between cat and human at the bacterial species level but with disease progression similarities did emerge at the phylum level. This suggests that interventions targeted at human pathogenic species will not be effective for use in cats but there is more potential for commonalities in interventions for cats and dogs. PMID:26605793
Microbial diversity in Paris polyphylla var. yunnanensis rhizomes of varying ages.
Yang, Y; Yang, S C; Zhao, J; Udikeri, S; Liu, T
2015-12-21
Endophyte microorganisms live inside plants without causing them any apparent damage. Recently, endophytic microorganisms have attracted attention because they can produce bioactive compounds of biotechnological interest. The endophytic microorganisms in Paris polyphylla var. yunnanensis (Liliaceae) - a species used since antiquity in traditional Chinese medicine - are under scrutiny because they may be responsible for producing the bioactive metabolites associated with the plant. The levels of bioactive metabolites in the rhizomes of P. polyphylla increase with rhizome age. To elucidate the roles played by endophytes in the accumulation of bioactive metabolites, we investigated the community structure and diversity of the endophytic microorganisms in P. polyphylla rhizomes of different ages (4, 6, and 8 years) using 16S rRNA and internal transcribed spacer (ITS) sequence analysis. 16S rDNA amplicon pyrosequencing revealed that the number of operational taxonomic units was lower in the 8-year-old samples than in the other samples. A total of 28 phyla were observed in the P. polyphylla samples and the predominant bacteria were of the Cyanobacteria and Proteobacteria phyla. Moreover, the percentage of Cyanobacteria increased with rhizome age. Similarly, ITS1 amplicon pyrosequencing identified developmental changes in the most abundant fungal classes; some classes were more prevalent in the 8-year-old rhizomes than in younger rhizomes, indicating the importance in secondary metabolism in older rhizomes. Our study showed that endophyte microorganism diversity and prevalence depend on P. polyphylla rhizome age. There was also an indication that some endophyte microorganisms contribute to the higher saponin content in older P. polyphylla specimens.
Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing
Penton, C. Ryan; Gupta, V. V. S. R.; Tiedje, James M.; Neate, Stephen M.; Ophel-Keller, Kathy; Gillings, Michael; Harvey, Paul; Pham, Amanda; Roget, David K.
2014-01-01
Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils ‘suppressive’ or ‘non-suppressive’ for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. PMID:24699870
Recent progress in DNA origami technology.
Endo, Masayuki; Sugiyama, Hiroshi
2011-06-01
DNA origami is an emerging technology for designing defined two-dimensional DNA nanostructures. In this review, we focus on and describe several types of DNA origami-related studies, as follows: (1) programmed DNA origami assembly, (2) DNA origami-templated molecular assembly, (3) design and construction of various three-dimensional DNA origami structures, (4) programmed functionalization of DNA origami and combination with top-down nanotechnology, (5) single molecular observation on a designed DNA origami, and (6) DNA nanomachines working on a DNA origami. © 2011 by John Wiley & Sons, Inc.
"First generation" automated DNA sequencing technology.
Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M
2011-10-01
Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.
Youssef, Noha H.; Couger, M. B.; Elshahed, Mostafa S.
2010-01-01
Background The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems. Methodology/Principal Findings We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU0.03) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere. Conclusions/Significance The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic surveys of highly complex ecosystems. PMID:20865128
Kisand, Veljo; Lettieri, Teresa
2013-04-01
De novo genome sequencing of previously uncharacterized microorganisms has the potential to open up new frontiers in microbial genomics by providing insight into both functional capabilities and biodiversity. Until recently, Roche 454 pyrosequencing was the NGS method of choice for de novo assembly because it generates hundreds of thousands of long reads (<450 bps), which are presumed to aid in the analysis of uncharacterized genomes. The array of tools for processing NGS data are increasingly free and open source and are often adopted for both their high quality and role in promoting academic freedom. The error rate of pyrosequencing the Alcanivorax borkumensis genome was such that thousands of insertions and deletions were artificially introduced into the finished genome. Despite a high coverage (~30 fold), it did not allow the reference genome to be fully mapped. Reads from regions with errors had low quality, low coverage, or were missing. The main defect of the reference mapping was the introduction of artificial indels into contigs through lower than 100% consensus and distracting gene calling due to artificial stop codons. No assembler was able to perform de novo assembly comparable to reference mapping. Automated annotation tools performed similarly on reference mapped and de novo draft genomes, and annotated most CDSs in the de novo assembled draft genomes. Free and open source software (FOSS) tools for assembly and annotation of NGS data are being developed rapidly to provide accurate results with less computational effort. Usability is not high priority and these tools currently do not allow the data to be processed without manual intervention. Despite this, genome assemblers now readily assemble medium short reads into long contigs (>97-98% genome coverage). A notable gap in pyrosequencing technology is the quality of base pair calling and conflicting base pairs between single reads at the same nucleotide position. Regardless, using draft whole genomes that are not finished and remain fragmented into tens of contigs allows one to characterize unknown bacteria with modest effort.
Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis.
Molyneaux, Philip L; Cox, Michael J; Wells, Athol U; Kim, Ho Cheol; Ji, Wonjun; Cookson, William O C; Moffatt, Miriam F; Kim, Dong Soon; Maher, Toby M
2017-02-01
Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) have been defined as events of clinically significant respiratory deterioration with an unidentifiable cause. They carry a significant mortality and morbidity and while their exact pathogenesis remains unclear, the possibility remains that hidden infection may play a role. The aim of this pilot study was to determine whether changes in the respiratory microbiota occur during an AE-IPF. Bacterial DNA was extracted from bronchoalveolar lavage from patients with stable IPF and those experiencing an AE-IPF. A hyper-variable region of the 16S ribosomal RNA gene (16S rRNA) was amplified, quantified and pyrosequenced. Culture independent techniques demonstrate AE-IPF is associated with an increased BAL bacterial burden compared to stable disease and highlight shifts in the composition of the respiratory microbiota during an AE-IPF.
Deregulation of an imprinted gene network in prostate cancer
Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A
2014-01-01
Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes. PMID:24513574
Deregulation of an imprinted gene network in prostate cancer.
Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A
2014-05-01
Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes.
Hatano, Takashi; Sano, Daisuke; Takahashi, Hideaki; Hyakusoku, Hiroshi; Isono, Yasuhiro; Shimada, Shoko; Sawakuma, Kae; Takada, Kentaro; Oikawa, Ritsuko; Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Itoh, Fumio; Myers, Jeffrey N; Oridate, Nobuhiko
2017-04-01
Recent studies showed that human papillomavirus (HPV) integration contributes to the genomic instability seen in HPV-associated head and neck squamous cell carcinoma (HPV-HNSCC). However, the epigenetic alterations induced after HPV integration remains unclear. To identify the molecular details of HPV16 DNA integration and the ensuing patterns of methylation in HNSCC, we performed next-generation sequencing using a target-enrichment method for the effective identification of HPV16 integration breakpoints as well as the characterization of genomic sequences adjacent to HPV16 integration breakpoints with three HPV16-related HNSCC cell lines. The DNA methylation levels of the integrated HPV16 genome and that of the adjacent human genome were also analyzed by bisulfite pyrosequencing. We found various integration loci, including novel integration sites. Integration loci were located predominantly in the intergenic region, with a significant enrichment of the microhomologous sequences between the human and HPV16 genomes at the integration breakpoints. Furthermore, various levels of methylation within both the human genome and the integrated HPV genome at the integration breakpoints in each integrant were observed. Allele-specific methylation analysis suggested that the HPV16 integrants remained hypomethylated when the flanking host genome was hypomethylated. After integration into highly methylated human genome regions, however, the HPV16 DNA became methylated. In conclusion, we found novel integration sites and methylation patterns in HPV-HNSCC using our unique method. These findings may provide insights into understanding of viral integration mechanism and virus-associated carcinogenesis of HPV-HNSCC. © 2016 UICC.
Kaut, Oliver; Schmitt, Ina; Tost, Jörg; Busato, Florence; Liu, Yi; Hofmann, Per; Witt, Stephanie H; Rietschel, Marcella; Fröhlich, Holger; Wüllner, Ullrich
2017-01-01
Numerous studies have elucidated the genetics of Parkinson's disease; however, the aetiology of the majority of sporadic cases has not yet been resolved. We hypothesized that epigenetic variations could be associated with PD and evaluated the DNA methylation pattern in PD patients compared to brothers or twins without PD. The methylation of DNA from peripheral blood mononuclear cells of 62 discordant siblings including 24 monozygotic twins was characterized with Illumina DNA Methylation 450K bead arrays and subsequently validated in two independent cohorts: 221 PD vs. 227 healthy individuals (cohort 1) applying Illumina's VeraCode and 472 PD patients vs. 487 controls (cohort 2) using pyrosequencing. We choose a delta beta of >15 % and selected 62 differentially methylated CpGs in 51 genes from the discordant siblings. Among them, three displayed multiple CpGs per gene: microRNA 886 (MIR886, 10 CpGs), phosphodiesterase 4D (PDE4D, 2 CpGs) and tripartite motif-containing 34 (TRIM34, 2 CpGs). PDE4D was confirmed in both cohorts (p value 2.44e-05). In addition, for biomarker construction, we used the penalized logistic regression model, resulting in a signature of eight CpGs with an AUC of 0.77. Our findings suggest that a distinct level of PD susceptibility stems from individual, epigenetic modifications of specific genes. We identified a signature of CpGs in blood cells that could separate control from disease with a reasonable discriminatory power, holding promise for future epigenetically based biomarker development.
García-Garcerà, Marc; Gigli, Elena; Sanchez-Quinto, Federico; Ramirez, Oscar; Calafell, Francesc; Civit, Sergi; Lalueza-Fox, Carles
2011-01-01
Despite the successful retrieval of genomes from past remains, the prospects for human palaeogenomics remain unclear because of the difficulty of distinguishing contaminant from endogenous DNA sequences. Previous sequence data generated on high-throughput sequencing platforms indicate that fragmentation of ancient DNA sequences is a characteristic trait primarily arising due to depurination processes that create abasic sites leading to DNA breaks. METHODOLOGY/PRINCIPALS FINDINGS: To investigate whether this pattern is present in ancient remains from a temperate environment, we have 454-FLX pyrosequenced different samples dated between 5,500 and 49,000 years ago: a bone from an extinct goat (Myotragus balearicus) that was treated with a depurinating agent (bleach), an Iberian lynx bone not subjected to any treatment, a human Neolithic sample from Barcelona (Spain), and a Neandertal sample from the El Sidrón site (Asturias, Spain). The efficiency of retrieval of endogenous sequences is below 1% in all cases. We have used the non-human samples to identify human sequences (0.35 and 1.4%, respectively), that we positively know are contaminants. We observed that bleach treatment appears to create a depurination-associated fragmentation pattern in resulting contaminant sequences that is indistinguishable from previously described endogenous sequences. Furthermore, the nucleotide composition pattern observed in 5' and 3' ends of contaminant sequences is much more complex than the flat pattern previously described in some Neandertal contaminants. Although much research on samples with known contaminant histories is needed, our results suggest that endogenous and contaminant sequences cannot be distinguished by the fragmentation pattern alone.
Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer.
Kim, Jung H; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Robinson, Daniel; Kalyana-Sundaram, Shanker; Huang, Christina; Shankar, Sunita; Jing, Xiaojun; Iyer, Matthew; Hu, Ming; Sam, Lee; Grasso, Catherine; Maher, Christopher A; Palanisamy, Nallasivam; Mehra, Rohit; Kominsky, Hal D; Siddiqui, Javed; Yu, Jindan; Qin, Zhaohui S; Chinnaiyan, Arul M
2011-07-01
Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 × 10(-16)). We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.
Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu; Jia, Zhongjun
2014-03-01
All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.
Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu
2014-01-01
All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the “heavy” DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that 13CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both 13C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated. PMID:24375137
Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.
Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi
2014-04-01
The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.
Akers, Stacey N; Moysich, Kirsten; Zhang, Wa; Collamat Lai, Golda; Miller, Austin; Lele, Shashikant; Odunsi, Kunle; Karpf, Adam R
2014-02-01
We determined whether DNA methylation of repetitive elements (RE) is altered in epithelial ovarian cancer (EOC) patient tumors and white blood cells (WBC), compared to normal tissue controls. Two different quantitative measures of RE methylation (LINE1 and Alu bisulfite pyrosequencing) were used in normal and tumor tissues from EOC cases and controls. Tissues analyzed included: i) EOC, ii) normal ovarian surface epithelia (OSE), iii) normal fallopian tube surface epithelia (FTE), iv) WBC from EOC patients, obtained before and after treatment, and v) WBC from demographically-matched controls. REs were significantly hypomethylated in EOC compared to OSE and FTE, and LINE1 and Alu methylation showed a significant direct association in these tissues. In contrast, WBC RE methylation was significantly higher in EOC cases compared to controls. RE methylation in patient-matched EOC tumors and pre-treatment WBC did not correlate. EOC shows robust RE hypomethylation compared to normal tissues from which the disease arises. In contrast, RE are generally hypermethylated in EOC patient WBC compared to controls. EOC tumor and WBC methylation did not correlate in matched patients, suggesting that RE methylation is independently controlled in tumor and normal tissues. Despite the significant differences observed over the population, the range of RE methylation in patient and control WBC overlapped, limiting their specific utility as an EOC biomarker. However, our data demonstrate that DNA methylation is deranged in normal tissues from EOC patients, supporting further investigation of WBC DNA methylation biomarkers suitable for EOC risk assessment. Copyright © 2013 Elsevier Inc. All rights reserved.
Kataoka, Takafumi; Yamaguchi, Haruyo; Sato, Mayumi; Watanabe, Tsuyoshi; Taniuchi, Yukiko; Kuwata, Akira; Kawachi, Masanobu
2017-02-01
In this study, we investigated the distribution of small photosynthetic eukaryotes in the near-surface layer of the western North Pacific at four stations, including two oceanic stations where the subarctic Oyashio and subtropical Kuroshio currents influence a transition region and the bay mouth and head of the Sendai Bay, from April 2012 to May 2013. Flow cytometry was applied to sort small photosynthetic eukaryotes (<5 μm), and high-throughput sequencing of 18S rDNA was performed. Our taxonomic analysis showed that 19/195 operational taxonomic units (OTUs) were frequently distributed among all sites. Composition analysis showed that the OTUs had characteristic patterns and were divided into four main groups. Two groups reflected the low-saline water and winter season, with the characteristic OTUs belonging to diatoms; Chaetoceros and Leptocylindrus were characteristic of low saline water, and two diatom genera (Minidiscus and Minutocellus) and Cryptomonadales-related OTUs were prevalent in the winter. Our results indicate that the community composition of small photosynthetic eukaryotes seasonally changes in a dynamic manner according to variations in water properties. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Linking Microbial Community Structure to β-Glucosidic Function in Soil Aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Vanessa L.; Fansler, Sarah J.; Stegen, James C.
