Sample records for dna replicon system

  1. A DNA replicon system for rapid high-level production of virus-like particles in plants.

    PubMed

    Huang, Zhong; Chen, Qiang; Hjelm, Brooke; Arntzen, Charles; Mason, Hugh

    2009-07-01

    Recombinant virus-like particles (VLPs) represent a safe and effective vaccine strategy. We previously described a stable transgenic plant system for inexpensive production and oral delivery of VLP vaccines. However, the relatively low-level antigen accumulation and long-time frame to produce transgenic plants are the two major roadblocks in the practical development of plant-based VLP production. In this article, we describe the optimization of geminivirus-derived DNA replicon vectors for rapid, high-yield plant-based production of VLPs. Co-delivery of bean yellow dwarf virus (BeYDV)-derived vector and Rep/RepA-supplying vector by agroinfiltration of Nicotiana benthamiana leaves resulted in efficient replicon amplification and robust protein production within 5 days. Co-expression of the P19 protein of tomato bush stunt virus, a gene silencing inhibitor, further enhanced VLP accumulation by stabilizing the mRNA. With this system, hepatitis B core antigen (HBc) and Norwalk virus capsid protein (NVCP) were produced at 0.80 and 0.34 mg/g leaf fresh weight, respectively. Sedimentation analysis and electron microscopy of transiently expressed antigens verified the efficient assembly of VLPs. Furthermore, a single replicon vector containing a built-in Rep/RepA cassette without P19 drove protein expression at similar levels as the three-component system. These results demonstrate the advantages of fast and high-level production of VLP-based vaccines using the BeYDV-derived DNA replicon system for transient expression in plants. (c) 2009 Wiley Periodicals, Inc.

  2. A DNA replicon system for rapid high-level production of virus-like particles in plants

    PubMed Central

    Huang, Zhong; Chen, Qiang; Hjelm, Brooke; Arntzen, Charles

    2009-01-01

    Recombinant virus-like particles (VLPs) represent a safe and effective vaccine strategy. We previously described a stable transgenic plant system for inexpensive production and oral delivery of VLP vaccines. However, the relatively low level antigen accumulation and long time frame to produce transgenic plants are the two major roadblocks in the practical development of plant-based VLP production. In this paper, we describe the optimization of geminivirus-derived DNA replicon vectors for rapid, high-yield plant-based production of VLPs. Co-delivery of bean yellow dwarf virus (BeYDV)-derived vector and Rep/RepA-supplying vector by agroinfiltration of Nicotiana benthamiana leaves resulted in efficient replicon amplification and robust protein production within five days. Co-expression of the P19 protein of tomato bush stunt virus, a gene silencing inhibitor, further enhanced VLP accumulation by stabilizing the mRNA. With this system, hepatitis B core antigen (HBc) and Norwalk virus capsid protein (NVCP) were produced at 0.80 and 0.34 mg/g leaf fresh weight, respectively. Sedimentation analysis and electron microscopy of transiently expressed antigens verified the efficient assembly of VLPs. Furthermore, a single replicon vector containing a built-in Rep/RepA cassette without p19 drove protein expression at similar levels as the three-component system. These results demonstrate the advantages of fast and high-level production of VLP-based vaccines using the BeYDV-derived DNA replicon system for transient expression in plants. PMID:19309755

  3. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    PubMed

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  4. High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system

    PubMed Central

    Huang, Zhong; Phoolcharoen, Waranyoo; Lai, Huafang; Piensook, Khanrat; Cardineau, Guy; Zeitlin, Larry; Whaley, Kevin J.; Arntzen, Charles J.

    2010-01-01

    Plant viral vectors have great potential in rapid production of important pharmaceutical proteins. However, high-yield production of heterooligomeric proteins that require the expression and assembly of two or more protein subunits often suffers problems due to the “competing” nature of viral vectors derived from the same virus. Previously we reported that a bean yellow dwarf virus (BeYDV)-derived, three-component DNA replicon system allows rapid production of single recombinant proteins in plants (Huang et al. 2009). In this article, we report further development of this expression system for its application in high-yield production of oligomeric protein complexes including monoclonal antibodies (mAbs) in plants. We showed that the BeYDV replicon system permits simultaneous efficient replication of two DNA replicons and thus, high-level accumulation of two recombinant proteins in the same plant cell. We also demonstrated that a single vector that contains multiple replicon cassettes was as efficient as the three-component system in driving the expression of two distinct proteins. Using either the non-competing, three-vector system or the multi-replicon single vector, we produced both the heavy and light chain subunits of a protective IgG mAb 6D8 against Ebola virus GP1 (Wilson et al. 2000) at 0.5 mg of mAb per gram leaf fresh weight within 4 days post infiltration of Nicotiana benthamiana leaves. We further demonstrated that full-size tetrameric IgG complex containing two heavy and two light chains was efficiently assembled and readily purified, and retained its functionality in specific binding to inactivated Ebola virus. Thus, our single-vector replicon system provides high-yield production capacity for heterooligomeric proteins, yet eliminates the difficult task of identifying non-competing virus and the need for co-infection of multiple expression modules. The multi-replicon vector represents a significant advance in transient expression technology for

  5. A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system

    PubMed Central

    Huang, Lihong; Liu, Shukai; Zang, Fuyu; Xing, Jinchao; Zhang, Youyue; Liang, Jiaqi; Zhang, Guihong

    2017-01-01

    In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study, we described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health. This JEV DNA-based replicon contains a large deletion in the structural genes (C-prM-E). A PRRSV GP5/M was inserted into the deletion position of JEV DNA-based replicons to develop a chimeric replicon vaccine candidate for PRRSV. The results showed that BALB/c mice models with the replicon vaccines pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M stimulated antibody responses and induced a cellular immune response. Analysis of ELSA data showed that vaccination with the replicon vaccine expressing GP5/M induced a better antibodies response than traditional DNA vaccines. Therefore, the results suggested that this ectopic expression system based on JEV DNA-based replicons may represent a useful molecular platform for various biological applications, and the JEV DNA-based replicons expressing GP5/M can be further developed into a novel, safe vaccine candidate for PRRS. PMID:28740748

  6. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    PubMed

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    PubMed

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.

  8. Effects of activated aflatoxin B/sub 1/ and caffeine on DNA replicon initiation in HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, P.; Painter, R.B.

    1981-01-01

    Afatoxin B/sub 1/ (AFB/sub 1/) is activated by a rat microsomal extract (S-9) to form a product that inhibits DNA synthesis in HeLa cells. At 10/sup -7/ M, AFB/sub 1/ inhibited initiation of replicons, as shown in alkaline sucrose gradient profiles 30 min after incubation with the drug. Ninety minutes later, the profile of treated cells was similar to that of control, but 4 h later there was another effect on replicon initiation. At 10/sup -6/ M, the inhibition of initiation was greater than at 10/sup -7/ M and increased progressively. Four hours after removal of the drug, the gradientmore » profile showed low amounts of radioactivity in all size classes of DNA. When cells were incubated in medium containing caffeine (2 mM) even as late as 60 min after incubation with AFB/sub 1/, the inhibition of replicon initiation was prevented. If caffeine was later removed from the medium, replicon initiation was then inhibited. At 10/sup -7/ M or 10/sup -6/ M, AFB/sub 1/ had little immediate effect on chain elongation, but at 10/sup -5/ M, the gradient profiles showed an accumulation of low molecular weight DNA molecules, with no radioactivity in the region of high molecular weight DNA, owing to a block to chain elongation; this was not affected by caffeine. These results suggest that AFB/sub 1/ induces damage that changes the fonformation of chromatin so that initiation of new replicons cannot occur; in the presence of caffeine this change does not occur and DNA replication is not inhibited.« less

  9. Production of single-round infectious chimeric flaviviruses with DNA-based Japanese encephalitis virus replicon.

    PubMed

    Suzuki, Ryosuke; Ishikawa, Tomohiro; Konishi, Eiji; Matsuda, Mami; Watashi, Koichi; Aizaki, Hideki; Takasaki, Tomohiko; Wakita, Takaji

    2014-01-01

    A method for rapid production of single-round infectious particles (SRIPs) of flavivirus would be useful for viral mutagenesis studies. Here, we established a DNA-based production system for SRIPs of flavivirus. We constructed a Japanese encephalitis virus (JEV) subgenomic replicon plasmid, which lacked the C-prM-E (capsid-pre-membrane-envelope) coding region, under the control of the cytomegalovirus promoter. When the JEV replicon plasmid was transiently co-transfected with a JEV C-prM-E expression plasmid into 293T cells, SRIPs were produced, indicating successful trans-complementation with JEV structural proteins. Equivalent production levels were observed when C and prM-E proteins were provided separately. Furthermore, dengue types 1-4, West Nile, yellow fever or tick-borne encephalitis virus prM-E proteins could be utilized for production of chimaeric flavivirus SRIPs, although the production was less efficient for dengue and yellow fever viruses. These results indicated that our plasmid-based system is suitable for investigating the life cycles of flaviviruses, diagnostic applications and development of safer vaccine candidates.

  10. West Nile virus infectious replicon particles generated using a packaging-restricted cell line is a safe reporter system.

    PubMed

    Li, Wei; Ma, Le; Guo, Li-Ping; Wang, Xiao-Lei; Zhang, Jing-Wei; Bu, Zhi-Gao; Hua, Rong-Hong

    2017-06-12

    West Nile virus (WNV) is a neurotropic pathogen which causes zoonotic disease in humans. Recently, there have been an increasing number of infected cases and there are no clinically approved vaccines or effective drugs to treat WNV infections in humans. The purpose of this study was to facilitate vaccine and antiviral drug discovery by developing a packaging cell line-restricted WNV infectious replicon particle system. We constructed a DNA-based WNV replicon lacking the C-prM-E coding region and replaced it with a GFP coding sequence. To produce WNV replicon particles, cell lines stably-expressing prM-E and C-prM-E were constructed. When the WNV replicon plasmid was co-transfected with a WNV C-expressing plasmid into the prM-E-expressing cell line or directly transfected the C-prM-E expressing cell line, the replicon particle was able to replicate, form green fluorescence foci, and exhibit cytopathic plaques similar to that induced by the wild type virus. The infectious capacity of the replicon particles was restricted to the packaging cell line as the replicons demonstrated only one round of infection in other permissive cells. Thus, this system provides a safe and convenient reporter WNV manipulating tool which can be used to study WNV viral invasion mechanisms, neutralizing antibodies and antiviral efficacy.

  11. Development of an infectious clone and replicon system of norovirus GII.4.

    PubMed

    Oliveira, L M; Blawid, R; Orílio, A F; Andrade, B Y G; Souza, A C A; Nagata, T

    2018-08-01

    Human norovirus (HuNoV) is one of the main causes of acute gastroenteritis worldwide and is responsible for at least 20% of all cases. The detailed molecular mechanism of this norovirus remains unknown due to the lack of a suitable in vitro culturing system. An infectious clone of HuNoV would be a useful tool for elucidating the processes of viral infection and the mechanisms of replication. We developed an infectious cDNA clone of HuNoV using the rapid technique of Gibson Assembly. The complete genome of the HuNoV GII.4 Sydney subtype was cloned into a previously modified pcDNA3.1-based plasmid vector downstream from a cytomegaloviral promoter. We monitored the viral infection in vitro by inserting the reporter gene of the green fluorescent protein (GFP) between the NTPase and p22 genes, also by Gibson Assembly, to construct a HuNoV-GFP replicon. Human Caco-2 cells were transfected with the full-length genomic clone and the replicon containing GFP. The gene encoding the VP1/VP2 capsid protein was expressed, which was indirect evidence of the synthesis of subgenomic RNAs and thus the negative strand of the genome. We successfully constructed the infectious clone and its replicon containing GFP for the HuNoV GII.4 Sydney subtype, a valuable tool that will help the study of noroviral infection and replication. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Bean Yellow Dwarf Virus replicons for high-level transgene expression in transgenic plants and cell cultures.

    PubMed

    Zhang, Xiuren; Mason, Hugh

    2006-02-05

    A novel stable transgenic plant expression system was developed using elements of the replication machinery of Bean Yellow Dwarf Virus (BeYDV). The system contains two transgenes: 1) The BeYDV replicon vector with an expression cassette flanked by cis-acting DNA elements of BeYDV, and 2) The viral replication initiator protein (Rep) controlled by an alcohol-inducible promoter. When Rep expression was triggered by treatment with ethanol, it induced release of the BeYDV replicon from stably integrated T-DNA and episomal replication to high copy number. Replicon amplification resulted in substantially increased transgene mRNA levels (up to 80-fold) and translation products (up to 10-fold) after induction of Rep expression by ethanol treatment in tobacco NT1 cells and leaves of whole potato plants. Thus, the BeYDV stable transformant replicon system is a powerful tool for plant-based production of recombinant proteins. (c) 2005 Wiley Periodicals, Inc.

  13. Alphavirus replicon approach to promoterless analysis of IRES elements.

    PubMed

    Kamrud, K I; Custer, M; Dudek, J M; Owens, G; Alterson, K D; Lee, J S; Groebner, J L; Smith, J F

    2007-04-10

    Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.

  14. Alphavirus Replicon Approach to Promoterless Analysis of IRES Elements

    PubMed Central

    Kamrud, K.I.; Custer, M.; Dudek, J.M.; Owens, G.; Alterson, K.D.; Lee, J.S.; Groebner, J.L.; Smith, J.F.

    2007-01-01

    Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (Family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced > 95 % compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in-vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development. PMID:17156813

  15. Targeted mutagenesis of dengue virus type 2 replicon RNA by yeast in vivo recombination.

    PubMed

    Manzano, Mark; Padmanabhan, Radhakrishnan

    2014-01-01

    The use of cDNA infectious clones or subgenomic replicons is indispensable in studying flavivirus biology. Mutating nucleotides or amino acid residues gives important clues to their function in the viral life cycle. However, a major challenge to the establishment of a reverse genetics system for flaviviruses is the instability of their nucleotide sequences in Escherichia coli. Thus, direct cloning using conventional restriction enzyme-based procedures usually leads to unwanted rearrangements of the construct. In this chapter, we discuss a cloning strategy that bypasses traditional cloning procedures. We take advantage of the observations from previous studies that (1) unstable sequences in bacteria can be cloned in eukaryotic systems and (2) Saccharomyces cerevisiae has a well-studied genetics system to introduce sequences using homologous recombination. We describe a protocol to perform targeted mutagenesis in a subgenomic dengue virus 2 replicon. Our method makes use of homologous recombination in yeast using a linearized replicon and a PCR product containing the desired mutation. Constructs derived from this method can be propagated in E. coli with improved stability. Thus, yeast in vivo recombination provides an excellent strategy to genetically engineer flavivirus infectious clones or replicons because this system is compatible with inherently unstable sequences of flaviviruses and is not restricted by the limitations of traditional cloning procedures.

  16. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules

    PubMed Central

    Bardaji, Leire; Añorga, Maite; Ruiz-Masó, José A.; del Solar, Gloria; Murillo, Jesús

    2017-01-01

    Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities. PMID:28243228

  17. RNA Replicon Delivery via Lipid-Complexed PRINT Protein Particles

    PubMed Central

    Xu, Jing; Luft, J. Christopher; Yi, Xianwen; Tian, Shaomin; Owens, Gary; Wang, Jin; Johnson, Ashley; Berglund, Peter; Smith, Jonathan; Napier, Mary E.; DeSimone, Joseph M.

    2013-01-01

    Herein we report the development of a non-viral lipid-complexed PRINT® (particle replication in non-wetting templates) protein particle system (LPP particle) for RNA replicon delivery with a view towards RNA replicon-based vaccination. Cylindrical bovine serum albumin (BSA) particles (diameter (d) 1 µm, height (h) 1 µm) loaded with RNA replicon and stabilized with a fully reversible disulfide cross-linker were fabricated using PRINT technology. Highly efficient delivery of the particles to Vero cells was achieved by complexing particles with a mixture of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids. Our data suggest that: 1) this lipid-complexed protein particle is a promising system for delivery of RNA replicon-based vaccines, and 2) it is necessary to use a degradable cross-linker for successful delivery of RNA replicon via protein-based particles. PMID:23924216

  18. Suppression of initiation defects of chromosome replication in Bacillus subtilis dnaA and oriC-deleted mutants by integration of a plasmid replicon into the chromosomes.

    PubMed

    Hassan, A K; Moriya, S; Ogura, M; Tanaka, T; Kawamura, F; Ogasawara, N

    1997-04-01

    We constructed Bacillus subtilis strains in which chromosome replication initiates from the minimal replicon of a plasmid isolated from Bacillus natto, independently of oriC. Integration of the replicon in either orientation at the proA locus (115 degrees on the genetic map) suppressed the temperature-sensitive phenotype caused by a mutation in dnaA, a gene required for initiation of replication from oriC. In addition, in a strain with the plasmid replicon integrated into the chromosome, we were able to delete sequences required for oriC function. These strains were viable but had a slower growth rate than the oriC+ strains. Marker frequency analysis revealed that both pyrD and metD, genes close to proA, showed the highest values among the markers (genes) measured, and those of other markers decreased symmetrically with distance from the site of the integration (proA). These results indicated that the integrated plasmid replicon operated as a new and sole origin of chromosome replication in these strains and that the mode of replication was bidirectional. Interestingly, these mutants produced anucleate cells at a high frequency (about 40% in exponential culture), and the distribution of chromosomes in the cells was irregular. A change in the site and mechanism (from oriC to a plasmid system) of initiation appears to have resulted in a drastic alteration in coordination between chromosome replication and chromosome partition or cell division.

  19. Abacavir coadministration does not interfere with the suppressive activity of ribavirin in an HCV replicon system.

    PubMed

    Van den Eynde, Eva; Quer, Josep; Cubero, María; Curran, Adriá; Homs, María; Garcia-Cehic, Damir; Falco, Vicenç; Ribera, Esteban; Esteban, Juan I; Pahissa, Albert; Crespo, Manuel

    2011-01-01

    HCV is a major cause of morbidity and mortality in HIV-coinfected patients. Several observational studies have suggested that HCV response to pegylated interferon and ribavirin is lower in HIV-coinfected patients treated with abacavir. It has been postulated that abacavir could compete with ribavirin to be phosphorylated, leading to a reduction in the active form of the drug (triphosphorylated ribavirin). Here, we studied the effect of abacavir, tenofovir or lamivudine addition on the suppressive activity of ribavirin in an HCV RNA replicon system. We used the human hepatoma HuH-7 cell clone 9B containing the HCV genotype 1b replicon I389/NS3-3'. Cells were treated for 24 h with ribavirin (0, 10 and 50 μM) plus abacavir, tenofovir or lamivudine at doses of 0, 10 and 50 μM and HCV RNA production was quantified by real-time PCR in triplicate assays. Results were expressed as mean±SD of the HCV RNA produced per cell (log(10) IU/cell). Means were compared using the Student's t-test. Ribavirin treatment produced a dose-dependent suppression of HCV RNA production by the replicon system. Combination of ribavirin and interferon resulted in an additive antiviral activity. The addition of abacavir did not modify the suppressive activity of ribavirin on the replicon HCV RNA expression. Similar results were obtained when ribavirin was used in combination with tenofovir or lamivudine. In a subgenomic HCV RNA replicon system, the antiviral effect of ribavirin was not modified by the addition of abacavir, tenofovir or lamivudine. © 2011 International Medical Press

  20. Construction and applications of yellow fever virus replicons.

    PubMed

    Jones, Christopher T; Patkar, Chinmay G; Kuhn, Richard J

    2005-01-20

    Subgenomic replicons of yellow fever virus (YFV) were constructed to allow expression of heterologous reporter genes in a replication-dependent manner. Expression of the antibiotic resistance gene neomycin phosphotransferase II (Neo) from one of these YFV replicons allowed selection of a stable population of cells (BHK-REP cells) in which the YFV replicon persistently replicated. BHK-REP cells were successfully used to trans-complement replication-defective YFV replicons harboring large internal deletions within either the NS1 or NS3 proteins. Although replicons with large deletions in either NS1 or NS3 were trans-complemented in BHK-REP, replicons that contained deletions of NS3 were trans-complemented at lower levels. In addition, replicons that retained the N-terminal protease domain of NS3 in cis were trans-complemented with higher efficiency than replicons in which both the protease and helicase domains of NS3 were deleted. To study packaging of YFV replicons, Sindbis replicons were constructed that expressed the YFV structural proteins in trans. Using these Sindbis replicons, both replication-competent and trans-complemented, replication-defective YFV replicons could be packaged into pseudo-infectious particles (PIPs). Although these results eliminate a potential role of either NS1 or full-length NS3 in cis for packaging and assembly of the flavivirus virion, they do not preclude the possibility that these proteins may act in trans during these processes.

  1. Mucosal and systemic adjuvant activity of alphavirus replicon particles

    NASA Astrophysics Data System (ADS)

    Thompson, Joseph M.; Whitmore, Alan C.; Konopka, Jennifer L.; Collier, Martha L.; Richmond, Erin M. B.; Davis, Nancy L.; Staats, Herman F.; Johnston, Robert E.

    2006-03-01

    Vaccination represents the most effective control measure in the fight against infectious diseases. Local mucosal immune responses are critical for protection from, and resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen delivery typically fails to induce mucosal immune responses. However, we demonstrate in this article that mucosal immune responses are evident at multiple mucosal surfaces after parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA replication is the trigger for this activity. We feel that these observations and the continued experimentation they stimulate will ultimately define the specific components of an alternative pathway for the induction of mucosal immunity, and if the activity is evident in humans, will enable new possibilities for safe and inexpensive subunit and inactivated vaccines. vaccine vector | Venezuelan equine encephalitis virus | viral immunology | RNA virus

  2. RNA replicons - a new approach for influenza virus immunoprophylaxis.

    PubMed

    Zimmer, Gert

    2010-02-01

    RNA replicons are derived from either positive- or negative-strand RNA viruses. They represent disabled virus vectors that are not only avirulent, but also unable to revert to virulence. Due to autonomous RNA replication, RNA replicons are able to drive high level, cytosolic expression of recombinant antigens stimulating both the humoral and the cellular branch of the immune system. This review provides an update on the available literature covering influenza virus vaccines based on RNA replicons. The pros and cons of these vaccine strategies will be discussed and future perspectives disclosed.

  3. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1)

    PubMed Central

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-01-01

    Background A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. Methods The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3′end of the reporter gene and the VP2 start sequence to allow co-translational ‘cleavage’ of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Results Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. Conclusion NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication. PMID:29379384

  4. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1).

    PubMed

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-12-01

    A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

  5. An oral Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus delivered by Escherichia coli elicits immune responses in dogs.

    PubMed

    Dahiya, S S; Saini, M; Kumar, P; Gupta, P K

    2011-01-01

    A Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus (CPV) was delivered by Escherichia coli to elicit immune responses. The orally immunized dogs developed CPV-specific serum IgG and virus neutralizing antibody responses. The cellular immune responses analyzed using lymphocyte proliferation test and flow cytometry indicated CPV-specific sensitization of both CD3+CD4+ and CD3+CD8+ lymphocytes. This study demonstrated that the oral CPV DNA vaccine delivered by E. coli can be considered as a promising approach for vaccination of dogs against CPV.

  6. Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine.

    PubMed

    Knudsen, Maria L; Mbewe-Mvula, Alice; Rosario, Maximillian; Johansson, Daniel X; Kakoulidou, Maria; Bridgeman, Anne; Reyes-Sandoval, Arturo; Nicosia, Alfredo; Ljungberg, Karl; Hanke, Tomás; Liljeström, Peter

    2012-04-01

    Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.

  7. ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity†

    PubMed Central

    Dubarry, Nelly; Pasta, Franck; Lane, David

    2006-01-01

    Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromosomes and one low-copy-number plasmid. A single parAB locus and a set of ParB-binding (parS) centromere sites are located near the origin of each replicon. ParA and ParB of the longest chromosome are phylogenetically similar to analogues in other multichromosome and monochromosome bacteria but are distinct from those of smaller chromosomes. The latter form subgroups that correspond to the taxa of their hosts, indicating evolution from plasmids. The parS sites on the smaller chromosomes and the plasmid are similar to the “universal” parS of the main chromosome but with a sequence specific to their replicon. In an Escherichia coli plasmid stabilization test, each parAB exhibits partition activity only with the parS of its own replicon. Hence, parABS function is based on the independent partition of individual chromosomes rather than on a single communal system or network of interacting systems. Stabilization by the smaller chromosome and plasmid systems was enhanced by mutation of parS sites and a promoter internal to their parAB operons, suggesting autoregulatory mechanisms. The small chromosome ParBs were found to silence transcription, a property relevant to autoregulation. PMID:16452432

  8. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Min; Guangxi Center for Animal Disease Control and Prevention, Nanning 530001; College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AALmore » and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.« less

  9. Orderly Replication and Segregation of the Four Replicons of Burkholderia cenocepacia J2315

    PubMed Central

    Kamgoué, Alain; Murray, Heath; Pasta, Franck

    2016-01-01

    Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315). It comprises an extra replicon (c2) of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1), another extra replicon(c3) of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the choreography of

  10. Hepatitis C virus replicons: dinosaurs still in business?

    PubMed Central

    Woerz, I; Lohmann, V; Bartenschlager, R

    2009-01-01

    Since the molecular cloning of the hepatitis C virus (HCV) genome for the first time in 1989, there has been tremendous progress in our understanding of the multiple facets of the replication cycle of this virus. Key to this progress has been the development of systems to propagate the virus in cell culture, which turned out to be a notoriously difficult task. A major breakthrough has been the construction of subgenomic replicons that self-amplify in cultured human hepatoma cells. These RNAs recapitulate the intracellular steps of the HCV replication cycle and have been instrumental to decipher details of the RNA amplification steps including the identification of key host cell factors. However, reproduction of the complete viral replication cycle only became possible with the advent of a particular molecular HCV clone designated JFH-1 that replicates to very high levels and supports the production of infectious virus particles. The availability of this new culture system raises the question, whether the use of replicons is still justified. In this review, we will discuss the pros and cons of both systems.

  11. Plasmid Replicon Typing of Commensal and Pathogenic Escherichia coli Isolates▿

    PubMed Central

    Johnson, Timothy J.; Wannemuehler, Yvonne M.; Johnson, Sara J.; Logue, Catherine M.; White, David G.; Doetkott, Curt; Nolan, Lisa K.

    2007-01-01

    Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations. PMID:17277222

  12. Construction and characterization of poliovirus subgenomic replicons.

    PubMed

    Kaplan, G; Racaniello, V R

    1988-05-01

    Poliovirus RNAs containing in-frame deletions within the capsid-coding region were produced by in vitro transcription of altered poliovirus type 1 cDNA by using bacteriophage T7 RNA polymerase. Three RNAs were transcribed that contained deletions of 2,317 nucleotides (bases 747 to 3064), 1,781 nucleotides (bases 1,175 to 2,956), and 1,295 nucleotides (bases 1,175 to 2,470). All three subgenomic RNAs replicated after transfection into HeLa cells, demonstrating that sequences encoding the capsid polypeptides are not essential for viral RNA replication in vivo. Viral RNA containing the largest deletion (R1) replicated approximately three times better than full-length RNA produced in vitro. Northern blot (RNA blot) hybridization analysis of total cellular RNA from HeLa cells at different times after transfection with R1 demonstrated the presence of increasing amounts of the expected 5.1-kilobase subgenomic RNA. Analysis by immunoprecipitation of viral proteins induced after transfection of R1 RNA into HeLa cells revealed the presence of proteins 2Apro, 2C, and 3Dpol and its precursors, suggesting that the polyprotein cleavages are similar to those occurring in virus-infected cells. Replication of P2/Lansing virion RNA was inhibited by cotransfection with the R1 replicon, as demonstrated by hybridization analysis with a serotype-specific oligonucleotide probe. A higher level of inhibition of RNA replication was observed when P2/Lansing RNA was cotransfected into HeLa cells with truncated R1 transcripts (R1-PvuII) that were missing 395 3' nucleotides and a poly(A) tail. These internally and terminally deleted RNAs inhibited the replication of subgenomic replicons R1, R2, and R3 and caused a reduction in plaque size when cotransfected with P1/Mahoney or P2/Lansing viral RNA, suggesting that individual cells had received both RNAs. No inhibition of plaque size was observed when replicon RNAs were used that were missing 1,384 or 1,839 3' nucleotides or contained plasmid

  13. Transient Expression of Lumbrokinase (PI239) in Tobacco (Nicotiana tabacum) Using a Geminivirus-Based Single Replicon System Dissolves Fibrin and Blood Clots.

    PubMed

    Dickey, Alexia; Wang, Nan; Cooper, Edwin; Tull, Lauren; Breedlove, Drew; Mason, Hugh; Liu, Dehu; Wang, Kevin Yueju

    2017-01-01

    Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239) was produced from a plant system. Both wild-type (WT) and plant codon-optimized (OP) PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum) leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.

  14. The replication domain model: regulating replicon firing in the context of large-scale chromosome architecture.

    PubMed

    Pope, Benjamin D; Gilbert, David M

    2013-11-29

    The "Replicon Theory" of Jacob, Brenner, and Cuzin has reliably served as the paradigm for regulating the sites where individual replicons initiate replication. Concurrent with the replicon model was Taylor's demonstration that plant and animal chromosomes replicate segmentally in a defined temporal sequence, via cytologically defined units too large to be accounted for by a single replicon. Instead, there seemed to be a program to choreograph when chromosome units replicate during S phase, executed by initiation at clusters of individual replicons within each segment. Here, we summarize recent molecular evidence for the existence of such units, now known as "replication domains", and discuss how the organization of large chromosomes into structural units has added additional layers of regulation to the original replicon model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. EVIDENCE FOR THE CHROMOSOMAL REPLICONS AS UNITS OF SISTER CHROMATID EXCHANGES

    EPA Science Inventory

    Current hypotheses of sister chromatid exchange (SCE) formation postulate that sites of SCE induction are associated with active replicons or replicon clusters. We have applied the FCC-SCD technique to in vivo studies of mouse bone marrow cells that have been treated with cycloph...

  16. Analysis of rubella virus capsid protein-mediated enhancement of replicon replication and mutant rescue.

    PubMed

    Tzeng, Wen-Pin; Matthews, Jason D; Frey, Teryl K

    2006-04-01

    The rubella virus capsid protein (C) has been shown to complement a lethal deletion (termed deltaNotI) in P150 replicase protein. To investigate this phenomenon, we generated two lines of Vero cells that stably expressed either C (C-Vero cells) or C lacking the eight N-terminal residues (Cdelta8-Vero cells), a construct previously shown to be unable to complement DeltaNotI. In C-Vero cells but not Vero or Cdelta8-Vero cells, replication of a wild-type (wt) replicon expressing the green fluorescent protein (GFP) reporter gene (RUBrep/GFP) was enhanced, and replication of a replicon with deltaNotI (RUBrep/GFP-deltaNotI) was rescued. Surprisingly, replicons with deleterious mutations in the 5' and 3' cis-acting elements were also rescued in C-Vero cells. Interestingly, the Cdelta8 construct localized to the nucleus while the C construct localized in the cytoplasm, explaining the lack of enhancement and rescue in Cdelta8-Vero cells since rubella virus replication occurs in the cytoplasm. Enhancement and rescue in C-Vero cells were at a basic step in the replication cycle, resulting in a substantial increase in the accumulation of replicon-specific RNAs. There was no difference in translation of the nonstructural proteins in C-Vero and Vero cells transfected with the wt and mutant replicons, demonstrating that enhancement and rescue were not due to an increase in the efficiency of translation of the transfected replicon transcripts. In replicon-transfected C-Vero cells, C and the P150 replicase protein associated by coimmunoprecipitation, suggesting that C might play a role in RNA replication, which could explain the enhancement and rescue phenomena. A unifying model that accounts for enhancement of wt replicon replication and rescue of diverse mutations by the rubella virus C protein is proposed.

  17. Hepatitis C virus RNA elimination and development of resistance in replicon cells treated with BMS-790052.

    PubMed

    Wang, Chunfu; Huang, Haichang; Valera, Lourdes; Sun, Jin-Hua; O'Boyle, Donald R; Nower, Peter T; Jia, Lingling; Qiu, Dike; Huang, Xin; Altaf, Aneela; Gao, Min; Fridell, Robert A

    2012-03-01

    BMS-790052, a first-in-class hepatitis C virus (HCV) replication complex inhibitor, targeting nonstructural protein 5A (NS5A), displays picomolar to nanomolar potency against genotypes 1 to 5. This exceptional potency translated into robust anti-HCV activity in clinical studies with HCV genotype 1-infected subjects. To date, all BMS-790052-associated resistance mutations have mapped to the N-terminal region of NS5A. To further characterize the antiviral activity of BMS-790052, HCV replicon elimination and colony formation assays were performed. Replicon was cleared from genotype 1a and 1b replicon cells in a time- and dose-dependent manner. Elimination of the genotype 1a replicon required longer treatment durations and higher concentrations of BMS-790052 than those for the genotype1b replicon. Single amino acid substitutions that conferred relatively low levels of resistance were observed at early time points and at low doses. Higher doses and longer treatment durations yielded mutations that conferred greater levels of resistance, including linked amino acid substitutions. Replicon cells that survived inhibitor treatment remained fully sensitivity to pegylated alpha interferon (pegIFN-α) and other HCV inhibitors. Moreover, genotype 1a replicon elimination was markedly enhanced when pegIFN-α and BMS-790052 were combined. Resistant variants observed in this study were very similar to those observed in a multiple ascending dose (MAD) monotherapy trial of BMS-790052, validating replicon elimination studies as a model to predict clinical resistance. Insights gained from the in vitro anti-HCV activity and resistance profiles of BMS-790052 will be used to help guide the clinical development of this novel HCV inhibitor.

  18. Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice.

    PubMed

    Boylan, Brendan T; Moreira, Fernando R; Carlson, Tim W; Bernard, Kristen A

    2017-02-01

    Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses.

  19. Inhibition of protease-inhibitor resistant hepatitis C virus replicons and infectious virus by intracellular intrabodies

    PubMed Central

    Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran

    2015-01-01

    Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-transfected cells. Here we show that anti-NS3 scFvs suppress HCV RNA replication when expressed intracellularly in Huh7 hepatoma cells bearing either subgenomic or genome-length HCV RNA replicons. The expression of intrabodies directed against NS3 inhibited the autonomous amplification of HCV replicons resistant to small molecule inhibitors of the NS3/4A protease, and replicons derived from different HCV genotypes. The combination of intrabodies and interferon-α had an additive inhibitory effect on RNA replication in the replicon model. Intrabody expression also inhibited production of infectious HCV in a cell culture system. The NS3 protease activity was inhibited by the intrabodies in NS3-expressing cells. In contrast, cell-free synthesis of HCV RNA by preformed replicase complexes was not inhibited by intrabodies, suggesting that the major mode of inhibition of viral replication is inhibition of NS3/4A protease activity and subsequent suppression of viral polyprotein processing. PMID:20705106

  20. Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome.

    PubMed

    diCenzo, George C; Wellappili, Deelaka; Golding, G Brian; Finan, Turlough M

    2018-05-04

    Integration of newly acquired genes into existing regulatory networks is necessary for successful horizontal gene transfer (HGT). Ten percent of bacterial species contain at least two DNA replicons over 300 kilobases in size, with the secondary replicons derived predominately through HGT. The Sinorhizobium meliloti genome is split between a 3.7 Mb chromosome, a 1.7 Mb chromid consisting largely of genes acquired through ancient HGT, and a 1.4 Mb megaplasmid consisting primarily of recently acquired genes. Here, RNA-sequencing is used to examine the transcriptional consequences of massive, synthetic genome reduction produced through the removal of the megaplasmid and/or the chromid. Removal of the pSymA megaplasmid influenced the transcription of only six genes. In contrast, removal of the chromid influenced expression of ∼8% of chromosomal genes and ∼4% of megaplasmid genes. This was mediated in part by the loss of the ETR DNA region whose presence on pSymB is due to a translocation from the chromosome. No obvious functional bias among the up-regulated genes was detected, although genes with putative homologs on the chromid were enriched. Down-regulated genes were enriched in motility and sensory transduction pathways. Four transcripts were examined further, and in each case the transcriptional change could be traced to loss of specific pSymB regions. In particularly, a chromosomal transporter was induced due to deletion of bdhA likely mediated through 3-hydroxybutyrate accumulation. These data provide new insights into the evolution of the multipartite bacterial genome, and more generally into the integration of horizontally acquired genes into the transcriptome. Copyright © 2018 diCenzo, et al.

  1. Tandem repeats of the 5' non-transcribed spacer of Tetrahymena rDNA function as high copy number autonomous replicons in the macronucleus but do not prevent rRNA gene dosage regulation.

    PubMed Central

    Pan, W J; Blackburn, E H

    1995-01-01

    The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number. Images PMID:7784211

  2. Construction and cellular immune response induction of HA-based alphavirus replicon vaccines against human-avian influenza (H5N1).

    PubMed

    Yang, Shi-gui; Wo, Jian-er; Li, Min-wei; Mi, Fen-fang; Yu, Cheng-bo; Lv, Guo-liang; Cao, Hong-Cui; Lu, Hai-feng; Wang, Bao-hong; Zhu, Hanping; Li, Lan-Juan

    2009-12-09

    Several approaches are being taken worldwide to develop vaccines against H5N1 viruses; most of them, however, pose both practical and immunological challenges. One potential strategy for improving the immunogenicity of vaccines involves the use of alphavirus replicons and VP22, a herpes simplex type 1 (HSV-1) protein. In this study, we analysed the antigenic peptides and homogeneity of the HA sequences (human isolates of the H5N1 subtype, from 1997 to 2003) and explored a novel alphavirus replicon system of VP22 fused with HA, to assess whether the immunogenicity of an HA-based replicon vaccine could be induced and augmented via fusion with VP22. Further, replicon particles expressing VP22, and enhanced green fluorescent protein (EGFP) were individually used as controls. Cellular immune responses in mice immunised with replicons were evaluated by identifying specific intracellular cytokine production with flow cytometry (FCM). Animal-based experimentation indicated that both the IL-4 expression of CD4(+) T cells and the IFN-gamma expression of CD8(+) T cells were significantly increased in mice immunised with VPR-HA and VPR-VP22/HA. A dose titration effect vis-à-vis both IL-4 expression and IFN-gamma expression were observed in VPR-HA- and VPR-VP22/HA-vaccinated mice. Our results revealed that both VPR-VP22/HA and VPR-HA replicon particles presented a promising approach for developing vaccines against human-avian influenza, and VP22 could enhance the immunogenicity of the HA antigens to which it is fused.

  3. 5′ and 3′ Untranslated Regions Strongly Enhance Performance of Geminiviral Replicons in Nicotiana benthamiana Leaves

    PubMed Central

    Diamos, Andrew G.; Rosenthal, Sun H.; Mason, Hugh S.

    2016-01-01

    We previously reported a recombinant protein production system based on a geminivirus replicon that yields high levels of vaccine antigens and monoclonal antibodies in plants. The bean yellow dwarf virus (BeYDV) replicon generates massive amounts of DNA copies, which engage the plant transcription machinery. However, we noticed a disparity between transcript level and protein production, suggesting that mRNAs could be more efficiently utilized. In this study, we systematically evaluated genetic elements from human, viral, and plant sources for their potential to improve the BeYDV system. The tobacco extensin terminator enhanced transcript accumulation and protein production compared to other commonly used terminators, indicating that efficient transcript processing plays an important role in recombinant protein production. Evaluation of human-derived 5′ untranslated regions (UTRs) indicated that many provided high levels of protein production, supporting their cross-kingdom function. Among the viral 5′ UTRs tested, we found the greatest enhancement with the tobacco mosaic virus omega leader. An analysis of the 5′ UTRs from the Arabidopsis thaliana and Nicotinana benthamiana photosystem I K genes found that they were highly active when truncated to include only the near upstream region, providing a dramatic enhancement of transgene production that exceeded that of the tobacco mosaic virus omega leader. The tobacco Rb7 matrix attachment region inserted downstream from the gene of interest provided significant enhancement, which was correlated with a reduction in plant cell death. Evaluation of Agrobacterium strains found that EHA105 enhanced protein production and reduced cell death compared to LBA4301 and GV3101. We used these improvements to produce Norwalk virus capsid protein at >20% total soluble protein, corresponding to 1.8 mg/g leaf fresh weight, more than twice the highest level ever reported in a plant system. We also produced the monoclonal antibody

  4. Ordering the mob: Insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids.

    PubMed

    Orlek, Alex; Phan, Hang; Sheppard, Anna E; Doumith, Michel; Ellington, Matthew; Peto, Tim; Crook, Derrick; Walker, A Sarah; Woodford, Neil; Anjum, Muna F; Stoesser, Nicole

    2017-05-01

    Plasmid typing can provide insights into the epidemiology and transmission of plasmid-mediated antibiotic resistance. The principal plasmid typing schemes are replicon typing and MOB typing, which utilize variation in replication loci and relaxase proteins respectively. Previous studies investigating the proportion of plasmids assigned a type by these schemes ('typeability') have yielded conflicting results; moreover, thousands of plasmid sequences have been added to NCBI in recent years, without consistent annotation to indicate which sequences represent complete plasmids. Here, a curated dataset of complete Enterobacteriaceae plasmids from NCBI was compiled, and used to assess the typeability and concordance of in silico replicon and MOB typing schemes. Concordance was assessed at hierarchical replicon type resolutions, from replicon family-level to plasmid multilocus sequence type (pMLST)-level, where available. We found that 85% and 65% of the curated plasmids could be replicon and MOB typed, respectively. Overall, plasmid size and the number of resistance genes were significant independent predictors of replicon and MOB typing success. We found some degree of non-concordance between replicon families and MOB types, which was only partly resolved when partitioning plasmids into finer-resolution groups (replicon and pMLST types). In some cases, non-concordance was attributed to ambiguous boundaries between MOBP and MOBQ types; in other cases, backbone mosaicism was considered a more plausible explanation. β-lactamase resistance genes tended not to show fidelity to a particular plasmid type, though some previously reported associations were supported. Overall, replicon and MOB typing schemes are likely to continue playing an important role in plasmid analysis, but their performance is constrained by the diverse and dynamic nature of plasmid genomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. A novel reverse genetics system for production of infectious West Nile virus using homologous recombination in mammalian cells.

    PubMed

    Kobayashi, Shintaro; Yoshii, Kentaro; Hirano, Minato; Muto, Memi; Kariwa, Hiroaki

    2017-02-01

    Reverse genetics systems facilitate investigation of many aspects of the life cycle and pathogenesis of viruses. However, genetic instability in Escherichia coli has hampered development of a reverse genetics system for West Nile virus (WNV). In this study, we developed a novel reverse genetics system for WNV based on homologous recombination in mammalian cells. Introduction of the DNA fragment coding for the WNV structural protein together with a DNA-based replicon resulted in the release of infectious WNV. The growth rate and plaque size of the recombinant virus were almost identical to those of the parent WNV. Furthermore, chimeric WNV was produced by introducing the DNA fragment coding for the structural protein and replicon plasmid derived from various strains. Here, we report development of a novel system that will facilitate research into WNV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dual Role of DNA in Regulating ATP Hydrolysis by the SopA Partition Protein*

    PubMed Central

    Ah-Seng, Yoan; Lopez, Frederic; Pasta, Franck; Lane, David; Bouet, Jean-Yves

    2009-01-01

    In bacteria, mitotic stability of plasmids and many chromosomes depends on replicon-specific systems, which comprise a centromere, a centromere-binding protein and an ATPase. Dynamic self-assembly of the ATPase appears to enable active partition of replicon copies into cell-halves, but for Walker-box partition ATPases the molecular mechanism is unknown. ATPase activity appears to be essential for this process. DNA and centromere-binding proteins are known to stimulate the ATPase activity but molecular details of the stimulation mechanism have not been reported. We have investigated the interactions which stimulate ATP hydrolysis by the SopA partition ATPase of plasmid F. By using SopA and SopB proteins deficient in DNA binding, we have found that the intrinsic ability of SopA to hydrolyze ATP requires direct DNA binding by SopA but not by SopB. Our results show that two independent interactions of SopA act in synergy to stimulate its ATPase. SopA must interact with (i) DNA, through its ATP-dependent nonspecific DNA binding domain and (ii) SopB, which we show here to provide an arginine-finger motif. In addition, the latter interaction stimulates ATPase maximally when SopB is part of the partition complex. Hence, our data demonstrate that DNA acts on SopA in two ways, directly as nonspecific DNA and through SopB as centromeric DNA, to fully activate SopA ATP hydrolysis. PMID:19740757

  7. Identification of three extra-chromosomal replicons in Leptospira pathogenic strain and development of new shuttle vectors.

    PubMed

    Zhu, Weinan; Wang, Jin; Zhu, Yongzhang; Tang, Biao; Zhang, Yunyi; He, Ping; Zhang, Yan; Liu, Boyu; Guo, Xiaokui; Zhao, Guoping; Qin, Jinhong

    2015-02-15

    The genome of pathogenic Leptospira interrogans contains two chromosomes. Plasmids and prophages are known to play specific roles in gene transfer in bacteria and can potentially serve as efficient genetic tools in these organisms. Although plasmids and prophage remnants have recently been reported in Leptospira species, their characteristics and potential applications in leptospiral genetic transformation systems have not been fully evaluated. Three extrachromosomal replicons designated lcp1 (65,732 bp), lcp2 (56,757 bp), and lcp3 (54,986 bp) in the L. interrogans serovar Linhai strain 56609 were identified through whole genome sequencing. All three replicons were stable outside of the bacterial chromosomes. Phage particles were observed in the culture supernatant of 56609 after mitomycin C induction, and lcp3, which contained phage-related genes, was considered to be an inducible prophage. L. interrogans-Escherichia coli shuttle vectors, constructed with the predicted replication elements of single rep or rep combined with parAB loci from the three plasmids were shown to successfully transform into both saprophytic and pathogenic Leptospira species, suggesting an essential function for rep genes in supporting auto-replication of the plasmids. Additionally, a wide distribution of homologs of the three rep genes was identified in L. interrogans isolates, and correlation tests showed that the transformability of the shuttle vectors in L. interrogans isolates depended, to certain extent, on genetic compatibility between the rep sequences of both plasmid and host. Three extrachromosomal replicons co-exist in L. interrogans, one of which we consider to be an inducible prophage. The vectors constructed with the rep genes of the three replicons successfully transformed into saprophytic and pathogenic Leptospira species alike, but this was partly dependent on genetic compatibility between the rep sequences of both plasmid and host.

  8. Construction of a subgenomic CV-B3 replicon expressing emerald green fluorescent protein to assess viral replication of a cardiotropic enterovirus strain in cultured human cells.

    PubMed

    Wehbe, Michel; Huguenin, Antoine; Leveque, Nicolas; Semler, Bert L; Hamze, Monzer; Andreoletti, Laurent; Bouin, Alexis

    2016-04-01

    Coxsackieviruses B (CV-B) (Picornaviridae) are a common infectious cause of acute myocarditis in children and young adults, a disease, which is a precursor to 10-20% of chronic myocarditis and dilated cardiomyopathy (DCM) cases. The mechanisms involved in the disease progression from acute to chronic myocarditis phase and toward the DCM clinical stage are not fully understood but are influenced by both viral and host factors. Subgenomic replicons of CV-B can be used to assess viral replication mechanisms in human cardiac cells and evaluate the effects of potential antiviral drugs on viral replication activities. Our objectives were to generate a reporter replicon from a cardiotropic prototype CV-B3/28 strain and to characterize its replication properties into human cardiac primary cells. To obtain this replicon, a cDNA plasmid containing the full CV-B3/28 genome flanked by a hammerhead ribozyme sequence and an MluI restriction site was generated and used as a platform for the insertion of sequences encoding emerald green fluorescent protein (EmGFP) in place of those encoding VP3. In vitro transcribed RNA from this plasmid was transfected into HeLa cells and human primary cardiac cells and was able to produce EmGFP and VP1-containing polypeptides. Moreover, non-structural protein biological activity was assessed by the specific cleavage of eIF4G1 by viral 2A(pro). Viral RNA replication was indirectly demonstrated by inhibition assays, fluoxetine was added to cell culture and prevented the EmGFP synthesis. Our results indicated that the EmGFP CV-B3 replicon was able to replicate and translate as well as the CV-B3/28 prototype strain. Our EmGFP CV-B3 replicon will be a valuable tool to readily investigate CV-B3 replication activities in human target cell models. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Replicon-Dependent Differentiation of Symbiosis-Related Genes in Sinorhizobium Strains Nodulating Glycine max

    PubMed Central

    Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Chen, Wen Xin

    2014-01-01

    In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons. PMID:24317084

  10. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max.

    PubMed

    Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Tian, Chang Fu; Chen, Wen Xin

    2014-02-01

    In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.

  11. Identification, Characterization, and Application of the Replicon Region of the Halophilic Temperate Sphaerolipovirus SNJ1.

    PubMed

    Wang, Yuchen; Sima, Linshan; Lv, Jie; Huang, Suiyuan; Liu, Ying; Wang, Jiao; Krupovic, Mart; Chen, Xiangdong

    2016-07-15

    The temperate haloarchaeal virus SNJ1 displays lytic and lysogenic life cycles. During the lysogenic cycle, the virus resides in its host, Natrinema sp. strain J7-1, in the form of an extrachromosomal circular plasmid, pHH205. In this study, a 3.9-kb region containing seven predicted genes organized in two operons was identified as the minimal replicon of SNJ1. Only RepA, encoded by open reading frame 11-12 (ORF11-12), was found to be essential for replication, and its expression increased during the lytic cycle. Sequence analysis suggested that RepA is a distant homolog of HUH endonucleases, a superfamily that includes rolling-circle replication initiation proteins from various viruses and plasmids. In addition to RepA, two genetic elements located within both termini of the 3.9-kb replicon were also required for SNJ1 replication. SNJ1 genome and SNJ1 replicon-based shuttle vectors were present at 1 to 3 copies per chromosome. However, the deletion of ORF4 significantly increased the SNJ1 copy number, suggesting that the product of ORF4 is a negative regulator of SNJ1 abundance. Shuttle vectors based on the SNJ1 replicon were constructed and validated for stable expression of heterologous proteins, both in J7 derivatives and in Natrinema pallidum JCM 8980(T), suggesting their broad applicability as genetic tools for Natrinema species. Archaeal viruses exhibit striking morphological diversity and unique gene content. In this study, the minimal replicon of the temperate haloarchaeal virus SNJ1 was identified. A number of ORFs and genetic elements controlling virus genome replication, maintenance, and copy number were characterized. In addition, based on the replicon, a novel expression shuttle vector has been constructed and validated for protein expression and purification in Natrinema sp. CJ7 and Natrinema pallidum JCM 8980(T) This study not only provided mechanistic and functional insights into SNJ1 replication but also led to the development of useful genetic

  12. Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti

    PubMed Central

    Walker, Graham C.; Finan, Turlough M.; Mengoni, Alessio; Griffitts, Joel S.

    2018-01-01

    Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone. PMID:29672509

  13. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections.

    PubMed

    Yang, Zhenhua; Wu, Rui; Li, Robert W; Li, Ling; Xiong, Zhongliang; Zhao, Haizhong; Guo, Deyin; Pan, Zishu

    2012-04-01

    A trans-complemented chimeric CSF-JE virus replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The CSFV E2 gene was deleted, and a fragment containing the region encoding a truncated envelope protein (tE, amino acid 292-402, domain III) of JE virus (JEV) was inserted into the resultant plasmid, pA187delE2, to generate the recombinant cDNA clone pA187delE2/JEV-tE. Porcine kidney 15 (PK15) cells that constitutively express the CSFV E2p7 proteins were then transfected with in vitro-transcribed RNA from pA187delE2/JEV-tE. As a result, the chimeric CSF-JE virus replicon particle (VRP), rv187delE2/JEV-tE, was rescued. In a mouse model, immunization with the chimeric CSF-JE VRP induced strong production of JEV-specific antibody and conferred protection against a lethal JEV challenge. Pigs immunized with CSF-JE VRP displayed strong anti-CSFV and anti-JEV antibody responses and protection against CSFV and JEV challenge infections. Our evidence suggests that E2-complemented CSF-JE VRP not only has potential as a live-attenuated non-transmissible vaccine candidate against CSF and JE but also serves as a potential DIVA (Differentiating Infected from Vaccinated Animals) vaccine for CSF in pigs. Together, our data suggest that the non-transmissible chimeric VRP expressing foreign antigenic proteins may represent a promising strategy for bivalent DIVA vaccine design. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Alphavirus Replicon DNA Vectors Expressing Ebola GP and VP40 Antigens Induce Humoral and Cellular Immune Responses in Mice

    PubMed Central

    Ren, Shoufeng; Wei, Qimei; Cai, Liya; Yang, Xuejing; Xing, Cuicui; Tan, Feng; Leavenworth, Jianmei W.; Liang, Shaohui; Liu, Wenquan

    2018-01-01

    Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention. PMID:29375526

  15. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways

    PubMed Central

    Leitner, Wolfgang W.; Hwang, Leroy N.; Deveer, Michael J.; Zhou, Aimin; Silverman, Robert H.; Williams, Bryan R.G.; Dubensky, Thomas W.; Ying, Han; Restifo, Nicholas P.

    2006-01-01

    Cancer vaccines targeting ‘self’ antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of protein kinase R. Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2′,5′-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA. PMID:12496961

  16. Proteome Analysis of Liver Cells Expressing a Full- Length Hepatitis C Virus (HCV) Replicon and Biopsy Specimens of Posttransplantation Liver from HCV-Infected Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Jon M.; Diamond, Deborah L.; Chan, Eric Y.

    2005-06-01

    The development of a reproducible model system for the study of Hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full length HCV replicon. We detected > 4,400 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled tomore » mass spectrometry (MS). The set of Huh-7.5 proteins confidently identified is, to our knowledge, the most comprehensive yet reported for a human cell line. Consistent with the literature, a comparison of Huh-7.5 cells (+) and (-) the HCV replicon identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where > 1,500 proteins were detected from 2 {micro}g protein lysate using the Huh-7.5 protein database and the accurate mass and time (AMT) tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.« less

  17. Replicon typing of plasmids encoding resistance to newer beta-lactams.

    PubMed

    Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria

    2006-07-01

    Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems.

