Sample records for dna sequence variability

  1. An evolution based biosensor receptor DNA sequence generation algorithm.

    PubMed

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.

  2. A multiple-alignment based primer design algorithm for genetically highly variable DNA targets

    PubMed Central

    2013-01-01

    Background Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design. Results Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations. Conclusions PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples. PMID:23965160

  3. Cloning and sequence analysis of complementary DNA encoding an aberrantly rearranged human T-cell gamma chain.

    PubMed Central

    Dialynas, D P; Murre, C; Quertermous, T; Boss, J M; Leiden, J M; Seidman, J G; Strominger, J L

    1986-01-01

    Complementary DNA (cDNA) encoding a human T-cell gamma chain has been cloned and sequenced. At the junction of the variable and joining regions, there is an apparent deletion of two nucleotides in the human cDNA sequence relative to the murine gamma-chain cDNA sequence, resulting simultaneously in the generation of an in-frame stop codon and in a translational frameshift. For this reason, the sequence presented here encodes an aberrantly rearranged human T-cell gamma chain. There are several surprising differences between the deduced human and murine gamma-chain amino acid sequences. These include poor homology in the variable region, poor homology in a discrete segment of the constant region precisely bounded by the expected junctions of exon CII, and the presence in the human sequence of five potential sites for N-linked glycosylation. Images PMID:3458221

  4. Nuclear and mitochondrial rDNA variability in Crinipellis perniciosa from different geographic origins and hosts.

    PubMed

    de Arruda, Maricília C C; Ferreira, Marisa A S V; Miller, Robert N G; Resende, Mário Lúcio V; Felipe, Maria Sueli S

    2003-01-01

    Genetic variability in Crinipellis perniciosa, the causal organism of witches' broom disease in Theobroma cacao, was determined in strains originating from T. cacao and other susceptible host species Heteropterys acutifolia and Solanum lycocarpum in Brazil, in order to clarify host specificity and geographical variability. RFLP analysis of the ribosomal DNA ITS regions (rDNA ITS), and the mitochondrial DNA small subunit ribosomal DNA gene (mtDNA SSU rDNA) did not reveal any genetic variability in 120 tested strains, possibly serving only as species level markers. Genetic variability was observed in the ribosomal DNA IGS spacer region, in terms of IGS size, RFLPs and sequence data. Phylogenetic analyses (using CLUSTAL W, PHYLIP and TREEVIEW) indicated considerable differences between C. perniciosa strains from T. cacao and those from H. acutifolia (85-86%) and S. lycocarpum (95-96%). Sequence differences also indicated that C. perniciosa from T. cacao in Bahia is less variable (98%) when compared to the pathogen on T. cacao in Amazonas (97-98%), perhaps reflecting a recent introduction to T. cacao in Bahia.

  5. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana.

    PubMed

    Havlová, Kateřina; Dvořáčková, Martina; Peiro, Ramon; Abia, David; Mozgová, Iva; Vansáčová, Lenka; Gutierrez, Crisanto; Fajkus, Jiří

    2016-11-01

    Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.

  6. Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: A somatic view of the germline

    PubMed Central

    Duret, Laurent; Cohen, Jean; Jubin, Claire; Dessen, Philippe; Goût, Jean-François; Mousset, Sylvain; Aury, Jean-Marc; Jaillon, Olivier; Noël, Benjamin; Arnaiz, Olivier; Bétermier, Mireille; Wincker, Patrick; Meyer, Eric; Sperling, Linda

    2008-01-01

    Ciliates are the only unicellular eukaryotes known to separate germinal and somatic functions. Diploid but silent micronuclei transmit the genetic information to the next sexual generation. Polyploid macronuclei express the genetic information from a streamlined version of the genome but are replaced at each sexual generation. The macronuclear genome of Paramecium tetraurelia was recently sequenced by a shotgun approach, providing access to the gene repertoire. The 72-Mb assembly represents a consensus sequence for the somatic DNA, which is produced after sexual events by reproducible rearrangements of the zygotic genome involving elimination of repeated sequences, precise excision of unique-copy internal eliminated sequences (IES), and amplification of the cellular genes to high copy number. We report use of the shotgun sequencing data (>106 reads representing 13× coverage of a completely homozygous clone) to evaluate variability in the somatic DNA produced by these developmental genome rearrangements. Although DNA amplification appears uniform, both of the DNA elimination processes produce sequence heterogeneity. The variability that arises from IES excision allowed identification of hundreds of putative new IESs, compared to 42 that were previously known, and revealed cases of erroneous excision of segments of coding sequences. We demonstrate that IESs in coding regions are under selective pressure to introduce premature termination of translation in case of excision failure. PMID:18256234

  7. FUNGAL-SPECIFIC PCR PRIMERS DEVELOPED FOR ANALYSIS OF THE ITS REGION OF ENVIRONMENTAL DNA EXTRACTS

    EPA Science Inventory

    Background The Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) are highly variable sequences of great importance in distinguishing fungal species by PCR analysis. Previously published PCR primers available for amplifying these sequences from environmenta...

  8. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability.

    PubMed

    Santos, Sara; Chaves, Raquel; Adega, Filomena; Bastos, Estela; Guedes-Pinto, Henrique

    2006-01-01

    Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.

  9. Phylogenetic Network for European mtDNA

    PubMed Central

    Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari

    2001-01-01

    The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229

  10. Oligo Design: a computer program for development of probes for oligonucleotide microarrays.

    PubMed

    Herold, Keith E; Rasooly, Avraham

    2003-12-01

    Oligonucleotide microarrays have demonstrated potential for the analysis of gene expression, genotyping, and mutational analysis. Our work focuses primarily on the detection and identification of bacteria based on known short sequences of DNA. Oligo Design, the software described here, automates several design aspects that enable the improved selection of oligonucleotides for use with microarrays for these applications. Two major features of the program are: (i) a tiling algorithm for the design of short overlapping temperature-matched oligonucleotides of variable length, which are useful for the analysis of single nucleotide polymorphisms and (ii) a set of tools for the analysis of multiple alignments of gene families and related short DNA sequences, which allow for the identification of conserved DNA sequences for PCR primer selection and variable DNA sequences for the selection of unique probes for identification. Note that the program does not address the full genome perspective but, instead, is focused on the genetic analysis of short segments of DNA. The program is Internet-enabled and includes a built-in browser and the automated ability to download sequences from GenBank by specifying the GI number. The program also includes several utilities, including audio recital of a DNA sequence (useful for verifying sequences against a written document), a random sequence generator that provides insight into the relationship between melting temperature and GC content, and a PCR calculator.

  11. The impact of targeting repetitive BamHI-W sequences on the sensitivity and precision of EBV DNA quantification.

    PubMed

    Sanosyan, Armen; Fayd'herbe de Maudave, Alexis; Bollore, Karine; Zimmermann, Valérie; Foulongne, Vincent; Van de Perre, Philippe; Tuaillon, Edouard

    2017-01-01

    Viral load monitoring and early Epstein-Barr virus (EBV) DNA detection are essential in routine laboratory testing, especially in preemptive management of Post-transplant Lymphoproliferative Disorder. Targeting the repetitive BamHI-W sequence was shown to increase the sensitivity of EBV DNA quantification, but the variability of BamHI-W reiterations was suggested to be a source of quantification bias. We aimed to assess the extent of variability associated with BamHI-W PCR and its impact on the sensitivity of EBV DNA quantification using the 1st WHO international standard, EBV strains and clinical samples. Repetitive BamHI-W- and LMP2 single- sequences were amplified by in-house qPCRs and BXLF-1 sequence by a commercial assay (EBV R-gene™, BioMerieux). Linearity and limits of detection of in-house methods were assessed. The impact of repeated versus single target sequences on EBV DNA quantification precision was tested on B95.8 and Raji cell lines, possessing 11 and 7 copies of the BamHI-W sequence, respectively, and on clinical samples. BamHI-W qPCR demonstrated a lower limit of detection compared to LMP2 qPCR (2.33 log10 versus 3.08 log10 IU/mL; P = 0.0002). BamHI-W qPCR underestimated the EBV DNA load on Raji strain which contained fewer BamHI-W copies than the WHO standard derived from the B95.8 EBV strain (mean bias: - 0.21 log10; 95% CI, -0.54 to 0.12). Comparison of BamHI-W qPCR versus LMP2 and BXLF-1 qPCR showed an acceptable variability between EBV DNA levels in clinical samples with the mean bias being within 0.5 log10 IU/mL EBV DNA, whereas a better quantitative concordance was observed between LMP2 and BXLF-1 assays. Targeting BamHI-W resulted to a higher sensitivity compared to LMP2 but the variable reiterations of BamHI-W segment are associated with higher quantification variability. BamHI-W can be considered for clinical and therapeutic monitoring to detect an early EBV DNA and a dynamic change in viral load.

  12. The impact of targeting repetitive BamHI-W sequences on the sensitivity and precision of EBV DNA quantification

    PubMed Central

    Fayd’herbe de Maudave, Alexis; Bollore, Karine; Zimmermann, Valérie; Foulongne, Vincent; Van de Perre, Philippe; Tuaillon, Edouard

    2017-01-01

    Background Viral load monitoring and early Epstein-Barr virus (EBV) DNA detection are essential in routine laboratory testing, especially in preemptive management of Post-transplant Lymphoproliferative Disorder. Targeting the repetitive BamHI-W sequence was shown to increase the sensitivity of EBV DNA quantification, but the variability of BamHI-W reiterations was suggested to be a source of quantification bias. We aimed to assess the extent of variability associated with BamHI-W PCR and its impact on the sensitivity of EBV DNA quantification using the 1st WHO international standard, EBV strains and clinical samples. Methods Repetitive BamHI-W- and LMP2 single- sequences were amplified by in-house qPCRs and BXLF-1 sequence by a commercial assay (EBV R-gene™, BioMerieux). Linearity and limits of detection of in-house methods were assessed. The impact of repeated versus single target sequences on EBV DNA quantification precision was tested on B95.8 and Raji cell lines, possessing 11 and 7 copies of the BamHI-W sequence, respectively, and on clinical samples. Results BamHI-W qPCR demonstrated a lower limit of detection compared to LMP2 qPCR (2.33 log10 versus 3.08 log10 IU/mL; P = 0.0002). BamHI-W qPCR underestimated the EBV DNA load on Raji strain which contained fewer BamHI-W copies than the WHO standard derived from the B95.8 EBV strain (mean bias: - 0.21 log10; 95% CI, -0.54 to 0.12). Comparison of BamHI-W qPCR versus LMP2 and BXLF-1 qPCR showed an acceptable variability between EBV DNA levels in clinical samples with the mean bias being within 0.5 log10 IU/mL EBV DNA, whereas a better quantitative concordance was observed between LMP2 and BXLF-1 assays. Conclusions Targeting BamHI-W resulted to a higher sensitivity compared to LMP2 but the variable reiterations of BamHI-W segment are associated with higher quantification variability. BamHI-W can be considered for clinical and therapeutic monitoring to detect an early EBV DNA and a dynamic change in viral load. PMID:28850597

  13. Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines

    Treesearch

    J.B. Whittall; J. Syring; M. Parks; J. Buenrostro; C. Dick; A. Liston; R. Cronn

    2010-01-01

    Critical to conservation efforts and other investigations at low taxonomic levels, DNA sequence data offer important insights into the distinctiveness, biogeographic partitioning, and evolutionary histories of species. The resolving power of DNA sequences is often limited by insufficient variability at the intraspecific level. This is particularly true of studies...

  14. Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus populations of their mothers.

    PubMed Central

    Scarlatti, G; Leitner, T; Halapi, E; Wahlberg, J; Marchisio, P; Clerici-Schoeller, M A; Wigzell, H; Fenyö, E M; Albert, J; Uhlén, M

    1993-01-01

    We have compared the variable region 3 sequences from 10 human immunodeficiency virus type 1 (HIV-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA of cultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission. PMID:8446584

  15. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    PubMed Central

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897

  16. Genetic variability in isolates of Chromobacterium violaceum from pulmonary secretion, water, and soil.

    PubMed

    Santini, A C; Magalhães, J T; Cascardo, J C M; Corrêa, R X

    2016-04-28

    Chromobacterium violaceum is a free-living Gram-negative bacillus usually found in the water and soil in tropical regions, which causes infections in humans. Chromobacteriosis is characterized by rapid dissemination and high mortality. The aim of this study was to detect the genetic variability among C. violaceum type strain ATCC 12472, and seven isolates from the environment and one from a pulmonary secretion from a chromobacteriosis patient from Ilhéus, Bahia. The molecular characterization of all samples was performed by polymerase chain reaction (PCR) sequencing and 16S rDNA analysis. Primers specific for two ATCC 12472 pathogenicity genes, hilA and yscD, as well as random amplified polymorphic DNA (RAPD), were used for PCR amplification and comparative sequencing of the products. For a more specific approach, the PCR products of 16S rDNA were digested with restriction enzymes. Seven of the samples, including type-strain ATCC 12472, were amplified by the hilA primers; these were subsequently sequenced. Gene yscD was amplified only in type-strain ATCC 12472. MspI and AluI digestion revealed 16S rDNA polymorphisms. This data allowed the generation of a dendogram for each analysis. The isolates of C. violaceum have variability in random genomic regions demonstrated by RAPD. Also, these isolates have variability in pathogenicity genes, as demonstrated by sequencing and restriction enzyme digestion.

  17. Sequences of heavy and light chain variable regions from four bovine immunoglobulins.

    PubMed

    Armour, K L; Tempest, P R; Fawcett, P H; Fernie, M L; King, S I; White, P; Taylor, G; Harris, W J

    1994-12-01

    Oligodeoxyribonucleotide primers based on the 5' ends of bovine IgG1/2 and lambda constant (C) region genes, together with primers encoding conserved amino acids at the N-terminus of mature variable (V) regions from other species, have been used in cDNA and polymerase chain reactions (PCRs) to amplify heavy and light chain V region cDNA from bovine heterohybridomas. The amino acid sequences of VH and V lambda from four bovine immunoglobulins of different specificities are presented.

  18. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  19. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE PAGES

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...

    2016-03-09

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  20. The rDNA ITS region in the lessepsian marine angiosperm Halophila stipulacea (Forssk.) Aschers. (Hydrocharitaceae): intragenomic variability and putative pseudogenic sequences.

    PubMed

    Ruggiero, Maria Valeria; Procaccini, Gabriele

    2004-01-01

    Halophila stipulacea is a dioecious marine angiosperm, widely distributed along the western coasts of the Indian Ocean and the Red Sea. This species is thought to be a Lessepsian immigrant that entered the Mediterranean Sea from the Red Sea after the opening of the Suez Canal (1869). Previous studies have revealed both high phenotypic and genetic variability in Halophila stipulacea populations from the western Mediterranean basin. In order to test the hypothesis of a Lessepsian introduction, we compare genetic polymorphism between putative native (Red Sea) and introduced (Mediterranean) populations through rDNA ITS region (ITS1-5.8S-ITS2) sequence analysis. A high degree of intraindividual variability of ITS sequences was found. Most of the intragenomic polymorphism was due to pseudogenic sequences, present in almost all individuals. Features of ITS functional sequences and pseudogenes are described. Possible causes for the lack of homogenization of ITS paralogues within individuals are discussed.

  1. Sequence variability of Campylobacter temperate bacteriophages

    PubMed Central

    Clark, Clifford G; Ng, Lai-King

    2008-01-01

    Background Prophages integrated within the chromosomes of Campylobacter jejuni isolates have been demonstrated very recently. Prior work with Campylobacter temperate bacteriophages, as well as evidence from prophages in other enteric bacteria, suggests these prophages might have a role in the biology and virulence of the organism. However, very little is known about the genetic variability of Campylobacter prophages which, if present, could lead to differential phenotypes in isolates carrying the phages versus those that do not. As a first step in the characterization of C. jejuni prophages, we investigated the distribution of prophage DNA within a C. jejuni population assessed the DNA and protein sequence variability within a subset of the putative prophages found. Results Southern blotting of C. jejuni DNA using probes from genes within the three putative prophages of the C. jejuni sequenced strain RM 1221 demonstrated the presence of at least one prophage gene in a large proportion (27/35) of isolates tested. Of these, 15 were positive for 5 or more of the 7 Campylobacter Mu-like phage 1 (CMLP 1, also designated Campylobacter jejuni integrated element 1, or CJIE 1) genes tested. Twelve of these putative prophages were chosen for further analysis. DNA sequencing of a 9,000 to 11,000 nucleotide region of each prophage demonstrated a close homology with CMLP 1 in both gene order and nucleotide sequence. Structural and sequence variability, including short insertions, deletions, and allele replacements, were found within the prophage genomes, some of which would alter the protein products of the ORFs involved. No insertions of novel genes were detected within the sequenced regions. The 12 prophages and RM 1221 had a % G+C very similar to C. jejuni sequenced strains, as well as promoter regions characteristic of C. jejuni. None of the putative prophages were successfully induced and propagated, so it is not known if they were functional or if they represented remnant prophage DNA in the bacterial chromosomes. Conclusion These putative prophages form a family of phages with conserved sequences, and appear to be adapted to Campylobacter. There was evidence for recombination among groups of prophages, suggesting that the prophages had a mosaic structure. In many of these properties, the Mu-like CMLP 1 homologs characterized in this study resemble temperate bacteriophages of enteric bacteria that are responsible for contributions to virulence and host adaptation. PMID:18366706

  2. From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction

    PubMed Central

    Hughes, Colin E; Eastwood, Ruth J; Donovan Bailey, C

    2005-01-01

    Phylogenetic analyses of DNA sequences have prompted spectacular progress in assembling the Tree of Life. However, progress in constructing phylogenies among closely related species, at least for plants, has been less encouraging. We show that for plants, the rapid accumulation of DNA characters at higher taxonomic levels has not been matched by conventional sequence loci at the species level, leaving a lack of well-resolved gene trees that is hindering investigations of many fundamental questions in plant evolutionary biology. The most popular approach to address this problem has been to use low-copy nuclear genes as a source of DNA sequence data. However, this has had limited success because levels of variation among nuclear intron sequences across groups of closely related species are extremely variable and generally lower than conventionally used loci, and because no universally useful low-copy nuclear DNA sequence loci have been developed. This suggests that solutions will, for the most part, be lineage-specific, prompting a move away from ‘universal’ gene thinking for species-level phylogenetics. The benefits and limitations of alternative approaches to locate more variable nuclear loci are discussed and the potential of anonymous non-genic nuclear loci is highlighted. Given the virtually unlimited number of loci that can be generated using these new approaches, it is clear that effective screening will be critical for efficient selection of the most informative loci. Strategies for screening are outlined. PMID:16553318

  3. Highly conserved intragenic HSV-2 sequences: Results from next-generation sequencing of HSV-2 UL and US regions from genital swabs collected from 3 continents.

    PubMed

    Johnston, Christine; Magaret, Amalia; Roychoudhury, Pavitra; Greninger, Alexander L; Cheng, Anqi; Diem, Kurt; Fitzgibbon, Matthew P; Huang, Meei-Li; Selke, Stacy; Lingappa, Jairam R; Celum, Connie; Jerome, Keith R; Wald, Anna; Koelle, David M

    2017-10-01

    Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. Genital lesion swabs containing ≥ 10 7 log 10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (U L _U S ) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated U L_ U S segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Dynamics and control of DNA sequence amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less

  5. Novel primer specific false terminations during DNA sequencing reactions: danger of inaccuracy of mutation analysis in molecular diagnostics

    PubMed Central

    Anwar, R; Booth, A; Churchill, A J; Markham, A F

    1996-01-01

    The determination of nucleotide sequence is fundamental to the identification and molecular analysis of genes. Direct sequencing of PCR products is now becoming a commonplace procedure for haplotype analysis, and for defining mutations and polymorphism within genes, particularly for diagnostic purposes. A previously unrecognised phenomenon, primer related variability, observed in sequence data generated using Taq cycle sequencing and T7 Sequenase sequencing, is reported. This suggests that caution is necessary when interpreting DNA sequence data. This is particularly important in situations where treatment may be dependent on the accuracy of the molecular diagnosis. Images PMID:16696096

  6. Diatom centromeres suggest a mechanism for nuclear DNA acquisition

    DOE PAGES

    Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.; ...

    2017-07-18

    Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less

  7. Diatom centromeres suggest a mechanism for nuclear DNA acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.

    Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less

  8. Biosystematics and Conservation: A Case Study with Two Enigmatic and Uncommon Species of Crassula from New Zealand

    PubMed Central

    De Lange, P. J.; Heenan, P. B.; Keeling, D. J.; Murray, B. G.; Smissen, R.; Sykes, W. R.

    2008-01-01

    Background and Aims Crassula hunua and C. ruamahanga have been taxonomically controversial. Here their distinctiveness is assessed so that their taxonomic and conservation status can be clarified. Methods Populations of these two species were analysed using morphological, chromosomal and DNA sequence data. Key Results It proved impossible to differentiate between these two species using 12 key morphological characters. Populations were found to be chromosomally variable with 11 different chromosome numbers ranging from 2n = 42 to 2n = 100. Meiotic behaviour and levels of pollen stainability were both variable. Phylogenetic analyses showed that differences exist in both nuclear and plastid DNA sequences between individual plants, sometimes from the same population. Conclusions The results suggest that these plants are a species complex that has evolved through interspecific hybridization and polyploidy. Their high levels of chromosomal and DNA sequence variation present a problem for their conservation. PMID:18055560

  9. DsaV methyltransferase and its isoschizomers contain a conserved segment that is similar to the segment in Hhai methyltransferase that is in contact with DNA bases.

    PubMed Central

    Gopal, J; Yebra, M J; Bhagwat, A S

    1994-01-01

    The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework. Images PMID:7971279

  10. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  11. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    PubMed

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  12. Existence of host-related DNA sequences in the schistosome genome.

    PubMed

    Iwamura, Y; Irie, Y; Kominami, R; Nara, T; Yasuraoka, K

    1991-06-01

    DNA sequences homologous to the mouse intracisternal A particle and endogenous type C retrovirus were detected in the DNAs of Schistosoma japonicum adults and S. mansoni eggs. Furthermore, other kinds of repetitive sequences in the host genome such as mouse type 1 Alu sequence (B1), mouse type 2 Alu sequence (B2) and mo-2 sequence, a mouse mini-satellite, were also detected in the DNAs from adults and eggs of S. japonicum and eggs of S. mansoni. Almost all of the sequences described above were absent in the DNAs of S. mansoni adults. The DNA fingerprints of schistosomes, using the mo-2 sequence, were indistinguishable from each other and resembled those of their murine hosts. Moreover, the mo-2 sequence was hypermethylated in the DNAs of schistosomes and its amount was variable in them. These facts indicate that host-related sequences are actually present in schistosomes and that the mo-2 repetitive sequence exists probably in extra-chromosome.

  13. Minding the gap: Frequency of indels in mtDNA control region sequence data and influence on population genetic analyses

    USGS Publications Warehouse

    Pearce, J.M.

    2006-01-01

    Insertions and deletions (indels) result in sequences of various lengths when homologous gene regions are compared among individuals or species. Although indels are typically phylogenetically informative, occurrence and incorporation of these characters as gaps in intraspecific population genetic data sets are rarely discussed. Moreover, the impact of gaps on estimates of fixation indices, such as FST, has not been reviewed. Here, I summarize the occurrence and population genetic signal of indels among 60 published studies that involved alignments of multiple sequences from the mitochondrial DNA (mtDNA) control region of vertebrate taxa. Among 30 studies observing indels, an average of 12% of both variable and parsimony-informative sites were composed of these sites. There was no consistent trend between levels of population differentiation and the number of gap characters in a data block. Across all studies, the average influence on estimates of ??ST was small, explaining only an additional 1.8% of among population variance (range 0.0-8.0%). Studies most likely to observe an increase in ??ST with the inclusion of gap characters were those with < 20 variable sites, but a near equal number of studies with few variable sites did not show an increase. In contrast to studies at interspecific levels, the influence of indels for intraspecific population genetic analyses of control region DNA appears small, dependent upon total number of variable sites in the data block, and related to species-specific characteristics and the spatial distribution of mtDNA lineages that contain indels. ?? 2006 Blackwell Publishing Ltd.

  14. Eurasian otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia.

    PubMed

    Ferrando, Ainhoa; Ponsà, Montserrat; Marmi, Josep; Domingo-Roura, Xavier

    2004-01-01

    The Eurasian otter, Lutra lutra, has a Palaearctic distribution and has suffered a severe decline throughout Europe during the last century. Previous studies in this and other mustelids have shown reduced levels of variability in mitochondrial DNA, although otter phylogeographic studies were restricted to central-western Europe. In this work we have sequenced 361 bp of the mtDNA control region in 73 individuals from eight countries and added our results to eight sequences available from GenBank and the literature. The range of distribution has been expanded in relation to previous works north towards Scandinavia, east to Russia and Belarus, and south to the Iberian Peninsula. We found a single dominant haplotype in 91.78% of the samples, and six more haplotypes deviating a maximum of two mutations from the dominant haplotype restricted to a single country. Variability was extremely low in western Europe but higher in eastern countries. This, together with the lack of phylogeographical structuring, supports the postglacial recolonization of Europe from a single refugium. The Eurasian otter mtDNA control region has a 220-bp variable minisatellite in Domain III that we sequenced in 29 otters. We found a total of 19 minisatellite haplotypes, but they showed no phylogenetic information.

  15. Molecular genetic and morphological analyses of the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Kat, P W; Mills, M G; Ginsberg, J R; Borner, M; Wilson, V; Fanshawe, J H; Fitzgibbon, C; Lau, L M; Wayne, R K

    1993-01-01

    African wild dog populations have declined precipitously during the last 100 years in eastern Africa. The possible causes of this decline include a reduction in prey abundance and habitat; disease; and loss of genetic variability accompanied by inbreeding depression. We examined the levels of genetic variability and distinctiveness among populations of African wild dogs using mitochondrial DNA (mtDNA) restriction site and sequence analyses and multivariate analysis of cranial and dental measurements. Our results indicate that the genetic variability of eastern African wild dog populations is comparable to that of southern Africa and similar to levels of variability found in other large canids. Southern and eastern populations of wild dogs show about 1% divergence in mtDNA sequence and form two monophyletic assemblages containing three mtDNA genotypes each. No genotypes are shared between the two regions. With one exception, all wild dogs examined from zoos had southern African genotypes. Morphological analysis supports the distinction of eastern and southern African wild dog populations, and we suggest they should be considered separate subspecies. An eastern African wild dog breeding program should be initiated to ensure preservation of the eastern African form and to slow the loss of genetic variability that, while not yet apparent, will inevitably occur if wild populations continue to decline. Finally, we examined the phylogenetic relationships of wild dogs to other wolf-like canids through analysis of 736 base pairs (bp) of cytochrome b sequence and showed wild dogs to belong to a phylogenetically distinct lineage of the wolf-like canids.

  16. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    PubMed

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-02-09

    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  17. Ecological Niche Modelling and nDNA Sequencing Support a New, Morphologically Cryptic Beetle Species Unveiled by DNA Barcoding

    PubMed Central

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-01-01

    Background DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. Methodology/Principal Findings The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. Conclusion/Significance In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species. PMID:21347370

  18. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation solution, which suggested an energy-dependent pathway. Additionally, by means of pharmacological inhibition and vector-induced gene knockout studies, the DNA-SWCNTs were shown to enter the cells via Rac1-mediated macropinocytosis.

  19. Integrated in silico and biological validation of the blocking effect of Cot-1 DNA on Microarray-CGH.

    PubMed

    Kang, Seung-Hui; Park, Chan Hee; Jeung, Hei Cheul; Kim, Ki-Yeol; Rha, Sun Young; Chung, Hyun Cheol

    2007-06-01

    In array-CGH, various factors may act as variables influencing the result of experiments. Among them, Cot-1 DNA, which has been used as a repetitive sequence-blocking agent, may become an artifact-inducing factor in BAC array-CGH. To identify the effect of Cot-1 DNA on Microarray-CGH experiments, Cot-1 DNA was labeled directly and Microarray-CGH experiments were performed. The results confirmed that probes which hybridized more completely with Cot-1 DNA had a higher sequence similarity to the Alu element. Further, in the sex-mismatched Microarray-CGH experiments, the variation and intensity in the fluorescent signal were reduced in the high intensity probe group in which probes were better hybridized with Cot-1 DNA. Otherwise, those of the low intensity probe group showed no alterations regardless of Cot-1 DNA. These results confirmed by in silico methods that Cot-1 DNA could block repetitive sequences in gDNA and probes. In addition, it was confirmed biologically that the blocking effect of Cot-1 DNA could be presented via its repetitive sequences, especially Alu elements. Thus, in contrast to BAC-array CGH, the use of Cot-1 DNA is advantageous in controlling experimental variation in Microarray-CGH.

  20. cgDNA: a software package for the prediction of sequence-dependent coarse-grain free energies of B-form DNA.

    PubMed

    Petkevičiūtė, D; Pasi, M; Gonzalez, O; Maddocks, J H

    2014-11-10

    cgDNA is a package for the prediction of sequence-dependent configuration-space free energies for B-form DNA at the coarse-grain level of rigid bases. For a fragment of any given length and sequence, cgDNA calculates the configuration of the associated free energy minimizer, i.e. the relative positions and orientations of each base, along with a stiffness matrix, which together govern differences in free energies. The model predicts non-local (i.e. beyond base-pair step) sequence dependence of the free energy minimizer. Configurations can be input or output in either the Curves+ definition of the usual helical DNA structural variables, or as a PDB file of coordinates of base atoms. We illustrate the cgDNA package by comparing predictions of free energy minimizers from (a) the cgDNA model, (b) time-averaged atomistic molecular dynamics (or MD) simulations, and (c) NMR or X-ray experimental observation, for (i) the Dickerson-Drew dodecamer and (ii) three oligomers containing A-tracts. The cgDNA predictions are rather close to those of the MD simulations, but many orders of magnitude faster to compute. Both the cgDNA and MD predictions are in reasonable agreement with the available experimental data. Our conclusion is that cgDNA can serve as a highly efficient tool for studying structural variations in B-form DNA over a wide range of sequences. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Chromosomal Mapping of Repetitive DNA Sequences in the Genus Bryconamericus (Characidae) and DNA Barcoding to Differentiate Populations.

    PubMed

    Santos, Angélica Rossotti Dos; Usso, Mariana Campaner; Gouveia, Juceli Gonzalez; Araya-Jaime, Cristian; Frantine-Silva, Wilson; Giuliano-Caetano, Lucia; Foresti, Fausto; Dias, Ana Lúcia

    2017-06-01

    The mapping of repetitive DNA sites by fluorescence in situ hybridization has been widely used for karyotype studies in different species of fish, especially when dealing with related species or even genera presenting high chromosome variability. This study analyzed three populations of Bryconamericus, with diploid number preserved, but with different karyotype formulae. Bryconamericus ecai, from the Forquetinha river/RS, presented three new cytotypes, increasing the number of karyotype forms to seven in this population. Other two populations of Bryconamericus sp. from the Vermelho stream/PR and Cambuta river/PR exhibited interpopulation variation. The chromosome mapping of rDNA sites revealed unique markings among the three populations, showing inter- and intrapopulation variability located in the terminal region. The molecular analysis using DNA barcoding complementing the cytogenetic analysis also showed differentiation among the three populations. The U2 small nuclear DNA repetitive sequence exhibited conserved features, being located in the interstitial region of a single chromosome pair. This is the first report on its occurrence in the genus Bryconamericus. Data obtained revealed a karyotype variability already assigned to the genus, along with polymorphism of ribosomal sites, demonstrating that this group of fish can be undergoing a divergent evolutionary process, constituting a substantive model for studies of chromosomal evolution.

  2. Analysis of mitochondrial DNA in Bolivian llama, alpaca and vicuna populations: a contribution to the phylogeny of the South American camelids.

    PubMed

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Saavedra, V; Chiri, R; Latorre, E; Arranz, J J

    2013-04-01

    The objectives of this work were to assess the mtDNA diversity of Bolivian South American camelid (SAC) populations and to shed light on the evolutionary relationships between the Bolivian camelids and other populations of SACs. We have analysed two different mtDNA regions: the complete coding region of the MT-CYB gene and 513 bp of the D-loop region. The populations sampled included Bolivian llamas, alpacas and vicunas, and Chilean guanacos. High levels of genetic diversity were observed in the studied populations. In general, MT-CYB was more variable than D-loop. On a species level, the vicunas showed the lowest genetic variability, followed by the guanacos, alpacas and llamas. Phylogenetic analyses performed by including additional available mtDNA sequences from the studied species confirmed the existence of the two monophyletic clades previously described by other authors for guanacos (G) and vicunas (V). Significant levels of mtDNA hybridization were found in the domestic species. Our sequence analyses revealed significant sequence divergence within clade G, and some of the Bolivian llamas grouped with the majority of the southern guanacos. This finding supports the existence of more than the one llama domestication centre in South America previously suggested on the basis of archaeozoological evidence. Additionally, analysis of D-loop sequences revealed two new matrilineal lineages that are distinct from the previously reported G and V clades. The results presented here represent the first report on the population structure and genetic variability of Bolivian camelids and may help to elucidate the complex and dynamic domestication process of SAC populations. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  3. Genetic diversity based on 28S rDNA sequences among populations of Culex quinquefasciatus collected at different locations in Tamil Nadu, India.