2013-10-01
To link microbial community 16S structure to a measured function in a natural soil we have scaled both DNA and β-glucosidase assays down to a volume of soil that may approach a unique microbial community. β-glucosidase activity was assayed in 450 individual aggregates which were then sorted into classes of high or low activities, from which groups of 10 or 11 aggregates were identified and grouped for DNA extraction and pyrosequencing. Tandem assays of ATP were conducted for each aggregate in order to normalize these small groups of aggregates for biomass size. In spite of there being no significant differencesmore » in the richness or diversity of the microbial communities associated with high β-glucosidase activities compared with the communities associated with low β-glucosidase communities, several analyses of variance clearly show that the communities of these two groups differ. The separation of these groups is partially driven by the differential abundances of members of the Chitinophagaceae family. It may be that observed functional differences in otherwise similar soil aggregates can be largely attributed to differences in resource availability, rather than to presence or absence of particular taxonomic groups.« less
Benucci, Gian Maria Niccolò; Bonito, Gregory M
2016-07-01
Fungi that produce their fruiting bodies underground within the soil profile are known commonly as truffles. Truffle fruiting bodies harbor a diverse but poorly understood microbial community of bacteria, yeasts, and filamentous fungi. In this study, we used next-generation 454 amplicon pyrosequencing of the V1 and V4 region of the bacterial 16S ribosomal DNA (rDNA) in order to characterize and compare effects of truffle species and geographic origin on the truffle microbiome. We compared truffle microbiomes of the glebal tissue for eight truffle species belonging to four distinct genera within the Pezizales: Tuber, Terfezia, Leucangium, and Kalapuya. The bacterial community within truffles was dominated by Proteobacteria, Bacterioides, Actinobacteria, and Firmicutes. Bacterial richness within truffles was quite low overall, with between 2-23 operational taxonomic units (OTUs). Notably, we found a single Bradyrhizobium OTU to be dominant within truffle species belonging to the genus Tuber, irrespective of geographic origin, but not in other truffle genera sampled. This study offers relevant insights into the truffle microbiome and raises questions concerning the recruitment and function of these fungal-associated bacteria consortia.
Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.
Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji
2014-01-01
The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.
Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment
Kolb, Steffen; Stacheter, Astrid
2013-01-01
The commercial availability of next generation sequencing (NGS) technologies facilitated the assessment of functional groups of microorganisms in the environment with high coverage, resolution, and reproducibility. Soil methylotrophs were among the first microorganisms in the environment that were assessed with molecular tools, and nowadays, as well with NGS technologies. Studies in the past years re-attracted notice to the pivotal role of methylotrophs in global conversions of methanol, which mainly originates from plants, and is involved in oxidative reactions and ozone formation in the atmosphere. Aerobic methanol utilizers belong to Bacteria, yeasts, Ascomycota, and molds. Numerous bacterial methylotrophs are facultatively aerobic, and also contribute to anaerobic methanol oxidation in the environment, whereas strict anaerobic methanol utilizers belong to methanogens and acetogens. The diversity of enzymes catalyzing the initial oxidation of methanol is considerable, and comprises at least five different enzyme types in aerobes, and one in strict anaerobes. Only the gene of the large subunit of pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH; mxaF) has been analyzed by environmental pyrosequencing. To enable a comprehensive assessment of methanol utilizers in the environment, new primers targeting genes of the PQQ MDH in Methylibium (mdh2), of the nicotinamide adenine dinucleotide-dependent MDH (mdh), of the methanol oxidoreductase of Actinobacteria (mdo), of the fungal flavin adenine nucleotide-dependent alcohol oxidase (mod1, mod2, and homologs), and of the gene of the large subunit of the methanol:corrinoid methyltransferases (mtaC) in methanogens and acetogens need to be developed. Combined stable isotope probing of nucleic acids or proteins with amplicon-based NGS are straightforward approaches to reveal insights into functions of certain methylotrophic taxa in the global methanol cycle. PMID:24046766
Jeong, Ji Hun; Park, Soon Ho; Park, Mi Jung; Kim, Moon Jin; Kim, Kyung Hee; Park, Pil Whan; Seo, Yiel Hea; Lee, Jae Hoon; Park, Jinny; Hong, Junshik
2013-01-01
Background N-ras mutations are one of the most commonly detected abnormalities of myeloid origin. N-ras mutations result in a constitutively active N-ras protein that induces uncontrolled cell proliferation and inhibits apoptosis. We analyzed N-ras mutations in adult patients with AML at a particular institution and compared pyrosequencing analysis with a direct sequencing method for the detection of N-ras mutations. Methods We analyzed 90 bone marrow samples from 83 AML patients. We detected N-ras mutations in codons 12, 13, and 61 using the pyrosequencing method and subsequently confirmed all data by direct sequencing. Using these methods, we screened the N-ras mutation quantitatively and determined the incidence and characteristic of N-ras mutation. Results The incidence of N-ras mutation was 7.2% in adult AML patients. The patients with N-ras mutations showed significant higher hemoglobin levels (P=0.022) and an increased incidence of FLT3 mutations (P=0.003). We observed 3 cases with N-ras mutations in codon 12 (3.6%), 2 cases in codon 13 (2.4%), and 1 case in codon 61 (1.2%). All the mutations disappeared during chemotherapy. Conclusions There is a low incidence (7.2%) of N-ras mutations in AML patients compared with other populations. Similar data is obtained by both pyrosequencing and direct sequencing. This study showed the correlation between the N-ras mutation and the therapeutic response. However, pyrosequencing provides quantitative data and is useful for monitoring therapeutic responses. PMID:23667841
Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.
Mukherjee, Anirban; Vasquez, Karen M
2011-08-01
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Complete surveys of insect endosymbionts including species of economic importance have until recently been hampered by a lack of high-throughput genetic assays. We used 454-pyrosequencing of the 16S rRNA gene amplicon of adult spotted wing Drosophila (SWD) Drosophila suzukii (Matsumura) from souther...
Microbial analysis in primary and persistent endodontic infections by using pyrosequencing.
Hong, Bo-Young; Lee, Tae-Kwon; Lim, Sang-Min; Chang, Seok Woo; Park, Joonhong; Han, Seung Hyun; Zhu, Qiang; Safavi, Kamran E; Fouad, Ashraf F; Kum, Kee Yeon
2013-09-01
The aim of this study was to investigate the bacterial community profile of intracanal microbiota in primary and persistent endodontic infections associated with asymptomatic chronic apical periodontitis by using GS-FLX Titanium pyrosequencing. The null hypothesis was that there is no difference in diversity of overall bacterial community profiles between primary and persistent infections. Pyrosequencing analysis from 10 untreated and 8 root-filled samples was conducted. Analysis from 18 samples yielded total of 124,767 16S rRNA gene sequences (with a mean of 6932 reads per sample) that were taxonomically assigned into 803 operational taxonomic units (3% distinction), 148 genera, and 10 phyla including unclassified. Bacteroidetes was the most abundant phylum in both primary and persistent infections. There were no significant differences in bacterial diversity between the 2 infection groups (P > .05). The bacterial community profile that was based on dendrogram showed that bacterial population in both infections was not significantly different in their structure and composition (P > .05). The present pyrosequencing study demonstrates that persistent infections have as diverse bacterial community as primary infections. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing.
Kim, Bong-Soo; Kim, Byung Kwon; Lee, Jae-Hak; Kim, Myungjin; Lim, Young Woon; Chun, Jongsik
2008-08-01
Dissection of prokaryotic community structure is prerequisite to understand their ecological roles. Various methods are available for such a purpose which amplification and sequencing of 16S rRNA genes gained its popularity. However, conventional methods based on Sanger sequencing technique require cloning process prior to sequencing, and are expensive and labor-intensive. We investigated prokaryotic community structure in tidal flat sediments, Korea, using pyrosequencing and a subsequent automated bioinformatic pipeline for the rapid and accurate taxonomic assignment of each amplicon. The combination of pyrosequencing and bioinformatic analysis showed that bacterial and archaeal communities were more diverse than previously reported in clone library studies. Pyrosequencing analysis revealed 21 bacterial divisions and 37 candidate divisions. Proteobacteria was the most abundant division in the bacterial community, of which Gamma-and Delta-Proteobacteria were the most abundant. Similarly, 4 archaeal divisions were found in tidal flat sediments. Euryarchaeota was the most abundant division in the archaeal sequences, which were further divided into 8 classes and 11 unclassified euryarchaeota groups. The system developed here provides a simple, in-depth and automated way of dissecting a prokaryotic community structure without extensive pretreatment such as cloning.
Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants.
Taheri, Sima; Lee Abdullah, Thohirah; Yusop, Mohd Rafii; Hanafi, Mohamed Musa; Sahebi, Mahbod; Azizi, Parisa; Shamshiri, Redmond Ramin
2018-02-13
Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.
[Application of DNA labeling technology in forensic botany].
Znang, Xian; Li, Jing-Lin; Zhang, Xiang-Yu
2008-12-01
Forensic botany is a study of judicial plant evidence. Recently, researches on DNA labeling technology have been a mainstream of forensic botany. The article systematically reviews various types of DNA labeling techniques in forensic botany with enumerated practical cases, as well as the potential forensic application of each individual technique. The advantages of the DNA labeling technology over traditional morphological taxonomic methods are also summarized.
2013-01-01
Background Exposure to pollutants including metals and particulate air pollution can alter DNA methylation. Yet little is known about intra-individual changes in DNA methylation over time in relationship to environmental exposures. Therefore, we evaluated the effects of acute- and chronic metal-rich PM2.5 exposures on DNA methylation. Methods Thirty-eight male boilermaker welders participated in a panel study for a total of 54 person days. Whole blood was collected prior to any welding activities (pre-shift) and immediately after the exposure period (post-shift). The percentage of methylated cytosines (%mC) in LINE-1, Alu, and inducible nitric oxide synthase gene (iNOS) were quantified using pyrosequencing. Personal PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) was measured over the work-shift. A questionnaire assessed job history and years worked as a boilermaker. Linear mixed models with repeated measures evaluated associations between DNA methylation, PM2.5 concentration (acute exposure), and years worked as a boilermaker (chronic exposure). Results PM2.5 exposure was associated with increased methylation in the promoter region of the iNOS gene (β = 0.25, SE: 0.11, p-value = 0.04). Additionally, the number of years worked as a boilermaker was associated with increased iNOS methylation (β = 0.03, SE: 0.01, p-value = 0.03). No associations were observed for Alu or LINE-1. Conclusions Acute and chronic exposure to PM2.5 generated from welding activities was associated with a modest change in DNA methylation of the iNOS gene. Future studies are needed to confirm this association and determine if the observed small increase in iNOS methylation are associated with changes in NO production or any adverse health effect. PMID:23758843
de Vega, Wilfred C; Herrera, Santiago; Vernon, Suzanne D; McGowan, Patrick O
2017-02-23
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating idiopathic disease characterized by unexplained fatigue that fails to resolve with sufficient rest. Diagnosis is based on a list of symptoms and exclusion of other fatigue-related health conditions. Despite a heterogeneous patient population, immune and hypothalamic-pituitary-adrenal (HPA) axis function differences, such as enhanced negative feedback to glucocorticoids, are recurring findings in ME/CFS studies. Epigenetic modifications, such as CpG methylation, are known to regulate long-term phenotypic differences and previous work by our group found DNA methylome differences in ME/CFS, however the relationship between DNA methylome modifications, clinical and functional characteristics associated with ME/CFS has not been examined. We examined the DNA methylome in peripheral blood mononuclear cells (PBMCs) of a larger cohort of female ME/CFS patients using the Illumina HumanMethylation450 BeadChip Array. In parallel to the DNA methylome analysis, we investigated in vitro glucocorticoid sensitivity differences by stimulating PBMCs with phytohaemagglutinin and suppressed growth with dexamethasone. We explored DNA methylation differences using bisulfite pyrosequencing and statistical permutation. Linear regression was implemented to discover epigenomic regions associated with self-reported quality of life and network analysis of gene ontology terms to biologically contextualize results. We detected 12,608 differentially methylated sites between ME/CFS patients and healthy controls predominantly localized to cellular metabolism genes, some of which were also related to self-reported quality of life health scores. Among ME/CFS patients, glucocorticoid sensitivity was associated with differential methylation at 13 loci. Our results indicate DNA methylation modifications in cellular metabolism in ME/CFS despite a heterogeneous patient population, implicating these processes in immune and HPA axis dysfunction in ME/CFS. Modifications to epigenetic loci associated with differences in glucocorticoid sensitivity may be important as biomarkers for future clinical testing. Overall, these findings align with recent ME/CFS work that point towards impairment in cellular energy production in this patient population.
Kim, Mi-Kyung; Lee, In-Ho; Lee, Ki-Heon; Lee, Yoo Kyung; So, Kyeong A; Hong, Sung Ran; Hwang, Chang-Sun; Kee, Mee-Kyung; Rhee, Jee Eun; Kang, Chun; Hur, Soo Young; Park, Jong Sup; Kim, Tae-Jin
2016-03-01
DNA methylation has been shown to be a potential biomarker for early cancer detection. The aim of this study was to evaluate DNA methylation profiles according to liquid-based Pap (LBP) test results and to assess their diagnostic value in a Korean population. A total of 205 patients with various Papanicolaou test results were enrolled to this study (negative, 26; atypical squamous cells of undetermined significance, 39; low grade squamous intraepithelial lesion, 44; high grade squamous intraepithelial lesion (HSIL), 48; and cancer, 48). DNA methylation analysis of four genes, ADCYAP1, PAX1, MAL, and CADM1, was performed on residual cervical cells from LBP samples using a quantitative bisulfite pyrosequencing method. To evaluate the diagnostic performance of the four methylated genes for cancer detection, receiver operating characteristic (ROC) curves were drawn. Sensitivities and specificities were also tested at cutoffs determined from the ROC curves. Cervical cancer cells showed dramatically increased methylation levels for the four genes analyzed. ADCYAP1 and PAX1 also trended toward elevated methylation levels in HSIL samples, although the levels were much lower than those in cancer cells. The sensitivities of methylated ADCYAP1, PAX1, MAL, and CADM1 for the detection of cancer were 79.2%, 75.0%, 70.8%, and 52.1%, and the specificities were 92.0%, 94.0%, 94.7%, and 94.0%, respectively. Methylated ADCYAP1 and PAX1 demonstrated relatively better discriminatory ability than did methylated MAL and CADM1 (area under the curves 0.911 and 0.916 vs. 0.854 and 0.756, respectively). DNA methylation status, especially in the ADCYAP1 and PAX1 genes, showed relatively good specificity, ranging from 90% to 94%. The possible additive and complementary roles of DNA methylation testing with respect to conventional cervical cancer screening programs will need to be validated in prospective population-based studies.