  18. Replicon Typing of Plasmids Encoding Resistance to Newer β-Lactams

    PubMed Central

    Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M.; Rossolini, Gian Maria

    2006-01-01

    Polymerase chain reaction–based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  19. Construction and characterization of poliovirus subgenomic replicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, G.; Racaniello, V.R.

    1988-05-01

    Poliovirus RNAs containing in-frame deletions within the capsid-coding region were produced by in vitro transcription of altered poliovirus type 1 cDNA by using bacteriophage T7 RNA polymerase. Three RNAs were transcribed that contained deletions of 2,317 nucleotides (bases 747 to 3,064), 1,781 nucleotides (bases 1,175 to 2,956), and 1,295 nucleotides (bases 1,175 to 2,470). All three subgenomic RNAs replicated after transfection into HeLa cells, demonstrating that sequences encoding the capsid polypeptides are not essential for viral RNA replication in vivo. Viral RNA containing the largest deletion (R1) replicated approximately three times better than full-length RNA produced in vitro. Northern blotmore » (RNA blot) hybridization analysis of total cellular RNA from HeLa cells at different times after transfection with R1 demonstrated the presence of increasing amounts of the expected 5.1-kilobase subgenomic RNA. Analysis by immunoprecipitation of ({sup 35}S-labeled) viral proteins induced after transfection of R1 RNA into HeLa cells revealed the presence of proteins 2A{sup pro}, 2C, and 3D{sup pol} and its precursors, suggesting that the polyprotein cleavages are similar to those occurring in virus-infected cells. These internally and terminally deleted RNAs inhibited the replication of subgenomic replicons R1, R2, and R3 and caused a reduction in plaque size when cotransfected with P1/Mahoney or P2/Lansing viral RNA, suggesting that individual cells had received both RNAs.« less

  20. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida.

    PubMed

    Vincent, Antony T; Emond-Rheault, Jean-Guillaume; Barbeau, Xavier; Attéré, Sabrina A; Frenette, Michel; Lagüe, Patrick; Charette, Steve J

    2016-06-01

    Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids.

  1. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids.

    PubMed

    Weaver, Keith E; Kwong, Stephen M; Firth, Neville; Francia, Maria Victoria

    2009-03-01

    The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multiresistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families.

  2. Alphavirus vector-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins

    PubMed Central

    Wang, Min; Jokinen, Jenny; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S.

    2018-01-01

    Lassa virus (LASV) is the most prevalent rodent-borne arenavirus circulated in West Africa. With population at risk from Senegal to Nigeria, LASV causes Lassa fever and is responsible for thousands of deaths annually. High genetic diversity of LASV is one of the challenges for vaccine R&D. We developed multivalent virus-like particle vectors (VLPVs) derived from the human Venezuelan equine encephalitis TC-83 IND vaccine (VEEV) as the next generation of alphavirus-based bicistronic RNA replicon particles. The genes encoding VEEV structural proteins were replaced with LASV glycoproteins (GPC) from distantly related clades I and IV with individual 26S promoters. Bicistronic RNA replicons encoding wild-type LASV GPC (GPCwt) and C-terminally deleted, non-cleavable modified glycoprotein (ΔGPfib), were encapsidated into VLPV particles using VEEV capsid and glycoproteins provided in trans. In transduced cells, VLPVs induced simultaneous expression of LASV GPCwt and ΔGPfib from 26S alphavirus promoters. LASV ΔGPfib was predominantly expressed as trimers, accumulated in the endoplasmic reticulum, induced ER stress and apoptosis promoting antigen cross-priming. VLPV vaccines were immunogenic and protective in mice and upregulated CD11c+/CD8+ dendritic cells playing the major role in cross-presentation. Notably, VLPV vaccination resulted in induction of cross-reactive multifunctional T cell responses after stimulation of immune splenocytes with peptide cocktails derived from LASV from clades I-IV. Multivalent RNA replicon-based LASV vaccines can be applicable for first responders, international travelers visiting endemic areas, military and lab personnel. PMID:29287681

  3. Agroinoculation of Beet necrotic yellow vein virus cDNA clones results in plant systemic infection and efficient Polymyxa betae transmission.

    PubMed

    Delbianco, Alice; Lanzoni, Chiara; Klein, Elodie; Rubies Autonell, Concepcion; Gilmer, David; Ratti, Claudio

    2013-05-01

    Agroinoculation is a quick and easy method for the infection of plants with viruses. This method involves the infiltration of tissue with a suspension of Agrobacterium tumefaciens carrying binary plasmids harbouring full-length cDNA copies of viral genome components. When transferred into host cells, transcription of the cDNA produces RNA copies of the viral genome that initiate infection. We produced full-length cDNA corresponding to Beet necrotic yellow vein virus (BNYVV) RNAs and derived replicon vectors expressing viral and fluorescent proteins in pJL89 binary plasmid under the control of the Cauliflower mosaic virus 35S promoter. We infected Nicotiana benthamiana and Beta macrocarpa plants with BNYVV by leaf agroinfiltration of combinations of agrobacteria carrying full-length cDNA clones of BNYVV RNAs. We validated the ability of agroclones to reproduce a complete viral cycle, from replication to cell-to-cell and systemic movement and, finally, plant-to-plant transmission by its plasmodiophorid vector. We also showed successful root agroinfection of B. vulgaris, a new tool for the assay of resistance to rhizomania, the sugar beet disease caused by BNYVV. © 2013 BSPP AND BLACKWELL PUBLISHING LTD.

  4. Induction and Characterization of Immune Responses in Small Animals Using a Venezuelan Equine Encephalitis Virus (VEE) Replicon System, Expressing Human Immunodeficiency Virus Type 1 (HIV-1) Envelope Genes

    DTIC Science & Technology

    2003-01-01

    Immunodeficiency Virus Type-1 (HIV-1) Envelope Genes beyond brief excerpts is with permission of the copyright owner, and will save and hold harmless the...VEE) REPLICON SYSTEM, EXPRESSING HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 (HIV-1) ENVELOPE GENES 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...release, distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is the lentivirus responsible for the

  5. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids

    PubMed Central

    Weaver, Keith E.; Kwong, Stephen M.; Firth, Neville; Francia, Maria Victoria

    2009-01-01

    The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multi-resistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families. PMID:19100285

  6. Kunjin Virus Replicon-Based Vaccines Expressing Ebola Virus Glycoprotein GP Protect the Guinea Pig Against Lethal Ebola Virus Infection

    PubMed Central

    Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.

    2011-01-01

    Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742

  7. Development of new plasmid DNA vaccine vectors with R1-based replicons

    PubMed Central

    2012-01-01

    Background There has been renewed interest in biopharmaceuticals based on plasmid DNA (pDNA) in recent years due to the approval of several veterinary DNA vaccines, on-going clinical trials of human pDNA-based therapies, and significant advances in adjuvants and delivery vehicles that have helped overcome earlier efficacy deficits. With this interest comes the need for high-yield, cost-effective manufacturing processes. To this end, vector engineering is one promising strategy to improve plasmid production. Results In this work, we have constructed a new DNA vaccine vector, pDMB02-GFP, containing the runaway R1 origin of replication. The runaway replication phenotype should result in plasmid copy number amplification after a temperature shift from 30°C to 42°C. However, using Escherichia coli DH5α as a host, we observed that the highest yields of pDMB02-GFP were achieved during constant-temperature culture at 30°C, with a maximum yield of approximately 19 mg pDNA/g DCW being observed. By measuring mRNA and protein levels of the R1 replication initiator protein, RepA, we determined that RepA may be limiting pDMB02-GFP yield at 42°C. A mutant plasmid, pDMB-ATG, was constructed by changing the repA start codon from the sub-optimal GTG to ATG. In cultures of DH5α[pDMB-ATG], temperature-induced plasmid amplification was more dramatic than that observed with pDMB02-GFP, and RepA protein was detectable for several hours longer than in cultures of pDMB02-GFP at 42°C. Conclusions Overall, we have demonstrated that R1-based plasmids can produce high yields of high-quality pDNA without the need for a temperature shift, and have laid the groundwork for further investigation of this class of vectors in the context of plasmid DNA production. PMID:22889338

  8. The Third Replicon of Members of the Burkholderia cepacia Complex, Plasmid pC3, Plays a Role in Stress Tolerance

    PubMed Central

    Agnoli, Kirsty; Frauenknecht, Carmen; Freitag, Roman; Schwager, Stephan; Jenul, Christian; Vergunst, Annette; Carlier, Aurelien

    2014-01-01

    The metabolically versatile Burkholderia cepacia complex (Bcc) occupies a variety of niches, including the plant rhizosphere and the cystic fibrosis lung (where it is often fatal to the patient). Bcc members have multipartite genomes, of which the third replicon, pC3 (previously chromosome 3), has been shown to be a nonessential megaplasmid which confers virulence and both antifungal and proteolytic activity on several strains. In this study, pC3 curing was extended to cover strains of 16 of the 17 members of the Bcc, and the phenotypes conferred by pC3 were determined. B. cenocepacia strains H111, MCO-3, and HI2424 were previously cured of pC3; however, this had not proved possible in the epidemic strain K56-2. Here, we investigated the mechanism of this unexpected stability and found that efficient toxin-antitoxin systems are responsible for maintaining pC3 of strain K56-2. Identification of these systems allowed neutralization of the toxins and the subsequent deletion of K56-2pC3. The cured strain was found to exhibit reduced antifungal activity and was attenuated in both the zebrafish and the Caenorhabditis elegans model of infection. We used a PCR screening method to examine the prevalence of pC3 within 110 Bcc isolates and found that this replicon was absent in only four cases, suggesting evolutionary fixation. It is shown that plasmid pC3 increases the resistance of B. cenocepacia H111 to various stresses (oxidative, osmotic, high-temperature, and chlorhexidine-induced stresses), explaining the prevalence of this replicon within the Bcc. PMID:24334662

  9. The DnaA Tale

    PubMed Central

    Hansen, Flemming G.; Atlung, Tove

    2018-01-01

    More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model. PMID:29541066

  10. Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas.

    PubMed

    Boivin, R; Bellemare, G; Dion, P

    1994-01-01

    Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.

  11. Parainfluenza virus chimeric mini-replicons indicate a novel regulatory element in the leader promoter.

    PubMed

    Matsumoto, Yusuke; Ohta, Keisuke; Goto, Hideo; Nishio, Machiko

    2016-07-01

    Gene expression of paramyxoviruses is regulated by genome-encoded cis-acting elements; however, whether all the required elements for viral growth have been identified is not clear. Using a mini-replicon system, it has been shown that human parainfluenza virus type 2 (hPIV2) polymerase can recognize the promoter elements of parainfluenza virus type 5 (PIV5), but reporter activity is lower in this case. We constructed a series of luciferase-encoding chimeric PIV2/5 mini-genomes that are basically hPIV2, but whose leader (le), mRNA start signal and trailer sequence are partially replaced with those of PIV5. Studies of the chimeric PIV2/5 mini-replicons demonstrated that replacement of hPIV2 le with PIV5 le results in remarkably weak luciferase expression. Further mutagenesis identified the responsible region as positions 25-30 of the PIV5 le. Using recombinant hPIV2, the impact of this region on viral life cycles was assessed. Insertion of the mutation at this region facilitated viral growth, genomic replication and mRNA transcription at the early stage of infection, which elicited severe cell damage. In contrast, at the late infection stage it caused a reduction in viral transcription. Here, we identify a novel cis-acting element in the internal region of an le sequence that is involved in the regulation of polymerase, and which contributes to maintaining a balance between viral growth and cytotoxicity.

  12. Characterization of the replication region of the Bacillus subtilis plasmid pLS20: a novel type of replicon.

    PubMed Central

    Meijer, W J; de Boer, A J; van Tongeren, S; Venema, G; Bron, S

    1995-01-01

    A 3.1 kb fragment of the large (approximately 55 kb) Bacillus subtilis plasmid pLS20 containing all the information for autonomous replication was cloned and sequenced. In contrast to the parental plasmid, derived minireplicons were unstably maintained. Using deletion analysis the fragment essential and sufficient for replication was delineated to 1.1 kb. This 1.1 kb fragment is located between two divergently transcribed genes, denoted orfA and orfB, neither of which is required for replication. orfA shows homology to the B.subtilis chromosomal genes rapA (spoOL, gsiA) and rapB (spoOP). The 1.1 kb fragment, which is characterized by the presence of several regions of dyad symmetry, contains no open reading frames of more than 85 codons and shows no similarity with other known plasmid replicons. The structural organization of the pLS20 minimal replicon is entirely different from that of typical rolling circle plasmids from Gram-positive bacteria. The pLS20 minireplicons replicate in polA5 and recA4 B.subtilis strains. Taken together, these results strongly suggest that pLS20 belongs to a new class of theta replicons. PMID:7667098

  13. Antimicrobial susceptibility and plasmid replicon typing of Salmonella enterica serovar Kentucky isolates recovered from broilers

    USDA-ARS?s Scientific Manuscript database

    Salmonella Kentucky has become the predominate serotype recovered from broiler slaughter in the United States and the prevalence of antimicrobial resistance (AMR) has increased dramatically in this serotype. Relationships between AMR, genotype, and plasmid replicon types were characterized for 600 ...

  14. Antiviral Activity and Resistance Analysis of NS3/4A Protease Inhibitor Grazoprevir and NS5A Inhibitor Elbasvir in Hepatitis C Virus GT4 Replicons.

    PubMed

    Asante-Appiah, Ernest; Curry, Stephanie; McMonagle, Patricia; Ingravallo, Paul; Chase, Robert; Nickle, David; Qiu, Ping; Howe, Anita; Lahser, Frederick C

    2017-07-01

    Although genotype 4 (GT4)-infected patients represent a minor overall percentage of the global hepatitis C virus (HCV)-infected population, the high prevalence of the genotype in specific geographic regions coupled with substantial sequence diversity makes it an important genotype to study for antiviral drug discovery and development. We evaluated two direct-acting antiviral agents-grazoprevir, an HCV NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor-in GT4 replicons prior to clinical studies in this genotype. Following a bioinformatics analysis of available GT4 sequences, a set of replicons bearing representative GT4 clinical isolates was generated. For grazoprevir, the 50% effective concentration (EC 50 ) against the replicon bearing the reference GT4a (ED43) NS3 protease and NS4A was 0.7 nM. The median EC 50 for grazoprevir against chimeric replicons encoding NS3/4A sequences from GT4 clinical isolates was 0.2 nM (range, 0.11 to 0.33 nM; n = 5). The difficulty in establishing replicons bearing NS3/4A resistance-associated substitutions was substantially overcome with the identification of a G162R adaptive substitution in NS3. Single NS3 substitutions D168A/V identified from de novo resistance selection studies reduced grazoprevir antiviral activity by 137- and 47-fold, respectively, in the background of the G162R replicon. For elbasvir, the EC 50 against the replicon bearing the reference full-length GT4a (ED43) NS5A gene was 0.0002 nM. The median EC 50 for elbasvir against chimeric replicons bearing clinical isolates from GT4 was 0.0007 nM (range, 0.0002 to 34 nM; n = 14). De novo resistance selection studies in GT4 demonstrated a high propensity to suppress the emergence of amino acid substitutions that confer high-potency reductions to elbasvir. Phenotypic characterization of the NS5A amino acid substitutions identified (L30F, L30S, M31V, and Y93H) indicated that they conferred 15-, 4-, 2.5-, and 7.5-fold potency losses, respectively, to elbasvir

  15. Cohesin organizes chromatin loops at DNA replication factories

    PubMed Central

    Guillou, Emmanuelle; Ibarra, Arkaitz; Coulon, Vincent; Casado-Vela, Juan; Rico, Daniel; Casal, Ignacio; Schwob, Etienne; Losada, Ana; Méndez, Juan

    2010-01-01

    Genomic DNA is packed in chromatin fibers organized in higher-order structures within the interphase nucleus. One level of organization involves the formation of chromatin loops that may provide a favorable environment to processes such as DNA replication, transcription, and repair. However, little is known about the mechanistic basis of this structuration. Here we demonstrate that cohesin participates in the spatial organization of DNA replication factories in human cells. Cohesin is enriched at replication origins and interacts with prereplication complex proteins. Down-regulation of cohesin slows down S-phase progression by limiting the number of active origins and increasing the length of chromatin loops that correspond with replicon units. These results give a new dimension to the role of cohesin in the architectural organization of interphase chromatin, by showing its participation in DNA replication. PMID:21159821

  16. Replicating DNA by cell factories: roles of central carbon metabolism and transcription in the control of DNA replication in microbes, and implications for understanding this process in human cells

    PubMed Central

    2013-01-01

    Precise regulation of DNA replication is necessary to ensure the inheritance of genetic features by daughter cells after each cell division. Therefore, determining how the regulatory processes operate to control DNA replication is crucial to our understanding and application to biotechnological processes. Contrary to early concepts of DNA replication, it appears that this process is operated by large, stationary nucleoprotein complexes, called replication factories, rather than by single enzymes trafficking along template molecules. Recent discoveries indicated that in bacterial cells two processes, central carbon metabolism (CCM) and transcription, significantly and specifically influence the control of DNA replication of various replicons. The impact of these discoveries on our understanding of the regulation of DNA synthesis is discussed in this review. It appears that CCM may influence DNA replication by either action of specific metabolites or moonlighting activities of some enzymes involved in this metabolic pathway. The role of transcription in the control of DNA replication may arise from either topological changes in nucleic acids which accompany RNA synthesis or direct interactions between replication and transcription machineries. Due to intriguing similarities between some prokaryotic and eukaryotic regulatory systems, possible implications of studies on regulation of microbial DNA replication on understanding such a process occurring in human cells are discussed. PMID:23714207

  17. Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groom, Joseph; Chung, Daehwan; Olson, Daniel G.

    2016-01-29

    Clostridium thermocellum is a leading candidate for the consolidated bioprocessing of lignocellulosic biomass for the production of fuels and chemicals. A limitation to the engineering of this strain is the availability of stable replicating plasmid vectors for homologous and heterologous expression of genes that provide improved and/or novel pathways for fuel production. Current vectors relay on replicons from mesophilic bacteria and are not stable at the optimum growth temperature of C. thermocellum. To develop more thermostable genetic tools for C. thermocellum, we constructed vectors based on the hyperthermophilic Caldicellulosiruptor bescii replicon pBAS2. Autonomously replicating shuttle vectors based on pBAS2 reproduciblymore » transformed C. thermocellum at 60 °C and were maintained in multiple copy. Promoters, selectable markers and plasmid replication proteins from C. bescii were functional in C. thermocellum. Phylogenetic analyses of the proteins contained on pBAS2 revealed that the replication initiation protein RepL is unique among thermophiles. Lastly, these results suggest that pBAS2 may be a broadly useful replicon for other thermophilic Firmicutes.« less

  18. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression

    PubMed Central

    Löb, D.; Lengert, N.; Chagin, V. O.; Reinhart, M.; Casas-Delucchi, C. S.; Cardoso, M. C.; Drossel, B.

    2016-01-01

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase. PMID:27052359

  19. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression.

    PubMed

    Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B

    2016-04-07

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.

  20. Chromosomal DNA replication in higher plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van't Hof, J.; Bjerknes, C.A.

    1979-01-01

    Replicon-size estimations from DNA fiber autoradiograms must always be considered with the limits of resolution in mind. However, data from yeast obtained by autoradiography and electron-microscopy gave similar average sizes in the 20 to 30 ..mu..m range. These sizes are in agreement with those of C. capillaris observed in the present work, with those of Pisum sativum and Helianthus annuus, and with those of four other unrelated plant species. The curious fact that higher plants and yeast have replicons of about the same size raises the question of whether or not all members of the plant kingdom share this commonmore » statistic. Higher plants appear to have a common replicon size, and they also have a slower fork rate than either bacteria or mammalian cells when grown at optimal temperatures. Even at 38/sup 0/ sunflower (Helianthus annuus) root meristem cells have a fork rate a little less than 12 ..mu..m per hour. On the other hand, at about the same temperature, the rate is approximately 800 ..mu..m per hour in bacteria, and in mammalian cells it ranges from 30 to 60 ..mu..m per hour. Current data from higher plants show that they have a range in fork rate from 6 to 12 ..mu..m per hour. The lower rates observed among higher plants are similar to and more often less than those reported for the amphibians Triturus and Xenopus and that of fatheat minnow cells. Therefore, higher plants and cold-blooded animals commonly share the characteristic of a relatively low replication fork rate.« less

  1. Diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) is synthesized in response to DNA damage and inhibits the initiation of DNA replication.

    PubMed

    Marriott, Andrew S; Copeland, Nikki A; Cunningham, Ryan; Wilkinson, Mark C; McLennan, Alexander G; Jones, Nigel J

    2015-09-01

    The level of intracellular diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70-80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible self-replicating RNAs: In vivo synthesised heterologous (alien) RNA constructs are capable of initiating self-replication following transmission to the host organism.

    PubMed

    Kochetov, Alex V

    2014-12-01

    Artificial genetic constructs that direct the synthesis of self-replicating RNA molecules are used widely to induce gene silencing, for bioproduction, and for vaccination. Interestingly, one variant of the self-replicon has not been discussed in the literature: namely, transgenic organisms that synthesise alien replicons. For example, plant cells may be easily genetically modified to produce bacteriophages or insect viruses. Alien replicon-producing organisms (ARPOs) may serve as a unique tool for biocontrol or to selectively influence the characteristics of a target organism. The ARPO approach would have to meet strict biosafety criteria, and its practical applications are problematic. However, a discussion on ARPO applicability would be valuable to outline the full set of options available in the bioengineering toolbox. In this paper, RNA replicons for bioengineering are reviewed briefly, and the ARPO approach is discussed. © 2014 WILEY Periodicals, Inc.

  3. Molecular characterization of the pSinB plasmid of the arsenite oxidizing, metallotolerant Sinorhizobium sp. M14 - insight into the heavy metal resistome of sinorhizobial extrachromosomal replicons.

    PubMed

    Romaniuk, Krzysztof; Dziewit, Lukasz; Decewicz, Przemyslaw; Mielnicki, Sebastian; Radlinska, Monika; Drewniak, Lukasz

    2017-01-01

    Sinorhizobium sp. M14 is an As(III)-oxidizing, psychrotolerant strain, capable of growth in the presence of extremely high concentrations of arsenic and many other heavy metals. Metallotolerant abilities of the M14 strain depend upon the presence of two extrachromosomal replicons: pSinA (∼ 109 kb) and pSinB (∼ 300 kb). The latter was subjected to complex analysis. The performed analysis demonstrated that the plasmid pSinB is a narrow-host-range repABC-type replicon, which is fully stabilized by the phd-vapC-like toxin-antitoxin stabilizing system. In silico analysis showed that among the phenotypic gene clusters of the plasmid pSinB, eight modules are potentially involved in heavy metals resistance (HMR). These modules carry genes encoding efflux pumps, permeases, transporters and copper oxidases, which provide resistance to arsenic, cadmium, cobalt, copper, iron, mercury, nickel, silver and zinc. The functional analysis revealed that the HMR modules are active and have an effect on the minimal inhibitory concentration (MIC) values observed for the heterological host cells. The phenotype was manifested by an increase or decrease of the MICs of heavy metals and it was strain specific. The analysis of distribution of the heavy metal resistance genes, i.e. resistome, in Sinorhizobium spp. plasmids, revealed that the HMR modules are common in these replicons. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Hepatitis C Virus Nucleotide Inhibitors PSI-352938 and PSI-353661 Exhibit a Novel Mechanism of Resistance Requiring Multiple Mutations within Replicon RNA▿†

    PubMed Central

    Lam, Angela M.; Espiritu, Christine; Bansal, Shalini; Micolochick Steuer, Holly M.; Zennou, Veronique; Otto, Michael J.; Furman, Phillip A.

    2011-01-01

    PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine-5′-monophosphate. Both compounds are metabolized to the same active 5′-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2′-substituted nucleoside/nucleotide analogs. PSI-352666 was also similarly active against both wild-type and S282T NS5B polymerases. In order to identify mutations that confer resistance to these compounds, in vitro selection studies were performed using HCV replicon cells. While no resistant genotype 1a or 1b replicons could be selected, cells containing genotype 2a JFH-1 replicons cultured in the presence of PSI-352938 or PSI-353661 developed resistance to both compounds. Sequencing of the NS5B region identified a number of amino acid changes, including S15G, R222Q, C223Y/H, L320I, and V321I. Phenotypic evaluation of these mutations indicated that single amino acid changes were not sufficient to significantly reduce the activity of PSI-352938 and PSI-353661. Instead, a combination of three amino acid changes, S15G/C223H/V321I, was required to confer a high level of resistance. No cross-resistance exists between the 2′-F-2′-C-methylguanosine prodrugs and other classes of HCV inhibitors, including 2′-modified nucleoside/-tide analogs such as PSI-6130, PSI-7977, INX-08189, and IDX-184. Finally, we determined that in genotype 1b replicons, the C223Y/H mutation failed to support replication, and although the A15G/C223H/V321I triple mutation did confer resistance to PSI-352938 and PSI-353661, this mutant replicated at only about 10% efficiency compared to the wild type. PMID:21957306

  5. Protective immune responses in guinea pigs and swine induced by a suicidal DNA vaccine of the capsid gene of swine vesicular disease virus.

    PubMed

    Sun, Shi-Qi; Liu, Xiang-Tao; Guo, Hui-Chen; Yin, Shuang-Hui; Shang, You-Jun; Feng, Xia; Liu, Zai-Xin; Xie, Qing-Ge

    2007-03-01

    A suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon was evaluated for the development of a vaccine against swine vesicular disease virus (SVDV). The 1BCD gene of SVDV was cloned and inserted into pSCA1, an SFV DNA-based replicon vector. The resultant plasmid, pSCA/1BCD, was transfected into BHK-21 cells and the antigenicity of the expressed protein was confirmed using an indirect immunofluorescence assay. Immunogenicity was studied in guinea pigs and swine. Animals were injected intramuscularly three times with pSCA/1BCD at regular intervals. Anti-SVDV antibodies were detected by ELISA, the lymphocyte proliferation response was tested by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide method and neutralizing antibodies were measured by microneutralization tests. The data showed that SVDV-specific antibodies, neutralizing antibodies and lymphocyte proliferation were induced in both guinea pigs and swine. Furthermore, after three successive vaccinations with pSCA/1BCD, half of the pigs were protected against challenge with SVDV. These results should encourage further work towards the development of a DNA vaccine against SVDV.

  6. Initiation of DNA replication: functional and evolutionary aspects

    PubMed Central

    Bryant, John A.; Aves, Stephen J.

    2011-01-01

    Background The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. Scope This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. Conclusions In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form ‘hetero-complexes’ (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence. PMID:21508040

  7. Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus

    PubMed Central

    Herbert, Andrew S.; Kuehne, Ana I.; Barth, James F.; Ortiz, Ramon A.; Nichols, Donald K.; Zak, Samantha E.; Stonier, Spencer W.; Muhammad, Majidat A.; Bakken, Russell R.; Prugar, Laura I.; Olinger, Gene G.; Groebner, Jennifer L.; Lee, John S.; Pratt, William D.; Custer, Max; Kamrud, Kurt I.; Smith, Jonathan F.; Hart, Mary Kate

    2013-01-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine. PMID:23408633

  8. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus.

    PubMed

    Herbert, Andrew S; Kuehne, Ana I; Barth, James F; Ortiz, Ramon A; Nichols, Donald K; Zak, Samantha E; Stonier, Spencer W; Muhammad, Majidat A; Bakken, Russell R; Prugar, Laura I; Olinger, Gene G; Groebner, Jennifer L; Lee, John S; Pratt, William D; Custer, Max; Kamrud, Kurt I; Smith, Jonathan F; Hart, Mary Kate; Dye, John M

    2013-05-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.

  9. Genes for 2,4,5-Trichlorophenoxyacetic Acid Metabolism in Burkholderia cepacia AC1100: Characterization of the tftC and tftD Genes and Locations of the tft Operons on Multiple Replicons

    PubMed Central

    Hübner, Anette; Danganan, Clyde E.; Xun, Luying; Chakrabarty, A. M.; Hendrickson, William

    1998-01-01

    Burkholderia cepacia AC1100 uses the chlorinated aromatic compound 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a sole source of carbon and energy. The enzyme which converts the first intermediate in the pathway, 2,4,5-trichlorophenol, to 5-chlorohydroquinone has been purified and consists of two subunits of 58 and 22 kDa, encoded by the tftC and tftD genes (48). A degenerate primer was designed from the N terminus of the 58-kDa polypeptide and used to isolate a clone containing the tftC and tftD genes from a genomic library of AC1100. The derived amino acid sequences of tftC and tftD show significant homology to the two-component monooxygenases HadA of Burkholderia pickettii, HpaBC of Escherichia coli, and HpaAH of Klebsiella pneumonia. Expression of the tftC and tftD genes appeared to be induced when they were grown in the presence of 2,4,5-T, as shown by RNA slot blot and primer extension analyses. Three sets of cloned tft genes were used as probes to explore the genomic organization of the pathway. Pulsed-field gel electrophoresis analyses of whole chromosomes of B. cepacia AC1100 demonstrated that the genome is comprised of five replicons of 4.0, 2.7, 0.53, 0.34, and 0.15 Mbp, designated I to V, respectively. The tft genes are located on the smaller replicons: the tftAB cluster is on replicon IV, tftEFGH is on replicon III, and copies of the tftC and the tftCD operons are found on both replicons III and IV. When cells were grown in the absence of 2,4,5-T, the genes were lost at high frequency by chromosomal deletions and rearrangements to produce 2,4,5-T-negative mutants. In one mutant, the tftA and tftB genes translocated from one replicon to another, with the concomitant loss of tftEFGH and one copy of tftCD. PMID:9603818

  10. DNA Replication and Cell Cycle Progression Regulatedby Long Range Interaction between Protein Complexes bound to DNA.

    PubMed

    Matsson, L

    2001-12-01

    A nonstationary interaction that controlsDNA replication and the cell cycle isderived from many-body physics in achemically open T cell. The model predictsa long range force F'(ξ) =- (κ/2) ξ(1 - ξ)(2 - ξ)between thepre-replication complexes (pre-RCs) boundby the origins in DNA, ξ = ϕ/N being the relativedisplacement of pre-RCs, ϕ the number of pre-RCs, N the number of replicons to be replicated,and κ the compressibilitymodulus in the lattice of pre-RCs whichbehaves dynamically like an elasticallybraced string. Initiation of DNAreplication is induced at the thresholdϕ = N by a switch ofsign of F''(ξ), fromattraction (-) and assembly in the G(1) phase (0<ϕreplicons havebeen duplicated once. F'(0) = 0corresponds to a resting cell in theabsence of driving force at ϕ= 0. The model thus ensures that the DNAcontent in G(2) cells is exactlytwice that of G(1) cells. The switch of interaction at the R-point, at which N pre-RCs have been assembled, starts the release of Rb protein thus also explaining the shift in the Rb phosphorylation from mitogen-dependent cyclinD to mitogen-independent cyclin E.Shape,slope and scale of the response curvesderived agree well with experimental datafrom dividing T cells and polymerising MTs,the variable length of which is due to anonlinear dependence of the growthamplitude on the initial concentrations oftubulin dimers and guanosine-tri-phosphate(GTP). The model also explains the dynamic instabilityin growing MTs.

  11. FaSTR DNA: a new expert system for forensic DNA analysis.

    PubMed

    Power, Timothy; McCabe, Brendan; Harbison, Sally Ann

    2008-06-01

    The automation of DNA profile analysis of reference and crime samples continues to gain pace driven in part by a realisation by the criminal justice system of the positive impact DNA technology can have in aiding in the solution of crime and the apprehension of suspects. Expert systems to automate the profile analysis component of the process are beginning to be developed. In this paper, we report the validation of a new expert system FaSTR DNA, an expert system suitable for the analysis of DNA profiles from single source reference samples and from crime samples. We compare the performance of FaSTR DNA with that of other equivalent systems, GeneMapper ID v3.2 (Applied Biosystems, Foster City, CA) and FSS-i(3) v4 (The Forensic Science Service((R)) DNA expert System Suite FSS-i(3), Forensic Science Service, Birmingham, UK) with GeneScan Analysis v3.7/Genotyper v3.7 software (Applied Biosystems, Foster City, CA, USA) with manual review. We have shown that FaSTR DNA provides an alternative solution to automating DNA profile analysis and is appropriate for implementation into forensic laboratories. The FaSTR DNA system was demonstrated to be comparable in performance to that of GeneMapper ID v3.2 and superior to that of FSS-i(3) v4 for the analysis of DNA profiles from crime samples.

  12. Occurrence of 20S RNA and 23S RNA replicons in industrial yeast strains and their variation under nutritional stress conditions.

    PubMed

    López, Victoria; Gil, Rosario; Vicente Carbonell, José; Navarro, Alfonso

    2002-04-01

    We have characterized industrial yeast strains used in the brewing, baking, and winemaking industries for the presence or absence of cytoplasmic single-stranded 20S and 23S RNAs. Furthermore, the variation of intracellular concentrations of these replicons in brewing and laboratory strains under nutritional stress conditions was determined. Our results show a correlation between the relative abundance of these replicons and exposure of yeast to nutritionally stressful conditions, indicating that these RNAs could be employed as molecular probes to evaluate the exposure of 20S(+) and/or 23S(+) yeast strains to stress situations during industrial manipulation. During this study, several 20S(-)23S(+) Saccharomyces cerevisiae strains were isolated and identified. This is the first time that a yeast strain containing only 23S RNA has been reported, demonstrating that 20S RNA is not required for 23S RNA replication. Copyright 2002 John Wiley & Sons, Ltd.

  13. TC83 replicon vectored vaccine provides protection against Junin virus in guinea pigs.

    PubMed

    Seregin, Alexey V; Yun, Nadezhda E; Poussard, Allison L; Peng, Bi-Hung; Smith, Jennifer K; Smith, Jeanon N; Salazar, Milagros; Paessler, Slobodan

    2010-07-05

    Junin virus (JUNV) is the etiological agent of the potentially lethal, reemerging human disease, Argentine hemorrhagic fever (AHF). The mechanism of the disease development is not well understood and no antiviral therapy is available. Candid 1, a live-attenuated vaccine, has been developed by the US Army and is being used in the endemic area to prevent AHF. This vaccine is only approved for use in Argentina. In this study we have used the alphavirus-based approach to engineer a replicon system based on a human (United States Food and Drug Administration Investigational New Drug status) vaccine TC83 that express heterologous viral antigens, such as glycoproteins (GPC) of Junin virus (JUNV). Preclinical studies testing the immunogenicity and efficacy of TC83/GPC were performed in guinea pigs. A single dose of the live-attenuated alphavirus based vaccine expressing only GPC was immunogenic and provided partial protection, while a double dose of the same vaccine provided a complete protection against JUNV. This is the first scientific report to our knowledge that the immune response against GPC alone is sufficient to prevent lethal disease against JUNV in an animal model. Copyright 2010. Published by Elsevier Ltd.

  14. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce

    PubMed Central

    Lai, Huafang; He, Junyun; Engle, Michael; Diamond, Michael S.; Chen, Qiang

    2011-01-01

    Summary Pharmaceutical protein production in plants has been greatly promoted by the development of viral-based vectors and transient expression systems. Tobacco and related Nicotiana species are currently the most common host plants for generation of plant-made pharmaceutical proteins (PMPs). Downstream processing of target PMPs from these plants, however, is hindered by potential technical and regulatory difficulties due to the presence of high levels of phenolics and toxic alkaloids. Here, we explored the use of lettuce, which grows quickly yet produces low levels of secondary metabolites, and viral vector-based transient expression systems to develop a robust PMP production platform. Our results showed that a geminiviral replicon system based on the bean yellow dwarf virus permits high-level expression in lettuce of virus-like particles (VLP) derived from the Norwalk virus capsid protein and therapeutic monoclonal antibodies (mAbs) against Ebola and West Nile viruses. These vaccine and therapeutic candidates can be readily purified from lettuce leaves with scalable processing methods while fully retaining functional activity. Furthermore, this study also demonstrated the feasibility of using commercially produced lettuce for high-level PMP production. This allows our production system to have access to unlimited quantities of inexpensive plant material for large-scale production. These results establish a new production platform for biological pharmaceutical agents that is effective, safe, low-cost, and amenable to large-scale manufacturing. PMID:21883868

  15. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility

    PubMed Central

    Chain, Patrick S. G.; Denef, Vincent J.; Konstantinidis, Konstantinos T.; Vergez, Lisa M.; Agulló, Loreine; Reyes, Valeria Latorre; Hauser, Loren; Córdova, Macarena; Gómez, Luis; González, Myriam; Land, Miriam; Lao, Victoria; Larimer, Frank; LiPuma, John J.; Mahenthiralingam, Eshwar; Malfatti, Stephanie A.; Marx, Christopher J.; Parnell, J. Jacob; Ramette, Alban; Richardson, Paul; Seeger, Michael; Smith, Daryl; Spilker, Theodore; Sul, Woo Jun; Tsoi, Tamara V.; Ulrich, Luke E.; Zhulin, Igor B.; Tiedje, James M.

    2006-01-01

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven “central aromatic” and twenty “peripheral aromatic” pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes. PMID:17030797

  16. Burkholderia xernovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chain, Patrick S. G.; Denef, Vincent; Konstantinidis, Konstantinos T

    2006-01-01

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome sizemore » varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven 'central aromatic' and twenty 'peripheral aromatic' pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.« less

  17. Self-replicating Replicon-RNA Delivery to Dendritic Cells by Chitosan-nanoparticles for Translation In Vitro and In Vivo

    PubMed Central

    McCullough, Kenneth C; Bassi, Isabelle; Milona, Panagiota; Suter, Rolf; Thomann-Harwood, Lisa; Englezou, Pavlos; Démoulins, Thomas; Ruggli, Nicolas

    2014-01-01

    Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements—slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein. PMID:25004099

  18. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector

    PubMed Central

    Werner, Stefan; Breus, Oksana; Symonenko, Yuri; Marillonnet, Sylvestre; Gleba, Yuri

    2011-01-01

    We describe here a unique ethanol-inducible process for expression of recombinant proteins in transgenic plants. The process is based on inducible release of viral RNA replicons from stably integrated DNA proreplicons. A simple treatment with ethanol releases the replicon leading to RNA amplification and high-level protein production. To achieve tight control of replicon activation and spread in the uninduced state, the viral vector has been deconstructed, and its two components, the replicon and the cell-to-cell movement protein, have each been placed separately under the control of an inducible promoter. Transgenic Nicotiana benthamiana plants incorporating this double-inducible system demonstrate negligible background expression, high (over 0.5 × 104-fold) induction multiples, and high absolute levels of protein expression upon induction (up to 4.3 mg/g fresh biomass). The process can be easily scaled up, supports expression of practically important recombinant proteins, and thus can be directly used for industrial manufacturing. PMID:21825158

  19. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    PubMed

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316T–A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae

    PubMed Central

    Bartling, Pascal; Brinkmann, Henner; Bunk, Boyke; Overmann, Jörg; Göker, Markus; Petersen, Jörn

    2017-01-01

    A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia. PMID:28983283

  1. The archaeal Ced system imports DNA

    PubMed Central

    van Wolferen, Marleen; Wagner, Alexander; van der Does, Chris; Albers, Sonja-Verena

    2016-01-01

    The intercellular transfer of DNA is a phenomenon that occurs in all domains of life and is a major driving force of evolution. Upon UV-light treatment, cells of the crenarchaeal genus Sulfolobus express Ups pili, which initiate cell aggregate formation. Within these aggregates, chromosomal DNA, which is used for the repair of DNA double-strand breaks, is exchanged. Because so far no clear homologs of bacterial DNA transporters have been identified among the genomes of Archaea, the mechanisms of archaeal DNA transport have remained a puzzling and underinvestigated topic. Here we identify saci_0568 and saci_0748, two genes from Sulfolobus acidocaldarius that are highly induced upon UV treatment, encoding a transmembrane protein and a membrane-bound VirB4/HerA homolog, respectively. DNA transfer assays showed that both proteins are essential for DNA transfer between Sulfolobus cells and act downstream of the Ups pili system. Our results moreover revealed that the system is involved in the import of DNA rather than the export. We therefore propose that both Saci_0568 and Saci_0748 are part of a previously unidentified DNA importer. Given the fact that we found this transporter system to be widely spread among the Crenarchaeota, we propose to name it the Crenarchaeal system for exchange of DNA (Ced). In this study we have for the first time to our knowledge described an archaeal DNA transporter. PMID:26884154

  2. Construction of Biologically Functional Bacterial Plasmids In Vitro

    PubMed Central

    Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Helling, Robert B.

    1973-01-01

    The construction of new plasmid DNA species by in vitro joining of restriction endonuclease-generated fragments of separate plasmids is described. Newly constructed plasmids that are inserted into Escherichia coli by transformation are shown to be biologically functional replicons that possess genetic properties and nucleotide base sequences from both of the parent DNA molecules. Functional plasmids can be obtained by reassociation of endonuclease-generated fragments of larger replicons, as well as by joining of plasmid DNA molecules of entirely different origins. Images PMID:4594039

  3. Molecular Smallpox Vaccine Delivered by Alphavirus Replicons Elicits Protective Immunity in Mice and Non-human Primates

    PubMed Central

    Hooper, Jay W.; Ferro, Anthony M.; Golden, Joseph W.; Silvera, Peter; Dudek, Jeanne; Alterson, Kim; Custer, Max; Rivers, Bryan; Morris, John; Owens, Gary; Smith, Jonathan F.; Kamrud, Kurt I.

    2009-01-01

    Naturally occurring smallpox was eradicated as a result of successful vaccination campaigns during the 1960s and 70s. Because of its highly contagious nature and high mortality rate, smallpox has significant potential as a biological weapon. Unfortunately, the current vaccine for orthopoxviruses is contraindicated for large portions of the population. Thus, there is a need for new, safe, and effective orthopoxvirus vaccines. Alphavirus replicon vectors, derived from strains of Venezuelan equine encephalitis virus, are being used to develop alternatives to the current smallpox vaccine. Here, we demonstrated that virus-like replicon particles (VRP) expressing the vaccinia virus A33R, B5R, A27L, and L1R genes elicited protective immunity in mice comparable to vaccination with live-vaccinia virus. Furthermore, cynomolgus macaques vaccinated with a combination of the four poxvirus VRPs (4pox-VRP) developed antibody responses to each antigen. These antibody responses were able to neutralize and inhibit the spread of both vaccinia virus and monkeypox virus. Macaques vaccinated with 4pox-VRP, flu HA VRP (negative control), or live-vaccinia virus (positive control) were challenged intravenously with 5 × 106 PFU of monkeypox virus 1 month after the second VRP vaccination. Four of the six negative control animals succumbed to monkeypox and the remaining two animals demonstrated either severe or grave disease. Importantly, all 10 macaques vaccinated with the 4pox-VRP vaccine survived without developing severe disease. These findings revealed that a single-boost VRP smallpox vaccine shows promise as a safe alternative to the currently licensed live-vaccinia virus smallpox vaccine. PMID:19833247

  4. Large plasmids of Escherichia coli and Salmonella encode highly diverse arrays of accessory genes on common replicon families.

    PubMed

    Williams, Laura E; Wireman, Joy; Hilliard, Valda C; Summers, Anne O

    2013-01-01

    Plasmids are important in evolution and adaptation of host bacteria, yet we lack a comprehensive picture of their own natural variation. We used replicon typing and RFLP analysis to assess diversity and distribution of plasmids in the ECOR, SARA, SARB and SARC reference collections of Escherichia coli and Salmonella. Plasmids, especially large (≥30 kb) plasmids, are abundant in these collections. Host species and genotype clearly impact plasmid prevalence; plasmids are more abundant in ECOR than SAR, but, within ECOR, subgroup B2 strains have the fewest large plasmids. The majority of large plasmids have unique RFLP patterns, suggesting high variation, even within dominant replicon families IncF and IncI1. We found only four conserved plasmid types within ECOR, none of which are widely distributed. Within SAR, conserved plasmid types are primarily serovar-specific, including a pSLT-like plasmid in 13 Typhimurium strains. Conservation of pSLT contrasts with variability of other plasmids, suggesting evolution of serovar-specific virulence plasmids is distinct from that of most enterobacterial plasmids. We sequenced a conserved serovar Heidelberg plasmid but did not detect virulence or antibiotic resistance genes. Our data illustrate the high degree of natural variation in large plasmids of E. coli and Salmonella, even among plasmids sharing backbone genes. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Novel Cell Culture-Adapted Genotype 2a Hepatitis C Virus Infectious Clone

    PubMed Central

    Date, Tomoko; Kato, Takanobu; Kato, Junko; Takahashi, Hitoshi; Morikawa, Kenichi; Akazawa, Daisuke; Murayama, Asako; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi

    2012-01-01

    Although the recently developed infectious hepatitis C virus system that uses the JFH-1 clone enables the study of whole HCV viral life cycles, limited particular HCV strains have been available with the system. In this study, we isolated another genotype 2a HCV cDNA, the JFH-2 strain, from a patient with fulminant hepatitis. JFH-2 subgenomic replicons were constructed. HuH-7 cells transfected with in vitro transcribed replicon RNAs were cultured with G418, and selected colonies were isolated and expanded. From sequencing analysis of the replicon genome, several mutations were found. Some of the mutations enhanced JFH-2 replication; the 2217AS mutation in the NS5A interferon sensitivity-determining region exhibited the strongest adaptive effect. Interestingly, a full-length chimeric or wild-type JFH-2 genome with the adaptive mutation could replicate in Huh-7.5.1 cells and produce infectious virus after extensive passages of the virus genome-replicating cells. Virus infection efficiency was sufficient for autonomous virus propagation in cultured cells. Additional mutations were identified in the infectious virus genome. Interestingly, full-length viral RNA synthesized from the cDNA clone with these adaptive mutations was infectious for cultured cells. This approach may be applicable for the establishment of new infectious HCV clones. PMID:22787209

  6. Virus replicon particles expressing porcine reproductive and respiratory syndrome virus proteins elicit immune priming but do not confer protection from viremia in pigs.

    PubMed

    Eck, Melanie; Durán, Margarita García; Ricklin, Meret E; Locher, Samira; Sarraseca, Javier; Rodríguez, María José; McCullough, Kenneth C; Summerfield, Artur; Zimmer, Gert; Ruggli, Nicolas

    2016-02-19

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.

  7. [DNA extraction from bones and teeth using AutoMate Express forensic DNA extraction system].

    PubMed

    Gao, Lin-Lin; Xu, Nian-Lai; Xie, Wei; Ding, Shao-Cheng; Wang, Dong-Jing; Ma, Li-Qin; Li, You-Ying

    2013-04-01

    To explore a new method in order to extract DNA from bones and teeth automatically. Samples of 33 bones and 15 teeth were acquired by freeze-mill method and manual method, respectively. DNA materials were extracted and quantified from the triturated samples by AutoMate Express forensic DNA extraction system. DNA extraction from bones and teeth were completed in 3 hours using the AutoMate Express forensic DNA extraction system. There was no statistical difference between the two methods in the DNA concentration of bones. Both bones and teeth got the good STR typing by freeze-mill method, and the DNA concentration of teeth was higher than those by manual method. AutoMate Express forensic DNA extraction system is a new method to extract DNA from bones and teeth, which can be applied in forensic practice.

  8. Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice.

    PubMed

    Lee, John S; Groebner, Jennifer L; Hadjipanayis, Angela G; Negley, Diane L; Schmaljohn, Alan L; Welkos, Susan L; Smith, Leonard A; Smith, Jonathan F

    2006-11-17

    The development of multiagent vaccines offers the advantage of eliciting protection against multiple diseases with minimal inoculations over a shorter time span. We report here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease, anthrax; a viral disease, Marburg fever; and against a toxin-mediated disease, botulism. The individual VEE replicon particles (VRP) expressed mature 83-kDa protective antigen (MAT-PA) from Bacillus anthracis, the glycoprotein (GP) from Marburg virus (MBGV), or the H(C) fragment from botulinum neurotoxin (BoNT H(C)). CBA/J mice inoculated with a mixture of VRP expressing BoNT H(C) serotype C (BoNT/C H(C)) and MAT-PA were 80% protected from a B. anthracis (Sterne strain) challenge and then 100% protected from a sequential BoNT/C challenge. Swiss mice inoculated with individual VRP or with mixtures of VRP vaccines expressing BoNT H(C) serotype A (BoNT/A H(C)), MAT-PA, and MBGV-GP produced antibody responses specific to the corresponding replicon-expressed protein. Combination of the different VRP vaccines did not diminish the antibody responses measured for Swiss mice inoculated with formulations of two or three VRP vaccines as compared to mice that received only one VRP vaccine. Swiss mice inoculated with VRP expressing BoNT/A H(C) alone or in combination with VRP expressing MAT-PA and MBGV GP, were completely protected from a BoNT/A challenge. These studies demonstrate the utility of combining individual VRP vaccines into multiagent formulations for eliciting protective immune responses to various types of diseases.

  9. Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming

    PubMed Central

    2014-01-01

    Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols. PMID:24625220

  10. Chromosome-based genetic complementation system for Xylella fastidiosa.

    PubMed

    Matsumoto, Ayumi; Young, Glenn M; Igo, Michele M

    2009-03-01

    Xylella fastidiosa is a xylem-limited, gram-negative bacterium that causes Pierce's disease of grapevine. Here, we describe the construction of four vectors that facilitate the insertion of genes into a neutral site (NS1) in the X. fastidiosa chromosome. These vectors carry a colE1-like (pMB1) replicon and DNA sequences from NS1 flanking a multiple-cloning site and a resistance marker for one of the following antibiotics: chloramphenicol, erythromycin, gentamicin, or kanamycin. In X. fastidiosa, vectors with colE1-like (pMB1) replicons have been found to result primarily in the recovery of double recombinants rather than single recombinants. Thus, the ease of obtaining double recombinants and the stability of the resulting insertions at NS1 in the absence of selective pressure are the major advantages of this system. Based on in vitro and in planta characterizations, strains carrying insertions within NS1 are indistinguishable from wild-type X. fastidiosa in terms of growth rate, biofilm formation, and pathogenicity. To illustrate the usefulness of this system for complementation analysis, we constructed a strain carrying a mutation in the X. fastidiosa cpeB gene, which is predicted to encode a catalase/peroxidase, and showed that the sensitivity of this mutant to hydrogen peroxide could be overcome by the introduction of a wild-type copy of cpeB at NS1. Thus, this chromosome-based complementation system provides a valuable genetic tool for investigating the role of specific genes in X. fastidiosa cell physiology and virulence.

  11. A universal DNA-based protein detection system.

    PubMed

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  12. A Universal DNA-Based Protein Detection System

    PubMed Central

    Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan

    2014-01-01

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265

  13. Automation and validation of DNA-banking systems.

    PubMed

    Thornton, Melissa; Gladwin, Amanda; Payne, Robin; Moore, Rachael; Cresswell, Carl; McKechnie, Douglas; Kelly, Steve; March, Ruth

    2005-10-15

    DNA banking is one of the central capabilities on which modern genetic research rests. The DNA-banking system plays an essential role in the flow of genetic data from patients and genetics researchers to the application of genetic research in the clinic. Until relatively recently, large collections of DNA samples were not common in human genetics. Now, collections of hundreds of thousands of samples are common in academic institutions and private companies. Automation of DNA banking can dramatically increase throughput, eliminate manual errors and improve the productivity of genetics research. An increased emphasis on pharmacogenetics and personalized medicine has highlighted the need for genetics laboratories to operate within the principles of a recognized quality system such as good laboratory practice (GLP). Automated systems are suitable for such laboratories but require a level of validation that might be unfamiliar to many genetics researchers. In this article, we use the AstraZeneca automated DNA archive and reformatting system (DART) as a case study of how such a system can be successfully developed and validated within the principles of GLP.

  14. DNA Profiling of Convicted Offender Samples for the Combined DNA Index System

    ERIC Educational Resources Information Center

    Millard, Julie T

    2011-01-01

    The cornerstone of forensic chemistry is that a perpetrator inevitably leaves trace evidence at a crime scene. One important type of evidence is DNA, which has been instrumental in both the implication and exoneration of thousands of suspects in a wide range of crimes. The Combined DNA Index System (CODIS), a network of DNA databases, provides…

  15. Development of an Automated DNA Detection System Using an Electrochemical DNA Chip Technology

    NASA Astrophysics Data System (ADS)

    Hongo, Sadato; Okada, Jun; Hashimoto, Koji; Tsuji, Koichi; Nikaido, Masaru; Gemma, Nobuhiro

    A new compact automated DNA detection system Genelyzer™ has been developed. After injecting a sample solution into a cassette with a built-in electrochemical DNA chip, processes from hybridization reaction to detection and analysis are all operated fully automatically. In order to detect a sample DNA, electrical currents from electrodes due to an oxidization reaction of electrochemically active intercalator molecules bound to hybridized DNAs are detected. The intercalator is supplied as a reagent solution by a fluid supply unit of the system. The feasibility test proved that the simultaneous typing of six single nucleotide polymorphisms (SNPs) associated with a rheumatoid arthritis (RA) was carried out within two hours and that all the results were consistent with those by conventional typing methods. It is expected that this system opens a new way to a DNA testing such as a test for infectious diseases, a personalized medicine, a food inspection, a forensic application and any other applications.

  16. DNA-Based Enzyme Reactors and Systems

    PubMed Central

    Linko, Veikko; Nummelin, Sami; Aarnos, Laura; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.

    2016-01-01

    During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications. PMID:28335267

  17. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids.

    PubMed

    Pillet, Flavien; Passot, Fanny Marie; Pasta, Franck; Anton Leberre, Véronique; Bouet, Jean-Yves

    2017-01-01

    Bacterial centromeres-also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA-the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.