    PubMed

    Sakthivelkumar, S; Ramaraj, P; Veeramani, V; Janarthanan, S

    2015-09-01

    The basis of the present study was to distinguish the existence of any genetic variability among populations of Culex quinquefasciatus which would be a valuable tool in the management of mosquito control programmes. In the present study, population of Cx. quinquefasciatus collected at different locations in Tamil Nadu were analyzed for their genetic variation based on 28S rDNA D2 region nucleotide sequences. A high degree of genetic polymorphism was detected in the sequences of D2 region of 28S rDNA on the predicted secondary structures in spite of high nucleotide sequence similarity. The findings based on secondary structure using rDNA sequences suggested the existence of a complex genotypic diversity of Cx. quinquefasciatus population collected at different locations of Tamil Nadu, India. This complexity in genetic diversity in a single mosquito population collected at different locations is considered an important issue towards their influence and nature of vector potential of these mosquitoes.

  4. Type III restriction-modification enzymes: a historical perspective.

    PubMed

    Rao, Desirazu N; Dryden, David T F; Bheemanaik, Shivakumara

    2014-01-01

    Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.

  5. DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms.

    PubMed

    Panova, Marina; Aronsson, Henrik; Cameron, R Andrew; Dahl, Peter; Godhe, Anna; Lind, Ulrika; Ortega-Martinez, Olga; Pereyra, Ricardo; Tesson, Sylvie V M; Wrange, Anna-Lisa; Blomberg, Anders; Johannesson, Kerstin

    2016-01-01

    The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.

  6. Molecular Analysis of Dehalococcoides 16S Ribosomal DNA from Chloroethene-Contaminated Sites throughout North America and Europe

    PubMed Central

    Hendrickson, Edwin R.; Payne, Jo Ann; Young, Roslyn M.; Starr, Mark G.; Perry, Michael P.; Fahnestock, Stephen; Ellis, David E.; Ebersole, Richard C.

    2002-01-01

    The environmental distribution of Dehalococcoides group organisms and their association with chloroethene-contaminated sites were examined. Samples from 24 chloroethene-dechlorinating sites scattered throughout North America and Europe were tested for the presence of members of the Dehalococcoides group by using a PCR assay developed to detect Dehalococcoides 16S rRNA gene (rDNA) sequences. Sequences identified by sequence analysis as sequences of members of the Dehalococcoides group were detected at 21 sites. Full dechlorination of chloroethenes to ethene occurred at these sites. Dehalococcoides sequences were not detected in samples from three sites at which partial dechlorination of chloroethenes occurred, where dechlorination appeared to stop at 1,2-cis-dichloroethene. Phylogenetic analysis of the 16S rDNA amplicons confirmed that Dehalococcoides sequences formed a unique 16S rDNA group. These 16S rDNA sequences were divided into three subgroups based on specific base substitution patterns in variable regions 2 and 6 of the Dehalococcoides 16S rDNA sequence. Analyses also demonstrated that specific base substitution patterns were signature patterns. The specific base substitutions distinguished the three sequence subgroups phylogenetically. These results demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones. Furthermore, the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chloroethenes. PMID:11823182

  7. Effect of sequence-dependent rigidity on plectoneme localization in dsDNA

    NASA Astrophysics Data System (ADS)

    Medalion, Shlomi; Rabin, Yitzhak

    2016-04-01

    We use Monte-Carlo simulations to study the effect of variable rigidity on plectoneme formation and localization in supercoiled double-stranded DNA. We show that the presence of soft sequences increases the number of plectoneme branches and that the edges of the branches tend to be localized at these sequences. We propose an experimental approach to test our results in vitro, and discuss the possible role played by plectoneme localization in the search process of transcription factors for their targets (promoter regions) on the bacterial genome.

  8. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach.

    PubMed

    Hurst, Sarah J; Han, Min Su; Lytton-Jean, Abigail K R; Mirkin, Chad A

    2007-09-15

    We have developed a novel competition assay that uses a gold nanoparticle (Au NP)-based, high-throughput colorimetric approach to screen the sequence selectivity of DNA-binding molecules. This assay hinges on the observation that the melting behavior of DNA-functionalized Au NP aggregates is sensitive to the concentration of the DNA-binding molecule in solution. When short, oligomeric hairpin DNA sequences were added to a reaction solution consisting of DNA-functionalized Au NP aggregates and DNA-binding molecules, these molecules may either bind to the Au NP aggregate interconnects or the hairpin stems based on their relative affinity for each. This relative affinity can be measured as a change in the melting temperature (Tm) of the DNA-modified Au NP aggregates in solution. As a proof of concept, we evaluated the selectivity of 4',6-diamidino-2-phenylindone (an AT-specific binder), ethidium bromide (a nonspecific binder), and chromomycin A (a GC-specific binder) for six sequences of hairpin DNA having different numbers of AT pairs in a five-base pair variable stem region. Our assay accurately and easily confirmed the known trends in selectivity for the DNA binders in question without the use of complicated instrumentation. This novel assay will be useful in assessing large libraries of potential drug candidates that work by binding DNA to form a drug/DNA complex.

  9. Species composition of the genus Saprolegnia in fin fish aquaculture environments, as determined by nucleotide sequence analysis of the nuclear rDNA ITS regions.

    PubMed

    de la Bastide, Paul Y; Leung, Wai Lam; Hintz, William E

    2015-01-01

    The ITS region of the rDNA gene was compared for Saprolegnia spp. in order to improve our understanding of nucleotide sequence variability within and between species of this genus, determine species composition in Canadian fin fish aquaculture facilities, and to assess the utility of ITS sequence variability in genetic marker development. From a collection of more than 400 field isolates, ITS region nucleotide sequences were studied and it was determined that there was sufficient consistent inter-specific variation to support the designation of species identity based on ITS sequence data. This non-subjective approach to species identification does not rely upon transient morphological features. Phylogenetic analyses comparing our ITS sequences and species designations with data from previous studies generally supported the clade scheme of Diéguez-Uribeondo et al. (2007) and found agreement with the molecular taxonomic cluster system of Sandoval-Sierra et al. (2014). Our Canadian ITS sequence collection will thus contribute to the public database and assist the clarification of Saprolegnia spp. taxonomy. The analysis of ITS region sequence variability facilitated genus- and species-level identification of unknown samples from aquaculture facilities and provided useful information on species composition. A unique ITS-RFLP for the identification of S. parasitica was also described. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Detection of sequence variation in parasite ribosomal DNA by electrophoresis in agarose gels supplemented with a DNA-intercalating agent.

    PubMed

    Zhu, X Q; Chilton, N B; Gasser, R B

    1998-05-01

    This study evaluated the use of a commercially available DNA intercalating agent (Resolver Gold) in agarose gels for the direct detection of sequence variation in ribosomal DNA (rDNA). This agent binds preferentially to AT sequence motifs in DNA. Regions of nuclear rDNA, known to provide genetic markers for the identification of species of parasitic ascarid nematodes (order Ascaridida), were amplified by polymerase chain reaction (PCR) and subjected to electrophoresis in standard agarose gels versus gels supplemented with Resolver Gold. Individual taxa examined could not be distinguished reliably based on the size of their amplicons in standard agarose gels, whereas they could be readily delineated based on mobility using Resolver Gold-supplemented gels. The latter was achieved because of differences (approximately 0.1-8.2%) in the AT content of the fragments among different taxa, which were associated with significant interspecific differences (approximately 11-39%) in the rDNA sequences employed. There was a tendency for fragments with higher AT content to migrate slower in supplemented agarose gels compared with those of lower AT content. The results indicate the usefulness of this electrophoretic approach to rapidly screen for sequence variability within or among PCR-amplified rDNA fragments of similar sizes but differing AT contents. Although evaluated on rDNA of parasites, the approach has potential to be applied to a range of genes of different groups of infectious organisms.

  11. Systematic analysis and evolution of 5S ribosomal DNA in metazoans.

    PubMed

    Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M

    2013-11-01

    Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.

  12. Systematic analysis and evolution of 5S ribosomal DNA in metazoans

    PubMed Central

    Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M

    2013-01-01

    Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12 766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades. PMID:23838690

  13. Sequence variability in three mitochondrial genes among four roundworm species from wild animals in China.

    PubMed

    Chang, Qiao-Cheng; Gao, Jun-Feng; Sheng, Zhong-Hua; Lou, Yan; Zheng, Xu; Wang, Chun-Ren

    2015-02-01

    Sequence variability in three mitochondrial DNA (mtDNA) regions, namely portions of cytochrome c oxidase subunit 1 (pcox1), NADH dehydrogenase subunit 1 (pnad1) and NADH dehydrogenase subunit 4 (pnad4), for Toxocara canis. Baylisacaris transfuga. Ascaris suum and Parascaris equorum from Canis lupus. Ursus thibetanus. Sus scrofa and Equus burchelli in China were examined. The lengths of the sequences of pcox1, pnad1 and pnad4 were 711 bp, 648 bp and 666 bp, respectively. No intra-species differences were detected in pcox1 for the four examined ascarid species, in pnad1 for T. canis. A. suum and P. equorum, and in pnad4 for B. transfuga and P. equorum. Sequence differences in pnad4 for six roundworm samples of T. canis and P. equorum were 0-0.1% and 0-0.3%, respectively, and were 0-0.3% in pnad1 for six roundworm samples isolate of B. transfuga. The inter-specific sequence differences among four species were 8.7-12.4% for pcox1, 13.9-17.7% for pnad1, and 14.0-25.7% for pnad4. Phylogenetic analyses suggested that the three mtDNA fragments could be used to identify ascarid species in families Ascaridiae and Toxocaridae.

  14. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding

    PubMed Central

    Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future. PMID:26800039

  15. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing

    PubMed Central

    Eastman, Alexander W.; Yuan, Ze-Chun

    2015-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID:25653642

  16. Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers.

    PubMed

    Martins, C; Galetti, P M

    2001-10-01

    To address understanding the organization of the 5S rRNA multigene family in the fish genome, the nucleotide sequence and organization array of 5S rDNA were investigated in the genus Leporinus, a representative freshwater fish group of South American fauna. PCR, subgenomic library screening, genomic blotting, fluorescence in situ hybridization, and DNA sequencing were employed in this study. Two arrays of 5S rDNA were identified for all species investigated, one consisting of monomeric repeat units of around 200 bp and another one with monomers of 900 bp. These 5S rDNA arrays were characterized by distinct NTS sequences (designated NTS-I and NTS-II for the 200- and 900-bp monomers, respectively); however, their coding sequences were nearly identical. The 5S rRNA genes were clustered in two chromosome loci, a major one corresponding to the NTS-I sites and a minor one corresponding to the NTS-II sites. The NTS-I sequence was variable among Leporinus spp., whereas the NTS-II was conserved among them and even in the related genus Schizodon. The distinct 5S rDNA arrays might characterize two 5S rRNA gene subfamilies that have been evolving independently in the genome.

  17. Evolutionary and biophysical relationships among the papillomavirus E2 proteins.

    PubMed

    Blakaj, Dukagjin M; Fernandez-Fuentes, Narcis; Chen, Zigui; Hegde, Rashmi; Fiser, Andras; Burk, Robert D; Brenowitz, Michael

    2009-01-01

    Infection by human papillomavirus (HPV) may result in clinical conditions ranging from benign warts to invasive cancer. The HPV E2 protein represses oncoprotein transcription and is required for viral replication. HPV E2 binds to palindromic DNA sequences of highly conserved four base pair sequences flanking an identical length variable 'spacer'. E2 proteins directly contact the conserved but not the spacer DNA. Variation in naturally occurring spacer sequences results in differential protein affinity that is dependent on their sensitivity to the spacer DNA's unique conformational and/or dynamic properties. This article explores the biophysical character of this core viral protein with the goal of identifying characteristics that associated with risk of virally caused malignancy. The amino acid sequence, 3d structure and electrostatic features of the E2 protein DNA binding domain are highly conserved; specific interactions with DNA binding sites have also been conserved. In contrast, the E2 protein's transactivation domain does not have extensive surfaces of highly conserved residues. Rather, regions of high conservation are localized to small surface patches. Implications to cancer biology are discussed.

  18. Widespread Transient Hoogsteen Base-Pairs in Canonical Duplex DNA with Variable Energetics

    PubMed Central

    Alvey, Heidi S.; Gottardo, Federico L.; Nikolova, Evgenia N.; Al-Hashimi, Hashim M.

    2015-01-01

    Hoogsteen base-pairing involves a 180 degree rotation of the purine base relative to Watson-Crick base-pairing within DNA duplexes, creating alternative DNA conformations that can play roles in recognition, damage induction, and replication. Here, using Nuclear Magnetic Resonance R1ρ relaxation dispersion, we show that transient Hoogsteen base-pairs occur across more diverse sequence and positional contexts than previously anticipated. We observe sequence-specific variations in Hoogsteen base-pair energetic stabilities that are comparable to variations in Watson-Crick base-pair stability, with Hoogsteen base-pairs being more abundant for energetically less favorable Watson-Crick base-pairs. Our results suggest that the variations in Hoogsteen stabilities and rates of formation are dominated by variations in Watson-Crick base pair stability, suggesting a late transition state for the Watson-Crick to Hoogsteen conformational switch. The occurrence of sequence and position-dependent Hoogsteen base-pairs provide a new potential mechanism for achieving sequence-dependent DNA transactions. PMID:25185517

  19. NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.

    PubMed

    Chan Mun Wei, Joshua; Zhao, Zicheng; Li, Shuai Cheng; Ng, Yen Kaow

    2018-06-01

    DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effective DNA Inhibitors of Cathepsin G by In Vitro Selection

    PubMed Central

    Gatto, Barbara; Vianini, Elena; Lucatello, Lorena; Sissi, Claudia; Moltrasio, Danilo; Pescador, Rodolfo; Porta, Roberto; Palumbo, Manlio

    2008-01-01

    Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions. PMID:19325843

  1. Identification of genes in anonymous DNA sequences. Annual performance report, February 1, 1991--January 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, C.A.

    1996-06-01

    The objective of this project is the development of practical software to automate the identification of genes in anonymous DNA sequences from the human, and other higher eukaryotic genomes. A software system for automated sequence analysis, gm (gene modeler) has been designed, implemented, tested, and distributed to several dozen laboratories worldwide. A significantly faster, more robust, and more flexible version of this software, gm 2.0 has now been completed, and is being tested by operational use to analyze human cosmid sequence data. A range of efforts to further understand the features of eukaryoyic gene sequences are also underway. This progressmore » report also contains papers coming out of the project including the following: gm: a Tool for Exploratory Analysis of DNA Sequence Data; The Human THE-LTR(O) and MstII Interspersed Repeats are subfamilies of a single widely distruted highly variable repeat family; Information contents and dinucleotide compostions of plant intron sequences vary with evolutionary origin; Splicing signals in Drosophila: intron size, information content, and consensus sequences; Integration of automated sequence analysis into mapping and sequencing projects; Software for the C. elegans genome project.« less

  2. GENETIC DIVERSITY OF TYPHA LATIFOLIA (TYPHACEAE) AND THE IMPACT OF POLLUTANTS EXAMINED WITH TANDEM-REPETITIVE DNA PROBES

    EPA Science Inventory

    Genetic diversity at variable-number-tandem-repeat (VNTR) loci was examined in the common cattail, Typha latifolia (Typhaceae), using three synthetic DNA probes composed of tandemly repeated "core" sequences (GACA, GATA, and GCAC). The principal objectives of this investigation w...

  3. Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing.

    PubMed

    Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C

    2018-06-01

    High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.

  4. HLA genotyping by next-generation sequencing of complementary DNA.

    PubMed

    Segawa, Hidenobu; Kukita, Yoji; Kato, Kikuya

    2017-11-28

    Genotyping of the human leucocyte antigen (HLA) is indispensable for various medical treatments. However, unambiguous genotyping is technically challenging due to high polymorphism of the corresponding genomic region. Next-generation sequencing is changing the landscape of genotyping. In addition to high throughput of data, its additional advantage is that DNA templates are derived from single molecules, which is a strong merit for the phasing problem. Although most currently developed technologies use genomic DNA, use of cDNA could enable genotyping with reduced costs in data production and analysis. We thus developed an HLA genotyping system based on next-generation sequencing of cDNA. Each HLA gene was divided into 3 or 4 target regions subjected to PCR amplification and subsequent sequencing with Ion Torrent PGM. The sequence data were then subjected to an automated analysis. The principle of the analysis was to construct candidate sequences generated from all possible combinations of variable bases and arrange them in decreasing order of the number of reads. Upon collecting candidate sequences from all target regions, 2 haplotypes were usually assigned. Cases not assigned 2 haplotypes were forwarded to 4 additional processes: selection of candidate sequences applying more stringent criteria, removal of artificial haplotypes, selection of candidate sequences with a relaxed threshold for sequence matching, and countermeasure for incomplete sequences in the HLA database. The genotyping system was evaluated using 30 samples; the overall accuracy was 97.0% at the field 3 level and 98.3% at the G group level. With one sample, genotyping of DPB1 was not completed due to short read size. We then developed a method for complete sequencing of individual molecules of the DPB1 gene, using the molecular barcode technology. The performance of the automatic genotyping system was comparable to that of systems developed in previous studies. Thus, next-generation sequencing of cDNA is a viable option for HLA genotyping.

  5. Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna.

    PubMed

    Volkov, Roman A; Panchuk, Irina I; Borisjuk, Nikolai V; Hosiawa-Baranska, Marta; Maluszynska, Jolanta; Hemleben, Vera

    2017-01-23

    Polyploid hybrids represent a rich natural resource to study molecular evolution of plant genes and genomes. Here, we applied a combination of karyological and molecular methods to investigate chromosomal structure, molecular organization and evolution of ribosomal DNA (rDNA) in nightshade, Atropa belladonna (fam. Solanaceae), one of the oldest known allohexaploids among flowering plants. Because of their abundance and specific molecular organization (evolutionarily conserved coding regions linked to variable intergenic spacers, IGS), 45S and 5S rDNA are widely used in plant taxonomic and evolutionary studies. Molecular cloning and nucleotide sequencing of A. belladonna 45S rDNA repeats revealed a general structure characteristic of other Solanaceae species, and a very high sequence similarity of two length variants, with the only difference in number of short IGS subrepeats. These results combined with the detection of three pairs of 45S rDNA loci on separate chromosomes, presumably inherited from both tetraploid and diploid ancestor species, example intensive sequence homogenization that led to substitution/elimination of rDNA repeats of one parent. Chromosome silver-staining revealed that only four out of six 45S rDNA sites are frequently transcriptionally active, demonstrating nucleolar dominance. For 5S rDNA, three size variants of repeats were detected, with the major class represented by repeats containing all functional IGS elements required for transcription, the intermediate size repeats containing partially deleted IGS sequences, and the short 5S repeats containing severe defects both in the IGS and coding sequences. While shorter variants demonstrate increased rate of based substitution, probably in their transition into pseudogenes, the functional 5S rDNA variants are nearly identical at the sequence level, pointing to their origin from a single parental species. Localization of the 5S rDNA genes on two chromosome pairs further supports uniparental inheritance from the tetraploid progenitor. The obtained molecular, cytogenetic and phylogenetic data demonstrate complex evolutionary dynamics of rDNA loci in allohexaploid species of Atropa belladonna. The high level of sequence unification revealed in 45S and 5S rDNA loci of this ancient hybrid species have been seemingly achieved by different molecular mechanisms.

  6. Test of synthetic DNA tracers in a periodic hydrodynamic system for time-variable transit time distribution assessment

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Wang, C.; McNew, C.; McLaughlin, S.; Lyon, S. W.

    2016-12-01

    Recent research on time-varying transport through hydrologic systems proposed using decomposed over-printed tracer breakthrough curves to directly observe transport through complex flow systems. This method, also known as the PERTH (Periodic Tracer Hierarchy) method requires periodic flow and multiple tracer injections to reveal changes in flow pathways and transport behavior. Time-variable transit time distributions (TTD) estimated from tracer breakthrough curves often vary with the storage state of the system, which in turn is influenced by internal and external variabilities, such as the arrangement of flow pathways and fluctuations in system inputs. Deciphering internal from external variabilities in TTDs might help to advance the use of TTDs for estimating the physical state of a system; however, thus far the finite number of unique conservative tracers available for tracing has limited deeper insights. Synthetic DNA tracers consisting of short strands of synthetic DNA encapsulated by polylactic acid (PLA) microspheres could potentially provide multiple unique tracers with identical transport properties needed to explore time varying transport through hydrologic systems in more detail. An experiment was conducted on the miniLeo hillslope, a 1 m3 sloping lysimeter, within the Biosphere 2 Landscape Evolution Observatory near Tucson, AZ to investigate transit time variability. The goal of the experiment was to 1) test the suitability of using synthetic DNA tracers for estimating TTDs in a hydrologic system and 2) to determine the TTDs of individual tracer pulses under periodic steady-state conditions. Five DNA tracers, consisting of four unique, encapsulated DNA sequences and one free/non-encapsulated DNA sequence, were applied as reference and probe tracers together with deuterium, using the PERTH method. The lysimeter received three 2-hour pulses of rainfall at a rate of 30 mm/hr for 10 days. Initial results show that both the encapsulated and free DNA tracers were successfully transported in a pulsed manner through the system, but had overall longer breakthrough times than the reference deuterium tracer. Comparison of the DNA probe tracers indicate differences in transit times, likely related to differences in tracer mobilization in response to the time-variant rainfall input.

  7. Ovine mitochondrial DNA sequence variation and its association with production and reproduction traits within an Afec-Assaf flock.

    PubMed

    Reicher, S; Seroussi, E; Weller, J I; Rosov, A; Gootwine, E

    2012-07-01

    Polymorphisms in mitochondrial DNA (mtDNA) protein- and tRNA-coding genes were shown to be associated with various diseases in humans as well as with production and reproduction traits in livestock. Alignment of full length mitochondria sequences from the 5 known ovine haplogroups: HA (n = 3), HB (n = 5), HC (n = 3), HD (n = 2), and HE (n = 2; GenBank accession nos. HE577847-50 and 11 published complete ovine mitochondria sequences) revealed sequence variation in 10 out of the 13 protein coding mtDNA sequences. Twenty-six of the 245 variable sites found in the protein coding sequences represent non-synonymous mutations. Sequence variation was observed also in 8 out of the 22 tRNA mtDNA sequences. On the basis of the mtDNA control region and cytochrome b partial sequences along with information on maternal lineages within an Afec-Assaf flock, 1,126 Afec-Assaf ewes were assigned to mitochondrial haplogroups HA, HB, and HC, with frequencies of 0.43, 0.43, and 0.14, respectively. Analysis of birth weight and growth rate records of lamb (n = 1286) and productivity from 4,993 lambing records revealed no association between mitochondrial haplogroup affiliation and female longevity, lambs perinatal survival rate, birth weight, and daily growth rate of lambs up to 150 d that averaged 1,664 d, 88.3%, 4.5 kg, and 320 g/d, respectively. However, significant (P < 0.0001) differences among the haplogroups were found for prolificacy of ewes, with prolificacies (mean ± SE) of 2.14 ± 0.04, 2.25 ± 0.04, and 2.30 ± 0.06 lamb born/ewe lambing for the HA, HB, and the HC haplogroups, respectively. Our results highlight the ovine mitogenome genetic variation in protein- and tRNA coding genes and suggest that sequence variation in ovine mtDNA is associated with variation in ewe prolificacy.

  8. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA.

    PubMed

    Kane, Nolan; Sveinsson, Saemundur; Dempewolf, Hannes; Yang, Ji Yong; Zhang, Dapeng; Engels, Johannes M M; Cronk, Quentin

    2012-02-01

    To reliably identify lineages below the species level such as subspecies or varieties, we propose an extension to DNA-barcoding using next-generation sequencing to produce whole organellar genomes and substantial nuclear ribosomal sequence. Because this method uses much longer versions of the traditional DNA-barcoding loci in the plastid and ribosomal DNA, we call our approach ultra-barcoding (UBC). We used high-throughput next-generation sequencing to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an individual of the related species T. grandiflorum, as well as an additional publicly available whole plastid genome of T. cacao. All individuals of T. cacao examined were uniquely distinguished, and evidence of reticulation and gene flow was observed. Sequence variation was observed in some of the canonical barcoding regions between species, but other regions of the chloroplast were more variable both within species and between species, as were ribosomal spacers. Furthermore, no single region provides the level of data available using the complete plastid genome and rDNA. Our data demonstrate that UBC is a viable, increasingly cost-effective approach for reliably distinguishing varieties and even individual genotypes of T. cacao. This approach shows great promise for applications where very closely related or interbreeding taxa must be distinguished.

  9. Systematics of Cladophora spp. (Chlorophyta) from North Carolina, USA, based upon morphology and DNA sequence data with a description of Cladophora subtilissima sp. nov.

    PubMed

    Taylor, Robin L; Bailey, Jeffrey Craig; Freshwater, David Wilson

    2017-06-01

    Identification of Cladophora species is challenging due to conservation of gross morphology, few discrete autapomorphies, and environmental influences on morphology. Twelve species of marine Cladophora were reported from North Carolina waters. Cladophora specimens were collected from inshore and offshore marine waters for DNA sequence and morphological analyses. The nuclear-encoded rRNA internal transcribed spacer regions (ITS) were sequenced for 105 specimens and used in molecular assisted identification. The ITS1 and ITS2 region was highly variable, and sequences were sorted into ITS Sets of Alignable Sequences (SASs). Sequencing of short hyper-variable ITS1 sections from Cladophora type specimens was used to positively identify species represented by SASs when the types were made available. Secondary structures for the ITS1 locus were also predicted for each specimen and compared to predicted structures from Cladophora sequences available in GenBank. Nine ITS SASs were identified and representative specimens chosen for phylogenetic analyses of 18S and 28S rRNA gene sequences to reveal relationships with other Cladophora species. Phylogenetic analyses indicated that marine Cladophorales were polyphyletic and separated into two clades, the Cladophora clade and the "Siphonocladales" clade. Morphological analyses were performed to assess the consistency of character states within species, and complement the DNA sequence analyses. These analyses revealed intra- and interspecific character state variation, and that combined molecular and morphological analyses were required for the identification of species. One new report, Cladophora dotyana, and one new species Cladophora subtilissima sp. nov., were revealed, and increased the biodiversity of North Carolina marine Cladophora to 14 species. © 2017 Phycological Society of America.

  10. Authentication of an endangered herb Changium smyrnioides from different producing areas based on rDNA ITS sequences and allele-specific PCR.

    PubMed

    Sun, Xiaoqin; Wei, Yanglian; Qin, Minjian; Guo, Qiaosheng; Guo, Jianlin; Zhou, Yifeng; Hang, Yueyu

    2012-03-01

    The rDNA ITS region of 18 samples of Changium smyrnioides from 7 areas and of 2 samples of Chuanminshen violaceum were sequenced and analyzed. The amplified ITS region of the samples, including a partial sequence of ITS1 and complete sequences of 5.8S and ITS2, had a total length of 555 bp. After complete alignment, there were 49 variable sites, of which 45 were informative, when gaps were treated as missing data. Samples of C. smyrnioides from different locations could be identified exactly based on the variable sites. The maximum parsimony (MP) and neighbor joining (NJ) tree constructed from the ITS sequences based on Kumar's two-parameter model showed that the genetic distances of the C. smyrnioides samples from different locations were not always related to their geographical distances. A specific primer set for Allele-specific PCR authentication of C. violaceum from Jurong of Jiangsu was designed based on the SNP in the ITS sequence alignment. C. violaceum from the major genuine producing area in Jurong of Jiangsu could be identified exactly and quickly by Allele-specific PCR.

  11. Understanding the mechanisms of protein-DNA interactions

    NASA Astrophysics Data System (ADS)

    Lavery, Richard

    2004-03-01

    Structural, biochemical and thermodynamic data on protein-DNA interactions show that specific recognition cannot be reduced to a simple set of binary interactions between the partners (such as hydrogen bonds, ion pairs or steric contacts). The mechanical properties of the partners also play a role and, in the case of DNA, variations in both conformation and flexibility as a function of base sequence can be a significant factor in guiding a protein to the correct binding site. All-atom molecular modeling offers a means of analyzing the role of different binding mechanisms within protein-DNA complexes of known structure. This however requires estimating the binding strengths for the full range of sequences with which a given protein can interact. Since this number grows exponentially with the length of the binding site it is necessary to find a method to accelerate the calculations. We have achieved this by using a multi-copy approach (ADAPT) which allows us to build a DNA fragment with a variable base sequence. The results obtained with this method correlate well with experimental consensus binding sequences. They enable us to show that indirect recognition mechanisms involving the sequence dependent properties of DNA play a significant role in many complexes. This approach also offers a means of predicting protein binding sites on the basis of binding energies, which is complementary to conventional lexical techniques.

  12. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer).

    PubMed

    Chelomina, Galina N; Rozhkovan, Konstantin V; Voronova, Anastasia N; Burundukova, Olga L; Muzarok, Tamara I; Zhuravlev, Yuri N

    2016-04-01

    Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440-640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine.

  13. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

    PubMed Central

    Chelomina, Galina N.; Rozhkovan, Konstantin V.; Voronova, Anastasia N.; Burundukova, Olga L.; Muzarok, Tamara I.; Zhuravlev, Yuri N.

    2015-01-01

    Background Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440–640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine. PMID:27158239

  14. Human beta-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old.

    PubMed

    Béraud-Colomb, E; Roubin, R; Martin, J; Maroc, N; Gardeisen, A; Trabuchet, G; Goosséns, M

    1995-12-01

    Analyzing the nuclear DNA from ancient human bones is an essential step to the understanding of genetic diversity in current populations, provided that such systematic studies are experimentally feasible. This article reports the successful extraction and amplification of nuclear DNA from the beta-globin region from 5 of 10 bone specimens up to 12,000 years old. These have been typed for beta-globin frameworks by sequencing through two variable positions and for a polymorphic (AT) chi (T) gamma microsatellite 500 bp upstream of the beta-globin gene. These specimens of human remains are somewhat older than those analyzed in previous nuclear gene sequencing reports and considerably older than those used to study high-copy-number human mtDNA. These results show that the systematic study of nuclear DNA polymorphisms of ancient populations is feasible.

  15. Cloud-based adaptive exon prediction for DNA analysis.

    PubMed

    Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen

    2018-02-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.

  16. Mitochondrial DNA diversity of the Amerindian populations living in the Andean Piedmont of Bolivia: Chimane, Moseten, Aymara and Quechua.

    PubMed

    Corella, Alfons; Bert, Francesc; Pérez-Pérez, Alejandro; Gené, Manel; Turbón, Daniel

    2007-01-01

    Chimane, Moseten Aymara and Quechua are Amerindian populations living in the Bolivian Piedmont, a characteristic ecoregion between the eastern slope of the Andean mountains and the Amazonian Llanos de Moxos. In both neighbouring areas, dense and complex societies have developed over the centuries. The Piedmont area is especially interesting from a human peopling perspective since there is no clear evidence regarding the genetic influence and peculiarities of these populations. This land has been used extensively as a territory of economic and cultural exchange between the Andes and Amazonia, however Chimane and Moseten populations have been sufficiently isolated from their neighbour groups to be recognized as distinct populations. Genetic information suggests that evolutionary processes, such as genetic drift, natural selection and genetic admixture have formed the history of the Piedmont populations. The objective of this study is to characterize the genetic diversity of the Piedmont populations, analysing the sequence variability of the HVR-I control region in the mitochondrial DNA (mtDNA). Haplogroup mtDNA data available from the whole of Central and South America were utilized to determine the relationship of the Piedmont populations with other Amerindian populations. Hair pulls were obtained in situ, and DNA from non-related individuals was extracted using a standard Chelex 100 method. A 401 bp DNA fragment of HVR-I region was amplified using standard procedures. Two independent 401 and 328 bp DNA fragments were sequenced separately for each sample. The sequence analyses included mismatch distribution and mean pairwise differences, median network analyses, AMOVA and principal component analyses. The genetic diversity of DNA sequences was measured and compared with other South Amerindian populations. The genetic diversity of 401 nucleotide mtDNA sequences, in the hypervariable Control Region, from positions 16 000-16 400, was characterized in a sample of 46 Amerindians living in the Piedmont area in the Beni Department of Bolivia. The results obtained indicate that the genetic diversity in the area is higher than that observed in other American groups living in much larger areas and despite the reduced size of the studied area the human groups analysed show high levels of inter-group variability. In addition, results show that Amerindian populations living in the Piedmont are genetically more related to those in the Andean than in the Amazonian populations.