Lee, Ki-Heon; So, Kyeong A; Hong, Sung Ran; Hwang, Chang-Sun; Kee, Mee-Kyung; Rhee, Jee Eun; Kang, Chun; Hur, Soo Young; Park, Jong Sup
2016-01-01
Objective DNA methylation has been shown to be a potential biomarker for early cancer detection. The aim of this study was to evaluate DNA methylation profiles according to liquid-based Pap (LBP) test results and to assess their diagnostic value in a Korean population. Methods A total of 205 patients with various Papanicolaou test results were enrolled to this study (negative, 26; atypical squamous cells of undetermined significance, 39; low grade squamous intraepithelial lesion, 44; high grade squamous intraepithelial lesion (HSIL), 48; and cancer, 48). DNA methylation analysis of four genes, ADCYAP1, PAX1, MAL, and CADM1, was performed on residual cervical cells from LBP samples using a quantitative bisulfite pyrosequencing method. To evaluate the diagnostic performance of the four methylated genes for cancer detection, receiver operating characteristic (ROC) curves were drawn. Sensitivities and specificities were also tested at cutoffs determined from the ROC curves. Results Cervical cancer cells showed dramatically increased methylation levels for the four genes analyzed. ADCYAP1 and PAX1 also trended toward elevated methylation levels in HSIL samples, although the levels were much lower than those in cancer cells. The sensitivities of methylated ADCYAP1, PAX1, MAL, and CADM1 for the detection of cancer were 79.2%, 75.0%, 70.8%, and 52.1%, and the specificities were 92.0%, 94.0%, 94.7%, and 94.0%, respectively. Methylated ADCYAP1 and PAX1 demonstrated relatively better discriminatory ability than did methylated MAL and CADM1 (area under the curves 0.911 and 0.916 vs. 0.854 and 0.756, respectively). Conclusion DNA methylation status, especially in the ADCYAP1 and PAX1 genes, showed relatively good specificity, ranging from 90% to 94%. The possible additive and complementary roles of DNA methylation testing with respect to conventional cervical cancer screening programs will need to be validated in prospective population-based studies. PMID:26768780
Metagenomic Analysis of Viral Communities in (Hado)Pelagic Sediments
Yoshida, Mitsuhiro; Takaki, Yoshihiro; Eitoku, Masamitsu; Nunoura, Takuro; Takai, Ken
2013-01-01
In this study, we analyzed viral metagenomes (viromes) in the sedimentary habitats of three geographically and geologically distinct (hado)pelagic environments in the northwest Pacific; the Izu-Ogasawara Trench (water depth = 9,760 m) (OG), the Challenger Deep in the Mariana Trench (10,325 m) (MA), and the forearc basin off the Shimokita Peninsula (1,181 m) (SH). Virus abundance ranged from 106 to 1011 viruses/cm3 of sediments (down to 30 cm below the seafloor [cmbsf]). We recovered viral DNA assemblages (viromes) from the (hado)pelagic sediment samples and obtained a total of 37,458, 39,882, and 70,882 sequence reads by 454 GS FLX Titanium pyrosequencing from the virome libraries of the OG, MA, and SH (hado)pelagic sediments, respectively. Only 24−30% of the sequence reads from each virome library exhibited significant similarities to the sequences deposited in the public nr protein database (E-value <10−3 in BLAST). Among the sequences identified as potential viral genes based on the BLAST search, 95−99% of the sequence reads in each library were related to genes from single-stranded DNA (ssDNA) viral families, including Microviridae, Circoviridae, and Geminiviridae. A relatively high abundance of sequences related to the genetic markers (major capsid protein [VP1] and replication protein [Rep]) of two ssDNA viral groups were also detected in these libraries, thereby revealing a high genotypic diversity of their viruses (833 genotypes for VP1 and 2,551 genotypes for Rep). A majority of the viral genes predicted from each library were classified into three ssDNA viral protein categories: Rep, VP1, and minor capsid protein. The deep-sea sedimentary viromes were distinct from the viromes obtained from the oceanic and fresh waters and marine eukaryotes, and thus, deep-sea sediments harbor novel viromes, including previously unidentified ssDNA viruses. PMID:23468952
Metagenomic analysis of viral communities in (hado)pelagic sediments.
Yoshida, Mitsuhiro; Takaki, Yoshihiro; Eitoku, Masamitsu; Nunoura, Takuro; Takai, Ken
2013-01-01
In this study, we analyzed viral metagenomes (viromes) in the sedimentary habitats of three geographically and geologically distinct (hado)pelagic environments in the northwest Pacific; the Izu-Ogasawara Trench (water depth = 9,760 m) (OG), the Challenger Deep in the Mariana Trench (10,325 m) (MA), and the forearc basin off the Shimokita Peninsula (1,181 m) (SH). Virus abundance ranged from 10(6) to 10(11) viruses/cm(3) of sediments (down to 30 cm below the seafloor [cmbsf]). We recovered viral DNA assemblages (viromes) from the (hado)pelagic sediment samples and obtained a total of 37,458, 39,882, and 70,882 sequence reads by 454 GS FLX Titanium pyrosequencing from the virome libraries of the OG, MA, and SH (hado)pelagic sediments, respectively. Only 24-30% of the sequence reads from each virome library exhibited significant similarities to the sequences deposited in the public nr protein database (E-value <10(-3) in BLAST). Among the sequences identified as potential viral genes based on the BLAST search, 95-99% of the sequence reads in each library were related to genes from single-stranded DNA (ssDNA) viral families, including Microviridae, Circoviridae, and Geminiviridae. A relatively high abundance of sequences related to the genetic markers (major capsid protein [VP1] and replication protein [Rep]) of two ssDNA viral groups were also detected in these libraries, thereby revealing a high genotypic diversity of their viruses (833 genotypes for VP1 and 2,551 genotypes for Rep). A majority of the viral genes predicted from each library were classified into three ssDNA viral protein categories: Rep, VP1, and minor capsid protein. The deep-sea sedimentary viromes were distinct from the viromes obtained from the oceanic and fresh waters and marine eukaryotes, and thus, deep-sea sediments harbor novel viromes, including previously unidentified ssDNA viruses.
Bure, Irina; Braun, Alexander; Kayser, Claudia; Geddert, Helene; Schaefer, Inga-Marie; Cameron, Silke; Ghadimi, Michael B; Ströbel, Philipp; Werner, Martin; Hartmann, Arndt; Wiemann, Stefan; Agaimy, Abbas; Haller, Florian; Moskalev, Evgeny A
2017-12-01
The anatomic site-dependent expression of hematopoietic progenitor cell antigen CD34 is a feature of gastrointestinal stromal tumours (GISTs). The basis for the differential CD34 expression is only incompletely understood. This study aimed at understanding the regulation of CD34 in GISTs and clarification of its site-dependent expression. Two sample sets of primary GISTs were interrogated including 52 fresh-frozen and 134 paraffin-embedded and formalin-fixed specimens. DNA methylation analysis was performed by HumanMethylation450 BeadChip array in three cell lines derived from gastric and intestinal GISTs, and differentially methylated CpG sites were established upstream of CD34. The methylation degree was further quantified by pyrosequencing, and inverse correlation with CD34 mRNA and protein abundance was revealed. The gene's expression could be activated upon induction of DNA hypomethylation with 5-aza-2'-deoxycytidine in GIST-T1 cells. In patient samples, a strong inverse correlation of DNA methylation degree with immunohistochemically evaluated CD34 expression was documented. Both CD34 expression and DNA methylation levels were specific to the tumours' anatomic location and mutation status. A constant decrease in methylation levels was observed ranging from almost 100% hypermethylation in intestinal GISTs from duodenum to hypomethylation in rectum. CD34 was heavily methylated in gastric PDGFRA-mutant GISTs in comparison to hypomethylated KIT-mutant counterparts. Next to CD34 hypermethylation, miR-665 was predicted and experimentally confirmed to target CD34 mRNA in GIST-T1 cells. Our results suggest that CD34 expression in GISTs may undergo a complex control by DNA methylation and miR-665. Differential methylation and expression of CD34 in GISTs along the gastrointestinal tract axis and in tumours that harbour different gain-of-function mutations suggest the origin from different cell populations in the gastrointestinal tract. © 2017 UICC.
Hepatitis virus infection affects DNA methylation in mice with humanized livers.
Okamoto, Yasuyuki; Shinjo, Keiko; Shimizu, Yasuhiro; Sano, Tsuyoshi; Yamao, Kenji; Gao, Wentao; Fujii, Makiko; Osada, Hirotaka; Sekido, Yoshitaka; Murakami, Shuko; Tanaka, Yasuhito; Joh, Takashi; Sato, Shinya; Takahashi, Satoru; Wakita, Takaji; Zhu, Jingde; Issa, Jean-Pierre J; Kondo, Yutaka
2014-02-01
Cells of tumors associated with chronic inflammation frequently have altered patterns of DNA methylation, including hepatocellular carcinomas. Chronic hepatitis has also been associated with aberrant DNA methylation, but little is known about their relationship. Pyrosequencing was used to determine the methylation status of cultured Huh7.5.1 hepatoma cells after hepatitis C virus (HCV) infection. We also studied mice with severe combined immunodeficiency carrying the urokinase-type plasminogen activator transgene controlled by an albumin promoter (urokinase-type plasminogen activator/severe combined immunodeficient mice), in which up to 85% of hepatocytes were replaced by human hepatocytes (chimeric mice). Mice were given intravenous injections of hepatitis B virus (HBV) or HCV, liver tissues were collected, and DNA methylation profiles were determined at different time points after infection. We also compared methylation patterns between paired samples of hepatocellular carcinomas and adjacent nontumor liver tissues from patients. No reproducible changes in DNA methylation were observed after infection of Huh7.5.1 cells with HCV. Livers from HBV- and HCV-infected mice had genome-wide, time-dependent changes in DNA methylation, compared with uninfected urokinase-type plasminogen activator/severe combined immunodeficient mice. There were changes in 160 ± 63 genes in HBV-infected and 237 ± 110 genes in HCV-infected mice. Methylation of 149 common genes increased in HBV- and HCV-infected mice; methylation of some of these genes also increased in hepatocellular carcinoma samples from patients compared with nontumor tissues. Expression of Ifng, which is expressed by natural killer cells, increased significantly in chimeric livers, in concordance with induction of DNA methylation, after infection with HBV or HCV. Induction of Ifng was reduced after administration of an inhibitor of natural killer cell function (anti-asialo GM1). In chimeric mice with humanized livers, infection with HBV and HCV appears to activate a natural kill cell-dependent innate immune response. This contributes to the induction and accumulation of aberrant DNA methylation in human hepatocytes. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Chagnon, Yvon C; Potvin, Olivier; Hudon, Carol; Préville, Michel
2015-01-01
Environmental effects and personal experiences could be expressed in individuals through epigenetic non-structural changes such as DNA methylation. This methylation could up- regulate or down-regulate corresponding gene expressions and modify related phenotypes. DNA methylation increases with aging and could be related to the late expression of some forms of mental disease. The objective of this study was to evaluate the association between anxiety disorders and/or depression in older women and DNA methylation for four genes related to anxiety or depression. Women aged 65 and older with (n = 19) or without (n = 24) anxiety disorders and/or major depressive episode (DSM-IV), were recruited. DNA methylation and single nucleotide variant (SNV) were evaluated from saliva, respectively by pyrosequencing and by PCR, for the following genes: brain-derived neurotrophic factor (BDNF; rs6265), oxytocin receptor (OXTR; rs53576), serotonin transporter (SLC6A4; rs25531), and apolipoprotein E (APOE; rs429358 and rs7412). A greater BDNF DNA methylation was observed in subjects with anxiety/depression compared to control group subjects (Mean: 2.92 SD ± 0.74 vs. 2.34 ± 0.42; p= 0.0026). This difference was more pronounced in subjects carrying the BDNF rs6265 CT genotype (2.99 ± 0.41 vs. 2.27 ± 0.26; p= 0.0006) than those carrying the CC genotype (p= 0.0332); no subjects with the TT genotype were observed. For OXTR, a greater DNA methylation was observed in subjects with anxiety/depression, but only for those carrying the AA genotype of the OXTR rs53576 SNV, more particularly at one out of the seven CpGs studied (7.01 ± 0.94 vs. 4.44 ± 1.11; p= 0.0063). No significant differences were observed for APOE and SLC6A4. These results suggest that DNA methylation in interaction with SNV variations in BDNF and OXTR, are associated with the occurrence of anxiety/depression in older women.
Kolarova, Julia; Ammerpohl, Ole; Gutwein, Jana; Welzel, Maik; Baus, Inka; Riepe, Felix G; Eggermann, Thomas; Caliebe, Almuth; Holterhus, Paul-Martin; Siebert, Reiner; Bens, Susanne
2015-01-01
Treatment with recombinant human growth hormone (rhGH) has been consistently reported to induce transcriptional changes in various human tissues including peripheral blood. For other hormones it has been shown that the induction of such transcriptional effects is conferred or at least accompanied by DNA-methylation changes. To analyse effects of short term rhGH treatment on the DNA-methylome we investigated a total of 24 patients at baseline and after 4-day rhGH stimulation. We performed array-based DNA-methylation profiling of paired peripheral blood mononuclear cell samples followed by targeted validation using bisulfite pyrosequencing. Unsupervised analysis of DNA-methylation in this short-term treated cohort revealed clustering according to individuals rather than treatment. Supervised analysis identified 239 CpGs as significantly differentially methylated between baseline and rhGH-stimulated samples (p<0.0001, unadjusted paired t-test), which nevertheless did not retain significance after adjustment for multiple testing. An individualized evaluation strategy led to the identification of 2350 CpG and 3 CpH sites showing methylation differences of at least 10% in more than 2 of the 24 analyzed sample pairs. To investigate the long term effects of rhGH treatment on the DNA-methylome, we analyzed peripheral blood cells from an independent cohort of 36 rhGH treated children born small for gestational age (SGA) as compared to 18 untreated controls. Median treatment interval was 33 months. In line with the groupwise comparison in the short-term treated cohort no differentially methylated targets reached the level of significance in the long-term treated cohort. We identified marked intra-individual responses of DNA-methylation to short-term rhGH treatment. These responses seem to be predominately associated with immunologic functions and show considerable inter-individual heterogeneity. The latter is likely the cause for the lack of a rhGH induced homogeneous DNA-methylation signature after short- and long-term treatment, which nevertheless is well in line with generally assumed safety of rhGH treatment.
Yi, Doogab
2008-01-01
The existing literature on the development of recombinant DNA technology and genetic engineering tends to focus on Stanley Cohen and Herbert Boyer's recombinant DNA cloning technology and its commercialization starting in the mid-1970s. Historians of science, however, have pointedly noted that experimental procedures for making recombinant DNA molecules were initially developed by Stanford biochemist Paul Berg and his colleagues, Peter Lobban and A. Dale Kaiser in the early 1970s. This paper, recognizing the uneasy disjuncture between scientific authorship and legal invention in the history of recombinant DNA technology, investigates the development of recombinant DNA technology in its full scientific context. I do so by focusing on Stanford biochemist Berg's research on the genetic regulation of higher organisms. As I hope to demonstrate, Berg's new venture reflected a mass migration of biomedical researchers as they shifted from studying prokaryotic organisms like bacteria to studying eukaryotic organisms like mammalian and human cells. It was out of this boundary crossing from prokaryotic to eukaryotic systems through virus model systems that recombinant DNA technology and other significant new research techniques and agendas emerged. Indeed, in their attempt to reconstitute 'life' as a research technology, Stanford biochemists' recombinant DNA research recast genes as a sequence that could be rewritten thorough biochemical operations. The last part of this paper shifts focus from recombinant DNA technology's academic origins to its transformation into a genetic engineering technology by examining the wide range of experimental hybridizations which occurred as techniques and knowledge circulated between Stanford biochemists and the Bay Area's experimentalists. Situating their interchange in a dense research network based at Stanford's biochemistry department, this paper helps to revise the canonized history of genetic engineering's origins that emerged during the patenting of Cohen-Boyer's recombinant DNA cloning procedures.
DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.
Sucher, Nikolaus J; Hennell, James R; Carles, Maria C
2012-01-01
DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.
Chan, Leo L.; Pineda, Maria; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.
2009-01-01
Protein–DNA interactions are essential for fundamental cellular processes such as transcription, DNA damage repair, and apoptosis. As such, small molecule disruptors of these interactions could be powerful tools for investigation of these biological processes, and such compounds would have great potential as therapeutics. Unfortunately, there are few methods available for the rapid identification of compounds that disrupt protein–DNA interactions. Here we show that photonic crystal (PC) technology can be utilized to detect protein–DNA interactions, and can be used in a high-throughput screening mode to identify compounds that prevent protein–DNA binding. The PC technology is used to detect binding between protein–DNA interactions that are DNA-sequence-dependent (the bacterial toxin–antitoxin system MazEF) and those that are DNA-sequence-independent (the human apoptosis inducing factor (AIF)). The PC technology was further utilized in a screen for inhibitors of the AIF–DNA interaction, and through this screen aurin tricarboxylic acid was identified as the first in vitro inhibitor of AIF. The generality and simplicity of the photonic crystal method should enable this technology to find broad utility for identification of compounds that inhibit protein–DNA binding. PMID:18582039
Chen, Ping; Zhang, Limin; Guo, Xiaoxuan; Dai, Xin; Liu, Li; Xi, Lijun; Wang, Jian; Song, Lei; Wang, Yuezhu; Zhu, Yaxin; Huang, Li; Huang, Ying
2016-01-01
The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling. PMID:27621725
Vaidya, Jueeli D.; van den Bogert, Bartholomeus; Edwards, Joan E.; Boekhorst, Jos; van Gastelen, Sanne; Saccenti, Edoardo; Plugge, Caroline M.; Smidt, Hauke
2018-01-01
DNA based methods have been widely used to study the complexity of the rumen microbiota, and it is well known that the method of DNA extraction is a critical step in enabling accurate assessment of this complexity. Rumen fluid (RF) and fibrous content (FC) fractions differ substantially in terms of their physical nature and associated microorganisms. The aim of this study was therefore to assess the effect of four DNA extraction methods (RBB, PBB, FDSS, PQIAmini) differing in cell lysis and/or DNA recovery methods on the observed microbial diversity in RF and FC fractions using samples from four rumen cannulated dairy cows fed 100% grass silage (GS100), 67% GS and 33% maize silage (GS67MS33), 33% GS and 67% MS (GS33MS67), or 100% MS (MS100). An ANOVA statistical test was applied on DNA quality and yield measurements, and it was found that the DNA yield was significantly affected by extraction method (p < 0.001) and fraction (p < 0.001). The 260/280 ratio was not affected by extraction (p = 0.08) but was affected by fraction (p = 0.03). On the other hand, the 260/230 ratio was affected by extraction method (p < 0.001) but not affected by fraction (p = 0.8). However, all four extraction procedures yielded DNA suitable for further analysis of bacterial, archaeal and anaerobic fungal communities using quantitative PCR and pyrosequencing of relevant taxonomic markers. Redundancy analysis (RDA) of bacterial 16S rRNA gene sequence data at the family level showed that there was a significant effect of rumen fraction (p = 0.012), and that PBB (p = 0.012) and FDSS (p = 0.024) also significantly contributed to explaining the observed variation in bacterial community composition. Whilst the DNA extraction method affected the apparent bacterial community composition, no single extraction method could be concluded to be ineffective. No obvious effect of DNA extraction method on the anaerobic fungi or archaea was observed, although fraction effects were evident for both. In summary, the comprehensive assessment of observed communities of bacteria, archaea and anaerobic fungi described here provides insight into a rational basis for selecting an optimal methodology to obtain a representative picture of the rumen microbiota. PMID:29445366
Vaidya, Jueeli D; van den Bogert, Bartholomeus; Edwards, Joan E; Boekhorst, Jos; van Gastelen, Sanne; Saccenti, Edoardo; Plugge, Caroline M; Smidt, Hauke
2018-01-01
DNA based methods have been widely used to study the complexity of the rumen microbiota, and it is well known that the method of DNA extraction is a critical step in enabling accurate assessment of this complexity. Rumen fluid (RF) and fibrous content (FC) fractions differ substantially in terms of their physical nature and associated microorganisms. The aim of this study was therefore to assess the effect of four DNA extraction methods (RBB, PBB, FDSS, PQIAmini) differing in cell lysis and/or DNA recovery methods on the observed microbial diversity in RF and FC fractions using samples from four rumen cannulated dairy cows fed 100% grass silage (GS100), 67% GS and 33% maize silage (GS67MS33), 33% GS and 67% MS (GS33MS67), or 100% MS (MS100). An ANOVA statistical test was applied on DNA quality and yield measurements, and it was found that the DNA yield was significantly affected by extraction method ( p < 0.001) and fraction ( p < 0.001). The 260/280 ratio was not affected by extraction ( p = 0.08) but was affected by fraction ( p = 0.03). On the other hand, the 260/230 ratio was affected by extraction method ( p < 0.001) but not affected by fraction ( p = 0.8). However, all four extraction procedures yielded DNA suitable for further analysis of bacterial, archaeal and anaerobic fungal communities using quantitative PCR and pyrosequencing of relevant taxonomic markers. Redundancy analysis (RDA) of bacterial 16S rRNA gene sequence data at the family level showed that there was a significant effect of rumen fraction ( p = 0.012), and that PBB ( p = 0.012) and FDSS ( p = 0.024) also significantly contributed to explaining the observed variation in bacterial community composition. Whilst the DNA extraction method affected the apparent bacterial community composition, no single extraction method could be concluded to be ineffective. No obvious effect of DNA extraction method on the anaerobic fungi or archaea was observed, although fraction effects were evident for both. In summary, the comprehensive assessment of observed communities of bacteria, archaea and anaerobic fungi described here provides insight into a rational basis for selecting an optimal methodology to obtain a representative picture of the rumen microbiota.
Prokaryotic microbiota in the digestive cavity of the jellyfish Cotylorhiza tuberculata.
Cortés-Lara, Sara; Urdiain, Mercedes; Mora-Ruiz, Merit; Prieto, Laura; Rosselló-Móra, Ramon
2015-10-01
The microbiota associated to the gastric cavity of four exemplars of the jellyfish Cotylorhiza tuberculata has been studied by means of cultured-dependent and -independent methods. The pyrosequencing approach rendered a very reduced diversity of Bacteria with four major groups shared by the four exemplars that made up to 95% of the total diversity. The culturing approach recovered low abundant organisms and some of them also detected by the pyrosequencing approach. The major key organisms were related to the genera Spiroplasma, Thalassospira, Tenacibaculum (from the pyrosequencing data), and Vibrio (from the cultivable fraction). Altogether the results indicate that C. tuberculata harbors an associated microbiota of very reduced diversity. On the other hand, some of the major key players may be potential pathogens and the host may serve as dispersal mechanism. Copyright © 2015 Elsevier GmbH. All rights reserved.
A comparison of two methods of eluting insect DNA from Flinders Technology Associates Cards
USDA-ARS?s Scientific Manuscript database
Flinders Technology Associates (FTA) technology lyses cells and stabilizes DNA for room-temperature storage in a single step but it has been infrequently used with arthropods. One possible reason is the paucity of quick and inexpensive protocols to subsequently elute the DNA from the card matrix. Th...
Aguilar-Barajas, Esther; Sork, Victoria L.; González-Zamora, Arturo; Rocha-Ramírez, Víctor; Arroyo-Rodríguez, Víctor; Oyama, Ken
2014-01-01
• Premise of the study: Microsatellite markers were developed for Spondias radlkoferi to assess the impact of primate seed dispersal on the genetic diversity and structure of this important tree species of Anacardiaceae. • Methods and Results: Fourteen polymorphic loci were isolated from S. radlkoferi through 454 GS-FLX Titanium pyrosequencing of genomic DNA. The number of alleles ranged from three to 12. The observed and expected heterozygosities ranged from 0.382 to 1.00 and from 0.353 to 0.733, respectively. The amplification was also successful in S. mombin and two genera of Anacardiaceae: Rhus aromatica and Toxicodendron radicans. • Conclusions: These microsatellite loci will be useful to assess the genetic diversity and population structure of S. radlkoferi and related species, and will allow us to investigate the effects of seed dispersal by spider monkeys (Ateles geoffroyi) on the genetic structure and diversity of S. radlkoferi populations in a fragmented rainforest. PMID:25383270
Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma
2015-02-15
Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Methanotrophic bacteria in oilsands tailings ponds of northern Alberta
Saidi-Mehrabad, Alireza; He, Zhiguo; Tamas, Ivica; Sharp, Christine E; Brady, Allyson L; Rochman, Fauziah F; Bodrossy, Levente; Abell, Guy CJ; Penner, Tara; Dong, Xiaoli; Sensen, Christoph W; Dunfield, Peter F
2013-01-01
We investigated methanotrophic bacteria in slightly alkaline surface water (pH 7.4–8.7) of oilsands tailings ponds in Fort McMurray, Canada. These large lakes (up to 10 km2) contain water, silt, clay and residual hydrocarbons that are not recovered in oilsands mining. They are primarily anoxic and produce methane but have an aerobic surface layer. Aerobic methane oxidation was measured in the surface water at rates up to 152 nmol CH4 ml−1 water d−1. Microbial diversity was investigated via pyrotag sequencing of amplified 16S rRNA genes, as well as by analysis of methanotroph-specific pmoA genes using both pyrosequencing and microarray analysis. The predominantly detected methanotroph in surface waters at all sampling times was an uncultured species related to the gammaproteobacterial genus Methylocaldum, although a few other methanotrophs were also detected, including Methylomonas spp. Active species were identified via 13CH4 stable isotope probing (SIP) of DNA, combined with pyrotag sequencing and shotgun metagenomic sequencing of heavy 13C-DNA. The SIP-PCR results demonstrated that the Methylocaldum and Methylomonas spp. actively consumed methane in fresh tailings pond water. Metagenomic analysis of DNA from the heavy SIP fraction verified the PCR-based results and identified additional pmoA genes not detected via PCR. The metagenome indicated that the overall methylotrophic community possessed known pathways for formaldehyde oxidation, carbon fixation and detoxification of nitrogenous compounds but appeared to possess only particulate methane monooxygenase not soluble methane monooxygenase. PMID:23254511
Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina
2012-01-01
Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993
Kittelmann, Sandra; Seedorf, Henning; Walters, William A.; Clemente, Jose C.; Knight, Rob; Gordon, Jeffrey I.; Janssen, Peter H.
2013-01-01
Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community's bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats. PMID:23408926
Kittelmann, Sandra; Seedorf, Henning; Walters, William A; Clemente, Jose C; Knight, Rob; Gordon, Jeffrey I; Janssen, Peter H
2013-01-01
Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community's bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats.
Forensic aspects of DNA-based human identity testing.
Roper, Stephen M; Tatum, Owatha L
2008-01-01
The forensic applications of DNA-based human identity laboratory testing are often underappreciated. Molecular biology has seen an exponential improvement in the accuracy and statistical power provided by identity testing in the past decade. This technology, dependent upon an individual's unique DNA sequence, has cemented the use of DNA technology in the forensic laboratory. This paper will discuss the state of modern DNA-based identity testing, describe the technology used to perform this testing, and describe its use as it relates to forensic applications. We will also compare individual technologies, including polymerase chain reaction (PCR) and Southern Blotting, that are used to detect the molecular differences that make all individuals unique. An increasing reliance on DNA-based identity testing dictates that healthcare providers develop an understanding of the background, techniques, and guiding principles of this important forensic tool.
FastID: Extremely Fast Forensic DNA Comparisons
2017-05-19
FastID: Extremely Fast Forensic DNA Comparisons Darrell O. Ricke, PhD Bioengineering Systems & Technologies Massachusetts Institute of...Technology Lincoln Laboratory Lexington, MA USA Darrell.Ricke@ll.mit.edu Abstract—Rapid analysis of DNA forensic samples can have a critical impact on...time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA
Descriptive Biomarkers for Assessing Breast Cancer Risk
2010-10-01
and we are making significant progress on Tasks 6 and 7. We completed methylation analyses of three genes (RASSF1, SFRP1 and GSTP1 ) on all samples...promoter hypermethylation; RASSF1, GSTP1 , SFRP1 12 karcaro@nre.umass.edu Arcaro, Kathleen F Annual Report...methylation analysis by pyrosequencing. PCR amplification and pyrosequencing has been completed for three genes, RASSF1, SFRP1 and GSTP1 and have
Pu, Jian; Kazama, Shinobu; Miura, Takayuki; Azraini, Nabila Dhyan; Konta, Yoshimitsu; Ito, Hiroaki; Ueki, You; Cahyaningrum, Ermaya Eka; Omura, Tatsuo; Watanabe, Toru
2016-12-01
Norovirus GII.3, GII.4, and GII.17 were detected using pyrosequencing in sewage and oysters in January and February 2015, in Japan. The strains in sewage and oyster samples were genetically identical or similar, predominant strains belonging to GII.17 Kawasaki 2014 lineage. This is the first report of GII.17 Kawasaki 2014 in oysters.
Thulin, Sara; Olcén, Per; Fredlund, Hans; Unemo, Magnus
2008-01-01
A segment of penA in Neisseria meningitidis strains (n = 127), including two nucleotide sites closely associated to reduced susceptibility to penicillins, was amplified and pyrosequenced. All results were in concordance with Sanger sequencing, and a high correlation between alterations in the two Peni-specific sites and reduced susceptibility to penicillins was identified. PMID:18070955
Trama, Jason P; Adelson, Martin E; Mordechai, Eli
2007-12-01
Laboratory diagnosis of molluscum contagiosum virus (MCV) is important as lesions can be confused with those caused by Cryptococcus neoformans, herpes simplex virus, human papillomavirus, and varicella-zoster virus. To develop a rapid method for identifying patients infected with MCV via swab sampling. Two dual-labeled probe real-time PCR assays, one homologous to the p43K gene and one to the MC080R gene, were designed. The p43K PCR was designed to be used in conjunction with Pyrosequencing for confirmation of PCR products and discrimination between MCV1 and MCV2. Both PCR assays were optimized with respect to reaction components, thermocycling parameters, and primer and probe concentrations. The specificities of both PCR assays were confirmed by non-amplification of 38 known human pathogens. Sensitivity assays demonstrated detection of as few as 10 copies per reaction. Testing 703 swabs, concordance between the two real-time PCR assays was 99.9%. Under the developed conditions, Pyrosequencing of the p43K PCR product was capable of providing enough nucleotide sequence to definitively differentiate MCV1 and MCV2. These real-time PCR assays can be used for the rapid, sensitive, and specific detection of MCV and, when combined with Pyrosequencing, can further discriminate between MCV1 and MCV2.