  18. The use of Hemastix and the subsequent lack of DNA recovery using the Promega DNA IQ system.

    PubMed

    Poon, Hiron; Elliott, Jim; Modler, Jeff; Frégeau, Chantal

    2009-11-01

    Following implementation of our automated process incorporating the Promega DNA IQ system as a DNA extraction method, a large number of blood-containing exhibits failed to produce DNA. These exhibits had been tested with the Hemastix reagent strip, commonly used by police investigators and forensic laboratories as a screening test for blood. Some exhibits were even tainted green following transfer of the presumptive test reagents onto the samples. A series of experiments were carried out to examine the effect of the Hemastix chemistries on the DNA IQ system. Our results indicate that one or more chemicals imbedded in the Hemastix reagent strip severely reduce the ability to recover DNA from any suspected stain using the DNA IQ magnetic bead technology. The 3,3',5,5'-tetramethylbenzidine (TMB) used as the reporting dye appears to interact with the magnetic beads to prevent DNA recovery. Hydrogen peroxide does not seem to be involved. The Hemastix chemistries do not interfere in any way with DNA extraction performed using phenol-chloroform. The incompatibility of the Hemastix chemistries on the DNA IQ system forced us to adopt an indirect approach using filter paper to carry out the presumptive test.

  19. [Ubiquitin-proteasome system and sperm DNA repair: An update].

    PubMed

    Zhang, Guo-Wei; Cai, Hong-Cai; Shang, Xue-Jun

    2016-09-01

    The ubiquitin-proteasome system (UPS) is a proteasome system widely present in the human body, which is composed of ubiquitin (Ub), ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin protein ligases (E3), 26S proteasome, and deubiquitinating enzymes (DUBs) and involved in cell cycle regulation, immune response, signal transduction, DNA repair as well as protein degradation. Sperm DNA is vulnerable to interference or damage in the progression of chromosome association and homologous recombination. Recent studies show that UPS participates in DNA repair in spermatogenesis by modulating DNA repair enzymes via ubiquitination, assisting in the identification of DNA damage sites, raising damage repair-related proteins, initiating the DNA repair pathway, maintaining chromosome stability, and ensuring the normal process of spermatogenesis.

  20. Mechanical Strength and Stability of DNA-modified Gold Nanoparticle Systems

    NASA Astrophysics Data System (ADS)

    Lam, Letisha McLaughlin

    Systems in which gold nanoparticles (AuNPs) are functionalized with DNA have the potential for a broad range of applications in gene regulation therapies, drug delivery, sensing, innovative biomaterials and material templates. The use of DNA-modified gold nanoparticle (AuNP-DNA) systems is driven by their ease of assembly with bottom-up methods as well as the tunability of the systems' mechanical, optical, and electronic properties by exploiting AuNP characteristics and behavior in a multi-particle arrangement. Periodic arrangements of AuNPs precisely distributed through ligated DNA linkers may be assembled and used on relatively large length scales, on the order of hundreds of nanometers, for use in potential nanoscale technologies and applications. However, because of the size and heterogeneous composition of AuNP-DNA systems, their stability under mechanical loading is not well understood or quantified on relevant physical scales for these applications. Hence, a large-scale specialized finite-element predictive approach with a dislocation-density based crystalline plasticity has been used to investigate the mechanical stability of AuNP-DNA-ligand systems with AuNPs within the physical dimensions required for plasmon resonance. The crystalline formulation for the AuNPs accounts for multiple crystalline slip, dislocation-density evolution, lattice rotations, and large inelastic strains. A hypoelastic formulation was used for the DNA and the ligands. The nonlinear finite-element scheme is based on accounting for finite elastic and inelastic strains. These approaches were employed to predict and understand the fundamental scale-dependent microstructural behavior, the evolving heterogeneous microstructure, and localized phenomena that can contribute to failure initiation and instability. Each system was loaded using quasi-static plane strain tension and compression to simulate application loading conditions, and the elastic and inelastic evolutions were analyzed for

  1. DNA in the Criminal Justice System: The DNA Success Story in Perspective.

    PubMed

    Mapes, Anna A; Kloosterman, Ate D; de Poot, Christianne J

    2015-07-01

    Current figures on the efficiency of DNA as an investigative tool in criminal investigations only tell part of the story. To get the DNA success story in the right perspective, we examined all forensic reports from serious (N = 116) and high-volume crime cases (N = 2791) over the year 2011 from one police region in the Netherlands. These data show that 38% of analyzed serious crime traces (N = 384) and 17% of analyzed high-volume crime traces (N = 386) did not result in a DNA profile. Turnaround times (from crime scene to DNA report) were 66 days for traces from serious crimes and 44 days for traces from high-volume crimes. Suspects were truly identified through a match with the Offender DNA database of the Netherlands in 3% of the serious crime cases and in 1% of the high-volume crime cases. These data are important for both the forensic laboratory and the professionals in the criminal justice system to further optimize forensic DNA testing as an investigative tool. © 2015 American Academy of Forensic Sciences.

  2. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis.

    PubMed

    Chen, Po Ting; Shaw, Jei-Fu; Chao, Yun-Peng; David Ho, Tuan-Hua; Yu, Su-May

    2010-05-12

    Bacillus subtilis is most commonly employed for secretion of recombinant proteins. To circumvent the problems caused by using plasmids, the T7 expression system known for its high efficiency was rebuilt in B. subtilis. Accordingly, a markerless and replicon-free method was developed for genomic insertion of DNAs. By the act of homologous recombination via the guide DNA, a suicidal vector carrying the gene of interest was integrated into genomic loci of bacteria. Removal of the inserted selection marker and replicon flanked by FRT sites was mediated by the FLP recombinase. By using the mentioned system, B. subtilis strain PT5 was constructed to harbor a genomic copy of the spac promoter-regulated T7 gene 1 located at wprA (encoding the cell wall-associated protease). Similarly, the T7 promoter-driven nattokinase or endoglucanase E1 of Thermomonospora fusca genes were also integrated into mpr (encoding an extracellular protease) of strain PT5. Consequently, the integrant PT5/Mmp-T7N or PT5/MT1-E1 resulted in a "clean" producer strain deprived of six proteases. After 24 h, the strain receiving induction was able to secret nattokinase and endoglucanase E1 with the volumetric activity reaching 10860 CU/mL and 8.4 U/mL, respectively. This result clearly indicates the great promise of the proposed approach for high secretion of recombinant proteins in B. subtilis.

  3. Instability of plasmid DNA sequences: macro and micro evolution of the antibiotic resistance plasmid R6-5.

    PubMed

    Timmis, K N; Cabello, F; Andrés, I; Nordheim, A; Burkhardt, H J; Cohen, S N

    1978-11-16

    Detailed examination of the structure of cloned DNA fragments of the R6-5 antibiotic resistance plasmid has revealed a substantial degree of polynucleotide sequence heterogeneity and indicates that sequence rearrangements in plasmids and possible other replicons occur more frequently than has hitherto been appreciated. The sequences changes in cloned R6-5 fragments were shown in some instances to have occurred prior to cloning, i.e. existing in the original population of R6-5 molecules that was obtained from a single bacterial clone and by several different criteria judged to be homogeneous, and in others to have occurred either during the cloning procedure or during subsequent propagation of hybrid molecules. The molecular changes that are described involved insertion/deletion of the previously characterized IS2 insertion element, formation of a new inverted repeat structure probably by duplication of a preexisting R6-5 DNA sequence, sequence inversion, and loss and gain of restriction endonuclease cleavage sites.

  4. Iterated function systems for DNA replication

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2017-10-01

    The kinetic equations of DNA replication are shown to be exactly solved in terms of iterated function systems, running along the template sequence and giving the statistical properties of the copy sequences, as well as the kinetic and thermodynamic properties of the replication process. With this method, different effects due to sequence heterogeneity can be studied, in particular, a transition between linear and sublinear growths in time of the copies, and a transition between continuous and fractal distributions of the local velocities of the DNA polymerase along the template. The method is applied to the human mitochondrial DNA polymerase γ without and with exonuclease proofreading.

  5. Japanese encephalitis virus replicon-based vaccine expressing enterovirus-71 epitope confers dual protection from lethal challenges.

    PubMed

    Huang, Yi-Ting; Liao, Jia-Teh; Yen, Li-Chen; Chang, Yung-Kun; Lin, Yi-Ling; Liao, Ching-Len

    2015-09-11

    To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle. We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge. Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.

  6. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  7. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  8. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  9. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  10. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  11. BOLDMirror: a global mirror system of DNA barcode data.

    PubMed

    Liu, D; Liu, L; Guo, G; Wang, W; Sun, Q; Parani, M; Ma, J

    2013-11-01

    DNA barcoding is a novel concept for taxonomic identification using short, specific genetic markers and has been applied to study a large number of eukaryotes. The huge amount of data output generated by DNA barcoding requires well-organized information systems. Besides the Barcode of Life Data system (BOLD) established in Canada, the mirror system is also important for the international barcode of life project (iBOL). For this purpose, we developed the BOLDMirror, a global mirror system of DNA barcode data. It is open-sourced and can run on the LAMP (Linux + Apache + MySQL + PHP) environment. BOLDMirror has data synchronization, data representation and statistics modules, and also provides spaces to store user operation history. BOLDMirror can be accessed at http://www.boldmirror.net and several countries have used it to setup their site of DNA barcoding. © 2012 John Wiley & Sons Ltd.

  12. PSI-7851, a pronucleotide of beta-D-2'-deoxy-2'-fluoro-2'-C-methyluridine monophosphate, is a potent and pan-genotype inhibitor of hepatitis C virus replication.

    PubMed

    Lam, Angela M; Murakami, Eisuke; Espiritu, Christine; Steuer, Holly M Micolochick; Niu, Congrong; Keilman, Meg; Bao, Haiying; Zennou, Veronique; Bourne, Nigel; Julander, Justin G; Morrey, John D; Smee, Donald F; Frick, David N; Heck, Julie A; Wang, Peiyuan; Nagarathnam, Dhanapalan; Ross, Bruce S; Sofia, Michael J; Otto, Michael J; Furman, Phillip A

    2010-08-01

    The hepatitis C virus (HCV) NS5B RNA polymerase facilitates the RNA synthesis step during the HCV replication cycle. Nucleoside analogs targeting the NS5B provide an attractive approach to treating HCV infections because of their high barrier to resistance and pan-genotype activity. PSI-7851, a pronucleotide of beta-D-2'-deoxy-2'-fluoro-2'-C-methyluridine-5'-monophosphate, is a highly active nucleotide analog inhibitor of HCV for which a phase 1b multiple ascending dose study of genotype 1-infected individuals was recently completed (M. Rodriguez-Torres, E. Lawitz, S. Flach, J. M. Denning, E. Albanis, W. T. Symonds, and M. M. Berry, Abstr. 60th Annu. Meet. Am. Assoc. Study Liver Dis., abstr. LB17, 2009). The studies described here characterize the in vitro antiviral activity and cytotoxicity profile of PSI-7851. The 50% effective concentration for PSI-7851 against the genotype 1b replicon was determined to be 0.075+/-0.050 microM (mean+/-standard deviation). PSI-7851 was similarly effective against replicons derived from genotypes 1a, 1b, and 2a and the genotype 1a and 2a infectious virus systems. The active triphosphate, PSI-7409, inhibited recombinant NS5B polymerases from genotypes 1 to 4 with comparable 50% inhibitory concentrations. PSI-7851 is a specific HCV inhibitor, as it lacks antiviral activity against other closely related and unrelated viruses. PSI-7409 also lacked any significant activity against cellular DNA and RNA polymerases. No cytotoxicity, mitochondrial toxicity, or bone marrow toxicity was associated with PSI-7851 at the highest concentration tested (100 microM). Cross-resistance studies using replicon mutants conferring resistance to modified nucleoside analogs showed that PSI-7851 was less active against the S282T replicon mutant, whereas cells expressing a replicon containing the S96T/N142T mutation remained fully susceptible to PSI-7851. Clearance studies using replicon cells demonstrated that PSI-7851 was able to clear cells of HCV

  13. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids

    PubMed Central

    Pillet, Flavien; Passot, Fanny Marie

    2017-01-01

    Bacterial centromeres–also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA—the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres. PMID:28562673

  14. Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yen; Lee, Gwo-Bin; Lin, Jr-Lung; Huang, Fu-Chun; Liao, Chia-Sheng

    2005-06-01

    The present paper reports a fully automated microfluidic system for the DNA amplification process by integrating an electroosmotic pump, an active micromixer and an on-chip temperature control system. In this DNA amplification process, the cell lysis is initially performed in a micro cell lysis reactor. Extracted DNA samples, primers and reagents are then driven electroosmotically into a mixing region where they are mixed by the active micromixer. The homogeneous mixture is then thermally cycled in a micro-PCR (polymerase chain reaction) chamber to perform DNA amplification. Experimental results show that the proposed device can successfully automate the sample pretreatment operation for DNA amplification, thereby delivering significant time and effort savings. The new microfluidic system, which facilitates cell lysis, sample driving/mixing and DNA amplification, could provide a significant contribution to ongoing efforts to miniaturize bio-analysis systems by utilizing a simple fabrication process and cheap materials.

  15. A cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy.

    PubMed

    Hassan, Sally; Keshavarz-Moore, Eli; Ward, John

    2016-09-01

    With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase-mediated plasmid supercoiling. SGS from three different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57-SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total percentage supercoiled monomer was maintained to 85-90%. A twofold increase in plasmid yield was also observed for pUC57-SGS in comparison to pUC57. pUC57-SGS displayed greater segregational stability than pUC57-cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. Biotechnol. Bioeng. 2016;113: 2064-2071. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  16. [DNA Extraction from Old Bones by AutoMate Express™ System].

    PubMed

    Li, B; Lü, Z

    2017-08-01

    To establish a method for extracting DNA from old bones by AutoMate Express™ system. Bones were grinded into powder by freeze-mill. After extraction by AutoMate Express™, DNA were amplified and genotyped by Identifiler®Plus and MinFiler™ kits. DNA were extracted from 10 old bone samples, which kept in different environments with the postmortem interval from 10 to 20 years, in 3 hours by AutoMate Express™ system. Complete STR typing results were obtained from 8 samples. AutoMate Express™ system can quickly and efficiently extract DNA from old bones, which can be applied in forensic practice. Copyright© by the Editorial Department of Journal of Forensic Medicine

  17. Ultra-low background DNA cloning system.

    PubMed

    Goto, Kenta; Nagano, Yukio

    2013-01-01

    Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r)). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r) 5' UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r) 3' UTR. This cassette allowed conversion of the Amp(r)-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r) sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.

  18. Subnuclear systems for synthesis of simian virus 40 DNA in vitro.

    PubMed Central

    Edenberg, H J; Waqar, M A; Huberman, J A

    1976-01-01

    We have developed two subnuclear systems for synthesis of DNA of simian virus 40 in vitro. We prepare chromatin from infected cells by the method of Hancock [(1974) J. Mol. Biol. 86, 649-663]; these "chromatin bodies" can be disrupted and large debris can be pelleted, leaving a supernatant ("soluble system"). Both chromatin bodies and the soluble system incorporate deoxyribonucleoside triphosphates into nucleoprotein complexes that contain simian virus 40 DNA. The DNA labeled in short pulses sediments in neutral sucrose gradients slightly faster than mature simian virus 40 DNA, as expected for replicating intermediate. When rebanded in alkaline sucrose gradients, about half of the radioactivity is found in short strands (200-300 nucleotides) and half in longer strands (up to full viral size). When these systems are supplemented with a cytoplasmic preparation from HeLa cells, synthesis is stimulated about 5-fold, and the short strands are converted into strands of up to full viral length as well as into covalently closed circles. These subnuclear DNA-replicating systems should be useful for biochemical fractionation and characterization of some of the proteins required for DNA replication. PMID:188037

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, W.-P.; Frey, Teryl K.

    Rubella virus (RUB) replicons are derivatives of the RUB infectious cDNA clone that retain the nonstructural open reading frame (NS-ORF) that encodes the replicase proteins but not the structural protein ORF (SP-ORF) that encodes the virion proteins. RUB defective interfering (DI) RNAs contain deletions within the SP-ORF and thus resemble replicons. DI RNAs often retain the 5' end of the capsid protein (C) gene that has been shown to modulate virus-specific RNA synthesis. However, when replicons either with or without the C gene were passaged serially in the presence of wt RUB as a source of the virion proteins, itmore » was found that neither replicon was maintained and DI RNAs were generated. The majority DI RNA species contained in-frame deletions in the SP-ORF leading to a fusion between the 5' end of the C gene and the 3' end of the E1 glycoprotein gene. DI infectious cDNA clones were constructed and transcripts from these DI infectious cDNA clones were maintained during serial passage with wt RUB. The C-E1 fusion protein encoded by the DI RNAs was synthesized and was required for maintenance of the DI RNA during serial passage. This is the first report of a functional novel gene product resulting from deletion during DI RNA generation. Thus far, the role of the C-E1 fusion protein in maintenance of DI RNAs during serial passage remained elusive as it was found that the fusion protein diminished rather than enhanced DI RNA synthesis and was not incorporated into virus particles.« less

  20. A laboratory information management system for DNA barcoding workflows.

    PubMed

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  1. Arduino-based automation of a DNA extraction system.

    PubMed

    Kim, Kyung-Won; Lee, Mi-So; Ryu, Mun-Ho; Kim, Jong-Won

    2015-01-01

    There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile.

  2. Effects of microbial DNA on human DNA profiles generated using the PowerPlex® 16 HS system.

    PubMed

    Dembinski, Gina M; Picard, Christine J

    2017-11-01

    Most crime scenes are not sterile and therefore may be contaminated with environmental DNA, especially if a decomposing body is found. Collecting biological evidence from this individual will yield DNA samples mixed with microbial DNA. This also becomes important if postmortem swabs are collected from sexually assaulted victims. Although genotyping kits undergo validation tests, including bacterial screens, they do not account for the diverse microbial load during decomposition. We investigated the effect of spiking human DNA samples with known concentrations of DNA from 17 microbe species associated with decomposition on DNA profiles produced using the Promega PowerPlex ® HS system. Two species, Bacillus subtilis and Mycobacterium smegmatis, produced an extraneous allele at the TPOX locus. When repeated with the PowerPlex ® Fusion kit, the extra allele no longer amplified with these two species. This experiment demonstrates that caution should be exhibited if microbial load is high and the PowerPlex ® 16HS system is used. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. A new triple system DNA-Nanosilver-Berberine for cancer therapy

    NASA Astrophysics Data System (ADS)

    Grebinyk, Anna; Yashchuk, Valeriy; Bashmakova, Nataliya; Gryn, Dmytro; Hagemann, Tobias; Naumenko, Antonina; Kutsevol, Nataliya; Dandekar, Thomas; Frohme, Marcus

    2018-03-01

    The isoquinoline quaternary alkaloid Berberine possesses a variety of pharmacological properties that suggests its promising application for an anticancer delivery system design utilizing its ability to intercalate DNA. In the current work, we have investigated the effects of Berberine on the human T cell leukemia cell line in vitro. Fluorescent microscopy of leukemic cells revealed Berberine nuclear localization. The results showed that Berberine inhibited leukemic cell growth in a time- and dose-dependent manner, that was associated with reactive oxygen species production intensification and caspase 3/7 activity increase with followed apoptosis induction. Berberine was used as a toxic and phototoxic agent for triple system synthesis along with DNA as a carrier and nanosilver as a plasmonic accelerator of Berberine electronic transitions and high energy emission absorbent centers. The proposed method allows to obtain the complex of DNA with Berberine molecules and silver nanoparticles. The optical properties of free components as well as their various combinations, including the final triple system DNA-Nanosilver-Berberine, were investigated. Obtained results support the possibility to use the triple system DNA-Nanosilver-Berberine as an alternative therapeutic agent for cancer treatment.

  4. A DNA Tracer System for Hydrological Environment Investigations.

    PubMed

    Liao, Renkuan; Yang, Peiling; Wu, Wenyong; Luo, Dan; Yang, Dayong

    2018-02-20

    To monitor and manage hydrological pollution effectively, tracing sources of pollutants is of great importance and also is in urgent need. A variety of tracers have been developed such as isotopes, silica, bromide, and dyes; however, practical limitations of these traditional tracers still exist such as lack of multiplexed, multipoint tracing and interference of background noise. To overcome these limitations, a new tracing system based on DNA nanomaterials, namely DNA tracer, has already been developed. DNA tracers possess remarkable advantages including sufficient species, specificity, environmental friendly, stable migration, and high sensitivity as well as allowing for multipoints tracing. In this review article, we introduce the molecular design, synthesis, protection and signal readout strategies of DNA tracers, compare the advantages and disadvantages of DNA tracer with traditional tracers, and summarize the-state-of-art applications in hydrological environment investigations. In the end, we provide our perspective on the future development of DNA tracers.

  5. Application of forensic DNA testing in the legal system.

    PubMed

    Primorac, D; Schanfield, M S

    2000-03-01

    DNA technology has taken an irreplaceable position in the field of the forensic sciences. Since 1985, when Peter Gill and Alex Jeffreys first applied DNA technology to forensic problems, to the present, more than 50,000 cases worldwide have been solved through the use of DNA based technology. Although the development of DNA typing in forensic science has been extremely rapid, today we are witnessing a new era of DNA technology including automation and miniaturization. In forensic science, DNA analysis has become "the new form of scientific evidence" and has come under public scrutiny and the demand to show competence. More and more courts admit the DNA based evidence. We believe that in the near future this technology will be generally accepted in the legal system. There are two main applications of DNA analysis in forensic medicine: criminal investigation and paternity testing. In this article we present background information on DNA, human genetics, and the application of DNA analysis to legal problems, as well as the commonly applied respective mathematics.

  6. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  7. New features of mitochondrial DNA replication system in yeast and man.

    PubMed

    Lecrenier, N; Foury, F

    2000-04-04

    In this review, we sum up the research carried out over two decades on mitochondrial DNA (mtDNA) replication, primarily by comparing this system in Saccharomyces cerevisiae and Homo sapiens. Brief incursions into systems of other organisms have also been achieved when they provide new information.S. cerevisiae and H. sapiens mitochondrial DNA (mtDNA) have been thought for a long time to share closely related architecture and replication mechanisms. However, recent studies suggest that mitochondrial genome of S. cerevisiae may be formed, at least partially, from linear multimeric molecules, while human mtDNA is circular. Although several proteins involved in the replication of these two genomes are very similar, divergences are also now increasingly evident. As an example, the recently cloned human mitochondrial DNA polymerase beta-subunit has no counterpart in yeast. Yet, yeast Abf2p and human mtTFA are probably not as closely functionally related as thought previously. Some mtDNA metabolism factors, like DNA ligases, were until recently largely uncharacterized, and have been found to be derived from alternative nuclear products. Many factors involved in the metabolism of mitochondrial DNA are linked through genetic or biochemical interconnections. These links are presented on a map. Finally, we discuss recent studies suggesting that the yeast mtDNA replication system diverges from that observed in man, and may involve recombination, possibly coupled to alternative replication mechanisms like rolling circle replication.

  8. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System

    PubMed Central

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C. T.; Shui, Lingling

    2017-01-01

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1–10 Kbp fragment lengths with a yield of 75.30–91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future. PMID:28098208

  9. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.

    PubMed

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling

    2017-01-18

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.

  10. Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms.

    PubMed Central

    Ermak, G; Paszkowski, U; Wohlmuth, M; Scheid, O M; Paszkowski, J

    1993-01-01

    Extrachromosomally replicating viral DNA is usually free of cytosine methylation and viral templates methylated in vitro are poor substrates when used in replication assays. We have investigated the mechanism of inhibition of viral replication by DNA methylation using as a model the DNA A of African cassava mosaic virus. We have constructed two component helper systems which allow for separation of the transcriptional inhibition of viral genes necessary for replication from replication inhibition due to altered interaction between the replication complex and methylated viral DNA. Our results suggest that methylation-mediated reduction of viral replication is due to both repression mechanisms and that this provides two independent selection pressures for the maintenance of methylation-free replicons in infected cells. Images PMID:7688453

  11. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    PubMed

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  12. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection.

  13. Activation of the immune system by bacterial CpG-DNA

    PubMed Central

    Häcker, Georg; Redecke, Vanessa; Häcker, Hans

    2002-01-01

    The past decade has seen a remarkable process of refocusing in immunology. Cells of the innate immune system, especially macrophages and dendritic cells, have been at the centre of this process. These cells had been regarded by some scientists as non-specific, sometimes perhaps even confined to the menial job of serving T cells by scavenging antigen and presenting it to the sophisticated adaptive immune system. Only over the last few years has it become unequivocally clear that cells of the innate immunity hold, by variation of context and mode of antigen presentation, the power of shaping an adaptive immune response. The innate immune response, in turn, is to a significant degree the result of stimulation by so-called pathogen-associated molecular patterns (PAMPs). One compound with high stimulatory potential for the innate immune system is bacterial DNA. Here we will review recent evidence that bacterial DNA should be ranked with other PAMPs such as lipopolysaccharide (LPS) and lipoteichoic acid. We will further review our present knowledge of DNA recognition and DNA-dependent signal transduction in cells of the immune system. PMID:11918685

  14. New applications of CRISPR/Cas9 system on mutant DNA detection.

    PubMed

    Jia, Chenqiang; Huai, Cong; Ding, Jiaqi; Hu, Lingna; Su, Bo; Chen, Hongyan; Lu, Daru

    2018-01-30

    The detection of mutant DNA is critical for precision medicine, but low-frequency DNA mutation is very hard to be determined. CRISPR/Cas9 is a robust tool for in vivo gene editing, and shows the potential for precise in vitro DNA cleavage. Here we developed a DNA mutation detection system based on CRISPR/Cas9 that can detect gene mutation efficiently even in a low-frequency condition. The system of CRISPR/Cas9 cleavage in vitro showed a high accuracy similar to traditional T7 endonuclease I (T7E1) assay in estimating mutant DNA proportion in the condition of normal frequency. The technology was further used for low-frequency mutant DNA detection of EGFR and HBB somatic mutations. To the end, Cas9 was employed to cleave the wild-type (WT) DNA and to enrich the mutant DNA. Using amplified fragment length polymorphism analysis (AFLPA) and Sanger sequencing, we assessed the sensitivity of CRISPR/Cas9 cleavage-based PCR, in which mutations at 1%-10% could be enriched and detected. When combined with blocker PCR, its sensitivity reached up to 0.1%. Our results suggested that this new application of CRISPR/Cas9 system is a robust and potential method for heterogeneous specimens in the clinical diagnosis and treatment management. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis

    DOEpatents

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.

    2010-05-04

    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  16. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    PubMed Central

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  17. A Rewritable, Random-Access DNA-Based Storage System.

    PubMed

    Yazdi, S M Hossein Tabatabaei; Yuan, Yongbo; Ma, Jian; Zhao, Huimin; Milenkovic, Olgica

    2015-09-18

    We describe the first DNA-based storage architecture that enables random access to data blocks and rewriting of information stored at arbitrary locations within the blocks. The newly developed architecture overcomes drawbacks of existing read-only methods that require decoding the whole file in order to read one data fragment. Our system is based on new constrained coding techniques and accompanying DNA editing methods that ensure data reliability, specificity and sensitivity of access, and at the same time provide exceptionally high data storage capacity. As a proof of concept, we encoded parts of the Wikipedia pages of six universities in the USA, and selected and edited parts of the text written in DNA corresponding to three of these schools. The results suggest that DNA is a versatile media suitable for both ultrahigh density archival and rewritable storage applications.

  18. A Rewritable, Random-Access DNA-Based Storage System

    NASA Astrophysics Data System (ADS)

    Tabatabaei Yazdi, S. M. Hossein; Yuan, Yongbo; Ma, Jian; Zhao, Huimin; Milenkovic, Olgica

    2015-09-01

    We describe the first DNA-based storage architecture that enables random access to data blocks and rewriting of information stored at arbitrary locations within the blocks. The newly developed architecture overcomes drawbacks of existing read-only methods that require decoding the whole file in order to read one data fragment. Our system is based on new constrained coding techniques and accompanying DNA editing methods that ensure data reliability, specificity and sensitivity of access, and at the same time provide exceptionally high data storage capacity. As a proof of concept, we encoded parts of the Wikipedia pages of six universities in the USA, and selected and edited parts of the text written in DNA corresponding to three of these schools. The results suggest that DNA is a versatile media suitable for both ultrahigh density archival and rewritable storage applications.

  19. Geminiviruses for biotechnology: the art of parasite taming.

    PubMed

    Lozano-Durán, Rosa

    2016-04-01

    Viruses are intracellular pathogens that have evolved efficient strategies for replication and expression of their proteins in the host cells. Geminiviruses - plant viruses with small circular single-stranded DNA genomes - effectively manipulate plant cell processes for viral functions, entailing great potential for biotechnological applications. This potentiality has been realized in the form of protein expression and gene-silencing vectors, and, more recently, vectors for genome editing - a technology that these viruses seem particularly well-suited to facilitate. This insight offers an overview of the biological properties of geminiviruses, with emphasis on those leveraging development of geminivirus-based replicons. It illustrates the basis for engineering geminivirus-based replicons and their applications. Furthermore, it discusses the reported use and future perspectives of geminivirus-based replicons for genome editing. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Radiation-induced transmethylation and transsulfuration in the system DNA-methionine

    NASA Astrophysics Data System (ADS)

    Köhnlein, W.; Merwitz, O.; Ohneseit, P.

    Evidence is presented for the radiation-induced transmethylation and transsulfuration in a DNA-methionine model system. The extent of such alkylation of DNA is found to be comparable with that of alkylating agents. Therefore, both processes could be initial steps in radiation carcinogenesis. The protective effect of methionine on DNA strand breaks, due to scavenging of OH radicals, causes the formation of methyl and thiyl radicals.

  1. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  2. Secure and effective gene delivery system of plasmid DNA coated by polynucleotide.

    PubMed

    Kodama, Yukinobu; Ohkubo, Chikako; Kurosaki, Tomoaki; Egashira, Kanoko; Sato, Kayoko; Fumoto, Shintaro; Nishida, Koyo; Higuchi, Norihide; Kitahara, Takashi; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.

  3. DNA accumulation on ventilation system filters in university buildings in Singapore

    PubMed Central

    Luhung, Irvan; Wu, Yan; Xu, Siyu; Yamamoto, Naomichi; Nazaroff, William W.

    2017-01-01

    Introduction Biological particles deposit on air handling system filters as they process air. This study reports and interprets abundance and diversity information regarding biomass accumulation on ordinarily used filters acquired from several locations in a university environment. Methods DNA-based analysis was applied both to quantify (via DNA fluorometry and qPCR) and to characterize (via high-throughput sequencing) the microbial material on filters, which mainly processed recirculated indoor air. Results were interpreted in relation to building occupancy and ventilation system operational parameters. Results Based on accumulated biomass, average DNA concentrations per AHU filter surface area across nine indoor locations after twelve weeks of filter use were in the respective ranges 1.1 to 41 ng per cm2 for total DNA, 0.02 to 3.3 ng per cm2 for bacterial DNA and 0.2 to 2.0 ng DNA per cm2 for fungal DNA. The most abundant genera detected on the AHU filter samples were Clostridium, Streptophyta, Bacillus, Acinetobacter and Ktedonobacter for bacteria and Aspergillus, Cladosporium, Nigrospora, Rigidoporus and Lentinus for fungi. Conditional indoor airborne DNA concentrations (median (range)) were estimated to be 13 (2.6–107) pg/m3 for total DNA, 0.4 (0.05–8.4) pg/m3 for bacterial DNA and 2.3 (1.0–5.1) pg/m3 for fungal DNA. Conclusion Conditional airborne concentrations and the relative abundances of selected groups of genera correlate well with occupancy level. Bacterial DNA was found to be more responsive than fungal DNA to differences in occupancy level and indoor environmental conditions. PMID:29023520

  4. The validation of forensic DNA extraction systems to utilize soil contaminated biological evidence.

    PubMed

    Kasu, Mohaimin; Shires, Karen

    2015-07-01

    The production of full DNA profiles from biological evidence found in soil has a high failure rate due largely to the inhibitory substance humic acid (HA). Abundant in various natural soils, HA co-extracts with DNA during extraction and inhibits DNA profiling by binding to the molecular components of the genotyping assay. To successfully utilize traces of soil contaminated evidence, such as that found at many murder and rape crime scenes in South Africa, a reliable HA removal extraction system would often be selected based on previous validation studies. However, for many standard forensic DNA extraction systems, peer-reviewed publications detailing the efficacy on soil evidence is either lacking or is incomplete. Consequently, these sample types are often not collected or fail to yield suitable DNA material due to the use of unsuitable methodology. The aim of this study was to validate the common forensic DNA collection and extraction systems used in South Africa, namely DNA IQ, FTA elute and Nucleosave for processing blood and saliva contaminated with HA. A forensic appropriate volume of biological evidence was spiked with HA (0, 0.5, 1.5 and 2.5 mg/ml) and processed through each extraction protocol for the evaluation of HA removal using QPCR and STR-genotyping. The DNA IQ magnetic bead system effectively removed HA from highly contaminated blood and saliva, and generated consistently acceptable STR profiles from both artificially spiked samples and crude soil samples. This system is highly recommended for use on soil-contaminated evidence over the cellulose card-based systems currently being preferentially used for DNA sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. DNA Nanocarriers for Systemic Administration: Characterization and In Vivo Bioimaging in Healthy Mice

    PubMed Central

    David, Stephanie; Passirani, Catherine; Carmoy, Nathalie; Morille, Marie; Mevel, Mathieu; Chatin, Benoit; Benoit, Jean-Pierre; Montier, Tristan; Pitard, Bruno

    2013-01-01

    We hereby present different DNA nanocarriers consisting of new multimodular systems (MMS), containing the cationic lipid dioleylaminesuccinylparomomycin (DNA MMS DOSP), or bis (guanidinium)-tren-cholesterol (DNA MMS BGTC), and DNA lipid nanocapsules (DNA LNCs). Active targeting of the asialoglycoprotein receptor (ASGP-R) using galactose as a ligand for DNA MMS (GAL DNA MMS) and passive targeting using a polyethylene glycol coating for DNA LNCs (PEG DNA LNCs) should improve the properties of these DNA nanocarriers. All systems were characterized via physicochemical methods and the DNA payload of DNA LNCs was quantified for the first time. Afterwards, their biodistribution in healthy mice was analyzed after encapsulation of a fluorescent dye via in vivo biofluorescence imaging (BFI), revealing various distribution profiles depending on the cationic lipid used and their surface characteristics. Furthermore, the two vectors with the best prolonged circulation profile were administered twice in healthy mice revealing that the new DNA MMS DOSP vectors showed no toxicity and the same distribution profile for both injections, contrary to PEG DNA LNCs which showed a rapid clearance after the second injection, certainly due to the accelerated blood clearance phenomenon. PMID:23299832

  6. A DNA Mini-Barcoding System for Authentication of Processed Fish Products.

    PubMed

    Shokralla, Shadi; Hellberg, Rosalee S; Handy, Sara M; King, Ian; Hajibabaei, Mehrdad

    2015-10-30

    Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences-mini-barcodes-for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127-314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products.

  7. Transportin mediates nuclear entry of DNA in vertebrate systems.

    PubMed

    Lachish-Zalait, Aurelie; Lau, Corine K; Fichtman, Boris; Zimmerman, Ella; Harel, Amnon; Gaylord, Michelle R; Forbes, Douglass J; Elbaum, Michael

    2009-10-01

    Delivery of DNA to the cell nucleus is an essential step in many types of viral infection, transfection, gene transfer by the plant pathogen Agrobacterium tumefaciens and in strategies for gene therapy. Thus, the mechanism by which DNA crosses the nuclear pore complex (NPC) is of great interest. Using nuclei reconstituted in vitro in Xenopus egg extracts, we previously studied DNA passage through the nuclear pores using a single-molecule approach based on optical tweezers. Fluorescently labeled DNA molecules were also seen to accumulate within nuclei. Here we find that this import of DNA relies on a soluble protein receptor of the importin family. To identify this receptor, we used different pathway-specific cargoes in competition studies as well as pathway-specific dominant negative inhibitors derived from the nucleoporin Nup153. We found that inhibition of the receptor transportin suppresses DNA import. In contrast, inhibition of importin beta has little effect on the nuclear accumulation of DNA. The dependence on transportin was fully confirmed in assays using permeabilized HeLa cells and a mammalian cell extract. We conclude that the nuclear import of DNA observed in these different vertebrate systems is largely mediated by the receptor transportin. We further report that histones, a known cargo of transportin, can act as an adaptor for the binding of transportin to DNA.

  8. DNA Damage Repair System in Plants: A Worldwide Research Update.

    PubMed

    Gimenez, Estela; Manzano-Agugliaro, Francisco

    2017-10-30

    Living organisms are usually exposed to various DNA damaging agents so the mechanisms to detect and repair diverse DNA lesions have developed in all organisms with the result of maintaining genome integrity. Defects in DNA repair machinery contribute to cancer, certain diseases, and aging. Therefore, conserving the genomic sequence in organisms is key for the perpetuation of life. The machinery of DNA damage repair (DDR) in prokaryotes and eukaryotes is similar. Plants also share mechanisms for DNA repair with animals, although they differ in other important details. Plants have, surprisingly, been less investigated than other living organisms in this context, despite the fact that numerous lethal mutations in animals are viable in plants. In this manuscript, a worldwide bibliometric analysis of DDR systems and DDR research in plants was made. A comparison between both subjects was accomplished. The bibliometric analyses prove that the first study about DDR systems in plants (1987) was published thirteen years later than that for other living organisms (1975). Despite the increase in the number of papers about DDR mechanisms in plants in recent decades, nowadays the number of articles published each year about DDR systems in plants only represents 10% of the total number of articles about DDR. The DDR research field was done by 74 countries while the number of countries involved in the DDR & Plant field is 44. This indicates the great influence that DDR research in the plant field currently has, worldwide. As expected, the percentage of studies published about DDR systems in plants has increased in the subject area of agricultural and biological sciences and has diminished in medicine with respect to DDR studies in other living organisms. In short, bibliometric results highlight the current interest in DDR research in plants among DDR studies and can open new perspectives in the research field of DNA damage repair.

  9. Designing DNA nanodevices for compatibility with the immune system of higher organisms

    NASA Astrophysics Data System (ADS)

    Surana, Sunaina; Shenoy, Avinash R.; Krishnan, Yamuna

    2015-09-01

    DNA is proving to be a powerful scaffold to construct molecularly precise designer DNA devices. Recent trends reveal their ever-increasing deployment within living systems as delivery devices that not only probe but also program and re-program a cell, or even whole organisms. Given that DNA is highly immunogenic, we outline the molecular, cellular and organismal response pathways that designer nucleic acid nanodevices are likely to elicit in living systems. We address safety issues applicable when such designer DNA nanodevices interact with the immune system. In light of this, we discuss possible molecular programming strategies that could be integrated with such designer nucleic acid scaffolds to either evade or stimulate the host response with a view to optimizing and widening their applications in higher organisms.

  10. Quantum entanglement and quantum information in biological systems (DNA)

    NASA Astrophysics Data System (ADS)

    Hubač, Ivan; Švec, Miloslav; Wilson, Stephen

    2017-12-01

    Recent studies of DNA show that the hydrogen bonds between given base pairs can be treated as diabatic systems with spin-orbit coupling. For solid state systems strong diabaticity and spin-orbit coupling the possibility of forming Majorana fermions has been discussed. We analyze the hydrogen bonds in the base pairs in DNA from this perspective. Our analysis is based on a quasiparticle supersymmetric transformation which couples electronic and vibrational motion and includes normal coordinates and the corresponding momenta. We define qubits formed by Majorana fermions in the hydrogen bonds and also discuss the entangled states in base pairs. Quantum information and quantum entropy are introduced. In addition to the well-known classical information connected with the DNA base pairs, we also consider quantum information and show that the classical and quantum information are closely connected.

  11. DNA nanocarriers for systemic administration: characterization and in vivo bioimaging in healthy mice.

    PubMed

    David, Stephanie; Passirani, Catherine; Carmoy, Nathalie; Morille, Marie; Mevel, Mathieu; Chatin, Benoit; Benoit, Jean-Pierre; Montier, Tristan; Pitard, Bruno

    2013-01-08

    We hereby present different DNA nanocarriers consisting of new multimodular systems (MMS), containing the cationic lipid dioleylaminesuccinylparomomycin (DNA MMS DOSP), or bis (guanidinium)-tren-cholesterol (DNA MMS BGTC), and DNA lipid nanocapsules (DNA LNCs). Active targeting of the asialoglycoprotein receptor (ASGP-R) using galactose as a ligand for DNA MMS (GAL DNA MMS) and passive targeting using a polyethylene glycol coating for DNA LNCs (PEG DNA LNCs) should improve the properties of these DNA nanocarriers. All systems were characterized via physicochemical methods and the DNA payload of DNA LNCs was quantified for the first time. Afterwards, their biodistribution in healthy mice was analyzed after encapsulation of a fluorescent dye via in vivo biofluorescence imaging (BFI), revealing various distribution profiles depending on the cationic lipid used and their surface characteristics. Furthermore, the two vectors with the best prolonged circulation profile were administered twice in healthy mice revealing that the new DNA MMS DOSP vectors showed no toxicity and the same distribution profile for both injections, contrary to PEG DNA LNCs which showed a rapid clearance after the second injection, certainly due to the accelerated blood clearance phenomenon.Molecular Therapy - Nucleic Acids (2013) 2, e64; doi:10.1038/mtna.2012.56; published online 8 January 2013.

  12. A Three-State System Based on Branched DNA Hybrids.

    PubMed

    He, Shiliang; Richert, Clemens

    2018-03-26

    There is a need for materials that respond to chemical or physical stimuli through a change in their structure. While a transition between water-soluble form and solid is not uncommon for DNA-based structures, systems that transition between three different states at room temperature and ambient pressure are rare. Here we report the preparation of branched DNA hybrids with eight oligodeoxycytidylate arms via solution-phase, H-phosphonate-based synthesis. Some hybrids assemble into hydrogels upon lowering the pH, acting as efficient gelators at pH 4-6, but can also transition into a more condensed solid state form upon exposure to divalent cations. Together with the homogeneous solutions that the i-motif-forming compounds give at neutral pH, three-state systems result. Each state has its own color, if chromophores are included in the system. The assembly and gelation properties can be tuned by choosing the chain length of the arms. Their responsive properties make the dC-rich DNA hybrids candidates for smart material applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Intermolecular G-quadruplex structure-based fluorescent DNA detection system.

    PubMed

    Zhou, Hui; Wu, Zai-Sheng; Shen, Guo-Li; Yu, Ru-Qin

    2013-03-15

    Adopting multi-donors to pair with one acceptor could improve the performance of fluorogenic detection probes. However, common dyes (e.g., fluorescein) in close proximity to each other would self-quench the fluorescence, and the fluorescence is difficult to restore. In this contribution, we constructed a novel "multi-donors-to-one acceptor" fluorescent DNA detection system by means of the intermolecular G-quadruplex (IGQ) structure-based fluorescence signal enhancement combined with the hairpin oligonucleotide. The novel IGQ-hairpin system was characterized using the p53 gene as the model target DNA. The proposed system showed an improved assay performance due to the introduction of IGQ-structure into fluorescent signaling probes, which could inhibit the background fluorescence and increase fluorescence restoration amplitude of fluoresceins upon target DNA hybridization. The proof-of-concept scheme is expected to provide new insight into the potential of G-quadruplex structure and promote the application of fluorescent oligonucleotide probes in fundamental research, diagnosis, and treatment of genetic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The innate immune system in host mice targets cells with allogenic mitochondrial DNA

    PubMed Central

    Ishikawa, Kaori; Nakada, Kazuto; Morimoto, Mami; Imanishi, Hirotake; Yoshizaki, Mariko; Sasawatari, Shigemi; Niikura, Mamoru; Takenaga, Keizo; Yonekawa, Hiromichi

    2010-01-01

    Mitochondrial DNA (mtDNA) has been proposed to be involved in respiratory function, and mtDNA mutations have been associated with aging, tumors, and various disorders, but the effects of mtDNA imported into transplants from different individuals or aged subjects have been unclear. We examined this issue by generating trans-mitochondrial tumor cells and embryonic stem cells that shared the syngenic C57BL/6 (B6) strain–derived nuclear DNA background but possessed mtDNA derived from allogenic mouse strains. We demonstrate that transplants with mtDNA from the NZB/B1NJ strain were rejected from the host B6 mice, not by the acquired immune system but by the innate immune system. This rejection was caused partly by NK cells and involved a MyD88-dependent pathway. These results introduce novel roles of mtDNA and innate immunity in tumor immunology and transplantation medicine. PMID:20937705

  15. Community-wide plasmid gene mobilization and selection

    PubMed Central

    Sentchilo, Vladimir; Mayer, Antonia P; Guy, Lionel; Miyazaki, Ryo; Green Tringe, Susannah; Barry, Kerrie; Malfatti, Stephanie; Goessmann, Alexander; Robinson-Rechavi, Marc; van der Meer, Jan R

    2013-01-01

    Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions. PMID:23407308

  16. A DNA network as an information processing system.

    PubMed

    Santini, Cristina Costa; Bath, Jonathan; Turberfield, Andrew J; Tyrrell, Andy M

    2012-01-01

    Biomolecular systems that can process information are sought for computational applications, because of their potential for parallelism and miniaturization and because their biocompatibility also makes them suitable for future biomedical applications. DNA has been used to design machines, motors, finite automata, logic gates, reaction networks and logic programs, amongst many other structures and dynamic behaviours. Here we design and program a synthetic DNA network to implement computational paradigms abstracted from cellular regulatory networks. These show information processing properties that are desirable in artificial, engineered molecular systems, including robustness of the output in relation to different sources of variation. We show the results of numerical simulations of the dynamic behaviour of the network and preliminary experimental analysis of its main components.

  17. DNA-assisted swarm control in a biomolecular motor system.

    PubMed

    Keya, Jakia Jannat; Suzuki, Ryuhei; Kabir, Arif Md Rashedul; Inoue, Daisuke; Asanuma, Hiroyuki; Sada, Kazuki; Hess, Henry; Kuzuya, Akinori; Kakugo, Akira

    2018-01-31

    In nature, swarming behavior has evolved repeatedly among motile organisms because it confers a variety of beneficial emergent properties. These include improved information gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts, switch between solitary and swarm behavior in response to external stimuli. Aspects of swarming behavior have been demonstrated for motile supramolecular systems composed of biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale organization. The capabilities of such supramolecular systems may be further extended if the swarming behavior can be programmed and controlled. Here, we demonstrate that the swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin motors can be programmed and reversibly regulated by DNA signals. Emergent swarm behavior, such as translational and circular motion, can be selected by tuning the MT stiffness. Photoresponsive DNA containing azobenzene groups enables switching between solitary and swarm behavior in response to stimulation with visible or ultraviolet light.

  18. DNA Nanotechnology-Enabled Drug Delivery Systems.

    PubMed

    Hu, Qinqin; Li, Hua; Wang, Lihua; Gu, Hongzhou; Fan, Chunhai

    2018-02-21

    Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.

  19. Changes in cultivar-specificity toward pea can result from transfer of plasmid RP4 and other incompatibility group P1 replicons to Pseudomonas syringae pv. pisi.

    PubMed

    Moulton, P J; Vivian, A; Hunter, P J; Taylor, J D

    1993-12-01

    Transfer of RP4 and related replicons belonging to the Escherichia coli incompatibility group P (Pseudomonas aeruginosa IncP1) to races 2 and 6 of P. syringae pv. pisi was associated with the creation of two types of transconjugant, one resembling the parental race and the other showing an altered cultivar-specificity towards pea. The latter, irrespective of the parental race, exhibited a novel pattern of interaction with pea that corresponded to race 4; consequently such transconjugants were termed race 4-like. Curing of RP4 did not affect the phenotype, except in relation to the antibiotic resistances specified by RP4. The race 4-like strains were non-fluorescent when cultured on appropriate media (in contrast to the particular isolates of races 2 and 6 from which they were derived), showed an enhanced ability to inherit RP4 subsequently (at frequencies up to 10(-1) per recipient) and differed from their parental race in their pattern of plasmid profile. The plasmid profiles were similar for all race 4-like strains irrespective of origin. There was no evidence that RP4 had recombined with DNA in the recipient and probing failed to detect the retention of any part of RP4 in cured strains. The inheritance of the related cosmid vector, pLAFR3, had similar effects in races 2 and 6. This observation is important since this vector has been widely used to clone avirulence genes in plant pathogenic bacteria. Transfer of the IncW plasmids S-a and R388 did not cause any changes in the fluorescence or cultivar-specificity of races 2 or 6.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Optimization of potent hepatitis C virus NS3 helicase inhibitors isolated from the yellow dyes thioflavine S and primuline.

    PubMed

    Li, Kelin; Frankowski, Kevin J; Belon, Craig A; Neuenswander, Ben; Ndjomou, Jean; Hanson, Alicia M; Shanahan, Matthew A; Schoenen, Frank J; Blagg, Brian S J; Aubé, Jeffrey; Frick, David N

    2012-04-12

    A screen for hepatitis C virus (HCV) NS3 helicase inhibitors revealed that the commercial dye thioflavine S was the most potent inhibitor of NS3-catalyzed DNA and RNA unwinding in the 827-compound National Cancer Institute Mechanistic Set. Thioflavine S and the related dye primuline were separated here into their pure components, all of which were oligomers of substituted benzothiazoles. The most potent compound (P4), a benzothiazole tetramer, inhibited unwinding >50% at 2 ± 1 μM, inhibited the subgenomic HCV replicon at 10 μM, and was not toxic at 100 μM. Because P4 also interacted with DNA, more specific analogues were synthesized from the abundant dimeric component of primuline. Some of the 32 analogues prepared retained ability to inhibit HCV helicase but did not appear to interact with DNA. The most potent of these specific helicase inhibitors (compound 17) was active against the replicon and inhibited the helicase more than 50% at 2.6 ± 1 μM. © 2012 American Chemical Society

  1. CpG DNA: A pathogenic factor in systemic lupus erythematosus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krieg, A.M.

    1995-11-01

    Systemic lupus erythematosus (SLE) is a multifactorial disease of unknown etiology. Characteristic features of SLE include (1) polyclonal B cell activation, (2) overexpression of the immune stimulatory cytokine interleukin-6 (IL-6), (3) defective tolerance to self antigens, and (4) production of anti-DNA antibodies (Ab). Bacterial infection has been suspected as a triggering factor for lupus. Bacterial DNA differs from vertebrate DNA in the frequency and methylation of CpG dinucleotides. These CpG motifs in bacterial DNA induce a variety of immune effects, including (1) polyclonal activation of murine and human B cells, (2) IL-6 secretion, and (3) resistance to apoptosis, thereby potentiallymore » allowing the survival of autoreactive cells. These results suggest that microbial DNA could therefore be a pathogenic factor in SLE. SLE patients have elevated levels of circulating plasma DNA which is reportedly enriched in hypomethylated CpGs. Genomic DNA is also hypomethylated in SLE. The purpose of this review is to summarize the immune effects of CpG motifs and to present the evidence for their possible involvement in the pathogenesis of SLE. 77 refs.« less

  2. A transmission imaging spectrograph and microfabricated channel system for DNA analysis.

    PubMed

    Simpson, J W; Ruiz-Martinez, M C; Mulhern, G T; Berka, J; Latimer, D R; Ball, J A; Rothberg, J M; Went, G T

    2000-01-01

    In this paper we present the development of a DNA analysis system using a microfabricated channel device and a novel transmission imaging spectrograph which can be efficiently incorporated into a high throughput genomics facility for both sizing and sequencing of DNA fragments. The device contains 48 channels etched on a glass substrate. The channels are sealed with a flat glass plate which also provides a series of apertures for sample loading and contact with buffer reservoirs. Samples can be easily loaded in volumes up to 640 nL without band broadening because of an efficient electrokinetic stacking at the electrophoresis channel entrance. The system uses a dual laser excitation source and a highly sensitive charge-coupled device (CCD) detector allowing for simultaneous detection of many fluorescent dyes. The sieving matrices for the separation of single-stranded DNA fragments are polymerized in situ in denaturing buffer systems. Examples of separation of single-stranded DNA fragments up to 500 bases in length are shown, including accurate sizing of GeneCalling fragments, and sequencing samples prepared with a reduced amount of dye terminators. An increase in sample throughput has been achieved by color multiplexing.

  3. DNA Microcapsule for Photo-Triggered Drug Release Systems.

    PubMed

    Kamiya, Yukiko; Yamada, Yoshinobu; Muro, Takahiro; Matsuura, Kazunori; Asanuma, Hiroyuki

    2017-12-19

    In this study we constructed spherical photo-responsive microcapsules composed of three photo-switchable DNA strands. These strands first formed a three-way junction (TWJ) motif that further self-assembled to form microspheres through hybridization of the sticky-end regions of each branch. To serve as the photo-switch, multiple unmodified azobenzene (Azo) or 2,6-dimethyl-4-(methylthio)azobenzene (SDM-Azo) were introduced into the sticky-end regions via a d-threoninol linker. The DNA capsule structure deformed upon trans-to-cis isomerization of Azo or SDM-Azo induced by specific light irradiation. In addition, photo-triggered release of encapsulated small molecules from the DNA microcapsule was successfully achieved. Moreover, we demonstrated that photo-triggered release of doxorubicin caused cytotoxicity to cultured cells. This biocompatible photo-responsive microcapsule has potential application as a photo-controlled drug-release system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Detection of DNA via the fluorescence quenching of Mn-doped ZnSe D-dots/doxorubicin/DNA ternary complexes system.

    PubMed

    Gao, Xue; Niu, Lu; Su, Xingguang

    2012-01-01

    This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.