  17. Characterization and assessment of an avian repetitive DNA sequence as an icterid phylogenetic marker.

    PubMed

    Quinn, J S; Guglich, E; Seutin, G; Lau, R; Marsolais, J; Parna, L; Boag, P T; White, B N

    1992-02-01

    The first tandemly repeated sequence examined in a passerine bird, a 431-bp PstI fragment named pMAT1, has been cloned from the genome of the brown-headed cowbird (Molothrus ater). The sequence represents about 5-10% of the genome (about 4 x 10(5) copies) and yields prominent ethidium bromide stained bands when genomic DNA cut with a variety of restriction enzymes is electrophoresed in agarose gels. A particularly striking ladder of fragments is apparent when the DNA is cut with HinfI, indicative of a tandem arrangement of the monomer. The cloned PstI monomer has been sequenced, revealing no internal repeated structure. There are sequences that hybridize with pMAT1 found in related nine-primaried oscines but not in more distantly related oscines, suboscines, or nonpasserine species. Little sequence similarity to tandemly repeated PstI cut sequences from the merlin (Falco columbarius), saurus crane (Grus antigone), or Puerto Rican parrot (Amazona vittata) or to HinfI digested sequence from the Toulouse goose (Anser anser) was detected. The isolated sequence was used as a probe to examine DNA samples of eight members of the tribe Icterini. This examination revealed phylogenetically informative characters. The repeat contains cutting sites from a number of restriction enzymes, which, if sufficiently polymorphic, would provide new phylogenetic characters. Sequences like these, conserved within a species, but variable between closely related species, may be very useful for phylogenetic studies of closely related taxa.

  18. DNAAlignEditor: DNA alignment editor tool

    PubMed Central

    Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D

    2008-01-01

    Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684

  19. Search for methylation-sensitive amplification polymorphisms in mutant figs.

    PubMed

    Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S

    2013-07-08

    Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.

  20. spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets.

    PubMed

    Dellicour, Simon; Mardulyn, Patrick

    2014-05-01

    SPADS 1.0 (for 'Spatial and Population Analysis of DNA Sequences') is a population genetic toolbox for characterizing genetic variability within and among populations from DNA sequences. In view of the drastic increase in genetic information available through sequencing methods, spads was specifically designed to deal with multilocus data sets of DNA sequences. It computes several summary statistics from populations or groups of populations, performs input file conversions for other population genetic programs and implements locus-by-locus and multilocus versions of two clustering algorithms to study the genetic structure of populations. The toolbox also includes two MATLAB and r functions, GDISPAL and GDIVPAL, to display differentiation and diversity patterns across landscapes. These functions aim to generate interpolating surfaces based on multilocus distance and diversity indices. In the case of multiple loci, such surfaces can represent a useful alternative to multiple pie charts maps traditionally used in phylogeography to represent the spatial distribution of genetic diversity. These coloured surfaces can also be used to compare different data sets or different diversity and/or distance measures estimated on the same data set. © 2013 John Wiley & Sons Ltd.

  1. Nuclear 28S rDNA phylogeny supports the basal placement of Noctiluca scintillans (Dinophyceae; Noctilucales) in dinoflagellates.

    PubMed

    Ki, Jang-Seu

    2010-05-01

    Noctiluca scintillans (Macartney) Kofoid et Swezy, 1921 is an unarmoured heterotrophic dinoflagellate with a global distribution, and has been considered as one of the ancestral taxa among dinoflagellates. Recently, 18S rDNA, actin, alpha-, beta-tubulin, and Hsp90-based phylogenies have shown the basal position of the noctilucids. However, the relationships of dinoflagellates in the basal lineages are still controversial. Although the nuclear rDNA (e.g. 18S, ITS-5.8S, and 28S) contains much genetic information, DNA sequences of N. scintillans rDNA molecules were insufficiently characterized as yet. Here the author sequenced a long-range nuclear rDNA, spanning from the 18S to the D5 region of the 28S rDNA, of N. scintillans. The present N. scintillans had a nearly identical genotype (>99.0% similarity) compared to other Noctiluca sequences from different geographic origins. Nucleotide divergence in the partial 28S rDNA was significantly high (p<0.05) as compared to the 18S rDNA, demonstrating that the information from 28S rDNA is more variable. The 28S rDNA phylogeny of 17 selected dinoflagellates, two perkinsids, and two apicomplexans as outgroups showed that N. scintillans and Oxyrrhis marina formed a clade that diverged separately from core dinoflagellates. Copyright (c) 2009 Elsevier GmbH. All rights reserved.

  2. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection.

    PubMed

    Perina, Alejandra; Seoane, David; González-Tizón, Ana M; Rodríguez-Fariña, Fernanda; Martínez-Lage, Andrés

    2011-10-17

    The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection.

  3. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection

    PubMed Central

    2011-01-01

    Background The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. Results The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. Conclusions These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection. PMID:22004418

  4. Genetic Variability of Beauveria bassiana and a DNA Marker for Environmental Monitoring of a Highly Virulent Isolate Against Cosmopolites sordidus.

    PubMed

    Ferri, D V; Munhoz, C F; Neves, P M O; Ferracin, L M; Sartori, D; Vieira, M L C; Fungaro, M H P

    2012-12-01

    The banana weevil Cosmopolites sordidus (Germar) is one of a number of pests that attack banana crops. The use of the entomopathogenic fungus Beauveria bassiana as a biological control agent for this pest may contribute towards reducing the application of chemical insecticides on banana crops. In this study, the genetic variability of a collection of Brazilian isolates of B. bassiana was evaluated. Samples were obtained from various geographic regions of Brazil, and from different hosts of the Curculionidae family. Based on the DNA fingerprints generated by RAPD and AFLP, we found that 92 and 88 % of the loci were polymorphic, respectively. The B. bassiana isolates were attributed to two genotypic clusters based on the RAPD data, and to three genotypic clusters, when analyzed with AFLP. The nucleotide sequences of nuclear ribosomal DNA intergenic spacers confirmed that all isolates are in fact B. bassiana. Analysis of molecular variance showed that variability among the isolates was not correlated with geographic origin or hosts. A RAPD-specific marker for isolate CG 1024, which is highly virulent to C. sordidus, was cloned and sequenced. Based on the sequences obtained, specific PCR primers BbasCG1024F (5'-TGC GGC TGA GGA GGA CT-3') and BbasCG1024R (5'-TGC GGC TGA GTG TAG AAC-3') were designed for detecting and monitoring this isolate in the field.

  5. Evidence of birth-and-death evolution of 5S rRNA gene in Channa species (Teleostei, Perciformes).

    PubMed

    Barman, Anindya Sundar; Singh, Mamta; Singh, Rajeev Kumar; Lal, Kuldeep Kumar

    2016-12-01

    In higher eukaryotes, minor rDNA family codes for 5S rRNA that is arranged in tandem arrays and comprises of a highly conserved 120 bp long coding sequence with a variable non-transcribed spacer (NTS). Initially the 5S rDNA repeats are considered to be evolved by the process of concerted evolution. But some recent reports, including teleost fishes suggested that evolution of 5S rDNA repeat does not fit into the concerted evolution model and evolution of 5S rDNA family may be explained by a birth-and-death evolution model. In order to study the mode of evolution of 5S rDNA repeats in Perciformes fish species, nucleotide sequence and molecular organization of five species of genus Channa were analyzed in the present study. Molecular analyses revealed several variants of 5S rDNA repeats (four types of NTS) and networks created by a neighbor net algorithm for each type of sequences (I, II, III and IV) did not show a clear clustering in species specific manner. The stable secondary structure is predicted and upstream and downstream conserved regulatory elements were characterized. Sequence analyses also shown the presence of two putative pseudogenes in Channa marulius. Present study supported that 5S rDNA repeats in genus Channa were evolved under the process of birth-and-death.

  6. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID:22768309

  7. DNA extraction for streamlined metagenomics of diverse environmental samples.

    PubMed

    Marotz, Clarisse; Amir, Amnon; Humphrey, Greg; Gaffney, James; Gogul, Grant; Knight, Rob

    2017-06-01

    A major bottleneck for metagenomic sequencing is rapid and efficient DNA extraction. Here, we compare the extraction efficiencies of three magnetic bead-based platforms (KingFisher, epMotion, and Tecan) to a standardized column-based extraction platform across a variety of sample types, including feces, oral, skin, soil, and water. Replicate sample plates were extracted and prepared for 16S rRNA gene amplicon sequencing in parallel to assess extraction bias and DNA quality. The data demonstrate that any effect of extraction method on sequencing results was small compared with the variability across samples; however, the KingFisher platform produced the largest number of high-quality reads in the shortest amount of time. Based on these results, we have identified an extraction pipeline that dramatically reduces sample processing time without sacrificing bacterial taxonomic or abundance information.

  8. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    PubMed

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions. It also allows the definition of sequence length and sequence variability of the target region as well as the less variable flanking regions for tailoring to MPS platforms. As shown in this study, TIA can be used to discover identity-linked SNP islands within the human genome, useful for differentiating individuals by targeted resequencing on MPS technologies.

  9. [Variability of nuclear 18S-25S rDNA of Gentiana lutea L. in nature and in tissue culture in vitro].

    PubMed

    Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A

    2004-01-01

    18S-25S rDNA sequence in genomes of G. lutea plants from different natural populations and from tissue culture has been studied with blot-hybridization method. It was shown that ribosomal repeats are represented by the variants which differ for their size and for the presence of additional HindIII restriction site. Genome of individual plant usually possesses several variants of DNA repeats. Interpopulation variability according to their quantitative ratio and to the presence of some of them has been shown. Modifications of the range of rDNA repeats not exceeding intraspecific variability were observed in callus tissues in comparison with the plants of initial population. Non-randomness of genome modifications in the course of cell adaptation to in vitro conditions makes it possible to some extent to forecast these modifications in tissue culture.

  10. Assessment of sequence variability in a p23 gene region within and among three genotypes of the Theileria orientalis complex from south-eastern Australia.

    PubMed

    Perera, Piyumali K; Gasser, Robin B; Jabbar, Abdul

    2015-03-01

    Oriental theileriosis is a tick-borne, protozoan disease of cattle caused by one or more genotypes of Theileria orientalis complex. In this study, we assessed sequence variability in a region of the 23kDa piroplasm membrane protein (p23) gene within and among three T. orientalis genotypes (designated buffeli, chitose and ikeda) in south-eastern Australia. Genomic DNA (n=100) was extracted from blood of infected cattle from various locations endemic for oriental theileriosis and tested by polymerase chain reaction (PCR)-coupled mutation scanning (single-strand conformation polymorphism (SSCP)) and targeted sequencing analysis. Eight distinct sequences represented all DNA samples, and three genotypes were found: buffeli (n=3), chitose (3) and ikeda (2). Nucleotide pairwise comparisons among these eight sequences revealed considerably higher variability among the genotypes (6.6-11.7%) than within them (0-1.9%), indicating that the p23 gene region allows the accurate identification of T. orientalis genotypes. In the future, we will combine this gene with other molecular markers to study the genetic structure of T. orientalis populations in Australasia, which will pave the way to establish a highly sensitive and specific PCR-based assay for genotypic diagnosis of infection and for assessing levels of parasitaemia in cattle. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Somatic diversification in the heavy chain variable region genes expressed by human autoantibodies bearing a lupus-associated nephritogenic anti-DNA idiotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demaison, C.; Chastagner, P.; Theze, J.

    1994-01-18

    Monoclonal anti-DNA antibodies bearing a lupus nephritis-associated idiotype were derived from five patients with systemic lupus erythematosus (SLE). Genes encoding their heavy (H)-chain variable (V[sub H]) regions were cloned and sequenced. When compared with their closest V[sub h] germ-line gene relatives, these sequences exhibit a number of silent (S) and replacement (R) substitutions. The ratios of R/S mutations were much higher in the complementarity-determining regions (CDRs) of the antibodies than in the framework regions. Molecular amplification of genomic V[sub H] genes and Southern hybridization with somatic CDR2-specific oligonucleotide probes showed that the configuration of the V[sub H] genes corresponding tomore » V[sub H] sequences in the nephritogenic antibodies is not present in the patient's own germ-line DNA, implying that the B-cell clones underwent somatic mutation in vivo. These findings, together with the characteristics of the diversity and junctional gene elements utilized to form the antibody, indicate that these autoantibodies have been driven through somatic selection processes reminiscent of those that govern antibody responses triggered by exogenous stimuli.« less

  12. [Study on ITS sequences of Aconitum vilmorinianum and its medicinal adulterant].

    PubMed

    Zhang, Xiao-nan; Du, Chun-hua; Fu, De-huan; Gao, Li; Zhou, Pei-jun; Wang, Li

    2012-09-01

    To analyze and compare the ITS sequences of Aconitum vilmorinianum and its medicinal adulterant Aconitum austroyunnanense. Total genomic DNA were extracted from sample materials by improved CTAB method, ITS sequences of samples were amplified using PCR systems, directly sequenced and analyzed using software DNAStar, ClustalX1.81 and MEGA 4.0. 299 consistent sites, 19 variable sites and 13 informative sites were found in ITS1 sequences, 162 consistent sites, 2 variable sites and 1 informative sites were found in 5.8S sequences, 217 consistent sites, 3 variable sites and 1 informative site were found in ITS2 sequences. Base transition and transversion was not found only in 5.8S sequences, 2 sites transition and 1 site transversion were found in ITS1 sequences, only 1 site transversion was found in ITS2 sequences comparting the ITS sequences data matrix. By analyzing the ITS sequences data matrix from 2 population of Aconitum vilmorinianum and 3 population of Aconitum austroyunnanense, we found a stable informative site at the 596th base in ITS2 sequences, in all the samples of Aconitum vilmorinianum the base was C, and in all the samples of Aconitum austroyunnanense the base was A. Aconitum vilmorinianum and Aconitum austroyunnanense can be identified by their characters of ITS sequences, and the variable sites in ITS1 sequences are more than in ITS2 sequences.

  13. PCR Conditions for 16S Primers for Analysis of Microbes in the Colon of Rats.

    PubMed

    Guillen, I A; Camacho, H; Tuero, A D; Bacardí, D; Palenzuela, D O; Aguilera, A; Silva, J A; Estrada, R; Gell, O; Suárez, J; Ancizar, J; Brown, E; Colarte, A B; Castro, J; Novoa, L I

    2016-09-01

    The study of the composition of the intestinal flora is important to the health of the host, playing a key role in maintaining intestinal homeostasis and the evolution of the immune system. For these studies, various universal primers of the 16S rDNA gene are used in microbial taxonomy. Here, we report an evaluation of 5 universal primers to explore the presence of microbial DNA in colon biopsies preserved in RNAlater solution. The DNA extracted was used for the amplification of PCR products containing the variable (V) regions of the microbial 16S rDNA gene. The PCR products were studied by restriction fragment length polymorphism (RFLP) analysis and DNA sequence, whose percent of homology with microbial sequences reported in GenBank was verified using bioinformatics tools. The presence of microbes in the colon of rats was quantified by the quantitative PCR (qPCR) technique. We obtained microbial DNA from rat, useful for PCR analysis with the universal primers for the bacteria 16S rDNA. The sequences of PCR products obtained from a colon biopsy of the animal showed homology with the classes bacilli (Lactobacillus spp) and proteobacteria, normally represented in the colon of rats. The proposed methodology allowed the attainment of DNA of bacteria with the quality and integrity for use in qPCR, sequencing, and PCR-RFLP analysis. The selected universal primers provided knowledge of the abundance of microorganisms and the formation of a preliminary test of bacterial diversity in rat colon biopsies.

  14. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved

    PubMed Central

    Long, Hannah K.; King, Hamish W.; Patient, Roger K.; Odom, Duncan T.; Klose, Robert J.

    2016-01-01

    DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945

  15. Sequence of a cDNA encoding pancreatic preprosomatostatin-22.

    PubMed Central

    Magazin, M; Minth, C D; Funckes, C L; Deschenes, R; Tavianini, M A; Dixon, J E

    1982-01-01

    We report the nucleotide sequence of a precursor to somatostatin that upon proteolytic processing may give rise to a hormone of 22 amino acids. The nucleotide sequence of a cDNA from the channel catfish (Ictalurus punctatus) encodes a precursor to somatostatin that is 105 amino acids (Mr, 11,500). The cDNA coding for somatostatin-22 consists of 36 nucleotides in the 5' untranslated region, 315 nucleotides that code for the precursor to somatostatin-22, 269 nucleotides at the 3' untranslated region, and a variable length of poly(A). The putative preprohormone contains a sequence of hydrophobic amino acids at the amino terminus that has the properties of a "signal" peptide. A connecting sequence of approximately 57 amino acids is followed by a single Arg-Arg sequence, which immediately precedes the hormone. Somatostatin-22 is homologous to somatostatin-14 in 7 of the 14 amino acids, including the Phe-Trp-Lys sequence. Hybridization selection of mRNA, followed by its translation in a wheat germ cell-free system, resulted in the synthesis of a single polypeptide having a molecular weight of approximately 10,000 as estimated on Na-DodSO4/polyacrylamide gels. Images PMID:6127673

  16. DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer

    PubMed Central

    Mamlouk, Soulafa; Childs, Liam Harold; Aust, Daniela; Heim, Daniel; Melching, Friederike; Oliveira, Cristiano; Wolf, Thomas; Durek, Pawel; Schumacher, Dirk; Bläker, Hendrik; von Winterfeld, Moritz; Gastl, Bastian; Möhr, Kerstin; Menne, Andrea; Zeugner, Silke; Redmer, Torben; Lenze, Dido; Tierling, Sascha; Möbs, Markus; Weichert, Wilko; Folprecht, Gunnar; Blanc, Eric; Beule, Dieter; Schäfer, Reinhold; Morkel, Markus; Klauschen, Frederick; Leser, Ulf; Sers, Christine

    2017-01-01

    Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal–distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC. PMID:28120820

  17. Intraspecific variation in Cryptocaryon irritans.

    PubMed

    Diggles, B K; Adlard, R D

    1997-01-01

    Intraspecific variation in the ciliate Cryptocaryon irritans was examined using sequences of the first internal transcribed spacer region (ITS-1) of ribosomal DNA (rDNA) combined with developmental and morphological characters. Amplified rDNA sequences consisting of 151 bases of the flanking 18 S and 5.8 S regions, and the entire ITS-1 region (169 or 170 bases), were determined and compared for 16 isolates of C. irritans from Australia, Israel and the USA. There was one variable base between isolates in the 18 S region and 11 variable bases in the ITS-1 region. Despite their similar morphology, significant sequence variation (4.1% divergence) and developmental differences indicate that Australian C. irritans isolates from estuarine (Moreton Bay) and coral reef (Heron Island) environments are distinct. The Heron Island isolate was genetically closer to morphologically dissimilar isolates from Israel (1.8% divergence) and the USA (2.3% divergence) than it was to the Moreton Bay isolates. Three isolates maintained in our laboratory since February 1994 differed in sequence from earlier laboratory isolates (2.9% to 3.5% divergence), even though all were similar morphologically and originated from the same source. During this time the sequence of the isolates from wild fish in Moreton Bay remained unchanged. These genetic differences indicate the existence of a founder effect in laboratory populations of C. irritans. The genetic variation found here, combined with known morphological and developmental differences, is used to characterise four strains of C. irritans.

  18. DNA methylation at hepatitis B viral integrants is associated with methylation at flanking human genomic sequences

    PubMed Central

    Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Oikawa, Ritsuko; Toyota, Minoru; Yamamoto, Masakazu; Kokudo, Norihiro; Tanaka, Shinji; Arii, Shigeki; Yotsuyanagi, Hiroshi; Koike, Kazuhiko; Itoh, Fumio

    2015-01-01

    Integration of DNA viruses into the human genome plays an important role in various types of tumors, including hepatitis B virus (HBV)–related hepatocellular carcinoma. However, the molecular details and clinical impact of HBV integration on either human or HBV epigenomes are unknown. Here, we show that methylation of the integrated HBV DNA is related to the methylation status of the flanking human genome. We developed a next-generation sequencing-based method for structural methylation analysis of integrated viral genomes (denoted G-NaVI). This method is a novel approach that enables enrichment of viral fragments for sequencing using unique baits based on the sequence of the HBV genome. We detected integrated HBV sequences in the genome of the PLC/PRF/5 cell line and found variable levels of methylation within the integrated HBV genomes. Allele-specific methylation analysis revealed that the HBV genome often became significantly methylated when integrated into highly methylated host sites. After integration into unmethylated human genome regions such as promoters, however, the HBV DNA remains unmethylated and may eventually play an important role in tumorigenesis. The observed dynamic changes in DNA methylation of the host and viral genomes may functionally affect the biological behavior of HBV. These findings may impact public health given that millions of people worldwide are carriers of HBV. We also believe our assay will be a powerful tool to increase our understanding of the various types of DNA virus-associated tumorigenesis. PMID:25653310

  19. Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas?

    PubMed

    Alasaad, S; Soglia, D; Spalenza, V; Maione, S; Soriguer, R C; Pérez, J M; Rasero, R; Degiorgis, M P Ryser; Nimmervoll, H; Zhu, X Q; Rossi, L

    2009-02-05

    The present study examined the relationship among individual Sarcoptes scabiei mites from 13 wild mammalian populations belonging to nine species in four European countries using the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) as genetic marker. The ITS-2 plus primer flanking 5.8S and 28S rDNA (ITS-2+) was amplified from individual mites by polymerase chain reaction (PCR) and the amplicons were sequenced directly. A total of 148 ITS-2+ sequences of 404bp in length were obtained and 67 variable sites were identified (16.59%). UPGMA analyses did not show any geographical or host-specific clustering, and a similar outcome was obtained using population pairwise Fst statistics. These results demonstrated that ITS-2 rDNA does not appear to be suitable for examining genetic diversity among mite populations.

  20. Diversity of Bacteria at Healthy Human Conjunctiva

    PubMed Central

    Dong, Qunfeng; Brulc, Jennifer M.; Iovieno, Alfonso; Bates, Brandon; Garoutte, Aaron; Miller, Darlene; Revanna, Kashi V.; Gao, Xiang; Antonopoulos, Dionysios A.; Slepak, Vladlen Z.

    2011-01-01

    Purpose. Ocular surface (OS) microbiota contributes to infectious and autoimmune diseases of the eye. Comprehensive analysis of microbial diversity at the OS has been impossible because of the limitations of conventional cultivation techniques. This pilot study aimed to explore true diversity of human OS microbiota using DNA sequencing-based detection and identification of bacteria. Methods. Composition of the bacterial community was characterized using deep sequencing of the 16S rRNA gene amplicon libraries generated from total conjunctival swab DNA. The DNA sequences were classified and the diversity parameters measured using bioinformatics software ESPRIT and MOTHUR and tools available through the Ribosomal Database Project-II (RDP-II). Results. Deep sequencing of conjunctival rDNA from four subjects yielded a total of 115,003 quality DNA reads, corresponding to 221 species-level phylotypes per subject. The combined bacterial community classified into 5 phyla and 59 distinct genera. However, 31% of all DNA reads belonged to unclassified or novel bacteria. The intersubject variability of individual OS microbiomes was very significant. Regardless, 12 genera—Pseudomonas, Propionibacterium, Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococci, Aquabacterium, Sphingomonas, Streptococcus, Streptophyta, and Methylobacterium—were ubiquitous among the analyzed cohort and represented the putative “core” of conjunctival microbiota. The other 47 genera accounted for <4% of the classified portion of this microbiome. Unexpectedly, healthy conjunctiva contained many genera that are commonly identified as ocular surface pathogens. Conclusions. The first DNA sequencing-based survey of bacterial population at the conjunctiva have revealed an unexpectedly diverse microbial community. All analyzed samples contained ubiquitous (core) genera that included commensal, environmental, and opportunistic pathogenic bacteria. PMID:21571682

  1. Fractal landscapes in biological systems: long-range correlations in DNA and interbeat heart intervals

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Hausdorff, J. M.; Havlin, S.; Mietus, J.; Sciortino, F.; Simons, M.

    1992-01-01

    Here we discuss recent advances in applying ideas of fractals and disordered systems to two topics of biological interest, both topics having common the appearance of scale-free phenomena, i.e., correlations that have no characteristic length scale, typically exhibited by physical systems near a critical point and dynamical systems far from equilibrium. (i) DNA nucleotide sequences have traditionally been analyzed using models which incorporate the possibility of short-range nucleotide correlations. We found, instead, a remarkably long-range power law correlation. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences as well as intragenomic DNA, but not in cDNA sequences or intron-less genes. We also found that the myosin heavy chain family gene evolution increases the fractal complexity of the DNA landscapes, consistent with the intron-late hypothesis of gene evolution. (ii) The healthy heartbeat is traditionally thought to be regulated according to the classical principle of homeostasis, whereby physiologic systems operate to reduce variability and achieve an equilibrium-like state. We found, however, that under normal conditions, beat-to-beat fluctuations in heart rate display long-range power law correlations.

  2. Detection of a variable number of ribosomal DNA loci by fluorescent in situ hybridization in Populus species.

    PubMed

    Prado, E A; Faivre-Rampant, P; Schneider, C; Darmency, M A

    1996-10-01

    Fluorescent in situ hybridization (FISH) was applied to related Populus species (2n = 19) in order to detect rDNA loci. An interspecific variability in the number of hybridization sites was revealed using as probe an homologous 25S clone from Populus deltoides. The application of image analysis methods to measure fluorescence intensity of the hybridization signals has enabled us to characterize major and minor loci in the 18S-5.8S-25S rDNA. We identified one pair of such rDNA clusters in Populus alba; two pairs, one major and one minor, in both Populus nigra and P. deltoides; and three pairs in Populus balsamifera, (two major and one minor) and Populus euroamericana (one major and two minor). FISH results are in agreement with those based on RFLP analysis. The pBG13 probe containing 5S sequence from flax detected two separate clusters corresponding to the two size classes of units that coexist within 5S rDNA of most Populus species. Key words : Populus spp., fluorescent in situ hybridization, FISH, rDNA variability, image analysis.

  3. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement.

    PubMed

    Arambula, Diego; Wong, Wenge; Medhekar, Bob A; Guo, Huatao; Gingery, Mari; Czornyj, Elizabeth; Liu, Minghsun; Dey, Sanghamitra; Ghosh, Partho; Miller, Jeff F

    2013-05-14

    Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 10(26) unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 10(19) distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3'end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs.

  4. Mitochondrial Mutations in Subjects with Psychiatric Disorders

    PubMed Central

    Magnan, Christophe; van Oven, Mannis; Baldi, Pierre; Myers, Richard M.; Barchas, Jack D.; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda; Bunney, William E.; Vawter, Marquis P.

    2015-01-01

    A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA. PMID:26011537

  5. Detection of Cytosine methylation in ancient DNA from five native american populations using bisulfite sequencing.

    PubMed

    Smith, Rick W A; Monroe, Cara; Bolnick, Deborah A

    2015-01-01

    While cytosine methylation has been widely studied in extant populations, relatively few studies have analyzed methylation in ancient DNA. Most existing studies of epigenetic marks in ancient DNA have inferred patterns of methylation in highly degraded samples using post-mortem damage to cytosines as a proxy for cytosine methylation levels. However, this approach limits the inference of methylation compared with direct bisulfite sequencing, the current gold standard for analyzing cytosine methylation at single nucleotide resolution. In this study, we used direct bisulfite sequencing to assess cytosine methylation in ancient DNA from the skeletal remains of 30 Native Americans ranging in age from approximately 230 to 4500 years before present. Unmethylated cytosines were converted to uracils by treatment with sodium bisulfite, bisulfite products of a CpG-rich retrotransposon were pyrosequenced, and C-to-T ratios were quantified for a single CpG position. We found that cytosine methylation is readily recoverable from most samples, given adequate preservation of endogenous nuclear DNA. In addition, our results indicate that the precision of cytosine methylation estimates is inversely correlated with aDNA preservation, such that samples of low DNA concentration show higher variability in measures of percent methylation than samples of high DNA concentration. In particular, samples in this study with a DNA concentration above 0.015 ng/μL generated the most consistent measures of cytosine methylation. This study presents evidence of cytosine methylation in a large collection of ancient human remains, and indicates that it is possible to analyze epigenetic patterns in ancient populations using direct bisulfite sequencing approaches.

  6. Systematic Evaluation of the Dependence of Deoxyribozyme Catalysis on Random Region Length

    PubMed Central

    Velez, Tania E.; Singh, Jaydeep; Xiao, Ying; Allen, Emily C.; Wong, On Yi; Chandra, Madhavaiah; Kwon, Sarah C.; Silverman, Scott K.

    2012-01-01

    Functional nucleic acids are DNA and RNA aptamers that bind targets, or they are deoxyribozymes and ribozymes that have catalytic activity. These functional DNA and RNA sequences can be identified from random-sequence pools by in vitro selection, which requires choosing the length of the random region. Shorter random regions allow more complete coverage of sequence space but may not permit the structural complexity necessary for binding or catalysis. In contrast, longer random regions are sampled incompletely but may allow adoption of more complicated structures that enable function. In this study, we systematically examined random region length (N20 through N60) for two particular deoxyribozyme catalytic activities, DNA cleavage and tyrosine-RNA nucleopeptide linkage formation. For both activities, we previously identified deoxyribozymes using only N40 regions. In the case of DNA cleavage, here we found that shorter N20 and N30 regions allowed robust catalytic function, either by DNA hydrolysis or by DNA deglycosylation and strand scission via β-elimination, whereas longer N50 and N60 regions did not lead to catalytically active DNA sequences. Follow-up selections with N20, N30, and N40 regions revealed an interesting interplay of metal ion cofactors and random region length. Separately, for Tyr-RNA linkage formation, N30 and N60 regions provided catalytically active sequences, whereas N20 was unsuccessful, and the N40 deoxyribozymes were functionally superior (in terms of rate and yield) to N30 and N60. Collectively, the results indicate that with future in vitro selection experiments for DNA and RNA catalysts, and by extension for aptamers, random region length should be an important experimental variable. PMID:23088677

  7. Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations.

    PubMed

    Pompei, Fiorenza; Ciminelli, Bianca Maria; Bombieri, Cristina; Ciccacci, Cinzia; Koudova, Monika; Giorgi, Silvia; Belpinati, Francesca; Begnini, Angela; Cerny, Milos; Des Georges, Marie; Claustres, Mireille; Ferec, Claude; Macek, Milan; Modiano, Guido; Pignatti, Pier Franco

    2006-01-01

    An average of about 1700 CFTR (cystic fibrosis transmembrane conductance regulator) alleles from normal individuals from different European populations were extensively screened for DNA sequence variation. A total of 80 variants were observed: 61 coding SNSs (results already published), 13 noncoding SNSs, three STRs, two short deletions, and one nucleotide insertion. Eight DNA variants were classified as non-CF causing due to their high frequency of occurrence. Through this survey the CFTR has become the most exhaustively studied gene for its coding sequence variability and, though to a lesser extent, for its noncoding sequence variability as well. Interestingly, most variation was associated with the M470 allele, while the V470 allele showed an 'extended haplotype homozygosity' (EHH). These findings make us suggest a role for selection acting either on the M470V itself or through an hitchhiking mechanism involving a second site. The possible ancient origin of the V allele in an 'out of Africa' time frame is discussed.

  8. Nanopore sequencing in microgravity

    PubMed Central

    McIntyre, Alexa B R; Rizzardi, Lindsay; Yu, Angela M; Alexander, Noah; Rosen, Gail L; Botkin, Douglas J; Stahl, Sarah E; John, Kristen K; Castro-Wallace, Sarah L; McGrath, Ken; Burton, Aaron S; Feinberg, Andrew P; Mason, Christopher E

    2016-01-01

    Rapid DNA sequencing and analysis has been a long-sought goal in remote research and point-of-care medicine. In microgravity, DNA sequencing can facilitate novel astrobiological research and close monitoring of crew health, but spaceflight places stringent restrictions on the mass and volume of instruments, crew operation time, and instrument functionality. The recent emergence of portable, nanopore-based tools with streamlined sample preparation protocols finally enables DNA sequencing on missions in microgravity. As a first step toward sequencing in space and aboard the International Space Station (ISS), we tested the Oxford Nanopore Technologies MinION during a parabolic flight to understand the effects of variable gravity on the instrument and data. In a successful proof-of-principle experiment, we found that the instrument generated DNA reads over the course of the flight, including the first ever sequenced in microgravity, and additional reads measured after the flight concluded its parabolas. Here we detail modifications to the sample-loading procedures to facilitate nanopore sequencing aboard the ISS and in other microgravity environments. We also evaluate existing analysis methods and outline two new approaches, the first based on a wave-fingerprint method and the second on entropy signal mapping. Computationally light analysis methods offer the potential for in situ species identification, but are limited by the error profiles (stays, skips, and mismatches) of older nanopore data. Higher accuracies attainable with modified sample processing methods and the latest version of flow cells will further enable the use of nanopore sequencers for diagnostics and research in space. PMID:28725742

  9. Intraspecific Genetic Variation and Phylogenetic Analysis of Dirofilaria immitis Samples from Western China Using Complete ND1 and 16S rDNA Gene Sequences

    PubMed Central

    Liu, Tianyu; Liang, Yinan; Zhong, Xiuqin; Wang, Ning; Hu, Dandan; Zhou, Xuan; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    Dirofilaria immitis (heartworm) is the causative agent of an important zoonotic disease that is spread by mosquitoes. In this study, molecular and phylogenetic characterization of D. immitis were performed based on complete ND1 and 16S rDNA gene sequences, which provided the foundation for more advanced molecular diagnosis, prevention, and control of heartworm diseases. The mutation rate and evolutionary divergence in adult heartworm samples from seven dogs in western China were analyzed to obtain information on genetic diversity and variability. Phylogenetic relationships were inferred using both maximum parsimony (MP) and Bayes methods based on the complete gene sequences. The results suggest that D. immitis formed an independent monophyletic group in which the 16S rDNA gene has mutated more rapidly than has ND1. PMID:24639299

  10. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage

    PubMed Central

    Josephs, Eric A.; Kocak, D. Dewran; Fitzgibbon, Christopher J.; McMenemy, Joshua; Gersbach, Charles A.; Marszalek, Piotr E.