Chao, Shiou-Huei; Huang, Hui-Yu; Chang, Chuan-Hsiung; Yang, Chih-Hsien; Cheng, Wei-Shen; Kang, Ya-Huei; Watanabe, Koichi; Tsai, Ying-Chieh
2013-01-01
In Taiwanese alternative medicine Lu-doh-huang (also called Pracparatum mungo), mung beans are mixed with various herbal medicines and undergo a 4-stage process of anaerobic fermentation. Here we used high-throughput sequencing of the 16S rRNA gene to profile the bacterial community structure of Lu-doh-huang samples. Pyrosequencing of samples obtained at 7 points during fermentation revealed 9 phyla, 264 genera, and 586 species of bacteria. While mung beans were inside bamboo sections (stages 1 and 2 of the fermentation process), family Lactobacillaceae and genus Lactobacillus emerged in highest abundance; Lactobacillus plantarum was broadly distributed among these samples. During stage 3, the bacterial distribution shifted to family Porphyromonadaceae, and Butyricimonas virosa became the predominant microbial component. Thereafter, bacterial counts decreased dramatically, and organisms were too few to be detected during stage 4. In addition, the microbial compositions of the liquids used for soaking bamboo sections were dramatically different: Exiguobacterium mexicanum predominated in the fermented soybean solution whereas B. virosa was predominant in running spring water. Furthermore, our results from pyrosequencing paralleled those we obtained by using the traditional culture method, which targets lactic acid bacteria. In conclusion, the microbial communities during Lu-doh-huang fermentation were markedly diverse, and pyrosequencing revealed a complete picture of the microbial consortium. PMID:23700436
Han, Hua; Sun, Xiaomei; Xie, Yunhui; Feng, Jian; Zhang, Shougong
2014-11-26
Hybrids of larch (Larix kaempferi × Larix olgensis) are important afforestation species in northeastern China. They are routinely propagated via rooted stem cuttings. Despite the importance of rooting, little is known about the regulation of adventitious root development in larch hybrids. 454 GS FLX Titanium technology represents a new method for characterizing the transcriptomes of non-model species. This method can be used to identify differentially expressed genes, and then two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analyses can be used to analyze their corresponding proteins. In this study, we analyzed semi-lignified cuttings of two clones of L. kaempferi × L. olgensis with different rooting capacities to study the molecular basis of adventitious root development. We analyzed two clones; clone 25-5, with strong rooting capacity, and clone 23-12, with weak rooting capacity. We constructed four cDNA libraries from 25-5 and 23-12 at two development stages. Sequencing was conducted using the 454 pyrosequencing platform. A total of 957832 raw reads was produced; 95.07% were high-quality reads, and were assembled into 45137 contigs and 61647 singletons. The functions of the unigenes, as indicated by their Gene Ontology annotation, included diverse roles in the molecular functions, biological processes, and cellular component categories. We analyzed 75 protein spots (-fold change ≥ 2, P ≤ 0.05) by 2D-DIGE, and identified the differentially expressed proteins using MALDI-TOF/TOF MS. A joint analysis of transcriptome and proteome showed genes related to two pathways, polyamine synthesis and stress response, might play an important role on adventitious root development. These results provide fundamental and important information for research on the molecular mechanism of adventitious root development. We also demonstrated for the first time the combined use of two important technologies as a powerful approach to advance research on non-model, but otherwise important, larch species.
Ischemic Heart Disease and Stroke in Relation to Blood DNA Methylation
Baccarelli, Andrea; Wright, Robert; Bollati, Valentina; Litonjua, Augusto; Zanobetti, Antonella; Tarantini, Letizia; Sparrow, David; Vokonas, Pantel; Schwartz, Joel
2013-01-01
Background Epigenetic features such as DNA hypomethylation have been associated with conditions related to cardiovascular risk. We evaluated whether lower blood DNA methylation in heavily methylated repetitive sequences predicts the risk of ischemic heart disease and stroke. Methods We quantified blood DNA methylation of LINE-1 repetitive elements through PCR-pyrosequencing in 712 elderly individuals from the Boston-area Normative Aging Study. We estimated risk-factor adjusted relative risks (RRs) for ischemic heart disease and stroke at baseline (242 prevalent cases); as well as in incidence (44 new cases; median follow-up, 63 months); and subsequent mortality from ischemic heart disease (86 deaths; median follow-up, 75 months). Results Blood LINE-1 hypomethylation was associated with baseline ischemic heart disease (RR=2.1 [95% confidence interval = 1.2 to 4.0] for lowest vs. highest methylation quartile) and for stroke (2.5 [0.9 to 7.5]). Among participants free of baseline disease, individuals with methylation below the median also had higher risk of developing ischemic heart disease (4.0 [1.8 to 8.9]) or stroke (5.7 [0.8 to 39.5]). In the entire cohort, persons with methylation below the median had higher mortality from ischemic heart disease (3.3 [1.3 to 8.4]) and stroke (2.8 [0.6 to 14.3]). Total mortality was also increased (2.0 [1.2 to 3.3]). These results were confirmed in additional regression models using LINE-1 methylation as a continuous variable. Conclusions Subjects with prevalent IHD and stroke exhibited lower LINE-1 methylation. In longitudinal analyses, persons with lower LINE-1 methylation were at higher risk for incident ischemic heart disease and stroke, and for total mortality. PMID:20805753
Beyond Bacteria: A Study of the Enteric Microbial Consortium in Extremely Low Birth Weight Infants
Cotton, Charles Michael; Goldberg, Ronald N.; Wynn, James L.; Jackson, Robert B.; Seed, Patrick C.
2011-01-01
Extremely low birth weight (ELBW) infants have high morbidity and mortality, frequently due to invasive infections from bacteria, fungi, and viruses. The microbial communities present in the gastrointestinal tracts of preterm infants may serve as a reservoir for invasive organisms and remain poorly characterized. We used deep pyrosequencing to examine the gut-associated microbiome of 11 ELBW infants in the first postnatal month, with a first time determination of the eukaryote microbiota such as fungi and nematodes, including bacteria and viruses that have not been previously described. Among the fungi observed, Candida sp. and Clavispora sp. dominated the sequences, but a range of environmental molds were also observed. Surprisingly, seventy-one percent of the infant fecal samples tested contained ribosomal sequences corresponding to the parasitic organism Trichinella. Ribosomal DNA sequences for the roundworm symbiont Xenorhabdus accompanied these sequences in the infant with the greatest proportion of Trichinella sequences. When examining ribosomal DNA sequences in aggregate, Enterobacteriales, Pseudomonas, Staphylococcus, and Enterococcus were the most abundant bacterial taxa in a low diversity bacterial community (mean Shannon-Weaver Index of 1.02±0.69), with relatively little change within individual infants through time. To supplement the ribosomal sequence data, shotgun sequencing was performed on DNA from multiple displacement amplification (MDA) of total fecal genomic DNA from two infants. In addition to the organisms mentioned previously, the metagenome also revealed sequences for gram positive and gram negative bacteriophages, as well as human adenovirus C. Together, these data reveal surprising eukaryotic and viral microbial diversity in ELBW enteric microbiota dominated bytypes of bacteria known to cause invasive disease in these infants. PMID:22174751
Asbestos-associated genome-wide DNA methylation changes in lung cancer.
Kettunen, Eeva; Hernandez-Vargas, Hector; Cros, Marie-Pierre; Durand, Geoffroy; Le Calvez-Kelm, Florence; Stuopelyte, Kristina; Jarmalaite, Sonata; Salmenkivi, Kaisa; Anttila, Sisko; Wolff, Henrik; Herceg, Zdenko; Husgafvel-Pursiainen, Kirsti
2017-11-15
Previous studies have revealed a robust association between exposure to asbestos and human lung cancer. Accumulating evidence has highlighted the role of epigenome deregulation in the mechanism of carcinogen-induced malignancies. We examined the impact of asbestos on DNA methylation. Our genome-wide studies (using Illumina HumanMethylation450K BeadChip) of lung cancer tissue and paired normal lung from 28 asbestos-exposed or non-exposed patients, mostly smokers, revealed distinctive DNA methylation changes. We identified a number of differentially methylated regions (DMR) and differentially variable, differentially methylated CpGs (DVMC), with individual CpGs further validated by pyrosequencing in an independent series of 91 non-small cell lung cancer and paired normal lung. We discovered and validated BEND4, ZSCAN31 and GPR135 as significantly hypermethylated in lung cancer. DMRs in genes such as RARB (FDR 1.1 × 10 -19 , mean change in beta [Δ] -0.09), GPR135 (FDR 1.87 × 10 -8 , mean Δ -0.09) and TPO (FDR 8.58 × 10 -5 , mean Δ -0.11), and DVMCs in NPTN, NRG2, GLT25D2 and TRPC3 (all with p <0.05, t-test) were significantly associated with asbestos exposure status in exposed versus non-exposed lung tumors. Hypomethylation was characteristic to DVMCs in lung cancer tissue from asbestos-exposed subjects. When DVMCs related to asbestos or smoking were analyzed, 96% of the elements were unique to either of the exposures, consistent with the concept that the methylation changes in tumors may be specific for risk factors. In conclusion, we identified novel DNA methylation changes associated with lung tumors and asbestos exposure, suggesting that changes may be present in causal pathway from asbestos exposure to lung cancer. © 2017 UICC.
Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A
2015-01-01
Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.
Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients
Flanagan, James M.; Munoz-Alegre, Marta; Henderson, Stephen; Tang, Thomas; Sun, Ping; Johnson, Nichola; Fletcher, Olivia; dos Santos Silva, Isabel; Peto, Julian; Boshoff, Chris; Narod, Steven; Petronis, Arturas
2009-01-01
Bilaterality of breast cancer is an indicator of constitutional cancer susceptibility; however, the molecular causes underlying this predisposition in the majority of cases is not known. We hypothesize that epigenetic misregulation of cancer-related genes could partially account for this predisposition. We have performed methylation microarray analysis of peripheral blood DNA from 14 women with bilateral breast cancer compared with 14 unaffected matched controls throughout 17 candidate breast cancer susceptibility genes including BRCA1, BRCA2, CHEK2, ATM, ESR1, SFN, CDKN2A, TP53, GSTP1, CDH1, CDH13, HIC1, PGR, SFRP1, MLH1, RARB and HSD17B4. We show that the majority of methylation variability is associated with intragenic repetitive elements. Detailed validation of the tiled region around ATM was performed by bisulphite modification and pyrosequencing of the same samples and in a second set of peripheral blood DNA from 190 bilateral breast cancer patients compared with 190 controls. We show significant hypermethylation of one intragenic repetitive element in breast cancer cases compared with controls (P = 0.0017), with the highest quartile of methylation associated with a 3-fold increased risk of breast cancer (OR 3.20, 95% CI 1.78–5.86, P = 0.000083). Increased methylation of this locus is associated with lower steady-state ATM mRNA level and correlates with age of cancer patients but not controls, suggesting a combined age–phenotype-related association. This research demonstrates the potential for gene-body epigenetic misregulation of ATM and other cancer-related genes in peripheral blood DNA that may be useful as a novel marker to estimate breast cancer risk. Accession numbers: The microarray data and associated .BED and .WIG files can be accessed through Gene Expression Omnibus accession number: GSE14603. PMID:19153073
Gonzalez-Nahm, Sarah; Mendez, Michelle; Robinson, Whitney; Murphy, Susan K.; Hoyo, Cathrine; Hogan, Vijaya; Rowley, Diane
2017-01-01
Abstract Diet is dictated by the surrounding environment, as food access and availability may change depending on where one lives. Maternal diet during pregnancy is an important part of the in utero environment, and may affect the epigenome. Studies looking at overall diet pattern in relation to DNA methylation have been lacking. The Mediterranean diet is known for its health benefits, including decreased inflammation, weight loss, and management of chronic diseases. This study assesses the association between maternal adherence to a Mediterranean diet pattern during pregnancy and infant DNA methylation at birth. Mediterranean diet adherence in early pregnancy was measured in 390 women enrolled in the Newborn Epigenetic Study, and DNA methylation was assessed in their infants at birth. Multinomial logistic regression was used to assess the association between adherence to a Mediterranean diet and infant methylation at the MEG3, MEG3-IG, pleiomorphic adenoma gene-like 1, insulin-like growth factor 2 gene, H19, mesoderm-specific transcript, neuronatin, paternally expressed gene 3, sarcoglycan and paternally expressed gene 10 regions, measured by pyrosequencing. Infants of mothers with a low adherence to a Mediterranean diet had a greater odds of hypo-methylation at the MEG3-IG differentially methylated region (DMR). Sex-stratified models showed that this association was present in girls only. This study provides early evidence on the association between overall diet pattern and methylation at the 9 DMRs included in this study, and suggests that maternal diet can have a sex-specific impact on infant DNA methylation at specific imprinted DMRs. PMID:29492309
LINE-1 hypomethylation is associated with the risk of coronary heart disease in Chinese population.
Wei, Li; Liu, Shuchuan; Su, Zhendong; Cheng, Rongchao; Bai, Xiuping; Li, Xueqi
2014-05-01
Global methylation level in blood leukocyte DNA has been associated with the risk of coronary heart disease (CHD), with inconsistent results in various populations. Similar data are lacking in Chinese population where different genetic, lifestyle and environmental factors may affect DNA methylation and its risk relationship with CHD. To examine whether global methylation is associated with the risk of CHD in Chinese population. A total of 334 cases with CHD and 788 healthy controls were included. Global methylation in blood leukocyte DNA was estimated by analyzing LINE-1 repeats using bisulfite pyrosequencing. In an initial analysis restricted to control subjects, LINE-1 level reduced significantly with aging, elevated total cholesterol, and diagnosis of diabetes. In the case-control analysis, reduced LINE-1 methylation was associated with increased risk of CHD; analysis by quartile revealed odds ratios (95%CI) of 0.9 (0.6-1.4), 1.9 (1.3-2.9) and 2.3 (1.6-3.5) for the third, second and first (lowest) quartile (Ptrend < 0.001), respectively, compared to the fourth (highest) quartile. Lower (
Mao, Shengyong; Zhang, Ruiyang; Wang, Dongsheng; Zhu, Weiyun
2012-12-06
Sub-acute ruminal acidosis (SARA) is a well-recognized digestive disorder found in particular in well-managed dairy herds. SARA can result in increased flow of fermentable substrates to the hindgut, which can increase the production of volatile fatty acids, alter the structure of the microbial community, and have a negative effect on animal health and productivity. However, little is known about changes in the structure of the microbial community and its relationship with fatty acids during SARA. Four cannulated primiparous (60 to 90 day in milk) Holstein dairy cows were assigned to two diets in a 2 × 2 crossover experimental design. The diets contained (on a dry matter basis): 40% (control diet, COD) and 70% (SARA induction diet, SAID) concentrate feeds. Samples of ruminal fluid and feces were collected on day 12, 15, 17 and 21 of the treatment period, and the pH was measured in the ruminal and fecal samples; the fecal microbiota was determined by pyrosequencing analysis of the V1-V3 region of amplified 16S ribosomal RNA (16S rRNA). SAID decreased ruminal and fecal pH and increased the propionate, butyrate and total volatile fatty acid (TVFA) concentration in feces when compared with the COD. A barcoded DNA pyrosequencing method was used to generate 2116 16S operational taxonomic units (OTUs). A total of 11 phyla were observed, distributed amongst all cattle on both diets; however, only 5 phyla were observed in all animals regardless of dietary treatment, and considerable animal to animal variation was revealed. The average abundance and its range of the 5 phyla were as follows: Firmicutes (63.7%, 29.1-84.1%), Proteobacteria (18.3%, 3.4-46.9%), Actinobacteria (6.8%, 0.4-39.9%), Bacteroidetes (7.6%, 2.2-17.7%) and Tenericutes (1.6%, 0.3-3%). Feeding the SAID resulted in significant shifts in the structure of the fecal microbial community when compared with the traditional COD. Among the 2116 OTUs detected in the present study, 88 OTUs were affected significantly by diet; and the proportion of these OTUs was 20.6% and 17.4% among the total number of sequences, respectively. Among the OTUs affected, the predominant species, including OTU2140 (G: Turicibacter), OTU1695 (G: Stenotrophomonas) and OTU8143 (F: Lachnospiraceae), were increased, while the abundance of OTU1266 (S: Solibacillus silvestris) and OTU2022 (G: Lysinibacillus) was reduced in the SAID group compared with the COD. Further, our results indicated that the fecal volatile fatty acid (VFA) concentrations were significantly related to presence of some certain species of Bacteroidetes and Firmicutes in the feces. This is, to our knowledge, the first study that has used barcoded DNA pyrosequencing to survey the fecal microbiome of dairy cattle during SARA. Our results suggest that particular bacteria and their metabolites in the feces appear to contribute to differences in host health between those given SAID and traditional COD feeding. A better understanding of these microbial populations will allow for improved nutrient management and increased animal growth performance.
Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing.
Oh, Changin; Lee, Kunkyu; Cheong, Yeotaek; Lee, Sang-Won; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Lee, Joong-Bok
2015-01-01
The oral microbiome, which is closely associated with many diseases, and the resident pathogenic oral bacteria, which can be transferred by close physical contact, are important public health considerations. Although the dog is the most common companion animal, the composition of the canine oral microbiome, which may include human pathogenic bacteria, and its relationship with that of their owners are unclear. In this study, 16S rDNA pyrosequencing was used to compare the oral microbiomes of 10 dogs and their owners and to identify zoonotic pathogens. Pyrosequencing revealed 246 operational taxonomic units in the 10 samples, representing 57 genera from eight bacterial phyla. Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples. The predominant genera in the human samples were Streptococcus (43.9%), Neisseria (10.3%), Haemophilus (9.6%), Prevotella (8.4%), and Veillonella (8.1%), whereas the predominant genera in the canine samples were Actinomyces (17.2%), Unknown (16.8), Porphyromonas (14.8), Fusobacterium (11.8), and Neisseria (7.2%). The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household. Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected. The finding of potentially zoonotic and periodontopathic bacteria in the canine oral microbiome may be a public health concern.
Ercolini, Danilo; Ferrocino, Ilario; Nasi, Antonella; Ndagijimana, Maurice; Vernocchi, Pamela; La Storia, Antonietta; Laghi, Luca; Mauriello, Gianluigi; Guerzoni, M. Elisabetta; Villani, Francesco
2011-01-01
Beef chops were stored at 4°C under different conditions: in air (A), modified-atmosphere packaging (MAP), vacuum packaging (V), or bacteriocin-activated antimicrobial packaging (AV). After 0 to 45 days of storage, analyses were performed to determine loads of spoilage microorganisms, microbial metabolites (by solid-phase microextraction [SPME]-gas chromatography [GC]-mass spectrometry [MS] and proton nuclear magnetic resonance [1H NMR]), and microbial diversity (by PCR–denaturing gradient gel electrophoresis [DGGE] and pyrosequencing). The microbiological shelf life of meat increased with increasing selectivity of storage conditions. Culture-independent analysis by pyrosequencing of DNA extracted directly from meat showed that Brochothrix thermosphacta dominated during the early stages of storage in A and MAP, while Pseudomonas spp. took over during further storage in A. Many different bacteria, several of which are usually associated with soil rather than meat, were identified in V and AV; however, lactic acid bacteria (LAB) dominated during the late phases of storage, and Carnobacterium divergens was the most frequent microorganism in AV. Among the volatile metabolites, butanoic acid was associated with the growth of LAB under V and AV storage conditions, while acetoin was related to the other spoilage microbial groups and storage conditions. 1H NMR analysis showed that storage in air was associated with decreases in lactate, glycogen, IMP, and ADP levels and with selective increases in levels of 3-methylindole, betaine, creatine, and other amino acids. The meat microbiota is significantly affected by storage conditions, and its changes during storage determine complex shifts in the metabolites produced, with a potential impact on meat quality. PMID:21803905
Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing
Oh, Changin; Lee, Kunkyu; Cheong, Yeotaek; Lee, Sang-Won; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Lee, Joong-Bok
2015-01-01
The oral microbiome, which is closely associated with many diseases, and the resident pathogenic oral bacteria, which can be transferred by close physical contact, are important public health considerations. Although the dog is the most common companion animal, the composition of the canine oral microbiome, which may include human pathogenic bacteria, and its relationship with that of their owners are unclear. In this study, 16S rDNA pyrosequencing was used to compare the oral microbiomes of 10 dogs and their owners and to identify zoonotic pathogens. Pyrosequencing revealed 246 operational taxonomic units in the 10 samples, representing 57 genera from eight bacterial phyla. Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples. The predominant genera in the human samples were Streptococcus (43.9%), Neisseria (10.3%), Haemophilus (9.6%), Prevotella (8.4%), and Veillonella (8.1%), whereas the predominant genera in the canine samples were Actinomyces (17.2%), Unknown (16.8), Porphyromonas (14.8), Fusobacterium (11.8), and Neisseria (7.2%). The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household. Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected. The finding of potentially zoonotic and periodontopathic bacteria in the canine oral microbiome may be a public health concern. PMID:26134411
Hooda, Seema; Boler, Brittany M Vester; Serao, Mariana C Rossoni; Brulc, Jennifer M; Staeger, Michael A; Boileau, Thomas W; Dowd, Scot E; Fahey, George C; Swanson, Kelly S
2012-07-01
The relative contribution of novel fibers such as polydextrose and soluble corn fiber (SCF) to the human gut microbiome and its association with host physiology has not been well studied. This study was conducted to test the impact of polydextrose and SCF on the composition of the human gut microbiota using 454 pyrosequencing and to identify associations among fecal microbiota and fermentative end-products. Healthy adult men (n = 20) with a mean dietary fiber (DF) intake of 14 g/d were enrolled in a randomized, double-blind, placebo-controlled crossover study. Participants consumed 3 treatment snack bars/d during each 21-d period that contained no supplemental fiber (NFC), polydextrose (PDX; 21 g/d), or SCF (21 g/d) for 21 d. There were no washout periods. Fecal samples were collected on d 16-21 of each period; DNA was extracted, followed by amplification of the V4-V6 region of the 16S rRNA gene using barcoded primers. PDX and SCF significantly affected the relative abundance of bacteria at the class, genus, and species level. The consumption of PDX and SCF led to greater fecal Clostridiaceae and Veillonellaceae and lower Eubacteriaceae compared with a NFC. The abundance of Faecalibacterium, Phascolarctobacterium, and Dialister was greater (P < 0.05) in response to PDX and SCF intake, whereas Lactobacillus was greater (P < 0.05) only after SCF intake. Faecalibacterium prausnitzii, well known for its antiinflammatory properties, was greater (P < 0.05) after fiber consumption. Principal component analysis clearly indicated a distinct clustering of individuals consuming supplemental fibers. Our data demonstrate a beneficial shift in the gut microbiome of adults consuming PDX and SCF, with potential application as prebiotics.
Characterization and Identification of Productivity-Associated Rhizobacteria in Wheat
Habiger, Joshua
2012-01-01
The rhizosphere is populated by a numerous and diverse array of rhizobacteria, and many impact productivity in largely unknown ways. Here we characterize the rhizobacterial community in a wheat variety categorized according to shoot biomass using 16S rRNA pyrosequencing abundance data. Plants were grown in homogenized field soil under greenhouse conditions, and DNA was extracted and pyrosequenced, resulting in 29,007 quality sequences. Operational taxonomic units (OTUs) that were significantly associated with biomass productivity were identified using an exact test adjusted for the false-discovery rate. The productivity deviation expressed as a percentage of the total mean square for regression (PMSR) was determined for each OTU. Out of 719 OTUs, 42 showed significant positive associations and 39 showed significant negative associations (q value, ≤0.05). OTUs with the greatest net positive associations, by genus, were as follows: Duganella, OTU 43 and OTU 3; Janthinobacterium, OTU 278; Pseudomonas, OTU 588; and Cellvibrio, OTU 1847. Those with negative associations were as follows: Bacteria, OTU 273; Chryseobacterium, OTU 508; Proteobacteria, OTU 249; and Enterobacter, OTU 357. Shoot biomass productivity was strongly correlated with the balance between the overall abundances of positive- and negative-productivity-associated OTUs. High-productivity rhizospheres contained 9.2 significant positives for every negatively associated rhizobacterium, while low-productivity rhizospheres showed 2.3 significant negatives for every positively associated rhizobacterium. Overall rhizobacterial community diversity as measured by the Chao1, Shannon, and Simpson indexes was nonlinearly related to productivity, closely fitting a wavelike cubic equation. We conclude that shoot biomass productivity is strongly related to the ratio of positive- to negative-productivity-associated rhizobacteria in the rhizosphere. This study identifies significant OTUs composing the productive and unproductive rhizobacterial communities. PMID:22504815
Banelli, Barbara; Morabito, Anna; Laurent, Stefania; Piccioli, Patrizia; Dozin, Beatrice; Ghio, Massimo; Ascierto, Paolo Antonio; Monteghirfo, Stefano; Marasco, Antonella; Ottaviano, Vincenzo; Queirolo, Paola; Romani, Massimo; Pistillo, Maria Pia
2014-08-01
CTLA-4 expression/function can be affected by single nucleotide polymorphisms (SNPs) of CTLA-4 gene, which have been widely associated with susceptibility or progression to autoimmune diseases and cancer development. In this study, we analyzed six CTLA-4 SNPs (-1661A>G, -1577G>A, -658C>T, -319C>T, +49A>G, CT60G>A) in 197 DNA samples from 43 B-lymphoblastoid cell lines (B-LCLs), 40 systemic sclerosis (SSc) patients, 14 pre-analyzed melanoma patients and 100 Italian healthy subjects. Genotyping of -1661A>G, -1577G>A, -658C>T and CT60G>A was performed by newly developed multiplex pyrosequencing (PSQ) assays, whereas -319C>T and +49A>G by T-ARMS PCR and direct sequencing. Genotype/allele frequency were analyzed using χ(2) or Fisher exact test. Our study provides the first multiplex PSQ method that allows simultaneous genotyping of two CTLA-4 SNP pairs (i.e. -1661A>G/-658C>T and -1577G>A/CT60G>A) by two multiplex PSQ reactions. Herein, we show the CTLA-4 genotype distribution in the B-LCLs providing the first and best characterized cell line panel typed for functionally relevant CTLA-4 SNPs. We also report the significant association of the -1661A/G genotype, -1661 & -319 AC-GT diplotype and -319 & CT60 TG haplotype with susceptibility to SSc without Hashimoto's thyroiditis occurrence. Furthermore, we confirmed previous genotyping data referred to melanoma patients and provided new genotyping data for Italian healthy subjects. Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background A solid-state anaerobic digestion method is used to produce biogas from various solid wastes in China but the efficiency of methane production requires constant improvement. The diversity and abundance of relevant microorganisms play important roles in methanogenesis of biomass. The next-generation high-throughput pyrosequencing platform (Roche/454 GS FLX Titanium) provides a powerful tool for the discovery of novel microbes within the biogas-generating microbial communities. Results To improve the power of our metagenomic analysis, we first evaluated five different protocols for extracting total DNA from biogas-producing mesophilic solid-state fermentation materials and then chose two high-quality protocols for a full-scale analysis. The characterization of both sequencing reads and assembled contigs revealed that the most prevalent microbes of the fermentation materials are derived from Clostridiales (Firmicutes), which contribute to degrading both protein and cellulose. Other important bacterial species for decomposing fat and carbohydrate are Bacilli, Gammaproteobacteria, and Bacteroidetes (belonging to Firmicutes, Proteobacteria, and Bacteroidetes, respectively). The dominant bacterial species are from six genera: Clostridium, Aminobacterium, Psychrobacter, Anaerococcus, Syntrophomonas, and Bacteroides. Among them, abundant Psychrobacter species, which produce low temperature-adaptive lipases, and Anaerococcus species, which have weak fermentation capabilities, were identified for the first time in biogas fermentation. Archaea, represented by genera Methanosarcina, Methanosaeta and Methanoculleus of Euryarchaeota, constitute only a small fraction of the entire microbial community. The most abundant archaeal species include Methanosarcina barkeri fusaro, Methanoculleus marisnigri JR1, and Methanosaeta theromphila, and all are involved in both acetotrophic and hydrogenotrophic methanogenesis. Conclusions The identification of new bacterial genera and species involved in biogas production provides insights into novel designs of solid-state fermentation under mesophilic or low-temperature conditions. PMID:23320936
Hedin, Charlotte; van der Gast, Christopher J; Rogers, Geraint B; Cuthbertson, Leah; McCartney, Sara; Stagg, Andrew J; Lindsay, James O; Whelan, Kevin
2016-06-01
To determine the existence of mucosal dysbiosis in siblings of patients with Crohn's disease (CD) using 454 pyrosequencing and to comprehensively characterise and determine the influence of genotypical and phenotypical factors, on that dysbiosis. Siblings of patients with CD have elevated risk of developing CD and display aspects of disease phenotype, including faecal dysbiosis. Whether the mucosal microbiota is disrupted in these at-risk individuals is unknown. Rectal biopsy DNA was extracted from 21 patients with quiescent CD, 17 of their healthy siblings and 19 unrelated healthy controls. Mucosal microbiota was analysed by 16S rRNA gene pyrosequencing and were classified into core and rare species. Genotypical risk was determined using Illumina Immuno BeadChip, faecal calprotectin by ELISA and blood T-cell phenotype by flow cytometry. Core microbiota of both patients with CD and healthy siblings was significantly less diverse than controls. Metacommunity profiling (Bray-Curtis (SBC) index) showed the sibling core microbial composition to be more similar to CD (SBC=0.70) than to healthy controls, whereas the sibling rare microbiota was more similar to healthy controls (SBC=0.42). Faecalibacterium prausnitzii contributed most to core metacommunity dissimilarity both between siblings and controls, and between patients and controls. Phenotype/genotype markers of CD risk significantly influenced microbiota variation between and within groups, of which genotype had the largest effect. Individuals with elevated CD-risk display mucosal dysbiosis characterised by reduced diversity of core microbiota and lower abundance of F. prausnitzii. This dysbiosis in healthy people at risk of CD implicates microbiological processes in CD pathogenesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Characterization of the bacterial biodiversity in Pico cheese (an artisanal Azorean food).