  5. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity

    PubMed Central

    Günther, Claudia; Kind, Barbara; Reijns, Martin A.M.; Berndt, Nicole; Martinez-Bueno, Manuel; Wolf, Christine; Tüngler, Victoria; Chara, Osvaldo; Lee, Young Ae; Hübner, Norbert; Bicknell, Louise; Blum, Sophia; Krug, Claudia; Schmidt, Franziska; Kretschmer, Stefanie; Koss, Sarah; Astell, Katy R.; Ramantani, Georgia; Bauerfeind, Anja; Morris, David L.; Cunninghame Graham, Deborah S.; Bubeck, Doryen; Leitch, Andrea; Ralston, Stuart H.; Blackburn, Elizabeth A.; Gahr, Manfred; Witte, Torsten; Vyse, Timothy J.; Melchers, Inga; Mangold, Elisabeth; Nöthen, Markus M.; Aringer, Martin; Kuhn, Annegret; Lüthke, Kirsten; Unger, Leonore; Bley, Annette; Lorenzi, Alice; Isaacs, John D.; Alexopoulou, Dimitra; Conrad, Karsten; Dahl, Andreas; Roers, Axel; Alarcon-Riquelme, Marta E.; Jackson, Andrew P.; Lee-Kirsch, Min Ae

    2014-01-01

    Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2–associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage–associated pathways in the initiation of autoimmunity. PMID:25500883

  6. A System for Multiplexed Direct Electrical Detection of DNA Synthesis.

    PubMed

    Anderson, Erik P; Daniels, Jonathan S; Yu, Heng; Karhanek, Miloslav; Lee, Thomas H; Davis, Ronald W; Pourmand, Nader

    2008-01-29

    An electronic system for the multiplexed detection of DNA polymerization is designed and characterized. DNA polymerization is detected by the measurement of small transient currents arising from ion diffusion during polymerization. A transimpedance amplifier is used to detect these small currents; we implemented a twenty-four channel recording system on a single printed circuit board. Various contributions to the input-referred current noise are analyzed and characterized, as it limits the minimum detectable current and thus the biological limit of detection. We obtained 8.5 pA RMS mean noise current (averaged over all 24 channels) over the recording bandwidth (DC to 2 kHz). With digital filtering, the input-referred current noise of the acquisition system is reduced to 2.4 pA, which is much lower than the biological noise. Electrical crosstalk between channels is measured, and a model for the crosstalk is presented. Minimizing the crosstalk is critical because it can lead to erroneous microarray data. With proper precautions, crosstalk is reduced to a negligible value (less than 1.4%). Using a micro-fabricated array of 24 gold electrodes, we demonstrated system functionality by detecting the presence of a target DNA oligonucleotide which hybridized onto its corresponding target.

  7. FBIS: A regional DNA barcode archival & analysis system for Indian fishes.

    PubMed

    Nagpure, Naresh Sahebrao; Rashid, Iliyas; Pathak, Ajey Kumar; Singh, Mahender; Singh, Shri Prakash; Sarkar, Uttam Kumar

    2012-01-01

    DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. The database is available for free at http://mail.nbfgr.res.in/fbis/

  8. FBIS: A regional DNA barcode archival & analysis system for Indian fishes

    PubMed Central

    Nagpure, Naresh Sahebrao; Rashid, Iliyas; Pathak, Ajey Kumar; Singh, Mahender; Singh, Shri Prakash; Sarkar, Uttam Kumar

    2012-01-01

    DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. Availability The database is available for free at http://mail.nbfgr.res.in/fbis/ PMID:22715304

  9. Human genomic DNA quantitation system, H-Quant: development and validation for use in forensic casework.

    PubMed

    Shewale, Jaiprakash G; Schneida, Elaine; Wilson, Jonathan; Walker, Jerilyn A; Batzer, Mark A; Sinha, Sudhir K

    2007-03-01

    The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/microL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories.

  10. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant.

    PubMed

    Barnett, Susan W; Burke, Brian; Sun, Yide; Kan, Elaine; Legg, Harold; Lian, Ying; Bost, Kristen; Zhou, Fengmin; Goodsell, Amanda; Zur Megede, Jan; Polo, John; Donnelly, John; Ulmer, Jeffrey; Otten, Gillis R; Miller, Christopher J; Vajdy, Michael; Srivastava, Indresh K

    2010-06-01

    We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against

  11. The role and diagnostic value of cell-free DNA in systemic lupus erythematosus.

    PubMed

    Truszewska, Anna; Foroncewicz, Bartosz; Pączek, Leszek

    2017-01-01

    Cell-free DNA (cfDNA) represents a small fraction of total DNA pool that circulates freely in the blood both in normal and pathological conditions. Data indicate that cfDNA plays an important role in the pathogenesis of systemic lupus erythematosus (SLE) and hypomethylation may be crucial for its immunogenic properties. Although differences in quantification methodology hinder the comparison of results between the studies, it appears that levels of cfDNA are abnormally elevated in SLE patients and correlate with various antibody titers, but not with disease activity. Increased cfDNA concentration, however, may be associated with active lupus nephritis. Most of the studies confirmed apoptosis as the major cfDNA release mechanism in various conditions, but formation of neutrophil extracellular traps may significantly contribute to the cfDNA generation in SLE patients. In this review, we summarise current knowledge about the role and possible origin of cfDNA in SLE patients, and discuss why cfDNA testing for diagnostic and prognosis of SLE remains questionable.

  12. Exploring mechanisms of transport and persistence of environmental DNA (eDNA)

    NASA Astrophysics Data System (ADS)

    Shogren, A.; Tank, J. L.; Riis, T.; Rosi, E. J.; Bolster, D.

    2017-12-01

    Sampling for eDNA is a non-intrusive method to detect species presence without direct observation, which allows for earlier detection and more rapid response than conventional sampling methods. However, our current understanding of how eDNA is transported and persists in flowing waters (e.g., streams and rivers) remains imprecise; in flowing waters, the target organism may be some distance away from where the eDNA in water is collected. It is uncertain how the unique transport properties of suspended eDNA or the inherent heterogeneity of natural flowing systems may impact the probability of downstream eDNA detection. To improve understanding of eDNA fate, we first conducted experimental releases and modeled the impact of benthic substrate heterogeneity and size on eDNA transport and retention in streams. We also used recirculating artificial streams to constrain estimates of eDNA degradation in systems with varying flow and microbial biofilm coverage. We found that eDNA retention in streams is substrate-specific, and that streambed hydraulics have significant influence on how far eDNA is transported downstream. Through the degradation experiments, we found that eDNA degradation is strongly context dependent, but even in systems with low velocity, eDNA can remain detectable in the water column >24hrs after introduction. This differential persistence of eDNA particles confirms that eDNA dynamics in flowing waters are not constant along a spatial continuum, which complicates interpretation of a positive detection in flowing waters, which presents a scaling problem for future modeling efforts to support transport predictions. To test our experimental results in a natural system, we compared our previous estimates for eDNA transport, retention, and degradation to field data collected during a longitudinal field survey for zebra mussel eDNA on the Gudena River in Silkeborg, Denmark. We found that though heterogeneity indeed complicates scaling efforts to extrapolate

  13. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction

    NASA Astrophysics Data System (ADS)

    Ohta, Seiichi; Glancy, Dylan; Chan, Warren C. W.

    2016-02-01

    Precise control of biosystems requires development of materials that can dynamically change physicochemical properties. Inspired by the ability of proteins to alter their conformation to mediate function, we explored the use of DNA as molecular keys to assemble and transform colloidal nanoparticle systems. The systems consist of a core nanoparticle surrounded by small satellites, the conformation of which can be transformed in response to DNA via a toe-hold displacement mechanism. The conformational changes can alter the optical properties and biological interactions of the assembled nanosystem. Photoluminescent signal is altered by changes in fluorophore-modified particle distance, whereas cellular targeting efficiency is increased 2.5 times by changing the surface display of targeting ligands. These concepts provide strategies for engineering dynamic nanotechnology systems for navigating complex biological environments.

  14. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.

    PubMed

    Modell, Joshua W; Jiang, Wenyan; Marraffini, Luciano A

    2017-04-06

    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems provide protection against viral and plasmid infection by capturing short DNA sequences from these invaders and integrating them into the CRISPR locus of the prokaryotic host. These sequences, known as spacers, are transcribed into short CRISPR RNA guides that specify the cleavage site of Cas nucleases in the genome of the invader. It is not known when spacer sequences are acquired during viral infection. Here, to investigate this, we tracked spacer acquisition in Staphylococcus aureus cells harbouring a type II CRISPR-Cas9 system after infection with the staphylococcal bacteriophage ϕ12. We found that new spacers were acquired immediately after infection preferentially from the cos site, the viral free DNA end that is first injected into the cell. Analysis of spacer acquisition after infection with mutant phages demonstrated that most spacers are acquired during DNA injection, but not during other stages of the viral cycle that produce free DNA ends, such as DNA replication or packaging. Finally, we showed that spacers acquired from early-injected genomic regions, which direct Cas9 cleavage of the viral DNA immediately after infection, provide better immunity than spacers acquired from late-injected regions. Our results reveal that CRISPR-Cas systems exploit the phage life cycle to generate a pattern of spacer acquisition that ensures a successful CRISPR immune response.

  15. Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon.

    PubMed

    Arita, Minetaro; Nagata, Noriyo; Sata, Tetsutaro; Miyamura, Tatsuo; Shimizu, Hiroyuki

    2006-11-01

    Poliovirus (PV) infection causes severe paralysis, typically of the legs, by destruction of the motor neurons in the spinal cord. In this study, the relationship between PV replication in the spinal cord, damage in the motor neurons and poliomyelitis-like paralysis was analysed in transgenic mice expressing the human PV receptor (TgPVR21). First, a PV replicon encoding firefly luciferase in place of the capsid genes (PV-Fluc mc) was trans-encapsidated in 293T cells and the trans-encapsidated PV-Fluc mc (TE-PV-Fluc mc) was then inoculated into the spinal cords of TgPVR21 mice. TE-PV-Fluc mc was recovered with a titre of 6.3 x 10(7) infectious units ml(-1), which was comparable to those of PV1 strains. TgPVR21 mice inoculated with TE-PV-Fluc mc showed non-lethal paralysis of the hindlimbs, with severity ranging from a decline in grip strength to complete flaccid paralysis. The replication of TE-PV-Fluc mc in the spinal cord reached peak levels at 10 h post-inoculation (p.i.), followed by the appearance of paralysis at as early as 12 h p.i., reaching a plateau at 16 h p.i. Histological analysis showed a correlation between the lesion and the severity of the clinical symptoms in most mice. However, severe paralysis could also be observed with an apparently low lesion score, where as few as 5.3 x 10(2) motor neurons (1.4 % of the susceptible cells in the lumbar cord) were infected by TE-PV-Fluc mc. These results indicate that PV replication in a small population of the motor neurons was critical for severe residual poliomyelitis-like paralysis in TgPVR21 mice.

  16. Fractal landscapes in biological systems: long-range correlations in DNA and interbeat heart intervals

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Hausdorff, J. M.; Havlin, S.; Mietus, J.; Sciortino, F.; Simons, M.

    1992-01-01

    Here we discuss recent advances in applying ideas of fractals and disordered systems to two topics of biological interest, both topics having common the appearance of scale-free phenomena, i.e., correlations that have no characteristic length scale, typically exhibited by physical systems near a critical point and dynamical systems far from equilibrium. (i) DNA nucleotide sequences have traditionally been analyzed using models which incorporate the possibility of short-range nucleotide correlations. We found, instead, a remarkably long-range power law correlation. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences as well as intragenomic DNA, but not in cDNA sequences or intron-less genes. We also found that the myosin heavy chain family gene evolution increases the fractal complexity of the DNA landscapes, consistent with the intron-late hypothesis of gene evolution. (ii) The healthy heartbeat is traditionally thought to be regulated according to the classical principle of homeostasis, whereby physiologic systems operate to reduce variability and achieve an equilibrium-like state. We found, however, that under normal conditions, beat-to-beat fluctuations in heart rate display long-range power law correlations.

  17. Modified midi- and mini-multiplex PCR systems for mitochondrial DNA control region sequence analysis in degraded samples.

    PubMed

    Kim, Na Young; Lee, Hwan Young; Park, Sun Joo; Yang, Woo Ick; Shin, Kyoung-Jin

    2013-05-01

    Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60-year-old and 400-500-year-old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis. © 2013 American Academy of Forensic Sciences.

  18. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    PubMed Central

    2011-01-01

    Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349

  19. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities.

    PubMed

    Troshin, Peter V; Postis, Vincent Lg; Ashworth, Denise; Baldwin, Stephen A; McPherson, Michael J; Barton, Geoffrey J

    2011-03-07

    Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  20. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    PubMed

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  1. Self-assembly of hierarchically ordered structures in DNA nanotube systems

    NASA Astrophysics Data System (ADS)

    Glaser, Martin; Schnauß, Jörg; Tschirner, Teresa; Schmidt, B. U. Sebastian; Moebius-Winkler, Maximilian; Käs, Josef A.; Smith, David M.

    2016-05-01

    The self-assembly of molecular and macromolecular building blocks into organized patterns is a complex process found in diverse systems over a wide range of size and time scales. The formation of star- or aster-like configurations, for example, is a common characteristic in solutions of polymers or other molecules containing multi-scaled, hierarchical assembly processes. This is a recurring phenomenon in numerous pattern-forming systems ranging from cellular constructs to solutions of ferromagnetic colloids or synthetic plastics. To date, however, it has not been possible to systematically parameterize structural properties of the constituent components in order to study their influence on assembled states. Here, we circumvent this limitation by using DNA nanotubes with programmable mechanical properties as our basic building blocks. A small set of DNA oligonucleotides can be chosen to hybridize into micron-length DNA nanotubes with a well-defined circumference and stiffness. The self-assembly of these nanotubes to hierarchically ordered structures is driven by depletion forces caused by the presence of polyethylene glycol. This trait allowed us to investigate self-assembly effects while maintaining a complete decoupling of density, self-association or bundling strength, and stiffness of the nanotubes. Our findings show diverse ranges of emerging structures including heterogeneous networks, aster-like structures, and densely bundled needle-like structures, which compare to configurations found in many other systems. These show a strong dependence not only on concentration and bundling strength, but also on the underlying mechanical properties of the nanotubes. Similar network architectures to those caused by depletion forces in the low-density regime are obtained when an alternative hybridization-based bundling mechanism is employed to induce self-assembly in an isotropic network of pre-formed DNA nanotubes. This emphasizes the universal effect inevitable

  2. Using DNA nanotechnology to produce a drug delivery system

    NASA Astrophysics Data System (ADS)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  3. An Electrochemical DNA Sensing System Using Modified Nanoparticle Probes for Detecting Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Sakamoto, Hiroaki; Amano, Yoshihisa; Satomura, Takenori; Suye, Shin-Ichiro

    2017-01-01

    We have developed a novel, highly sensitive, biosensing system for detecting methicillin-resistant Staphylococcus aureus (MRSA). The system employs gold nanoparticles (AuNPs), magnetic nanoparticles (mNPs), and an electrochemical detection method. We have designed and synthesized ferrocene- and single-stranded DNA-conjugated nanoparticles that hybridize to MRSA DNA. Hybridized complexes are easily separated by taking advantage of mNPs. A current response could be obtained through the oxidation of ferrocene on the AuNP surface when a constant potential of +250 mV vs. Ag/AgCl is applied. The enzymatic reaction of L-proline dehydrogenase provides high signal amplification. This sensing system, using a nanoparticle-modified probe, has the ability to detect 10 pM of genomic DNA from MRSA without amplification by the polymerase chain reaction. Current responses are linearly related to the amount of genomic DNA in the range of 10-166 pM. Selectivity is confirmed by demonstrating that this sensing system could distinguish MRSA from Staphylococcus aureus (SA) DNA.

  4. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice

    PubMed Central

    Safdar, Adeel; Bourgeois, Jacqueline M.; Ogborn, Daniel I.; Little, Jonathan P.; Hettinga, Bart P.; Akhtar, Mahmood; Thompson, James E.; Melov, Simon; Mocellin, Nicholas J.; Kujoth, Gregory C.; Prolla, Tomas A.; Tarnopolsky, Mark A.

    2011-01-01

    A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities. PMID:21368114

  5. Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwitz, M.S.; Friefeld, B.R.; Keiser, H.D.

    1982-12-01

    Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60/sup 0/C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases ..cap alpha.., BETA, ..gamma.. and had no antibody to the 72,000-daltonmore » DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.« less

  6. A study of deoxyribonucleotide metabolism and its relation to DNA synthesis. Supercomputer simulation and model-system analysis.

    PubMed

    Heinmets, F; Leary, R H

    1991-06-01

    A model system (1) was established to analyze purine and pyrimidine metabolism. This system has been expanded to include macrosimulation of DNA synthesis and the study of its regulation by terminal deoxynucleoside triphosphates (dNTPs) via a complex set of interactions. Computer experiments reveal that our model exhibits adequate and reasonable sensitivity in terms of dNTP pool levels and rates of DNA synthesis when inputs to the system are varied. These simulation experiments reveal that in order to achieve maximum DNA synthesis (in terms of purine metabolism), a proper balance is required in guanine and adenine input into this metabolic system. Excessive inputs will become inhibitory to DNA synthesis. In addition, studies are carried out on rates of DNA synthesis when various parameters are changed quantitatively. The current system is formulated by 110 differential equations.

  7. Visualization of phage DNA degradation by a type I CRISPR-Cas system at the single-cell level.

    PubMed

    Guan, Jingwen; Shi, Xu; Burgos, Roberto; Zeng, Lanying

    2017-03-01

    The CRISPR-Cas system is a widespread prokaryotic defense system which targets and cleaves invasive nucleic acids, such as plasmids or viruses. So far, a great number of studies have focused on the components and mechanisms of this system, however, a direct visualization of CRISPR-Cas degrading invading DNA in real-time has not yet been studied at the single-cell level. In this study, we fluorescently label phage lambda DNA in vivo , and track the labeled DNA over time to characterize DNA degradation at the single-cell level. At the bulk level, the lysogenization frequency of cells harboring CRISPR plasmids decreases significantly compared to cells with a non-CRISPR control. At the single-cell level, host cells with CRISPR activity are unperturbed by phage infection, maintaining normal growth like uninfected cells, where the efficiency of our anti-lambda CRISPR system is around 26%. During the course of time-lapse movies, the average fluorescence of invasive phage DNA in cells with CRISPR activity, decays more rapidly compared to cells without, and phage DNA is fully degraded by around 44 minutes on average. Moreover, the degradation appears to be independent of cell size or the phage DNA ejection site suggesting that Cas proteins are dispersed in sufficient quantities throughout the cell. With the CRISPR-Cas visualization system we developed, we are able to examine and characterize how a CRISPR system degrades invading phage DNA at the single-cell level. This work provides direct evidence and improves the current understanding on how CRISPR breaks down invading DNA.

  8. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  9. A small-molecule-linked DNA-graphene oxide-based fluorescence-sensing system for detection of biotin.

    PubMed

    Zhang, Hao; Li, Yan; Su, Xingguang

    2013-11-15

    In this paper, we establish a novel fluorescence-sensing system for the detection of biotin based on the interaction between DNA and graphene oxide and on protection of the terminal of the biotinylated single-stranded DNA fluorescent probe by streptavidin. In this system, streptavidin binds to the biotinylated DNA, which protects the DNA from hydrolysis by exonuclease I. The streptavidin-DNA conjugate is then adsorbed to the graphene oxide resulting in the fluorescence being quenched. Upon the addition of free biotin, it competes with the labeled biotin for the binding sites of streptavidin and then the exonuclease I digests the unbound DNA probe from the 3' to the 5' terminal, releasing the fluorophore from the DNA. Because of the weak affinity between the fluorophore and graphene oxide, the fluorescence is recovered. Under optimal conditions, the fluorescence intensity is proportional to the concentration of biotin in the concentration range of 0.5-20nmol/L. The detection limit for biotin is 0.44nmol/L. The proposed fluorescence-sensing system was applied to the determination of biotin in some real samples with satisfactory reproducibility and accuracy. This work could provide a common platform for detecting small biomolecules based on protein-small molecule ligand binding. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Approaching mathematical model of the immune network based DNA Strand Displacement system.

    PubMed

    Mardian, Rizki; Sekiyama, Kosuke; Fukuda, Toshio

    2013-12-01

    One biggest obstacle in molecular programming is that there is still no direct method to compile any existed mathematical model into biochemical reaction in order to solve a computational problem. In this paper, the implementation of DNA Strand Displacement system based on nature-inspired computation is observed. By using the Immune Network Theory and Chemical Reaction Network, the compilation of DNA-based operation is defined and the formulation of its mathematical model is derived. Furthermore, the implementation on this system is compared with the conventional implementation by using silicon-based programming. From the obtained results, we can see a positive correlation between both. One possible application from this DNA-based model is for a decision making scheme of intelligent computer or molecular robot. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Integration of the Reconfigurable Self-Healing eDNA Architecture in an Embedded System

    NASA Technical Reports Server (NTRS)

    Boesen, Michael Reibel; Keymeulen, Didier; Madsen, Jan; Lu, Thomas; Chao, Tien-Hsin

    2011-01-01

    In this work we describe the first real world case study for the self-healing eDNA (electronic DNA) architecture by implementing the control and data processing of a Fourier Transform Spectrometer (FTS) on an eDNA prototype. For this purpose the eDNA prototype has been ported from a Xilinx Virtex 5 FPGA to an embedded system consisting of a PowerPC and a Xilinx Virtex 5 FPGA. The FTS instrument features a novel liquid crystal waveguide, which consequently eliminates all moving parts from the instrument. The addition of the eDNA architecture to do the control and data processing has resulted in a highly fault-tolerant FTS instrument. The case study has shown that the early stage prototype of the autonomous self-healing eDNA architecture is expensive in terms of execution time.

  12. Gene Flow Across Genus Barriers – Conjugation of Dinoroseobacter shibae’s 191-kb Killer Plasmid into Phaeobacter inhibens and AHL-mediated Expression of Type IV Secretion Systems

    PubMed Central

    Patzelt, Diana; Michael, Victoria; Päuker, Orsola; Ebert, Matthias; Tielen, Petra; Jahn, Dieter; Tomasch, Jürgen; Petersen, Jörn; Wagner-Döbler, Irene

    2016-01-01

    Rhodobacteraceae harbor a conspicuous wealth of extrachromosomal replicons (ECRs) and therefore the exchange of genetic material via horizontal transfer has been supposed to be a major evolutionary driving force. Many plasmids in this group encode type IV secretion systems (T4SS) that are expected to mediate transfer of proteins and/or DNA into host cells, but no experimental evidence of either has yet been provided. Dinoroseobacter shibae, a species of the Roseobacter group within the Rhodobacteraceae family, contains five ECRs that are crucial for anaerobic growth, survival under starvation and the pathogenicity of this model organism. Here we tagged two syntenous but compatible RepABC-type plasmids of 191 and 126-kb size, each encoding a T4SS, with antibiotic resistance genes and demonstrated their conjugational transfer into a distantly related Roseobacter species, namely Phaeobacter inhibens. Pulsed field gel electrophoresis showed transfer of those replicons into the recipient both individually but also together documenting the efficiency of conjugation. We then studied the influence of externally added quorum sensing (QS) signals on the expression of the T4SS located on the sister plasmids. A QS deficient D. shibae null mutant (ΔluxI1) lacking synthesis of N-acyl-homoserine lactones (AHLs) was cultivated with a wide spectrum of chemically diverse long-chain AHLs. All AHLs with lengths of the acid side-chain ≥14 reverted the ΔluxI1 phenotype to wild-type. Expression of the T4SS was induced up to log2 ∼3fold above wild-type level. We hypothesize that conjugation in roseobacters is QS-controlled and that the QS system may detect a wide array of long-chain AHLs at the cell surface. PMID:27303368

  13. Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing

    PubMed Central

    Chan, Rebecca W. Y.; Jiang, Peiyong; Peng, Xianlu; Tam, Lai-Shan; Liao, Gary J. W.; Li, Edmund K. M.; Wong, Priscilla C. H.; Sun, Hao; Chan, K. C. Allen; Chiu, Rossa W. K.; Lo, Y. M. Dennis

    2014-01-01

    We performed a high-resolution analysis of the biological characteristics of plasma DNA in systemic lupus erythematosus (SLE) patients using massively parallel genomic and methylomic sequencing. A number of plasma DNA abnormalities were found. First, aberrations in measured genomic representations (MGRs) were identified in the plasma DNA of SLE patients. The extent of the aberrations in MGRs correlated with anti-double–stranded DNA (anti-dsDNA) antibody level. Second, the plasma DNA of active SLE patients exhibited skewed molecular size-distribution profiles with a significantly increased proportion of short DNA fragments. The extent of plasma DNA shortening in SLE patients correlated with the SLE disease activity index (SLEDAI) and anti-dsDNA antibody level. Third, the plasma DNA of active SLE patients showed decreased methylation densities. The extent of hypomethylation correlated with SLEDAI and anti-dsDNA antibody level. To explore the impact of anti-dsDNA antibody on plasma DNA in SLE, a column-based protein G capture approach was used to fractionate the IgG-bound and non–IgG-bound DNA in plasma. Compared with healthy individuals, SLE patients had higher concentrations of IgG-bound DNA in plasma. More IgG binding occurs at genomic locations showing increased MGRs. Furthermore, the IgG-bound plasma DNA was shorter in size and more hypomethylated than the non–IgG-bound plasma DNA. These observations have enhanced our understanding of the spectrum of plasma DNA aberrations in SLE and may provide new molecular markers for SLE. Our results also suggest that caution should be exercised when interpreting plasma DNA-based noninvasive prenatal testing and cancer testing conducted for SLE patients. PMID:25427797

  14. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    PubMed Central

    Sharma, Nynne; Cai, Yujia; Bak, Rasmus O; Jakobsen, Martin R; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2013-01-01

    DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB) DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs) devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system. PMID:23443502

  15. Using eDNA to estimate distribution of fish species in a complex river system (presentation)

    EPA Science Inventory

    Environmental DNA (eDNA) analysis of biological material shed by aquatic organisms is a noninvasive genetic tool that can improve efficiency and reduce costs associated with species detection in aquatic systems. eDNA methods are widely used to assess presence/absence of a target ...

  16. DNAzymes in DNA Nanomachines and DNA Analysis

    NASA Astrophysics Data System (ADS)

    He, Yu; Tian, Ye; Chen, Yi; Mao, Chengde

    This chapter discusses our efforts in using DNAzymes in DNA nano-machines and DNA analysis systems. 10-23 DNAzymes can cleave specific phos-phodiester bonds in RNA. We use them to construct an autonomous DNA-RNA chimera nanomotor, which constantly extracts chemical energy from RNA substrates and transduces the energy into a mechanical motion: cycles of contraction and extension. The motor's motion can be reversibly turned on and off by a DNA analogue (brake) of the RNA substrate. Addition and removal of the brake stops and restarts, respectively, the motor's motion. Furthermore, when the RNA substrates are preorganized into a one-dimensional track, a DNAzyme can continuously move along the track so long as there are substrates available ahead. Based on a similar mechanism, a novel DNA detection system has been developed. A target DNA activates a DNAzyme to cleave RNA-containing molecular beacons (MB), which generates an enhanced fluorescence signal. A following work integrates two steps of signal amplifications: a rolling-circle amplification (RCA) to synthesize multiple copies of DNAzymes, and the DNAzymes catalyze a chemical reaction to generate a colorimetric signal. This method allows detection of DNA analytes whose concentration is as low as 1 pM.

  17. Optimization of a one-step heat-inducible in vivo mini DNA vector production system.

    PubMed

    Nafissi, Nafiseh; Sum, Chi Hong; Wettig, Shawn; Slavcev, Roderick A

    2014-01-01

    While safer than their viral counterparts, conventional circular covalently closed (CCC) plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC), bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called "Super Sequences" that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and scalability of our system

  18. Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC)

    PubMed Central

    2011-01-01

    Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV). We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR) as a bacterial artificial chromosome (BAC) in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows maintenance of large circular DNA in E. coli, into the thymidine kinase locus of CPXV by homologous recombination. Circular replication intermediates were then electroporated into E. coli DH10B cells. Upon successful establishment of the infectious BR clone, we modified the full-length clone such that recombination-mediated excision of bacterial sequences can occur upon transfection in eukaryotic cells. This self-excision of the bacterial replicon is made possible by a sequence duplication within mini-F sequences and allows recovery of recombinant virus progeny without remaining marker or vector sequences. The in vitro growth properties of viruses derived from both BAC clones were determined and found to be virtually indistinguishable from those of parental, wild-type BR. Finally, the complete genomic sequence of the infectious clone was determined and the cloned viral genome was shown to be identical to that of the parental virus. In summary, the generated infectious clone will greatly facilitate studies on individual genes and pathogenesis of CPXV. Moreover, the vector potential of CPXV can now be more systematically explored using this newly generated tool. PMID:21314965

  19. MiniX-STR multiplex system population study in Japan and application to degraded DNA analysis.

    PubMed

    Asamura, H; Sakai, H; Kobayashi, K; Ota, M; Fukushima, H

    2006-05-01

    We sought to evaluate a more effective system for analyzing X-chromosomal short tandem repeats (X-STRs) in highly degraded DNA. To generate smaller amplicon lengths, we designed new polymerase chain reaction (PCR) primers for DXS7423, DXS6789, DXS101, GATA31E08, DXS8378, DXS7133, DXS7424, and GATA165B12 at X-linked short tandem repeat (STR) loci, devising two miniX-multiplex PCR systems. Among 333 Japanese individuals, these X-linked loci were detected in amplification products ranging in length from 76 to 169 bp, and statistical analyses of the eight loci indicated a high usefulness for the Japanese forensic practice. Results of tests on highly degraded DNA indicated the miniX-STR multiplex strategies to be an effective system for analyzing degraded DNA. We conclude that analysis by the current miniX-STR multiplex systems offers high effectiveness for personal identification from degraded DNA samples.

  20. MIDAS: A Modular DNA Assembly System for Synthetic Biology.

    PubMed

    van Dolleweerd, Craig J; Kessans, Sarah A; Van de Bittner, Kyle C; Bustamante, Leyla Y; Bundela, Rudranuj; Scott, Barry; Nicholson, Matthew J; Parker, Emily J

    2018-04-20

    A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.

  1. Seasonal variability in the persistence of dissolved environmental DNA (eDNA) in a marine system: The role of microbial nutrient limitation.

    PubMed

    Salter, Ian

    2018-01-01

    Environmental DNA (eDNA) can be defined as the DNA pool recovered from an environmental sample that includes both extracellular and intracellular DNA. There has been a significant increase in the number of recent studies that have demonstrated the possibility to detect macroorganisms using eDNA. Despite the enormous potential of eDNA to serve as a biomonitoring and conservation tool in aquatic systems, there remain some important limitations concerning its application. One significant factor is the variable persistence of eDNA over natural environmental gradients, which imposes a critical constraint on the temporal and spatial scales of species detection. In the present study, a radiotracer bioassay approach was used to quantify the kinetic parameters of dissolved eDNA (d-eDNA), a component of extracellular DNA, over an annual cycle in the coastal Northwest Mediterranean. Significant seasonal variability in the biological uptake and turnover of d-eDNA was observed, the latter ranging from several hours to over one month. Maximum uptake rates of d-eDNA occurred in summer during a period of intense phosphate limitation (turnover <5 hrs). Corresponding increases in bacterial production and uptake of adenosine triphosphate (ATP) demonstrated the microbial utilization of d-eDNA as an organic phosphorus substrate. Higher temperatures during summer may amplify this effect through a general enhancement of microbial metabolism. A partial least squares regression (PLSR) model was able to reproduce the seasonal cycle in d-eDNA persistence and explained 60% of the variance in the observations. Rapid phosphate turnover and low concentrations of bioavailable phosphate, both indicative of phosphate limitation, were the most important parameters in the model. Abiotic factors such as pH, salinity and oxygen exerted minimal influence. The present study demonstrates significant seasonal variability in the persistence of d-eDNA in a natural marine environment that can be linked to the

  2. Tightly regulated, high-level expression from controlled copy number vectors based on the replicon of temperate phage N15.

    PubMed

    Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V

    2007-06-15

    A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.

  3. Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production

    PubMed Central

    Chung, Sharon A.; Taylor, Kimberly E.; Graham, Robert R.; Nititham, Joanne; Lee, Annette T.; Ortmann, Ward A.; Jacob, Chaim O.; Alarcón-Riquelme, Marta E.; Tsao, Betty P.; Harley, John B.; Gaffney, Patrick M.; Moser, Kathy L.; Petri, Michelle; Demirci, F. Yesim; Kamboh, M. Ilyas; Manzi, Susan; Gregersen, Peter K.; Langefeld, Carl D.; Behrens, Timothy W.; Criswell, Lindsey A.

    2011-01-01

    Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti–dsDNA – SLE. PMID

  4. Development of a 20-locus fluorescent multiplex system as a valuable tool for national DNA database.

    PubMed

    Jiang, Xianhua; Guo, Fei; Jia, Fei; Jin, Ping; Sun, Zhu

    2013-02-01

    The multiplex system allows the detection of 19 autosomal short tandem repeat (STR) loci [including all Combined DNA Index System (CODIS) STR loci as well as D2S1338, D6S1043, D12S391, D19S433, Penta D and Penta E] plus the sex-determining locus Amelogenin in a single reaction, comprising all STR loci in various commercial kits used in the China national DNA database (NDNAD). Primers are designed so that the amplicons are distributed ranging from 90 base pairs (bp) to 450 bp within a five-dye fluorescent design with the fifth dye reserved for the internal size standard. With 30 cycles, 125 pg to 2 ng DNA template showed optimal profiling result, while robust profiles could also be achieved by adjusting the cycle numbers for the DNA template beyond that optimal DNA input range. Mixture studies showed that 83% and 87% of minor alleles were detected at 9:1 and 1:9 ratios, respectively. When 4 ng of degraded DNA was digested by 2-min DNase and 1 ng undegraded DNA was added to 400 μM haematin, the complete profiles were still observed. Polymerase chain reaction (PCR)-based procedures were examined and optimized including the concentrations of primer set, magnesium and the Taq polymerase as well as volume, cycle number and annealing temperature. In addition, the system has been validated by 3000 bloodstain samples and 35 common case samples in line with the Chinese National Standards and Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. The total probability of identity (TPI) can reach to 8×10(-24), where DNA database can be improved at the level of 10 million DNA profiles or more because the number of expected match is far from one person (4×10(-10)) and can be negligible. Further, our system also demonstrates its good performance in case samples and it will be an ideal tool for forensic DNA typing and databasing with potential application. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats.

    PubMed

    Pasetti, Marcela F; Barry, Eileen M; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M; Polo, John M; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B; Levine, Myron M

    2003-05-01

    Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.

  6. Seasonal variability in the persistence of dissolved environmental DNA (eDNA) in a marine system: The role of microbial nutrient limitation

    PubMed Central

    2018-01-01

    Environmental DNA (eDNA) can be defined as the DNA pool recovered from an environmental sample that includes both extracellular and intracellular DNA. There has been a significant increase in the number of recent studies that have demonstrated the possibility to detect macroorganisms using eDNA. Despite the enormous potential of eDNA to serve as a biomonitoring and conservation tool in aquatic systems, there remain some important limitations concerning its application. One significant factor is the variable persistence of eDNA over natural environmental gradients, which imposes a critical constraint on the temporal and spatial scales of species detection. In the present study, a radiotracer bioassay approach was used to quantify the kinetic parameters of dissolved eDNA (d-eDNA), a component of extracellular DNA, over an annual cycle in the coastal Northwest Mediterranean. Significant seasonal variability in the biological uptake and turnover of d-eDNA was observed, the latter ranging from several hours to over one month. Maximum uptake rates of d-eDNA occurred in summer during a period of intense phosphate limitation (turnover <5 hrs). Corresponding increases in bacterial production and uptake of adenosine triphosphate (ATP) demonstrated the microbial utilization of d-eDNA as an organic phosphorus substrate. Higher temperatures during summer may amplify this effect through a general enhancement of microbial metabolism. A partial least squares regression (PLSR) model was able to reproduce the seasonal cycle in d-eDNA persistence and explained 60% of the variance in the observations. Rapid phosphate turnover and low concentrations of bioavailable phosphate, both indicative of phosphate limitation, were the most important parameters in the model. Abiotic factors such as pH, salinity and oxygen exerted minimal influence. The present study demonstrates significant seasonal variability in the persistence of d-eDNA in a natural marine environment that can be linked to the

  7. Systemically administered gp100 encoding DNA vaccine for melanoma using water-in-oil-in-water multiple emulsion delivery systems.

    PubMed

    Kalariya, Mayurkumar; Amiji, Mansoor M

    2013-09-10

    The purpose of this study was to develop a water-in-oil-in-water (W/O/W) multiple emulsions-based vaccine delivery system for plasmid DNA encoding the gp100 peptide antigen for melanoma immunotherapy. The gp100 encoding plasmid DNA was encapsulated in the inner-most aqueous phase of squalane oil containing W/O/W multiple emulsions using a two-step emulsification method. In vitro transfection ability of the encapsulated plasmid DNA was investigated in murine dendritic cells by transgene expression analysis using fluorescence microscopy and ELISA methods. Prophylactic immunization using the W/O/W multiple emulsions encapsulated the gp100 encoding plasmid DNA vaccine significantly reduced tumor volume in C57BL/6 mice during subsequent B16-F10 tumor challenge. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation of cytotoxic T-lymphocytes mediated anti-tumor immunity causing tumor growth suppression. The W/O/W multiple emulsions-based vaccine delivery system efficiently delivers the gp100 plasmid DNA to induce cell-mediated anti-tumor immunity. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Optimization of a One-Step Heat-Inducible In Vivo Mini DNA Vector Production System

    PubMed Central

    Wettig, Shawn; Slavcev, Roderick A.

    2014-01-01

    While safer than their viral counterparts, conventional circular covalently closed (CCC) plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC), bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called “Super Sequences” that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and scalability of our

  9. The Israel DNA database--the establishment of a rapid, semi-automated analysis system.

    PubMed

    Zamir, Ashira; Dell'Ariccia-Carmon, Aviva; Zaken, Neomi; Oz, Carla

    2012-03-01

    The Israel Police DNA database, also known as IPDIS (Israel Police DNA Index System), has been operating since February 2007. During that time more than 135,000 reference samples have been uploaded and more than 2000 hits reported. We have developed an effective semi-automated system that includes two automated punchers, three liquid handler robots and four genetic analyzers. An inhouse LIMS program enables full tracking of every sample through the entire process of registration, pre-PCR handling, analysis of profiles, uploading to the database, hit reports and ultimately storage. The LIMS is also responsible for the future tracking of samples and their profiles to be expunged from the database according to the Israeli DNA legislation. The database is administered by an in-house developed software program, where reference and evidentiary profiles are uploaded, stored, searched and matched. The DNA database has proven to be an effective investigative tool which has gained the confidence of the Israeli public and on which the Israel National Police force has grown to rely. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system.

    PubMed

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of

  11. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  12. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE PAGES

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  13. High-mobility group 1/2 proteins are essential for initiating rolling-circle-type DNA replication at a parvovirus hairpin origin.

    PubMed

    Cotmore, S F; Tattersall, P

    1998-11-01

    Rolling-circle replication is initiated by a replicon-encoded endonuclease which introduces a single-strand nick into specific origin sequences, becoming covalently attached to the 5' end of the DNA at the nick and providing a 3' hydroxyl to prime unidirectional, leading-strand synthesis. Parvoviruses, such as minute virus of mice (MVM), have adapted this mechanism to amplify their linear single-stranded genomes by using hairpin telomeres which sequentially unfold and refold to shuttle the replication fork back and forth along the genome, creating a continuous, multimeric DNA strand. The viral initiator protein, NS1, then excises individual genomes from this continuum by nicking and reinitiating synthesis at specific origins present within the hairpin sequences. Using in vitro assays to study ATP-dependent initiation within the right-hand (5') MVM hairpin, we have characterized a HeLa cell factor which is absolutely required to allow NS1 to nick this origin. Unlike parvovirus initiation factor (PIF), the cellular complex which activates NS1 endonuclease activity at the left-hand (3') viral origin, the host factor which activates the right-hand hairpin elutes from phosphocellulose in high salt, has a molecular mass of around 25 kDa, and appears to bind preferentially to structured DNA, suggesting that it might be a member of the high-mobility group 1/2 (HMG1/2) protein family. This prediction was confirmed by showing that purified calf thymus HMG1 and recombinant human HMG1 or murine HMG2 could each substitute for the HeLa factor, activating the NS1 endonuclease in an origin-specific nicking reaction.

  14. Genetic alteration of Mycobacterium smegmatis to improve mycobacterium-mediated transfer of plasmid DNA into mammalian cells and DNA immunization.

    PubMed

    Mo, Yongkai; Quanquin, Natalie M; Vecino, William H; Ranganathan, Uma Devi; Tesfa, Lydia; Bourn, William; Derbyshire, Keith M; Letvin, Norman L; Jacobs, William R; Fennelly, Glenn J

    2007-10-01

    Mycobacteria target and persist within phagocytic monocytes and are strong adjuvants, making them attractive candidate vectors for DNA vaccines. We characterized the ability of mycobacteria to deliver transgenes to mammalian cells and the effects of various bacterial chromosomal mutations on the efficiency of transfer in vivo and in vitro. First, we observed green fluorescent protein expression via microscopy and fluorescence-activated cell sorting analysis after infection of phagocytic and nonphagocytic cell lines by Mycobacterium smegmatis or M. bovis BCG harboring a plasmid encoding the fluorescence gene under the control of a eukaryotic promoter. Next, we compared the efficiencies of gene transfer using M. smegmatis or BCG containing chromosomal insertions or deletions that cause early lysis, hyperconjugation, or an increased plasmid copy number. We observed a significant-albeit only 1.7-fold-increase in the level of plasmid transfer to eukaryotic cells infected with M. smegmatis hyperconjugation mutants. M. smegmatis strains that overexpressed replication proteins (Rep) of pAL5000, a plasmid whose replicon is incorporated in many mycobacterial constructs, generated a 10-fold increase in plasmid copy number and 3.5-fold and 3-fold increases in gene transfer efficiency to HeLa cells and J774 cells, respectively. Although BCG strains overexpressing Rep could not be recovered, BCG harboring a plasmid with a copy-up mutation in oriM resulted in a threefold increase in gene transfer to J774 cells. Moreover, M. smegmatis strains overexpressing Rep enhanced gene transfer in vivo compared with a wild-type control. Immunization of mice with mycobacteria harboring a plasmid (pgp120(h)(E)) encoding human immunodeficiency virus gp120 elicited gp120-specific CD8 T-cell responses among splenocytes and peripheral blood mononuclear cells that were up to twofold (P < 0.05) and threefold (P < 0.001) higher, respectively, in strains supporting higher copy numbers. The magnitude

  15. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral particles as a non-transmissible bivalent marker vaccine candidate against CSF and JE infections

    USDA-ARS?s Scientific Manuscript database

    A trans-complemented CSF- JE chimeric viral replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The E2 gene of CSFV Alfort/187 strain was deleted and the resultant plasmid pA187delE2 was inserted by a fragment containing the region coding for a truncate...

  16. Relicts and models of the RNA world

    NASA Astrophysics Data System (ADS)

    Lehto, Kirsi; Karetnikov, Alexey

    2005-01-01

    It is widely believed that the current DNA-RNA-protein-based life forms have evolved from preceding RNA-protein-based life forms, and these again, from mere RNA replicons. By rationale, it can be assumed that the early RNA replicons were fully heterotrophic in terms of obtaining all their building blocks from their environment. In the absence of protein catalysts, their essential life functions had to be mediated by simple functional structures and mechanisms, such as RNA secondary structures, RNA-RNA interactions and RNA-mediated catalysis, and possibly by catalytic minerals or clays. The central role of RNA catalysts in early life forms is supported by the fact that several catalytic RNAs still perform central biological functions in current life forms, and at least some of these may be derived as molecular relicts from the early RNA-based life. The RNA-catalysed metabolic reactions and molecular fossils are more conserved in the eukaryotic life forms than in the prokaryotes, suggesting that the linear eukaryote genomes may more closely resemble the structure and function of the early RNA replicons, than what do the circular prokaryote genomes. Present-day RNA viruses and viroids utilize ultimately simple life strategies, which may be similar to those used by the early RNA replicons. Thus, molecular and functional properties of viruses and viroids may be considered as examples or models of the structures and replication mechanisms, which might have been used for the replication of the early biopolymers.

  17. Hierarchy of Certain Types of DNA Splicing Systems

    NASA Astrophysics Data System (ADS)

    Yusof, Yuhani; Sarmin, Nor Haniza; Goode, T. Elizabeth; Mahmud, Mazri; Heng, Fong Wan

    A Head splicing system (H-system)consists of a finite set of strings (words) written over a finite alphabet, along with a finite set of rules that acts on the strings by iterated cutting and pasting to create a splicing language. Any interpretation that is aligned with Tom Head's original idea is one in which the strings represent double-stranded deoxyribonucleic acid (dsDNA) and the rules represent the cutting and pasting action of restriction enzymes and ligase, respectively. A new way of writing the rule sets is adopted so as to make the biological interpretation transparent. This approach is used in a formal language- theoretic analysis of the hierarchy of certain classes of splicing systems, namely simple, semi-simple and semi-null splicing systems. The relations between such systems and their associated languages are given as theorems, corollaries and counterexamples.

  18. Assessing environmental DNA detection in controlled lentic systems.

    PubMed

    Moyer, Gregory R; Díaz-Ferguson, Edgardo; Hill, Jeffrey E; Shea, Colin

    2014-01-01

    Little consideration has been given to environmental DNA (eDNA) sampling strategies for rare species. The certainty of species detection relies on understanding false positive and false negative error rates. We used artificial ponds together with logistic regression models to assess the detection of African jewelfish eDNA at varying fish densities (0, 0.32, 1.75, and 5.25 fish/m3). Our objectives were to determine the most effective water stratum for eDNA detection, estimate true and false positive eDNA detection rates, and assess the number of water samples necessary to minimize the risk of false negatives. There were 28 eDNA detections in 324, 1-L, water samples collected from four experimental ponds. The best-approximating model indicated that the per-L-sample probability of eDNA detection was 4.86 times more likely for every 2.53 fish/m3 (1 SD) increase in fish density and 1.67 times less likely for every 1.02 C (1 SD) increase in water temperature. The best section of the water column to detect eDNA was the surface and to a lesser extent the bottom. Although no false positives were detected, the estimated likely number of false positives in samples from ponds that contained fish averaged 3.62. At high densities of African jewelfish, 3-5 L of water provided a >95% probability for the presence/absence of its eDNA. Conversely, at moderate and low densities, the number of water samples necessary to achieve a >95% probability of eDNA detection approximated 42-73 and >100 L, respectively. Potential biases associated with incomplete detection of eDNA could be alleviated via formal estimation of eDNA detection probabilities under an occupancy modeling framework; alternatively, the filtration of hundreds of liters of water may be required to achieve a high (e.g., 95%) level of certainty that African jewelfish eDNA will be detected at low densities (i.e., <0.32 fish/m3 or 1.75 g/m3).

  19. Prototype Systems Containing Human Cytochrome P450 for High-Throughput Real-Time Detection of DNA Damage by Compounds That Form DNA-Reactive Metabolites.

    PubMed

    Brito Palma, Bernardo; Fisher, Charles W; Rueff, José; Kranendonk, Michel

    2016-05-16

    The formation of reactive metabolites through biotransformation is the suspected cause of many adverse drug reactions. Testing for the propensity of a drug to form reactive metabolites has increasingly become an integral part of lead-optimization strategy in drug discovery. DNA reactivity is one undesirable facet of a drug or its metabolites and can lead to increased risk of cancer and reproductive toxicity. Many drugs are metabolized by cytochromes P450 in the liver and other tissues, and these reactions can generate hard electrophiles. These hard electrophilic reactive metabolites may react with DNA and may be detected in standard in vitro genotoxicity assays; however, the majority of these assays fall short due to the use of animal-derived organ extracts that inadequately represent human metabolism. The current study describes the development of bacterial systems that efficiently detect DNA-damaging electrophilic reactive metabolites generated by human P450 biotransformation. These assays use a GFP reporter system that detects DNA damage through induction of the SOS response and a GFP reporter to control for cytotoxicity. Two human CYP1A2-competent prototypes presented here have appropriate characteristics for the detection of DNA-damaging reactive metabolites in a high-throughput manner. The advantages of this approach include a short assay time (120-180 min) with real-time measurement, sensitivity to small amounts of compound, and adaptability to a microplate format. These systems are suitable for high-throughput assays and can serve as prototypes for the development of future enhanced versions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K., E-mail: tfrey@gsu.edu

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drugmore » selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.« less

  1. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    PubMed

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  2. Cost assessment of the automated VERSANT 440 Molecular System versus the semi-automated System 340 bDNA Analyzer platforms.

    PubMed

    Elbeik, Tarek; Loftus, Richard A; Beringer, Scott

    2007-11-01

    Labor, supply and waste were evaluated for HIV-1 and HCV bDNA on the semi-automated System 340 bDNA Analyzer and the automated VERSANT 440 Molecular System (V440). HIV-1 sample processing was evaluated using a 24- and 48-position centrifuge rotor. Vigilance time (hands-on manipulations plus incubation time except initial target hybridization) and disposables were approximately 37 and 12% lower for HIV-1, and 64 and 31% lower for HCV bDNA, respectively, with V440. Biohazardous solid waste was approximately twofold lower for both assays and other waste types were the same for either assay on both platforms. HIV-1 sample processing vigilance time for the 48-position rotor was reduced by 2 h. V440 provides cost savings and improved workflow.

  3. DR-GAS: a database of functional genetic variants and their phosphorylation states in human DNA repair systems.

    PubMed

    Sehgal, Manika; Singh, Tiratha Raj

    2014-04-01

    We present DR-GAS(1), a unique, consolidated and comprehensive DNA repair genetic association studies database of human DNA repair system. It presents information on repair genes, assorted mechanisms of DNA repair, linkage disequilibrium, haplotype blocks, nsSNPs, phosphorylation sites, associated diseases, and pathways involved in repair systems. DNA repair is an intricate process which plays an essential role in maintaining the integrity of the genome by eradicating the damaging effect of internal and external changes in the genome. Hence, it is crucial to extensively understand the intact process of DNA repair, genes involved, non-synonymous SNPs which perhaps affect the function, phosphorylated residues and other related genetic parameters. All the corresponding entries for DNA repair genes, such as proteins, OMIM IDs, literature references and pathways are cross-referenced to their respective primary databases. DNA repair genes and their associated parameters are either represented in tabular or in graphical form through images elucidated by computational and statistical analyses. It is believed that the database will assist molecular biologists, biotechnologists, therapeutic developers and other scientific community to encounter biologically meaningful information, and meticulous contribution of genetic level information towards treacherous diseases in human DNA repair systems. DR-GAS is freely available for academic and research purposes at: http://www.bioinfoindia.org/drgas. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Computer-assisted design for scaling up systems based on DNA reaction networks.

    PubMed

    Aubert, Nathanaël; Mosca, Clément; Fujii, Teruo; Hagiya, Masami; Rondelez, Yannick

    2014-04-06

    In the past few years, there have been many exciting advances in the field of molecular programming, reaching a point where implementation of non-trivial systems, such as neural networks or switchable bistable networks, is a reality. Such systems require nonlinearity, be it through signal amplification, digitalization or the generation of autonomous dynamics such as oscillations. The biochemistry of DNA systems provides such mechanisms, but assembling them in a constructive manner is still a difficult and sometimes counterintuitive process. Moreover, realistic prediction of the actual evolution of concentrations over time requires a number of side reactions, such as leaks, cross-talks or competitive interactions, to be taken into account. In this case, the design of a system targeting a given function takes much trial and error before the correct architecture can be found. To speed up this process, we have created DNA Artificial Circuits Computer-Assisted Design (DACCAD), a computer-assisted design software that supports the construction of systems for the DNA toolbox. DACCAD is ultimately aimed to design actual in vitro implementations, which is made possible by building on the experimental knowledge available on the DNA toolbox. We illustrate its effectiveness by designing various systems, from Montagne et al.'s Oligator or Padirac et al.'s bistable system to new and complex networks, including a two-bit counter or a frequency divider as well as an example of very large system encoding the game Mastermind. In the process, we highlight a variety of behaviours, such as enzymatic saturation and load effect, which would be hard to handle or even predict with a simpler model. We also show that those mechanisms, while generally seen as detrimental, can be used in a positive way, as functional part of a design. Additionally, the number of parameters included in these simulations can be large, especially in the case of complex systems. For this reason, we included the

  5. Comparing Charge Transport in Oligonucleotides: RNA:DNA Hybrids and DNA Duplexes.

    PubMed

    Li, Yuanhui; Artés, Juan M; Qi, Jianqing; Morelan, Ian A; Feldstein, Paul; Anantram, M P; Hihath, Joshua

    2016-05-19

    Understanding the electronic properties of oligonucleotide systems is important for applications in nanotechnology, biology, and sensing systems. Here the charge-transport properties of guanine-rich RNA:DNA hybrids are compared to double-stranded DNA (dsDNA) duplexes with identical sequences. The conductance of the RNA:DNA hybrids is ∼10 times higher than the equivalent dsDNA, and conformational differences are determined to be the primary reason for this difference. The conductance of the RNA:DNA hybrids is also found to decrease more rapidly than dsDNA when the length is increased. Ab initio electronic structure and Green's function-based density of states calculations demonstrate that these differences arise because the energy levels are more spatially distributed in the RNA:DNA hybrid but that the number of accessible hopping sites is smaller. These combination results indicate that a simple hopping model that treats each individual guanine as a hopping site is insufficient to explain both a higher conductance and β value for RNA:DNA hybrids, and larger delocalization lengths must be considered.