    2015-01-01

    CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single ‘guide RNA’ molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its practical use. Using atomic force microscopy (AFM), we directly resolve individual Cas9 and nuclease-inactive dCas9 proteins as they bind along engineered DNA substrates. High-resolution imaging allows us to determine their relative propensities to bind with different guide RNA variants to targeted or off-target sequences. Mapping the structural properties of Cas9 and dCas9 to their respective binding sites reveals a progressive conformational transformation at DNA sites with increasing sequence similarity to its target. With kinetic Monte Carlo (KMC) simulations, these results provide evidence of a ‘conformational gating’ mechanism driven by the interactions between the guide RNA and the 14th–17th nucleotide region of the targeted DNA, the stabilities of which we find correlate significantly with reported off-target cleavage rates. KMC simulations also reveal potential methodologies to engineer guide RNA sequences with improved specificity by considering the invasion of guide RNAs into targeted DNA duplex. PMID:26384421

  11. Is radon emission in caves causing deletions in satellite DNA sequences of cave-dwelling crickets?

    PubMed

    Allegrucci, Giuliana; Sbordoni, Valerio; Cesaroni, Donatella

    2015-01-01

    The most stable isotope of radon, 222Rn, represents the major source of natural radioactivity in confined environments such as mines, caves and houses. In this study, we explored the possible radon-related effects on the genome of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae) sampled in caves with different concentrations of radon. We analyzed specimens from ten populations belonging to two genetically closely related species, D. geniculata and D. laetitiae, and explored the possible association between the radioactivity dose and the level of genetic polymorphism in a specific family of satellite DNA (pDo500 satDNA). Radon concentration in the analyzed caves ranged from 221 to 26,000 Bq/m3. Specimens coming from caves with the highest radon concentration showed also the highest variability estimates in both species, and the increased sequence heterogeneity at pDo500 satDNA level can be explained as an effect of the mutation pressure induced by radon in cave. We discovered a specific category of nuclear DNA, the highly repetitive satellite DNA, where the effects of the exposure at high levels of radon-related ionizing radiation are detectable, suggesting that the satDNA sequences might be a valuable tool to disclose harmful effects also in other organisms exposed to high levels of radon concentration.

  12. Dielectrophoretic isolation and detection of cancer-related circulating cell-free DNA biomarkers from blood and plasma

    PubMed Central

    Sonnenberg, Avery; Marciniak, Jennifer Y.; Skowronski, Elaine A.; Manouchehri, Sareh; Rassenti, Laura; Ghia, Emanuela M.; Widhopf, George F.; Kipps, Thomas J.; Heller, Michael J.

    2014-01-01

    Conventional methods for the isolation of cancer-related circulating cell-free (ccf) DNA from patient blood (plasma) are time consuming and laborious. A DEP approach utilizing a microarray device now allows rapid isolation of ccf-DNA directly from a small volume of unprocessed blood. In this study, the DEP device is used to compare the ccf-DNA isolated directly from whole blood and plasma from 11 chronic lymphocytic leukemia (CLL) patients and one normal individual. Ccf-DNA from both blood and plasma samples was separated into DEP high-field regions, after which cells (blood), proteins, and other biomolecules were removed by a fluidic wash. The concentrated ccf-DNA was detected on-chip by fluorescence, and then eluted for PCR and DNA sequencing. The complete process from blood to PCR required less than 10 min; an additional 15 min was required to obtain plasma from whole blood. Ccf-DNA from the equivalent of 5 µL of CLL blood and 5 µL of plasma was amplified by PCR using Ig heavy-chain variable (IGHV) specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone. The PCR and DNA sequencing results obtained by DEP from all 11 CLL blood samples and from 8 of the 11 CLL plasma samples were exactly comparable to the DNA sequencing results obtained from genomic DNA isolated from CLL patient leukemic B cells (gold standard). PMID:24723219

  13. Dielectrophoretic isolation and detection of cancer-related circulating cell-free DNA biomarkers from blood and plasma.

    PubMed

    Sonnenberg, Avery; Marciniak, Jennifer Y; Skowronski, Elaine A; Manouchehri, Sareh; Rassenti, Laura; Ghia, Emanuela M; Widhopf, George F; Kipps, Thomas J; Heller, Michael J

    2014-07-01

    Conventional methods for the isolation of cancer-related circulating cell-free (ccf) DNA from patient blood (plasma) are time consuming and laborious. A DEP approach utilizing a microarray device now allows rapid isolation of ccf-DNA directly from a small volume of unprocessed blood. In this study, the DEP device is used to compare the ccf-DNA isolated directly from whole blood and plasma from 11 chronic lymphocytic leukemia (CLL) patients and one normal individual. Ccf-DNA from both blood and plasma samples was separated into DEP high-field regions, after which cells (blood), proteins, and other biomolecules were removed by a fluidic wash. The concentrated ccf-DNA was detected on-chip by fluorescence, and then eluted for PCR and DNA sequencing. The complete process from blood to PCR required less than 10 min; an additional 15 min was required to obtain plasma from whole blood. Ccf-DNA from the equivalent of 5 μL of CLL blood and 5 μL of plasma was amplified by PCR using Ig heavy-chain variable (IGHV) specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone. The PCR and DNA sequencing results obtained by DEP from all 11 CLL blood samples and from 8 of the 11 CLL plasma samples were exactly comparable to the DNA sequencing results obtained from genomic DNA isolated from CLL patient leukemic B cells (gold standard). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias.

    PubMed

    Thomas, Austen C; Jarman, Simon N; Haman, Katherine H; Trites, Andrew W; Deagle, Bruce E

    2014-08-01

    Ecologists are increasingly interested in quantifying consumer diets based on food DNA in dietary samples and high-throughput sequencing of marker genes. It is tempting to assume that food DNA sequence proportions recovered from diet samples are representative of consumer's diet proportions, despite the fact that captive feeding studies do not support that assumption. Here, we examine the idea of sequencing control materials of known composition along with dietary samples in order to correct for technical biases introduced during amplicon sequencing and biological biases such as variable gene copy number. Using the Ion Torrent PGM(©) , we sequenced prey DNA amplified from scats of captive harbour seals (Phoca vitulina) fed a constant diet including three fish species in known proportions. Alongside, we sequenced a prey tissue mix matching the seals' diet to generate tissue correction factors (TCFs). TCFs improved the diet estimates (based on sequence proportions) for all species and reduced the average estimate error from 28 ± 15% (uncorrected) to 14 ± 9% (TCF-corrected). The experimental design also allowed us to infer the magnitude of prey-specific digestion biases and calculate digestion correction factors (DCFs). The DCFs were compared with possible proxies for differential digestion (e.g. fish protein%, fish lipid%) revealing a strong relationship between the DCFs and percent lipid of the fish prey, suggesting prey-specific corrections based on lipid content would produce accurate diet estimates in this study system. These findings demonstrate the value of parallel sequencing of food tissue mixtures in diet studies and offer new directions for future research in quantitative DNA diet analysis. © 2013 John Wiley & Sons Ltd.

  15. DNA fingerprinting of Brassica juncea cultivars using microsatellite probes.

    PubMed

    Bhatia, S; Das, S; Jain, A; Lakshmikumaran, M

    1995-09-01

    The genetic variability in the Brassica juncea cultivars was detected by employing in-gel hybridization of restricted DNA to simple repetitive sequences such as (GATA)4, (GACA)4 and (CAC)5. The most informative probe/enzyme combination was (GATA)4/EcoRI, yielding highly polymorphic fingerprint patterns for the B. juncea cultivars. This technique was found to be dependable for establishing the variety specific patterns for most of the cultivars studied, a prerequisite for germplasm preservation. The results of the present study were compared with those reported in our earlier study in which random amplification of polymorphic DNA (RAPD) was used for assessing the genetic variability in the B. juncea cultivars.

  16. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.

    PubMed

    Palumbi, S R; Baker, C S

    1994-05-01

    Powerful analyses of population structure require information from multiple genetic loci. To help develop a molecular toolbox for obtaining this information, we have designed universal oligonucleotide primers that span conserved intron-exon junctions in a wide variety of animal phyla. We test the utility of exon-primed, intron-crossing amplifications by analyzing the variability of actin intron sequences from humpback, blue, and bowhead whales and comparing the results with mitochondrial DNA (mtDNA) haplotype data. Humpback actin introns fall into two major clades that exist in different frequencies in different oceanic populations. It is surprising that Hawaii and California populations, which are very distinct in mtDNAs, are similar in actin intron alleles. This discrepancy between mtDNA and nuclear DNA results may be due either to differences in genetic drift in mitochondrial and nuclear genes or to preferential movement of males, which do not transmit mtDNA to offspring, between separate breeding grounds. Opposing mtDNA and nuclear DNA results can help clarify otherwise hidden patterns of structure in natural populations.

  17. Genome organization of Tobacco leaf curl Zimbabwe virus, a new, distinct monopartite begomovirus associated with subgenomic defective DNA molecules.

    PubMed

    Paximadis, M; Rey, M E

    2001-12-01

    The complete DNA A of the begomovirus Tobacco leaf curl Zimbabwe virus (TbLCZWV) was sequenced: it comprises 2767 nucleotides with six major open reading frames encoding proteins with molecular masses greater than 9 kDa. Full-length TbLCZWV DNA A tandem dimers, cloned in binary vectors (pBin19 and pBI121) and transformed into Agrobacterium tumefaciens, were systemically infectious upon agroinoculation of tobacco and tomato. Efforts to identify a DNA B component were unsuccessful. These findings suggest that TbLCZWV is a new member of the monopartite group of begomoviruses. Phylogenetic analysis identified TbLCZWV as a distinct begomovirus with its closest relative being Chayote mosaic virus. Abutting primer PCR amplified ca. 1300 bp molecules, and cloning and sequencing of two of these molecules revealed them to be subgenomic defective DNA molecules originating from TbLCZWV DNA A. Variable symptom severity associated with tobacco leaf curl disease and TbLCZWV is discussed.

  18. Cloud-based adaptive exon prediction for DNA analysis

    PubMed Central

    Putluri, Srinivasareddy; Fathima, Shaik Yasmeen

    2018-01-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database. PMID:29515813

  19. Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil

    PubMed Central

    2010-01-01

    Background Cryptic species complexes are common among anophelines. Previous phylogenetic analysis based on the complete mtDNA COI gene sequences detected paraphyly in the Neotropical malaria vector Anopheles marajoara. The "Folmer region" detects a single taxon using a 3% divergence threshold. Methods To test the paraphyletic hypothesis and examine the utility of the Folmer region, genealogical trees based on a concatenated (white + 3' COI sequences) dataset and pairwise differentiation of COI fragments were examined. The population structure and demographic history were based on partial COI sequences for 294 individuals from 14 localities in Amazonian Brazil. 109 individuals from 12 localities were sequenced for the nDNA white gene, and 57 individuals from 11 localities were sequenced for the ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2). Results Distinct A. marajoara lineages were detected by combined genealogical analysis and were also supported among COI haplotypes using a median joining network and AMOVA, with time since divergence during the Pleistocene (<100,000 ya). COI sequences at the 3' end were more variable, demonstrating significant pairwise differentiation (3.82%) compared to the more moderate 2.92% detected by the Folmer region. Lineage 1 was present in all localities, whereas lineage 2 was restricted mainly to the west. Mismatch distributions for both lineages were bimodal, likely due to multiple colonization events and spatial expansion (~798 - 81,045 ya). There appears to be gene flow within, not between lineages, and a partial barrier was detected near Rio Jari in Amapá state, separating western and eastern populations. In contrast, both nDNA data sets (white gene sequences with or without the retention of the 4th intron, and ITS2 sequences and length) detected a single A. marajoara lineage. Conclusions Strong support for combined data with significant differentiation detected in the COI and absent in the nDNA suggest that the divergence is recent, and detectable only by the faster evolving mtDNA. A within subgenus threshold of >2% may be more appropriate among sister taxa in cryptic anopheline complexes than the standard 3%. Differences in demographic history and climatic changes may have contributed to mtDNA lineage divergence in A. marajoara. PMID:20929572

  20. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma.

    PubMed

    Parker, Nicole R; Hudson, Amanda L; Khong, Peter; Parkinson, Jonathon F; Dwight, Trisha; Ikin, Rowan J; Zhu, Ying; Cheng, Zhangkai Jason; Vafaee, Fatemeh; Chen, Jason; Wheeler, Helen R; Howell, Viive M

    2016-03-04

    Heterogeneity is a hallmark of glioblastoma with intratumoral heterogeneity contributing to variability in responses and resistance to standard treatments. Promoter methylation status of the DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT) is the most important clinical biomarker in glioblastoma, predicting for therapeutic response. However, it does not always correlate with response. This may be due to intratumoral heterogeneity, with a single biopsy unlikely to represent the entire lesion. Aberrations in other DNA repair mechanisms may also contribute. This study investigated intratumoral heterogeneity in multiple glioblastoma tumors with a particular focus on the DNA repair pathways. Transcriptional intratumoral heterogeneity was identified in 40% of cases with variability in MGMT methylation status found in 14% of cases. As well as identifying intratumoral heterogeneity at the transcriptional and epigenetic levels, targeted next generation sequencing identified between 1 and 37 unique sequence variants per specimen. In-silico tools were then able to identify deleterious variants in both the base excision repair and the mismatch repair pathways that may contribute to therapeutic response. As these pathways have roles in temozolomide response, these findings may confound patient management and highlight the importance of assessing multiple tumor biopsies.

  1. Comprehensive Interrogation of Natural TALE DNA Binding Modules and Transcriptional Repressor Domains

    PubMed Central

    Cong, Le; Zhou, Ruhong; Kuo, Yu-chi; Cunniff, Margaret; Zhang, Feng

    2012-01-01

    Transcription activator-like effectors (TALE) are sequence-specific DNA binding proteins that harbor modular, repetitive DNA binding domains. TALEs have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the TALE toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat variable diresidue (RVD) Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective TALE transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using TALEs. PMID:22828628

  2. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina).

    PubMed

    Dentinger, Bryn T M; Didukh, Maryna Y; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.

  3. Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)

    PubMed Central

    Dentinger, Bryn T. M.; Didukh, Maryna Y.; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (∼450 bp) representing ∼100 morphospecies from ∼650 collections of Agaricomycotina using several sets of new primers. Large introns (∼1500 bp) at variable locations were detected in ∼5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (∼30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms. PMID:21966418

  4. mtDNA sequence diversity in Africa.

    PubMed Central

    Watson, E.; Bauer, K.; Aman, R.; Weiss, G.; von Haeseler, A.; Pääbo, S.

    1996-01-01

    mtDNA sequences were determined from 241 individuals from nine ethnic groups in Africa. When they were compared with published data from other groups, it was found that the !Kung, Mbuti, and Biaka show on the order of 10 times more sequence differences between the three groups, as well as between those and the other groups (the Fulbe, Hausa, Tuareg, Songhai, Kanuri, Yoruba, Mandenka, Somali, Tukana, and Kikuyu), than these other groups do between one other. Furthermore, the pairwise sequence distributions, patterns of coalescence events, and numbers of variable positions relative to the mean sequence difference indicate that the former three groups have been of constant size over time, whereas the latter have expanded in size. We suggest that this reflects subsistence patterns in that the populations that have expanded in size are food producers whereas those that have not are hunters and gatherers. PMID:8755932

  5. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.

    PubMed

    Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J

    2016-08-19

    DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. A DNA 'barcode blitz': rapid digitization and sequencing of a natural history collection.

    PubMed

    Hebert, Paul D N; Dewaard, Jeremy R; Zakharov, Evgeny V; Prosser, Sean W J; Sones, Jayme E; McKeown, Jaclyn T A; Mantle, Beth; La Salle, John

    2013-01-01

    DNA barcoding protocols require the linkage of each sequence record to a voucher specimen that has, whenever possible, been authoritatively identified. Natural history collections would seem an ideal resource for barcode library construction, but they have never seen large-scale analysis because of concerns linked to DNA degradation. The present study examines the strength of this barrier, carrying out a comprehensive analysis of moth and butterfly (Lepidoptera) species in the Australian National Insect Collection. Protocols were developed that enabled tissue samples, specimen data, and images to be assembled rapidly. Using these methods, a five-person team processed 41,650 specimens representing 12,699 species in 14 weeks. Subsequent molecular analysis took about six months, reflecting the need for multiple rounds of PCR as sequence recovery was impacted by age, body size, and collection protocols. Despite these variables and the fact that specimens averaged 30.4 years old, barcode records were obtained from 86% of the species. In fact, one or more barcode compliant sequences (>487 bp) were recovered from virtually all species represented by five or more individuals, even when the youngest was 50 years old. By assembling specimen images, distributional data, and DNA barcode sequences on a web-accessible informatics platform, this study has greatly advanced accessibility to information on thousands of species. Moreover, much of the specimen data became publically accessible within days of its acquisition, while most sequence results saw release within three months. As such, this study reveals the speed with which DNA barcode workflows can mobilize biodiversity data, often providing the first web-accessible information for a species. These results further suggest that existing collections can enable the rapid development of a comprehensive DNA barcode library for the most diverse compartment of terrestrial biodiversity - insects.

  7. Variability of Actinobacteria, a minor component of rumen microflora.

    PubMed

    Suľák, M; Sikorová, L; Jankuvová, J; Javorský, P; Pristaš, P

    2012-07-01

    Actinobacteria (Actinomycetes) are a significant and interesting group of gram-positive bacteria. They are regular, though infrequent, members of the microbial life in the rumen and represent up to 3 % of total rumen bacteria; there is considerable lack of information about ecology and biology of rumen actinobacteria. During the characterization of variability of rumen treponemas using non-cultivation approach, we also noted the variability of rumen actinobacteria. By using Treponema-specific primers a specific 16S rRNA gene library was prepared from cow and sheep rumen total DNA. About 10 % of recombinant clones contained actinobacteria-like sequences. Phylogenetic analyses of 11 clones obtained showed the high variability of actinobacteria in the ruminant digestive system. While some sequences are nearly identical to known sequences of actinobacteria, we detected completely new clusters of actinobacteria-like sequences, representing probably new, as yet undiscovered, group of rumen Actinobacteria. Further research will be necessary for understanding their nature and functions in the rumen.

  8. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.J.; Walthers, E.A.; Richmond, K.L.

    1997-04-01

    PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats aremore » generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.« less

  9. Target Site Recognition by a Diversity-Generating Retroelement

    PubMed Central

    Guo, Huatao; Tse, Longping V.; Nieh, Angela W.; Czornyj, Elizabeth; Williams, Steven; Oukil, Sabrina; Liu, Vincent B.; Miller, Jeff F.

    2011-01-01

    Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification. PMID:22194701

  10. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles.

    PubMed

    McMeel, O M; Hoey, E M; Ferguson, A

    2001-01-01

    The cDNA nucleotide sequences of the lactate dehydrogenase alleles LDH-C1*90 and *100 of brown trout (Salmo trutta) were found to differ at position 308 where an A is present in the *100 allele but a G is present in the *90 allele. This base substitution results in an amino acid change from aspartic acid at position 82 in the LDH-C1 100 allozyme to a glycine in the 90 allozyme. Since aspartic acid has a net negative charge whilst glycine is uncharged, this is consistent with the electrophoretic observation that the LDH-C1 100 allozyme has a more anodal mobility relative to the LDH-C1 90 allozyme. Based on alignment of the cDNA sequence with the mouse genomic sequence, a local primer set was designed, incorporating the variable position, and was found to give very good amplification with brown trout genomic DNA. Sequencing of this fragment confirmed the difference in both homozygous and heterozygous individuals. Digestion of the polymerase chain reaction products with BslI, a restriction enzyme specific for the site difference, gave one, two and three fragments for the two homozygotes and the heterozygote, respectively, following electrophoretic separation. This provides a DNA-based means of routine screening of the highly informative LDH-C1* polymorphism in brown trout population genetic studies. Primer sets presented could be used to sequence cDNA of other LDH* genes of brown trout and other species.

  11. Rapid Electrokinetic Isolation of Cancer-Related Circulating Cell-Free DNA Directly from Blood

    PubMed Central

    Sonnenberg, Avery; Marciniak, Jennifer Y.; Rassenti, Laura; Ghia, Emanuela M.; Skowronski, Elaine A.; Manouchehri, Sareh; McCanna, James; Widhopf, George F.; Kipps, Thomas J.; Heller, Michael J.

    2014-01-01

    BACKGROUND Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a “liquid biopsy” may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. METHODS We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification,PCR,and DNA sequencing. The complete process, blood to PCR, required <10 min. ccf-DNA was amplified by PCR with immunoglobulin heavy chain variable region (IGHV)-specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone, and then sequenced. RESULTS PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15–20 mL blood. CONCLUSIONS Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring. PMID:24270796

  12. Rapid electrokinetic isolation of cancer-related circulating cell-free DNA directly from blood.

    PubMed

    Sonnenberg, Avery; Marciniak, Jennifer Y; Rassenti, Laura; Ghia, Emanuela M; Skowronski, Elaine A; Manouchehri, Sareh; McCanna, James; Widhopf, George F; Kipps, Thomas J; Heller, Michael J

    2014-03-01

    Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a "liquid biopsy" may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification, PCR, and DNA sequencing. The complete process, blood to PCR, required <10 min. ccf-DNA was amplified by PCR with immunoglobulin heavy chain variable region (IGHV)-specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone, and then sequenced. PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15-20 mL blood. Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring.

  13. Ribosomal DNA, tri- and bi-partite pericentromeres in the permanent translocation heterozygote Rhoeo spathacea.

    PubMed

    Golczyk, Hieronim; Hasterok, Robert; Szklarczyk, Marek

    2010-12-01

    High- and low-stringency FISH and base-specific fluorescence were performed on the permanent translocation heterozygote Rhoeo spathacea (2n = 12). Our results indicate that 45S rDNA arrays, rDNA-related sequences and other GC-rich DNA fraction(s) are located within the pericentromeric regions of all twelve chromosomes, usually colocalizing with the chromomycin A(3)-positive bands. Homogenization of the pericentromeric regions appears to result from the concerted spread of GC-rich sequences, with differential amplification likely. We found new 5S rDNA patterns, which suggest a variability in the breakpoints and in the consequent chromosome reorganizations. It was found that the large 5S rDNA locus residing on each of the 8E and 9E arms consisted of two smaller loci. On each of the two chromosome arms 3b and 4b, in addition to the major subtelomeric 5S rDNA locus, a new minor locus was found interstitially about 40% along the arm length. The arrangement of cytotogenetic landmarks and chromosome arm measurements are discussed with regard to genome repatterning in Rhoeo.

  14. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    PubMed

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  15. A pooling-based approach to mapping genetic variants associated with DNA methylation

    PubMed Central

    Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.; McEwen, Lisa M.; Kobor, Michael S.; Fraser, Hunter B.

    2015-01-01

    DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a truly genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. We found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data. PMID:25910490

  16. A pooling-based approach to mapping genetic variants associated with DNA methylation

    DOE PAGES

    Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.; ...

    2015-04-24

    DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a trulymore » genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. Here we found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data.« less

  17. Characterization of Satellite DNA Sequences from the Commercially Important Marine Rotifers Brachionus rotundiformis and Brachionus plicatilis.

    PubMed

    Boehm; Gibson; Lubzens

    2000-01-01

    This study was initiated to search for species-specific and strain-specific satellite DNA sequences for which oligonucleotide primers could be designed to differentiate between various commercially important strains of the marine monogonont rotifers Brachionus rotundiformis and Brachionus plicatilis. Two unrelated, highly reiterated satellite sequences were cloned and characterized. The eight sequenced monomers from B. rotundiformis and six from B. plicatilis had low intrarepeat variability and were similar in their overall lengths, A + T compositions, and high degrees of repeated motif substructure. However, hybridizations to 19 representative strains, sequence characterizations, and GenBank searches indicated that these two satellites are morphotype-specific and population-specific, respectively, and share little homology to each other or to other characterized sequences in the database. Primer pairs designed for the B. rotundiformis satellite confirmed hybridization specificities on polymerase chain reaction and could serve as a useful molecular diagnostic tool to identify strains belonging to the SS morphotype, which are gaining widespread usage as first feeds for marine fish in commercial production.

  18. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence

    PubMed Central

    Turner, Barbara; Paun, Ovidiu; Munzinger, Jérôme; Chase, Mark W.; Samuel, Rosabelle

    2016-01-01

    Background and Aims Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species. Methods Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices. Key Results The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species. Conclusions In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree because the total number of variable sites was much lower than in the entire plastid genome. The geographical clustering of the individuals against a background of overall low sequence divergence could indicate transfer of plastid genomes due to hybridization and introgression following secondary contact. PMID:27098088

  19. Rapid Mitochondrial Genome Evolution through Invasion of Mobile Elements in Two Closely Related Species of Arbuscular Mycorrhizal Fungi

    PubMed Central

    Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers. PMID:23637766

  20. Rapid mitochondrial genome evolution through invasion of mobile elements in two closely related species of arbuscular mycorrhizal fungi.

    PubMed

    Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers.

  1. [Applylication of new type combined fragments: nrDNA ITS+ nad 1-intron 2 for identification of Dendrobium species of Fengdous].

    PubMed

    Geng, Li-xia; Zheng, Rui; Ren, Jie; Niu, Zhi-tao; Sun, Yu-long; Xue, Qing-yun; Liu, Wei; Ding, Xiao-yu

    2015-08-01

    In this study, 17 kinds of Dendrobium species of Fengdous including 39 individuals were collected from 4 provinces. Mitochondrial gene sequences co I, nad 5, nad 1-intron 2 and chloroplast gene sequences rbcL, matK amd psbA-trnH were amplified from these materials, as well as nrDNA ITS. Furthermore, suitable sequences for identification of Dendrobium species of Fengdous were screened by K-2-P and P-distance. The results showed that during the mentioned 7 sequences, nrDNA ITS, nad 1-intron 2 and psbA-trnH which had a high degree of variability could be used to identify Dendrobium species of Fengdous. However, single fragment could not be used to distinguish D. moniliforme and D. huoshanense. Moreover, compared to other combined fragments, new type combined fragments nrDNA ITS+nad 1-intron 2 was more effective in identifying the original plants of Dendrobium species and could be used to identify D. huoshanense and D. moniliforme. Besides, according to the UPGMA tree constructed with nrDNA ITS+nad 1-intron 2, 3 inspected Dendrobium plants were identified as D. huoshanense, D. moniliforme and D. officinale, respectively. This study identified Dendrobium species of Fengdous by combined fragments nrDNA ITS+nad 1-intron 2 for the first time, which provided a more effective basis for identification of Dendrobium species. And this study will be helpful for regulating the market of Fengdous.

  2. [The use of 16S rDNA sequencing in species diversity analysis for sputum of patients with ventilator-associated pneumonia].

    PubMed

    Yang, Xiaojun; Wang, Xiaohong; Liang, Zhijuan; Zhang, Xiaoya; Wang, Yanbo; Wang, Zhenhai

    2014-05-01

    To study the species and amount of bacteria in sputum of patients with ventilator-associated pneumonia (VAP) by using 16S rDNA sequencing analysis, and to explore the new method for etiologic diagnosis of VAP. Bronchoalveolar lavage sputum samples were collected from 31 patients with VAP. Bacterial DNA of the samples were extracted and identified by polymerase chain reaction (PCR). At the same time, sputum specimens were processed for routine bacterial culture. The high flux sequencing experiment was conducted on PCR positive samples with 16S rDNA macro genome sequencing technology, and sequencing results were analyzed using bioinformatics, then the results between the sequencing and bacteria culture were compared. (1) 550 bp of specific DNA sequences were amplified in sputum specimens from 27 cases of the 31 patients with VAP, and they were used for sequencing analysis. 103 856 sequences were obtained from those sputum specimens using 16S rDNA sequencing, yielding approximately 39 Mb of raw data. Tag sequencing was able to inform genus level in all 27 samples. (2) Alpha-diversity analysis showed that sputum samples of patients with VAP had significantly higher variability and richness in bacterial species (Shannon index values 1.20, Simpson index values 0.48). Rarefaction curve analysis showed that there were more species that were not detected by sequencing from some VAP sputum samples. (3) Analysis of 27 sputum samples with VAP by using 16S rDNA sequences yielded four phyla: namely Acitinobacteria, Bacteroidetes, Firmicutes, Proteobacteria. With genus as a classification, it was found that the dominant species included Streptococcus 88.9% (24/27), Limnohabitans 77.8% (21/27), Acinetobacter 70.4% (19/27), Sphingomonas 63.0% (17/27), Prevotella 63.0% (17/27), Klebsiella 55.6% (15/27), Pseudomonas 55.6% (15/27), Aquabacterium 55.6% (15/27), and Corynebacterium 55.6% (15/27). (4) Pyrophosphate sequencing discovered that Prevotella, Limnohabitans, Aquabacterium, Sphingomonas might not be detected by routine bacteria culture. Among seven species which were identified by both methods, pyrophosphate sequencing yielded higher positive rate than that of ordinary bacteria culture [Streptococcus: 88.9% (24/27) vs. 18.5% (5/27), Klebsiella: 55.6% (15/27) vs. 18.5% (5/27), Acinetobacter: 70.4% (19/27) vs. 37.0% (10/27), Corynebacterium: 55.6% (15/27) vs. 7.4% (2/27), P<0.05 or P<0.01]. Sequencing positive rate was found to increase positive rate for culture of Pseudomonas [55.6% (15/27) vs. 25.9% (7/27), P=0.050]. No significant differences were observed between sequencing and ordinary bacteria culture for detection Staphylococcus [7.4% (2/27) vs. 11.1% (3/27)] and Neisseria bacteria genera [18.5% (5/27) vs. 3.7% (1/27), both P>0.05]. 16S rDNA sequencing analysis confirmed that pathogenic bacteria in sputum of VAP were complicated with multiple drug resistant strains. Compared with routine bacterial culture, pyrophosphate sequencing had higher positive rate in detecting pathogens. 16S rDNA gene sequencing technology may become a new method for etiological diagnosis of VAP.

  3. The utility of mtDNA and rDNA for barcoding and phylogeny of plant-parasitic nematodes from Longidoridae (Nematoda, Enoplea).

    PubMed

    Palomares-Rius, J E; Cantalapiedra-Navarrete, C; Archidona-Yuste, A; Subbotin, S A; Castillo, P

    2017-09-07

    The traditional identification of plant-parasitic nematode species by morphology and morphometric studies is very difficult because of high morphological variability that can lead to considerable overlap of many characteristics and their ambiguous interpretation. For this reason, it is essential to implement approaches to ensure accurate species identification. DNA barcoding aids in identification and advances species discovery. This study sought to unravel the use of the mitochondrial marker cytochrome c oxidase subunit 1 (coxI) as barcode for Longidoridae species identification, and as a phylogenetic marker. The results showed that mitochondrial and ribosomal markers could be used as barcoding markers, except for some species from the Xiphinema americanum group. The ITS1 region showed a promising role in barcoding for species identification because of the clear molecular variability among species. Some species presented important molecular variability in coxI. The analysis of the newly provided sequences and the sequences deposited in GenBank showed plausible misidentifications, and the use of voucher species and topotype specimens is a priority for this group of nematodes. The use of coxI and D2 and D3 expansion segments of the 28S rRNA gene did not clarify the phylogeny at the genus level.

  4. Modeling of DNA local parameters predicts encrypted architectural motifs in Xenopus laevis ribosomal gene promoter.

    PubMed

    Roux-Rouquie, M; Marilley, M

    2000-09-15

    We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X. laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed.

  5. Comparative analysis of Edwardsiella isolates from fish in the eastern United States identifies two distinct genetic taxa amongst organisms phenotypically classified as E. tarda

    USGS Publications Warehouse

    Griffin, Matt J.; Quiniou, Sylvie M.; Cody, Theresa; Tabuchi, Maki; Ware, Cynthia; Cipriano, Rocco C.; Mauel, Michael J.; Soto, Esteban

    2013-01-01

    Edwardsiella tarda, a Gram-negative member of the family Enterobacteriaceae, has been implicated in significant losses in aquaculture facilities worldwide. Here, we assessed the intra-specific variability of E. tarda isolates from 4 different fish species in the eastern United States. Repetitive sequence mediated PCR (rep-PCR) using 4 different primer sets (ERIC I & II, ERIC II, BOX, and GTG5) and multi-locus sequence analysis of 16S SSU rDNA, groEl, gyrA, gyrB, pho, pgi, pgm, and rpoA gene fragments identified two distinct genotypes of E. tarda (DNA group I; DNA group II). Isolates that fell into DNA group II demonstrated more similarity to E. ictaluri than DNA group I, which contained the reference E. tarda strain (ATCC #15947). Conventional PCR analysis using published E. tarda-specific primer sets yielded variable results, with several primer sets producing no observable amplification of target DNA from some isolates. Fluorometric determination of G + C content demonstrated 56.4% G + C content for DNA group I, 60.2% for DNA group II, and 58.4% for E. ictaluri. Surprisingly, these isolates were indistinguishable using conventional biochemical techniques, with all isolates demonstrating phenotypic characteristics consistent with E. tarda. Analysis using two commercial test kits identified multiple phenotypes, although no single metabolic characteristic could reliably discriminate between genetic groups. Additionally, anti-microbial susceptibility and fatty acid profiles did not demonstrate remarkable differences between groups. The significant genetic variation (<90% similarity at gyrA, gyrB, pho, phi and pgm; <40% similarity by rep-PCR) between these groups suggests organisms from DNA group II may represent an unrecognized, genetically distinct taxa of Edwardsiella that is phenotypically indistinguishable from E. tarda.