Riquelme, Cristina; Câmara, Sandra; Dapkevicius, Maria de Lurdes N Enes; Vinuesa, Pablo; da Silva, Célia Costa Gomes; Malcata, F Xavier; Rego, Oldemiro A
2015-01-02
This work presents the first study on the bacterial communities in Pico cheese, a traditional cheese of the Azores (Portugal), made from raw cow's milk. Pyrosequencing of tagged amplicons of the V3-V4 regions of the 16S rDNA and Operational Taxonomic Unit-based (OTU-based) analysis were applied to obtain an overall idea of the microbiota in Pico cheese and to elucidate possible differences between cheese-makers (A, B and C) and maturation times. Pyrosequencing revealed a high bacterial diversity in Pico cheese. Four phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) and 54 genera were identified. The predominant genus was Lactococcus (77% of the sequences). Sequences belonging to major cheese-borne pathogens were not found. Staphylococcus accounted for 0.5% of the sequences. Significant differences in bacterial community composition were observed between cheese-maker B and the other two units that participated in the study. However, OTU analysis identified a set of taxa (Lactococcus, Streptococcus, Acinetobacter, Enterococcus, Lactobacillus, Staphylococcus, Rothia, Pantoea and unclassified genera belonging to the Enterobacteriaceae family) that would represent the core components of artisanal Pico cheese microbiota. A diverse bacterial community was present at early maturation, with an increase in the number of phylotypes up to 2 weeks, followed by a decrease at the end of ripening. The most remarkable trend in abundance patterns throughout ripening was an increase in the number of sequences belonging to the Lactobacillus genus, with a concomitant decrease in Acinetobacter, and Stenotrophomonas. Microbial rank abundance curves showed that Pico cheese's bacterial communities are characterized by a few dominant taxa and many low-abundance, highly diverse taxa that integrate the so-called "rare biosphere". Copyright © 2014 Elsevier B.V. All rights reserved.
Long, E; Ilie, M; Lassalle, S; Butori, C; Poissonnet, G; Washetine, K; Mouroux, J; Lespinet, V; Lacour, J P; Taly, V; Laurent-Puig, P; Bahadoran, P; Hofman, V; Hofman, P
2015-12-01
Knowledge of the BRAFV600E status is mandatory in metastatic melanoma patients (MMP). Molecular biology is currently the gold standard method for status assessment. We assessed and compared the specificity, sensibility, cost-effectiveness and turnaround time (TAT) of immunohistochemistry (IHC) and molecular biology for detection of the BRAFV600E mutation in 188 MMP. IHC, with the VE1 antibody, and pyrosequencing analysis were performed with formalin fixed paraffin embedded tumour samples. The BRAFV600E mutation was detected by pyrosequencing in 91/188 (48%) patients. IHC was strongly positive (3+) in all of these 91 cases. IHC was strongly positive in 9/188 (5%) cases in which the molecular testing failed due to non-amplifiable DNA. Weak or moderate staining was noted in 10/188 (5%) cases in which the molecular biology identified BRAF wild-type tumours. The ratio of the global cost for IHC/molecular biology testing was 1 : 2.2. The average TAT was 48 h vs. 96 h, for IHC vs. molecular biology testing, respectively. This study showed that VE1 IHC should be a substitute for molecular biology in the initial assessment of the BRAFV600E status in MPP. This methodology needs to be set up in pathology laboratories in accordance with quality control/quality assurance accreditation procedures. Under these strict conditions the question is to know if BRAFV600E-IHC can serve not only as a prescreening tool, but also as a stand-alone test (at least in cases displaying an unequivocally staining pattern) as well as an alternative predictive test for samples for which the molecular biology failed. © 2015 European Academy of Dermatology and Venereology.
Calvello, Mariarosaria; Tabano, Silvia; Colapietro, Patrizia; Maitz, Silvia; Pansa, Alessandra; Augello, Claudia; Lalatta, Faustina; Gentilin, Barbara; Spreafico, Filippo; Calzari, Luciano; Perotti, Daniela; Larizza, Lidia; Russo, Silvia; Selicorni, Angelo; Sirchia, Silvia M; Miozzo, Monica
2013-01-01
Beckwith-Wiedemann syndrome (BWS) is a rare disorder characterized by overgrowth and predisposition to embryonal tumors. BWS is caused by various epigenetic and/or genetic alterations that dysregulate the imprinted genes on chromosome region 11p15.5. Molecular analysis is required to reinforce the clinical diagnosis of BWS and to identify BWS patients with cancer susceptibility. This is particularly crucial prenatally because most signs of BWS cannot be recognized in utero. We established a reliable molecular assay by pyrosequencing to quantitatively evaluate the methylation profiles of ICR1 and ICR2. We explored epigenotype-phenotype correlations in 19 patients that fulfilled the clinical diagnostic criteria for BWS, 22 patients with suspected BWS, and three fetuses with omphalocele. Abnormal methylation was observed in one prenatal case and 19 postnatal cases, including seven suspected BWS. Seven cases showed ICR1 hypermethylation, five cases showed ICR2 hypomethylation, and eight cases showed abnormal methylation of ICR1 and ICR2 indicating paternal uniparental disomy (UPD). More cases of ICR1 alterations and UPD were found than expected. This is likely due to the sensitivity of this approach, which can detect slight deviations in methylation from normal levels. There was a significant correlation (p < 0.001) between the percentage of ICR1 methylation and BWS features: severe hypermethylation (range: 75–86%) was associated with macroglossia, macrosomia, and visceromegaly, whereas mild hypermethylation (range: 55–59%) was associated with umbilical hernia and diastasis recti. Evaluation of ICR1 and ICR2 methylation by pyrosequencing in BWS can improve epigenotype-phenotype correlations, detection of methylation alterations in suspected cases, and identification of UPD. PMID:23917791
Kaewkong, Worasak; Intapan, Pewpan M; Sanpool, Oranuch; Janwan, Penchom; Thanchomnang, Tongjit; Kongklieng, Amornmas; Tantrawatpan, Chairat; Boonmars, Thidarut; Lulitanond, Viraphong; Taweethavonsawat, Piyanan; Chungpivat, Sudchit; Maleewong, Wanchai
2014-06-01
Canine babesiosis, hepatozoonosis, ehrlichiosis, and anaplasmosis are tick-borne diseases caused by different hemopathogens. These diseases are causes of morbidity and mortality in dogs. The classic method for parasite detection and differentiation is based on microscopic observation of blood smears. The limitations of the microscopic method are that its performance requires a specially qualified person with professional competence, and it is ineffective in differentiating closely related species. This study applied PCR amplification with high throughput pyrosequencing for molecular differential detection of the following 4 hemoparasites common to tropical areas in dog blood samples: Babesia vogeli, Hepatozoon canis, Ehrlichia canis, and Anaplasma platys. PCR was initially used to amplify specific target regions of the ribosomal RNA genes of each parasite using 2 primer pairs that included 18S rRNA for protozoa (B. vogeli and H. canis) and 16S rRNA for rickettsia (E. canis and A. platys). Babesia vogeli and H. canis were discriminated using 9 nucleotide positions out of 30 base pairs, whereas E. canis and A. platys were differentiated using 15 nucleotide positions out of 34 base pairs that were determined from regions adjacent to 3' ends of the sequencing primers. This method provides a challenging alternative for a rapid diagnosis and surveillance of these tick-borne diseases in canines. Copyright © 2014 Elsevier GmbH. All rights reserved.
How-Kit, Alexandre; Tost, Jörg
2015-01-01
A number of molecular diagnostic assays have been developed in the last years for mutation detection. Although these methods have become increasingly sensitive, most of them are incompatible with a sequencing-based readout and require prior knowledge of the mutation present in the sample. Consequently, coamplification at low denaturation (COLD)-PCR-based methods have been developed and combine a high analytical sensitivity due to mutation enrichment in the sample with the identification of known or unknown mutations by downstream sequencing experiments. Among these methods, the recently developed Enhanced-ice-COLD-PCR appeared as the most powerful method as it outperformed the other COLD-PCR-based methods in terms of the mutation enrichment and due to the simplicity of the experimental setup of the assay. Indeed, E-ice-COLD-PCR is very versatile as it can be used on all types of PCR platforms and is applicable to different types of samples including fresh frozen, FFPE, and plasma samples. The technique relies on the incorporation of an LNA containing blocker probe in the PCR reaction followed by selective heteroduplex denaturation enabling amplification of the mutant allele while amplification of the wild-type allele is prevented. Combined with Pyrosequencing(®), which is a very quantitative high-resolution sequencing technology, E-ice-COLD-PCR can detect and identify mutations with a limit of detection down to 0.01 %.
Exploring the Bacterial Microbiota of Colombian Fermented Maize Dough "Masa Agria" (Maiz Añejo).
Chaves-Lopez, Clemencia; Serio, Annalisa; Delgado-Ospina, Johannes; Rossi, Chiara; Grande-Tovar, Carlos D; Paparella, Antonello
2016-01-01
Masa Agria is a naturally fermented maize dough produced in Colombia, very common in the traditional gastronomy. In this study we used culture-dependent and RNA-based pyrosequencing to investigate the bacterial community structure of Masa Agria samples produced in the south west of Colombia. The mean value of cell density was 7.6 log CFU/g of presumptive lactic acid bacteria, 5.4 log cfu/g for presumptive acetic bacteria and 5.6 og CFU/g for yeasts. The abundance of these microorganisms is also responsible for the low pH (3.1-3.7) registered. Although the 16S rRNA pyrosequencing revealed that the analyzed samples were different in bacteria richness and diversity, the genera Lactobacillus, Weissella, and Acetobacter were predominant. In particular, the most common species were Lactobacillus plantarum and Acetobacter fabarum, followed by L. fermentum, L. vaccinostercus, and Pediococcus argentinicus. Several microorganisms of environmental origin, such as Dechloromonas and most of all Sphingobium spp., revealed in each sample, were detected, and also bacteria related to maize, such as Phytoplasma. In conclusion, our results elucidated for the first time the structures of the bacterial communities of Masa Agria samples obtained from different producers, identifying the specific dominant species and revealing a complete picture of the bacterial consortium in this specific niche. The selective pressure of tropical environments may favor microbial biodiversity characterized by a useful technological potential.
Huang, Jian; Wang, Zhiwei; Zhu, Chaowei; Ma, Jinxing; Zhang, Xingran; Wu, Zhichao
2014-01-01
Two bioelectrochemical membrane bioreactors (MBRs) developed by integrating microbial fuel cell and MBR technology were operated under closed-circuit and open-circuit modes, and high-throughput 454 pyrosequencing was used to investigate the effects of the power generation on the microbial community of bio-anode and bio-cathode. Microbes on the anode under open-circuit operation (AO) were enriched and highly diverse when compared to those on the anode under closed-circuit operation (AC). However, among the cathodes the closed-circuit mode (CC) had richer and more diverse microbial community compared to the cathode under open-circuit mode (CO). On the anodes AO and AC, Proteobacteria and Bacteroidetes were the dominant phyla, while Firmicutes was enriched only on AC. Deltaproteobacteria affiliated to Proteobacteria were also more abundant on AC than AO. Furthermore, the relative abundance of Desulfuromonas, which are well-known electrogenic bacteria, were much higher on AC (10.2%) when compared to AO (0.11%), indicating that closed-circuit operation was more conducive for the growth of electrogenic bacteria on the anodes. On the cathodes, Protebacteria was robust on CC while Bacteroidetes was more abundant on CO. Rhodobacter and Hydrogenophaga were also enriched on CC than CO, suggesting that these genera play a role in electron transfer from the cathode surface to the terminal electron acceptors in the bioelectrochemical MBR under closed-circuit operation. PMID:24705450
Barry, Kathryn Hughes; Moore, Lee E; Sampson, Joshua; Yan, Liying; Meyer, Ann; Oler, Andrew J; Chung, Charles C; Wang, Zhaoming; Yeager, Meredith; Amundadottir, Laufey; Berndt, Sonja I
2014-12-01
Chromosome 8q24 has emerged as an important region for genetic susceptibility to various cancers, but little is known about the contribution of DNA methylation at 8q24. To evaluate variability in DNA methylation levels at 8q24 and the relationship with cancer susceptibility single nucleotide polymorphisms (SNPs) in this region, we quantified DNA methylation levels in peripheral blood at 145 CpG sites nearby 8q24 cancer susceptibility SNPs or MYC using pyrosequencing among 80 Caucasian men in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. For the 60 CpG sites meeting quality control, which also demonstrated temporal stability over a 5-year period, we calculated pairwise Spearman correlations for DNA methylation levels at each CpG site with 42 8q24 cancer susceptibility SNPs. To account for multiple testing, we adjusted P values into q values reflecting the false discovery rate (FDR). In contrast to the MYC CpG sites, most sites nearby the SNPs demonstrated good reproducibility, high methylation levels, and moderate-high between-individual variation. We observed 10 statistically significant (FDR < 0.05) CpG site-SNP correlations. These included correlations between an intergenic CpG site at Chr8:128393157 and the prostate cancer SNP rs16902094 (ρ = -0.54; P = 9.7 × 10(-7); q = 0.002), a PRNCR1 CpG site at Chr8:128167809 and the prostate cancer SNP rs1456315 (ρ = 0.52; P = 1.4 × 10(-6); q = 0.002), and two POU5F1B CpG sites and several prostate/colorectal cancer SNPs (for Chr8:128498051 and rs6983267, ρ = 0.46; P = 2.0 × 10(-5); q = 0.01). This is the first report of correlations between blood DNA methylation levels and cancer susceptibility SNPs at 8q24, suggesting that DNA methylation at this important susceptibility locus may contribute to cancer risk. ©2014 American Association for Cancer Research.