  6. Tumor transfection after systemic injection of DNA lipid nanocapsules.

    PubMed

    Morille, Marie; Passirani, Catherine; Dufort, Sandrine; Bastiat, Guillaume; Pitard, Bruno; Coll, Jean-Luc; Benoit, Jean-Pierre

    2011-03-01

    With the goal of generating an efficient vector for systemic gene delivery, a new kind of nanocarrier consisting of lipid nanocapsules encapsulating DOTAP/DOPE lipoplexes (DNA LNCs) was pegylated by the post-insertion of amphiphilic and flexible polymers. The aim of this surface modification was to create a long-circulating vector, able to circulate in the blood stream and efficient in transfecting tumoral cells after passive targeting by enhanced permeability and retention effect (EPR effect). PEG conformation, electrostatic features, and hydrophylicity are known to be important factors able to influence the pharmacokinetic behaviour of vectors. In this context, the surface structure characteristics of the newly pegylated DNA LNCs were studied by measuring electrophoretic mobility as a function of ionic strength in order to establish a correlation between surface properties and in vivo performance of the vector. Finally, thanks to this PEGylation, gene expression was measured up to 84-fold higher in tumor compared to other tested organs after intravenous injection. The present results indicate that PEGylated DNA LNCs are promising carriers for an efficient cancer gene therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  8. Construction and Characterization of an in-vivo Linear Covalently Closed DNA Vector Production System

    PubMed Central

    2012-01-01

    Background While safer than their viral counterparts, conventional non-viral gene delivery DNA vectors offer a limited safety profile. They often result in the delivery of unwanted prokaryotic sequences, antibiotic resistance genes, and the bacterial origins of replication to the target, which may lead to the stimulation of unwanted immunological responses due to their chimeric DNA composition. Such vectors may also impart the potential for chromosomal integration, thus potentiating oncogenesis. We sought to engineer an in vivo system for the quick and simple production of safer DNA vector alternatives that were devoid of non-transgene bacterial sequences and would lethally disrupt the host chromosome in the event of an unwanted vector integration event. Results We constructed a parent eukaryotic expression vector possessing a specialized manufactured multi-target site called “Super Sequence”, and engineered E. coli cells (R-cell) that conditionally produce phage-derived recombinase Tel (PY54), TelN (N15), or Cre (P1). Passage of the parent plasmid vector through R-cells under optimized conditions, resulted in rapid, efficient, and one step in vivo generation of mini lcc—linear covalently closed (Tel/TelN-cell), or mini ccc—circular covalently closed (Cre-cell), DNA constructs, separated from the backbone plasmid DNA. Site-specific integration of lcc plasmids into the host chromosome resulted in chromosomal disruption and 105 fold lower viability than that seen with the ccc counterpart. Conclusion We offer a high efficiency mini DNA vector production system that confers simple, rapid and scalable in vivo production of mini lcc DNA vectors that possess all the benefits of “minicircle” DNA vectors and virtually eliminate the potential for undesirable vector integration events. PMID:23216697

  9. Construction and characterization of an in-vivo linear covalently closed DNA vector production system.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2012-12-06

    While safer than their viral counterparts, conventional non-viral gene delivery DNA vectors offer a limited safety profile. They often result in the delivery of unwanted prokaryotic sequences, antibiotic resistance genes, and the bacterial origins of replication to the target, which may lead to the stimulation of unwanted immunological responses due to their chimeric DNA composition. Such vectors may also impart the potential for chromosomal integration, thus potentiating oncogenesis. We sought to engineer an in vivo system for the quick and simple production of safer DNA vector alternatives that were devoid of non-transgene bacterial sequences and would lethally disrupt the host chromosome in the event of an unwanted vector integration event. We constructed a parent eukaryotic expression vector possessing a specialized manufactured multi-target site called "Super Sequence", and engineered E. coli cells (R-cell) that conditionally produce phage-derived recombinase Tel (PY54), TelN (N15), or Cre (P1). Passage of the parent plasmid vector through R-cells under optimized conditions, resulted in rapid, efficient, and one step in vivo generation of mini lcc--linear covalently closed (Tel/TelN-cell), or mini ccc--circular covalently closed (Cre-cell), DNA constructs, separated from the backbone plasmid DNA. Site-specific integration of lcc plasmids into the host chromosome resulted in chromosomal disruption and 10(5) fold lower viability than that seen with the ccc counterpart. We offer a high efficiency mini DNA vector production system that confers simple, rapid and scalable in vivo production of mini lcc DNA vectors that possess all the benefits of "minicircle" DNA vectors and virtually eliminate the potential for undesirable vector integration events.

  10. Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karger, A.E.; Weiss, R.; Gesteland, R.F.

    A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less

  11. Test of synthetic DNA tracers in a periodic hydrodynamic system for time-variable transit time distribution assessment

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Wang, C.; McNew, C.; McLaughlin, S.; Lyon, S. W.

    2016-12-01

    Recent research on time-varying transport through hydrologic systems proposed using decomposed over-printed tracer breakthrough curves to directly observe transport through complex flow systems. This method, also known as the PERTH (Periodic Tracer Hierarchy) method requires periodic flow and multiple tracer injections to reveal changes in flow pathways and transport behavior. Time-variable transit time distributions (TTD) estimated from tracer breakthrough curves often vary with the storage state of the system, which in turn is influenced by internal and external variabilities, such as the arrangement of flow pathways and fluctuations in system inputs. Deciphering internal from external variabilities in TTDs might help to advance the use of TTDs for estimating the physical state of a system; however, thus far the finite number of unique conservative tracers available for tracing has limited deeper insights. Synthetic DNA tracers consisting of short strands of synthetic DNA encapsulated by polylactic acid (PLA) microspheres could potentially provide multiple unique tracers with identical transport properties needed to explore time varying transport through hydrologic systems in more detail. An experiment was conducted on the miniLeo hillslope, a 1 m3 sloping lysimeter, within the Biosphere 2 Landscape Evolution Observatory near Tucson, AZ to investigate transit time variability. The goal of the experiment was to 1) test the suitability of using synthetic DNA tracers for estimating TTDs in a hydrologic system and 2) to determine the TTDs of individual tracer pulses under periodic steady-state conditions. Five DNA tracers, consisting of four unique, encapsulated DNA sequences and one free/non-encapsulated DNA sequence, were applied as reference and probe tracers together with deuterium, using the PERTH method. The lysimeter received three 2-hour pulses of rainfall at a rate of 30 mm/hr for 10 days. Initial results show that both the encapsulated and free DNA tracers

  12. Centromere binding and evolution of chromosomal partition systems in the Burkholderiales.

    PubMed

    Passot, Fanny M; Calderon, Virginie; Fichant, Gwennaele; Lane, David; Pasta, Franck

    2012-07-01

    How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.

  13. DNA Damage, DNA Repair, Aging, and Neurodegeneration

    PubMed Central

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2015-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  14. Integrated on-line system for DNA sequencing by capillary electrophoresis: From template to called bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ton, H.; Yeung, E.S.

    1997-02-15

    An integrated on-line prototype for coupling a microreactor to capillary electrophoresis for DNA sequencing has been demonstrated. A dye-labeled terminator cycle-sequencing reaction is performed in a fused-silica capillary. Subsequently, the sequencing ladder is directly injected into a size-exclusion chromatographic column operated at nearly 95{degree}C for purification. On-line injection to a capillary for electrophoresis is accomplished at a junction set at nearly 70{degree}C. High temperature at the purification column and injection junction prevents the renaturation of DNA fragments during on-line transfer without affecting the separation. The high solubility of DNA in and the relatively low ionic strength of 1 x TEmore » buffer permit both effective purification and electrokinetic injection of the DNA sample. The system is compatible with highly efficient separations by a replaceable poly(ethylene oxide) polymer solution in uncoated capillary tubes. Future automation and adaptation to a multiple-capillary array system should allow high-speed, high-throughput DNA sequencing from templates to called bases in one step. 32 refs., 5 figs.« less

  15. Effects of cellular differentiation, chromosomal integration and 5-aza-2'-deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell lines.

    PubMed

    Kalantari, Mina; Lee, Denis; Calleja-Macias, Itzel E; Lambert, Paul F; Bernard, Hans-Ulrich

    2008-05-10

    Human papillomavirus-16 (HPV-16) genomes in cell culture and in situ are affected by polymorphic methylation patterns, which can repress the viral transcription. In order to understand some of the underlying mechanisms, we investigated changes of the methylation of HPV-16 DNA in cell cultures in response to cellular differentiation, to recombination with cellular DNA, and to an inhibitor of methylation. Undifferentiated W12E cells, derived from a precancerous lesion, contained extrachromosomal HPV-16 DNA with a sporadically methylated enhancer-promoter segment. Upon W12E cell differentiation, the viral DNA was demethylated, suggesting a link between differentiation and the epigenetic state of HPV-16 DNA. The viral genomes present in two W12I clones, in which individual copies of the HPV-16 genome have integrated into cellular DNA (type 1 integrants), were unmethylated, akin to that seen in the cervical carcinoma cell line SiHa (also a type 1 integrant). This finding is consistent with hypomethylation being necessary for continued viral gene expression. In contrast, two of three type 2 integrant W12I clones, containing concatemers of HPV-16 genomes integrated into the cellular DNA contained hypermethylated viral DNA, as observed in the cervical carcinoma cell line CaSki (also a type 2 integrant). A third, type 2, W12I clone, interestingly with fewer copies of the viral genome, contained unmethylated HPV-16 genomes. Epithelial differentiation of W12I clones did not lead to demethylation of chromosomally integrated viral genomes as was seen for extrachromosomal HPV-16 DNA in W12E clones. Hypomethylation of CaSki cells in the presence of the DNA methylation inhibitor 5-aza-2'-deoxycytidine reduced the cellular viability, possibly as a consequence of toxic effects of an excess of HPV-16 gene products. Our data support a model wherein (i) the DNA methylation state of extrachromosomal HPV16 replicons and epithelial differentiation are inversely coupled during the viral

  16. Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms.

    PubMed

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories.

  17. Evaluation of Methods for the Extraction of DNA from Drinking Water Distribution System Biofilms

    PubMed Central

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.; Liu, Wen-Tso

    2012-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories. PMID:22075624

  18. DNA:DNA hybridization studies on the pink-pigmented facultative methylotrophs.

    PubMed

    Hood, D W; Dow, C S; Green, P N

    1987-03-01

    The genomic relatedness among 36 strains of pink-pigmented facultatively methylotrophic bacteria (PPFMs) was estimated by determination of DNA base composition and by DNA:DNA hybridization studies. A reproducible hybridization system was developed for the rapid analysis of multiple DNA samples. Results indicated that the PPFMs comprise four major and several minor homology groups, and that they should remain grouped in a single genus, Methylobacterium.

  19. Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences.

    PubMed

    Groom, Joseph; Chung, Daehwan; Kim, Sun-Ki; Guss, Adam; Westpheling, Janet

    2018-05-28

    A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (≥ 60 °C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a result also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ∆recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.

  20. Deletion of the Clostridium thermocellum recA Gene Reveals that it is Required for Thermophilic Plasmid Replication but not Plasmid Integration at Homologous DNA Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Daehwan; Groom, Joseph; Kim, Sun-Ki

    A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (>/= 60 degrees C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a resultmore » also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ..delta..recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.« less

  1. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system

    PubMed Central

    Elmore, Joshua R.; Sheppard, Nolan F.; Ramia, Nancy; Deighan, Trace; Li, Hong; Terns, Rebecca M.; Terns, Michael P.

    2016-01-01

    CRISPR–Cas systems eliminate nucleic acid invaders in bacteria and archaea. The effector complex of the Type III-B Cmr system cleaves invader RNAs recognized by the CRISPR RNA (crRNA ) of the complex. Here we show that invader RNAs also activate the Cmr complex to cleave DNA. As has been observed for other Type III systems, Cmr eliminates plasmid invaders in Pyrococcus furiosus by a mechanism that depends on transcription of the crRNA target sequence within the plasmid. Notably, we found that the target RNA per se induces DNA cleavage by the Cmr complex in vitro. DNA cleavage activity does not depend on cleavage of the target RNA but notably does require the presence of a short sequence adjacent to the target sequence within the activating target RNA (rPAM [RNA protospacer-adjacent motif]). The activated complex does not require a target sequence (or a PAM) in the DNA substrate. Plasmid elimination by the P. furiosus Cmr system also does not require the Csx1 (CRISPR-associated Rossman fold [CARF] superfamily) protein. Plasmid silencing depends on the HD nuclease and Palm domains of the Cmr2 (Cas10 superfamily) protein. The results establish the Cmr complex as a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a rPAM. PMID:26848045

  2. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins

    NASA Astrophysics Data System (ADS)

    Dahlke, K.; Sing, C. E.

    2018-02-01

    Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.

  3. Systemic Lupus Erythematosus with and without Anti-dsDNA Antibodies: Analysis from a Large Monocentric Cohort.

    PubMed

    Conti, Fabrizio; Ceccarelli, Fulvia; Perricone, Carlo; Massaro, Laura; Marocchi, Elisa; Miranda, Francesca; Spinelli, Francesca Romana; Truglia, Simona; Alessandri, Cristiano; Valesini, Guido

    2015-01-01

    The anti-dsDNA antibodies are a marker for Systemic Lupus Erythematosus (SLE) and 70-98% of patients test positive. We evaluated the demographic, clinical, laboratory, and therapeutical features of a monocentric SLE cohort according to the anti-dsDNA status. We identified three groups: anti-dsDNA + (persistent positivity); anti-dsDNA ± (initial positivity and subsequent negativity during disease course); anti-dsDNA - (persistent negativity). Disease activity was assessed by the European Consensus Lupus Activity Measurement (ECLAM). We evaluated 393 patients (anti-dsDNA +: 62.3%; anti-dsDNA ±: 13.3%; anti-dsDNA -: 24.4%). The renal involvement was significantly more frequent in anti-dsDNA + (30.2%), compared with anti-dsDNA ± and anti-dsDNA - (21.1% and 18.7%, resp.; P = 0.001). Serositis resulted significantly more frequent in anti-dsDNA - (82.3%) compared to anti-dsDNA + and anti-dsDNA ± (20.8% and 13.4%, resp.; P < 0.0001). The reduction of C4 serum levels was identified significantly more frequently in anti-dsDNA + and anti-dsDNA ± (40.0% and 44.2%, resp.) compared with anti-dsDNA - (21.8%, P = 0.005). We did not identify significant differences in the mean ECLAM values before and after modification of anti-dsDNA status (P = 0.7). Anti-dsDNA status influences the clinical and immunological features of SLE patients. Nonetheless, it does not appear to affect disease activity.

  4. Molecular Dynamics Simulations of DNA-Free and DNA-Bound TAL Effectors

    PubMed Central

    Wan, Hua; Hu, Jian-ping; Li, Kang-shun; Tian, Xu-hong; Chang, Shan

    2013-01-01

    TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5′ end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism. PMID:24130757

  5. Characterization of a minimal pKW2124 replicon from Weissella cibaria KLC140 and its application for the construction of the Weissella expression vector pKUCm1

    PubMed Central

    Ku, Hye-Jin; Park, Myeong Soo; Lee, Ju-Hoon

    2015-01-01

    A 2.1-kb plasmid was previously isolated from Weissella cibaria KLC140 in kimchi and cloned into pUC19 along with the slpA and gfp genes, resulting in an 8.6-kb pKWCSLGFP construct for use as a novel surface display vector. To reduce the size of the vector, the minimal replicon of pKW2124 was determined. The pKW2124 plasmid contains a putative origin of replication (ori), a potential ribosomal binding site (RBS), and the repA gene encoding a plasmid replication protein. To conduct the minimal replicon experiment, four different PCR products (MR1, ori+RBS+repA; MR2, RBS+repA; MR2’, repA; MR3, fragment of repA) were obtained and cloned into pUC19 (pKUCm1, pKUCm2, pKUCm2’, and pKUCm3, respectively) containing the chloramphenicol acetyltransferase (CAT) gene. These constructed vectors were electroporated into W. confusa ATCC 10881 with different transformation efficiencies of 1.5 × 105 CFU/μg, 1.3 × 101 CFU/μg, and no transformation, respectively, suggesting that the putative ori, RBS, and repA gene are essential for optimum plasmid replication. Subsequent segregational plasmid stability testing of pKUCm1 and pKUCm2 showed that the vector pKUCm1 is highly stable up to 100 generations but pKUCm2 was completely lost after 60 generations, suggesting that the putative ori may be important for plasmid stability in the host strain. In addition, a host range test of pKUCm1 revealed that it has a broad host range spectrum including Weissella, Lactococcus, Leuconostoc, and even Lactobacillus. To verify the application of pKUCm1, the β-galactosidase gene and its promoter region from W. cibaria KSD1 were cloned in the vector, resulting in pKUGal. Expression of the β-galactosidase gene was confirmed using blue-white screening after IPTG induction. The small and stable pKUGal vector will be useful for gene transfer, expression, and manipulation in the Weissella genome and in other lactic acid bacteria. PMID:25691882

  6. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein

    NASA Technical Reports Server (NTRS)

    Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.

    2000-01-01

    Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.

  7. Applicability of the ParaDNA(®) Screening System to Seminal Samples.

    PubMed

    Tribble, Nicholas D; Miller, Jamie A D; Dawnay, Nick; Duxbury, Nicola J

    2015-05-01

    Seminal fluid represents a common biological material recovered from sexual assault crime scenes. Such samples can be prescreened using different techniques to determine cell type and relative amount before submitting for full STR profiling. The ParaDNA(®) Screening System is a novel forensic test which identifies the presence of DNA through amplification and detection of two common STR loci (D16S539 and TH01) and the Amelogenin marker. The detection of the Y allele in samples could provide a useful tool in the triage and submission of sexual assault samples by enforcement authorities. Male template material was detected on a range of common sexual assault evidence items including cotton pillow cases, condoms, swab heads and glass surfaces and shows a detection limit of 1 in 1000 dilution of neat semen. These data indicate this technology has the potential to be a useful tool for the detection of male donor DNA in sexual assault casework. © 2015 American Academy of Forensic Sciences.

  8. Inhibition of the Nedd8 system sensitizes cells to DNA Inter-strand crosslinking agents

    PubMed Central

    Kee, Younghoon; Huang, Min; Chang, Sophia; Moreau, Lisa A.; Park, Eunmi; Smith, Peter G.; D’Andrea, Alan D.

    2012-01-01

    The Fanconi Anemia (FA) pathway is required for repair of DNA interstrand crosslinks (ICLs). FA pathway-deficient cells are hypersensitive to DNA ICL-inducing drugs such as Cisplatin. Conversely, hyperactivation of the FA pathway is a mechanism that may underlie cellular resistance to DNA ICL agents. Modulating FANCD2 monoubiquitination, a key step in the FA pathway, may be an effective therapeutic approach to conferring cellular sensitivity to ICL agents. Here, we show that inhibition of the Nedd8 conjugation system increases cellular sensitivity to DNA ICL-inducing agents. Mechanistically, the Nedd8 inhibition, either by siRNA-mediated knockdown of Nedd8 conjugating enzymes or treatment with a Nedd8 activating enzyme inhibitor MLN4924, suppressed DNA damage-induced FANCD2 monoubiquitination and CHK1 phosphorylation. Our data indicate that inhibition of the FA pathway is largely responsible for the heightened cellular sensitivity to DNA ICLs upon Nedd8 inhibition. These results suggest that a combination of Nedd8 inhibition with ICL-inducing agents may be an effective strategy for sensitizing a subset of drug-resistant cancer cells. PMID:22219386

  9. Utility of Japanese encephalitis virus subgenomic replicon-based single-round infectious particles as antigens in neutralization tests for Zika virus and three other flaviviruses.

    PubMed

    Yamanaka, Atsushi; Moi, Meng Ling; Takasaki, Tomohiko; Kurane, Ichiro; Matsuda, Mami; Suzuki, Ryosuke; Konishi, Eiji

    2017-05-01

    The introduction of a foreign virus into an area may cause an outbreak, as with the Zika virus (ZIKV) outbreak in the Americas. Preparedness for handling a viral outbreak involves the development of tests for the serodiagnosis of foreign virus infections. We previously established a gene-based technology to generate some flaviviral antigens useful for functional antibody assays. The technology utilizes a Japanese encephalitis virus subgenomic replicon to generate single-round infectious particles (SRIPs) that possess designed surface antigens. In the present study, we successfully expanded the capacity of SRIPs to four human-pathogenic mosquito-borne flaviviruses that could potentially be introduced from endemic to non-endemic countries: ZIKV, Sepik virus, Wesselsbron virus, and Usutu virus. Flavivirus-crossreactive monoclonal antibodies dose-dependently neutralized these SRIPs. ZIKV-SRIPs also produced antibody-dose-dependent neutralization curves equivalent to those shown by authentic ZIKV particles using sera from a Zika fever patient. The faithful expression of designed surface antigens on SRIPs will allow their use in neutralization tests to diagnose foreign flaviviral infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition

    PubMed Central

    Hullahalli, Karthik; Rodrigues, Marinelle; Nguyen, Uyen Thy

    2018-01-01

    ABSTRACT Antibiotic-resistant bacteria are critical public health concerns. Among the prime causative factors for the spread of antibiotic resistance is horizontal gene transfer (HGT). A useful model organism for investigating the relationship between HGT and antibiotic resistance is the opportunistic pathogen Enterococcus faecalis, since the species possesses highly conjugative plasmids that readily disseminate antibiotic resistance genes and virulence factors in nature. Unlike many commensal E. faecalis strains, the genomes of multidrug-resistant (MDR) E. faecalis clinical isolates are enriched for mobile genetic elements (MGEs) and lack clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) genome defense systems. CRISPR-Cas systems cleave foreign DNA in a programmable, sequence-specific manner and are disadvantageous for MGE-derived genome expansion. An unexplored facet of CRISPR biology in E. faecalis is that MGEs that are targeted by native CRISPR-Cas systems can be maintained transiently. Here, we investigate the basis for this “CRISPR tolerance.” We observe that E. faecalis can maintain self-targeting constructs that direct Cas9 to cleave the chromosome, but at a fitness cost. Interestingly, DNA repair genes were not upregulated during self-targeting, but integrated prophages were strongly induced. We determined that low cas9 expression contributes to this transient nonlethality and used this knowledge to develop a robust CRISPR-assisted genome-editing scheme. Our results suggest that E. faecalis has maximized the potential for DNA acquisition by attenuating its CRISPR machinery, thereby facilitating the acquisition of potentially beneficial MGEs that may otherwise be restricted by genome defense. PMID:29717009

  11. Comparison of commercial systems for extraction of nucleic acids from DNA/RNA respiratory pathogens.

    PubMed

    Yang, Genyan; Erdman, Dean E; Kodani, Maja; Kools, John; Bowen, Michael D; Fields, Barry S

    2011-01-01

    This study compared six automated nucleic acid extraction systems and one manual kit for their ability to recover nucleic acids from human nasal wash specimens spiked with five respiratory pathogens, representing Gram-positive bacteria (Streptococcus pyogenes), Gram-negative bacteria (Legionella pneumophila), DNA viruses (adenovirus), segmented RNA viruses (human influenza virus A), and non-segmented RNA viruses (respiratory syncytial virus). The robots and kit evaluated represent major commercially available methods that are capable of simultaneous extraction of DNA and RNA from respiratory specimens, and included platforms based on magnetic-bead technology (KingFisher mL, Biorobot EZ1, easyMAG, KingFisher Flex, and MagNA Pure Compact) or glass fiber filter technology (Biorobot MDX and the manual kit Allprep). All methods yielded extracts free of cross-contamination and RT-PCR inhibition. All automated systems recovered L. pneumophila and adenovirus DNA equivalently. However, the MagNA Pure protocol demonstrated more than 4-fold higher DNA recovery from the S. pyogenes than other methods. The KingFisher mL and easyMAG protocols provided 1- to 3-log wider linearity and extracted 3- to 4-fold more RNA from the human influenza virus and respiratory syncytial virus. These findings suggest that systems differed in nucleic acid recovery, reproducibility, and linearity in a pathogen specific manner. Published by Elsevier B.V.

  12. JavaScript DNA translator: DNA-aligned protein translations.

    PubMed

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  13. A simple and cost-effective molecular diagnostic system and DNA probes synthesized by light emitting diode photolithography

    NASA Astrophysics Data System (ADS)

    Oleksandrov, Sergiy; Kwon, Jung Ho; Lee, Ki-chang; Sujin-Ku; Paek, Mun Cheol

    2014-09-01

    This work introduces a novel chip to be used in the future as a simple and cost-effective method for creating DNA arrays using light emission diode (LED) photolithography. The DNA chip platform contains 24 independent reaction sites, which allows for the testing of a corresponding amount of patients' samples in hospital. An array of commercial UV LEDs and lens systems was combined with a microfluidic flow system to provide patterning of 24 individual reaction sites, each with 64 independent probes. Using the LED array instead of conventional laser exposure systems or micro-mirror systems significantly reduces the cost of equipment. The microfluidic system together with microfluidic flow cells drastically reduces the amount of used reagents, which is important due to the high cost of commercial reagents. The DNA synthesis efficiency was verified by fluorescence labeling and conventional hybridization.

  14. An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition.

    PubMed

    Hullahalli, Karthik; Rodrigues, Marinelle; Nguyen, Uyen Thy; Palmer, Kelli

    2018-05-01

    Antibiotic-resistant bacteria are critical public health concerns. Among the prime causative factors for the spread of antibiotic resistance is horizontal gene transfer (HGT). A useful model organism for investigating the relationship between HGT and antibiotic resistance is the opportunistic pathogen Enterococcus faecalis , since the species possesses highly conjugative plasmids that readily disseminate antibiotic resistance genes and virulence factors in nature. Unlike many commensal E. faecalis strains, the genomes of multidrug-resistant (MDR) E. faecalis clinical isolates are enriched for mobile genetic elements (MGEs) and lack c lustered r egularly i nterspaced s hort p alindromic r epeats (CRISPR) and C RISPR- as sociated protein (Cas) genome defense systems. CRISPR-Cas systems cleave foreign DNA in a programmable, sequence-specific manner and are disadvantageous for MGE-derived genome expansion. An unexplored facet of CRISPR biology in E. faecalis is that MGEs that are targeted by native CRISPR-Cas systems can be maintained transiently. Here, we investigate the basis for this "CRISPR tolerance." We observe that E. faecalis can maintain self-targeting constructs that direct Cas9 to cleave the chromosome, but at a fitness cost. Interestingly, DNA repair genes were not upregulated during self-targeting, but integrated prophages were strongly induced. We determined that low cas9 expression contributes to this transient nonlethality and used this knowledge to develop a robust CRISPR-assisted genome-editing scheme. Our results suggest that E. faecalis has maximized the potential for DNA acquisition by attenuating its CRISPR machinery, thereby facilitating the acquisition of potentially beneficial MGEs that may otherwise be restricted by genome defense. IMPORTANCE CRISPR-Cas has provided a powerful toolkit to manipulate bacteria, resulting in improved genetic manipulations and novel antimicrobials. These powerful applications rely on the premise that CRISPR

  15. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation.

    PubMed

    Chaitanya, Lakshmi; Breslin, Krystal; Zuñiga, Sofia; Wirken, Laura; Pośpiech, Ewelina; Kukla-Bartoszek, Magdalena; Sijen, Titia; Knijff, Peter de; Liu, Fan; Branicki, Wojciech; Kayser, Manfred; Walsh, Susan

    2018-07-01

    Forensic DNA Phenotyping (FDP), i.e. the prediction of human externally visible traits from DNA, has become a fast growing subfield within forensic genetics due to the intelligence information it can provide from DNA traces. FDP outcomes can help focus police investigations in search of unknown perpetrators, who are generally unidentifiable with standard DNA profiling. Therefore, we previously developed and forensically validated the IrisPlex DNA test system for eye colour prediction and the HIrisPlex system for combined eye and hair colour prediction from DNA traces. Here we introduce and forensically validate the HIrisPlex-S DNA test system (S for skin) for the simultaneous prediction of eye, hair, and skin colour from trace DNA. This FDP system consists of two SNaPshot-based multiplex assays targeting a total of 41 SNPs via a novel multiplex assay for 17 skin colour predictive SNPs and the previous HIrisPlex assay for 24 eye and hair colour predictive SNPs, 19 of which also contribute to skin colour prediction. The HIrisPlex-S system further comprises three statistical prediction models, the previously developed IrisPlex model for eye colour prediction based on 6 SNPs, the previous HIrisPlex model for hair colour prediction based on 22 SNPs, and the recently introduced HIrisPlex-S model for skin colour prediction based on 36 SNPs. In the forensic developmental validation testing, the novel 17-plex assay performed in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, as previously shown for the 24-plex assay. Sensitivity testing of the 17-plex assay revealed complete SNP profiles from as little as 63 pg of input DNA, equalling the previously demonstrated sensitivity threshold of the 24-plex HIrisPlex assay. Testing of simulated forensic casework samples such as blood, semen, saliva stains, of inhibited DNA samples, of low quantity touch (trace) DNA samples, and of artificially degraded DNA samples as well as

  16. SMA Diagnosis: Detection of SMN1 Deletion with Real-Time mCOP-PCR System Using Fresh Blood DNA.

    PubMed

    Niba, Emma Tabe Eko; Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Lai, Poh San; Bouike, Yoshihiro; Nishio, Hisahide; Shinohara, Masakazu

    2017-12-18

    Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders. The symptoms are caused by defects of lower motor neurons in the spinal cord. More than 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique using dried blood spot (DBS) on filter paper. This system is convenient for mass screening in the large population and/or first-tier diagnostic method of the patients in the remote areas. However, this system was still time-consuming and effort-taking, because it required pre-amplification procedure to avoid non-specific amplification and gel-electrophoresis to detect the presence or absence of SMN1 deletion. When the fresh blood samples are used instead of DBS, or when the gel-electrophoresis is replaced by real-time PCR, we may have a simpler and more rapid diagnostic method for SMA. To establish a simpler and more rapid diagnostic method of SMN1 deletion using fresh blood DNA. DNA samples extracted from fresh blood and stored at 4 ℃ for 1 month. The samples were assayed using a real-time mCOP-PCR system without pre-amplification procedures. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The DNA samples were directly subjected to the mCOP-PCR step. The amplification of mCOP-PCR was monitored in a real-time PCR apparatus. The genotyping results of the real-time mCOP-PCR system using fresh blood DNA were completely matched with those of PCR-RFLP. In this real-time mCOP-PCR system using fresh blood-DNA, it took only four hours from extraction of DNA to detection of the presence or absence of SMN1 deletion, while it took more than 12 hours in PCR-RFLP. Our real-time mCOP-PCR system using fresh blood DNA was rapid and accurate, suggesting it may be useful for the first

  17. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage.

    PubMed

    Walsh, Susan; Chaitanya, Lakshmi; Clarisse, Lindy; Wirken, Laura; Draus-Barini, Jolanta; Kovatsi, Leda; Maeda, Hitoshi; Ishikawa, Takaki; Sijen, Titia; de Knijff, Peter; Branicki, Wojciech; Liu, Fan; Kayser, Manfred

    2014-03-01

    Forensic DNA Phenotyping or 'DNA intelligence' tools are expected to aid police investigations and find unknown individuals by providing information on externally visible characteristics of unknown suspects, perpetrators and missing persons from biological samples. This is especially useful in cases where conventional DNA profiling or other means remain non-informative. Recently, we introduced the HIrisPlex system, capable of predicting both eye and hair colour from DNA. In the present developmental validation study, we demonstrate that the HIrisPlex assay performs in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines providing an essential prerequisite for future HIrisPlex applications to forensic casework. The HIrisPlex assay produces complete profiles down to only 63 pg of DNA. Species testing revealed human specificity for a complete HIrisPlex profile, while only non-human primates showed the closest full profile at 20 out of the 24 DNA markers, in all animals tested. Rigorous testing of simulated forensic casework samples such as blood, semen, saliva stains, hairs with roots as well as extremely low quantity touch (trace) DNA samples, produced complete profiles in 88% of cases. Concordance testing performed between five independent forensic laboratories displayed consistent reproducible results on varying types of DNA samples. Due to its design, the assay caters for degraded samples, underlined here by results from artificially degraded DNA and from simulated casework samples of degraded DNA. This aspect was also demonstrated previously on DNA samples from human remains up to several hundreds of years old. With this paper, we also introduce enhanced eye and hair colour prediction models based on enlarged underlying databases of HIrisPlex genotypes and eye/hair colour phenotypes (eye colour: N = 9188 and hair colour: N = 1601). Furthermore, we present an online web-based system for individual eye and hair colour

  18. Flexible DNA bending in HU–DNA cocrystal structures

    PubMed Central

    Swinger, Kerren K.; Lemberg, Kathryn M.; Zhang, Ying; Rice, Phoebe A.

    2003-01-01

    HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles (∼105–140°). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU–DNA and IHF–DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU’s role as an architectural cofactor in many different systems that may require differing geometries. PMID:12853489

  19. Design and construction of a DNA origami drug delivery system based on MPT64 antibody aptamer for tuberculosis treatment.

    PubMed

    Ranjbar, Reza; Hafezi-Moghadam, Mohammad Sadegh

    2016-02-01

    With all of the developments on infectious diseases, tuberculosis (TB) remains a cause of death among people. One of the most promising assembly techniques in nano-technology is "scaffolded DNA origami" to design and construct a nano-scale drug delivery system. Because of the global health problems of tuberculosis, the development of potent new anti-tuberculosis drug delivery system without cross-resistance with known anti-mycobacterial agents is urgently needed. The aim of this study was to design a nano-scale drug delivery system for TB treatment using the DNA origami method. In this study, we presented an experimental research on a DNA drug delivery system for treating Tuberculosis. TEM images were visualized with an FEI Tecnai T12 BioTWIN at 120 kV. The model was designed by caDNAno software and computational prediction of the 3D solution shape and its flexibility was calculated with a CanDo server. Synthesizing the product was imaged using transmission electron microscopy after negative-staining by uranyl formate. We constructed a multilayer 3D DNA nanostructure system by designing square lattice geometry with the scaffolded-DNA-origami method. With changes in the lock and key sequences, we recommend that this system be used for other infectious diseases to target the pathogenic bacteria.

  20. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng; Maxwell Burroughs, A.; Aravind, L.

    2013-01-01

    Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel ‘readers’ of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems

  1. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA.

    PubMed

    Iyer, Lakshminarayan M; Zhang, Dapeng; Burroughs, A Maxwell; Aravind, L

    2013-09-01

    Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel 'readers' of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and

  2. Developmental validation of the DNAscan™ Rapid DNA Analysis™ instrument and expert system for reference sample processing.

    PubMed

    Della Manna, Angelo; Nye, Jeffrey V; Carney, Christopher; Hammons, Jennifer S; Mann, Michael; Al Shamali, Farida; Vallone, Peter M; Romsos, Erica L; Marne, Beth Ann; Tan, Eugene; Turingan, Rosemary S; Hogan, Catherine; Selden, Richard F; French, Julie L

    2016-11-01

    Since the implementation of forensic DNA typing in labs more than 20 years ago, the analysis procedures and data interpretation have always been conducted in a laboratory by highly trained and qualified scientific personnel. Rapid DNA technology has the potential to expand testing capabilities within forensic laboratories and to allow forensic STR analysis to be performed outside the physical boundaries of the traditional laboratory. The developmental validation of the DNAscan/ANDE Rapid DNA Analysis System was completed using a BioChipSet™ Cassette consumable designed for high DNA content samples, such as single source buccal swabs. A total of eight laboratories participated in the testing which totaled over 2300 swabs, and included nearly 1400 unique individuals. The goal of this extensive study was to obtain, document, analyze, and assess DNAscan and its internal Expert System to reliably genotype reference samples in a manner compliant with the FBI's Quality Assurance Standards (QAS) and the NDIS Operational Procedures. The DNAscan System provided high quality, concordant results for reference buccal swabs, including automated data analysis with an integrated Expert System. Seven external laboratories and NetBio, the developer of the technology, participated in the validation testing demonstrating the reproducibility and reliability of the system and its successful use in a variety of settings by numerous operators. The DNAscan System demonstrated limited cross reactivity with other species, was resilient in the presence of numerous inhibitors, and provided reproducible results for both buccal and purified DNA samples with sensitivity at a level appropriate for buccal swabs. The precision and resolution of the system met industry standards for detection of micro-variants and displayed single base resolution. PCR-based studies provided confidence that the system was robust and that the amplification reaction had been optimized to provide high quality results

  3. Mitochondrial DNA: impacting central and peripheral nervous systems

    PubMed Central

    Carelli, Valerio

    2014-01-01

    Because of their high-energy metabolism, neurons are highly dependent on mitochondria, which generate cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for critical components of the oxidative phosphorylation pathway machinery, and therefore mutations in mitochondrial DNA (mtDNA) cause energy production defects that frequently have severe neurological manifestations. Here, we review the principles of mitochondrial genetics and focus on prototypical mitochondrial diseases to illustrate how primary defects in mtDNA or secondary defects in mtDNA due to nuclear genome mutations can cause prominent neurological and multisystem features. In addition, we discuss the pathophysiological mechanisms underlying mitochondrial diseases, the cellular mechanisms that protect mitochondrial integrity, and the prospects for therapy. PMID:25521375

  4. Visualization of DNA Replication in the Vertebrate Model System DT40 using the DNA Fiber Technique

    PubMed Central

    Schwab, Rebekka A.V.; Niedzwiedz, Wojciech

    2011-01-01

    Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells1. DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique2-4. In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence

  5. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    PubMed Central

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  6. Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales

    PubMed Central

    Passot, Fanny M.; Calderon, Virginie; Fichant, Gwennaele; Lane, David

    2012-01-01

    How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species. PMID:22522899

  7. Extensive characterization of a lentiviral-derived stable cell line expressing rabbit hemorrhagic disease virus VPg protein.

    PubMed

    Zhu, Jie; Miao, Qiuhong; Tan, Yonggui; Guo, Huimin; Li, Chuanfeng; Chen, Zongyan; Liu, Guangqing

    2016-11-01

    Rabbit hemorrhagic disease virus (RHDV) is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, which limits the study of its pathogenesis. To bypass this obstacle, we established a cell line, RK13-VPg, stably expressing the VPg gene with a lentivirus packaging system in this study. In addition, the recently constructed RHDV replicon in our laboratory provided an appropriate model for studying the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon and RK13-VPg cell line, we further demonstrated that the presence of VPg protein is essential for efficient translation of an RHDV replicon. Therefore, the RK13-VPg cell line is a powerful tool for studying the replication and translation mechanisms of RHDV. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A ranking index for quality assessment of forensic DNA profiles forensic DNA profiles

    PubMed Central

    2010-01-01

    Background Assessment of DNA profile quality is vital in forensic DNA analysis, both in order to determine the evidentiary value of DNA results and to compare the performance of different DNA analysis protocols. Generally the quality assessment is performed through manual examination of the DNA profiles based on empirical knowledge, or by comparing the intensities (allelic peak heights) of the capillary electrophoresis electropherograms. Results We recently developed a ranking index for unbiased and quantitative quality assessment of forensic DNA profiles, the forensic DNA profile index (FI) (Hedman et al. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles, Biotechniques 47 (2009) 951-958). FI uses electropherogram data to combine the intensities of the allelic peaks with the balances within and between loci, using Principal Components Analysis. Here we present the construction of FI. We explain the mathematical and statistical methodologies used and present details about the applied data reduction method. Thereby we show how to adapt the ranking index for any Short Tandem Repeat-based forensic DNA typing system through validation against a manual grading scale and calibration against a specific set of DNA profiles. Conclusions The developed tool provides unbiased quality assessment of forensic DNA profiles. It can be applied for any DNA profiling system based on Short Tandem Repeat markers. Apart from crime related DNA analysis, FI can therefore be used as a quality tool in paternal or familial testing as well as in disaster victim identification. PMID:21062433

  9. The use of the M-Vac® wet-vacuum system as a method for DNA recovery.

    PubMed

    Vickar, Toby; Bache, Katherine; Daniel, Barbara; Frascione, Nunzianda

    2018-07-01

    Collecting sufficient template DNA from a crime scene sample is often challenging, especially with low quantity samples such as touch DNA (tDNA). Traditional DNA collection methods such as double swabbing have limitations, in particular when used on certain substrates which can be found at crime scenes, thus a better collection method is advantageous. Here, the effectiveness of the M-Vac® Wet-Vacuum System is evaluated as a method for DNA recovery on tiles and bricks. It was found that the M-Vac® recovered 75% more DNA than double swabbing on bricks. However, double swabbing collected significantly more DNA than the M-Vac® on tiles. Additionally, it was found that cell-free DNA is lost in the filtration step of M-Vac® collection. In terms of peak height and number of true alleles detected, no significant difference was found between the DNA profiles obtained through M-Vac® collection versus double swabbing of tDNA depositions from 12 volunteers on bricks. The results demonstrate that the M-Vac® has potential for DNA collection from porous surfaces such as bricks, but that alterations to the filter apparatus would be beneficial to increase the amount of genetic material collected for subsequent DNA profiling. These results are anticipated to be a starting point to validate the M-Vac® as a DNA collection device, providing an alternative method when DNA is present on a difficult substrate, or if traditional DNA collection methods have failed. Copyright © 2018 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  10. The Chern-Simons Current in Systems of DNA-RNA Transcriptions

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Pincak, Richard; Kanjamapornkul, Kabin; Saridakis, Emmanuel N.

    2018-04-01

    A Chern-Simons current, coming from ghost and anti-ghost fields of supersymmetry theory, can be used to define a spectrum of gene expression in new time series data where a spinor field, as alternative representation of a gene, is adopted instead of using the standard alphabet sequence of bases $A, T, C, G, U$. After a general discussion on the use of supersymmetry in biological systems, we give examples of the use of supersymmetry for living organism, discuss the codon and anti-codon ghost fields and develop an algebraic construction for the trash DNA, the DNA area which does not seem active in biological systems. As a general result, all hidden states of codon can be computed by Chern-Simons 3 forms. Finally, we plot a time series of genetic variations of viral glycoprotein gene and host T-cell receptor gene by using a gene tensor correlation network related to the Chern-Simons current. An empirical analysis of genetic shift, in host cell receptor genes with separated cluster of gene and genetic drift in viral gene, is obtained by using a tensor correlation plot over time series data derived as the empirical mode decomposition of Chern-Simons current.

  11. Covalent antibody display—an in vitro antibody-DNA library selection system

    PubMed Central

    Reiersen, Herald; Løbersli, Inger; Løset, Geir Å.; Hvattum, Else; Simonsen, Bjørg; Stacy, John E.; McGregor, Duncan; FitzGerald, Kevin; Welschof, Martin; Brekke, Ole H.; Marvik, Ole J.

    2005-01-01

    The endonuclease P2A initiates the DNA replication of the bacteriophage P2 by making a covalent bond with its own phosphate backbone. This enzyme has now been exploited as a new in vitro display tool for antibody fragments. We have constructed genetic fusions of P2A with single-chain antibodies (scFvs). Linear DNA of these fusion proteins were processed in an in vitro coupled transcription–translation mixture of Escherichia coli S30 lysate. Complexes of scFv–P2A fusion proteins covalently bound to their own DNA were isolated after panning on immobilized antigen, and the enriched DNAs were recovered by PCR and prepared for the subsequent cycles of panning. We have demonstrated the enrichment of scFvs from spiked libraries and the specific selection of different anti-tetanus toxoid scFvs from a V-gene library with 50 million different members prepared from human lymphocytes. This covalent antibody display technology offers a complete in vitro selection system based exclusively on DNA–protein complexes. PMID:15653626

  12. Herpes Simplex Virus DNA Packaging without Measurable DNA Synthesis

    PubMed Central

    Church, Geoffrey A.; Dasgupta, Anindya; Wilson, Duncan W.

    1998-01-01

    Herpes simplex virus (HSV) type 1 DNA synthesis and packaging occur within the nuclei of infected cells; however, the extent to which the two processes are coupled remains unclear. Correct packaging is thought to be dependent upon DNA debranching or other repair processes, and such events commonly involve new DNA synthesis. Furthermore, the HSV UL15 gene product, essential for packaging, nevertheless localizes to sites of active DNA replication and may link the two events. It has previously been difficult to determine whether packaging requires concomitant DNA synthesis due to the complexity of these processes and of the viral life cycle; however, we have recently described a model system which simplifies the study of HSV assembly. Cells infected with HSV strain tsProt.A accumulate unpackaged capsids at the nonpermissive temperature of 39°C. Following release of the temperature block, these capsids proceed to package viral DNA in a single, synchronous wave. Here we report that, when DNA replication was inhibited prior to release of the temperature block, DNA packaging and later events in viral assembly nevertheless occurred at near-normal levels. We conclude that, under our conditions, HSV DNA packaging does not require detectable levels of DNA synthesis. PMID:9525593

  13. DNAtraffic--a new database for systems biology of DNA dynamics during the cell life.

    PubMed

    Kuchta, Krzysztof; Barszcz, Daniela; Grzesiuk, Elzbieta; Pomorski, Pawel; Krwawicz, Joanna

    2012-01-01

    DNAtraffic (http://dnatraffic.ibb.waw.pl/) is dedicated to be a unique comprehensive and richly annotated database of genome dynamics during the cell life. It contains extensive data on the nomenclature, ontology, structure and function of proteins related to the DNA integrity mechanisms such as chromatin remodeling, histone modifications, DNA repair and damage response from eight organisms: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Escherichia coli and Arabidopsis thaliana. DNAtraffic contains comprehensive information on the diseases related to the assembled human proteins. DNAtraffic is richly annotated in the systemic information on the nomenclature, chemistry and structure of DNA damage and their sources, including environmental agents or commonly used drugs targeting nucleic acids and/or proteins involved in the maintenance of genome stability. One of the DNAtraffic database aim is to create the first platform of the combinatorial complexity of DNA network analysis. Database includes illustrations of pathways, damage, proteins and drugs. Since DNAtraffic is designed to cover a broad spectrum of scientific disciplines, it has to be extensively linked to numerous external data sources. Our database represents the result of the manual annotation work aimed at making the DNAtraffic much more useful for a wide range of systems biology applications.

  14. DNAtraffic—a new database for systems biology of DNA dynamics during the cell life

    PubMed Central

    Kuchta, Krzysztof; Barszcz, Daniela; Grzesiuk, Elzbieta; Pomorski, Pawel; Krwawicz, Joanna

    2012-01-01

    DNAtraffic (http://dnatraffic.ibb.waw.pl/) is dedicated to be a unique comprehensive and richly annotated database of genome dynamics during the cell life. It contains extensive data on the nomenclature, ontology, structure and function of proteins related to the DNA integrity mechanisms such as chromatin remodeling, histone modifications, DNA repair and damage response from eight organisms: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Escherichia coli and Arabidopsis thaliana. DNAtraffic contains comprehensive information on the diseases related to the assembled human proteins. DNAtraffic is richly annotated in the systemic information on the nomenclature, chemistry and structure of DNA damage and their sources, including environmental agents or commonly used drugs targeting nucleic acids and/or proteins involved in the maintenance of genome stability. One of the DNAtraffic database aim is to create the first platform of the combinatorial complexity of DNA network analysis. Database includes illustrations of pathways, damage, proteins and drugs. Since DNAtraffic is designed to cover a broad spectrum of scientific disciplines, it has to be extensively linked to numerous external data sources. Our database represents the result of the manual annotation work aimed at making the DNAtraffic much more useful for a wide range of systems biology applications. PMID:22110027

  15. Species mtDNA genetic diversity explained by infrapopulation size in a host-symbiont system.

    PubMed

    Doña, Jorge; Moreno-García, Marina; Criscione, Charles D; Serrano, David; Jovani, Roger

    2015-12-01

    Understanding what shapes variation in genetic diversity among species remains a major challenge in evolutionary ecology, and it has been seldom studied in parasites and other host-symbiont systems. Here, we studied mtDNA variation in a host-symbiont non-model system: 418 individual feather mites from 17 feather mite species living on 17 different passerine bird species. We explored how a surrogate of census size, the median infrapopulation size (i.e., the median number of individual parasites per infected host individual), explains mtDNA genetic diversity. Feather mite species genetic diversity was positively correlated with mean infrapopulation size, explaining 34% of the variation. As expected from the biology of feather mites, we found bottleneck signatures for most of the species studied but, in particular, three species presented extremely low mtDNA diversity values given their infrapopulation size. Their star-like haplotype networks (in contrast with more reticulated networks for the other species) suggested that their low genetic diversity was the consequence of severe bottlenecks or selective sweeps. Our study shows for the first time that mtDNA diversity can be explained by infrapopulation sizes, and suggests that departures from this relationship could be informative of underlying ecological and evolutionary processes.

  16. Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System.

    PubMed

    Civade, Raphaël; Dejean, Tony; Valentini, Alice; Roset, Nicolas; Raymond, Jean-Claude; Bonin, Aurélie; Taberlet, Pierre; Pont, Didier

    2016-01-01

    In the last few years, the study of environmental DNA (eDNA) has drawn attention for many reasons, including its advantages for monitoring and conservation purposes. So far, in aquatic environments, most of eDNA research has focused on the detection of single species using species-specific markers. Recently, species inventories based on the analysis of a single generalist marker targeting a larger taxonomic group (eDNA metabarcoding) have proven useful for bony fish and amphibian biodiversity surveys. This approach involves in situ filtering of large volumes of water followed by amplification and sequencing of a short discriminative fragment from the 12S rDNA mitochondrial gene. In this study, we went one step further by investigating the spatial representativeness (i.e. ecological reliability and signal variability in space) of eDNA metabarcoding for large-scale fish biodiversity assessment in a freshwater system including lentic and lotic environments. We tested the ability of this approach to characterize large-scale organization of fish communities along a longitudinal gradient, from a lake to the outflowing river. First, our results confirm that eDNA metabarcoding is more efficient than a single traditional sampling campaign to detect species presence, especially in rivers. Second, the species list obtained using this approach is comparable to the one obtained when cumulating all traditional sampling sessions since 1995 and 1988 for the lake and the river, respectively. In conclusion, eDNA metabarcoding gives a faithful description of local fish biodiversity in the study system, more specifically within a range of a few kilometers along the river in our study conditions, i.e. longer than a traditional fish sampling site.

  17. Molecular Genetic Characterization of Mutagenesis Using a Highly Sensitive Single-Stranded DNA Reporter System in Budding Yeast.

    PubMed

    Chan, Kin

    2018-01-01

    Mutations are permanent alterations to the coding content of DNA. They are starting material for the Darwinian evolution of species by natural selection, which has yielded an amazing diversity of life on Earth. Mutations can also be the fundamental basis of serious human maladies, most notably cancers. In this chapter, I describe a highly sensitive reporter system for the molecular genetic analysis of mutagenesis, featuring controlled generation of long stretches of single-stranded DNA in budding yeast cells. This system is ~100- to ~1000-fold more susceptible to mutation than conventional double-stranded DNA reporters, and is well suited for generating large mutational datasets to investigate the properties of mutagens.

  18. Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

    PubMed

    Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F

    2016-01-01

    Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample

  19. Pitfalls of Establishing DNA Barcoding Systems in Protists: The Cryptophyceae as a Test Case

    PubMed Central

    Hoef-Emden, Kerstin

    2012-01-01

    A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5′-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed. PMID:22970104

  20. Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case.

    PubMed

    Hoef-Emden, Kerstin

    2012-01-01

    A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5'-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed.

  1. An anti-DNA antibody prefers damaged dsDNA over native.

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2017-01-01

    DNA-protein interactions, including DNA-antibody complexes, have both fundamental and practical significance. In particular, antibodies against double-stranded DNA play an important role in the pathogenesis of autoimmune diseases. Elucidation of structural mechanisms of an antigen recognition and interaction of anti-DNA antibodies provides a basis for understanding the role of DNA-containing immune complexes in human pathologies and for new treatments. Here we used Molecular Dynamic simulations of bimolecular complexes of a segment of dsDNA with a monoclonal anti-DNA antibody's Fab-fragment to obtain detailed structural and physical characteristics of the dynamic intermolecular interactions. Using a computationally modified crystal structure of a Fab-DNA complex (PDB: 3VW3), we studied in silico equilibrium Molecular Dynamics of the Fab-fragment associated with two homologous dsDNA fragments, containing or not containing dimerized thymine, a product of DNA photodamage. The Fab-fragment interactions with the thymine dimer-containing DNA was thermodynamically more stable than with the native DNA. The amino acid residues constituting a paratope and the complementary nucleotide epitopes for both Fab-DNA constructs were identified. Stacking and electrostatic interactions were shown to play the main role in the antibody-dsDNA contacts, while hydrogen bonds were less significant. The aggregate of data show that the chemically modified dsDNA (containing a covalent thymine dimer) has a higher affinity toward the antibody and forms a stronger immune complex. These findings provide a mechanistic insight into formation and properties of the pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus, associated with skin photosensibilization and DNA photodamage.

  2. DNA cytoskeleton for stabilizing artificial cells.

    PubMed

    Kurokawa, Chikako; Fujiwara, Kei; Morita, Masamune; Kawamata, Ibuki; Kawagishi, Yui; Sakai, Atsushi; Murayama, Yoshihiro; Nomura, Shin-Ichiro M; Murata, Satoshi; Takinoue, Masahiro; Yanagisawa, Miho

    2017-07-11

    Cell-sized liposomes and droplets coated with lipid layers have been used as platforms for understanding live cells, constructing artificial cells, and implementing functional biomedical tools such as biosensing platforms and drug delivery systems. However, these systems are very fragile, which results from the absence of cytoskeletons in these systems. Here, we construct an artificial cytoskeleton using DNA nanostructures. The designed DNA oligomers form a Y-shaped nanostructure and connect to each other with their complementary sticky ends to form networks. To undercoat lipid membranes with this DNA network, we used cationic lipids that attract negatively charged DNA. By encapsulating the DNA into the droplets, we successfully created a DNA shell underneath the membrane. The DNA shells increased interfacial tension, elastic modulus, and shear modulus of the droplet surface, consequently stabilizing the lipid droplets. Such drastic changes in stability were detected only when the DNA shell was in the gel phase. Furthermore, we demonstrate that liposomes with the DNA gel shell are substantially tolerant against outer osmotic shock. These results clearly show the DNA gel shell is a stabilizer of the lipid membrane akin to the cytoskeleton in live cells.

  3. Avatar DNA Nanohybrid System in Chip-on-a-Phone

    NASA Astrophysics Data System (ADS)

    Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho

    2014-05-01

    Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording.