  6. Short-read DNA sequencing yields microsatellite markers for Rheum

    USDA-ARS?s Scientific Manuscript database

    Identifying culinary rhubarb (Rheum ×hybridum Murray) cultivars using morphological characteristics is problematic due to variability within individual genotypes, variation caused by environmental factors, plant and leaf age, similarity between genetically diverse genotypes, multiple cultivar names ...

  7. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix

    DOE PAGES

    Horton, J. R.; Wang, H.; Mabuchi, M. Y.; ...

    2014-09-27

    MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNAmore » molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.« less

  8. J Genes for Heavy Chain Immunoglobulins of Mouse

    NASA Astrophysics Data System (ADS)

    Newell, Nanette; Richards, Julia E.; Tucker, Philip W.; Blattner, Frederick R.

    1980-09-01

    A 15.8-kilobase pair fragment of BALB/c mouse liver DNA, cloned in the Charon 4Aλ phage vector system, was shown to contain the μ heavy chain constant region (CHμ ) gene for the mouse immunoglobulin M. In addition, this fragment of DNA contains at least two J genes, used to code for the carboxyl terminal portion of heavy chain variable regions. These genes are located in genomic DNA about eight kilobase pairs to the 5' side of the CHμ gene. The complete nucleotide sequence of a 1120-base pair stretch of DNA that includes the two J genes has been determined.

  9. Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola

    PubMed Central

    Provataris, Panagiotis; Meusemann, Karen; Niehuis, Oliver; Grath, Sonja; Misof, Bernhard

    2018-01-01

    Abstract It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects. PMID:29697817

  10. Intercalation of XR5944 with the estrogen response element is modulated by the tri-nucleotide spacer sequence between half-sites

    PubMed Central

    Sidell, Neil; Mathad, Raveendra I.; Shu, Feng-jue; Zhang, Zhenjiang; Kallen, Caleb B.; Yang, Danzhou

    2011-01-01

    DNA-intercalating molecules can impair DNA replication, DNA repair, and gene transcription. We previously demonstrated that XR5944, a DNA bis-intercalator, specifically blocks binding of estrogen receptor-α (ERα) to the consensus estrogen response element (ERE). The consensus ERE sequence is AGGTCAnnnTGACCT, where nnn is known as the tri-nucleotide spacer. Recent work has shown that the tri-nucleotide spacer can modulate ERα-ERE binding affinity and ligand-mediated transcriptional responses. To further understand the mechanism by which XR5944 inhibits ERα-ERE binding, we tested its ability to interact with consensus EREs with variable tri-nucleotide spacer sequences and with natural but non-consensus ERE sequences using one dimensional nuclear magnetic resonance (1D 1H NMR) titration studies. We found that the tri-nucleotide spacer sequence significantly modulates the binding of XR5944 to EREs. Of the sequences that were tested, EREs with CGG and AGG spacers showed the best binding specificity with XR5944, while those spaced with TTT demonstrated the least specific binding. The binding stoichiometry of XR5944 with EREs was 2:1, which can explain why the spacer influences the drug-DNA interaction; each XR5944 spans four nucleotides (including portions of the spacer) when intercalating with DNA. To validate our NMR results, we conducted functional studies using reporter constructs containing consensus EREs with tri-nucleotide spacers CGG, CTG, and TTT. Results of reporter assays in MCF-7 cells indicated that XR5944 was significantly more potent in inhibiting the activity of CGG- than TTT-spaced EREs, consistent with our NMR results. Taken together, these findings predict that the anti-estrogenic effects of XR5944 will depend not only on ERE half-site composition but also on the tri-nucleotide spacer sequence of EREs located in the promoters of estrogen-responsive genes. PMID:21333738

  11. Genomic profiling of plastid DNA variation in the Mediterranean olive tree

    PubMed Central

    2011-01-01

    Background Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Results Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. Conclusions We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea. PMID:21569271

  12. Equine infectious anemia virus in naturally infected horses from the Brazilian Pantanal.

    PubMed

    Cursino, Andreia Elisa; Vilela, Ana Paula Pessoa; Franco-Luiz, Ana Paula Moreira; de Oliveira, Jaquelline Germano; Nogueira, Márcia Furlan; Júnior, João Pessoa Araújo; de Aguiar, Daniel Moura; Kroon, Erna Geessien

    2018-05-11

    Equine infectious anemia (EIA) has a worldwide distribution, and is widespread in Brazil. The Brazilian Pantanal presents with high prevalence comprising equine performance and indirectly the livestock industry, since the horses are used for cattle management. Although EIA is routinely diagnosed by the agar gel immunodiffusion test (AGID), this serological assay has some limitations, so PCR-based detection methods have the potential to overcome these limitations and act as complementary tests to those currently used. Considering the limited number of equine infectious anemia virus (EIAV) sequences which are available in public databases and the great genome variability, studies of EIAV detection and characterization molecular remain important. In this study we detected EIAV proviral DNA from 23 peripheral blood mononuclear cell (PBMCs) samples of naturally infected horses from Brazilian Pantanal using a semi-nested-PCR (sn-PCR). The serological profile of the animals was also evaluated by AGID and ELISA for gp90 and p26. Furthermore, the EIAV PCR amplified DNA was sequenced and phylogenetically analyzed. Here we describe the first EIAV sequences of the 5' LTR of the tat gene in naturally infected horses from Brazil, which presented with 91% similarity to EIAV reference sequences. The Brazilian EIAV sequences also presented variable nucleotide similarities among themselves, ranging from 93,5% to 100%. Phylogenetic analysis showed that Brazilian EIAV sequences grouped in a separate clade relative to other reference sequences. Thus this molecular detection and characterization may provide information about EIAV circulation in Brazilian territories and improve phylogenetic inferences.

  13. DNA fingerprints in physical anthropology.

    PubMed

    Weiss, Mark L

    1989-01-01

    Hypervariabal minisatellite DNA is a recently described class of nuclear sequences with no known biological function. The minisatellites do form a subtype of restricition fragment length polymorphisms possessing several characteristics particularly intriguing to anthropologists interested in forensics, sociobiology, primate conservation, genetic variability, and molecular evolution. The sequence occupy at least five dozen loci scattered throughout the human genome. Unlike many polymorphisms, many of the loci have numerous alleles each present at similar frequencies. Such a genetic structure produces exceptionally high levels of heterozygosity and thus provides a tool for the individualization of tissue samples. Additionally, as the alleles are inherited in a Mendelian fashion, the minisatellites provide a superb tool for the identification of paternity (or maternity). Unlike standard blood groups, levels of variability are so high in populations studied to data that parentage can be established by inclusion rather than exclution. Homologous sequences are shown to exist in a variety of Old World primates. Visualization of genetic fingerprints in nonhumans may allow for determination of paternity where the pool of potential sires is available, while also providing information on levels of genetic variability. These capabilities will ultimately provide for better management of primate colonies. Used in concert with behavioral data, a number of sociobiological will also become more amenable to investigation. Copyright © 1989 Wiley-Liss, Inc., A Wiley Company.

  14. fCCAC: functional canonical correlation analysis to evaluate covariance between nucleic acid sequencing datasets.

    PubMed

    Madrigal, Pedro

    2017-03-01

    Computational evaluation of variability across DNA or RNA sequencing datasets is a crucial step in genomic science, as it allows both to evaluate reproducibility of biological or technical replicates, and to compare different datasets to identify their potential correlations. Here we present fCCAC, an application of functional canonical correlation analysis to assess covariance of nucleic acid sequencing datasets such as chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). We show how this method differs from other measures of correlation, and exemplify how it can reveal shared covariance between histone modifications and DNA binding proteins, such as the relationship between the H3K4me3 chromatin mark and its epigenetic writers and readers. An R/Bioconductor package is available at http://bioconductor.org/packages/fCCAC/ . pmb59@cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Intragenomic sequence variation at the ITS1 - ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: mollusca)

    USGS Publications Warehouse

    Hoy, Marshal S.; Rodriguez, Rusty J.

    2013-01-01

    Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.                   

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplow, Irene M.; MacIsaac, Julia L.; Mah, Sarah M.

    DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a trulymore » genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. Here we found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data.« less

  17. Species-specific identification of commercial probiotic strains.

    PubMed

    Yeung, P S M; Sanders, M E; Kitts, C L; Cano, R; Tong, P S

    2002-05-01

    Products containing probiotic bacteria are gaining popularity, increasing the importance of their accurate speciation. Unfortunately, studies have suggested that improper labeling of probiotic species is common in commercial products. Species identification of a bank of commercial probiotic strains was attempted using partial 16S rDNA sequencing, carbohydrate fermentation analysis, and cellular fatty acid methyl ester analysis. Results from partial 16S rDNA sequencing indicated discrepancies between species designations for 26 out of 58 strains tested, including two ATCC Lactobacillus strains. When considering only the commercial strains obtained directly from the manufacturers, 14 of 29 strains carried species designations different from those obtained by partial 16S rDNA sequencing. Strains from six commercial products were species not listed on the label. The discrepancies mainly occurred in Lactobacillus acidophilus and Lactobacillus casei groups. Carbohydrate fermentation analysis was not sensitive enough to identify species within the L. acidophilus group. Fatty acid methyl ester analysis was found to be variable and inaccurate and is not recommended to identify probiotic lactobacilli.

  18. Uniparental genetic markers in South Amerindians

    PubMed Central

    Bisso-Machado, Rafael; Bortolini, Maria Cátira; Salzano, Francisco Mauro

    2012-01-01

    A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data. PMID:22888284

  19. Chicken immunoglobulin gamma-heavy chains: limited VH gene repertoire, combinatorial diversification by D gene segments and evolution of the heavy chain locus.

    PubMed

    Parvari, R; Avivi, A; Lentner, F; Ziv, E; Tel-Or, S; Burstein, Y; Schechter, I

    1988-03-01

    cDNA clones encoding the variable and constant regions of chicken immunoglobulin (Ig) gamma-chains were obtained from spleen cDNA libraries. Southern blots of kidney DNA show that the variable region sequences of eight cDNA clones reveal the same set of bands corresponding to approximately 30 cross-hybridizing VH genes of one subgroup. Since the VH clones were randomly selected, it is likely that the bulk of chicken H-chains are encoded by a single VH subgroup. Nucleotide sequence determinations of two cDNA clones reveal VH, D, JH and the constant region. The VH segments are closely related to each other (83% homology) as expected for VH or the same subgroup. The JHs are 15 residues long and differ by one amino acid. The Ds differ markedly in sequence (20% homology) and size (10 and 20 residues). These findings strongly indicate multiple (at least two) D genes which by a combinatorial joining mechanism diversify the H-chains, a mechanism which is not operative in the chicken L-chain locus. The most notable among the chicken Igs is the so-called 7S IgG because its H-chain differs in many important aspects from any mammalian IgG. The sequence of the C gamma cDNA reported here resolves this issue. The chicken C gamma is 426 residues long with four CH domains (unlike mammalian C gamma which has three CH domains) and it shows 25% homology to the chicken C mu. The chicken C gamma is most related to the mammalian C epsilon in length, the presence of four CH domains and the distribution of cysteines in the CH1 and CH2 domains. We propose that the unique chicken C gamma is the ancestor of the mammalian C epsilon and C gamma subclasses, and discuss the evolution of the H-chain locus from that of chicken with presumably three genes (mu, gamma, alpha) to the mammalian loci with 8-10 H-chain genes.

  20. Violation of an Evolutionarily Conserved Immunoglobulin Diversity Gene Sequence Preference Promotes Production of dsDNA-Specific IgG Antibodies

    PubMed Central

    Silva-Sanchez, Aaron; Liu, Cun Ren; Vale, Andre M.; Khass, Mohamed; Kapoor, Pratibha; Elgavish, Ada; Ivanov, Ivaylo I.; Ippolito, Gregory C.; Schelonka, Robert L.; Schoeb, Trenton R.; Burrows, Peter D.; Schroeder, Harry W.

    2015-01-01

    Variability in the developing antibody repertoire is focused on the third complementarity determining region of the H chain (CDR-H3), which lies at the center of the antigen binding site where it often plays a decisive role in antigen binding. The power of VDJ recombination and N nucleotide addition has led to the common conception that the sequence of CDR-H3 is unrestricted in its variability and random in its composition. Under this view, the immune response is solely controlled by somatic positive and negative clonal selection mechanisms that act on individual B cells to promote production of protective antibodies and prevent the production of self-reactive antibodies. This concept of a repertoire of random antigen binding sites is inconsistent with the observation that diversity (DH) gene segment sequence content by reading frame (RF) is evolutionarily conserved, creating biases in the prevalence and distribution of individual amino acids in CDR-H3. For example, arginine, which is often found in the CDR-H3 of dsDNA binding autoantibodies, is under-represented in the commonly used DH RFs rearranged by deletion, but is a frequent component of rarely used inverted RF1 (iRF1), which is rearranged by inversion. To determine the effect of altering this germline bias in DH gene segment sequence on autoantibody production, we generated mice that by genetic manipulation are forced to utilize an iRF1 sequence encoding two arginines. Over a one year period we collected serial serum samples from these unimmunized, specific pathogen-free mice and found that more than one-fifth of them contained elevated levels of dsDNA-binding IgG, but not IgM; whereas mice with a wild type DH sequence did not. Thus, germline bias against the use of arginine enriched DH sequence helps to reduce the likelihood of producing self-reactive antibodies. PMID:25706374

  1. ITS all right mama: investigating the formation of chimeric sequences in the ITS2 region by DNA metabarcoding analyses of fungal mock communities of different complexities.

    PubMed

    Bjørnsgaard Aas, Anders; Davey, Marie Louise; Kauserud, Håvard

    2017-07-01

    The formation of chimeric sequences can create significant methodological bias in PCR-based DNA metabarcoding analyses. During mixed-template amplification of barcoding regions, chimera formation is frequent and well documented. However, profiling of fungal communities typically uses the more variable rDNA region ITS. Due to a larger research community, tools for chimera detection have been developed mainly for the 16S/18S markers. However, these tools are widely applied to the ITS region without verification of their performance. We examined the rate of chimera formation during amplification and 454 sequencing of the ITS2 region from fungal mock communities of different complexities. We evaluated the chimera detecting ability of two common chimera-checking algorithms: perseus and uchime. Large proportions of the chimeras reported were false positives. No false negatives were found in the data set. Verified chimeras accounted for only 0.2% of the total ITS2 reads, which is considerably less than what is typically reported in 16S and 18S metabarcoding analyses. Verified chimeric 'parent sequences' had significantly higher per cent identity to one another than to random members of the mock communities. Community complexity increased the rate of chimera formation. GC content was higher around the verified chimeric break points, potentially facilitating chimera formation through base pair mismatching in the neighbouring regions of high similarity in the chimeric region. We conclude that the hypervariable nature of the ITS region seems to buffer the rate of chimera formation in comparison with other, less variable barcoding regions, due to shorter regions of high sequence similarity. © 2016 John Wiley & Sons Ltd.

  2. The contribution of alu elements to mutagenic DNA double-strand break repair.

    PubMed

    Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L

    2015-03-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.

  3. Fluorescent signatures for variable DNA sequences

    PubMed Central

    Rice, John E.; Reis, Arthur H.; Rice, Lisa M.; Carver-Brown, Rachel K.; Wangh, Lawrence J.

    2012-01-01

    Life abounds with genetic variations writ in sequences that are often only a few hundred nucleotides long. Rapid detection of these variations for identification of genetic diseases, pathogens and organisms has become the mainstay of molecular science and medicine. This report describes a new, highly informative closed-tube polymerase chain reaction (PCR) strategy for analysis of both known and unknown sequence variations. It combines efficient quantitative amplification of single-stranded DNA targets through LATE-PCR with sets of Lights-On/Lights-Off probes that hybridize to their target sequences over a broad temperature range. Contiguous pairs of Lights-On/Lights-Off probes of the same fluorescent color are used to scan hundreds of nucleotides for the presence of mutations. Sets of probes in different colors can be combined in the same tube to analyze even longer single-stranded targets. Each set of hybridized Lights-On/Lights-Off probes generates a composite fluorescent contour, which is mathematically converted to a sequence-specific fluorescent signature. The versatility and broad utility of this new technology is illustrated in this report by characterization of variant sequences in three different DNA targets: the rpoB gene of Mycobacterium tuberculosis, a sequence in the mitochondrial cytochrome C oxidase subunit 1 gene of nematodes and the V3 hypervariable region of the bacterial 16 s ribosomal RNA gene. We anticipate widespread use of these technologies for diagnostics, species identification and basic research. PMID:22879378

  4. Mismatch and G-Stack Modulated Probe Signals on SNP Microarrays

    PubMed Central

    Binder, Hans; Fasold, Mario; Glomb, Torsten

    2009-01-01

    Background Single nucleotide polymorphism (SNP) arrays are important tools widely used for genotyping and copy number estimation. This technology utilizes the specific affinity of fragmented DNA for binding to surface-attached oligonucleotide DNA probes. We analyze the variability of the probe signals of Affymetrix GeneChip SNP arrays as a function of the probe sequence to identify relevant sequence motifs which potentially cause systematic biases of genotyping and copy number estimates. Methodology/Principal Findings The probe design of GeneChip SNP arrays enables us to disentangle different sources of intensity modulations such as the number of mismatches per duplex, matched and mismatched base pairings including nearest and next-nearest neighbors and their position along the probe sequence. The effect of probe sequence was estimated in terms of triple-motifs with central matches and mismatches which include all 256 combinations of possible base pairings. The probe/target interactions on the chip can be decomposed into nearest neighbor contributions which correlate well with free energy terms of DNA/DNA-interactions in solution. The effect of mismatches is about twice as large as that of canonical pairings. Runs of guanines (G) and the particular type of mismatched pairings formed in cross-allelic probe/target duplexes constitute sources of systematic biases of the probe signals with consequences for genotyping and copy number estimates. The poly-G effect seems to be related to the crowded arrangement of probes which facilitates complex formation of neighboring probes with at minimum three adjacent G's in their sequence. Conclusions The applied method of “triple-averaging” represents a model-free approach to estimate the mean intensity contributions of different sequence motifs which can be applied in calibration algorithms to correct signal values for sequence effects. Rules for appropriate sequence corrections are suggested. PMID:19924253

  5. Myxobolus cerebralis internal transcribed spacer 1 (ITS-1) sequences support recent spread of the parasite to North America and within Europe

    USGS Publications Warehouse

    Whipps, Christopher M.; El-Matbouli, M.; Hedrick, R.P.; Blazer, V.; Kent, M.L.

    2004-01-01

    Molecular approaches for resolving relationships among the Myxozoa have relied mainly on small subunit (SSU) ribosomal DNA (rDNA) sequence analysis. This region of the gene is generally used for higher phylogenetic studies, and the conservative nature of this gene may make it inadequate for intraspecific comparisons. Previous intraspecific studies of Myxobolus cerebralis based on molecular analyses reported that the sequence of SSU rDNA and the internal transcribed spacer (ITS) were highly conserved in representatives of the parasite from North America and Europe. Considering that the ITS is usually a more variable region than the SSU, we reanalyzed available sequences on GenBank and obtained sequences from other M. cerebralis representatives from the states of California and West Virginia in the USA and from Germany and Russia. With the exception of 7 base pairs, most of the sequence designated as ITS-1 in GenBank was a highly conserved portion of the rDNA near the 3-prime end of the SSU region. Nonetheless, the additional ITS-1 sequences obtained from the available geographic representatives were well conserved. It is unlikely that we would have observed virtually identical ITS-1 sequences between European and American M. cerebralis samples had it spread naturally over time, particularly when compared to the variation seen between isolates of another myxozoan (Kudoa thyrsites) that has most likely spread naturally. These data further support the hypothesis that the current distribution of M. cerebralis in North America is a result of recent introductions followed by dispersal via anthropogenic means, largely through the stocking of infected trout for sport fishing.

  6. Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima

    PubMed Central

    Yin, Yimeng; Das, Pratyush K; Jolma, Arttu; Zhu, Fangjie; Popov, Alexander; Xu, You; Nilsson, Lennart

    2018-01-01

    Most transcription factors (TFs) can bind to a population of sequences closely related to a single optimal site. However, some TFs can bind to two distinct sequences that represent two local optima in the Gibbs free energy of binding (ΔG). To determine the molecular mechanism behind this effect, we solved the structures of human HOXB13 and CDX2 bound to their two optimal DNA sequences, CAATAAA and TCGTAAA. Thermodynamic analyses by isothermal titration calorimetry revealed that both sites were bound with similar ΔG. However, the interaction with the CAA sequence was driven by change in enthalpy (ΔH), whereas the TCG site was bound with similar affinity due to smaller loss of entropy (ΔS). This thermodynamic mechanism that leads to at least two local optima likely affects many macromolecular interactions, as ΔG depends on two partially independent variables ΔH and ΔS according to the central equation of thermodynamics, ΔG = ΔH - TΔS. PMID:29638214

  7. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys

    PubMed Central

    2014-01-01

    Background Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Methods Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Results Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Conclusions Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology. PMID:25034633

  8. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    PubMed

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology.

  9. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma

    PubMed Central

    Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D.; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-01-01

    Background Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Results Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. Conclusions The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as ‘passengers’ and consequently have no discernible effect in this type of cancer. PMID:27351283

  10. Satellite DNA and cytogenetic evolution: molecular aspects and implications for man. [Kangaroo rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, F.T.; Mazrimas, J.

    1977-02-28

    Simple, highly reiterated DNA sequences, often observed in density gradients as satellite DNAs, exist in condensed heterochromatin. This material is predominantly located at chromosomal centromeres, occasionally at telomeres, or intercalated within arms; in a few species it occupies entire chromosome arms. Satellite DNAs are a highly variable component of the genome of most higher eukaryotes, but their functions have remained speculative. The genus of kangaroo rats (Dipodomys) exhibits remarkable interspecies variations in content of three satellite DNAs, consisting of simple sequences 3 to 10 base pairs long, and in species karyotypes. A broad range of diploid-DNA content is correlated withmore » satellite-DNA content. The latter is correlated positively with predominance of biarmed over uniarmed chromosomes (high fundamental number FN) and inversely with two anatomical indices (leg-bone-length ratios) of specialization for the jumping gait. Karyotypic variation is achieved via chromosomal rearrangements, e.g., Robertsonian fusion, C-band heteromorphism, and pericentric inversion. Environmental adaptation is achieved, in part, by reassortment of gene-linkage groups and regulatory controls as a result of the chromosomal rearrangements. The foregoing relationships led to the postulation that highly reiterated DNA sequences play a supragenic, global role in environmental adaptation and the evolution of new species.« less

  11. Toward a mtDNA locus-specific mutation database using the LOVD platform.

    PubMed

    Elson, Joanna L; Sweeney, Mary G; Procaccio, Vincent; Yarham, John W; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H; Pitceathly, Robert D S; Thorburn, David R; Lott, Marie T; Wallace, Douglas C; Taylor, Robert W; McFarland, Robert

    2012-09-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. © 2012 Wiley Periodicals, Inc.

  12. Toward a mtDNA Locus-Specific Mutation Database Using the LOVD Platform

    PubMed Central

    Elson, Joanna L.; Sweeney, Mary G.; Procaccio, Vincent; Yarham, John W.; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H.; Pitceathly, Robert D.S.; Thorburn, David R.; Lott, Marie T.; Wallace, Douglas C.; Taylor, Robert W.; McFarland, Robert

    2015-01-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. PMID:22581690

  13. A variable DNA recognition site organization establishes the LiaR-mediated cell envelope stress response of enterococci to daptomycin

    DOE PAGES

    Davlieva, Milya; Shi, Yiwen; Leonard, Paul G.; ...

    2015-04-19

    LiaR is a ‘master regulator’ of the cell envelope stress response in enterococci and many other Gram-positive organisms. Mutations to liaR can lead to antibiotic resistance to a variety of antibiotics including the cyclic lipopeptide daptomycin. LiaR is phosphorylated in response to membrane stress to regulate downstream target operons. Using DNA footprinting of the regions upstream of the liaXYZ and liaFSR operons we show that LiaR binds an extended stretch of DNA that extends beyond the proposed canonical consensus sequence suggesting a more complex level of regulatory control of target operons. We go on to determine the biochemical and structuralmore » basis for increased resistance to daptomycin by the adaptive mutation to LiaR (D191N) first identified from the pathogen Enterococcus faecalis S613. LiaR D191N increases oligomerization of LiaR to form a constitutively activated tetramer that has high affinity for DNA even in the absence of phosphorylation leading to increased resistance. The crystal structures of the LiaR DNA binding domain complexed to the putative consensus sequence as well as an adjoining secondary sequence show that upon binding, LiaR induces DNA bending that is consistent with increased recruitment of RNA polymerase to the transcription start site and upregulation of target operons.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serwer, Philip, E-mail: serwer@uthscsa.edu; Wright, Elena T.; Liu, Zheng

    DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNAmore » missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.« less

  15. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    PubMed

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-07-14

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.

  16. Pyrosequencing the Canine Faecal Microbiota: Breadth and Depth of Biodiversity

    PubMed Central

    Hand, Daniel; Wallis, Corrin; Colyer, Alison; Penn, Charles W.

    2013-01-01

    Mammalian intestinal microbiota remain poorly understood despite decades of interest and investigation by culture-based and other long-established methodologies. Using high-throughput sequencing technology we now report a detailed analysis of canine faecal microbiota. The study group of animals comprised eleven healthy adult miniature Schnauzer dogs of mixed sex and age, some closely related and all housed in kennel and pen accommodation on the same premises with similar feeding and exercise regimes. DNA was extracted from faecal specimens and subjected to PCR amplification of 16S rDNA, followed by sequencing of the 5′ region that included variable regions V1 and V2. Barcoded amplicons were sequenced by Roche-454 FLX high-throughput pyrosequencing. Sequences were assigned to taxa using the Ribosomal Database Project Bayesian classifier and revealed dominance of Fusobacterium and Bacteroidetes phyla. Differences between animals in the proportions of different taxa, among 10,000 reads per animal, were clear and not supportive of the concept of a “core microbiota”. Despite this variability in prominent genera, littermates were shown to have a more similar faecal microbial composition than unrelated dogs. Diversity of the microbiota was also assessed by assignment of sequence reads into operational taxonomic units (OTUs) at the level of 97% sequence identity. The OTU data were then subjected to rarefaction analysis and determination of Chao1 richness estimates. The data indicated that faecal microbiota comprised possibly as many as 500 to 1500 OTUs. PMID:23382835

  17. Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants.

    PubMed Central

    Dean, C; Jones, J; Favreau, M; Dunsmuir, P; Bedbrook, J

    1988-01-01

    The petunia rbcS gene SSU301 was introduced into tobacco using Agrobacterium tumefaciens-mediated transformation. The time at which rbcS expression was maximal after transfer of the tobacco plants to the greenhouse was determined. The expression level of the SSU301 gene varied up to 9 fold between individual tobacco plants which had been standardized physiologically as much as possible. The presence of adjacent pUC plasmid sequences did not affect the expression of the SSU301 gene. In an attempt to reduce the between-transformant variability in expression, the SSU301 gene was introduced into tobacco surrounded by 10kb of 5' and 13 kb of 3' DNA sequences which normally flank SSU301 in petunia. The longer flanking regions did not reduce the between-transformant variability of SSU301 gene expression. Images PMID:3174450

  18. Modeling of DNA local parameters predicts encrypted architectural motifs in Xenopus laevis ribosomal gene promoter

    PubMed Central

    Roux-Rouquie, Magali; Marilley, Monique

    2000-01-01

    We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X.laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed. PMID:10982860

  19. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.

    PubMed

    Melters, Daniël P; Bradnam, Keith R; Young, Hugh A; Telis, Natalie; May, Michael R; Ruby, J Graham; Sebra, Robert; Peluso, Paul; Eid, John; Rank, David; Garcia, José Fernando; DeRisi, Joseph L; Smith, Timothy; Tobias, Christian; Ross-Ibarra, Jeffrey; Korf, Ian; Chan, Simon W L

    2013-01-30

    Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.

  20. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution

    PubMed Central

    2013-01-01

    Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes. PMID:23363705

  1. Genetic variability among Trichuris ovis isolates from different hosts in Guangdong Province, China revealed by sequences of three mitochondrial genes.

    PubMed

    Wang, Yan; Liu, Guo-Hua; Li, Jia-Yuan; Xu, Min-Jun; Ye, Yong-Gang; Zhou, Dong-Hui; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan

    2013-02-01

    This study examined sequence variation in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 5 (nad5) and cytochrome b (cytb), among Trichuris ovis isolates from different hosts in Guangdong Province, China. A portion of the cox1 (pcox1), nad5 (pnad5) and cytb (pcytb) genes was amplified separately from individual whipworms by PCR, and was subjected to sequencing from both directions. The size of the sequences of pcox1, pnad5 and pcytb was 618, 240 and 464 bp, respectively. Although the intra-specific sequence variations within T. ovis were 0-0.8% for pcox1, 0-0.8% for pnad5 and 0-1.9% for pcytb, the inter-specific sequence differences among members of the genus Trichuris were significantly higher, being 24.3-26.5% for pcox1, 33.7-56.4% for pnad5 and 24.8-26.1% for pcytb, respectively. Phylogenetic analyses using combined sequences of pcox1, pnad5 and pcytb, with three different computational algorithms (maximum likelihood, maximum parsimony and Bayesian inference), indicated that all of the T. ovis isolates grouped together with high statistical support. These findings demonstrated the existence of intra-specific variation in mtDNA sequences among T. ovis isolates from different hosts, and have implications for studying molecular epidemiology and population genetics of T. ovis.

  2. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications

    PubMed Central

    Zaiko, Anastasija; Fletcher, Lauren M.; Laroche, Olivier; Wood, Susanna A.

    2017-01-01

    High-throughput sequencing metabarcoding studies in marine biosecurity have largely focused on targeting environmental DNA (eDNA). DNA can persist extracellularly in the environment, making discrimination of living organisms difficult. In this study, bilge water samples (i.e., water accumulating on-board a vessel during transit) were collected from 15 small recreational and commercial vessels. eDNA and eRNA molecules were co-extracted and the V4 region of the 18S ribosomal RNA gene targeted for metabarcoding. In total, 62.7% of the Operational Taxonomic Units (OTUs) were identified at least once in the corresponding eDNA and eRNA reads, with 19.5% unique to eDNA and 17.7% to eRNA. There were substantial differences in diversity between molecular compartments; 57% of sequences from eDNA-only OTUs belonged to fungi, likely originating from legacy DNA. In contrast, there was a higher percentage of metazoan (50.2%) and ciliate (31.7%) sequences in the eRNA-only OTUs. Our data suggest that the presence of eRNA-only OTUs could be due to increased cellular activities of some rare taxa that were not identified in the eDNA datasets, unusually high numbers of rRNA transcripts in ciliates, and/or artefacts produced during the reverse transcriptase, PCR and sequencing steps. The proportions of eDNA/eRNA shared and unshared OTUs were highly heterogeneous within individual bilge water samples. Multiple factors including boat type and the activities performed on-board, such as washing of scientific equipment, may play a major role in contributing to this variability. For some marine biosecurity applications analysis, eDNA-only data may be sufficient, however there are an increasing number of instances where distinguishing the living portion of a community is essential. For these circumstances, we suggest only including OTUs that are present in both eDNA and eRNA data. OTUs found only in the eRNA data need to be interpreted with caution until further research provides conclusive evidence for their origin. PMID:29095959

  3. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications.