Low-Level Environmental Cadmium Exposure Is Associated with DNA Hypomethylation in Argentinean Women
Hossain, Mohammad Bakhtiar; Vahter, Marie; Concha, Gabriela
2012-01-01
Background: Cadmium, a common food pollutant, alters DNA methylation in vitro. Epigenetic effects might therefore partly explain cadmium’s toxicity, including its carcinogenicity; however, human data on epigenetic effects are lacking. Objective: We evaluated the effects of dietary cadmium exposure on DNA methylation, considering other environmental exposures, genetic predisposition, and gene expression. Methods: Concentrations of cadmium, arsenic, selenium, and zinc in blood and urine of nonsmoking women (n = 202) from the northern Argentinean Andes were measured by inductively coupled mass spectrometry. Methylation in CpG islands of LINE-1 (long interspersed nuclear element-1; a proxy for global DNA methylation) and promoter regions of p16 [cyclin-dependent kinase inhibitor 2A (CDKN2A)] and MLH1 (mutL homolog 1) in peripheral blood were measured by bisulfite polymerase chain reaction pyrosequencing. Genotyping (n = 172) for the DNA (cytosine-5-)-methyltransferase 1 gene (DNMT1 rs10854076 and rs2228611) and DNA (cytosine-5-)-methyltransferase 3 beta gene (DNMT3B rs2424913 and rs2424932) was performed with Sequenom iPLEX GOLD SNP genotyping; and gene expression (n = 90), with DirectHyb HumanHT-12 (version 3.0). Results: Cadmium exposure was low: median concentrations in blood and urine were 0.36 and 0.23 µg/L, respectively. Urinary cadmium (natural log transformed) was inversely associated with LINE-1 methylation (β = –0.50, p = 0.0070; β = –0.44, p = 0.026, adjusted for age and coca chewing) but not with p16 or MLH1 methylation. Both DNMT1 rs10854076 and DNMT1 rs2228611 polymorphisms modified associations between urinary cadmium and LINE-1 (p-values for interaction in adjusted models were 0.045 and 0.064, respectively). The rare genotypes demonstrated stronger hypomethylation with increasing urinary cadmium concentrations. Cadmium was inversely associated with DNMT3B (rS = –0.28, p = 0.0086) but not with DNMT1 expression (rS = –0.075, p = 0.48). Conclusion: Environmental cadmium exposure was associated with DNA hypomethylation in peripheral blood, and DNMT1 genotypes modified this association. The role of epigenetic modifications in cadmium-associated diseases needs clarification. PMID:22382075
Rodríguez-Miguel, Cristina; Moral, Raquel; Escrich, Raquel; Vela, Elena; Solanas, Montserrat; Escrich, Eduard
2015-01-01
Disruption of epigenetic patterns is a major change occurring in all types of cancers. Such alterations are characterized by global DNA hypomethylation, gene-promoter hypermethylation and aberrant histone modifications, and may be modified by environment. Nutritional factors, and especially dietary lipids, have a role in the etiology of breast cancer. Thus, we aimed to analyze the influence of different high fat diets on DNA methylation and histone modifications in the rat dimethylbenz(a)anthracene (DMBA)-induced breast cancer model. Female Sprague-Dawley rats were fed a low-fat, a high corn-oil or a high extra-virgin olive oil (EVOO) diet from weaning or from induction with DMBA. In mammary glands and tumors we analyzed global and gene specific (RASSF1A, TIMP3) DNA methylation by LUMA and bisulfite pyrosequencing assays, respectively. We also determined gene expression and enzymatic activity of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) and evaluated changes in histone modifications (H3K4me2, H3K27me3, H4K20me3 and H4K16ac) by western-blot. Our results showed variations along time in the global DNA methylation of the mammary gland displaying decreases at puberty and with aging. The olive oil-enriched diet, on the one hand, increased the levels of global DNA methylation in mammary gland and tumor, and on the other, changed histone modifications patterns. The corn oil-enriched diet increased DNA methyltransferase activity in both tissues, resulting in an increase in the promoter methylation of the tumor suppressor genes RASSF1A and TIMP3. These results suggest a differential effect of the high fat diets on epigenetic patterns with a relevant role in the neoplastic transformation, which could be one of the mechanisms of their differential promoter effect, clearly stimulating for the high corn-oil diet and with a weaker influence for the high EVOO diet, on breast cancer progression.
The application of DNA microarrays in gene expression analysis.
van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J
2000-03-31
DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.
DNA biosensing with 3D printing technology.
Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin
2017-01-16
3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.
DNA vaccines in veterinary use
Redding, Laurel; Werner, David B
2015-01-01
DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available. PMID:19722897
Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso
2012-11-01
Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (<21.2 h) had no apparent effects on the microbial compositions of samples from most time points. Microbial community analysis revealed that among major core populations, Cyanobacteria, Methylobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae were more abundant in chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (<0.1% of total pyrosequences), which were likely present in source water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine.
Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.
2012-01-01
Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (<21.2 h) had no apparent effects on the microbial compositions of samples from most time points. Microbial community analysis revealed that among major core populations, Cyanobacteria, Methylobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae were more abundant in chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (<0.1% of total pyrosequences), which were likely present in source water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine. PMID:22941076
DNA evidence: current perspective and future challenges in India.
Verma, Sunil K; Goswami, Gajendra K
2014-08-01
Since the discovery of DNA fingerprinting technology in 1985 it has been used extensively as evidence in the court of law world-wide to establish the individual identity both in civil and criminal matters. In India, the first case of parentage dispute solved by the use of DNA fingerprinting technology was in 1989. Since then till date, the DNA technology has been used not only to resolve the cases of paternity and maternity disputes, but also for the establishment of individual identity in various criminal cases and for wildlife forensic identification. Since last half a decade, India is exercising to enact legislation on the use of DNA in the judicial realm and the draft 'Human DNA Bill-2012' is pending in the parliament. Largely, the promoters of forensic DNA testing have anticipated that DNA tests are nearly infallible and DNA technology could be the greatest single advance step in search for truth, conviction of the perpetrator, and acquittal of the innocent. The current article provides a comprehensive review on the status of DNA testing in India and elucidates the consequences of the admissibility of DNA as 'evidence' in the judicial dominion. In this backdrop of civil and criminal laws and changing ethical and societal attitudes, it is concluded that the DNA legislation in India and world-wide needs to be designed with utmost care. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
2010-08-25
or intentional genetic modifications that circumvent the targets of the detection assays or in the case of a biological attack using an antibiotic ...genetic changes conferring antibiotic resistance can be deciphered rapidly and accurately using WGS. We demonstrate the utility of Roche 454...Rapid Identification of Genetic Modifications in Bacillus anthracis Using Whole Genome Draft Sequences Generated by 454 Pyrosequencing Peter E. Chen1
Lambert-Messerlian, Geralyn; Kloza, Edward M; Williams, John; Loucky, Jaroslav; O'Brien, Barbara; Wilkins-Haug, Louise; Mahoney, Maurice J; De Biasio, Pierangela; Borrell, Antoni; Ehrich, Mathias; van den Boom, Dirk; Bombard, Allan T; Deciu, Cosmin; Palomaki, Glenn E
2014-05-01
We sought to compare measurements of circulating cell-free DNA as well as Down syndrome test results in women with naturally conceived pregnancies with those conceived using assisted reproductive technologies. Data regarding assisted reproductive technologies were readily available from seven enrollment sites participating in an external clinical validation trial of nested case/control design. Measurements of circulating cell-free fetal and total DNA, fetal fraction (ratio of fetal to total DNA), chromosome-specific z-scores, and karyotype results were available for analysis. Analyses were restricted to 632 euploid (5.2% assisted reproductive technologies) and 73 Down syndrome (13.7% assisted reproductive technologies), including 16 twin pregnancies. No differences were found for fetal or total circulating cell-free DNA, or for the fetal fraction in euploid (P = 0.70) or Down syndrome (P = 0.58) pregnancies by method of conception. There appeared to be systematic z-score reductions for chromosomes 21, 18, and 13 in assisted reproductive technologies versus natural euploid pregnancies (P = 0.048, 0.0032, and 0.36, respectively). Assisted reproductive technologies and naturally conceived pregnancies contribute similar levels of circulating cell-free DNA into maternal circulation. Small differences in the z-scores of pregnancies achieved by assisted reproductive technologies were observed and do not appear to be test-related artifacts. However, the findings need confirmation before any consideration of changes to testing and reporting protocols.
2010-01-01
Background The Fagaceae family comprises about 1,000 woody species worldwide. About half belong to the Quercus family. These oaks are often a source of raw material for biomass wood and fiber. Pedunculate and sessile oaks, are among the most important deciduous forest tree species in Europe. Despite their ecological and economical importance, very few genomic resources have yet been generated for these species. Here, we describe the development of an EST catalogue that will support ecosystem genomics studies, where geneticists, ecophysiologists, molecular biologists and ecologists join their efforts for understanding, monitoring and predicting functional genetic diversity. Results We generated 145,827 sequence reads from 20 cDNA libraries using the Sanger method. Unexploitable chromatograms and quality checking lead us to eliminate 19,941 sequences. Finally a total of 125,925 ESTs were retained from 111,361 cDNA clones. Pyrosequencing was also conducted for 14 libraries, generating 1,948,579 reads, from which 370,566 sequences (19.0%) were eliminated, resulting in 1,578,192 sequences. Following clustering and assembly using TGICL pipeline, 1,704,117 EST sequences collapsed into 69,154 tentative contigs and 153,517 singletons, providing 222,671 non-redundant sequences (including alternative transcripts). We also assembled the sequences using MIRA and PartiGene software and compared the three unigene sets. Gene ontology annotation was then assigned to 29,303 unigene elements. Blast search against the SWISS-PROT database revealed putative homologs for 32,810 (14.7%) unigene elements, but more extensive search with Pfam, Refseq_protein, Refseq_RNA and eight gene indices revealed homology for 67.4% of them. The EST catalogue was examined for putative homologs of candidate genes involved in bud phenology, cuticle formation, phenylpropanoids biosynthesis and cell wall formation. Our results suggest a good coverage of genes involved in these traits. Comparative orthologous sequences (COS) with other plant gene models were identified and allow to unravel the oak paleo-history. Simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 52,834 SSRs and 36,411 SNPs. All of these are available through the Oak Contig Browser http://genotoul-contigbrowser.toulouse.inra.fr:9092/Quercus_robur/index.html. Conclusions This genomic resource provides a unique tool to discover genes of interest, study the oak transcriptome, and develop new markers to investigate functional diversity in natural populations. PMID:21092232
Kheirandish-Gozal, Leila; Khalyfa, Abdelnaby; Gozal, David; Bhattacharjee, Rakesh; Wang, Yang
2013-04-01
Obstructive sleep apnea (OSA) is a highly prevalent disorder that has been associated with an increased risk for cardiovascular morbidity, even in children. However, not all children with OSA manifest alterations in endothelial postocclusive hyperemia, an endothelial nitric oxide synthase (eNOS)-dependent response. Since expression of the eNOS gene is regulated by epigenetic mechanisms and OSA may cause epigenetic modifications such as DNA hypermethylation, we hypothesized that epigenetic modifications in the eNOS gene may underlie the differential vascular phenotypes in pediatric OSA. Age-, sex-, ethnicity-, and BMI-matched prepubertal children with polysomnographically confirmed OSA and either normal (OSAn) or abnormal (OSAab) postocclusive hyperemic responses, assessed as the time to attain peak reperfusion flow (Tmax) by laser Doppler flowmetry, were recruited. Blood genomic DNA was assessed for epigenetic modifications in the eNOS gene using pyrosequencing. Children with no evidence of OSA or endothelial dysfunction served as a control group. The study comprised 36 children with OSA (11 with OSAab and 25 with OSAn) and 35 children in the control group. Overall, the mean age was 7.5 ± 2.4 years, 65% were boys, and 30% were obese; mean apnea-hypopnea index was 18 ± 8.6/h of sleep for the children with OSA. Tmax was 66.7 ± 8.8 s in the OSAab group and 30.1 ± 8.3 s in the OSAn group (P < .001). Pyrosequencing of the proximal promoter region of the eNOS gene revealed no significant differences in six of the seven CpG sites. However, a CpG site located at position -171 (relative to transcription start site), approximating important transcriptional elements, displayed significantly higher methylation levels in the OSAab group as compared with the OSAn or control groups (81.5% ± 3.5%, 74.8% ± 1.4%, and 74.5% ± 1.7%, respectively; P < .001). eNOS mRNA expression levels were assessed in a separate group of children and were significantly reduced in the OSAab group in comparison with the OSAn group. The presence of abnormal eNOS-dependent vascular responses in children with OSA is associated with epigenetic modifications in the eNOS gene.
Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer
Marzese, Diego M.; Hoon, Dave S.B.
2015-01-01
DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping were recently developed and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers. PMID:25797072
Morard, Raphaël; Garet-Delmas, Marie-José; Mahé, Frédéric; Romac, Sarah; Poulain, Julie; Kucera, Michal; de Vargas, Colomban
2018-02-07
Since the advent of DNA metabarcoding surveys, the planktonic realm is considered a treasure trove of diversity, inhabited by a small number of abundant taxa, and a hugely diverse and taxonomically uncharacterized consortium of rare species. Here we assess if the apparent underestimation of plankton diversity applies universally. We target planktonic foraminifera, a group of protists whose known morphological diversity is limited, taxonomically resolved and linked to ribosomal DNA barcodes. We generated a pyrosequencing dataset of ~100,000 partial 18S rRNA foraminiferal sequences from 32 size fractioned photic-zone plankton samples collected at 8 stations in the Indian and Atlantic Oceans during the Tara Oceans expedition (2009-2012). We identified 69 genetic types belonging to 41 morphotaxa in our metabarcoding dataset. The diversity saturated at local and regional scale as well as in the three size fractions and the two depths sampled indicating that the diversity of foraminifera is modest and finite. The large majority of the newly discovered lineages occur in the small size fraction, neglected by classical taxonomy. These unknown lineages dominate the bulk [>0.8 µm] size fraction, implying that a considerable part of the planktonic foraminifera community biomass has its origin in unknown lineages.
Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts.
An, Shu; Couteau, Cécile; Luo, Fan; Neveu, Julie; DuBow, Michael S
2013-11-01
Arid regions represent nearly 30 % of the Earth's terrestrial surface, but their microbial biodiversity is not yet well characterized. The surface sands of deserts, a subset of arid regions, are generally subjected to large temperature fluctuations plus high UV light exposure and are low in organic matter. We examined surface sand samples from the Taklamaken (China, three samples) and Gobi (Mongolia, two samples) deserts, using pyrosequencing of PCR-amplified 16S V1/V2 rDNA sequences from total extracted DNA in order to gain an assessment of the bacterial population diversity. In total, 4,088 OTUs (using ≥97 % sequence similarity levels), with Chao1 estimates varying from 1,172 to 2,425 OTUs per sample, were discernable. These could be grouped into 102 families belonging to 15 phyla, with OTUs belonging to the Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria phyla being the most abundant. The bacterial population composition was statistically different among the samples, though members from 30 genera were found to be common among the five samples. An increase in phylotype numbers with increasing C/N ratio was noted, suggesting a possible role in the bacterial richness of these desert sand environments. Our results imply an unexpectedly large bacterial diversity residing in the harsh environment of these two Asian deserts, worthy of further investigation.
Evidence for an active rare biosphere within freshwater protists community.
Debroas, Didier; Hugoni, Mylène; Domaizon, Isabelle
2015-03-01
Studies on the active rare biosphere at the RNA level are mainly focused on Bacteria and Archaea and fail to include the protists, which are involved in the main biogeochemical cycles of the earth. In this study, the richness, composition and activity of the rare protistan biosphere were determined from a temporal survey of two lakes by pyrosequencing. In these ecosystems, the always rare OTUs represented 77.2% of the total OTUs and 76.6% of the phylogenetic diversity. From the various phylogenetic indices computed, the phylogenetic units (PUs) constituted exclusively by always rare OTUs were discriminated from the other PUs. Therefore, the rare biosphere included mainly taxa that are distant from the reference databases compared to the dominant ones. In addition, the rarest OTUs represented 59.8% of the active biosphere depicted by rRNA and the activity (rRNA:rDNA ratio) increased with the rarity. The high rRNA:rDNA ratio determined in the rare fraction highlights that some protists were active at low abundances and contribute to ecosystem functioning. Interestingly, the always rare and active OTUs were characterized by seasonal changes in relation with the main environmental parameters measured. In conclusion, the rare eukaryotes represent an active, dynamic and overlooked fraction in the lacustrine ecosystems. © 2015 John Wiley & Sons Ltd.