  4. Avatar DNA Nanohybrid System in Chip-on-a-Phone

    PubMed Central

    Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho

    2014-01-01

    Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording. PMID:24824876

  5. Detection of mitochondrial DNA with the compact bead array sensor system (cBASS)

    NASA Astrophysics Data System (ADS)

    Mulvaney, Shawn P.; Ibe, Carol N.; Caldwell, Jane M.; Levine, Jay F.; Whitman, Lloyd J.; Tamanaha, Cy R.

    2009-02-01

    Enteric pathogens are a significant contaminant in surface waters used for recreation, fish and shellfish harvesting, crop irrigation, and human consumption. The need for water monitoring becomes more pronounced when industrial, agricultural, and residential lands are found in close proximity. Fecal contamination is particularly problematic and identification of the pollution source essential to remediation efforts. Standard monitoring for fecal contamination relies on indicator organisms, but the technique is too broad to identify the source of contamination. Instead, real-time PCR of mitochondrial DNA (mtDNA) is an emerging method for identification of the contamination source. Presented herein, we evaluate an alternative technology, the compact Bead Array Sensor System (cBASS®) and its assay approach Fluidic Force Discrimination (FFD), for the detection of mtDNA. Previously, we achieved multiplexed, attomolar detection of toxins and femtomolar detection of nucleic acids in minutes with FFD assays. More importantly, FFD assays are compatible with a variety of complex matrices and therefore potentially applicable for samples where the matrix would interfere with PCR amplification. We have designed a triplex assay for the NADH gene found in human, swine, and bovine mtDNA and demonstrated the specific detection of human mtDNA spiked into a waste water sample.

  6. Archaeal DNA replication.

    PubMed

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.

  7. Effects of physical activity on systemic oxidative/DNA status in breast cancer survivors

    PubMed Central

    Tomasello, Barbara; Malfa, Giuseppe Antonio; Strazzanti, Angela; Gangi, Santi; Di Giacomo, Claudia; Basile, Francesco; Renis, Marcella

    2017-01-01

    Physical activity offers a paradoxical hormetic effect and a health benefit to cancer survivors; however, the biochemical mechanisms have not been entirely elucidated. Despite the well-documented evidence implicating oxidative stress in breast cancer, the association between health benefits and redox status has not been investigated in survivors who participate in dragon boating. The present study investigated the plasmatic systemic oxidative status (SOS) in breast cancer survivors involved in two distinct physical training exercises. A total of 75 breast cancer survivors were allocated to one of three groups: Control (resting), dragon boat racing and walking group; the latter is a type of aerobic conditioning exercise often advised to cancer patients. Various biochemical oxidative stress markers were examined, including oxidant status (hydroperoxide levels, lipid oxidation) and antioxidant status (enzymatic activities of superoxide dismutase and glutathione peroxidase, reduced glutathione levels and antioxidant capability). In addition, the individual DNA fragmentation and DNA repair capability of nucleotide excision repair (NER) systems were examined by comet assays. According to the results, all patients exhibited high levels of oxidative stress. Physical activity maintained this oxidative stress condition but simultaneously had a positive influence on the antioxidant component of the SOS, particularly in the dragon boat racing group. DNA fragmentation, according to the levels of single- and double-strand breaks, were within the normal range in the two survivor groups that were involved in training activities. Radiation-induced damage was not completely recognised or repaired by NER systems in any of the patients, probably leading to radiosensitivity and/or susceptibility of patients to cancer. These findings suggest that physical activity, particularly dragon boat racing, that modulates SOS and DNA repair capability could represent a strategy for enhancing the

  8. Effects of physical activity on systemic oxidative/DNA status in breast cancer survivors.

    PubMed

    Tomasello, Barbara; Malfa, Giuseppe Antonio; Strazzanti, Angela; Gangi, Santi; Di Giacomo, Claudia; Basile, Francesco; Renis, Marcella

    2017-01-01

    Physical activity offers a paradoxical hormetic effect and a health benefit to cancer survivors; however, the biochemical mechanisms have not been entirely elucidated. Despite the well-documented evidence implicating oxidative stress in breast cancer, the association between health benefits and redox status has not been investigated in survivors who participate in dragon boating. The present study investigated the plasmatic systemic oxidative status (SOS) in breast cancer survivors involved in two distinct physical training exercises. A total of 75 breast cancer survivors were allocated to one of three groups: Control (resting), dragon boat racing and walking group; the latter is a type of aerobic conditioning exercise often advised to cancer patients. Various biochemical oxidative stress markers were examined, including oxidant status (hydroperoxide levels, lipid oxidation) and antioxidant status (enzymatic activities of superoxide dismutase and glutathione peroxidase, reduced glutathione levels and antioxidant capability). In addition, the individual DNA fragmentation and DNA repair capability of nucleotide excision repair (NER) systems were examined by comet assays. According to the results, all patients exhibited high levels of oxidative stress. Physical activity maintained this oxidative stress condition but simultaneously had a positive influence on the antioxidant component of the SOS, particularly in the dragon boat racing group. DNA fragmentation, according to the levels of single- and double-strand breaks, were within the normal range in the two survivor groups that were involved in training activities. Radiation-induced damage was not completely recognised or repaired by NER systems in any of the patients, probably leading to radiosensitivity and/or susceptibility of patients to cancer. These findings suggest that physical activity, particularly dragon boat racing, that modulates SOS and DNA repair capability could represent a strategy for enhancing the

  9. Sequence analysis of the lactococcal plasmid pNP40: a mobile replicon for coping with environmental hazards.

    PubMed

    O'Driscoll, Jonathan; Glynn, Frances; Fitzgerald, Gerald F; van Sinderen, Douwe

    2006-09-01

    The conjugative lactococcal plasmid pNP40, identified in Lactococcus lactis subsp. diacetylactis DRC3, possesses a potent complement of bacteriophage resistance systems, which has stimulated its application as a fitness-improving, food-grade genetic element for industrial starter cultures. The complete sequence of this plasmid allowed the mapping of previously known functions including replication, conjugation, bacteriocin resistance, heavy metal tolerance, and bacteriophage resistance. In addition, functions for cold shock adaptation and DNA damage repair were identified, further confirming pNP40's contribution to environmental stress protection. A plasmid cointegration event appears to have been part of the evolution of pNP40, resulting in a "stockpiling" of bacteriophage resistance systems.

  10. Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Lefèvre, Loic; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H

    2015-08-14

    In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element. Food/feed matrices containing transgenic crops (Bt rice or MON863 maize) were analysed using the integrated DNA walking system. First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples. Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix.

  11. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?

    PubMed

    Gasiunas, Giedrius; Siksnys, Virginijus

    2013-11-01

    Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. An enhanced chemiluminescence resonance energy transfer system based on target recycling G-guadruplexes/hemin DNAzyme catalysis and its application in ultrasensitive detection of DNA.

    PubMed

    Chen, Jia; Huang, Yong; Vdovenko, Marina; Sakharov, Ivan Yu; Su, Guifa; Zhao, Shulin

    2015-06-01

    An enhanced chemiluminescence resonance energy transfer (CRET) system based on target recycling G-guadruplexes/hemin DNAzyme catalysis was developed for ultrasensitive detection of DNA. CRET system consists of luminol as chemiluminescent donor, and fluorescein isothiocyanate (FITC) as acceptor. The sensitive detection was achieved by using the system consisted of G-riched DNA, blocker DNA, and the Nb.BbvCI biocatalyst. Upon addition of target DNA to the system, target DNA hybridizes with the quasi-circular DNA structure, and forms a DNA duplex. The formation of DNA duplex triggers selective enzymatic cleavage of quasi-circular DNA by Nb.BbvCI, resulting in the release of target DNA and two G-riched DNAzyme segments. Released target DNA then hybridizes with another quasi-circular DNA structure to initiate the cleavage of the quasi-circular DNA structure. Eventually, each target DNA can go through many cycles, resulting in the digestion of many quasi-circular DNA structures, generating many G-riched DNAzyme segments. G-riched DNAzyme segment products assemble with hemin to form stable hemin/G-quadruplexes that exhibit peroxidase-like activity which can catalyze the oxidation of luminol by H2O2 to produce CL signals. In the presence of FITC, CL of luminol can excite FITC molecules, and thus produced CRET between the luminol and FITC. This unique analysis strategy gives a detection limit down to 80 fM, which is at least four orders of magnitude lower than that of unamplified DNA detection methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription.

    PubMed

    Kogoma, T

    1997-06-01

    Chromosome replication in Escherichia coli is normally initiated at oriC, the origin of chromosome replication. E. coli cells possess at least three additional initiation systems for chromosome replication that are normally repressed but can be activated under certain specific conditions. These are termed the stable DNA replication systems. Inducible stable DNA replication (iSDR), which is activated by SOS induction, is proposed to be initiated from a D-loop, an early intermediate in homologous recombination. Thus, iSDR is a form of recombination-dependent DNA replication (RDR). Analysis of iSDR and RDR has led to the proposal that homologous recombination and double-strand break repair involve extensive semiconservative DNA replication. RDR is proposed to play crucial roles in homologous recombination, double-strand break repair, restoration of collapsed replication forks, and adaptive mutation. Constitutive stable DNA replication (cSDR) is activated in mhA mutants deficient in RNase HI or in recG mutants deficient in RecG helicase. cSDR is proposed to be initiated from an R-loop that can be formed by the invasion of duplex DNA by an RNA transcript, which most probably is catalyzed by RecA protein. The third form of SDR is nSDR, which can be transiently activated in wild-type cells when rapidly growing cells enter the stationary phase. This article describes the characteristics of these alternative DNA replication forms and reviews evidence that has led to the formulation of the proposed models for SDR initiation mechanisms. The possible interplay between DNA replication, homologous recombination, DNA repair, and transcription is explored.

  14. Genome Structure of the Genus Azospirillum

    PubMed Central

    Martin-Didonet, Claudia C. G.; Chubatsu, Leda S.; Souza, Emanuel M.; Kleina, Margareth; Rego, Fabiane G. M.; Rigo, Liu U.; Yates, M. Geoffrey; Pedrosa, Fabio O.

    2000-01-01

    Azospirillum species are plant-associated diazotrophs of the alpha subclass of Proteobacteria. The genomes of five of the six Azospirillum species were analyzed by pulsed-field gel electrophoresis. All strains possessed several megareplicons, some probably linear, and 16S ribosomal DNA hybridization indicated multiple chromosomes in genomes ranging in size from 4.8 to 9.7 Mbp. The nifHDK operon was identified in the largest replicon. PMID:10869094

  15. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filone, Claire Marie; Heise, Mark; Doms, Robert W.

    2006-12-20

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expressionmore » of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.« less

  16. A paralleled readout system for an electrical DNA-hybridization assay based on a microstructured electrode array

    NASA Astrophysics Data System (ADS)

    Urban, Matthias; Möller, Robert; Fritzsche, Wolfgang

    2003-02-01

    DNA analytics is a growing field based on the increasing knowledge about the genome with special implications for the understanding of molecular bases for diseases. Driven by the need for cost-effective and high-throughput methods for molecular detection, DNA chips are an interesting alternative to more traditional analytical methods in this field. The standard readout principle for DNA chips is fluorescence based. Fluorescence is highly sensitive and broadly established, but shows limitations regarding quantification (due to signal and/or dye instability) and the need for sophisticated (and therefore high-cost) equipment. This article introduces a readout system for an alternative detection scheme based on electrical detection of nanoparticle-labeled DNA. If labeled DNA is present in the analyte solution, it will bind on complementary capture DNA immobilized in a microelectrode gap. A subsequent metal enhancement step leads to a deposition of conductive material on the nanoparticles, and finally an electrical contact between the electrodes. This detection scheme offers the potential for a simple (low-cost as well as robust) and highly miniaturizable method, which could be well-suited for point-of-care applications in the context of lab-on-a-chip technologies. The demonstrated apparatus allows a parallel readout of an entire array of microstructured measurement sites. The readout is combined with data-processing by an embedded personal computer, resulting in an autonomous instrument that measures and presents the results. The design and realization of such a system is described, and first measurements are presented.

  17. UVA-potentiated damage to calf thymus DNA by Fenton reaction system and protection by para-aminobenzoic acid.

    PubMed

    Shih, M K; Hu, M L

    1996-03-01

    Calf thymus DNA was irradiated with low-intensity UVA (main output at 365 nm, 2 mW cm-2 or 36 kJ m-2 for 30 min), and the role of metal ions, hydrogen peroxide and reactive oxygen species (ROS) was examined. DNA damage was measured as thiobarbituric acid-reactive substances (possibly from degradation of deoxyribose) and as changes in ethidium bromide-DNA fluorescence due to unwinding from strand breaks. Under the present experimental conditions, UVA alone or in the presence of H2O2 had no effect on DNA but slightly enhanced the damage by iron/EDTA. Ultraviolet A strongly enhanced DNA damage (ca four- to five-fold) by the Fenton reaction system (50 microM Fe2+/100 microM EDTA + 0.5 mM H2O2). The results suggest that the Fenton reaction system was "photosensitized" to damage DNA by low-intensity UVA radiation. The enhanced damage by UVA was attributed in part to the reduction of Fe3+ to Fe2+. Ultraviolet A had no effect when iron (ferric or ferrous) ions were replaced by Cu2+, Zn2+, Mn2+ or Cd2+. The ROS involved in the UVA-enhanced damage to DNA by the Fenton reagents were OH and, to a lesser extent, superoxide anions. The UVA-potentiated DNA damage by the Fenton reaction system was then used to examine the protective effect of para-aminobenzoate (PABA), a UVB-absorbing sunscreen that protects against photocarcinogenesis in hairless mice. The results show that PABA and mannitol dose-dependently inhibited the damage with concentrations required for 50% inhibition at 0.1 mM and 3 mM, respectively. The protection by PABA was attributed to its radical-scavenging ability because PABA does not absorb light in the UVA region. These findings may be relevant to the biological damage by UVA and suggest that PABA is useful in protection against photocarcinogenesis by wide-range UV radiation.

  18. Competition for DNA binding sites using Promega DNA IQ™ paramagnetic beads.

    PubMed

    Frégeau, Chantal J; De Moors, Anick

    2012-09-01

    The Promega DNA IQ™ system is easily amenable to automation and has been an integral part of standard operating procedures for many forensic laboratories including those of the Royal Canadian Mounted Police (RCMP) since 2004. Due to some failure to extract DNA from samples that should have produced DNA using our validated automated DNA IQ™-based protocol, the competition for binding sites on the DNA IQ™ magnetic beads was more closely examined. Heme from heavily blooded samples interfered slightly with DNA binding. Increasing the concentration of Proteinase K during lysis of these samples did not enhance DNA recovery. However, diluting the sample lysate following lysis prior to DNA extraction overcame the reduction in DNA yield and preserved portions of the lysates for subsequent manual or automated extraction. Dye/chemicals from black denim lysates competed for binding sites on the DNA IQ™ beads and significantly reduced DNA recovery. Increasing the size or number of black denim cuttings during lysis had a direct adverse effect on DNA yield from various blood volumes. The dilution approach was successful on these samples and permitted the extraction of high DNA yields. Alternatively, shortening the incubation time for cell lysis to 30 min instead of the usual overnight at 56 °C prevented competition from black denim dye/chemicals and increased DNA yields. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  19. A common anchor facilitated GO-DNA nano-system for multiplex microRNA analysis in live cells.

    PubMed

    Yu, Jiantao; He, Sihui; Shao, Chen; Zhao, Haoran; Li, Jing; Tian, Leilei

    2018-04-19

    The design of a nano-system for the detection of intracellular microRNAs is challenging as it must fulfill complex requirements, i.e., it must have a high sensitivity to determine the dynamic expression level, a good reliability for multiplex and simultaneous detection, and a satisfactory biostability to work in biological environments. Instead of employing a commonly used physisorption or a full-conjugation strategy, here, a GO-DNA nano-system was developed under graft/base-pairing construction. The common anchor sequence was chemically grafted to GO to base-pair with various microRNA probes; and the hybridization with miRNAs drives the dyes on the probes to leave away from GO, resulting in "turned-on" fluorescence. This strategy not only simplifies the synthesis but also efficiently balances the loading yields of different probes. Moreover, the conjugation yield of GO with a base-paired hybrid has been improved by more than two-fold compared to that of the conjugation with a single strand. We demonstrated that base-paired DNA probes could be efficiently delivered into cells along with GO and are properly stabilized by the conjugated anchor sequence. The resultant GO-DNA nano-system exhibited high stability in a complex biological environment and good resistance to nucleases, and was able to accurately discriminate various miRNAs without cross-reaction. With all of these positive features, the GO-DNA nano-system can simultaneously detect three miRNAs and monitor their dynamic expression levels.

  20. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate.

    PubMed

    Zhang, Z; Cavalier-Smith, T; Green, B R

    2001-08-01

    Chloroplast genes of several dinoflagellate species are located on unigenic DNA minicircular chromosomes. We have now completely sequenced five aberrant minicircular chromosomes from the dinoflagellate Heterocapsa triquetra. These probably nonfunctional DNA circles lack complete genes, with each being composed of several short fragments of two or three different chloroplast genes and a common conserved region with a tripartite 9G-9A-9G core like the putative replicon origin of functional single-gene circular chloroplast chromosomes. Their sequences imply that all five circles evolved by differential deletions and duplications from common ancestral circles bearing fragments of four genes: psbA, psbC, 16S rRNA, and 23S rRNA. It appears that recombination between separate unigenic chromosomes initially gave intermediate heterodimers, which were subsequently stabilized by deletions that included part or all of one putative replicon origin. We suggest that homologous recombination at the 9G-9A-9G core regions produced a psbA/psbC heterodimer which generated two distinct chimeric circles by differential deletions and duplications. A 23S/16S rRNA heterodimer more likely formed by illegitimate recombination between 16S and 23S rRNA genes. Homologous recombination between the 9G-9A-9G core regions of both heterodimers and additional differential deletions and duplications could then have yielded the other three circles. Near identity of the gene fragments and 9G-9A-9G cores, despite diverging adjacent regions, may be maintained by gene conversion. The conserved organization of the 9G-9A-9G cores alone favors the idea that they are replicon origins and suggests that they may enable the aberrant minicircles to parasitize the chloroplast's replication machinery as selfish circles.

  1. RPA coordinates DNA end resection and prevents formation of DNA hairpins.

    PubMed

    Chen, Huan; Lisby, Michael; Symington, Lorraine S

    2013-05-23

    Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Circulating anti-double-stranded DNA antibody-secreting cells in patients with systemic lupus erythematosus: a novel biomarker for disease activity.

    PubMed

    Hanaoka, H; Okazaki, Y; Satoh, T; Kaneko, Y; Yasuoka, H; Seta, N; Kuwana, M

    2012-10-01

    Antibodies against double-stranded DNA (dsDNA) are widely used to diagnose systemic lupus erythematosus (SLE) and evaluate its activity in patients. This study was undertaken to examine the clinical utility of circulating anti-dsDNA antibody-secreting cells for evaluating SLE patients. Anti-dsDNA antibody-secreting cells quantified using an enzyme-linked immunospot assay were detected in the spleen, bone marrow and peripheral blood from MRL/lpr but not in control BALB/c mice. Circulating anti-dsDNA antibody-secreting cells were detected in 29 (22%) of 130 patients with SLE, but in none of 49 with non-SLE connective-tissue disease or 18 healthy controls. The presence of circulating anti-dsDNA antibody-secreting cells was associated with persistent proteinuria, high SLE disease activity index and systemic lupus activity measures, and a high serum anti-dsDNA antibody titre measured with an enzyme-linked immunosorbent assay. The positive predictive value for active disease was 48% for circulating anti-dsDNA antibody-secreting cells versus 17% for serum anti-dsDNA antibodies. A prospective cohort of patients with circulating anti-dsDNA antibodies and inactive SLE showed that the cumulative disease flare-free rate was significantly lower in patients with than without circulating anti-dsDNA antibody-secreting cells (p < 0.001). Circulating anti-dsDNA antibody-secreting cells are a useful biomarker for assessing disease activity in SLE patients.

  3. DNA nanotechnology

    NASA Astrophysics Data System (ADS)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  4. Switching bonds in a DNA gel: an all-DNA vitrimer.

    PubMed

    Romano, Flavio; Sciortino, Francesco

    2015-02-20

    We design an all-DNA system that behaves like vitrimers, innovative plastics with self-healing and stress-releasing properties. The DNA sequences are engineered to self-assemble first into tetra- and bifunctional units which, upon further cooling, bind to each other forming a fully bonded network gel. An innovative design of the binding regions of the DNA sequences, exploiting a double toehold-mediated strand displacement, generates a network gel which is able to reshuffle its bonds, retaining at all times full bonding. As in vitrimers, the rate of bond switching can be controlled via a thermally activated catalyst, which in the present design is very short DNA strands.

  5. Forensic DNA Profiling and Database

    PubMed Central

    Panneerchelvam, S.; Norazmi, M.N.

    2003-01-01

    The incredible power of DNA technology as an identification tool had brought a tremendous change in crimnal justice . DNA data base is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. This article discusses the essential steps in compilation of COmbined DNA Index System (CODIS) on validated polymerase chain amplified STRs and their use in crime detection. PMID:23386793

  6. Simulation model of converging-diverging (CD) nozzle to improve particle delivery system of deoxyribonucleic acid (DNA)

    NASA Astrophysics Data System (ADS)

    Sumarsono, Danardono A.; Ibrahim, Fera; Santoso, Satria P.; Sari, Gema P.

    2018-02-01

    Gene gun is a mechanical device which has been used to deliver DNA vaccine into the cells and tissues by increasing the uptake of DNA plasmid so it can generate a high immune response with less amount of DNA. Nozzle is an important part of the gene gun which used to accelerate DNA in particle form with a gas flow to reach adequate momentum to enter the epidermis of human skin and elicit immune response. We developed new designs of nozzle for gene gun to make DNA uptake more efficient in vaccination. We used Computational Fluid Dynamics (CFD) by Autodesk® Simulation 2015 to simulate static fluid pressure and velocity contour of supersonic wave and parametric distance to predict the accuracy of the new nozzle. The result showed that the nozzle could create a shockwave at the distance parametric to the object from 4 to 5 cm using fluid pressure varied between 0.8-1.2 MPa. This is indication a possibility that the DNA particle could penetrate under the mammalian skin. For the future research step, this new nozzle model could be considered for development the main component of the DNA delivery system in vaccination in vivo

  7. Plasmid DNA partitioning and separation using poly(ethylene glycol)/poly(acrylate)/salt aqueous two-phase systems.

    PubMed

    Johansson, Hans-Olof; Matos, Tiago; Luz, Juliana S; Feitosa, Eloi; Oliveira, Carla C; Pessoa, Adalberto; Bülow, Leif; Tjerneld, Folke

    2012-04-13

    Phase diagrams of poly(ethylene glycol)/polyacrylate/Na(2)SO(4) systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coli can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coli homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na(2)SO(4)-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Application of the BioMek 2000 Laboratory Automation Workstation and the DNA IQ System to the extraction of forensic casework samples.

    PubMed

    Greenspoon, Susan A; Ban, Jeffrey D; Sykes, Karen; Ballard, Elizabeth J; Edler, Shelley S; Baisden, Melissa; Covington, Brian L

    2004-01-01

    Robotic systems are commonly utilized for the extraction of database samples. However, the application of robotic extraction to forensic casework samples is a more daunting task. Such a system must be versatile enough to accommodate a wide range of samples that may contain greatly varying amounts of DNA, but it must also pose no more risk of contamination than the manual DNA extraction methods. This study demonstrates that the BioMek 2000 Laboratory Automation Workstation, used in combination with the DNA IQ System, is versatile enough to accommodate the wide range of samples typically encountered by a crime laboratory. The use of a silica coated paramagnetic resin, as with the DNA IQ System, facilitates the adaptation of an open well, hands off, robotic system to the extraction of casework samples since no filtration or centrifugation steps are needed. Moreover, the DNA remains tightly coupled to the silica coated paramagnetic resin for the entire process until the elution step. A short pre-extraction incubation step is necessary prior to loading samples onto the robot and it is at this step that most modifications are made to accommodate the different sample types and substrates commonly encountered with forensic evidentiary samples. Sexual assault (mixed stain) samples, cigarette butts, blood stains, buccal swabs, and various tissue samples were successfully extracted with the BioMek 2000 Laboratory Automation Workstation and the DNA IQ System, with no evidence of contamination throughout the extensive validation studies reported here.

  9. Antibodies to native DNA and serum complement (C3) levels. Application to diagnosis and classification of systemic lupus erythematosus.

    PubMed

    Weinstein, A; Bordwell, B; Stone, B; Tibbetts, C; Rothfield, N F

    1983-02-01

    The sensitivity and specificity of the presence of antibodies to native DNA and low serum C3 levels were investigated in a prospective study in 98 patients with systemic lupus erythematosus who were followed for a mean of 38.4 months. Hospitalized patients, patients with other connective tissue diseases, and subjects without any disease served as the control group. Seventy-two percent of the patients with systemic lupus erythematosus had a high DNA-binding value (more than 33 percent) initially, and an additional 20 percent had a high DNA-binding value later in the course of the illness. Similarly, C3 levels were low (less than 81 mg/100 ml) in 38 percent of the patients with systemic lupus erythematosus initially and in 66 percent of the patients at any time during the study. High DNA-binding and low C3 levels each showed extremely high predictive value (94 percent) for the diagnosis of systemic lupus erythematosus when applied in a patient population in which that diagnosis was considered. The presence of both abnormalities was 100 percent correct in predicting the diagnosis os systemic lupus erythematosus. Both tests should be included in future criteria for the diagnosis and classification of systemic lupus erythematosus.

  10. Design and analysis of linear cascade DNA hybridization chain reactions using DNA hairpins

    NASA Astrophysics Data System (ADS)

    Bui, Hieu; Garg, Sudhanshu; Miao, Vincent; Song, Tianqi; Mokhtar, Reem; Reif, John

    2017-01-01

    DNA self-assembly has been employed non-conventionally to construct nanoscale structures and dynamic nanoscale machines. The technique of hybridization chain reactions by triggered self-assembly has been shown to form various interesting nanoscale structures ranging from simple linear DNA oligomers to dendritic DNA structures. Inspired by earlier triggered self-assembly works, we present a system for controlled self-assembly of linear cascade DNA hybridization chain reactions using nine distinct DNA hairpins. NUPACK is employed to assist in designing DNA sequences and Matlab has been used to simulate DNA hairpin interactions. Gel electrophoresis and ensemble fluorescence reaction kinetics data indicate strong evidence of linear cascade DNA hybridization chain reactions. The half-time completion of the proposed linear cascade reactions indicates a linear dependency on the number of hairpins.

  11. Close encounters with DNA

    PubMed Central

    Maffeo, C.; Yoo, J.; Comer, J.; Wells, D. B.; Luan, B.; Aksimentiev, A.

    2014-01-01

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena and we review the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field. PMID:25238560

  12. Close encounters with DNA.

    PubMed

    Maffeo, C; Yoo, J; Comer, J; Wells, D B; Luan, B; Aksimentiev, A

    2014-10-15

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.

  13. Recruitment of DNA methyltransferase I to DNA repair sites.

    PubMed

    Mortusewicz, Oliver; Schermelleh, Lothar; Walter, Joachim; Cardoso, M Cristina; Leonhardt, Heinrich

    2005-06-21

    In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair.

  14. Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies.

    PubMed

    Kofron, Michelle D; Laurencin, Cato T

    2004-06-01

    One of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA). Co-precipitate release studies demonstrated an initial burst release over the first 48 h. By day 7, approximately 96% of the initially adsorbed DNA/Ca-P co-precipitate had been released. This was followed by low levels of co-precipitate release for 42 days. Polymerase chain reaction was used to demonstrate the ability of the released DNA containing co-precipitates to transfect SaOS-2 cells cultured in vitro on the 3D-DNA/Ca-P/PLAGA matrix and maintenance of the structural integrity of the exogenous DNA. In summary, a promising system for the incorporation and controlled delivery of exogenous genes encapsulated within a calcium phosphate co-precipitate from biodegradable polymeric matrices has been developed and may have applicability to the delivery of therapeutic genes and the transfection of other cell types.

  15. Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with Systemic Lupus Erythematosus

    PubMed Central

    López-López, Linnette; Nieves-Plaza, Mariely; Castro, María del R.; Font, Yvonne M.; Torres-Ramos, Carlos; Vilá, Luis M.; Ayala-Peña, Sylvette

    2014-01-01

    Objective To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. Methods A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson’s chi-square test (or Fisher’s exact test) as appropriate. Results Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. Conclusion PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. PMID:24899636

  16. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  17. Dna2 initiates resection at clean DNA double-strand breaks

    PubMed Central

    Paudyal, Sharad C.; Li, Shan; Yan, Hong; Hunter, Tony

    2017-01-01

    Abstract Nucleolytic resection of DNA double-strand breaks (DSBs) is essential for both checkpoint activation and homology-mediated repair; however, the precise mechanism of resection, especially the initiation step, remains incompletely understood. Resection of blocked ends with protein or chemical adducts is believed to be initiated by the MRN complex in conjunction with CtIP through internal cleavage of the 5′ strand DNA. However, it is not clear whether resection of clean DSBs with free ends is also initiated by the same mechanism. Using the Xenopus nuclear extract system, here we show that the Dna2 nuclease directly initiates the resection of clean DSBs by cleaving the 5′ strand DNA ∼10–20 nucleotides away from the ends. In the absence of Dna2, MRN together with CtIP mediate an alternative resection initiation pathway where the nuclease activity of MRN apparently directly cleaves the 5′ strand DNA at more distal sites. MRN also facilitates resection initiation by promoting the recruitment of Dna2 and CtIP to the DNA substrate. The ssDNA-binding protein RPA promotes both Dna2- and CtIP–MRN-dependent resection initiation, but a RPA mutant can distinguish between these pathways. Our results strongly suggest that resection of blocked and clean DSBs is initiated via distinct mechanisms. PMID:28981724

  18. OligArch: A software tool to allow artificially expanded genetic information systems (AEGIS) to guide the autonomous self-assembly of long DNA constructs from multiple DNA single strands.

    PubMed

    Bradley, Kevin M; Benner, Steven A

    2014-01-01

    Synthetic biologists wishing to self-assemble large DNA (L-DNA) constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson-Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS), and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting") software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology.

  19. A Simple And Rapid Minicircle DNA Vector Manufacturing System

    PubMed Central

    Kay, Mark A; He, Cheng-Yi; Chen, Zhi-Ying

    2010-01-01

    Minicircle DNA vectors consisting of a circular expression cassette devoid of the bacterial plasmid DNA backbone provides several advantages including sustained transgene expression in quiescent cells/tissues. Their use has been limited by labor-intensive production. We report on a strategy for making multiple genetic modifications in E.coli to construct a producer strain that stably expresses a set of inducible minicircle-assembly enzymes, the øC31-integrase and I-SceI homing-endonuclease. This bacterial strain is capable of producing highly purified minicircle yields in the same time frame as routine plasmid DNA. It is now feasible for minicircle DNA vectors to replace routine plasmids in mammalian transgene expression studies. PMID:21102455

  20. Simple System for Isothermal DNA Amplification Coupled to Lateral Flow Detection

    PubMed Central

    Roskos, Kristina; Hickerson, Anna I.; Lu, Hsiang-Wei; Ferguson, Tanya M.; Shinde, Deepali N.; Klaue, Yvonne; Niemz, Angelika

    2013-01-01

    Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden. PMID:23922706

  1. Myth and reality: practical test system for the measurement of anti-DNA antibodies in the diagnosis of systemic lupus erythematosus (SLE).

    PubMed

    McCloskey, Laura J; Christner, Paul; Jacobs-Kosmin, Dana; Jaskowski, Troy D; Hill, Harry R; Lakos, Gabriella; Teodorescu, Marius

    2010-01-01

    The myth persists that only the labor intensive Farr radioimmunoassay and Crithidia luciliae immunofluorescence (CL-IFA) are systemic lupus erythematosus (SLE)-specific tests. We compared them to ELISA with bacteriophage lambda DNA (EL-dsDNA) and denatured calf thymus DNA (EL-ssDNA). By percentile ranking, the specificity cut-off level was set both out of clinical context (SOCC) on 100 blood bank donors, and in clinical context (SICC) on 100 patients with either rheumatoid arthritis or scleroderma (50/50). Clinical sensitivity was calculated on 100 random SLE patients. At 95% SICC, the sensitivity of Farr, CL-IFA, EL-dsDNA, and EL-ssDNA was similar (95%CI): 76% (66-84), 76% (66-84), 63% (53-72), and 75% (65-83), respectively; 87% of the patients were positive by at least one method and 55%by all methods. At 99% SICC, the sensitivity was also similar (95% CI): 57% (47-67), 47% (37-57), 58% (47-67), and 43% (33-53), respectively. The areas under ROC curve were similar (95% CI) when patients were used as controls for specificity. At 99% SOCC, EL-ssDNA identified 89% positive, 2 negative but positive by another method at 95% SICC, and 9 negative (i.e. 89/2/9), followed by CL-IFA (80/6/14), Farr (76/12/12), and EL-dsDNA (64/23/13). Thus, at relatively low cost and easy automation, under the same conditions of specificity, the two ELISA tests combined were at least as good, if not superior, to CL-IFA or Farr: they showed similar clinical sensitivity and also identified more patients with anti-DNA antibodies. (c) 2010 Wiley-Liss, Inc.

  2. DNA strand displacement system running logic programs.

    PubMed

    Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr

    2014-01-01

    The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Utility of a Fluorescence Microscopy Imaging System for Analyzing the DNA Ploidy of Pathological Megakaryocytes Including 5q- Syndrome.

    PubMed

    Nakahara, Takako; Suemori, Shinichiro; Tsujioka, Takayuki; Kataoka, Mikio; Kataoka, Hiromi; Shibakura, Misako; Tohyama, Kaoru

    2018-06-01

    To investigate megakaryocyte (MK) DNA ploidy in various hematological diseases, fluorescence microscopy imaging system (FMI) can be used to analyze DNA ploidy with cell morphology at the single-cell level by using specialized image-processing software. Here we compared DNA ploidy obtained by FMI measured with that obtained flow cytometry (FCM). With FMI, we could evaluate the DNA ploidy in long-term preserved bone marrow smear samples after staining. We next analyzed the MK DNA ploidy in 42 bone marrow smear samples including 26 myeloid neoplasm cases, and we compared the DNA ploidy and platelet counts in the patients' peripheral blood; the production of platelets was significantly high compared to DNA ploidy in the myeloproliferative neoplasms group. The FMI method revealed that the patients with 5q- syndrome exhibited relatively low DNA ploidy despite high platelet counts, and this result suggested that increased DNA ploidy is not indispensable to abundant platelet production. The FMI method for DNA ploidy will be a useful tool to clarify the relationship between DNA ploidy and platelet production by MKs.

  4. Performance characteristics and comparison of Abbott and artus real-time systems for hepatitis B virus DNA quantification.

    PubMed

    Ismail, Ashrafali M; Sivakumar, Jayashree; Anantharam, Raghavendran; Dayalan, Sujitha; Samuel, Prasanna; Fletcher, Gnanadurai J; Gnanamony, Manu; Abraham, Priya

    2011-09-01

    Virological monitoring of hepatitis B virus (HBV) DNA is critical to the management of HBV infection. With several HBV DNA quantification assays available, it is important to use the most efficient testing system for virological monitoring. In this study, we evaluated the performance characteristics and comparability of three HBV DNA quantification systems: Abbott HBV real-time PCR (Abbott PCR), artus HBV real-time PCR with QIAamp DNA blood kit purification (artus-DB), and artus HBV real-time PCR with the QIAamp DSP virus kit purification (artus-DSP). The lower limits of detection of these systems were established against the WHO international standards for HBV DNA and were found to be 1.43, 82, and 9 IU/ml, respectively. The intra-assay and interassay coefficients of variation of plasma samples (1 to 6 log(10) IU/ml) ranged between 0.05 to 8.34% and 0.16 to 3.48% for the Abbott PCR, 1.53 to 26.85% and 0.50 to 12.89% for artus-DB, and 0.29 to 7.42% and 0.94 to 3.01% for artus-DSP, respectively. Ninety HBV clinical samples were used for comparison of assays, and paired quantitative results showed strong correlation by linear regression analysis (artus-DB with Abbott PCR, r = 0.95; Abbott PCR with artus-DSP, r = 0.97; and artus-DSP with artus-DB, r = 0.94). Bland-Altman analysis showed a good level of agreement for Abbott PCR and artus-DSP, with a mean difference of 0.10 log(10) IU/ml and limits of agreement of -0.91 to 1.11 log(10) IU/ml. No genotype-specific bias was seen in all three systems for HBV genotypes A, C, and D, which are predominant in this region. This finding illustrates that the Abbott real-time HBV and artus-DSP systems show more comparable performance than the artus-DB system, meeting the current guidelines for assays to be used in the management of hepatitis B.

  5. SYNTHESIS AND ANTIVIRAL EVALUATION OF 9-(S)-[3-ALKOXY-2-(PHOSPHONOMETHOXY)PROPYL]NUCLEOSIDE ALKOXYALKYL ESTERS: INHIBITORS OF HEPATITIS C VIRUS AND HIV-1 REPLICATION

    PubMed Central

    Valiaeva, Nadejda; Wyles, David L.; Schooley, Robert T.; Hwu, Julia B.; Beadle, James R.; Prichard, Mark N.

    2011-01-01

    We reported previously that octadecyloxyethyl 9-(S)-[3-hydroxy-2-(phosphonomethoxy)-propyl]adenine (ODE-(S)-HPMPA) was active against genotype 1b and 2a hepatitis C virus (HCV) replicons. This is surprising because acyclic nucleoside phosphonates have been regarded as having antiviral activity only against double stranded DNA viruses, HIV and HBV. We synthesized octadecyloxyethyl 9-(S)-[3-methoxy-2-(phosphonomethoxy)propyl]-adenine and found it to be active in genotype 1b and 2a HCV replicons with EC50 values of 1-2 μM and a CC50 of>150 μM. Analogs with substitutions at the 3′-hydroxyl larger than methyl or ethyl, or with other purine bases were less active but most compounds had significant antiviral activity against HIV-1 in vitro. The most active anti-HIV compound was octadecyloxyethyl 9-(R)-[3-methoxy-2-(phosphonomethoxy)propyl]guanine with an EC50 <0.01 nanomolar and a selectivity index of>4.4 million. PMID:21719300

  6. Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with systemic lupus erythematosus.

    PubMed

    López-López, L; Nieves-Plaza, M; Castro, M del R; Font, Y M; Torres-Ramos, C A; Vilá, L M; Ayala-Peña, S

    2014-10-01

    To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson's chi-square test (or Fisher's exact test) as appropriate. Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Chromatin Challenges during DNA Replication: A Systems Representation

    PubMed Central

    Aladjem, Mirit I.; Weinstein, John N.; Pommier, Yves

    2008-01-01

    In a recent review, A. Groth and coworkers presented a comprehensive account of nucleosome disassembly in front of a DNA replication fork, assembly behind the replication fork, and the copying of epigenetic information onto the replicated chromatin. Understanding those processes however would be enhanced by a comprehensive graphical depiction analogous to a circuit diagram. Accordingly, we have constructed a molecular interaction map (MIM) that preserves in essentially complete detail the processes described by Groth et al. The MIM organizes and elucidates the information presented by Groth et al. on the complexities of chromatin replication, thereby providing a tool for system-level comprehension of the effects of genetic mutations, altered gene expression, and pharmacologic intervention. PMID:17959828

  8. Antagonistic Enzymes in a Biocatalytic pH Feedback System Program Autonomous DNA Hydrogel Life Cycles.

    PubMed

    Heinen, Laura; Heuser, Thomas; Steinschulte, Alexander; Walther, Andreas

    2017-08-09

    Enzymes regulate complex functions and active behavior in natural systems and have shown increasing prospect for developing self-regulating soft matter systems. Striving for advanced autonomous hydrogel materials with fully programmable, self-regulated life cycles, we combine two enzymes with an antagonistic pH-modulating effect in a feedback-controlled biocatalytic reaction network (BRN) and couple it to pH-responsive DNA hydrogels to realize hydrogel systems with distinct preprogrammable lag times and lifetimes in closed systems. The BRN enables precise and orthogonal internal temporal control of the "ON" and "OFF" switching times of the temporary gel state by modulation of programmable, nonlinear pH changes. The time scales are tunable by variation of the enzyme concentrations and additional buffer substances. The resulting material system operates in full autonomy after injection of the chemical fuels driving the BRN. The concept may open new applications inherent to DNA hydrogels, for instance, autonomous shape memory behavior for soft robotics. We further foresee general applicability to achieve autonomous life cycles in other pH switchable systems.

  9. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system.

    PubMed

    Mu, Di; Yan, Liang; Tang, Hui; Liao, Yong

    2015-10-01

    To develop a sensitive and accurate assay system for the quantification of covalently closed circular HBV DNA (cccDNA) for future clinical monitoring of cccDNA fluctuation during antiviral therapy in the liver of infected patients. A droplet digital PCR (ddPCR)-based assay system detected template DNA input at the single copy level (or ~10(-5) pg of plasmid HBV DNA) by using serially diluted plasmid HBV DNA samples. Compared with the conventional quantitative PCR assay in the detection of cccDNA, which required at least 50 ng of template DNA input, a parallel experiment applying a ddPCR system demonstrates that the lowest detection limit of cccDNA from HepG2.215 cellular DNA samples is around 1 ng, which is equivalent to 0.54 ± 0.94 copies of cccDNA. In addition, we demonstrated that the addition of cccDNA-safe exonuclease and utilization of cccDNA-specific primers in the ddPCR assay system significantly improved the detection accuracy of HBV cccDNA from HepG2.215 cellular DNA samples. The ddPCR-based cccDNA detection system is a sensitive and accurate assay for the quantification of cccDNA in HBV-transfected HepG2.215 cellular DNA samples and may represent an important method for future application in monitoring cccDNA fluctuation during antiviral therapy.

  10. Agarose electrophoresis of DNA in discontinuous buffers, using a horizontal slab apparatus and a buffer system with improved properties.

    PubMed

    Zsolnai, A; Orbán, L; Chrambach, A

    1993-03-01

    Using a horizontal slab apparatus with a buffer in the reservoirs at the level of the gel ("sea-level electrophoresis"), the retrograde discontinuous buffer system reported by Wiltfang et al. for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins was applied to DNA electrophoresis. This application yielded the advantages of an increased displacement rate of the moving boundary front and a decrease in the concentration of the counterion base in the resolving phase, which yielded reduced relative mobility values at equivalent gel concentrations and practicable low buffer concentrations. The change of relative mobilities (Rf) with a variation of field strength is decreased compared to that of the migration rate in the continuous Tris-boric-acid-EDTA (TBE) buffer and thus the robustness of the system is improved, as well as the efficiency of separation. The system of Wiltfang et al. has in common with previously described discontinuous DNA system, that it is able to stack DNA from dilute samples and is insensitive to sample components with lower net mobilities than DNA, such as acetate. However, the variance of Rf at constant current density in the discontinuous buffer system is not improved over that of the migration rate at constant field strength in the continuous TBE buffer.

  11. Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein.

    PubMed

    Lee, Jinhee; Yoshida, Wataru; Abe, Koichi; Nakabayashi, Kazuhiko; Wakeda, Hironobu; Hata, Kenichiro; Marquette, Christophe A; Blum, Loïc J; Sode, Koji; Ikebukuro, Kazunori

    2017-07-15

    DNA methylation level at a certain gene region is considered as a new type of biomarker for diagnosis and its miniaturized and rapid detection system is required for diagnosis. Here we have developed a simple electrochemical detection system for DNA methylation using methyl CpG-binding domain (MBD) and a glucose dehydrogenase (GDH)-fused zinc finger protein. This analytical system consists of three steps: (1) methylated DNA collection by MBD, (2) PCR amplification of a target genomic region among collected methylated DNA, and (3) electrochemical detection of the PCR products using a GDH-fused zinc finger protein. With this system, we have successfully measured the methylation levels at the promoter region of the androgen receptor gene in 10 6 copies of genomic DNA extracted from PC3 and TSU-PR1 cancer cell lines. Since no sequence analysis or enzymatic digestion is required for this detection system, DNA methylation levels can be measured within 3h with a simple procedure. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Inducible DNA-repair systems in yeast: competition for lesions.

    PubMed

    Mitchel, R E; Morrison, D P

    1987-03-01

    DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate

  13. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    PubMed

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  14. Development of a high-throughput screening system for identification of novel reagents regulating DNA damage in human dermal fibroblasts.

    PubMed

    Bae, Seunghee; An, In-Sook; An, Sungkwan

    2015-09-01

    Ultraviolet (UV) radiation is a major inducer of skin aging and accumulated exposure to UV radiation increases DNA damage in skin cells, including dermal fibroblasts. In the present study, we developed a novel DNA repair regulating material discovery (DREAM) system for the high-throughput screening and identification of putative materials regulating DNA repair in skin cells. First, we established a modified lentivirus expressing the luciferase and hypoxanthine phosphoribosyl transferase (HPRT) genes. Then, human dermal fibroblast WS-1 cells were infected with the modified lentivirus and selected with puromycin to establish cells that stably expressed luciferase and HPRT (DREAM-F cells). The first step in the DREAM protocol was a 96-well-based screening procedure, involving the analysis of cell viability and luciferase activity after pretreatment of DREAM-F cells with reagents of interest and post-treatment with UVB radiation, and vice versa. In the second step, we validated certain effective reagents identified in the first step by analyzing the cell cycle, evaluating cell death, and performing HPRT-DNA sequencing in DREAM-F cells treated with these reagents and UVB. This DREAM system is scalable and forms a time-saving high-throughput screening system for identifying novel anti-photoaging reagents regulating DNA damage in dermal fibroblasts.

  15. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals.

    PubMed

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  16. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes

    PubMed Central

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-01-01

    Abstract Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. PMID:27112572

  17. In situ hybridisation of EBV DNA-DNA hybrids using wet heat in polypropylene containers.

    PubMed Central

    Labrecque, L G

    1992-01-01

    AIMS: To explore procedures designed to optimise DNA-DNA in situ hybridisation, using cells infected with Epstein-Barr virus (EBV) and tissues and subfragments of the EBV DNA as probes. METHODS: The denaturation step occurred in a polypropylene container, using wet heat generated by a hot water container, the pressure cooker, or the microwave oven, without coverslips, reaching a temperature of 121 degrees C or more in these two last systems. Two different visualisation systems were used. RESULTS: Fixed cells and tumours harbouring a high and medium to low copy number (a few hundreds to 33 copies per cell), were clearly labelled, using a simple reiterated subfragment (BamW) of the EBV DNA, and fresh frozen cells, harbouring a very low copy number (one to two on average) labelled using BamW as well as BamH (single non-reiterated 6 kilobase subfragment). CONCLUSION: This is a valuable alternative technique for DNA-DNA ISH that can be used in fresh frozen samples as well as fixed samples. Images PMID:1336018

  18. Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum.

    PubMed

    Benedicto, Ignacio; Molina-Jiménez, Francisca; Barreiro, Olga; Maldonado-Rodríguez, Alejandra; Prieto, Jesús; Moreno-Otero, Ricardo; Aldabe, Rafael; López-Cabrera, Manuel; Majano, Pedro L

    2008-10-01

    Hepatocyte tight junctions (TJ) play key roles in characteristic liver functions, including bile formation and secretion. Infection by hepatitis C virus (HCV) may cause alterations of the liver architecture and disruption of the bile duct, which ultimately can lead to cholestasis. Herein, we employed the HCV replicon system to analyze the effect of HCV on TJ organization. TJ-associated proteins occludin, claudin-1, and Zonula Occludens protein-1 (ZO-1) disappeared from their normal localization at the border of adjacent cells in Huh7 clones harboring genomic but not subgenomic replicons expressing only the nonstructural proteins. Furthermore, cells containing genomic replicons showed a cytoplasmic accumulation of occludin in the endoplasmic reticulum (ER). TJ-associated function, measured as FITC-dextran paracellular permeability, of genomic replicon-containing cells, was also altered. Interestingly, clearance of the HCV replicon by interferon-alpha (IFN-alpha) treatment and by short hairpin RNA (shRNA) significantly restored the localization of TJ-associated proteins. Transient expression of all HCV structural proteins, but not core protein alone, altered the localization of TJ-associated proteins in Huh7 cells and in clones with subgenomic replicons. Confocal analysis showed that accumulation of occludin in the ER partially co-localized with HCV envelope glycoprotein E2. E2/occludin association was further confirmed by co-immunoprecipitation and pull-down assays. Additionally, using a cell culture model of HCV infection, we observed the cytoplasmic dot-like accumulation of occludin in infected Huh7 cells. We propose that HCV structural proteins, most likely those of the viral envelope, promote alterations of TJ-associated proteins, which may provide new insights for HCV-related pathogenesis.

  19. Dynamic Properties of DNA-Programmable Nanoparticle Crystallization.

    PubMed

    Yu, Qiuyan; Zhang, Xuena; Hu, Yi; Zhang, Zhihao; Wang, Rong

    2016-08-23

    The dynamics of DNA hybridization is very important in DNA-programmable nanoparticle crystallization. Here, coarse-grained molecular dynamics is utilized to explore the structural and dynamic properties of DNA hybridizations for a self-complementary DNA-directed nanoparticle self-assembly system. The hexagonal close-packed (HCP) and close-packed face-centered cubic (FCC) ordered structures are identified for the systems of different grafted DNA chains per nanoparticle, which are in good agreement with the experimental results. Most importantly, the dynamic crystallization processes of DNA hybridizations are elucidated by virtue of the mean square displacement, the percentage of hybridizations, and the lifetime of DNA bonds. The lifetime can be modeled by the DNA dehybridization, which has an exponential form. The lifetime of DNA bonds closely depends on the temperature. A suitable temperature for the DNA-nanoparticle crystallization is obtained in the work. Moreover, a too large volume fraction hinders the self-assembly process due to steric effects. This work provides some essential information for future design of nanomaterials.

  20. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation.

    PubMed

    Heuermann, D; Haas, R

    1998-03-01

    A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (catGC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 x 10(-7) and 4.7 x 10(-7) transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H. pylori recipients, with pHel2 showing an efficiency of 2.0 x 10(-5) transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylori recA+ gene, and the expression of the heterologous green fluorescent protein (GFP) in H. pylori demonstrate the general usefulness of this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future.

  1. Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA

    PubMed Central

    Nevzorova, Tatiana A.; Zhao, Qingze; Lomakin, Yakov A.; Ponomareva, Anastasia A.; Mukhitov, Alexander R.; Purohit, Prashant K.; Weisel, John W.; Litvinov, Rustem I.

    2017-01-01

    Interactions of DNA with proteins are essential for key biological processes and have both a fundamental and practical significance. In particular, DNA binding to anti-DNA antibodies is a pathogenic mechanism in autoimmune pathology, such as systemic lupus erythematosus. Here we measured at the single-molecule level binding and forced unbinding of surface-attached DNA and a monoclonal anti-DNA antibody MRL4 from a lupus erythematosus mouse. In optical trap-based force spectroscopy, a microscopic antibodycoated latex bead is trapped by a focused laser beam and repeatedly brought into contact with a DNA-coated surface. After careful discrimination of non-specific interactions, we showed that the DNA-antibody rupture force spectra had two regimes, reflecting formation of weaker (20–40 pN) and stronger (>40 pN) immune complexes that implies the existence of at least two bound states with different mechanical stability. The two-dimensional force-free off-rate for the DNA-antibody complexes was ~2.2 × 10−3 s−1, the transition state distance was ~0.94 nm, the apparent on-rate was ~5.26 s−1, and the stiffness of the DNA-antibody complex was characterized by a spring constant of 0.0021 pN/nm, suggesting that the DNA-antibody complex is a relatively stable, but soft and deformable macromolecular structure. The stretching elasticity of the DNA molecules was characteristic of single-stranded DNA, suggesting preferential binding of the MRL4 antibody to one strand of DNA. Collectively, the results provide fundamental characteristics of formation and forced dissociation of DNA-antibody complexes that help to understand principles of DNA-protein interactions and shed light on the molecular basis of autoimmune diseases accompanied by formation of anti-DNA antibodies. PMID:29104846

  2. Synthesis of a multi-functional DNA nanosphere barcode system for direct cell detection.

    PubMed

    Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2017-09-28

    Nucleic acid-based technologies have been applied to numerous biomedical applications. As a novel material for target detection, DNA has been used to construct a barcode system with a range of structures. This paper reports multi-functionalized DNA nanospheres (DNANSs) by rolling circle amplification (RCA) with several functionalized nucleotides. DNANSs with a barcode system were designed to exhibit fluorescence for coding enhanced signals and contain biotin for more functionalities, including targeting through the biotin-streptavidin (biotin-STA) interaction. Functionalized deoxynucleotide triphosphates (dNTPs) were mixed in the RCA process and functional moieties can be expressed on the DNANSs. The anti-epidermal growth factor receptor antibodies (anti-EGFR Abs) can be conjugated on DNANSs for targeting cancer cells specifically. As a proof of concept, the potential of the multi-functional DNANS barcode was demonstrated by direct cell detection as a simple detection method. The DNANS barcode provides a new route for the simple and rapid selective recognition of cancer cells.

  3. Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems

    PubMed Central

    Schuyler, Ronald P.; Merkel, Angelika; Raineri, Emanuele; Altucci, Lucia; Vellenga, Edo; Martens, Joost H.A.; Pourfarzad, Farzin; Kuijpers, Taco W.; Burden, Frances; Farrow, Samantha; Downes, Kate; Ouwehand, Willem H.; Clarke, Laura; Datta, Avik; Lowy, Ernesto; Flicek, Paul; Frontini, Mattia; Stunnenberg, Hendrik G.; Martín-Subero, José I.; Gut, Ivo; Heath, Simon

    2018-01-01

    Summary DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses. PMID:27851971

  4. Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems.