    PubMed

    Pochon, Xavier; Zaiko, Anastasija; Fletcher, Lauren M; Laroche, Olivier; Wood, Susanna A

    2017-01-01

    High-throughput sequencing metabarcoding studies in marine biosecurity have largely focused on targeting environmental DNA (eDNA). DNA can persist extracellularly in the environment, making discrimination of living organisms difficult. In this study, bilge water samples (i.e., water accumulating on-board a vessel during transit) were collected from 15 small recreational and commercial vessels. eDNA and eRNA molecules were co-extracted and the V4 region of the 18S ribosomal RNA gene targeted for metabarcoding. In total, 62.7% of the Operational Taxonomic Units (OTUs) were identified at least once in the corresponding eDNA and eRNA reads, with 19.5% unique to eDNA and 17.7% to eRNA. There were substantial differences in diversity between molecular compartments; 57% of sequences from eDNA-only OTUs belonged to fungi, likely originating from legacy DNA. In contrast, there was a higher percentage of metazoan (50.2%) and ciliate (31.7%) sequences in the eRNA-only OTUs. Our data suggest that the presence of eRNA-only OTUs could be due to increased cellular activities of some rare taxa that were not identified in the eDNA datasets, unusually high numbers of rRNA transcripts in ciliates, and/or artefacts produced during the reverse transcriptase, PCR and sequencing steps. The proportions of eDNA/eRNA shared and unshared OTUs were highly heterogeneous within individual bilge water samples. Multiple factors including boat type and the activities performed on-board, such as washing of scientific equipment, may play a major role in contributing to this variability. For some marine biosecurity applications analysis, eDNA-only data may be sufficient, however there are an increasing number of instances where distinguishing the living portion of a community is essential. For these circumstances, we suggest only including OTUs that are present in both eDNA and eRNA data. OTUs found only in the eRNA data need to be interpreted with caution until further research provides conclusive evidence for their origin.

  4. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA

    PubMed Central

    Lukinavičius, Gražvydas; Lapinaitė, Audronė; Urbanavičiūtė, Giedrė; Gerasimaitė, Rūta; Klimašauskas, Saulius

    2012-01-01

    DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA. PMID:23042683

  5. High Prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae Detected in the Human Gut Using an Improved DNA Detection Protocol

    PubMed Central

    Dridi, Bédis; Henry, Mireille; El Khéchine, Amel; Raoult, Didier; Drancourt, Michel

    2009-01-01

    Background The low and variable prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae DNA in human stool contrasts with the paramount role of these methanogenic Archaea in digestion processes. We hypothesized that this contrast is a consequence of the inefficiencies of current protocols for archaeon DNA extraction. We developed a new protocol for the extraction and PCR-based detection of M. smithii and M. stadtmanae DNA in human stool. Methodology/Principal Findings Stool specimens collected from 700 individuals were filtered, mechanically lysed twice, and incubated overnight with proteinase K prior to DNA extraction using a commercial DNA extraction kit. Total DNA was used as a template for quantitative real-time PCR targeting M. smithii and M. stadtmanae 16S rRNA and rpoB genes. Amplification of 16S rRNA and rpoB yielded positive detection of M. smithii in 95.7% and M. stadtmanae in 29.4% of specimens. Sequencing of 16S rRNA gene PCR products from 30 randomly selected specimens (15 for M. smithii and 15 for M. stadtmanae) yielded a sequence similarity of 99–100% using the reference M. smithii ATCC 35061 and M. stadtmanae DSM 3091 sequences. Conclusions/Significance In contrast to previous reports, these data indicate a high prevalence of the methanogens M. smithii and M. stadtmanae in the human gut, with the former being an almost ubiquitous inhabitant of the intestinal microbiome. PMID:19759898

  6. Nonparametric Bayesian clustering to detect bipolar methylated genomic loci.

    PubMed

    Wu, Xiaowei; Sun, Ming-An; Zhu, Hongxiao; Xie, Hehuang

    2015-01-16

    With recent development in sequencing technology, a large number of genome-wide DNA methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from allele-specific methylation (ASM) or cell-specific methylation (CSM). Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets. Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population.

  7. Change in IgHV Mutational Status of CLL Suggests Origin From Multiple Clones.

    PubMed

    Osman, Afaf; Gocke, Christopher D; Gladstone, Douglas E

    2017-02-01

    Fluorescence in situ hybridization and immunoglobulin (Ig) heavy-chain variable-region (IgHV) mutational status are used to predict outcome in chronic lymphocytic leukemia (CLL). Although DNA aberrations change over time, IgHV sequences and mutational status are considered stable. In a retrospective review, 409 CLL patients, between 2008 and 2015, had IgHV analysis: 56 patients had multiple analyses performed. Seven patients' IgHV results changed: 2 from unmutated to mutated and 5 from mutated to unmutated IgHV sequence. Three concurrently changed their variable heavy-chain sequence. Secondary to allelic exclusion, 2 of the new variable heavy chains produced were biologically nonplausible. The existence of these new nonplausible heavy-chain variable regions suggests either the CLL cancer stem-cell maintains the ability to rearrange a previously silenced IgH allele or more likely that the cancer stem-cell produced at least 2 subclones, suggesting that the CLL cancer stem cell exists before the process of allelic exclusion occurs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Knowlton, Nancy

    2012-01-01

    Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets for metazoan metagenetic analyses, are discussed. PMID:23049971

  9. Initial Characterization of the Pf-Int Recombinase from the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Ghorbal, Mehdi; Scheidig-Benatar, Christine; Bouizem, Salma; Thomas, Christophe; Paisley, Genevieve; Faltermeier, Claire; Liu, Melanie; Scherf, Artur; Lopez-Rubio, Jose-Juan; Gopaul, Deshmukh N.

    2012-01-01

    Background Genetic variation is an essential means of evolution and adaptation in many organisms in response to environmental change. Certain DNA alterations can be carried out by site-specific recombinases (SSRs) that fall into two families: the serine and the tyrosine recombinases. SSRs are seldom found in eukaryotes. A gene homologous to a tyrosine site-specific recombinase has been identified in the genome of Plasmodium falciparum. The sequence is highly conserved among five other members of Plasmodia. Methodology/Principal Findings The predicted open reading frame encodes for a ∼57 kDa protein containing a C-terminal domain including the putative tyrosine recombinase conserved active site residues R-H-R-(H/W)-Y. The N-terminus has the typical alpha-helical bundle and potentially a mixed alpha-beta domain resembling that of λ-Int. Pf-Int mRNA is expressed differentially during the P. falciparum erythrocytic life stages, peaking in the schizont stage. Recombinant Pf-Int and affinity chromatography of DNA from genomic or synthetic origin were used to identify potential DNA targets after sequencing or micro-array hybridization. Interestingly, the sequences captured also included highly variable subtelomeric genes such as var, rif, and stevor sequences. Electrophoretic mobility shift assays with DNA were carried out to verify Pf-Int/DNA binding. Finally, Pf-Int knock-out parasites were created in order to investigate the biological role of Pf-Int. Conclusions/Significance Our data identify for the first time a malaria parasite gene with structural and functional features of recombinases. Pf-Int may bind to and alter DNA, either in a sequence specific or in a non-specific fashion, and may contribute to programmed or random DNA rearrangements. Pf-Int is the first molecular player identified with a potential role in genome plasticity in this pathogen. Finally, Pf-Int knock-out parasite is viable showing no detectable impact on blood stage development, which is compatible with such function. PMID:23056326

  10. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    PubMed Central

    Fernández, Agustín F.; Bayón, Gustavo F.; Urdinguio, Rocío G.; Toraño, Estela G.; García, María G.; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M.; Riancho, José A.; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A.

    2015-01-01

    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type–independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. PMID:25271306

  11. Land plants and DNA barcodes: short-term and long-term goals.

    PubMed

    Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haider, Nadia; Haidar, Nadia; Savolainen, Vincent

    2005-10-29

    Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.

  12. Land plants and DNA barcodes: short-term and long-term goals

    PubMed Central

    Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haidar, Nadia; Savolainen, Vincent

    2005-01-01

    Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the ‘genetic gaps’ that are useful in assessing species limits. PMID:16214746

  13. Constructing and detecting a cDNA library for mites.

    PubMed

    Hu, Li; Zhao, YaE; Cheng, Juan; Yang, YuanJun; Li, Chen; Lu, ZhaoHui

    2015-10-01

    RNA extraction and construction of complementary DNA (cDNA) library for mites have been quite challenging due to difficulties in acquiring tiny living mites and breaking their hard chitin. The present study is to explore a better method to construct cDNA library for mites that will lay the foundation on transcriptome and molecular pathogenesis research. We selected Psoroptes cuniculi as an experimental subject and took the following steps to construct and verify cDNA library. First, we combined liquid nitrogen grinding with TRIzol for total RNA extraction. Then, switching mechanism at 5' end of the RNA transcript (SMART) technique was used to construct full-length cDNA library. To evaluate the quality of cDNA library, the library titer and recombination rate were calculated. The reliability of cDNA library was detected by sequencing and analyzing positive clones and genes amplified by specific primers. The results showed that the RNA concentration was 836 ng/μl and the absorbance ratio at 260/280 nm was 1.82. The library titer was 5.31 × 10(5) plaque-forming unit (PFU)/ml and the recombination rate was 98.21%, indicating that the library was of good quality. In the 33 expressed sequence tags (ESTs) of P. cuniculi, two clones of 1656 and 1658 bp were almost identical with only three variable sites detected, which had an identity of 99.63% with that of Psoroptes ovis, indicating that the cDNA library was reliable. Further detection by specific primers demonstrated that the 553-bp Pso c II gene sequences of P. cuniculi had an identity of 98.56% with those of P. ovis, confirming that the cDNA library was not only reliable but also feasible.

  14. Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome.

    PubMed

    Gu, Junchen; Stevens, Michael; Xing, Xiaoyun; Li, Daofeng; Zhang, Bo; Payton, Jacqueline E; Oltz, Eugene M; Jarvis, James N; Jiang, Kaiyu; Cicero, Theodore; Costello, Joseph F; Wang, Ting

    2016-04-07

    DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types. Copyright © 2016 Gu et al.

  15. The role of molecular structure of sugar-phosphate backbone and nucleic acid bases in the formation of single-stranded and double-stranded DNA structures.

    PubMed

    Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina

    2014-06-01

    Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. Copyright © 2013 Wiley Periodicals, Inc.

  16. Multigene-based analyses on evolutionary phylogeny of two controversial ciliate orders: Pleuronematida and Loxocephalida (Protista, Ciliophora, Oligohymenophorea).

    PubMed

    Gao, Feng; Katz, Laura A; Song, Weibo

    2013-07-01

    Relationships among members of the ciliate subclass Scuticociliatia (Ciliophora, Oligohymenophorea) are largely unresolved. Phylogenetic studies of its orders Pleuronematida and Loxocephalida were initially based on small subunit ribosomal RNA gene (SSU-rDNA) analyses of a limited number of taxa. Here we characterized 37 sequences (SSU-rDNA, ITS-5.8S and LSU-rDNA) from 21 taxonomically controversial members of these orders. Phylogenetic trees constructed to assess the inter- and intra-generic relationships of pleuronematids and loxocephalids reveal the following: (1) the order Loxocephalida and its two families Loxocephalidae and Cinetochilidae are not monophyletic when more taxa are added; (2) the core pleuronematids are divided into two fully supported clades, however, the order Pleuronematida is not monophyletic because Cyclidium glaucoma is closer to Thigmotrichida; (3) the family Pleuronematidae and the genus Schizocalyptra are monophyletic, though rDNA sequences of Pleuronema species are highly variable; (4) Pseudoplatynematum and Sathrophilus are closely related to the subclass Astomatia, while Cinetochilum forms a monophyletic group with the subclass Apostomatia; and (5) Hippocomos falls in the order Pleuronematida and is closely related to Eurystomatellidae and Cyclidium plouneouri. Further, in an effort to provide a better resolution of evolutionary relationships, the secondary structures of ITS2 transcripts and the variable region 4 (V4) of the small subunit ribosomal RNA (SSU-rRNA) are predicted, revealing that ITS2 structures are conserved at the order level while V4 region structures are more variable than ITS2 structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    PubMed Central

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  18. Development and evaluation of specific PCR primers targeting the ribosomal DNA-internal transcribed spacer (ITS) region of peritrich ciliates in environmental samples

    NASA Astrophysics Data System (ADS)

    Su, Lei; Zhang, Qianqian; Gong, Jun

    2017-07-01

    Peritrich ciliates are highly diverse and can be important bacterial grazers in aquatic ecosystems. Morphological identifications of peritrich species and assemblages in the environment are time-consuming and expertise-demanding. In this study, two peritrich-specific PCR primers were newly designed to amplify a fragment including the internal transcribed spacer (ITS) region of ribosomal rDNA from environmental samples. The primers showed high specificity in silico, and in tests with peritrich isolates and environmental DNA. Application of these primers in clone library construction and sequencing yielded exclusively sequences of peritrichs for water and sediment samples. We also found the ITS1, ITS2, ITS, D1 region of 28S rDNA, and ITS+D1 region co-varied with, and generally more variable than, the V9 region of 18S rDNA in peritrichs. The newly designed specific primers thus provide additional tools to study the molecular diversity, community composition, and phylogeography of these ecologically important protists in different systems.

  19. Using DNA-labelled nano- and microparticles to track particle transport in the environment

    NASA Astrophysics Data System (ADS)

    McNew, Coy; Wang, Chaozi; Dahlke, Helen; Lyon, Steve; Walter, Todd

    2017-04-01

    By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labelled nano- and microparticle tracers for use in a myriad of environmental systems. The use of custom sequenced DNA allows for the fabrication of an enormous number of uniquely labelled tracers with identical transport properties (approximately 1.61 x 1060 unique sequences), each independently quantifiable, that can be applied simultaneously in any hydrologic system. By controlling the fabrication procedure to produce particles of custom size and charge, we are able to tag each size-charge combination uniquely in order to directly probe the effect of these variables on the transport properties of the particles. Here we present our methods for fabrication, extraction, and analysis of the DNA nano- and microparticle tracers, along with results from several successful applications of the tracers, including transport and retention analysis at the lab, continuum, and field scales. To date, our DNA-labelled nano- and microparticle tracers have proved useful in surface and subsurface water applications, soil retention, and even subglacial flow pathways. The range of potential applications continue to prove nearly limitless.

  20. Use of DNA barcodes to identify flowering plants.

    PubMed

    Kress, W John; Wurdack, Kenneth J; Zimmer, Elizabeth A; Weigt, Lee A; Janzen, Daniel H

    2005-06-07

    Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.

  1. Modeling genome coverage in single-cell sequencing

    PubMed Central

    Daley, Timothy; Smith, Andrew D.

    2014-01-01

    Motivation: Single-cell DNA sequencing is necessary for examining genetic variation at the cellular level, which remains hidden in bulk sequencing experiments. But because they begin with such small amounts of starting material, the amount of information that is obtained from single-cell sequencing experiment is highly sensitive to the choice of protocol employed and variability in library preparation. In particular, the fraction of the genome represented in single-cell sequencing libraries exhibits extreme variability due to quantitative biases in amplification and loss of genetic material. Results: We propose a method to predict the genome coverage of a deep sequencing experiment using information from an initial shallow sequencing experiment mapped to a reference genome. The observed coverage statistics are used in a non-parametric empirical Bayes Poisson model to estimate the gain in coverage from deeper sequencing. This approach allows researchers to know statistical features of deep sequencing experiments without actually sequencing deeply, providing a basis for optimizing and comparing single-cell sequencing protocols or screening libraries. Availability and implementation: The method is available as part of the preseq software package. Source code is available at http://smithlabresearch.org/preseq. Contact: andrewds@usc.edu Supplementary information: Supplementary material is available at Bioinformatics online. PMID:25107873

  2. Molecular Dynamics Simulations of DNA-Free and DNA-Bound TAL Effectors

    PubMed Central

    Wan, Hua; Hu, Jian-ping; Li, Kang-shun; Tian, Xu-hong; Chang, Shan

    2013-01-01

    TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5′ end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism. PMID:24130757

  3. Variation in ribosomal and mitochondrial DNA sequences demonstrates the existence of intraspecific groups in Paramecium multimicronucleatum (Ciliophora, Oligohymenophorea).

    PubMed

    Tarcz, Sebastian; Potekhin, Alexey; Rautian, Maria; Przyboś, Ewa

    2012-05-01

    This is the first phylogenetic study of the intraspecific variability within Paramecium multimicronucleatum with the application of two-loci analysis (ITS1-5.8S-ITS2-5'LSU rDNA and COI mtDNA) carried out on numerous strains originated from different continents. The species has been shown to have a complex structure of several sibling species within taxonomic species. Our analysis revealed the existence of 10 haplotypes for the rDNA fragment and 15 haplotypes for the COI fragment in the studied material. The mean distance for all of the studied P. multimicronucleatum sequence pairs was p=0.025/0.082 (rDNA/COI). Despite the greater variation of the COI fragment, the COI-derived tree topology is similar to the tree topology constructed on the basis of the rDNA fragment. P. multimicronucleatum strains are divided into three main clades. The tree based on COI fragment analysis presents a greater resolution of the studied P. multimicronucleatum strains. Our results indicate that the strains of P. multimicronucleatum that appear in different clades on the trees could belong to different syngens. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family.

    PubMed

    Gao, Ting; Yao, Hui; Song, Jingyuan; Zhu, Yingjie; Liu, Chang; Chen, Shilin

    2010-10-26

    Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.

  5. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.

    PubMed

    Al-Attar, Sinan; Westra, Edze R; van der Oost, John; Brouns, Stan J J

    2011-04-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.

  6. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.

    PubMed

    Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes

    2014-10-01

    It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.

  7. Genetic variability among Schistosoma japonicum isolates from the Philippines, Japan and China revealed by sequence analysis of three mitochondrial genes.

    PubMed

    Chen, Fen; Li, Juan; Sugiyama, Hiromu; Zhou, Dong-Hui; Song, Hui-Qun; Zhao, Guang-Hui; Zhu, Xing-Quan

    2015-02-01

    The present study examined sequence variability in the mitochondrial (mt) protein-coding genes cytochrome b (cytb), NADH dehydrogenase subunits 2 and 6 (nad2 and nad6) among 24 isolates of Schistosoma japonicum from different endemic regions in the Philippines, Japan and China. The complete cytb, nad2 and nad6 genes were amplified and sequenced separately from individual schistosome. Sequence variations for isolates from the Philippines were 0-0.5% for cytb, 0-0.6% for nad2, and 0-0.9% for nad6. Variation was 0-0.5%, 0.1-0.8%, 0-0.7% for corresponding genes for schistosome samples from mainland China. For worms in Japan, genetic variations were 0-0.2%, 0.1-0.2% and 0 for the three genes, respectively. Sequence variations were 0-1.0%, 0-1.8% and 0-1.1% for cytb, nad2 and nad6, respectively, among schistosome isolates from different geographical strains in the Philippines, Japan and China. Of the three countries, lowest sequence variations were found between isolates from mainland China and the Philippines and highest were detected between Japan and the Philippines in three mtDNA genes. Phylogenetic analyses based on the combined sequences of cytb, nad2 and nad6 revealed that all isolates in the Philippines clustered together sistered to samples from Yunnan and Zhejiang provinces in China, while isolates from Yamanashi in Japan were in a solitary clade. These results demonstrated the usefulness of the combined three mtDNA sequences for studying genetic diversity and population structure among S. japonicum isolates from the Philippines, China and Japan.

  8. Genetic structuring of European anchovy (Engraulis encrasicolus) populations through mitochondrial DNA sequences.

    PubMed

    Keskin, Emre; Atar, Hasan Huseyin

    2012-04-01

    Mitochondrial DNA sequence variation in 655 bpfragments of the cytochrome oxidase c subunit I gene, known as the DNA barcode, of European anchovy (Engraulis encrasicolus) was evaluated by analyzing 1529 individuals representing 16 populations from the Black Sea, through the Marmara Sea and the Aegean Sea to the Mediterranean Sea. A total of 19 (2.9%) variable sites were found among individuals, and these defined 10 genetically diverged populations with an overall mean distance of 1.2%. The highest nucleotide divergence was found between samples of eastern Mediterranean and northern Aegean (2.2%). Evolutionary history analysis among 16 populations clustered the Mediterranean Sea clades in one main branch and the other clades in another branch. Diverging pattern of the European anchovy populations correlated with geographic dispersion supports the genetic structuring through the Black Sea-Marmara Sea-Aegean Sea-Mediterranean Sea quad.

  9. Scar-less multi-part DNA assembly design automation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Nathan J.

    The present invention provides a method of a method of designing an implementation of a DNA assembly. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding flanking homology sequences to each of the DNA oligos. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which tomore » assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding optimized overhang sequences to each of the DNA oligos.« less

  10. Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat.

    PubMed

    Tek, Ahmet L; Kashihara, Kazunari; Murata, Minoru; Nagaki, Kiyotaka

    2011-11-01

    The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms. The components of the functional centromere in legumes are poorly known. The genus Astragalus is a member of the legumes and bears the largest numbers of species among angiosperms. Therefore, we studied the components of centromeres in Astragalus sinicus. We identified the CenH3 homolog of A. sinicus, AsCenH3 that is the most compact in size among higher eukaryotes. A CENH3-based assay revealed the functional centromeric DNA sequences from A. sinicus, called CentAs. The CentAs repeat is localized in A. sinicus centromeres, and comprises an AT-rich tandem repeat with a monomer size of 20 nucleotides.

  11. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA

    NASA Astrophysics Data System (ADS)

    Fye, Richard M.; Benham, Craig J.

    1999-03-01

    Local denaturation, the separation at specific sites of the two strands comprising the DNA double helix, is one of the most fundamental processes in biology, required to allow the base sequence to be read both in DNA transcription and in replication. In living organisms this process can be mediated by enzymes which regulate the amount of superhelical stress imposed on the DNA. We present a numerically exact technique for analyzing a model of denaturation in superhelically stressed DNA. This approach is capable of predicting the locations and extents of transition in circular superhelical DNA molecules of kilobase lengths and specified base pair sequences. It can also be used for closed loops of DNA which are typically found in vivo to be kilobases long. The analytic method consists of an integration over the DNA twist degrees of freedom followed by the introduction of auxiliary variables to decouple the remaining degrees of freedom, which allows the use of the transfer matrix method. The algorithm implementing our technique requires O(N2) operations and O(N) memory to analyze a DNA domain containing N base pairs. However, to analyze kilobase length DNA molecules it must be implemented in high precision floating point arithmetic. An accelerated algorithm is constructed by imposing an upper bound M on the number of base pairs that can simultaneously denature in a state. This accelerated algorithm requires O(MN) operations, and has an analytically bounded error. Sample calculations show that it achieves high accuracy (greater than 15 decimal digits) with relatively small values of M (M<0.05N) for kilobase length molecules under physiologically relevant conditions. Calculations are performed on the superhelical pBR322 DNA sequence to test the accuracy of the method. With no free parameters in the model, the locations and extents of local denaturation predicted by this analysis are in quantitatively precise agreement with in vitro experimental measurements. Calculations performed on the fructose-1,6-bisphosphatase gene sequence from yeast show that this approach can also accurately treat in vivo denaturation.

  12. Molecular Species Delimitation in the Racomitrium canescens Complex (Grimmiaceae) and Implications for DNA Barcoding of Species Complexes in Mosses

    PubMed Central

    Stech, Michael; Veldman, Sarina; Larraín, Juan; Muñoz, Jesús; Quandt, Dietmar; Hassel, Kristian; Kruijer, Hans

    2013-01-01

    In bryophytes a morphological species concept is still most commonly employed, but delimitation of closely related species based on morphological characters is often difficult. Here we test morphological species circumscriptions in a species complex of the moss genus Racomitrium, the R. canescens complex, based on variable DNA sequence markers from the plastid (rps4-trnT-trnL region) and nuclear (nrITS) genomes. The extensive morphological variability within the complex has led to different opinions about the number of species and intraspecific taxa to be distinguished. Molecular phylogenetic reconstructions allowed to clearly distinguish all eight currently recognised species of the complex plus a ninth species that was inferred to belong to the complex in earlier molecular analyses. The taxonomic significance of intraspecific sequence variation is discussed. The present molecular data do not support the division of the R. canescens complex into two groups of species (subsections or sections). Most morphological characters, albeit being in part difficult to apply, are reliable for species identification in the R. canescens complex. However, misidentification of collections that were morphologically intermediate between species questioned the suitability of leaf shape as diagnostic character. Four partitions of the molecular markers (rps4-trnT, trnT-trnL, ITS1, ITS2) that could potentially be used for molecular species identification (DNA barcoding) performed almost equally well concerning amplification and sequencing success. Of these, ITS1 provided the highest species discrimination capacity and should be considered as a DNA barcoding marker for mosses, especially in complexes of closely related species. Molecular species identification should be complemented by redefining morphological characters, to develop a set of easy-to-use molecular and non-molecular identification tools for improving biodiversity assessments and ecological research including mosses. PMID:23341927

  13. ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis

    PubMed Central

    2011-01-01

    Background Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. Results Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. Conclusions Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis. PMID:21356108

  14. A novel recessive mutation in the gene ELOVL4 causes a neuro-ichthyotic disorder with variable expressivity

    PubMed Central

    2014-01-01

    Background A rare neuro-ichthyotic disorder characterized by ichthyosis, spastic quadriplegia and intellectual disability and caused by recessive mutations in ELOVL4, encoding elongase-4 protein has recently been described. The objective of the study was to search for sequence variants in the gene ELOVL4 in three affected individuals of a consanguineous Pakistani family exhibiting features of neuro-ichthyotic disorder. Methods Linkage in the family was searched by genotyping microsatellite markers linked to the gene ELOVL4, mapped at chromosome 6p14.1. Exons and splice junction sites of the gene ELOVL4 were polymerase chain reaction amplified and sequenced in an automated DNA sequencer. Results DNA sequence analysis revealed a novel homozygous nonsense mutation (c.78C > G; p.Tyr26*). Conclusions Our report further confirms the recently described ELOVL4-related neuro-ichthyosis and shows that the neurological phenotype can be absent in some individuals. PMID:24571530

  15. Probing the phylogenetic relationships of a few newly recorded intertidal zoanthids of Gujarat coast (India) with mtDNA COI sequences.

    PubMed

    Joseph, Sneha; Poriya, Paresh; Kundu, Rahul

    2016-11-01

    The present study reports the phylogenetic relationship of six zoanthid species belonging to three genera, Isaurus, Palythoa, and Zoanthus identified using systematic computational analysis of mtDNA gene sequences. All six species are first recorded from the coasts of Kathiawar Peninsula, India. Genus: Isaurus is represented by Isaurus tuberculatus, genus Zoanthus is represented by Zoanthus kuroshio and Zoanthus sansibaricus, while genus Palythoa is represented by Palythoa tuberculosa, P. sp. JVK-2006 and Palythoa heliodiscus. Results of the present study revealed that among the various species observed along the coastline, a minimum of 99% sequence divergence and a maximum of 96% sequence divergence were seen. An interspecific divergence of 1-4% and negligible intraspecific divergence was observed. These results not only highlighted the efficiency of the COI gene region in species identification but also demonstrated the genetic variability of zoanthids along the Saurashtra coastline of the west coast of India.

  16. Molecular detection and characterization of Anaplasma platys in dogs and ticks in Cuba.

    PubMed

    Silva, Claudia Bezerra da; Santos, Huarrisson Azevedo; Navarrete, Maylín González; Ribeiro, Carla Carolina Dias Uzedo; Gonzalez, Belkis Corona; Zaldivar, Maykelin Fuentes; Pires, Marcus Sandes; Peckle, Maristela; Costa, Renata Lins da; Vitari, Gabriela Lopes Vivas; Massard, Carlos Luiz

    2016-07-01

    Canine cyclic thrombocytopenia, an infectious disease caused by Anaplasma platys is a worldwide dog health problem. This study aimed to detect and characterize A. platys deoxyribonucleic acid (DNA) in dogs and ticks from Cuba using molecular methods. The study was conducted in four cities of Cuba (Habana del Este, Boyeros, Cotorro and San José de las Lajas). Blood samples were collected from 100 dogs in these cities. The animals were inspected for the detection of tick infestation and specimens were collected. Genomic DNA was extracted from dog blood and ticks using a commercial kit. Genomic DNA samples from blood and ticks were tested by a nested polymerase chain reaction (nPCR) to amplify 678 base pairs (bp) from the 16S ribosomal DNA (rDNA) of A. platys. Positive samples in nPCR were also subjected to PCR to amplify a fragment of 580bp from the citrate synthase (gltA) gene and the products were sequenced. Only Rhipicephalus sanguineus sensu lato (s.l.) was found on dogs, and 10.20% (n=5/49) of these ticks plus sixteen percent (16.0%, n=16/100) of dogs were considered positive for A. platys by nPCR targeting the 16S rDNA gene. All analyzed gltA and 16S rDNA sequences showed a 99-100% identity with sequences of A. platys reported in around the world. Phylogenetic analysis showed two defined clusters for the 16S rDNA gene and three defined clusters for the gltA gene. Based on the gltA gene, the deduced amino acid sequence showed two mutations at positions 88 and 168 compared with the sequence DQ525687 (GenBank ID from Italian sample), used as a reference in the alignment. A preliminary study on the epidemiological aspects associated with infection by A. platys showed no statistical association with the variables studied (p>0.05). This is the first evidence of the presence of A. platys in dogs and ticks in Cuba. Further studies are needed to evaluate the epidemiological aspects of A. platys infection in Cuban dogs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    BACKGROUND: Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. MATERIALS AND METHODS: Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. RESULTS: After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for ILG1. CONCLUSIONS: In the course of our studies using cDNA RDA, we have isolated and identified ILG1, a likely active site-specific recombinase and new member of the bacteriophage P4 family of integrases. This family of integrases is implicated in the horizontal DNA transfer of pathogenic genes between bacterial species, such as those found in pathogenic strains of E. coli, Shigella, Yersinia, and Vibrio cholera. Using ILG1 as a marker of our laboratory E. coli strain TOP10F', our evidence suggests that contaminating bacterial DNA in our subtraction experiment is due to this laboratory bacterial strain, which colonized exposed surfaces of the laboratory worker. Thus, identification of differentially expressed genes between normal and diseased states could be dramatically improved by using extra precaution to prevent bacterial contamination of samples. PMID:12393938

  18. DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads

    PubMed Central

    Sass, Chodon; Little, Damon P.; Stevenson, Dennis Wm.; Specht, Chelsea D.

    2007-01-01

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants. PMID:17987130

  19. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    DOEpatents

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  20. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    DOEpatents

    Gardner, Shea N [San Leandro, CA; Mariella, Jr., Raymond P.; Christian, Allen T [Tracy, CA; Young, Jennifer A [Berkeley, CA; Clague, David S [Livermore, CA

    2011-01-18

    A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.

  1. Searching for evidence of selection in avian DNA barcodes.

    PubMed

    Kerr, Kevin C R

    2011-11-01

    The barcode of life project has assembled a tremendous number of mitochondrial cytochrome c oxidase I (COI) sequences. Although these sequences were gathered to develop a DNA-based system for species identification, it has been suggested that further biological inferences may also be derived from this wealth of data. Recurrent selective sweeps have been invoked as an evolutionary mechanism to explain limited intraspecific COI diversity, particularly in birds, but this hypothesis has not been formally tested. In this study, I collated COI sequences from previous barcoding studies on birds and tested them for evidence of selection. Using this expanded data set, I re-examined the relationships between intraspecific diversity and interspecific divergence and sampling effort, respectively. I employed the McDonald-Kreitman test to test for neutrality in sequence evolution between closely related pairs of species. Because amino acid sequences were generally constrained between closely related pairs, I also included broader intra-order comparisons to quantify patterns of protein variation in avian COI sequences. Lastly, using 22 published whole mitochondrial genomes, I compared the evolutionary rate of COI against the other 12 protein-coding mitochondrial genes to assess intragenomic variability. I found no conclusive evidence of selective sweeps. Most evidence pointed to an overall trend of strong purifying selection and functional constraint. The COI protein did vary across the class Aves, but to a very limited extent. COI was the least variable gene in the mitochondrial genome, suggesting that other genes might be more informative for probing factors constraining mitochondrial variation within species. © 2011 Blackwell Publishing Ltd.

  2. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells.

    PubMed

    Fernández, Agustín F; Bayón, Gustavo F; Urdinguio, Rocío G; Toraño, Estela G; García, María G; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M; Riancho, José A; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A; Fraga, Mario F

    2015-01-01

    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. © 2015 Fernández et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Structural mechanics of DNA wrapping in the nucleosome.

    PubMed

    Battistini, Federica; Hunter, Christopher A; Gardiner, Eleanor J; Packer, Martin J

    2010-02-19

    Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597 degrees) in one plane and very little curvature (10 degrees) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30 degrees per helical turn throughout most of the structure but that there are two sharper kinks of 50 degrees at +/-2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500 degrees of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure were obtained by applying a constant bending moment. When a single bending moment was applied to the entire sequence, the local details of the calculated structure did not match the experiment. However, when local 10-step bending moments were applied separately, the calculated structure showed excellent agreement with experiment. This implies that the protein applies variable bending forces along the DNA to maintain the superhelical path required for nucleosome wrapping. In particular, the 50 degrees kinks are constraints imposed by the protein rather than a feature of the 1kx5 DNA sequence. The kinks coincide with a relatively flexible region of the sequence, and this is probably a prerequisite for high-affinity nucleosome binding, but the bending strain energy is significantly higher at these points than for the rest of the sequence. In the most rigid regions of the sequence, a higher strain energy is also required to achieve the standard 30 degrees curvature per helical turn. We conclude that matching of the DNA sequence to the local roll periodicity required to achieve bending, together with the increased flexibility required at the kinks, determines the sequence selectivity of DNA wrapping in the nucleosome. 2009 Elsevier Ltd. All rights reserved.

  4. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew.