    PubMed

    Schuyler, Ronald P; Merkel, Angelika; Raineri, Emanuele; Altucci, Lucia; Vellenga, Edo; Martens, Joost H A; Pourfarzad, Farzin; Kuijpers, Taco W; Burden, Frances; Farrow, Samantha; Downes, Kate; Ouwehand, Willem H; Clarke, Laura; Datta, Avik; Lowy, Ernesto; Flicek, Paul; Frontini, Mattia; Stunnenberg, Hendrik G; Martín-Subero, José I; Gut, Ivo; Heath, Simon

    2016-11-15

    DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.

  6. Enhancement of the thermoelectric figure of merit in DNA-like systems induced by Fano and Dicke effects.

    PubMed

    Fu, Hua-Hua; Gu, Lei; Wu, Dan-Dan; Zhang, Zu-Quan

    2015-04-28

    We report a theoretical study highlighting the thermoelectric properties of biological and synthetic DNA molecules. Based on an effective tight-binding model of duplex DNA and by using the nonequilibrium Green's function technique, the thermal conductance, electrical conductance, Seebeck coefficient and thermoelectric figure of merit in the system are numerically calculated by varying the asymmetries of energies and electronic hoppings in the backbone sites to simulate the environmental complications and fluctuations. We find that due to the multiple transport paths in the DNA molecule, the Fano antiresonance occurs, and enhances the Seebeck coefficient and the figure of merit. When the energy difference is produced in every opposite backbone site, the Dicke effect appears. This effect gives rise to a semiconducting-metallic transition, and enhances the thermoelectric efficiency of the DNA molecule remarkably. Moreover, as the Fano antiresonance point is close to the Dicke resonance one, a giant enhancement in the thermoelectric figure of merit in the DNA molecule has been found. These results provide a scenario to obtain effective routes to enhance the thermoelectric efficiency in the DNA molecules, and suggest perspectives for future experiments intending to control the thermoelectric transport in DNA-like nanodevices.

  7. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    NASA Astrophysics Data System (ADS)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  8. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    PubMed

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  9. Identification of a DNA restriction-modification system in Pectobacterium carotovorum strains isolated from Poland.

    PubMed

    Waleron, K; Waleron, M; Osipiuk, J; Podhajska, A J; Lojkowska, E

    2006-02-01

    Polish isolates of pectinolytic bacteria from the species Pectobacterium carotovorum were screened for the presence of a DNA restriction-modification (R-M) system. Eighty-nine strains of P. carotovorum were isolated from infected potato plants. Sixty-six strains belonged to P. carotovorum ssp. atrosepticum and 23 to P. carotovorum ssp. carotovorum. The presence of restriction enzyme Pca17AI, which is an isoschizomer of EcoRII endonuclease, was observed in all isolates of P. c. atrosepticum but not in P. c. carotovorum. The biochemical properties, PCR amplification, and sequences of the Pca17AI restriction endonuclease and methyltransferase genes were compared with the prototype EcoRII R-M system genes. Only when DNA isolated from cells of P. c. atrosepticum was used as a template, amplification of a 680 bp homologous to the gene coding EcoRII endonuclease. Endonuclease Pca17AI, having a relatively low temperature optimum, was identified. PCR amplification revealed that the nucleotide sequence of genes for EcoRII and Pca17AI R-M are different. Dcm methylation was observed in all strains of Pectobacterium and other Erwinia species tested. The sequence of a DNA fragment coding Dcm methylase in P. carotovorum was different from that of Escherichia coli. Pca17AI is the first psychrophilic isoschizomer of EcoRII endonuclease. The presence of specific Dcm methylation in chromosomal DNA isolated from P. carotovorum is described for the first time. A 680 bp PCR product, unique for P. c. atrosepticum strains, could serve as a molecular marker for detection of these bacteria in environmental samples.

  10. Short Tandem Repeat DNA Internet Database

    National Institute of Standards and Technology Data Gateway

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  11. Analytical validation of BRAF mutation testing from circulating free DNA using the amplification refractory mutation testing system.

    PubMed

    Aung, Kyaw L; Donald, Emma; Ellison, Gillian; Bujac, Sarah; Fletcher, Lynn; Cantarini, Mireille; Brady, Ged; Orr, Maria; Clack, Glen; Ranson, Malcolm; Dive, Caroline; Hughes, Andrew

    2014-05-01

    BRAF mutation testing from circulating free DNA (cfDNA) using the amplification refractory mutation testing system (ARMS) holds potential as a surrogate for tumor mutation testing. Robust assay validation is needed to establish the optimal clinical matrix for measurement and cfDNA-specific mutation calling criteria. Plasma- and serum-derived cfDNA samples from 221 advanced melanoma patients were analyzed for BRAF c.1799T>A (p.V600E) mutation using ARMS in two stages in a blinded fashion. cfDNA-specific mutation calling criteria were defined in stage 1 and validated in stage 2. cfDNA concentrations in serum and plasma, and the sensitivities and specificities of BRAF mutation detection in these two clinical matrices were compared. Sensitivity of BRAF c.1799T>A (p.V600E) mutation detection in cfDNA was increased by using mutation calling criteria optimized for cfDNA (these criteria were adjusted from those used for archival tumor biopsies) without compromising specificity. Sensitivity of BRAF mutation detection in serum was 44% (95% CI, 35% to 53%) and in plasma 52% (95% CI, 43% to 61%). Specificity was 96% (95% CI, 90% to 99%) in both matrices. Serum contains significantly higher total cfDNA than plasma, whereas the proportion of tumor-derived mutant DNA was significantly higher in plasma. Using mutation calling criteria optimized for cfDNA improves sensitivity of BRAF c.1799T>A (p.V600E) mutation detection. The proportion of tumor-derived cfDNA in plasma was significantly higher than in serum. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  12. Development and application of a DNA microarray-based yeast two-hybrid system

    PubMed Central

    Suter, Bernhard; Fontaine, Jean-Fred; Yildirimman, Reha; Raskó, Tamás; Schaefer, Martin H.; Rasche, Axel; Porras, Pablo; Vázquez-Álvarez, Blanca M.; Russ, Jenny; Rau, Kirstin; Foulle, Raphaele; Zenkner, Martina; Saar, Kathrin; Herwig, Ralf; Andrade-Navarro, Miguel A.; Wanker, Erich E.

    2013-01-01

    The yeast two-hybrid (Y2H) system is the most widely applied methodology for systematic protein–protein interaction (PPI) screening and the generation of comprehensive interaction networks. We developed a novel Y2H interaction screening procedure using DNA microarrays for high-throughput quantitative PPI detection. Applying a global pooling and selection scheme to a large collection of human open reading frames, proof-of-principle Y2H interaction screens were performed for the human neurodegenerative disease proteins huntingtin and ataxin-1. Using systematic controls for unspecific Y2H results and quantitative benchmarking, we identified and scored a large number of known and novel partner proteins for both huntingtin and ataxin-1. Moreover, we show that this parallelized screening procedure and the global inspection of Y2H interaction data are uniquely suited to define specific PPI patterns and their alteration by disease-causing mutations in huntingtin and ataxin-1. This approach takes advantage of the specificity and flexibility of DNA microarrays and of the existence of solid-related statistical methods for the analysis of DNA microarray data, and allows a quantitative approach toward interaction screens in human and in model organisms. PMID:23275563

  13. Genomics of high molecular weight plasmids isolated from an on-farm biopurification system.

    PubMed

    Martini, María C; Wibberg, Daniel; Lozano, Mauricio; Torres Tejerizo, Gonzalo; Albicoro, Francisco J; Jaenicke, Sebastian; van Elsas, Jan Dirk; Petroni, Alejandro; Garcillán-Barcia, M Pilar; de la Cruz, Fernando; Schlüter, Andreas; Pühler, Alfred; Pistorio, Mariano; Lagares, Antonio; Del Papa, María F

    2016-06-20

    The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.

  14. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, T.

    1994-04-26

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.

  15. The Helicobacter pylori HpyAXII restriction–modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components

    PubMed Central

    Humbert, Olivier; Salama, Nina R.

    2008-01-01

    The naturally competent organism Helicobacter pylori encodes a large number of restriction–modification (R–M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R–M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R–M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R–M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel ‘half pipe’ structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model. PMID:18978016

  16. DNA topology and transcription

    PubMed Central

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  17. DNA as information.

    PubMed

    Wills, Peter R

    2016-03-13

    This article reviews contributions to this theme issue covering the topic 'DNA as information' in relation to the structure of DNA, the measure of its information content, the role and meaning of information in biology and the origin of genetic coding as a transition from uninformed to meaningful computational processes in physical systems. © 2016 The Author(s).

  18. Patterns of exchange of forensic DNA data in the European Union through the Prüm system.

    PubMed

    Santos, Filipe; Machado, Helena

    2017-07-01

    This paper presents a study of the 5-year operation (2011-2015) of the transnational exchange of forensic DNA data between Member States of the European Union (EU) for the purpose of combating cross-border crime and terrorism within the so-called Prüm system. This first systematisation of the full official statistical dataset provides an overall assessment of the match figures and patterns of operation of the Prüm system for DNA exchange. These figures and patterns are analysed in terms of the differentiated contributions by participating EU Member States. The data suggest a trend for West and Central European countries to concentrate the majority of Prüm matches, while DNA databases of Eastern European countries tend to contribute with profiles of people that match stains in other countries. In view of the necessary transparency and accountability of the Prüm system, more extensive and informative statistics would be an important contribution to the assessment of its functioning and societal benefits. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Role of Bacillus subtilis Error Prevention Oxidized Guanine System in Counteracting Hexavalent Chromium-Promoted Oxidative DNA Damage

    PubMed Central

    Santos-Escobar, Fernando; Gutiérrez-Corona, J. Félix

    2014-01-01

    Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system. PMID:24973075

  20. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    PubMed

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    NASA Astrophysics Data System (ADS)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  2. Enhancing Targeted Genomic DNA Editing in Chicken Cells Using the CRISPR/Cas9 System

    PubMed Central

    Wang, Ling; Yang, Likai; Guo, Yijie; Du, Weili; Yin, Yajun; Zhang, Tao; Lu, Hongzhao

    2017-01-01

    The CRISPR/Cas9 system has enabled highly efficient genome targeted editing for various organisms. However, few studies have focused on CRISPR/Cas9 nuclease-mediated chicken genome editing compared with mammalian genomes. The current study combined CRISPR with yeast Rad52 (yRad52) to enhance targeted genomic DNA editing in chicken DF-1 cells. The efficiency of CRISPR/Cas9 nuclease-induced targeted mutations in the chicken genome was increased to 41.9% via the enrichment of the dual-reporter surrogate system. In addition, the combined effect of CRISPR nuclease and yRad52 dramatically increased the efficiency of the targeted substitution in the myostatin gene using 50-mer oligodeoxynucleotides (ssODN) as the donor DNA, resulting in a 36.7% editing efficiency after puromycin selection. Furthermore, based on the effect of yRad52, the frequency of exogenous gene integration in the chicken genome was more than 3-fold higher than that without yRad52. Collectively, these results suggest that ssODN is an ideal donor DNA for targeted substitution and that CRISPR/Cas9 combined with yRad52 significantly enhances chicken genome editing. These findings could be extensively applied in other organisms. PMID:28068387

  3. [A fluoride-sensor for kink structure in DNA condensation process].

    PubMed

    Liu, Yan-Hui; Zhang, Jing; Chen, Ying-Bing; Li, Yu-Pu; Hu, Lin

    2014-01-01

    Bloomfield has pointed out that the kink structure occurs for sharp bending during DNA condensation process, until now, which has not been proved by experiments. Using UV Spectrophotometer, the effects of fluoride and chlorine on the polyamine-DNA condensation system can be detected. Fluoride and chlorine both belong to the halogen family, but their effects on spermine-DNA condensation system are totally different. Fluoride ions make blue-shift and hyperchromicity appear in the spermine-DNA condensation system, but chlorine ions only make insignificant hyperchromicity happen in this system. Both fluoride ions and chlorine ions only make insignificant hyperchromicity happen in spermidine-DNA condensation system. Based on the distinguished character of fluoride, a fluoride-sensor for "kink" structure in DNA condensation was developed and the second kind of "kink" structure only appear in the spermine-DNA condensation system.

  4. DNA Nanotechnology for Cancer Therapy

    PubMed Central

    Kumar, Vinit; Palazzolo, Stefano; Bayda, Samer; Corona, Giuseppe; Toffoli, Giuseppe; Rizzolio, Flavio

    2016-01-01

    DNA nanotechnology is an emerging and exciting field, and represents a forefront frontier for the biomedical field. The specificity of the interactions between complementary base pairs makes DNA an incredible building material for programmable and very versatile two- and three-dimensional nanostructures called DNA origami. Here, we analyze the DNA origami and DNA-based nanostructures as a drug delivery system. Besides their physical-chemical nature, we dissect the critical factors such as stability, loading capability, release and immunocompatibility, which mainly limit in vivo applications. Special attention was dedicated to highlighting the boundaries to be overcome to bring DNA nanostructures closer to the bedside of patients. PMID:27022418

  5. Tyramine Hydrochloride Based Label-Free System for Operating Various DNA Logic Gates and a DNA Caliper for Base Number Measurements.

    PubMed

    Fan, Daoqing; Zhu, Xiaoqing; Dong, Shaojun; Wang, Erkang

    2017-07-05

    DNA is believed to be a promising candidate for molecular logic computation, and the fluorogenic/colorimetric substrates of G-quadruplex DNAzyme (G4zyme) are broadly used as label-free output reporters of DNA logic circuits. Herein, for the first time, tyramine-HCl (a fluorogenic substrate of G4zyme) is applied to DNA logic computation and a series of label-free DNA-input logic gates, including elementary AND, OR, and INHIBIT logic gates, as well as a two to one encoder, are constructed. Furthermore, a DNA caliper that can measure the base number of target DNA as low as three bases is also fabricated. This DNA caliper can also perform concatenated AND-AND logic computation to fulfil the requirements of sophisticated logic computing. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Performance Characteristics and Comparison of Abbott and artus Real-Time Systems for Hepatitis B Virus DNA Quantification ▿

    PubMed Central

    Ismail, Ashrafali M.; Sivakumar, Jayashree; Anantharam, Raghavendran; Dayalan, Sujitha; Samuel, Prasanna; Fletcher, Gnanadurai J.; Gnanamony, Manu; Abraham, Priya

    2011-01-01

    Virological monitoring of hepatitis B virus (HBV) DNA is critical to the management of HBV infection. With several HBV DNA quantification assays available, it is important to use the most efficient testing system for virological monitoring. In this study, we evaluated the performance characteristics and comparability of three HBV DNA quantification systems: Abbott HBV real-time PCR (Abbott PCR), artus HBV real-time PCR with QIAamp DNA blood kit purification (artus-DB), and artus HBV real-time PCR with the QIAamp DSP virus kit purification (artus-DSP). The lower limits of detection of these systems were established against the WHO international standards for HBV DNA and were found to be 1.43, 82, and 9 IU/ml, respectively. The intra-assay and interassay coefficients of variation of plasma samples (1 to 6 log10 IU/ml) ranged between 0.05 to 8.34% and 0.16 to 3.48% for the Abbott PCR, 1.53 to 26.85% and 0.50 to 12.89% for artus-DB, and 0.29 to 7.42% and 0.94 to 3.01% for artus-DSP, respectively. Ninety HBV clinical samples were used for comparison of assays, and paired quantitative results showed strong correlation by linear regression analysis (artus-DB with Abbott PCR, r = 0.95; Abbott PCR with artus-DSP, r = 0.97; and artus-DSP with artus-DB, r = 0.94). Bland-Altman analysis showed a good level of agreement for Abbott PCR and artus-DSP, with a mean difference of 0.10 log10 IU/ml and limits of agreement of −0.91 to 1.11 log10 IU/ml. No genotype-specific bias was seen in all three systems for HBV genotypes A, C, and D, which are predominant in this region. This finding illustrates that the Abbott real-time HBV and artus-DSP systems show more comparable performance than the artus-DB system, meeting the current guidelines for assays to be used in the management of hepatitis B. PMID:21795507

  7. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?

    PubMed Central

    Schreiner, Sabrina; Nassal, Michael

    2017-01-01

    Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system. PMID:28531167

  8. DNA Trojan Horses: Self-Assembled Floxuridine-Containing DNA Polyhedra for Cancer Therapy.

    PubMed

    Mou, Quanbing; Ma, Yuan; Pan, Gaifang; Xue, Bai; Yan, Deyue; Zhang, Chuan; Zhu, Xinyuan

    2017-10-02

    Based on their structural similarity to natural nucleobases, nucleoside analogue therapeutics were integrated into DNA strands through conventional solid-phase synthesis. By elaborately designing their sequences, floxuridine-integrated DNA strands were synthesized and self-assembled into well-defined DNA polyhedra with definite drug-loading ratios as well as tunable size and morphology. As a novel drug delivery system, these drug-containing DNA polyhedra could ideally mimic the Trojan Horse to deliver chemotherapeutics into tumor cells and fight against cancer. Both in vitro and in vivo results demonstrate that the DNA Trojan horse with buckyball architecture exhibits superior anticancer capability over the free drug and other formulations. With precise control over the drug-loading ratio and structure of the nanocarriers, the DNA Trojan horse may play an important role in anticancer treatment and exhibit great potential in translational nanomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of Halomonas sp. ZM3 isolated from the Zelazny Most post-flotation waste reservoir, with a special focus on its mobile DNA

    PubMed Central

    2013-01-01

    Background Halomonas sp. ZM3 was isolated from Zelazny Most post-flotation mineral waste repository (Poland), which is highly contaminated with heavy metals and various organic compounds. Mobile DNA of the strain (i.e. plasmids and transposons) were analyzed in order to identify genetic information enabling adaptation of the bacterium to the harsh environmental conditions. Results The analysis revealed that ZM3 carries plasmid pZM3H1 (31,370 bp), whose replication system may be considered as an archetype of a novel subgroup of IncU-like replicons. pZM3H1 is a narrow host range, mobilizable plasmid (encodes a relaxase of the MOBV family) containing mercury resistance operon (mer) and czcD genes (mediate resistance to zinc and cobalt), which are part of a large truncated Tn3 family transposon. Further analysis demonstrated that the phenotypes determined by the pZM3H1 resistance cassette are highly dependent on the host strain. In another strand of the study, the trap plasmid pMAT1 was employed to identify functional transposable elements of Halomonas sp. ZM3. Using the sacB positive selection strategy two insertion sequences were identified: ISHsp1 - representing IS5 group of IS5 family and ISHsp2 - a distinct member of the IS630 family. Conclusions This study provides the first detailed description of mobile DNA in a member of the family Halomonadaceae. The identified IncU plasmid pZM3H1 confers resistance phenotypes enabling adaptation of the host strain to the Zelazny Most environment. The extended comparative analysis has shed light on the distribution of related IncU plasmids among bacteria, which, in many cases, reflects the frequency and direction of horizontal gene transfer events. Our results also identify plasmid-encoded modules, which may form the basis of novel shuttle vectors, specific for this group of halophilic bacteria. PMID:23497212

  10. Cellular responses to environmental DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  11. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication

    PubMed Central

    Seco, Elena M.

    2017-01-01

    Abstract Firmicutes have two distinct replicative DNA polymerases, the PolC leading strand polymerase, and PolC and DnaE synthesizing the lagging strand. We have reconstituted in vitro Bacillus subtilis bacteriophage SPP1 θ-type DNA replication, which initiates unidirectionally at oriL. With this system we show that DnaE is not only restricted to lagging strand synthesis as previously suggested. DnaG primase and DnaE polymerase are required for initiation of DNA replication on both strands. DnaE and DnaG synthesize in concert a hybrid RNA/DNA ‘initiation primer’ on both leading and lagging strands at the SPP1 oriL region, as it does the eukaryotic Pol α complex. DnaE, as a RNA-primed DNA polymerase, extends this initial primer in a reaction modulated by DnaG and one single-strand binding protein (SSB, SsbA or G36P), and hands off the initiation primer to PolC, a DNA-primed DNA polymerase. Then, PolC, stimulated by DnaG and the SSBs, performs the bulk of DNA chain elongation at both leading and lagging strands. Overall, these modulations by the SSBs and DnaG may contribute to the mechanism of polymerase switch at Firmicutes replisomes. PMID:28575448

  12. Site-specific genetic recombination: hops, flips, and flops.

    PubMed

    Sadowski, P D

    1993-06-01

    Genetic recombination plays a key role in the life of organisms as diverse as bacteriophages and humans. Contrary to our idea that chromosomes are stable structures, studies of recombination over the past few decades have shown that in fact DNA replicons are remarkably plastic, undergoing frequent recombination-induced rearrangements. This review summarizes our recent knowledge of the biochemistry of the two major classes of site-specific recombination: 1) transpositional recombination, and 2) conservative site-specific recombination.

  13. DNA compaction into new DNA vectors based on cyclodextrin polymer: surface enhanced Raman spectroscopy characterization.

    PubMed

    Burckbuchler, V; Wintgens, V; Lecomte, S; Percot, A; Leborgne, C; Danos, O; Kichler, A; Amiel, C

    2006-04-05

    The ability of DNA to bind polycation yielding polyplexes is widely used in nonviral gene delivery. The aim of the present study was to evaluate the DNA compaction with a new DNA vector using Raman spectroscopy. The polyplexes result from an association of a beta-cyclodextrin polymer (polybeta-CD), an amphiphilic cationic connector (DC-Chol or adamantane derivative Ada2), and DNA. The charge of the polymeric vector is effectively controlled by simple addition of cationic connector in the medium. We used surface enhanced Raman spectroscopy (SERS) to characterize this ternary complex, monitoring the accessibility of adenyl residues to silver colloids. The first experiments were performed using model systems based on polyA (polyadenosine monophosphate) well characterized by SERS. This model was then extended to plasmid DNA to study polybeta-CD/Ada2/DNA and polybeta-CD/DC-Chol/DNA polyplexes. The SERS spectra show a decrease of signal intensity when the vector/DNA charge ratio (Z+/-) increases. At the highest ratio (Z+/- = 10) the signal is 6-fold and 3-fold less intense than the DNA reference signal for Ada2 and DC-Chol polyplexes, respectively. Thus adenyl residues have a reduced accessibility as DNA is bound to the vector. Moreover, the SERS intensity variations are in agreement with gel electrophoresis and zeta potential experiments on the same systems. The overall study clearly demonstrates that the cationic charges neutralizing the negative charges of DNA result in the formation of stable polyplexes. In vitro transfection efficiency of those DNA vectors are also presented and compared to the classical DC-Chol lipoplexes (DC-Chol/DNA). The results show an increase of the transfection efficiency 2-fold higher with our vector based on polybeta-CD. Copyright 2005 Wiley Periodicals, Inc.

  14. A surface-confined DNA assembly amplification strategy on DNA nanostructural scaffold for electrochemiluminescence biosensing.

    PubMed

    Feng, Qiu-Mei; Guo, Yue-Hua; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-15

    A critical challenge in surface-based DNA assembly amplification is the reduced accessibility of DNA strands arranged on a heterogeneous surface compared to that in homogeneous solution. Here, a novel in situ surface-confined DNA assembly amplification electrochemiluminescence (ECL) biosensor based on DNA nanostructural scaffold was presented. In this design, a stem-loop structural DNA segment (Hairpin 1) was constructed on the vertex of DNA nanostructural scaffold as recognition probe. In the present of target DNA, the hairpin structure changed to rod-like through complementary hybridization with target DNA, resulting in the formation of Hairpin 1:target DNA. When the obtained Hairpin 1:target DNA met Hairpin 2 labeled with glucose oxidase (GOD), the DNA cyclic amplification was activated, releasing target DNA into homogeneous solution for the next recycling. Thus, the ECL signal of Ru(bpy) 3 2+ -TPrA system was quenched by H 2 O 2 , the product of GOD catalyzing glucose. As a result, this proposed method achieved a linear range response from 50 aM to 10 pM with lower detection limit of 20 aM. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Diversity of ribosomal 16S DNA- and RNA-based bacterial community in an office building drinking water system.

    PubMed

    Inkinen, J; Jayaprakash, B; Santo Domingo, J W; Keinänen-Toivola, M M; Ryu, H; Pitkänen, T

    2016-06-01

    Next-generation sequencing of 16S ribosomal RNA genes (rDNA) and ribosomal RNA (rRNA) was used to characterize water and biofilm microbiome collected from a drinking water distribution system of an office building after its first year of operation. The total bacterial community (rDNA) and active bacterial members (rRNA) sequencing databases were generated by Illumina MiSeq PE250 platform. As estimated by Chao1 index, species richness in cold water system was lower (180-260) in biofilms (Sphingomonas spp., Methylobacterium spp., Limnohabitans spp., Rhizobiales order) than in waters (250-580), (also Methylotenera spp.) (P = 0·005, n = 20). Similarly species richness (Chao1) was slightly higher (210-580) in rDNA libraries compared to rRNA libraries (150-400; P = 0·054, n = 24). Active Mycobacterium spp. was found in cross-linked polyethylene (PEX), but not in corresponding copper pipeline biofilm. Nonpathogenic Legionella spp. was found in rDNA libraries but not in rRNA libraries. Microbial communities differed between water and biofilms, between cold and hot water systems, locations in the building and between water rRNA and rDNA libraries, as shown by clear clusters in principal component analysis (PcoA). By using the rRNA method, we found that not all bacterial community members were active (e.g. Legionella spp.), whereas other members showed increased activity in some locations; for example, Pseudomonas spp. in hot water circulations' biofilm and order Rhizobiales and Limnohabitans spp. in stagnated locations' water and biofilm. rRNA-based methods may be better than rDNA-based methods for evaluating human health implications as rRNA methods can be used to describe the active bacterial fraction. This study indicates that copper as a pipeline material might have an adverse impact on the occurrence of Mycobacterium spp. The activity of Legionella spp. maybe questionable when detected solely by using DNA-based methods. © 2016 The Society for Applied

  16. On the roles of repetitive DNA elements in the context of a unified genomic-epigenetic system.

    PubMed

    von Sternberg, Richard

    2002-12-01

    Repetitive DNA sequences comprise a substantial portion of most eukaryotic and some prokaryotic chromosomes. Despite nearly forty years of research, the functions of various sequence families as a whole and their monomer units remain largely unknown. The inability to map specific functional roles onto many repetitive DNA elements (REs), coupled with the taxon-specificity of sequence families, have led many to speculate that these genomic components are "selfish" replicators generating genomic "junk." The purpose of this paper is to critically examine the selfishness, evolutionary effects, and functionality of REs. First, a brief overview of the range of ideas pertaining to RE function is presented. Second, the argument is presented that the selfish DNA "hypothesis" is actually a narrative scheme, that it serves to protect neo-Darwinian assumptions from criticism, and that this story is untestable and therefore not a hypothesis. Third, attempts to synthesize the selfish DNA concept with complex systems models of the genome and RE functionality are critiqued. Fourth, the supposed connection between RE-induced mutations and macroevolutionary events are stated to be at variance with empirical evidence and theoretical considerations. Hypotheses that base phylogenetic transitions in repetitive sequence changes thus remain speculative. Fifth and finally, the case is made for viewing REs as integrally functional components of chromosomes, genomes, and cells. It is argued throughout that a new conceptual framework is needed for understanding the roles of repetitive DNA in genomic/epigenetic systems, and that neo-Darwinian "narratives" have been the primary obstacle to elucidating the effects of these enigmatic components of chromosomes.

  17. Fabrication of high quality cDNA microarray using a small amount of cDNA.

    PubMed

    Park, Chan Hee; Jeong, Ha Jin; Jung, Jae Jun; Lee, Gui Yeon; Kim, Sang-Chul; Kim, Tae Soo; Yang, Sang Hwa; Chung, Hyun Cheol; Rha, Sun Young

    2004-05-01

    DNA microarray technology has become an essential part of biological research. It enables the genome-scale analysis of gene expression in various types of model systems. Manufacturing high quality cDNA microarrays of microdeposition type depends on some key factors including a printing device, spotting pins, glass slides, spotting solution, and humidity during spotting. UsingEthe Microgrid II TAS model printing device, this study defined the optimal conditions for producing high density, high quality cDNA microarrays with the least amount of cDNA product. It was observed that aminosilane-modified slides were superior to other types of surface modified-slides. A humidity of 30+/-3% in a closed environment and the overnight drying of the spotted slides gave the best conditions for arraying. In addition, the cDNA dissolved in 30% DMSO gave the optimal conditions for spotting compared to the 1X ArrayIt, 3X SSC and 50% DMSO. Lastly, cDNA in the concentration range of 100-300 ng/ micro l was determined to be best for arraying and post-processing. Currently, the printing system in this study yields reproducible 9000 spots with a spot size 150 mm diameter, and a 200 nm spot spacing.

  18. Electrocatalysis in DNA Sensors

    PubMed Central

    Furst, Ariel; Hill, Michael G.; Barton, Jacqueline K.

    2014-01-01

    Electrocatalysis is often thought of solely in the inorganic realm, most often applied to energy conversion in fuel cells. However, the ever-growing field of bioelectrocatalysis has made great strides in advancing technology for both biofuel cells as well as biological detection platforms. Within the context of bioelectrocatalytic detection systems, DNA-based platforms are especially prevalent. One subset of these platforms, the one we have developed, takes advantage of the inherent charge transport properties of DNA. Electrocatalysis coupled with DNA-mediated charge transport has enabled specific and sensitive detection of lesions, mismatches and DNA-binding proteins. Even greater signal amplification from these platforms is now being achieved through the incorporation of a secondary electrode to the platform both for patterning DNA arrays and for detection. Here, we describe the evolution of this new DNA sensor technology. PMID:25435647

  19. Electrocatalysis in DNA Sensors.

    PubMed

    Furst, Ariel; Hill, Michael G; Barton, Jacqueline K

    2014-12-14

    Electrocatalysis is often thought of solely in the inorganic realm, most often applied to energy conversion in fuel cells. However, the ever-growing field of bioelectrocatalysis has made great strides in advancing technology for both biofuel cells as well as biological detection platforms. Within the context of bioelectrocatalytic detection systems, DNA-based platforms are especially prevalent. One subset of these platforms, the one we have developed, takes advantage of the inherent charge transport properties of DNA. Electrocatalysis coupled with DNA-mediated charge transport has enabled specific and sensitive detection of lesions, mismatches and DNA-binding proteins. Even greater signal amplification from these platforms is now being achieved through the incorporation of a secondary electrode to the platform both for patterning DNA arrays and for detection. Here, we describe the evolution of this new DNA sensor technology.

  20. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    PubMed

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Human Mitochondrial DNA Replication

    PubMed Central

    Holt, Ian J.; Reyes, Aurelio

    2012-01-01

    Elucidation of the process of DNA replication in mitochondria is in its infancy. For many years, maintenance of the mitochondrial genome was regarded as greatly simplified compared to the nucleus. Mammalian mitochondria were reported to lack all DNA repair systems, to eschew DNA recombination, and to possess but a single DNA polymerase, polymerase γ. Polγ was said to replicate mitochondrial DNA exclusively via one mechanism, involving only two priming events and a handful of proteins. In this “strand-displacement model,” leading strand DNA synthesis begins at a specific site and advances approximately two-thirds of the way around the molecule before DNA synthesis is initiated on the “lagging” strand. Although the displaced strand was long-held to be coated with protein, RNA has more recently been proposed in its place. Furthermore, mitochondrial DNA molecules with all the features of products of conventional bidirectional replication have been documented, suggesting that the process and regulation of replication in mitochondria is complex, as befits a genome that is a core factor in human health and longevity. PMID:23143808

  2. Endoribonuclease type II toxin-antitoxin systems: functional or selfish?

    PubMed

    Ramisetty, Bhaskar Chandra Mohan; Santhosh, Ramachandran Sarojini

    2017-07-01

    Most bacterial genomes have multiple type II toxin-antitoxin systems (TAs) that encode two proteins which are referred to as a toxin and an antitoxin. Toxins inhibit a cellular process, while the interaction of the antitoxin with the toxin attenuates the toxin's activity. Endoribonuclease-encoding TAs cleave RNA in a sequence-dependent fashion, resulting in translational inhibition. To account for their prevalence and retention by bacterial genomes, TAs are credited with clinically significant phenomena, such as bacterial programmed cell death, persistence, biofilms and anti-addiction to plasmids. However, the programmed cell death and persistence hypotheses have been challenged because of conceptual, methodological and/or strain issues. In an alternative view, chromosomal TAs seem to be retained by virtue of addiction at two levels: via a poison-antidote combination (TA proteins) and via transcriptional reprogramming of the downstream core gene (due to integration). Any perturbation in the chromosomal TA operons could cause fitness loss due to polar effects on the downstream genes and hence be detrimental under natural conditions. The endoribonucleases encoding chromosomal TAs are most likely selfish DNA as they are retained by bacterial genomes, even though TAs do not confer a direct advantage via the TA proteins. TAs are likely used by various replicons as 'genetic arms' that allow the maintenance of themselves and associated genetic elements. TAs seem to be the 'selfish arms' that make the best use of the 'arms race' between bacterial genomes and plasmids.

  3. Polymer-induced DNA Condensation in the Lamellar Phase of DNA-Lipid Complexes

    NASA Astrophysics Data System (ADS)

    Martin, Ana; Lin, Alison J.; Schulze, Uwe; Safinya, Cyrus R.; Schmidt, Hans-Werner

    2000-03-01

    The lamellar phase of cationic lipid-DNA complexes (CL-DNA)[1,2] is a model system for the study of a polymer induced condensation in two dimensions. Measurements of X-ray diffraction show DNA condensation with the addition of cationic poly(ethylene glycol) PEG-lipid to the membrane of the CL-DNA complexes, revealing the existence of two different behaviors as a function of the PEG length. For shorter PEG the DNA condensation can be described by considering the charge increase on the membrane due to the incorporation of the cationic polymeric chains. For longer PEG a deviation from the predicted electrostatic distance between DNA chains is observed. This higher condensation is caused by a novel depletion-attraction interaction between DNA chains in two dimensions. This work is supported by NSF-DMR9972246 and a fellowship of the Education Ministry of Spain. [1] Rädler, JO; Koltover, I; Salditt, T; Safinya, CR., Science 275, 810 (1997). [2] Koltover, I; Salditt, T; Safinya, CR., Biophys. J. 77, 915 (1999).

  4. Genome-Wide Assessment of Differential DNA Methylation Associated with Autoantibody Production in Systemic Lupus Erythematosus.

    PubMed

    Chung, Sharon A; Nititham, Joanne; Elboudwarej, Emon; Quach, Hong L; Taylor, Kimberly E; Barcellos, Lisa F; Criswell, Lindsey A

    2015-01-01

    Systemic lupus erythematosus (SLE) is characterized by the development of autoantibodies associated with specific clinical manifestations. Previous studies have shown an association between differential DNA methylation and SLE susceptibility, but have not investigated SLE-related autoantibodies. Our goal was to determine whether DNA methylation is associated with production of clinically relevant SLE-related autoantibodies, with an emphasis on the anti-dsDNA autoantibody. In this study, we characterized the methylation status of 467,314 CpG sites in 326 women with SLE. Using a discovery and replication study design, we identified and replicated significant associations between anti-dsDNA autoantibody production and the methylation status of 16 CpG sites (pdiscovery<1.07E-07 and preplication<0.0029) in 11 genes. Associations were further investigated using multivariable regression to adjust for estimated leukocyte cell proportions and population substructure. The adjusted mean DNA methylation difference between anti-dsDNA positive and negative cases ranged from 1.2% to 19%, and the adjusted odds ratio for anti-dsDNA autoantibody production comparing the lowest and highest methylation tertiles ranged from 6.8 to 18.2. Differential methylation for these CpG sites was also associated with anti-SSA, anti-Sm, and anti-RNP autoantibody production. Overall, associated CpG sites were hypomethylated in autoantibody positive compared to autoantibody negative cases. Differential methylation of CpG sites within the major histocompatibility region was not strongly associated with autoantibody production. Genes with differentially methylated CpG sites represent multiple biologic pathways, and have not been associated with autoantibody production in genetic association studies. In conclusion, hypomethylation of CpG sites within genes from different pathways is associated with anti-dsDNA, anti-SSA, anti-Sm, and anti-RNP production in SLE, and these associations are not explained by

  5. A mechanical mechanism for translocation of ring-shaped helicases on DNA and its demonstration in a macroscopic simulation system

    NASA Astrophysics Data System (ADS)

    Chou, Y. C.

    2018-04-01

    The asymmetry in the two-layered ring structure of helicases and the random thermal fluctuations of the helicase and DNA molecules are considered as the bases for the generation of the force required for translocation of the ring-shaped helicase on DNA. The helicase comprises a channel at its center with two unequal ends, through which strands of DNA can pass. The random collisions between the portion of the DNA strand in the central channel and the wall of the channel generate an impulsive force toward the small end. This impulsive force is the starting point for the helicase to translocate along the DNA with the small end in front. Such a physical mechanism may serve as a complementary for the chemomechanical mechanism of the translocation of helicase on DNA. When the helicase arrives at the junction of ssDNA and dsDNA (a fork), the collision between the helicase and the closest base pair may produce a sufficient impulsive force to break the weak hydrogen bond of the base pair. Thus, the helicase may advance and repeat the process of unwinding the dsDNA strand. This mechanism was tested in a macroscopic simulation system where the helicase was simulated using a truncated-cone structure and DNA was simulated with bead chains. Many features of translocation and unwinding such as translocation on ssDNA and dsDNA, unwinding of dsDNA, rewinding, strand switching, and Holliday junction resolution were reproduced.

  6. QPSO-Based Adaptive DNA Computing Algorithm

    PubMed Central

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409

  7. Anti-DNA Ig peptides promote Treg cell activity in systemic lupus erythematosus patients.

    PubMed

    Hahn, Bevra H; Anderson, Marissa; Le, Elizabeth; La Cava, Antonio

    2008-08-01

    Treg cells oppose autoreactive responses in several autoimmune diseases, and their frequency is reduced in systemic lupus erythematosus (SLE). In murine lupus models, treatment with anti-DNA Ig-based peptides can expand the number of Treg cells in vivo. This study was undertaken to test the possibility that functional human Treg cells can be induced by exposure to anti-DNA Ig-based peptides. Peripheral blood mononuclear cells were isolated from 36 lupus patients and 32 healthy individuals matched for ethnicity, sex, and age. Short-term culture experiments in the presence of several independent stimuli including anti-DNA Ig peptides were followed by flow cytometric analysis for identification of CD4+,CD25(high) T cells, cell sorting for in vitro suppression assays, and analysis of correlations between the expression of forkhead box P3 (FoxP3) and serologic and clinical characteristics of the SLE patients. The number of in vitro CD4+,CD25(high) T cells increased after culture with anti-DNA Ig peptides in the SLE patients, but not in the controls. The expanded CD4+,CD25(high) T cells required FoxP3 for cell contact-mediated suppression of proliferation and interferon-gamma production in target CD4+,CD25- T cells. The induction of FoxP3 in SLE Treg cells occurred only in seropositive patients, and was correlated with anti-DNA and IgG serum titers. These results suggest a new modality to reverse the functional deficit of Treg cells in SLE patients with positive autoimmune serology, and identify a new strategy to enhance immunoregulatory T cell activity in human SLE.

  8. Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker.

    PubMed

    Ouldridge, Thomas E; Hoare, Rollo L; Louis, Ard A; Doye, Jonathan P K; Bath, Jonathan; Turberfield, Andrew J

    2013-03-26

    DNA has enormous potential as a programmable material for creating artificial nanoscale structures and devices. For more complex systems, however, rational design and optimization can become difficult. We have recently proposed a coarse-grained model of DNA that captures the basic thermodynamic, structural, and mechanical changes associated with the fundamental process in much of DNA nanotechnology, the formation of duplexes from single strands. In this article, we demonstrate that the model can provide powerful insight into the operation of complex nanotechnological systems through a detailed investigation of a two-footed DNA walker that is designed to step along a reusable track, thereby offering the possibility of optimizing the design of such systems. We find that applying moderate tension to the track can have a large influence on the operation of the walker, providing a bias for stepping forward and helping the walker to recover from undesirable overstepped states. Further, we show that the process by which spent fuel detaches from the walker can have a significant impact on the rebinding of the walker to the track, strongly influencing walker efficiency and speed. Finally, using the results of the simulations, we propose a number of modifications to the walker to improve its operation.

  9. CCR6+ Th cell distribution differentiates systemic lupus erythematosus patients based on anti-dsDNA antibody status.

    PubMed

    Zhong, Wei; Jiang, Zhenyu; Wu, Jiang; Jiang, Yanfang; Zhao, Ling

    2018-01-01

    Systemic lupus erythematosus (SLE) disease has been shown to be associated with the generation of multiple auto-antibodies. Among these, anti-dsDNA antibodies (anti-DNAs) are specific and play a pathogenic role in SLE. Indeed, anti-DNA + SLE patients display a worse disease course. The generation of these pathogenic anti-DNAs has been attributed to the interaction between aberrant T helper (Th) cells and autoimmune B cells. Thus, in this study we have investigated whether CCR6 + Th cells have the ability to differentiate SLE patients based on anti-DNA status, and if their distribution has any correlation with disease activity. We recruited 25 anti-DNA + and 25 anti-DNA - treatment-naive onset SLE patients, matched for various clinical characteristics in our nested matched case-control study. CCR6 + Th cells and their additional subsets were analyzed in each patient by flow cytometry. Anti-DNA + SLE patients specifically had a higher percentage of Th cells expressing CCR6 and CXCR3. Further analysis of CCR6 + Th cell subsets showed that anti-DNA + SLE patients had elevated proportions of Th9, Th17, Th17.1 and CCR4/CXCR3 double-negative (DN) cells. However, the proportions of CCR6 - Th subsets, including Th1 and Th2 cells, did not show any association with anti-DNA status. Finally, we identified a correlation between CCR6 + Th subsets and clinical indicators, specifically in anti-DNA + SLE patients. Our data indicated that CCR6 + Th cells and their subsets were elevated and correlated with disease activity in anti-DNA + SLE patients. We speculated that CCR6 + Th cells may contribute to distinct disease severity in anti-DNA + SLE patients.

  10. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    PubMed Central

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM < 1 nM at 25°C under conditions where T4 DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  11. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  12. Affordable hands-on DNA sequencing and genotyping: an exercise for teaching DNA analysis to undergraduates.

    PubMed

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C Sanger sequencing reactions. They prepare and run the gels, perform Southern blots (which require only 10 min), and detect sequencing ladders using a colorimetric detection system. Students enlarge their sequencing ladders from digital images of their small nylon membranes, and read the sequence manually. They compare their reads with the actual DNA sequence using BLAST2. After mastering the DNA sequencing system, students prepare their own DNA from a cheek swab, polymerase chain reaction-amplify a region of their DNA that encompasses a SNP of interest, and perform sequencing to determine their genotype at the SNP position. A family pedigree can also be constructed. The SNP chosen by the instructor was rs17822931, which is in the ABCC11 gene and is the determinant of human earwax type. Genotypes at the rs178229931 site vary in different ethnic populations. © 2013 by The International Union of Biochemistry and Molecular Biology.

  13. Retardation of Antigen Release from DNA Hydrogel Using Cholesterol-Modified DNA for Increased Antigen-Specific Immune Response.

    PubMed

    Umeki, Yuka; Saito, Masaaki; Takahashi, Yuki; Takakura, Yoshinobu; Nishikawa, Makiya

    2017-10-01

    Our previous study indicates that cationization of an antigen is effective for sustained release of both immunostimulatory DNA containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, or CpG DNA, and antigen from a DNA hydrogel. Another approach to sustained antigen release would increase the applicability and versatility of the system. In this study, a hydrophobic interaction-based sustained release system of ovalbumin (OVA), a model antigen, from immunostimulatory CpG DNA hydrogel is developed by the use of cholesterol-modified DNA and urea-denatured OVA (udOVA). Cholesterol-modified DNA forms a hydrogel, Dgel(chol), and induces IL-6 mRNA expression in mouse skin after intradermal injection, as DNA without cholesterol does. Cholesterol-modified DNA associated with OVA and denaturation of OVA using urea increases the interaction. The release of udOVA from Dgel(chol) is significantly slower than that from DNA hydrogel with no cholesterol, Dgel. Moreover, intratumoral injections of udOVA/Dgel(chol) significantly inhibit the growth of EG7-OVA tumors in mice. These results indicate that sustained release of antigen from Dgel can be achieved by the combination of urea denaturation and cholesterol modification, and retardation of antigen release is effective to induce antigen-specific cancer immunity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DNA preservation in silk.

    PubMed

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  15. Manipulation for plasmid elimination by transforming synthetic competitors diversifies lactococcus lactis starters applicable to food products.

    PubMed

    Kobayashi, Miho; Nomura, Masaru; Kimoto, Hiromi

    2007-11-01

    This study was designed selectively to eliminate a theta-plasmid from Lactococcus lactis strains by transforming synthetic competitors. A shuttle vector for Escherichia coli and L. lactis, pDB1, was constructed by ligating a partial replicon of pDR1-1B, which is a 7.3 kb theta-plasmid in L. lactis DRC1, with an erythromycin resistance gene into pBluescript II KS(+). This versatile vector was used to construct competitors to common lactococcal theta-plasmids. pDB1 contains the 5' half of the replication origin and the 3' region of repB of pDR1-1B, but lacks the 1.1-kb region normally found between these two segments. A set of primers, Pv3 and Pv4, was designed to amplify the 1.1-kb middle parts of the general theta-replicons of lactococcal plasmids. When the PCR products were cloned into the Nru I and Xho I sites of pDB1, synthetic replicons were constructed and replication activity was restored. A number of theta-plasmids in L. lactis ssp. lactis and cremoris were eliminated selectively by transforming the synthetic competitors. These competitors were easily eliminated by subculture for a short time in the absence of selection. The resulting variants contained no exogenous DNA and are suitable for food products, since part of the phenotype was altered without altering other plasmids indispensable for fermentation.

  16. Epigenetic changes of DNA repair genes in cancer.

    PubMed

    Lahtz, Christoph; Pfeifer, Gerd P

    2011-02-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  17. Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery.

    PubMed

    Li, Junjie; Chen, Qixian; Zha, Zengshi; Li, Hui; Toh, Kazuko; Dirisala, Anjaneyulu; Matsumoto, Yu; Osada, Kensuke; Kataoka, Kazunori; Ge, Zhishen

    2015-07-10

    Simultaneous achievement of prolonged retention in blood circulation and efficient gene transfection activity in target tissues has always been a major challenge hindering in vivo applications of nonviral gene vectors via systemic administration. Herein, we constructed novel rod-shaped ternary polyplex micelles (TPMs) via complexation between the mixed block copolymers of poly(ethylene glycol)-b-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) and poly(N-isopropylacrylamide)-b-PAsp(DET) (PNIPAM-b-PAsp(DET)) and plasmid DNA (pDNA) at room temperature, exhibiting distinct temperature-responsive formation of a hydrophobic intermediate layer between PEG shells and pDNA cores through facile temperature increase from room temperature to body temperature (~37 °C). As compared with binary polyplex micelles of PEG-b-PAsp(DET) (BPMs), TPMs were confirmed to condense pDNA into a more compact structure, which achieved enhanced tolerability to nuclease digestion and strong counter polyanion exchange. In vitro gene transfection results demonstrated TPMs exhibiting enhanced gene transfection efficiency due to efficient cellular uptake and endosomal escape. Moreover, in vivo performance evaluation after intravenous injection confirmed that TPMs achieved significantly prolonged blood circulation, high tumor accumulation, and promoted gene expression in tumor tissue. Moreover, TPMs loading therapeutic pDNA encoding an anti-angiogenic protein remarkably suppressed tumor growth following intravenous injection into H22 tumor-bearing mice. These results suggest TPMs with PEG shells and facilely engineered intermediate barrier to inner complexed pDNA have great potentials as systemic nonviral gene vectors for cancer gene therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  19. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  20. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  1. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  2. 28 CFR 28.12 - Collection of DNA samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.12 Collection of DNA samples. (a) The Bureau of Prisons shall collect a DNA...

  3. TAL effector-DNA specificity.

    PubMed

    Scholze, Heidi; Boch, Jens

    2010-01-01

    TAL effectors are important virulence factors of bacterial plant pathogenic Xanthomonas, which infect a wide variety of plants including valuable crops like pepper, rice, and citrus. TAL proteins are translocated via the bacterial type III secretion system into host cells and induce transcription of plant genes by binding to target gene promoters. Members of the TAL effector family differ mainly in their central domain of tandemly arranged repeats of typically 34 amino acids each with hypervariable di-amino acids at positions 12 and 13. We recently showed that target DNA-recognition specificity of TAL effectors is encoded in a modular and clearly predictable mode. The repeats of TAL effectors feature a surprising one repeat-to-one-bp correlation with different repeat types exhibiting a different DNA base pair specificity. Accordingly, we predicted DNA specificities of TAL effectors and generated artificial TAL proteins with novel DNA recognition specificities. We describe here novel artificial TALs and discuss implications for the DNA recognition specificity. The unique TAL-DNA binding domain allows design of proteins with potentially any given DNA recognition specificity enabling many uses for biotechnology.

  4. DNA methylation-based classification of central nervous system tumours.

    PubMed

    Capper, David; Jones, David T W; Sill, Martin; Hovestadt, Volker; Schrimpf, Daniel; Sturm, Dominik; Koelsche, Christian; Sahm, Felix; Chavez, Lukas; Reuss, David E; Kratz, Annekathrin; Wefers, Annika K; Huang, Kristin; Pajtler, Kristian W; Schweizer, Leonille; Stichel, Damian; Olar, Adriana; Engel, Nils W; Lindenberg, Kerstin; Harter, Patrick N; Braczynski, Anne K; Plate, Karl H; Dohmen, Hildegard; Garvalov, Boyan K; Coras, Roland; Hölsken, Annett; Hewer, Ekkehard; Bewerunge-Hudler, Melanie; Schick, Matthias; Fischer, Roger; Beschorner, Rudi; Schittenhelm, Jens; Staszewski, Ori; Wani, Khalida; Varlet, Pascale; Pages, Melanie; Temming, Petra; Lohmann, Dietmar; Selt, Florian; Witt, Hendrik; Milde, Till; Witt, Olaf; Aronica, Eleonora; Giangaspero, Felice; Rushing, Elisabeth; Scheurlen, Wolfram; Geisenberger, Christoph; Rodriguez, Fausto J; Becker, Albert; Preusser, Matthias; Haberler, Christine; Bjerkvig, Rolf; Cryan, Jane; Farrell, Michael; Deckert, Martina; Hench, Jürgen; Frank, Stephan; Serrano, Jonathan; Kannan, Kasthuri; Tsirigos, Aristotelis; Brück, Wolfgang; Hofer, Silvia; Brehmer, Stefanie; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Hans, Volkmar; Rozsnoki, Stephanie; Hansford, Jordan R; Kohlhof, Patricia; Kristensen, Bjarne W; Lechner, Matt; Lopes, Beatriz; Mawrin, Christian; Ketter, Ralf; Kulozik, Andreas; Khatib, Ziad; Heppner, Frank; Koch, Arend; Jouvet, Anne; Keohane, Catherine; Mühleisen, Helmut; Mueller, Wolf; Pohl, Ute; Prinz, Marco; Benner, Axel; Zapatka, Marc; Gottardo, Nicholas G; Driever, Pablo Hernáiz; Kramm, Christof M; Müller, Hermann L; Rutkowski, Stefan; von Hoff, Katja; Frühwald, Michael C; Gnekow, Astrid; Fleischhack, Gudrun; Tippelt, Stephan; Calaminus, Gabriele; Monoranu, Camelia-Maria; Perry, Arie; Jones, Chris; Jacques, Thomas S; Radlwimmer, Bernhard; Gessi, Marco; Pietsch, Torsten; Schramm, Johannes; Schackert, Gabriele; Westphal, Manfred; Reifenberger, Guido; Wesseling, Pieter; Weller, Michael; Collins, Vincent Peter; Blümcke, Ingmar; Bendszus, Martin; Debus, Jürgen; Huang, Annie; Jabado, Nada; Northcott, Paul A; Paulus, Werner; Gajjar, Amar; Robinson, Giles W; Taylor, Michael D; Jaunmuktane, Zane; Ryzhova, Marina; Platten, Michael; Unterberg, Andreas; Wick, Wolfgang; Karajannis, Matthias A; Mittelbronn, Michel; Acker, Till; Hartmann, Christian; Aldape, Kenneth; Schüller, Ulrich; Buslei, Rolf; Lichter, Peter; Kool, Marcel; Herold-Mende, Christel; Ellison, David W; Hasselblatt, Martin; Snuderl, Matija; Brandner, Sebastian; Korshunov, Andrey; von Deimling, Andreas; Pfister, Stefan M

    2018-03-22

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.

  5. Relevance of extracellular DNA in rhizosphere

    NASA Astrophysics Data System (ADS)

    Pietramellara, Giacomo; Ascher, Judith; Baraniya, Divyashri; Arfaioli, Paola; Ceccherini, Maria Teresa; Hawes, Martha

    2013-04-01

    One of the most promising areas for future development is the manipulation of the rhizosphere to produce sustainable and efficient agriculture production systems. Using Omics approaches, to define the distinctive features of eDNA systems and structures, will facilitate progress in rhizo-enforcement and biocontrol studies. The relevance of these studies results clear when we consider the plethora of ecological functions in which eDNA is involved. This fraction can be actively extruded by living cells or discharged during cellular lysis and may exert a key role in the stability and variability of the soil bacterial genome, resulting also a source of nitrogen and phosphorus for plants due to the root's capacity to directly uptake short DNA fragments. The adhesive properties of the DNA molecule confer to eDNA the capacity to inhibit or kill pathogenic bacteria by cation limitation induction, and to facilitate formation of biofilm and extracellular traps (ETs), that may protect microorganisms inhabiting biofilm and plant roots against pathogens and allelopathic substances. The ETs are actively extruded by root border cells when they are dispersed in the rhizosphere, conferring to plants the capacity to extend an endogenous pathogen defence system outside the organism. Moreover, eDNA could be involved in rhizoremediation in heavy metal polluted soil acting as a bioflotation reagent.

  6. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1996-05-07

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection. 18 figs.