    PubMed

    Rabah, Samar O; Lee, Chaehee; Hajrah, Nahid H; Makki, Rania M; Alharby, Hesham F; Alhebshi, Alawiah M; Sabir, Jamal S M; Jansen, Robert K; Ruhlman, Tracey A

    2017-11-01

    In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated. Copyright © 2017 Crop Science Society of America.

  5. Oligonucleotide indexing of DNA barcodes: identification of tuna and other scombrid species in food products.

    PubMed

    Botti, Sara; Giuffra, Elisabetta

    2010-08-23

    DNA barcodes are a global standard for species identification and have countless applications in the medical, forensic and alimentary fields, but few barcoding methods work efficiently in samples in which DNA is degraded, e.g. foods and archival specimens. This limits the choice of target regions harbouring a sufficient number of diagnostic polymorphisms. The method described here uses existing PCR and sequencing methodologies to detect mitochondrial DNA polymorphisms in complex matrices such as foods. The reported application allowed the discrimination among 17 fish species of the Scombridae family with high commercial interest such as mackerels, bonitos and tunas which are often present in processed seafood. The approach can be easily upgraded with the release of new genetic diversity information to increase the range of detected species. Cocktail of primers are designed for PCR using publicly available sequences of the target sequence. They are composed of a fixed 5' region and of variable 3' cocktail portions that allow amplification of any member of a group of species of interest. The population of short amplicons is directly sequenced and indexed using primers containing a longer 5' region and the non polymorphic portion of the cocktail portion. A 226 bp region of CytB was selected as target after collection and screening of 148 online sequences; 85 SNPs were found, of which 75 were present in at least two sequences. Primers were also designed for two shorter sub-fragments that could be amplified from highly degraded samples. The test was used on 103 samples of seafood (canned tuna and scomber, tuna salad, tuna sauce) and could successfully detect the presence of different or additional species that were not identified on the labelling of canned tuna, tuna salad and sauce samples. The described method is largely independent of the degree of degradation of DNA source and can thus be applied to processed seafood. Moreover, the method is highly flexible: publicly available sequence information on mitochondrial genomes are rapidly increasing for most species, facilitating the choice of target sequences and the improvement of resolution of the test. This is particularly important for discrimination of marine and aquaculture species for which genome information is still limited.

  6. Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana.

    PubMed

    Xu, Peng; Shi, Min; Chen, Xue-Xin

    2009-01-01

    The Asiatic honeybee, Apis cerana Fabricius, is an important honeybee species in Asian countries. It is still found in the wild, but is also one of the few bee species that can be domesticated. It has acquired some genetic advantages and significantly different biological characteristics compared with other Apis species. However, it has been less studied, and over the past two decades, has become a threatened species in China. We designed primers for the sequences of the four antimicrobial peptide cDNA gene families (abaecin, defensin, apidaecin, and hymenoptaecin) of the Western honeybee, Apis mellifera L. and identified all the antimicrobial peptide cDNA genes in the Asiatic honeybee for the first time. All the sequences were amplified by reverse transcriptase-polymerase chain reaction (RT-PCR). In all, 29 different defensin cDNA genes coding 7 different defensin peptides, 11 different abaecin cDNA genes coding 2 different abaecin peptides, 13 different apidaecin cDNA genes coding 4 apidaecin peptides and 34 different hymenoptaecin cDNA genes coding 13 different hymenoptaecin peptides were cloned and identified from the Asiatic honeybee adult workers. Detailed comparison of these four antimicrobial peptide gene families with those of the Western honeybee revealed that there are many similarities in the quantity and amino acid components of peptides in the abaecin, defensin and apidaecin families, while many more hymenoptaecin peptides are found in the Asiatic honeybee than those in the Western honeybee (13 versus 1). The results indicated that the Asiatic honeybee adult generated more variable antimicrobial peptides, especially hymenoptaecin peptides than the Western honeybee when stimulated by pathogens or injury. This suggests that, compared to the Western honeybee that has a longer history of domestication, selection on the Asiatic honeybee has favored the generation of more variable antimicrobial peptides as protection against pathogens.

  7. Genetic variability of Echinococcus granulosus from the Tibetan plateau inferred by mitochondrial DNA sequences.

    PubMed

    Yan, Ning; Nie, Hua-Ming; Jiang, Zhong-Rong; Yang, Ai-Guo; Deng, Shi-Jin; Guo, Li; Yu, Hua; Yan, Yu-Bao; Tsering, Dawa; Kong, Wei-Shu; Wang, Ning; Wang, Jia-Hai; Xie, Yue; Fu, Yan; Yang, De-Ying; Wang, Shu-Xian; Gu, Xiao-Bin; Peng, Xue-Rong; Yang, Guang-You

    2013-09-01

    To analyse genetic variability and population structure, 84 isolates of Echinococcus granulosus (Cestoda: Taeniidae) collected from various host species at different sites of the Tibetan plateau in China were sequenced for the whole mitochondrial nad1 (894 bp) and atp6 (513 bp) genes. The vast majority were classified as G1 genotype (n=82), and two samples from human patients in Sichuan province were identified as G3 genotype. Based on the concatenated sequences of nad1+atp6, 28 different haplotypes (NA1-NA28) were identified. A parsimonious network of the concatenated sequence haplotypes showed star-like features in the overall population, with NA1 as the major haplotype in the population networks. By AMOVA it was shown that variation of E. granulosus within the overall population was the main pattern of the total genetic variability. Neutrality indexes of the concatenated sequence (nad1+atp6) were computed by Tajima's D and Fu's Fs tests and showed high negative values for E. granulosus, indicating significant deviations from neutrality. FST and Nm values suggested that the populations were not genetically differentiated. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences

    PubMed Central

    Zhao, Yong Mei; Golden, Aaron; Mar, Jessica C.; Einstein, Francine H.; Greally, John M.

    2014-01-01

    The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure. PMID:25327398

  9. Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov.

    PubMed

    Yoon, Jung-Hoon; Oh, Tae-Kwang; Park, Yong-Ha

    2004-11-01

    A Gram-variable, endospore-forming moderately halophilic rod, strain SF-121, was isolated from a marine solar saltern of the Yellow Sea in Korea. The result of 16S rRNA gene sequence analysis showed that strain SF-121 has highest sequence similarity (99.7 %) with the type strain of Bacillus halodenitrificans. Phylogenetic analyses based on 16S rRNA gene sequences revealed that B. halodenitrificans DSM 10037(T) and strain SF-121 are more closely related to the genus Virgibacillus than to the genus Bacillus. Strain SF-121 and B. halodenitrificans DSM 10037(T) exhibited 16S rRNA gene similarity levels of 95.3-97.5 % with the type strains of Virgibacillus species and 94.0 % with the type strain of Bacillus subtilis. DNA-DNA relatedness and phenotypic data indicated that B. halodenitrificans DSM 10037(T) and strain SF-121 are members of the same species. B. halodenitrificans DSM 10037(T) and strain SF-121 exhibited DNA-DNA relatedness values of 9-11 % with the type strains of Virgibacillus carmonensis and Virgibacillus marismortui. On the basis of the phenotypic, chemotaxonomic, phylogenetic and genetic data, B. halodenitrificans should be reclassified in the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov.

  10. Molecular analysis of RAPD DNA based markers: their potential use for the detection of genetic variability in jojoba (Simmondsia chinensis L Schneider).

    PubMed

    Amarger, V; Mercier, L

    1995-01-01

    We have applied the recently developed technique of random amplified polymorphic DNA (RAPD) for the discrimination between two jojoba clones at the genomic level. Among a set of 30 primers tested, a simple reproducible pattern with three distinct fragments for clone D and two distinct fragments for clone E was obtained with primer OPB08. Since RAPD products are the results of arbitrarily priming events and because a given primer can amplify a number of non-homologous sequences, we wondered whether or not RAPD bands, even those of similar size, were derived from different loci in the two clones. To answer this question, two complementary approaches were used: i) cloning and sequencing of the amplification products from clone E; and ii) complementary Southern analysis of RAPD gels using cloned or amplified fragments (directly recovered from agarose gels) as RFLP probes. The data reported here show that the RAPD reaction generates multiple amplified fragments. Some fragments, although resolved as a single band on agarose gels, contain different DNA species of the same size. Furthermore, it appears that the cloned RAPD products of known sequence that do not target repetitive DNA can be used as hybridization probes in RFLP to detect a polymorphism among individuals.

  11. Variability of ribosomal RNA genes in Rauwolfia species: parallelism between tissue culture-induced rearrangements and interspecies polymorphism.

    PubMed

    Andreev, I O; Spiridonova, K V; Solovyan, V T; Kunakh, V A

    2005-01-01

    An analysis of 18S-25S and 5S rRNA genes in intact plants and cultured tissues of some Rauwolfia species was performed to compare these sequences variability occurred as a result of the species evolution in nature and that induced by tissue culture. The restriction fragment length polymorphism of 18S-25S and 5S rDNA was found both in intact plants of various Rauwolfia species and in long-term Rauwolfia serpentina tissue cultures. In addition, changes in the amount of 18S-25S rRNA genes were observed in long-term R. serpentina tissue cultures. The results demonstrate that rDNA variability observed in intact plants as well as in long-term cultures is attributed to differences in the same regions of ribosomal RNA genes.

  12. Estimating beta diversity for under-sampled communities using the variably weighted Odum dissimilarity index and OTUshuff

    USDA-ARS?s Scientific Manuscript database

    Characterization of complex microbial communities by DNA sequencing has become a standard technique in microbial ecology. Yet, particular features of this approach render traditional methods of community comparison problematic. In particular, a very low proportion of community members are typically ...

  13. Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae)

    PubMed Central

    Bohlen, Jörg; Šlechtová, Vendula; Altmanová, Marie; Pelikánová, Šárka; Ráb, Petr

    2018-01-01

    Polyploidization has played an important role in the evolution of vertebrates, particularly at the base of Teleostei–an enormously successful ray-finned fish group with additional genome doublings on lower taxonomic levels. The investigation of post-polyploid genome dynamics might provide important clues about the evolution and ecology of respective species and can help to decipher the role of polyploidy per se on speciation. Few studies have attempted to investigate the dynamics of repetitive DNA sequences in the post-polyploid genome using molecular cytogenetic tools in fishes, though recent efforts demonstrated their usefulness. The demonstrably monophyletic freshwater loach family Botiidae, branching to evolutionary diploid and tetraploid lineages separated >25 Mya, offers a suited model group for comparing the long-term repetitive DNA evolution. For this, we integrated phylogenetic analyses with cytogenetical survey involving Giemsa- and Chromomycin A3 (CMA3)/DAPI stainings and fluorescence in situ hybridization with 5S/45S rDNA, U2 snDNA and telomeric probes in representative sample of 12 botiid species. The karyotypes of all diploids were composed of 2n = 50 chromosomes, while majority of tetraploids had 2n = 4x = 100, with only subtle interspecific karyotype differences. The exceptional karyotype of Botia dario (2n = 4x = 96) suggested centric fusions behind the 2n reduction. Variable patterns of FISH signals revealed cases of intraspecific polymorphisms, rDNA amplification, variable degree of correspondence with CMA3+ sites and almost no phylogenetic signal. In tetraploids, either additivity or loci gain/loss was recorded. Despite absence of classical interstitial telomeric sites, large blocks of interspersed rDNA/telomeric regions were found in diploids only. We uncovered different molecular drives of studied repetitive DNA classes within botiid genomes as well as the advanced stage of the re-diploidization process in tetraploids. Our results may contribute to link genomic approach with molecular cytogenetic analyses in addressing the origin and mechanism of this polyploidization event. PMID:29590207

  14. A review of bioinformatic methods for forensic DNA analyses.

    PubMed

    Liu, Yao-Yuan; Harbison, SallyAnn

    2018-03-01

    Short tandem repeats, single nucleotide polymorphisms, and whole mitochondrial analyses are three classes of markers which will play an important role in the future of forensic DNA typing. The arrival of massively parallel sequencing platforms in forensic science reveals new information such as insights into the complexity and variability of the markers that were previously unseen, along with amounts of data too immense for analyses by manual means. Along with the sequencing chemistries employed, bioinformatic methods are required to process and interpret this new and extensive data. As more is learnt about the use of these new technologies for forensic applications, development and standardization of efficient, favourable tools for each stage of data processing is being carried out, and faster, more accurate methods that improve on the original approaches have been developed. As forensic laboratories search for the optimal pipeline of tools, sequencer manufacturers have incorporated pipelines into sequencer software to make analyses convenient. This review explores the current state of bioinformatic methods and tools used for the analyses of forensic markers sequenced on the massively parallel sequencing (MPS) platforms currently most widely used. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Application of Quaternion in improving the quality of global sequence alignment scores for an ambiguous sequence target in Streptococcus pneumoniae DNA

    NASA Astrophysics Data System (ADS)

    Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.

    2017-07-01

    DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.

  16. Large-Scale Concatenation cDNA Sequencing

    PubMed Central

    Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.

    1997-01-01

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174

  17. Use of DNA barcodes to identify flowering plants

    PubMed Central

    Kress, W. John; Wurdack, Kenneth J.; Zimmer, Elizabeth A.; Weigt, Lee A.; Janzen, Daniel H.

    2005-01-01

    Methods for identifying species by using short orthologous DNA sequences, known as “DNA barcodes,” have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short (≈450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes. PMID:15928076

  18. Base damage, local sequence context and TP53 mutation hotspots: a molecular dynamics study of benzo[a]pyrene induced DNA distortion and mutability

    PubMed Central

    Menzies, Georgina E.; Reed, Simon H.; Brancale, Andrea; Lewis, Paul D.

    2015-01-01

    The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots. PMID:26400171

  19. Analyses of Methylomes Derived from Meso-American Common Bean (Phaseolus vulgaris L.) Using MeDIP-Seq and Whole Genome Sodium Bisulfite-Sequencing.

    PubMed

    Crampton, Mollee; Sripathi, Venkateswara R; Hossain, Khwaja; Kalavacharla, Venu

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is economically important for its high protein, fiber, and micronutrient contents, with a relatively small genome size of ∼587 Mb. Common bean is genetically diverse with two major gene pools, Meso-American and Andean. The phenotypic variability within common bean is partly attributed to the genetic diversity and epigenetic changes that are largely influenced by environmental factors. It is well established that an important epigenetic regulator of gene expression is DNA methylation. Here, we present results generated from two high-throughput sequencing technologies, methylated DNA immunoprecipitation-sequencing (MeDIP-seq) and whole genome bisulfite-sequencing (BS-Seq). Our analyses revealed that this Meso-American common bean displays similar methylation patterns as other previously published plant methylomes, with CG ∼50%, CHG ∼30%, and CHH ∼2.7% methylation, however, these differ from the common bean reference methylome of Andean origin. We identified higher CG methylation levels in both promoter and genic regions than CHG and CHH contexts. Moreover, we found relatively higher CG methylation levels in genes than in promoters. Conversely, the CHG and CHH methylation levels were highest in promoters than in genes. This is the first genome-wide DNA methylation profiling study in a Meso-American common bean cultivar ("Sierra") using NGS approaches. Our long-term goal is to generate genome-wide epigenomic maps in common bean focusing on chromatin accessibility, histone modifications, and DNA methylation.

  20. Analyses of Methylomes Derived from Meso-American Common Bean (Phaseolus vulgaris L.) Using MeDIP-Seq and Whole Genome Sodium Bisulfite-Sequencing

    PubMed Central

    Crampton, Mollee; Sripathi, Venkateswara R.; Hossain, Khwaja; Kalavacharla, Venu

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is economically important for its high protein, fiber, and micronutrient contents, with a relatively small genome size of ∼587 Mb. Common bean is genetically diverse with two major gene pools, Meso-American and Andean. The phenotypic variability within common bean is partly attributed to the genetic diversity and epigenetic changes that are largely influenced by environmental factors. It is well established that an important epigenetic regulator of gene expression is DNA methylation. Here, we present results generated from two high-throughput sequencing technologies, methylated DNA immunoprecipitation-sequencing (MeDIP-seq) and whole genome bisulfite-sequencing (BS-Seq). Our analyses revealed that this Meso-American common bean displays similar methylation patterns as other previously published plant methylomes, with CG ∼50%, CHG ∼30%, and CHH ∼2.7% methylation, however, these differ from the common bean reference methylome of Andean origin. We identified higher CG methylation levels in both promoter and genic regions than CHG and CHH contexts. Moreover, we found relatively higher CG methylation levels in genes than in promoters. Conversely, the CHG and CHH methylation levels were highest in promoters than in genes. This is the first genome-wide DNA methylation profiling study in a Meso-American common bean cultivar (“Sierra”) using NGS approaches. Our long-term goal is to generate genome-wide epigenomic maps in common bean focusing on chromatin accessibility, histone modifications, and DNA methylation. PMID:27199997

  1. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  2. Nanopore Technology: A Simple, Inexpensive, Futuristic Technology for DNA Sequencing.

    PubMed

    Gupta, P D

    2016-10-01

    In health care, importance of DNA sequencing has been fully established. Sanger's Capillary Electrophoresis DNA sequencing methodology is time consuming, cumbersome, hence become more expensive. Lately, because of its versatility DNA sequencing became house hold name, and therefore, there is an urgent need of simple, fast, inexpensive, DNA sequencing technology. In the beginning of this century efforts were made, and Nanopore DNA sequencing technology was developed; still it is infancy, nevertheless, it is the futuristic technology.

  3. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  4. Two different size classes of 5S rDNA units coexisting in the same tandem array in the razor clam Ensis macha: is this region suitable for phylogeographic studies?

    PubMed

    Fernández-Tajes, Juan; Méndez, Josefina

    2009-12-01

    For a study of 5S ribosomal genes (rDNA) in the razor clam Ensis macha, the 5S rDNA region was amplified and sequenced. Two variants, so-called type I or short repeat (approximately 430 bp) and type II or long repeat (approximately 735 bp), appeared to be the main components of the 5S rDNA of this species. Their spacers differed markedly, both in length and nucleotide composition. The organization of the two variants was investigated by amplifying the genomic DNA with primers based on the sequence of the type I and type II spacers. PCR amplification products with primers EMLbF and EMSbR showed that the long and short repeats are associated within the same tandem array, suggesting an intermixed arrangement of both spacers. Nevertheless, amplifications carried out with inverse primers EMSinvF/R and EMLinvF/R revealed that some short and long repeats are contiguous in the same tandem array. This is the first report of the coexistence of two variable spacers in the same tandem array in bivalve mollusks.

  5. Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family.

    PubMed

    He, Shunping; Mayden, Richard L; Wang, Xuzheng; Wang, Wei; Tang, Kevin L; Chen, Wei-Jen; Chen, Yiyu

    2008-03-01

    The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.

  6. Molecular genetic analysis of the V kappa Ser group associated with two mouse light chain genetic markers. Complementary DNA cloning and southern hybridization analysis

    PubMed Central

    1985-01-01

    Previous studies (21) have shown that two mouse kappa light (L) chain variable (V) region polymorphisms, the IB-peptide and Efla markers, reflect expression of a characteristic group of V kappa regions, called V kappa Ser, by some inbred strains and not others. Expression of V kappa Ser is controlled by a locus on chromosome 6, the chromosome that contains the kappa locus. To further characterize this V kappa group and begin to analyze the basis for its strain-specific expression, full- length complementary DNA (cDNA) copies were produced of L chain mRNA from the M75 myeloma that had been induced in the C.C58 strain of mice, and which produces a V kappa Ser L chain. The C.C58 strain is congenic with BALB/cAn, differing in the region of chromosome 6 that controls expression of the V kappa polymorphisms and the Lyt-2 and Lyt-3 T cell alloantigens. The complete nucleotide sequence of this cloned cDNA was determined and compared with the nucleotide sequences the most closely related BALB/c myeloma L chains known. Results indicated significant differences throughout the variable region, but particularly toward the 5' portion of the sequence. A probe corresponding to 200 bp of the 5' end of the cloned V kappa Ser cDNA was used in Southern hybridizations of restriction digests of liver DNA from a number of inbred, recombinant, and recombinant inbred strains. Under stringent hybridization conditions, one strongly-hybridizing fragment was observed in Bam HI, Hind III, and Eco RI digests, and based on the size of the fragments, strains could be organized into two groups. The presence of strongly hybridizing Bam HI, Hind III, and Eco RI fragments of 3.2, 2.8, and 2.1 kb, respectively, was found to correlate completely with expression by the strain of the IB-peptide and Efla markers. All nonexpressor strains yielded hybridizing fragments of 7.8, 8.4, and 2.8 kb, respectively. Possible explanations for strain- specific expression of V kappa Ser-associated phenotypic markers are discussed. PMID:3926938

  7. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae)

    PubMed Central

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-01-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species. PMID:25837628

  8. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    PubMed

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  9. Intraspecific differentiation of Paramecium novaurelia strains (Ciliophora, Protozoa) inferred from phylogenetic analysis of ribosomal and mitochondrial DNA variation.

    PubMed

    Tarcz, Sebastian

    2013-01-01

    Paramecium novaurelia Beale and Schneller, 1954, was first found in Scotland and is known to occur mainly in Europe, where it is the most common species of the P. aurelia complex. In recent years, two non-European localities have been described: Turkey and the United States of America. This article presents the analysis of intraspecific variability among 25 strains of P. novaurelia with the application of ribosomal and mitochondrial loci (ITS1-5.8S-ITS2, 5' large subunit rDNA (5'LSU rDNA) and cytochrome c oxidase subunit 1 (COI) mtDNA). The mean distance observed for all of the studied P. novaurelia sequence pairs was p=0.008/0.016/0.092 (ITS1-5.8S-ITS2/5'LSU rDNA/COI). Phylogenetic trees (NJ/MP/BI) based on a comparison of all of the analysed sequences show that the studied strains of P. novaurelia form a distinct clade, separate from the P. caudatum outgroup, and are divided into two clusters (A and B) and two branches (C and D). The occurrence of substantial genetic differentiation within P. novaurelia, confirmed by the analysed DNA fragments, indicates a rapid evolution of particular species within the Paramecium genus. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family

    PubMed Central

    2010-01-01

    Background Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. Results The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. Conclusions ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels. PMID:20977734

  11. Sequence and Structure Dependent DNA-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Kopchick, Benjamin; Qiu, Xiangyun

    Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.

  12. Barcoding Fauna Bavarica: Myriapoda – a contribution to DNA sequence-based identifications of centipedes and millipedes (Chilopoda, Diplopoda)

    PubMed Central

    Spelda, Jörg; Reip, Hans S.; Oliveira–Biener, Ulla; Melzer, Roland R.

    2011-01-01

    Abstract We give a first account of our ongoing barcoding activities on Bavarian myriapods in the framework of the Barcoding Fauna Bavarica project and IBOL, the International Barcode of Life. Having analyzed 126 taxa (including 122 species) belonging to all major German chilopod and diplopod lineages, often using four or more specimens each, at the moment our species stock includes 82% of the diplopods and 65% of the chilopods found in Bavaria, southern Germany. The partial COI sequences allow correct identification of more than 95% of the current set of Bavarian species. Moreover, most of the myriapod orders and families appear as distinct clades in neighbour-joining trees, although the phylogenetic relationships between them are not always depicted correctly. We give examples of (1) high interspecific sequence variability among closely related species; (2) low interspecific variability in some chordeumatidan genera, indicating that recent speciations cannot be resolved with certainty using COI DNA barcodes; (3) high intraspecific variation in some genera, suggesting the existence of cryptic lineages; and (4) the possible polyphyly of some taxa, i.e. the chordeumatidan genus Ochogona. This shows that, in addition to species identification, our data may be useful in various ways in the context of species delimitations, taxonomic revisions and analyses of ongoing speciation processes. PMID:22303099

  13. The Complete Nucleotide Sequence of the Human Immunoglobulin Heavy Chain Variable Region Locus

    PubMed Central

    Matsuda, Fumihiko; Ishii, Kazuo; Bourvagnet, Patrice; Kuma, Kei-ichi; Hayashida, Hidenori; Miyata, Takashi; Honjo, Tasuku

    1998-01-01

    The complete nucleotide sequence of the 957-kb DNA of the human immunoglobulin heavy chain variable (VH) region locus was determined and 43 novel VH segments were identified. The region contains 123 VH segments classifiable into seven different families, of which 79 are pseudogenes. Of the 44 VH segments with an open reading frame, 39 are expressed as heavy chain proteins and 1 as mRNA, while the remaining 4 are not found in immunoglobulin cDNAs. Combinatorial diversity of VH region was calculated to be ∼6,000. Conservation of the promoter and recombination signal sequences was observed to be higher in functional VH segments than in pseudogenes. Phylogenetic analysis of 114 VH segments clearly showed clustering of the VH segments of each family. However, an independent branch in the tree contained a single VH, V4-44.1P, sharing similar levels of homology to human VH families and to those of other vertebrates. Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the locus took place at least eight times between 133 and 10 million years ago. One nonimmunoglobulin gene of unknown function was identified in the intergenic region. PMID:9841928

  14. Foreign Plastid Sequences in Plant Mitochondria are Frequently Acquired Via Mitochondrion-to-Mitochondrion Horizontal Transfer

    PubMed Central

    Gandini, C. L.; Sanchez-Puerta, M. V.

    2017-01-01

    Angiosperm mitochondrial genomes (mtDNA) exhibit variable quantities of alien sequences. Many of these sequences are acquired by intracellular gene transfer (IGT) from the plastid. In addition, frequent events of horizontal gene transfer (HGT) between mitochondria of different species also contribute to their expanded genomes. In contrast, alien sequences are rarely found in plastid genomes. Most of the plant-to-plant HGT events involve mitochondrion-to-mitochondrion transfers. Occasionally, foreign sequences in mtDNAs are plastid-derived (MTPT), raising questions about their origin, frequency, and mechanism of transfer. The rising number of complete mtDNAs allowed us to address these questions. We identified 15 new foreign MTPTs, increasing significantly the number of those previously reported. One out of five of the angiosperm species analyzed contained at least one foreign MTPT, suggesting a remarkable frequency of HGT among plants. By analyzing the flanking regions of the foreign MTPTs, we found strong evidence for mt-to-mt transfers in 65% of the cases. We hypothesize that plastid sequences were initially acquired by the native mtDNA via IGT and then transferred to a distantly-related plant via mitochondrial HGT, rather than directly from a foreign plastid to the mitochondrial genome. Finally, we describe three novel putative cases of mitochondrial-derived sequences among angiosperm plastomes. PMID:28262720

  15. Genetic analysis of Fasciola isolates from cattle in Korea based on second internal transcribed spacer (ITS-2) sequence of nuclear ribosomal DNA.

    PubMed

    Choe, Se-Eun; Nguyen, Thuy Thi-Dieu; Kang, Tae-Gyu; Kweon, Chang-Hee; Kang, Seung-Won

    2011-09-01

    Nuclear ribosomal DNA sequence of the second internal transcribed spacer (ITS-2) has been used efficiently to identify the liver fluke species collected from different hosts and various geographic regions. ITS-2 sequences of 19 Fasciola samples collected from Korean native cattle were determined and compared. Sequence comparison including ITS-2 sequences of isolates from this study and reference sequences from Fasciola hepatica and Fasciola gigantica and intermediate Fasciola in Genbank revealed seven identical variable sites of investigated isolates. Among 19 samples, 12 individuals had ITS-2 sequences completely identical to that of pure F. hepatica, five possessed the sequences identical to F. gigantica type, whereas two shared the sequence of both F. hepatica and F. gigantica. No variations in length and nucleotide composition of ITS-2 sequence were observed within isolates that belonged to F. hepatica or F. gigantica. At the position of 218, five Fasciola containing a single-base substitution (C>T) formed a distinct branch inside the F. gigantica-type group which was similar to those of Asian-origin isolates. The phylogenetic tree of the Fasciola spp. based on complete ITS-2 sequences from this study and other representative isolates in different locations clearly showed that pure F. hepatica, F. gigantica type and intermediate Fasciola were observed. The result also provided additional genetic evidence for the existence of three forms of Fasciola isolated from native cattle in Korea by genetic approach using ITS-2 sequence.

  16. Characterization of Microbial Communities in Gas Industry Pipelines

    PubMed Central

    Zhu, Xiang Y.; Lubeck, John; Kilbane, John J.

    2003-01-01

    Culture-independent techniques, denaturing gradient gel electrophoresis (DGGE) analysis, and random cloning of 16S rRNA gene sequences amplified from community DNA were used to determine the diversity of microbial communities in gas industry pipelines. Samples obtained from natural gas pipelines were used directly for DNA extraction, inoculated into sulfate-reducing bacterium medium, or used to inoculate a reactor that simulated a natural gas pipeline environment. The variable V2-V3 (average size, 384 bp) and V3-V6 (average size, 648 bp) regions of bacterial and archaeal 16S rRNA genes, respectively, were amplified from genomic DNA isolated from nine natural gas pipeline samples and analyzed. A total of 106 bacterial 16S rDNA sequences were derived from DGGE bands, and these formed three major clusters: beta and gamma subdivisions of Proteobacteria and gram-positive bacteria. The most frequently encountered bacterial species was Comamonas denitrificans, which was not previously reported to be associated with microbial communities found in gas pipelines or with microbially influenced corrosion. The 31 archaeal 16S rDNA sequences obtained in this study were all related to those of methanogens and phylogenetically fall into three clusters: order I, Methanobacteriales; order III, Methanomicrobiales; and order IV, Methanosarcinales. Further microbial ecology studies are needed to better understand the relationship among bacterial and archaeal groups and the involvement of these groups in the process of microbially influenced corrosion in order to develop improved ways of monitoring and controlling microbially influenced corrosion. PMID:12957923

  17. Rapid isolation of microsatellite DNAs and identification of polymorphic mitochondrial DNA regions in the fish rotan (Perccottus glenii) invading European Russia

    USGS Publications Warehouse

    King, Timothy L.; Eackles, Michael S.; Reshetnikov, Andrey N.

    2015-01-01

    Human-mediated translocations and subsequent large-scale colonization by the invasive fish rotan (Perccottus glenii Dybowski, 1877; Perciformes, Odontobutidae), also known as Amur or Chinese sleeper, has resulted in dramatic transformations of small lentic ecosystems. However, no detailed genetic information exists on population structure, levels of effective movement, or relatedness among geographic populations of P. glenii within the European part of the range. We used massively parallel genomic DNA shotgun sequencing on the semiconductor-based Ion Torrent Personal Genome Machine (PGM) sequencing platform to identify nuclear microsatellite and mitochondrial DNA sequences in P. glenii from European Russia. Here we describe the characterization of nine nuclear microsatellite loci, ascertain levels of allelic diversity, heterozygosity, and demographic status of P. glenii collected from Ilev, Russia, one of several initial introduction points in European Russia. In addition, we mapped sequence reads to the complete P. glenii mitochondrial DNA sequence to identify polymorphic regions. Nuclear microsatellite markers developed for P. glenii yielded sufficient genetic diversity to: (1) produce unique multilocus genotypes; (2) elucidate structure among geographic populations; and (3) provide unique perspectives for analysis of population sizes and historical demographics. Among 4.9 million filtered P. glenii Ion Torrent PGM sequence reads, 11,304 mapped to the mitochondrial genome (NC_020350). This resulted in 100 % coverage of this genome to a mean coverage depth of 102X. A total of 130 variable sites were observed between the publicly available genome from China and the studied composite mitochondrial genome. Among these, 82 were diagnostic and monomorphic between the mitochondrial genomes and distributed among 15 genome regions. The polymorphic sites (N = 48) were distributed among 11 mitochondrial genome regions. Our results also indicate that sequence reads generated from two three-hour runs on the Ion Torrent PGM can generate a sufficient number of nuclear and mitochondrial markers to improve understanding of the evolutionary and ecological dynamics of non-model and in particular, invasive species.

  18. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences

    PubMed Central

    Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L.

    2017-01-01

    An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. PMID:28628204

  19. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Vilà, C; Geffen, E; Creel, S; Mills, M G; McNutt, J W; Ginsberg, J; Kat, P W; Mamiya, K H; Wayne, R K

    2001-07-01

    African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.

  20. 5-Methyldeoxycytidine in the Physarum minichromosome containing the ribosomal RNA genes.

    PubMed Central

    Cooney, C A; Matthews, H R; Bradbury, E M

    1984-01-01

    5-Methyldeoxycytidine (5MC) was analyzed by high pressure liquid chromatography (HPLC) and by restriction enzyme digestion in rDNA isolated from Physarum polycephalum. rDNA from Physarum M3C strain microplasmodia has a significant 5MC content (about half that of the whole genomic DNA). This rDNA contains many C5MCGG sites because it is clearly digested further by Msp I than by Hpa II. However, most 5MC is in other sites. In particular, alternating CG sequences appear to be highly methylated. HPLC of deoxyribonucleosides shows tha most of the transcribed regions contain little or no 5MC. Restriction digestion indicates that there is little or no 5MC in any of the transcribed regions including the transcription origin and adjacent sequences. Over 90% of the total 5MC is in or near the central nontranscribed spacer and most methylated restriction sites are in inverted repeats of this spacer. rDNA is very heterogeneous with respect to 5MC. The 5MC pattern doesn't appear to change with inactivation of the rRNA genes during reversible differentiation from microplasmodia (growing) to microsclerotia (dormant), showing that inactivation is due to changes in other chromatin variables. The 5MC pattern is different between Physarum strains. The possible involvement of this 5MC in rDNA chromatin structure and in cruciform and Z-DNA formation is discussed. Images PMID:6322108

  1. An improved model for whole genome phylogenetic analysis by Fourier transform.

    PubMed

    Yin, Changchuan; Yau, Stephen S-T

    2015-10-07

    DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees and demonstrates that the improved DFT dissimilarity measure is an efficient and effective similarity measure of DNA sequences. Due to its high efficiency and accuracy, the proposed DFT similarity measure is successfully applied on phylogenetic analysis for individual genes and large whole bacterial genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The nucleotide sequence of the entire ribosomal DNA operon and the structure of the large subunit rRNA of Giardia muris.