  7. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1996-01-01

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection.

  8. Logic Gate Operation by DNA Translocation through Biological Nanopores.

    PubMed

    Yasuga, Hiroki; Kawano, Ryuji; Takinoue, Masahiro; Tsuji, Yutaro; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

    2016-01-01

    Logical operations using biological molecules, such as DNA computing or programmable diagnosis using DNA, have recently received attention. Challenges remain with respect to the development of such systems, including label-free output detection and the rapidity of operation. Here, we propose integration of biological nanopores with DNA molecules for development of a logical operating system. We configured outputs "1" and "0" as single-stranded DNA (ssDNA) that is or is not translocated through a nanopore; unlabeled DNA was detected electrically. A negative-AND (NAND) operation was successfully conducted within approximately 10 min, which is rapid compared with previous studies using unlabeled DNA. In addition, this operation was executed in a four-droplet network. DNA molecules and associated information were transferred among droplets via biological nanopores. This system would facilitate linking of molecules and electronic interfaces. Thus, it could be applied to molecular robotics, genetic engineering, and even medical diagnosis and treatment.

  9. Logic Gate Operation by DNA Translocation through Biological Nanopores

    PubMed Central

    Takinoue, Masahiro; Tsuji, Yutaro; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

    2016-01-01

    Logical operations using biological molecules, such as DNA computing or programmable diagnosis using DNA, have recently received attention. Challenges remain with respect to the development of such systems, including label-free output detection and the rapidity of operation. Here, we propose integration of biological nanopores with DNA molecules for development of a logical operating system. We configured outputs “1” and “0” as single-stranded DNA (ssDNA) that is or is not translocated through a nanopore; unlabeled DNA was detected electrically. A negative-AND (NAND) operation was successfully conducted within approximately 10 min, which is rapid compared with previous studies using unlabeled DNA. In addition, this operation was executed in a four-droplet network. DNA molecules and associated information were transferred among droplets via biological nanopores. This system would facilitate linking of molecules and electronic interfaces. Thus, it could be applied to molecular robotics, genetic engineering, and even medical diagnosis and treatment. PMID:26890568

  10. A Single-Molecule Barcoding System using Nanoslits for DNA Analysis

    NASA Astrophysics Data System (ADS)

    Jo, Kyubong; Schramm, Timothy M.; Schwartz, David C.

    Single DNA molecule approaches are playing an increasingly central role in the analytical genomic sciences because single molecule techniques intrinsically provide individualized measurements of selected molecules, free from the constraints of bulk techniques, which blindly average noise and mask the presence of minor analyte components. Accordingly, a principal challenge that must be addressed by all single molecule approaches aimed at genome analysis is how to immobilize and manipulate DNA molecules for measurements that foster construction of large, biologically relevant data sets. For meeting this challenge, this chapter discusses an integrated approach for microfabricated and nanofabricated devices for the manipulation of elongated DNA molecules within nanoscale geometries. Ideally, large DNA coils stretch via nanoconfinement when channel dimensions are within tens of nanometers. Importantly, stretched, often immobilized, DNA molecules spanning hundreds of kilobase pairs are required by all analytical platforms working with large genomic substrates because imaging techniques acquire sequence information from molecules that normally exist in free solution as unrevealing random coils resembling floppy balls of yarn. However, nanoscale devices fabricated with sufficiently small dimensions fostering molecular stretching make these devices impractical because of the requirement of exotic fabrication technologies, costly materials, and poor operational efficiencies. In this chapter, such problems are addressed by discussion of a new approach to DNA presentation and analysis that establishes scaleable nanoconfinement conditions through reduction of ionic strength; stiffening DNA molecules thus enabling their arraying for analysis using easily fabricated devices that can also be mass produced. This new approach to DNA nanoconfinement is complemented by the development of a novel labeling scheme for reliable marking of individual molecules with fluorochrome labels

  11. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  12. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  13. Bacterial and fungal DNA extraction from blood samples: automated protocols.

    PubMed

    Lorenz, Michael G; Disqué, Claudia; Mühl, Helge

    2015-01-01

    Automation in DNA isolation is a necessity for routine practice employing molecular diagnosis of infectious agents. To this end, the development of automated systems for the molecular diagnosis of microorganisms directly in blood samples is at its beginning. Important characteristics of systems demanded for routine use include high recovery of microbial DNA, DNA-free containment for the reduction of DNA contamination from exogenous sources, DNA-free reagents and consumables, ideally a walkaway system, and economical pricing of the equipment and consumables. Such full automation of DNA extraction evaluated and in use for sepsis diagnostics is yet not available. Here, we present protocols for the semiautomated isolation of microbial DNA from blood culture and low- and high-volume blood samples. The protocols include a manual pretreatment step followed by automated extraction and purification of microbial DNA.

  14. Comparison of QIAsymphony automated and QIAamp manual DNA extraction systems for measuring Epstein-Barr virus DNA load in whole blood using real-time PCR.

    PubMed

    Laus, Stella; Kingsley, Lawrence A; Green, Michael; Wadowsky, Robert M

    2011-11-01

    Automated and manual extraction systems have been used with real-time PCR for quantification of Epstein-Barr virus [human herpesvirus 4 (HHV-4)] DNA in whole blood, but few studies have evaluated relative performances. In the present study, the automated QIAsymphony and manual QIAamp extraction systems (Qiagen, Valencia, CA) were assessed using paired aliquots derived from clinical whole-blood specimens and an in-house, real-time PCR assay. The detection limits using the QIAsymphony and QIAamp systems were similar (270 and 560 copies/mL, respectively). For samples estimated as having ≥10,000 copies/mL, the intrarun and interrun variations were significantly lower using QIAsymphony (10.0% and 6.8%, respectively), compared with QIAamp (18.6% and 15.2%, respectively); for samples having ≤1000 copies/mL, the two variations ranged from 27.9% to 43.9% and were not significantly different between the two systems. Among 68 paired clinical samples, 48 pairs yielded viral loads ≥1000 copies/mL under both extraction systems. Although the logarithmic linear correlation from these positive samples was high (r(2) = 0.957), the values obtained using QIAsymphony were on average 0.2 log copies/mL higher than those obtained using QIAamp. Thus, the QIAsymphony and QIAamp systems provide similar EBV DNA load values in whole blood. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. An att site-based recombination reporter system for genome engineering and synthetic DNA assembly.

    PubMed

    Bland, Michael J; Ducos-Galand, Magaly; Val, Marie-Eve; Mazel, Didier

    2017-07-14

    Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the β-lactamase resistance coding sequence (bla). The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.

  16. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.

    PubMed

    Abroudi, Ali; Samarasinghe, Sandhya; Kulasiri, Don

    2017-09-21

    Not many models of mammalian cell cycle system exist due to its complexity. Some models are too complex and hard to understand, while some others are too simple and not comprehensive enough. Moreover, some essential aspects, such as the response of G1-S and G2-M checkpoints to DNA damage as well as the growth factor signalling, have not been investigated from a systems point of view in current mammalian cell cycle models. To address these issues, we bring a holistic perspective to cell cycle by mathematically modelling it as a complex system consisting of important sub-systems that interact with each other. This retains the functionality of the system and provides a clearer interpretation to the processes within it while reducing the complexity in comprehending these processes. To achieve this, we first update a published ODE mathematical model of cell cycle with current knowledge. Then the part of the mathematical model relevant to each sub-system is shown separately in conjunction with a diagram of the sub-system as part of this representation. The model sub-systems are Growth Factor, DNA damage, G1-S, and G2-M checkpoint signalling. To further simplify the model and better explore the function of sub-systems, they are further divided into modules. Here we also add important new modules of: chk-related rapid cell cycle arrest, p53 modules expanded to seamlessly integrate with the rapid arrest module, Tyrosine phosphatase modules that activate Cyc_Cdk complexes and play a crucial role in rapid and delay arrest at both G1-S and G2-M, Tyrosine Kinase module that is important for inactivating nuclear transport of CycB_cdk1 through Wee1 to resist M phase entry, Plk1-Related module that is crucial in activating Tyrosine phosphatases and inactivating Tyrosine kinase, and APC-Related module to show steps in CycB degradation. This multi-level systems approach incorporating all known aspects of cell cycle allowed us to (i) study, through dynamic simulation of an ODE model

  17. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    PubMed

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be

  18. Magnetic Actuation of Self-Assembled DNA Hinges

    NASA Astrophysics Data System (ADS)

    Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.

    DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.

  19. Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy.

    PubMed

    Zsurka, Gábor; Kraytsberg, Yevgenia; Kudina, Tatiana; Kornblum, Cornelia; Elger, Christian E; Khrapko, Konstantin; Kunz, Wolfram S

    2005-08-01

    Experimental evidence for human mitochondrial DNA (mtDNA) recombination was recently obtained in an individual with paternal inheritance of mtDNA and in an in vitro cell culture system. Whether mtDNA recombination is a common event in humans remained to be determined. To detect mtDNA recombination in human skeletal muscle, we analyzed the distribution of alleles in individuals with multiple mtDNA heteroplasmy using single-cell PCR and allele-specific PCR. In all ten individuals who carried a heteroplasmic D-loop mutation and a distantly located tRNA point mutation or a large deletion, we observed a mixture of four allelic combinations (tetraplasmy), a hallmark of recombination. Twelve of 14 individuals with closely located heteroplasmic D-loop mutation pairs contained a mixture of only three types of mitochondrial genomes (triplasmy), consistent with the absence of recombination between adjacent markers. These findings indicate that mtDNA recombination is common in human skeletal muscle.

  20. Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola

    PubMed Central

    Provataris, Panagiotis; Meusemann, Karen; Niehuis, Oliver; Grath, Sonja; Misof, Bernhard

    2018-01-01

    Abstract It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects. PMID:29697817

  1. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eun-Sung; Yang, Seung-Woo; Hong, Dong-Ki

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS,more » and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 {mu}g of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.« less

  2. Initiation of lambda DNA replication. The Escherichia coli small heat shock proteins, DnaJ and GrpE, increase DnaK's affinity for the lambda P protein.

    PubMed

    Osipiuk, J; Georgopoulos, C; Zylicz, M

    1993-03-05

    It is known that the initiation of bacteriophage lambda replication requires the orderly assembly of the lambda O.lambda P.DnaB helicase protein preprimosomal complex at the ori lambda DNA site. The DnaK, DnaJ, and GrpE heat shock proteins act together to destabilize the lambda P.DnaB complex, thus freeing DnaB and allowing it to unwind lambda DNA near the ori lambda site. The first step of this disassembly reaction is the binding of DnaK to the lambda P protein. In this report, we examined the influence of the DnaJ and GrpE proteins on the stability of the lambda P.DnaK complex. We present evidence for the existence of the following protein-protein complexes: lambda P.DnaK, lambda P.DnaJ, DnaJ.DnaK, DnaK.GrpE, and lambda P.DnaK.GrpE. Our results suggest that the presence of GrpE alone destabilizes the lambda P.DnaK complex, whereas the presence of DnaJ alone stabilizes the lambda P.DnaK complex. Using immunoprecipitation, we show that in the presence of GrpE, DnaK exhibits a higher affinity for the lambda P.DnaJ complex than it does alone. Using cross-linking with glutaraldehyde, we show that oligomeric forms of DnaK exhibit a higher affinity for lambda P than monomeric DnaK. However, in the presence of GrpE, monomeric DnaK can efficiently bind lambda P protein. These findings help explain our previous results, namely that in the GrpE-dependent lambda DNA replication system, the DnaK protein requirement can be reduced up to 10-fold.

  3. DNA materials: bridging nanotechnology and biotechnology.

    PubMed

    Yang, Dayong; Hartman, Mark R; Derrien, Thomas L; Hamada, Shogo; An, Duo; Yancey, Kenneth G; Cheng, Ru; Ma, Minglin; Luo, Dan

    2014-06-17

    CONSPECTUS: In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as a generic material for nanoscale engineering. DNA possesses many exceptional properties, including its biological function, biocompatibility, molecular recognition ability, and nanoscale controllability. Taking advantage of these unique attributes, a variety of DNA materials have been created with properties derived both from the biological functions and from the structural characteristics of DNA molecules. These novel DNA materials provide a natural bridge between nanotechnology and biotechnology, leading to far-ranging real-world applications. In this Account, we describe our work on the design and construction of DNA materials. Based on the role of DNA in the construction, we categorize DNA materials into two classes: substrate and linker. As a substrate, DNA interfaces with enzymes in biochemical reactions, making use of molecular biology's "enzymatic toolkit". For example, employing DNA as a substrate, we utilized enzymatic ligation to prepare the first bulk hydrogel made entirely of DNA. Using this DNA hydrogel as a structural scaffold, we created a protein-producing DNA hydrogel via linking plasmid DNA onto the hydrogel matrix through enzymatic ligation. Furthermore, to fully make use of the advantages of both DNA materials and polymerase chain reaction (PCR), we prepared thermostable branched DNA that could remain intact even under denaturing conditions, allowing for their use as modular primers for PCR. Moreover, via enzymatic polymerization, we have recently constructed a physical DNA hydrogel with unique internal structure and mechanical properties. As a linker, we have used DNA to interface with other functional moieties, including gold nanoparticles, clay minerals, proteins, and lipids, allowing for hybrid materials with unique properties for desired applications. For example, we recently designed a

  4. In vitro Repair of Oxidative DNA Damage by Human Nucleotide Excision Repair System: Possible Explanation for Neurodegeneration in Xeroderma Pigmentosum Patients

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Bessho, Tadayoshi; Kung, Hsiang Chuan; Bolton, Philip H.; Sancar, Aziz

    1997-08-01

    Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

  5. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.

    PubMed

    Zheng, Wenjun

    2017-02-01

    In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals

  6. DNA nanotechnology from the test tube to the cell.

    PubMed

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology - applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems - lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  7. Repurposing the CRISPR-Cas9 system for targeted DNA methylation.

    PubMed

    Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka

    2016-07-08

    Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co-expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Divalent counterion-induced condensation of triple-strand DNA.

    PubMed

    Qiu, Xiangyun; Parsegian, V Adrian; Rau, Donald C

    2010-12-14

    Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥ 3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg(2+), Ba(2+), and Ca(2+)) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general.

  9. DNA under Force: Mechanics, Electrostatics, and Hydration.

    PubMed

    Li, Jingqiang; Wijeratne, Sithara S; Qiu, Xiangyun; Kiang, Ching-Hwa

    2015-02-25

    Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  10. A rapid high-resolution method for resolving DNA topoisomers.

    PubMed

    Mitchenall, Lesley A; Hipkin, Rachel E; Piperakis, Michael M; Burton, Nicolas P; Maxwell, Anthony

    2018-01-16

    Agarose gel electrophoresis has been the mainstay technique for the analysis of DNA samples of moderate size. In addition to separating linear DNA molecules, it can also resolve different topological forms of plasmid DNAs, an application useful for the analysis of the reactions of DNA topoisomerases. However, gel electrophoresis is an intrinsically low-throughput technique and suffers from other potential disadvantages. We describe the application of the QIAxcel Advanced System, a high-throughput capillary electrophoresis system, to separate DNA topoisomers, and compare this technique with gel electrophoresis. We prepared a range of topoisomers of plasmids pBR322 and pUC19, and a 339 bp DNA minicircle, and compared their separation by gel electrophoresis and the QIAxcel System. We found superior resolution with the QIAxcel System, and that quantitative analysis of topoisomer distributions was straightforward. We show that the QIAxcel system has advantages in terms of speed, resolution and cost, and can be applied to DNA circles of various sizes. It can readily be adapted for use in compound screening against topoisomerase targets.

  11. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  12. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    PubMed

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  13. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    PubMed Central

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  14. Controlled dehydration of a ruthenium complex-DNA crystal induces reversible DNA kinking.

    PubMed

    Hall, James P; Sanchez-Weatherby, Juan; Alberti, Cora; Quimper, Caroline Hurtado; O'Sullivan, Kyra; Brazier, John A; Winter, Graeme; Sorensen, Thomas; Kelly, John M; Cardin, David J; Cardin, Christine J

    2014-12-17

    Hydration-dependent DNA deformation has been known since Rosalind Franklin recognized that the relative humidity of the sample had to be maintained to observe a single conformation in DNA fiber diffraction. We now report for the first time the crystal structure, at the atomic level, of a dehydrated form of a DNA duplex and demonstrate the reversible interconversion to the hydrated form at room temperature. This system, containing d(TCGGCGCCGA) in the presence of Λ-[Ru(TAP)2(dppz)](2+) (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyrido[3,2-a:2',3'-c]phenazine), undergoes a partial transition from an A/B hybrid to the A-DNA conformation, at 84-79% relative humidity. This is accompanied by an increase in kink at the central step from 22° to 51°, with a large movement of the terminal bases forming the intercalation site. This transition is reversible on rehydration. Seven data sets, collected from one crystal at room temperature, show the consequences of dehydration at near-atomic resolution. This result highlights that crystals, traditionally thought of as static systems, are still dynamic and therefore can be the subject of further experimentation.

  15. DNA repair pathways and mitochondrial DNA mutations in gastrointestinal carcinogenesis.

    PubMed

    Basso, Daniela; Navaglia, Filippo; Fogar, Paola; Zambon, Carlo-Federico; Greco, Eliana; Schiavon, Stefania; Fasolo, Michela; Stranges, Alessia; Falda, Alessandra; Padoan, Andrea; Fadi, Elisa; Pedrazzoli, Sergio; Plebani, Mario

    2007-05-01

    This work focuses on the main DNA repair pathways, highlighting their role in gastrointestinal carcinogenesis and the role of mitochondrial DNA (mtDNA), mutations being described in several tumor types, including those of the gastrointestinal tract. The mismatch repair (MMR) system is inherently altered in patients with hereditary non-polyposis colorectal cancer, and plays a role in carcinogenesis in a subset of sporadic colorectal, gastric and esophageal cancers. Alterations in homologous recombination (HR) and non-homologous end-joining (NHEJ) also contribute to the development of pancreatic cancer. Gene polymorphisms of some X-ray cross-complementing (XRCCs), cofactor proteins involved in the base excision repair pathway, have been investigated in relation to gastric, colorectal and pancreatic cancer. Yet only one polymorphism, XRCC1 Arg194Trp, appears to be involved in smoking-related cancers and in early onset pancreatic cancer. Although evidence in the literature indicates that mtDNA somatic mutations play a role in gastric and colorectal carcinogenesis, no sound conclusions have yet been drawn regarding this issue in pancreatic cancer, although an mtDNA variant at 16519 is believed to worsen the outcome of pancreatic cancer patients, possibly because it is involved in altering cellular metabolism.

  16. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*

    PubMed Central

    Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.

    2016-01-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229

  17. FastID: Extremely Fast Forensic DNA Comparisons

    DTIC Science & Technology

    2017-05-19

    FastID: Extremely Fast Forensic DNA Comparisons Darrell O. Ricke, PhD Bioengineering Systems & Technologies Massachusetts Institute of...Technology Lincoln Laboratory Lexington, MA USA Darrell.Ricke@ll.mit.edu Abstract—Rapid analysis of DNA forensic samples can have a critical impact on...time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA

  18. High-throughput STR analysis for DNA database using direct PCR.

    PubMed

    Sim, Jeong Eun; Park, Su Jeong; Lee, Han Chul; Kim, Se-Yong; Kim, Jong Yeol; Lee, Seung Hwan

    2013-07-01

    Since the Korean criminal DNA database was launched in 2010, we have focused on establishing an automated DNA database profiling system that analyzes short tandem repeat loci in a high-throughput and cost-effective manner. We established a DNA database profiling system without DNA purification using a direct PCR buffer system. The quality of direct PCR procedures was compared with that of conventional PCR system under their respective optimized conditions. The results revealed not only perfect concordance but also an excellent PCR success rate, good electropherogram quality, and an optimal intra/inter-loci peak height ratio. In particular, the proportion of DNA extraction required due to direct PCR failure could be minimized to <3%. In conclusion, the newly developed direct PCR system can be adopted for automated DNA database profiling systems to replace or supplement conventional PCR system in a time- and cost-saving manner. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  19. Specific suppression of anti-DNA production in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebling, M.R.; Wong, C.; Radosevich, J.

    1988-09-01

    To investigate the regulation of anti-DNA antibody production, we generated anti-DNA-specific suppressor cells by exposing normal human T cells and a small percentage of adherent cells to high concentrations of DNA. These cells suppressed the production of anti-DNA by both autologous peripheral blood mononuclear cells (PBMC) and allogeneic PBMC derived from systemic lupus erythematosus (SLE) patients. Anti-DNA production was suppressed significantly more than anti-RNA, antitetanus, or total immunoglobulin production. Specific suppression was enhanced by increasing the numbers of DNA-primed CD8+ cells and was obliterated by irradiation of the DNA-primed cells. In contrast to T cells from normal individuals, T cellsmore » obtained from two intensively studied SLE patients were unable to generate specific suppressor cells for anti-DNA production in both autologous and allogeneic test systems. Despite this defect, these patients were still capable of generating specific suppressor cells for antibody production directed against an exogenous antigen, tetanus toxoid.« less

  20. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales

    USGS Publications Warehouse

    Tillotson, Michael D.; Kelly, Ryan P.; Duda, Jeff; Hoy, Marshal S.; Kralj, James; Quinn, Thomas P.

    2018-01-01

    Developing fast, cost-effective assessments of wild animal abundance is an important goal for many researchers, and environmental DNA (eDNA) holds much promise for this purpose. However, the quantitative relationship between species abundance and the amount of DNA present in the environment is likely to vary substantially among taxa and with ecological context. Here, we report a strong quantitative relationship between eDNA concentration and the abundance of spawning sockeye salmon in a small stream in Alaska, USA, where we took temporally- and spatially-replicated samples during the spawning period. This high-resolution dataset suggests that (1) eDNA concentrations vary significantly day-to-day, and likely within hours, in the context of the dynamic biological event of a salmon spawning season; (2) eDNA, as detected by species-specific quantitative PCR probes, seems to be conserved over short distances (tens of meters) in running water, but degrade quickly over larger scales (ca. 1.5 km); and (3) factors other than the mere presence of live, individual fish — such as location within the stream, live/dead ratio, and water temperature — can affect the eDNA-biomass correlation in space or time. A multivariate model incorporating both biotic and abiotic variables accounted for over 75% of the eDNA variance observed, suggesting that where a system is well-characterized, it may be possible to predict species' abundance from eDNA surveys, although we underscore that species- and system-specific variables are likely to limit the generality of any given quantitative model. Nevertheless, these findings provide an important step toward quantitative applications of eDNA in conservation and management.

  1. DNA Damage Response, Redox Status and Hematopoiesis

    PubMed Central

    Weiss, Cary N.; Ito, Keisuke

    2013-01-01

    The ability of hematopoietic stem cells (HSCs) to self-renew and differentiate into progenitors is essential for homeostasis of the hematopoietic system. The longevity of HSCs makes them vulnerable to accumulating DNA damage, which may be leukemogenic or result in senescence and cell death. Additionally, the ability of HSCs to self-renew and differentiate allows DNA damage to spread throughout the hematologic system, leaving the organism vulnerable to disease. In this review we discuss cell fate decisions made in the face of DNA damage and other cellular stresses, and the role of reactive oxygen species in the long-term maintenance of HSCs and their DNA damage response. PMID:24041596

  2. Efficient systemic DNA delivery to the tumor by self-assembled nanoparticle

    NASA Astrophysics Data System (ADS)

    Tang, Hailin; Xie, Xinhua; Guo, Jiaoli; Wei, Weidong; Wu, Minqing; Liu, Peng; Kong, Yanan; Yang, Lu; Hung, Mien-Chie; Xie, Xiaoming

    2014-01-01

    There are few delivery agents that could deliver gene with high efficiency and low toxicity, especially for animal experiments. Therefore, creating vectors with good delivery efficiency and safety profile is a meaningful work. We have developed a self-assembled gene delivery system (XM001), which can more efficiently deliver DNA to multiple cell lines and breast tumor, as compared to commercial delivery agents. In addition, systemically administrated XM001-BikDD (BikDD is a mutant form of proapoptotic gene Bik) significantly inhibited the growth of human breast cancer cells and prolonged the life span in implanted nude mice. This study demonstrates that XM001 is an efficient and widespread transfection agent, which could be a promising tumor delivery vector for cancer targeted therapy.

  3. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data

    USGS Publications Warehouse

    Merkes, Christopher M.; McCalla, S. Grace; Jensen, Nathan R.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps.

  4. Persistence of DNA in Carcasses, Slime and Avian Feces May Affect Interpretation of Environmental DNA Data

    PubMed Central

    Merkes, Christopher M.; McCalla, S. Grace; Jensen, Nathan R.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps. PMID:25402206

  5. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data.

    PubMed

    Merkes, Christopher M; McCalla, S Grace; Jensen, Nathan R; Gaikowski, Mark P; Amberg, Jon J

    2014-01-01

    The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps.

  6. DNA methylation similarities in genes of black South Africans with systemic lupus erythematosus and systemic sclerosis.

    PubMed

    Matatiele, Puleng; Tikly, Mohamed; Tarr, Gareth; Gulumian, Mary

    2015-05-20

    Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are systemic autoimmune connective tissue diseases that share overlapping clinico-pathological features. It is highly probable that there is an overlap in epigenetic landscapes of both diseases. This study aimed to identify similarities in DNA methylation changes in genes involved in SLE and SSc. Global DNA methylation and twelve genes selected on the basis of their involvement in inflammation, autoimmunity and/or fibrosis were analyzed using PCR arrays in three groups, each of 30 Black South Africans with SLE and SSc, plus 40 healthy control subjects. Global methylation in both diseases was significantly lower (<25 %) than in healthy subjects (>30 %, p = 0.0000001). In comparison to healthy controls, a similar gene-specific methylation pattern was observed in both SLE and SSc. Three genes, namely; PRF1, ITGAL and FOXP3 were consistently hypermethylated while CDKN2A and CD70 were hypomethylated in both diseases. The other genes (SOCS1, CTGF, THY1, CXCR4, MT1-G, FLI1, and DNMT1) were generally hypomethylated in SLE whereas they were neither hyper- nor hypo-methylated in SSc. SSc and SLE patients have a higher global hypomethylation than healthy subjects with specific genes being hypomethylated and others hypermethylated. The majority of genes studied were hypomethylated in SLE compared to SSc. In addition to the commonly known hypomethylated genes in SLE and SSc, there are other hypomethylated genes (such as MT-1G and THY-1) that have not previously been investigated in SLE and SSc though are known to be hypermethylated in cancer.

  7. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  8. Dynamics and control of DNA sequence amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less

  9. Supramolecular gel electrophoresis of large DNA fragments.

    PubMed

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion.

    PubMed

    Akahori, Rena; Yanagi, Itaru; Goto, Yusuke; Harada, Kunio; Yokoi, Takahide; Takeda, Ken-Ichi

    2017-08-22

    To achieve DNA sequencing with solid-state nanopores, the speed of the DNA in the nanopore must be controlled to obtain sequence-specific signals. In this study, we fabricated a nanopore-sensing system equipped with a DNA motion controller. DNA strands were immobilized on a Si probe, and approach of this probe to the nanopore vicinity could be controlled using a piezo actuator and stepper motor. The area of the Si probe was larger than the area of the membrane, which meant that the immobilized DNA could enter the nanopore without the need for the probe to scan to determine the location of the nanopore in the membrane. We demonstrated that a single-stranded DNA could be inserted into and removed from a nanopore in our experimental system. The number of different ionic-current levels observed while DNA remained in the nanopore corresponded to the number of different types of homopolymers in the DNA.

  11. DNA vaccination for cervical cancer: Strategic optimisation of RALA mediated gene delivery from a biodegradable microneedle system.

    PubMed

    Cole, Grace; Ali, Ahlam A; McCrudden, Cian M; McBride, John W; McCaffrey, Joanne; Robson, Tracy; Kett, Vicky L; Dunne, Nicholas J; Donnelly, Ryan F; McCarthy, Helen O

    2018-06-01

    Dissolvable microneedles can be employed to deliver DNA to antigen presenting cells within the skin. However, this technology faces two main challenges: the poor transfection efficacy of pDNA following release from the microneedle matrix, and the limited loading capacity of the micron-scale devices. Two-tier delivery systems combining microneedle platforms and DNA delivery vectors have increased efficacy but the challenge of increasing the loading capacity remains. This study utilised lyophilisation to increase the loading of RALA/pDNA nanoparticles within dissolvable PVA microneedles. As a result, delivery was significantly enhanced in vivo into an appropriate range for DNA vaccination (∼50 μg per array). Furthermore, modifying the manufacturing process was not detrimental to the microneedle mechanical properties or cargo functionality. It was demonstrated that arrays retained mechanical and functional stability over short term storage, and were able to elicit gene expression in vitro and in vivo. Finally, treatment with this novel formulation significantly retarded the growth of established tumours, and proved superior to standard intramuscular injection in a preclinical model of cervical cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendlovic, S.; Brocke, S.; Meshorer, A.

    1988-04-01

    Systemic lupus erythematosus (SLE) is considered to be the quintessential autoimmune disease. It has not been possible to induce SLE in animal models by DNA immunization or by challenge with anti-DNA antibodies. The authors report a murine model of SLE-like disease induced by immunization of C3H.SW female mice with a common human monoclonal anti-DNA idiotype (16/6 idiotype). Following a booster injection with the 16/6 idiotype, high levels of murine anti-16/6 and anti-anti-16/6 antibodies (associated with anti-DNA activity) were detected in the sera of the immunized mice. Elevated titers of autoantibodies reacting with DNA, poly(I), poly(dT), ribonucleoprotein, autoantigens (Sm, SS-A (Ro),more » and SS-B (La)), and cardiolipin were noted. The serological findings were associated with increased erythrocyte sedimentation rate, leukopenia, proteinuria, immune complex deposition in the glomerular mesangium, and sclerosis of the glomeruli. The immune complexes in the kidneys were shown to contain the 16/6 idiotype. This experimental SLE-like model may be used to elucidate the mechanisms underlying SLE.« less

  13. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Birkedal, V.; Gothelf, K. V.

    2016-05-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection.

  14. Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system.

    PubMed

    Hoehl, Melanie M; Weißert, Michael; Dannenberg, Arne; Nesch, Thomas; Paust, Nils; von Stetten, Felix; Zengerle, Roland; Slocum, Alexander H; Steigert, Juergen

    2014-06-01

    This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.

  15. Programmable DNA-Mediated Multitasking Processor.

    PubMed

    Shu, Jian-Jun; Wang, Qi-Wen; Yong, Kian-Yan; Shao, Fangwei; Lee, Kee Jin

    2015-04-30

    Because of DNA appealing features as perfect material, including minuscule size, defined structural repeat and rigidity, programmable DNA-mediated processing is a promising computing paradigm, which employs DNAs as information storing and processing substrates to tackle the computational problems. The massive parallelism of DNA hybridization exhibits transcendent potential to improve multitasking capabilities and yield a tremendous speed-up over the conventional electronic processors with stepwise signal cascade. As an example of multitasking capability, we present an in vitro programmable DNA-mediated optimal route planning processor as a functional unit embedded in contemporary navigation systems. The novel programmable DNA-mediated processor has several advantages over the existing silicon-mediated methods, such as conducting massive data storage and simultaneous processing via much fewer materials than conventional silicon devices.

  16. A chimeric alphavirus replicon particle vaccine expressing the hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques from measles.

    PubMed

    Pan, Chien-Hsiung; Greer, Catherine E; Hauer, Debra; Legg, Harold S; Lee, Eun-Young; Bergen, M Jeff; Lau, Brandyn; Adams, Robert J; Polo, John M; Griffin, Diane E

    2010-04-01

    Measles remains a major cause of child mortality, in part due to an inability to vaccinate young infants with the current live attenuated virus vaccine (LAV). To explore new approaches to infant vaccination, chimeric Venezuelan equine encephalitis/Sindbis virus (VEE/SIN) replicon particles were used to express the hemagglutinin (H) and fusion (F) proteins of measles virus (MV). Juvenile rhesus macaques vaccinated intradermally with a single dose of VEE/SIN expressing H or H and F proteins (VEE/SIN-H or VEE/SIN-H+F, respectively) developed high titers of MV-specific neutralizing antibody and gamma-interferon (IFN-gamma)-producing T cells. Infant macaques vaccinated with two doses of VEE/SIN-H+F also developed neutralizing antibody and IFN-gamma-producing T cells. Control animals were vaccinated with LAV or with a formalin-inactivated measles vaccine (FIMV). Neutralizing antibody remained above the protective level for more than 1 year after vaccination with VEE/SIN-H, VEE/SIN-H+F, or LAV. When challenged with wild-type MV 12 to 17 months after vaccination, all vaccinated juvenile and infant monkeys vaccinated with VEE/SIN-H, VEE/SIN-H+F, and LAV were protected from rash and viremia, while FIMV-vaccinated monkeys were not. Antibody was boosted by challenge in all groups. T-cell responses to challenge were biphasic, with peaks at 7 to 25 days and at 90 to 110 days in all groups, except for the LAV group. Recrudescent T-cell activity coincided with the presence of MV RNA in peripheral blood mononuclear cells. We conclude that VEE/SIN expressing H or H and F induces durable immune responses that protect from measles and offers a promising new approach for measles vaccination. The viral and immunological factors associated with long-term control of MV replication require further investigation.

  17. A dual promoter system regulating λ DNA replication initiation

    PubMed Central

    Olszewski, Paweł; Szambowska, Anna; Barańska, Sylwia; Narajczyk, Magdalena; Węgrzyn, Grzegorz; Glinkowska, Monika

    2014-01-01

    Transcription and DNA replication are tightly regulated to ensure coordination of gene expression with growth conditions and faithful transmission of genetic material to progeny. A large body of evidence has accumulated, indicating that encounters between protein machineries carrying out DNA and RNA synthesis occur in vivo and may have important regulatory consequences. This feature may be exacerbated in the case of compact genomes, like the one of bacteriophage λ, used in our study. Transcription that starts at the rightward pR promoter and proceeds through the λ origin of replication and downstream of it was proven to stimulate the initiation of λ DNA replication. Here, we demonstrate that the activity of a convergently oriented pO promoter decreases the efficiency of transcription starting from pR. Our results show, however, that a lack of the functional pO promoter negatively influences λ phage and λ-derived plasmid replication. We present data, suggesting that this effect is evoked by the enhanced level of the pR-driven transcription, occurring in the presence of the defective pO, which may result in the impeded formation of the replication initiation complex. Our data suggest that the cross talk between the two promoters regulates λ DNA replication and coordinates transcription and replication processes. PMID:24500197

  18. Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma.

    PubMed

    Hattori, Keiichiro; Sakata-Yanagimoto, Mamiko; Suehara, Yasuhito; Yokoyama, Yasuhisa; Kato, Takayasu; Kurita, Naoki; Nishikii, Hidekazu; Obara, Naoshi; Takano, Shingo; Ishikawa, Eiichi; Matsumura, Akira; Hasegawa, Yuichi; Chiba, Shigeru

    2018-01-01

    Recent sequencing studies demonstrated the MYD88 L265P mutation in more than 70% of primary central nervous system lymphomas (PCNSL), and the clinical significance of this mutation has been proposed as diagnostic and prognostic markers in PCNSL. In contrast, mutational analyses using cell-free DNAs have been reported in a variety of systemic lymphomas. To investigate how sensitively the MYD88 L265P mutation can be identified in cell-free DNA from PCNSL patients, we carried out droplet digital PCR (ddPCR) and targeted deep sequencing (TDS) in 14 consecutive PCNSL patients from whom paired tumor-derived DNA and cell-free DNA was available at diagnosis. The MYD88 L265P mutation was found in tumor-derived DNA from all 14 patients (14/14, 100%). In contrast, among 14 cell-free DNAs evaluated by ddPCR (14/14) and TDS (13/14), the MYD88 L265P mutation was detected in eight out of 14 (ddPCR) and in 0 out of 13 (TDS) samples, implying dependence on the detection method. After chemotherapy, the MYD88 L265P mutation in cell-free DNAs was traced in five patients; unexpectedly, the mutations disappeared after chemotherapy was given, and they remained undetectable in all patients. These observations suggest that ddPCR can sensitively detect the MYD88 L265P mutation in cell-free DNA and could be used as non-invasive diagnostics, but may not be applicable for monitoring minimal residual diseases in PCNSL. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. An Ultra-High Discrimination Y Chromosome Short Tandem Repeat Multiplex DNA Typing System

    PubMed Central

    Hanson, Erin K.; Ballantyne, Jack

    2007-01-01

    In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12–17 loci are currently used in forensic casework (Promega's PowerPlex® Y and Applied Biosystems' AmpFlSTR® Yfiler®). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used ‘core’ Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR® Yfiler® kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary

  20. Repair of DNA-polypeptide crosslinks by human excision nuclease

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  1. Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates.

    PubMed

    Sursal, Tolga; Stearns-Kurosawa, Deborah J; Itagaki, Kiyoshi; Oh, Sun-Young; Sun, Shiqin; Kurosawa, Shinichiro; Hauser, Carl J

    2013-01-01

    Systemic inflammatory response syndrome (SIRS) is a fundamental host response common to bacterial infection and sterile tissue injury. Systemic inflammatory response syndrome can cause organ dysfunction and death, but its mechanisms are incompletely understood. Moreover, SIRS can progress to organ failure or death despite being sterile or after control of the inciting infection. Biomarkers discriminating between sepsis, sterile SIRS, and postinfective SIRS would therefore help direct care. Circulating mitochondrial DNA (mtDNA) is a damage-associated molecular pattern reflecting cellular injury. Circulating bacterial 16S DNA (bDNA) is a pathogen-associated pattern (PAMP) reflecting ongoing infection. We developed quantitative polymerase chain reaction assays to quantify these markers, and predicting their plasma levels might help distinguish sterile injury from infection. To study these events in primates, we assayed banked serum from Papio baboons that had undergone a brief challenge of intravenous Bacillus anthracis delta Sterne (modified to remove toxins) followed by antibiotics (anthrax) that causes organ failure and death. To investigate the progression of sepsis to "severe" sepsis and death, we studied animals where anthrax was pretreated with drotrecogin alfa (activated protein C), which attenuates sepsis in baboons. We also contrasted lethal anthrax bacteremia against nonlethal E. coli bacteremia and against sterile tissue injury from Shiga-like toxin 1. Bacterial DNA and mtDNA levels in timed samples were correlated with blood culture results and assays of organ function. Sterile injury by Shiga-like toxin 1 increased mtDNA, but bDNA was undetectable: consistent with the absence of infection. The bacterial challenges caused parallel early bDNA and mtDNA increases, but bDNA detected pathogens even after bacteria were undetectable by culture. Sublethal E. coli challenge only caused transient rises in mtDNA consistent with a self-limited injury. In lethal

  2. Clearing muddied waters: Capture of environmental DNA from turbid waters.

    PubMed

    Williams, Kelly E; Huyvaert, Kathryn P; Piaggio, Antoinette J

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest.

  3. Clearing muddied waters: Capture of environmental DNA from turbid waters

    PubMed Central

    Huyvaert, Kathryn P.; Piaggio, Antoinette J.

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest. PMID:28686659

  4. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    PubMed

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Self-assembled DNA Structures for Nanoconstruction

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  6. Characterization of Nanofluidic Entropic Trap Array for DNA Separation

    NASA Astrophysics Data System (ADS)

    Han, Jongyoon

    2003-03-01

    Micromachined nanoscale fluidic structures can provide new opportunities in biomolecule manipulation and sorting, because their chemical and physical properties can be controlled easily unlike random nanoporous materials. As an example of regular nanostructures used for biomolecule manipulation and sorting, a nanofluidic entropic trap array for DNA separation is presented. Nanofluidic channels as thin as 75nm were used as a molecular sieve instead of agarose gel for DNA separation. The interaction between DNA molecules and the nanofluidic structure determines the DNA migration speed, which was used to separate DNA molecules in a dc electrophoresis. Separation of long DNA (up to 200kbp) has been achieved within 30 minutes, using less than a picogram quantities of DNA, with only 1.5cm long channels.[1] In addition to the efficiency improvement, nanofluidic DNA entropic traps have a regular structure that can be easily modeled theoretically. The theoretical model could be the basis for improving the system performance for further optimization in separation size range and resolution. The process of DNA moving out of the entropic trap was theoretically modeled, and the prediction of the theoretical model was compared with the experimental data.[2] The selectivity, resolution, and the separation range of DNA for a given entropic trap separation system was discussed in terms of the number of entropic traps, various structural parameters of the system, and the electric field. It is expected that this system could be used for analyzing a small amount of ultra-long DNA molecules. (1) Han, J.; Craighead, H. G. Science 2000, 288, 1026-1029. (2) Han, J.; Craighead, H. G. Anal. Chem. 2002, 74, 394-401.

  7. Evaluation of aluminum phthalocyanine chloride and DNA interactions for the design of an advanced drug delivery system in photodynamic therapy.

    PubMed

    Jayme, Cristiano Ceron; Calori, Italo Rodrigo; Cunha, Elise Marques Freire; Tedesco, Antonio Claudio

    2018-08-05

    The aim of this study was to evaluate the interaction of aluminum phthalocyanine chloride (AlClPc) with double-stranded DNA. Absorption and fluorescence spectra, resonance light scattering, and circular dichroism were evaluated in water and water/ethanol mixtures with different concentrations of DNA or AlClPc. AlClPc showed a high ability to bind to DNA in both water and 4/6 water/ethanol mixture (v/v), with a majority of monomeric and aggregated initial forms of AlClPc, respectively. In this interaction, AlClPc bound preferentially to the grooves of DNA. The monomeric/aggregate state of AlClPc in DNA was dependent on the AlClPc/DNA ratio. At low concentrations of AlClPc, the interaction of AlClPc with few DNA sites caused a curvature in the DNA structure that provided a favorable environment for the intercalation of AlClPc aggregates. Increase in AlClPc concentration induced interactions with a high number of binding sites on DNA, which prevented bending and therefore aggregation of AlClPc molecules throughout the double-stranded DNA. These results are relevant to the understanding of the behavior and interaction of AlClPc with double-stranded DNA in the design of novel drug delivery systems for clinical application in photodynamic therapy as a new approach to treat skin or oral cancer, scars, or wound healing. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Probabilistic switching circuits in DNA

    PubMed Central

    Wilhelm, Daniel; Bruck, Jehoshua

    2018-01-01

    A natural feature of molecular systems is their inherent stochastic behavior. A fundamental challenge related to the programming of molecular information processing systems is to develop a circuit architecture that controls the stochastic states of individual molecular events. Here we present a systematic implementation of probabilistic switching circuits, using DNA strand displacement reactions. Exploiting the intrinsic stochasticity of molecular interactions, we developed a simple, unbiased DNA switch: An input signal strand binds to the switch and releases an output signal strand with probability one-half. Using this unbiased switch as a molecular building block, we designed DNA circuits that convert an input signal to an output signal with any desired probability. Further, this probability can be switched between 2n different values by simply varying the presence or absence of n distinct DNA molecules. We demonstrated several DNA circuits that have multiple layers and feedback, including a circuit that converts an input strand to an output strand with eight different probabilities, controlled by the combination of three DNA molecules. These circuits combine the advantages of digital and analog computation: They allow a small number of distinct input molecules to control a diverse signal range of output molecules, while keeping the inputs robust to noise and the outputs at precise values. Moreover, arbitrarily complex circuit behaviors can be implemented with just a single type of molecular building block. PMID:29339484

  9. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    PubMed Central

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  10. Transport Distance of Invertebrate Environmental DNA in a Natural River

    PubMed Central

    Deiner, Kristy; Altermatt, Florian

    2014-01-01

    Environmental DNA (eDNA) monitoring is a novel molecular technique to detect species in natural habitats. Many eDNA studies in aquatic systems have focused on lake or ponds, and/or on large vertebrate species, but applications to invertebrates in river systems are emerging. A challenge in applying eDNA monitoring in flowing waters is that a species' DNA can be transported downstream. Whether and how far eDNA can be detected due to downstream transport remains largely unknown. In this study we tested for downstream detection of eDNA for two invertebrate species, Daphnia longispina and Unio tumidus, which are lake dwelling species in our study area. The goal was to determine how far away from the source population in a lake their eDNA could be detected in an outflowing river. We sampled water from eleven river sites in regular intervals up to 12.3 km downstream of the lake, developed new eDNA probes for both species, and used a standard PCR and Sanger sequencing detection method to confirm presence of each species' eDNA in the river. We detected D. longispina at all locations and across two time points (July and October); whereas with U. tumidus, we observed a decreased detection rate and did not detect its eDNA after 9.1 km. We also observed a difference in detection for this species at different times of year. The observed movement of eDNA from the source amounting to nearly 10 km for these species indicates that the resolution of an eDNA sample can be large in river systems. Our results indicate that there may be species' specific transport distances for eDNA and demonstrate for the first time that invertebrate eDNA can persist over relatively large distances in a natural river system. PMID:24523940

  11. DNA codes for nanoscience.

    PubMed

    Samorì, Bruno; Zuccheri, Giampaolo

    2005-02-11

    The nanometer scale is a special place where all sciences meet and develop a particularly strong interdisciplinarity. While biology is a source of inspiration for nanoscientists, chemistry has a central role in turning inspirations and methods from biological systems to nanotechnological use. DNA is the biological molecule by which nanoscience and nanotechnology is mostly fascinated. Nature uses DNA not only as a repository of the genetic information, but also as a controller of the expression of the genes it contains. Thus, there are codes embedded in the DNA sequence that serve to control recognition processes on the atomic scale, such as the base pairing, and others that control processes taking place on the nanoscale. From the chemical point of view, DNA is the supramolecular building block with the highest informational content. Nanoscience has therefore the opportunity of using DNA molecules to increase the level of complexity and efficiency in self-assembling and self-directing processes.

  12. Future of human mitochondrial DNA editing technologies.

    PubMed

    Verechshagina, N; Nikitchina, N; Yamada, Y; Harashima, Н; Tanaka, M; Orishchenko, K; Mazunin, I

    2018-05-15

    ATP and other metabolites, which are necessary for the development, maintenance, and functioning of bodily cells are all synthesized in the mitochondria. Multiple copies of the genome, present within the mitochondria, together with its maternal inheritance, determine the clinical manifestation and spreading of mutations in mitochondrial DNA (mtDNA). The main obstacle in the way of thorough understanding of mitochondrial biology and the development of gene therapy methods for mitochondrial diseases is the absence of systems that allow to directly change mtDNA sequence. Here, we discuss existing methods of manipulating the level of mtDNA heteroplasmy, as well as the latest systems, that could be used in the future as tools for human mitochondrial genome editing.

  13. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification.

    PubMed

    Zheng, Jiao; Li, Ningxing; Li, Chunrong; Wang, Xinxin; Liu, Yucheng; Mao, Guobin; Ji, Xinghu; He, Zhike

    2018-06-01

    Synthetic enzyme-free DNA nanomachine performs quasi-mechanical movements in response to external intervention, suggesting the promise of constructing sensitive and specific biosensors. Herein, a smart DNA nanomachine biosensor for biomolecule (such as nucleic acid, thrombin and adenosine) detection is developed by target-assisted enzyme-free hairpin DNA cascade amplifier. The whole DNA nanomachine system is constructed on gold nanoparticle which decorated with hundreds of locked hairpin substrate strands serving as DNA tracks, and the DNA nanomachine could be activated by target molecule toehold-mediated exchange on gold nanoparticle surface, resulted in the fluorescence recovery of fluorophore. The process is repeated so that each copy of the target can open multiplex fluorophore-labeled hairpin substrate strands, resulted in amplification of the fluorescence signal. Compared with the conventional biosensors of catalytic hairpin assembly (CHA) without substrate in solution, the DNA nanomachine could generate 2-3 orders of magnitude higher fluorescence signal. Furthermore, the DNA nanomachine could be used for nucleic acid, thrombin and adenosine highly sensitive specific detection based on isothermal, and homogeneous hairpin DNA cascade signal amplification in both buffer and a complicated biomatrix, and this kind of DNA nanomachine could be efficiently applied in the field of biomedical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A novel DNA/histone H4 peptide complex detects autoantibodies in systemic lupus erythematosus sera.

    PubMed

    Panza, Filomena; Alcaro, Maria Claudia; Petrelli, Fiorella; Angelotti, Francesca; Pratesi, Federico; Rovero, Paolo; Migliorini, Paola

    2016-10-04

    The detection of anti-dsDNA antibodies is critical for the diagnosis and follow-up of systemic lupus erythematosus (SLE) patients. The presently available assays are characterized by a non-optimal specificity (solid phase assays) or sensitivity (Crithidia Luciliae immunofluorescence test (CLIFT)). To overcome the limits of CLIFT and solid phase chromatin assays, we explored the diagnostic potential of an assay based on plasmid DNA containing a highly bent fragment of 211 bp from Crithidia Luciliae minicircles, complexed with histone peptides. Electrically neutral complexes of PK201/CAT plasmid (PK) DNA and histone 4 (H4) peptides were evaluated by electromobility shift assay. Complexes of H4 peptides and PK were absorbed to the solid phase to detect specific immunoglobulin G (IgG) in sera. Sera from 109 SLE patients, 100 normal healthy subjects, and 169 disease controls were tested. H4(14-34) containing the consensus sequence for DNA binding interacts with PK, retarding its migration. H4(14-34)/PK complexes were used to test sera by ELISA. Anti-H4-PK antibodies were detected in 56 % of SLE sera (more frequently in patients with skin or joint involvement) versus 5.9 % in disease controls; inhibition assays show that sera react with epitopes present on DNA or on the complex, not on the peptide. Antibody titer is correlated with European Consensus Lupus Activity Measurement (ECLAM) score and anti-complement component 1q (C1q) antibodies, negatively with C3 levels. Anti-H4-PK antibodies compared with CLIFT and solid phase dsDNA assays display moderate concordance. The H4/PK assay is a simple and reliable test which is useful for the differential diagnosis and evaluation of disease activity in SLE patients.

  15. Biomaterial-based Memory Device Development by Conducting Metallic DNA

    DTIC Science & Technology

    2013-05-28

    time. Therefore, we have created a multiple-states memory system . This is the first multi-states resistance memory device by using bio-nanowire of the...world. Based on this achievement, logic device and application will be developed in the near future, too. Moreover, by using Ni-DNA detection system ...ions in DNA can change the resistance of Ni-DNA by applying different polar bias and time. Therefore, we have created a multiple-states memory system

  16. Analysis of β-Lactamase Resistance Determinants in Enterobacteriaceae from Chicago Children: a Multicenter Survey

    PubMed Central

    Hujer, Andrea M.; Marshall, Steven H.; Domitrovic, T. Nicholas; Rudin, Susan D.; Zheng, Xiaotian; Qureshi, Nadia K.; Hayden, Mary K.; Scaggs, Felicia A.; Karadkhele, Anand; Bonomo, Robert A.

    2016-01-01

    Multidrug-resistant (MDR) Enterobacteriaceae infections are increasing in U.S. children; however, there is a paucity of multicentered analyses of antibiotic resistance genes responsible for MDR phenotypes among pediatric Enterobacteriaceae isolates. In this study, 225 isolates phenotypically identified as extended-spectrum β-lactamase (ESBL) or carbapenemase producers, recovered from children ages 0 to 18 years hospitalized between January 2011 and April 2015 at three Chicago area hospitals, were analyzed. We used DNA microarray platforms to detect ESBL, plasmid-mediated AmpC (pAmpC), and carbapenemase type β-lactamase (bla) genes. Repetitive-sequence-based PCR and multilocus sequence typing (MLST) were performed to assess isolate similarity. Plasmid replicon typing was conducted to classify plasmids. The median patient age was 4.2 years, 56% were female, and 44% presented in the outpatient setting. The majority (60.9%) of isolates were Escherichia coli and from urinary sources (69.8%). Of 225 isolates exhibiting ESBL- or carbapenemase-producing phenotypes, 90.7% contained a bla gene. The most common genotype was the blaCTX-M-1 group (49.8%); 1.8% were carbapenem-resistant Enterobacteriaceae (three blaKPC and one blaIMP). Overall, pAmpC (blaACT/MIR and blaCMY) were present in 14.2%. The predominant E. coli phylogenetic group was the virulent B2 group (67.6%) associated with ST43/ST131 (Pasteur/Achtman MLST scheme) containing the blaCTX-M-1 group (84%), and plasmid replicon types FIA, FII, and FIB. K. pneumoniae harboring blaKPC were non-ST258 with replicon types I1 and A/C. Enterobacter spp. carrying blaACT/MIR contained plasmid replicon FIIA. We found that β-lactam resistance in children is diverse and that certain resistance mechanisms differ from known circulating genotypes in adults in an endemic area. The potential impact of complex molecular types and the silent dissemination of MDR Enterobacteriaceae in a vulnerable population needs to be studied further

  17. DNA repair mechanisms in cancer development and therapy

    PubMed Central

    Torgovnick, Alessandro; Schumacher, Björn

    2015-01-01

    DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy. PMID:25954303

  18. DNA repair mechanisms in cancer development and therapy.

    PubMed

    Torgovnick, Alessandro; Schumacher, Björn

    2015-01-01

    DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.

  19. Electrostatics of DNA-Functionalized Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoffmann, Kyle; Krishnamoorthy, Kurinji; Kewalramani, Sumit; Bedzyk, Michael; Olvera de La Cruz, Monica

    DNA-functionalized nanoparticles have applications in directed self-assembly and targeted cellular delivery of therapeutic proteins. In order to design specific systems, it is necessary to understand their self-assembly properties, of which the long-range electrostatic interactions are a critical component. We iteratively solved equations derived from classical density functional theory in order to predict the distribution of ions around DNA-functionalized Cg Catalase. We then compared estimates of the resonant intensity to those from SAXS measurements to estimate key features of DNA-functionalized proteins, such as the size of the region linking the protein and DNA and the extension of the single-stranded DNA. Using classical density functional theory and coarse-grained simulations, we are able to predict and understand these fundamental properties in order to rationally design new biomaterials.

  20. Geminivirus vectors for high-level expression of foreign proteins in plant cells.

    PubMed

    Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S

    2003-02-20

    Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.