    PubMed

    van Keulen, H; Gutell, R R; Campbell, S R; Erlandsen, S L; Jarroll, E L

    1992-10-01

    The total nucleotide sequence of the rDNA of Giardia muris, an intestinal protozoan parasite of rodents, has been determined. The repeat unit is 7668 basepairs (bp) in size and consists of a spacer of 3314 bp, a small-subunit rRNA (SSU-rRNA) gene of 1429, and a large-subunit rRNA (LSU-rRNA) gene of 2698 bp. The spacer contains long direct repeats and is heterogeneous in size. The LSU-rRNA of G. muris was compared to that of the human intestinal parasite Giardia duodenalis, to the bird parasite Giardia ardeae, and to that of Escherichia coli. The LSU-rRNA has a size comparable to the 23S rRNA of E. coli but shows structural features typical for eukaryotes. Some variable regions are typically small and account for the overall smaller size of this rRNA. The structure of the G. muris LSU-rRNA is similar to that of the other Giardia rRNA, but each rRNA has characteristic features residing in a number of variable regions.

  3. Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome.

    PubMed

    Robicheau, Brent M; Susko, Edward; Harrigan, Amye M; Snyder, Marlene

    2017-02-01

    Approximately 35% of the human genome can be identified as sequence devoid of a selected-effect function, and not derived from transposable elements or repeated sequences. We provide evidence supporting a known origin for a fraction of this sequence. We show that: 1) highly degraded, but near full length, ribosomal DNA (rDNA) units, including both 45S and Intergenic Spacer (IGS), can be found at multiple sites in the human genome on chromosomes without rDNA arrays, 2) that these rDNA sequences have a propensity for being centromere proximal, and 3) that sequence at all human functional rDNA array ends is divergent from canonical rDNA to the point that it is pseudogenic. We also show that small sequence strings of rDNA (from 45S + IGS) can be found distributed throughout the genome and are identifiable as an "rDNA-like signal", representing 0.26% of the q-arm of HSA21 and ∼2% of the total sequence of other regions tested. The size of sequence strings found in the rDNA-like signal intergrade into the size of sequence strings that make up the full-length degrading rDNA units found scattered throughout the genome. We conclude that the displaced and degrading rDNA sequences are likely of a similar origin but represent different stages in their evolution towards random sequence. Collectively, our data suggests that over vast evolutionary time, rDNA arrays contribute to the production of junk DNA. The concept that the production of rDNA pseudogenes is a by-product of concerted evolution represents a previously under-appreciated process; we demonstrate here its importance. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences.

  5. Single-cell genomic sequencing using Multiple Displacement Amplification.

    PubMed

    Lasken, Roger S

    2007-10-01

    Single microbial cells can now be sequenced using DNA amplified by the Multiple Displacement Amplification (MDA) reaction. The few femtograms of DNA in a bacterium are amplified into micrograms of high molecular weight DNA suitable for DNA library construction and Sanger sequencing. The MDA-generated DNA also performs well when used directly as template for pyrosequencing by the 454 Life Sciences method. While MDA from single cells loses some of the genomic sequence, this approach will greatly accelerate the pace of sequencing from uncultured microbes. The genetically linked sequences from single cells are also a powerful tool to be used in guiding genomic assembly of shotgun sequences of multiple organisms from environmental DNA extracts (metagenomic sequences).

  6. Population-based rare variant detection via pooled exome or custom hybridization capture with or without individual indexing.

    PubMed

    Ramos, Enrique; Levinson, Benjamin T; Chasnoff, Sara; Hughes, Andrew; Young, Andrew L; Thornton, Katherine; Li, Allie; Vallania, Francesco L M; Province, Michael; Druley, Todd E

    2012-12-06

    Rare genetic variation in the human population is a major source of pathophysiological variability and has been implicated in a host of complex phenotypes and diseases. Finding disease-related genes harboring disparate functional rare variants requires sequencing of many individuals across many genomic regions and comparing against unaffected cohorts. However, despite persistent declines in sequencing costs, population-based rare variant detection across large genomic target regions remains cost prohibitive for most investigators. In addition, DNA samples are often precious and hybridization methods typically require large amounts of input DNA. Pooled sample DNA sequencing is a cost and time-efficient strategy for surveying populations of individuals for rare variants. We set out to 1) create a scalable, multiplexing method for custom capture with or without individual DNA indexing that was amenable to low amounts of input DNA and 2) expand the functionality of the SPLINTER algorithm for calling substitutions, insertions and deletions across either candidate genes or the entire exome by integrating the variant calling algorithm with the dynamic programming aligner, Novoalign. We report methodology for pooled hybridization capture with pre-enrichment, indexed multiplexing of up to 48 individuals or non-indexed pooled sequencing of up to 92 individuals with as little as 70 ng of DNA per person. Modified solid phase reversible immobilization bead purification strategies enable no sample transfers from sonication in 96-well plates through adapter ligation, resulting in 50% less library preparation reagent consumption. Custom Y-shaped adapters containing novel 7 base pair index sequences with a Hamming distance of ≥2 were directly ligated onto fragmented source DNA eliminating the need for PCR to incorporate indexes, and was followed by a custom blocking strategy using a single oligonucleotide regardless of index sequence. These results were obtained aligning raw reads against the entire genome using Novoalign followed by variant calling of non-indexed pools using SPLINTER or SAMtools for indexed samples. With these pipelines, we find sensitivity and specificity of 99.4% and 99.7% for pooled exome sequencing. Sensitivity, and to a lesser degree specificity, proved to be a function of coverage. For rare variants (≤2% minor allele frequency), we achieved sensitivity and specificity of ≥94.9% and ≥99.99% for custom capture of 2.5 Mb in multiplexed libraries of 22-48 individuals with only ≥5-fold coverage/chromosome, but these parameters improved to ≥98.7 and 100% with 20-fold coverage/chromosome. This highly scalable methodology enables accurate rare variant detection, with or without individual DNA sample indexing, while reducing the amount of required source DNA and total costs through less hybridization reagent consumption, multi-sample sonication in a standard PCR plate, multiplexed pre-enrichment pooling with a single hybridization and lesser sequencing coverage required to obtain high sensitivity.

  7. Cytochrome c oxidase subunit I barcoding of the green bee-eater (Merops orientalis).

    PubMed

    Arif, I A; Khan, H A; Shobrak, M; Williams, J

    2011-10-21

    DNA barcoding using mitochondrial cytochrome c oxidase subunit I (COI) is regarded as a standard method for species identification. Recent reports have also shown extended applications of COI gene analysis in phylogeny and molecular diversity studies. The bee-eaters are a group of near passerine birds in the family Meropidae. There are 26 species worldwide; five of them are found in Saudi Arabia. Until now, GenBank included a COI barcode for only one species of bee-eater, the European bee-eater (Merops apiaster). We sequenced the 694-bp segment of the COI gene of the green bee-eater M. orientalis and compared the sequences with those of M. apiaster. Pairwise sequence comparison showed 66 variable sites across all the eight sequences from both species, with an interspecific genetic distance of 0.0362. Two and one within-species variable sites were found, with genetic distances of 0.0005 and 0.0003 for M. apiaster and M. orientalis, respectively. This is the first study reporting barcodes for M. orientalis.

  8. Variability in triactinomyxon production from Tubifex tubifex populations from the same mitochondrial DNA lineage infected with Myxobolus cerebralis, the causative agent of whirling disease in salmonids

    USGS Publications Warehouse

    Rasmussen, C.; Zickovich, J.; Winton, J.R.; Kerans, B.L.

    2008-01-01

    Myxobolus cerebralis, the causative agent of whirling disease, infects both salmonid fish and an aquatic oligochaete, Tubifex tubifex. Although M. cerebralis has been detected in river drainages throughout the United States, disease severity among wild fish populations has been highly variable. Tubifex tubifex populations have been genetically characterized using sequences from the 16S mitochondrial DNA (mtDNA) gene, the 18S ribosomal RNA gene, the internal transcribed spacer region 1 (ITS1), and randomly amplified polymorphic DNA (RAPD). Our earlier work indicated that large differences in compatibility between the parasite and populations of T. tubifex may play a substantial role in the distribution of whirling disease and resulting mortality in different watersheds. In the present study, we examined 4 laboratory populations of T. tubifex belonging to 16S mtDNA lineage III and 1 population belonging to 16S mtDNA lineage I for triactinomyxon (TAM) production after infection with M. cerebralis myxospores. All 4 16S mtDNA lineage III populations produced TAMs, but statistically significant differences in TAM production were observed. Most individuals in the 16S mtDNA lineage III-infected populations produced TAMs. The 16S mtDNA lineage I population produced few TAMs. Further genetic characterization of the 16S mtDNA lineage III populations with RAPD markers indicated that populations producing similar levels of TAMs had more genetic similarity. ?? American Society of Parasitologists 2008.

  9. Use of inter-simple sequence repeats and amplified fragment length polymorphisms to analyze genetic relationships among small grain-infecting species of ustilago.

    PubMed

    Menzies, J G; Bakkeren, G; Matheson, F; Procunier, J D; Woods, S

    2003-02-01

    ABSTRACT In the smut fungi, few features are available for use as taxonomic criteria (spore size, shape, morphology, germination type, and host range). DNA-based molecular techniques are useful in expanding the traits considered in determining relationships among these fungi. We examined the phylogenetic relationships among seven species of Ustilago (U. avenae, U. bullata, U. hordei, U. kolleri, U. nigra, U. nuda, and U. tritici) using inter-simple sequence repeats (ISSRs) and amplified fragment length polymorphisms (AFLPs) to compare their DNA profiles. Fifty-four isolates of different Ustilago spp. were analyzed using ISSR primers, and 16 isolates of Ustilago were studied using AFLP primers. The variability among isolates within species was low for all species except U. bullata. The isolates of U. bullata, U. nuda, and U. tritici were well separated and our data supports their speciation. U. avenae and U. kolleri isolates did not separate from each other and there was little variability between these species. U. hordei and U. nigra isolates also showed little variability between species, but the isolates from each species grouped together. Our data suggest that U. avenae and U. kolleri are monophyletic and should be considered one species, as should U. hordei and U. nigra.

  10. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.

    PubMed

    Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D

    2004-10-01

    Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.

  11. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria.

  12. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli

    PubMed Central

    Santillán, Orlando; Ramírez-Romero, Miguel A.; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M.; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria. PMID:27468278

  13. Acquisition of New DNA Sequences After Infection of Chicken Cells with Avian Myeloblastosis Virus

    PubMed Central

    Shoyab, M.; Baluda, M. A.; Evans, R.

    1974-01-01

    DNA-RNA hybridization studies between 70S RNA from avian myeloblastosis virus (AMV) and an excess of DNA from (i) AMV-induced leukemic chicken myeloblasts or (ii) a mixture of normal and of congenitally infected K-137 chicken embryos producing avian leukosis viruses revealed the presence of fast- and slow-hybridizing virus-specific DNA sequences. However, the leukemic cells contained twice the level of AMV-specific DNA sequences observed in normal chicken embryonic cells. The fast-reacting sequences were two to three times more numerous in leukemic DNA than in DNA from the mixed embryos. The slow-reacting sequences had a reiteration frequency of approximately 9 and 6, in the two respective systems. Both the fast- and the slow-reacting DNA sequences in leukemic cells exhibited a higher Tm (2 C) than the respective DNA sequences in normal cells. In normal and leukemic cells the slow hybrid sequences appeared to have a Tm which was 2 C higher than that of the fast hybrid sequences. Individual non-virus-producing chicken embryos, either group-specific antigen positive or negative, contained 40 to 100 copies of the fast sequences and 2 to 6 copies of the slowly hybridizing sequences per cell genome. Normal rat cells did not contain DNA that hybridized with AMV RNA, whereas non-virus-producing rat cells transformed by B-77 avian sarcoma virus contained only the slowly reacting sequences. The results demonstrate that leukemic cells transformed by AMV contain new AMV-specific DNA sequences which were not present before infection. PMID:16789139

  14. Genotypic and phenotypic diversity of Alicyclobacillus acidocaldarius isolates.

    PubMed

    Félix-Valenzuela, L; Guardiola-Avila, I; Burgara-Estrella, A; Ibarra-Zavala, M; Mata-Haro, V

    2015-10-01

    The fruit juice industry recognizes Alicyclobacillus as a major quality control target micro-organism. In this study, we analysed 19 bacterial isolates to identify Alicyclobacillus species by polymerase chain reaction (PCR) and sequencing analyses. Phenotypic and genomic diversity among isolates were investigated by API 50CHB system and ERIC-PCR (enterobacterial repetitive intergenic consensus-PCR) respectively. All bacterial isolates were identified as Alicyclobacillus acidocaldarius, and almost all showed identical DNA sequences according to their 16S rRNA (rDNA) gene partial sequences. Only few carbohydrates were fermented by A. acidocaldarius isolates, and there was little variability in the biochemical profile. Genotypic fingerprinting of the A. acidocaldarius isolates showed high diversity, and clusters by ERIC-PCR were distinct to those obtained from the 16S rRNA gene phylogenetic tree. There was no correlation between phenotypic and genotypic variability in the A. acidocaldarius isolates analysed in this study. Detection of Alicyclobacillus strains is imperative in fruit concentrates and juices due to the production of guaiacol. Identification of the genera originates rejection of the product by processing industry. However, not all the Alicyclobacillus species are deteriorative and hence the importance to differentiate among them. In this study, partial 16S ribosomal RNA sequence alignment allowed the differentiation of species. In addition, ERIC-PCR was introduced for the genotypic characterization of Alicyclobacillus, as an alternative for differentiation among isolates from the same species. © 2015 The Society for Applied Microbiology.

  15. Mycelial Propagation and Molecular Phylogenetic Relationships of Commercially Cultivated Agrocybe cylindracea based on ITS Sequences and RAPD

    PubMed Central

    Alam, Nuhu; Kim, Jeong Hwa; Shim, Mi Ja; Lee, U Youn

    2010-01-01

    This study evaluated the optimal vegetative growth conditions and molecular phylogenetic relationships of eleven strains of Agrocybe cylindracea collected from different ecological regions of Korea, China and Taiwan. The optimal temperature and pH for mycelial growth were observed at 25℃ and 6. Potato dextrose agar and Hennerberg were the favorable media for vegetative growth, whereas glucose tryptone was unfavorable. Dextrin, maltose, and fructose were the most effective carbon sources. The most suitable nitrogen sources were arginine and glycine, whereas methionine, alanine, histidine, and urea were least effective for the mycelial propagation of A. cylindracea. The internal transcribed spacer (ITS) regions of rDNA were amplified using PCR. The sequence of ITS2 was more variable than that of ITS1, while the 5.8S sequences were identical. The reciprocal homologies of the ITS sequences ranged from 98 to 100%. The strains were also analyzed by random amplification of polymorphic DNA (RAPD) using 20 arbitrary primers. Fifteen primers efficiently amplified the genomic DNA. The average number of polymorphic bands observed per primer was 3.8. The numbers of amplified bands varied based on the primers and strains, with polymorphic fragments ranging from 0.1 to 2.9 kb. The results of RAPD analysis were similar to the ITS region sequences. The results revealed that RAPD and ITS techniques were well suited for detecting the genetic diversity of all A. cylindracea strains tested. PMID:23956633

  16. Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis

    PubMed Central

    Matsuda, M; Tazumi, A; Kagawa, S; Sekizuka, T; Murayama, O; Moore, JE; Millar, BC

    2006-01-01

    Background At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Results Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. Conclusion High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted. PMID:16398935

  17. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility.

    PubMed

    Sloan, Daniel B; Müller, Karel; McCauley, David E; Taylor, Douglas R; Storchová, Helena

    2012-12-01

    In angiosperms, mitochondrial-encoded genes can cause cytoplasmic male sterility (CMS), resulting in the coexistence of female and hermaphroditic individuals (gynodioecy). We compared four complete mitochondrial genomes from the gynodioecious species Silene vulgaris and found unprecedented amounts of intraspecific diversity for plant mitochondrial DNA (mtDNA). Remarkably, only about half of overall sequence content is shared between any pair of genomes. The four mtDNAs range in size from 361 to 429 kb and differ in gene complement, with rpl5 and rps13 being intact in some genomes but absent or pseudogenized in others. The genomes exhibit essentially no conservation of synteny and are highly repetitive, with evidence of reciprocal recombination occurring even across short repeats (< 250 bp). Some mitochondrial genes exhibit atypically high degrees of nucleotide polymorphism, while others are invariant. The genomes also contain a variable number of small autonomously mapping chromosomes, which have only recently been identified in angiosperm mtDNA. Southern blot analysis of one of these chromosomes indicated a complex in vivo structure consisting of both monomeric circles and multimeric forms. We conclude that S. vulgaris harbors an unusually large degree of variation in mtDNA sequence and structure and discuss the extent to which this variation might be related to CMS. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  19. Future potential of the Human Epigenome Project.

    PubMed

    Eckhardt, Florian; Beck, Stephan; Gut, Ivo G; Berlin, Kurt

    2004-09-01

    Deciphering the information encoded in the human genome is key for the further understanding of human biology, physiology and evolution. With the draft sequence of the human genome completed, elucidation of the epigenetic information layer of the human genome becomes accessible. Epigenetic mechanisms are mediated by either chemical modifications of the DNA itself or by modifications of proteins that are closely associated with DNA. Defects of the epigenetic regulation involved in processes such as imprinting, X chromosome inactivation, transcriptional control of genes, as well as mutations affecting DNA methylation enzymes, contribute fundamentally to the etiology of many human diseases. Headed by the Human Epigenome Consortium, the Human Epigenome Project is a joint effort by an international collaboration that aims to identify, catalog and interpret genome-wide DNA methylation patterns of all human genes in all major tissues. Methylation variable positions are thought to reflect gene activity, tissue type and disease state, and are useful epigenetic markers revealing the dynamic state of the genome. Like single nucleotide polymorphisms, methylation variable positions will greatly advance our ability to elucidate and diagnose the molecular basis of human diseases.

  20. Evaluation of commercial DNA and RNA extraction methods for high-throughput sequencing of FFPE samples.

    PubMed

    Kresse, Stine H; Namløs, Heidi M; Lorenz, Susanne; Berner, Jeanne-Marie; Myklebost, Ola; Bjerkehagen, Bodil; Meza-Zepeda, Leonardo A

    2018-01-01

    Nucleic acid material of adequate quality is crucial for successful high-throughput sequencing (HTS) analysis. DNA and RNA isolated from archival FFPE material are frequently degraded and not readily amplifiable due to chemical damage introduced during fixation. To identify optimal nucleic acid extraction kits, DNA and RNA quantity, quality and performance in HTS applications were evaluated. DNA and RNA were isolated from five sarcoma archival FFPE blocks, using eight extraction protocols from seven kits from three different commercial vendors. For DNA extraction, the truXTRAC FFPE DNA kit from Covaris gave higher yields and better amplifiable DNA, but all protocols gave comparable HTS library yields using Agilent SureSelect XT and performed well in downstream variant calling. For RNA extraction, all protocols gave comparable yields and amplifiable RNA. However, for fusion gene detection using the Archer FusionPlex Sarcoma Assay, the truXTRAC FFPE RNA kit from Covaris and Agencourt FormaPure kit from Beckman Coulter showed the highest percentage of unique read-pairs, providing higher complexity of HTS data and more frequent detection of recurrent fusion genes. truXTRAC simultaneous DNA and RNA extraction gave similar outputs as individual protocols. These findings show that although successful HTS libraries could be generated in most cases, the different protocols gave variable quantity and quality for FFPE nucleic acid extraction. Selecting the optimal procedure is highly valuable and may generate results in borderline quality specimens.

  1. Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements.

    PubMed

    Parson, Walther; Ballard, David; Budowle, Bruce; Butler, John M; Gettings, Katherine B; Gill, Peter; Gusmão, Leonor; Hares, Douglas R; Irwin, Jodi A; King, Jonathan L; Knijff, Peter de; Morling, Niels; Prinz, Mechthild; Schneider, Peter M; Neste, Christophe Van; Willuweit, Sascha; Phillips, Christopher

    2016-05-01

    The DNA Commission of the International Society for Forensic Genetics (ISFG) is reviewing factors that need to be considered ahead of the adoption by the forensic community of short tandem repeat (STR) genotyping by massively parallel sequencing (MPS) technologies. MPS produces sequence data that provide a precise description of the repeat allele structure of a STR marker and variants that may reside in the flanking areas of the repeat region. When a STR contains a complex arrangement of repeat motifs, the level of genetic polymorphism revealed by the sequence data can increase substantially. As repeat structures can be complex and include substitutions, insertions, deletions, variable tandem repeat arrangements of multiple nucleotide motifs, and flanking region SNPs, established capillary electrophoresis (CE) allele descriptions must be supplemented by a new system of STR allele nomenclature, which retains backward compatibility with the CE data that currently populate national DNA databases and that will continue to be produced for the coming years. Thus, there is a pressing need to produce a standardized framework for describing complex sequences that enable comparison with currently used repeat allele nomenclature derived from conventional CE systems. It is important to discern three levels of information in hierarchical order (i) the sequence, (ii) the alignment, and (iii) the nomenclature of STR sequence data. We propose a sequence (text) string format the minimal requirement of data storage that laboratories should follow when adopting MPS of STRs. We further discuss the variant annotation and sequence comparison framework necessary to maintain compatibility among established and future data. This system must be easy to use and interpret by the DNA specialist, based on a universally accessible genome assembly, and in place before the uptake of MPS by the general forensic community starts to generate sequence data on a large scale. While the established nomenclature for CE-based STR analysis will remain unchanged in the future, the nomenclature of sequence-based STR genotypes will need to follow updated rules and be generated by expert systems that translate MPS sequences to match CE conventions in order to guarantee compatibility between the different generations of STR data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Laser mass spectrometry for DNA fingerprinting for forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.H.; Tang, K.; Taranenko, N.I.

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals.more » DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.« less

  3. Solid phase sequencing of biopolymers

    DOEpatents

    Cantor, Charles; Koster, Hubert

    2010-09-28

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  4. Exploring the mitochondrial DNA variability of the Amazonian Yanomami.

    PubMed

    Varano, Sara; Scorrano, Gabriele; Martínez-Labarga, Cristina; Finocchio, Andrea; Rapone, Cesare; Berti, Andrea; Rickards, Olga

    2016-11-01

    The aim of this study was to explore the mitochondrial variability in the Yanomami population to reconstruct its demographic history and explore its genetic composition in relation to its cultural and linguistic features. A total of 174 human head hair shafts -collected in 1958- belonging to individuals from a Yanomami group living in Santa Isabel, Brazil, were analyzed. Automated extraction of the hairs was performed, and several methods were applied to optimize the analysis of the degraded DNA. The mtDNA hypervariable segments I-II, along with the 9-bp COII-tRNA Lys deletion, were investigated. Using published data from the Yanomami and other Amazonian populations, several statistical analyses were carried out to explore the genetic variability within the study population. Ninety eight percent of the mitochondrial DNA (mtDNA) sequences analyzed belonged to Native American haplogroups, while 2% belonged to African haplogroups. Compared with the Yanomami groups previously studied, the Santa Isabel sample seemed more genetically similar to other Amazonian populations. Among the Yanomami samples studied to date, the Santa Isabel Yanomami show a higher genetic heterogeneity. This could be due to gene flow with non-Yanomami populations, as well as to the introduction of new mitochondrial haplotypes by gold miners. In both cases, the geographic location of Santa Isabel might have made this Yanomami village less isolated than the others, suggesting that the Rio Negro played a central role in increasing its genetic variability. On the whole, the Yanomami were quite genetically diversified, probably mirroring their great linguistic heterogeneity. Am. J. Hum. Biol. 28:846-856, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Functional and mechanistic diversity of distal transcription enhancers

    PubMed Central

    Bulger, Michael; Groudine, Mark

    2013-01-01

    Biological differences among metazoans, and between cell types in a given organism, arise in large part due to differences in gene expression patterns. The sequencing of multiple metazoan genomes, coupled with recent advances in genome-wide analysis of histone modifications and transcription factor binding, has revealed that among regulatory DNA sequences, gene-distal enhancers appear to exhibit the greatest diversity and cell-type specificity. Moreover, such elements are emerging as important targets for mutations that can give rise to disease and to genetic variability that underlies evolutionary change. Studies of long-range interactions between distal genomic sequences in the nucleus indicate that enhancers are often important determinants of nuclear organization, contributing to a general model for enhancer function that involves direct enhancer-promoter contact. In a number of systems, however, mechanisms for enhancer function are emerging that do not fit solely within such a model, suggesting that enhancers as a class of DNA regulatory element may be functionally and mechanistically diverse. PMID:21295696

  6. The actin multigene family and livestock speciation using the polymerase chain reaction.

    PubMed

    Fairbrother, K S; Hopwood, A J; Lockley, A K; Bardsley, R G

    1998-01-01

    Actins constitute a family of highly-conserved multifunctional intracellular proteins, best known as myofibrillar components in striated muscle fibres. Most vertebrate genomes contain numerous actin genes with high sequence homology in protein coding regions but considerable variability in intron number and sizes. This genetic diversity can be utilised for livestock speciation purposes. The high sequence conservation has enabled a single pair of oligonucleotides to be used to prime the polymerase chain reaction (PCR) with DNA extracted from all animals so far studied. Multiple amplification products were obtained which on gel electrophoresis constituted characteristic species-specific 'fingerprints'. The patterns were reproducible, did not vary between individuals of the same breed or between different breeds within a species, and could be generated even from heat-processed muscle held at 120 degrees C for one hour. Given the capacity of PCR to amplify relatively short sequences in highly-degraded DNA, this approach may be suitable for authentication of processed meat products.

  7. Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata.

    PubMed

    Kawabe, Akira; Charlesworth, Deborah

    2007-02-01

    We describe patterns of DNA variation among the three centromeric satellite families in Arabidopsis halleri and lyrata. The newly studied subspecies (A. halleri ssp. halleri and A. lyrata ssp. lyrata and petraea), like the previously studied A. halleri ssp. gemmifera and A. lyrata ssp. kawasakiana, have three different centromeric satellite families, the older pAa family (also present in A. arenosa) and two families, pAge1 and pAge2, that probably evolved more recently. Sequence variability is high in all three satellite families, and the pAa sequences do not cluster by their species of origin. Diversity in the pAge2 family is complex, and different from variation among copies of the other two families, showing clear evidence for exchange events among family members, especially in A. halleri ssp. halleri. In A. lyrata ssp. lyrata there is some evidence for recent rapid spread of pAge2 variants, suggesting selection favoring these sequences.

  8. Genetic stability of progeny from an artificial allotetraploid carp using sperm from five fish species.

    PubMed

    Ye, Yuzhen; Wang, Zhongwei; Zhou, Jianfeng; Wu, Qingjiang

    2009-08-01

    Microsatellite markers and D-loop sequences of mtDNA from a female allotetraploid parent carp and her progenies of generations 1 and 2 induced by sperm of five distant fish species were analyzed. Eleven microsatellite markers were used to identify 48 alleles from the allotetraploid female. The same number of alleles (48) appeared in the first and second generations of the gynogenetic offspring, regardless of the source of the sperm used as an activator. The mtDNA D-loop analysis was performed on the female tetraploid parent, 25 gynogenetic offspring, and 5 sperm-donor species. Fourteen variable sites from the 1,018 bp sequences were observed in the offspring as compared to the female tetraploid parent. Results from D-loop sequence and microsatellite marker analysis showed exclusive maternal transmission, and no genetic information was derived from the father. Our study suggests that progenies of artificial tetraploid carp are genetically stable, which is important for genetic breeding of this tetraploid fish.

  9. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    PubMed

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-03-26

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic DNA methylation between sperm and oocyte DNA. The methylation levels of the minor satellite sequences did not change during spermiogenesis, and were not associated with the onset of meiosis or a specific stage in sperm development.

  10. Process of labeling specific chromosomes using recombinant repetitive DNA

    DOEpatents

    Moyzis, R.K.; Meyne, J.

    1988-02-12

    Chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family members and consensus sequences of the repetitive DNA families for the chromosome preferential sequences. The selected low homology regions are then hybridized with chromosomes to determine those low homology regions hybridized with a specific chromosome under normal stringency conditions.

  11. Introducing W.A.T.E.R.S.: a workflow for the alignment, taxonomy, and ecology of ribosomal sequences.

    PubMed

    Hartman, Amber L; Riddle, Sean; McPhillips, Timothy; Ludäscher, Bertram; Eisen, Jonathan A

    2010-06-12

    For more than two decades microbiologists have used a highly conserved microbial gene as a phylogenetic marker for bacteria and archaea. The small-subunit ribosomal RNA gene, also known as 16 S rRNA, is encoded by ribosomal DNA, 16 S rDNA, and has provided a powerful comparative tool to microbial ecologists. Over time, the microbial ecology field has matured from small-scale studies in a select number of environments to massive collections of sequence data that are paired with dozens of corresponding collection variables. As the complexity of data and tool sets have grown, the need for flexible automation and maintenance of the core processes of 16 S rDNA sequence analysis has increased correspondingly. We present WATERS, an integrated approach for 16 S rDNA analysis that bundles a suite of publicly available 16 S rDNA analysis software tools into a single software package. The "toolkit" includes sequence alignment, chimera removal, OTU determination, taxonomy assignment, phylogentic tree construction as well as a host of ecological analysis and visualization tools. WATERS employs a flexible, collection-oriented 'workflow' approach using the open-source Kepler system as a platform. By packaging available software tools into a single automated workflow, WATERS simplifies 16 S rDNA analyses, especially for those without specialized bioinformatics, programming expertise. In addition, WATERS, like some of the newer comprehensive rRNA analysis tools, allows researchers to minimize the time dedicated to carrying out tedious informatics steps and to focus their attention instead on the biological interpretation of the results. One advantage of WATERS over other comprehensive tools is that the use of the Kepler workflow system facilitates result interpretation and reproducibility via a data provenance sub-system. Furthermore, new "actors" can be added to the workflow as desired and we see WATERS as an initial seed for a sizeable and growing repository of interoperable, easy-to-combine tools for asking increasingly complex microbial ecology questions.

  12. Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima

    PubMed Central

    Boutte, Julien; Aliaga, Benoît; Lima, Oscar; Ferreira de Carvalho, Julie; Ainouche, Abdelkader; Macas, Jiri; Rousseau-Gueutin, Mathieu; Coriton, Olivier; Ainouche, Malika; Salmon, Armel

    2015-01-01

    Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5′-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies. PMID:26530424

  13. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    PubMed

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of our knowledge, this is the first attempt to predict protein-binding nucleotides in a given DNA sequence from the sequence data alone. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification.

    PubMed

    Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M

    2012-03-01

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.

  15. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun.

    PubMed

    Leonard, D A; Rajaram, N; Kerppola, T K

    1997-05-13

    Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.

  16. Effects of a Transposable Element Insertion on Alcohol Dehydrogenase Expression in Drosophila Melanogaster

    PubMed Central

    Dunn, R. C.; Laurie, C. C.

    1995-01-01

    Variation in the DNA sequence and level of alcohol dehydrogenase (Adh) gene expression in Drosophila melanogaster have been studied to determine what types of DNA polymorphisms contribute to phenotypic variation in natural populations. The Adh gene, like many others, shows a high level of variability in both DNA sequence and quantitative level of expression. A number of transposable element insertions occur in the Adh region and one of these, a copia insertion in the 5' flanking region, is associated with unusually low Adh expression. To determine whether this insertion (called RI42) causes the low expression level, the insertion was excised from the cloned RI42 Adh gene and the effect was assessed by P-element transformation. Removal of this insertion causes a threefold increase in the level of ADH, clearly showing that it contributes to the naturally occurring variation in expression at this locus. Removal of all but one LTR also causes a threefold increase, indicating that the mechanism is not a simple sequence disruption. Furthermore, this copia insertion, which is located between the two Adh promoters and their upstream enhancer sequences, has differential effects on the levels of proximal and distal transcripts. Finally, a test for the possible modifying effects of two suppressor loci, su(w(a)) and su(f), on this insertional mutation was negative, in contrast to a previous report in the literature. PMID:7498745

  17. ΔN-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites

    PubMed Central

    Foggetti, Giorgia; Raimondi, Ivan; Campomenosi, Paola; Menichini, Paola

    2014-01-01

    TP63 is a member of the TP53 gene family that encodes for up to ten different TA and ΔN isoforms through alternative promoter usage and alternative splicing. Besides being a master regulator of gene expression for squamous epithelial proliferation, differentiation and maintenance, P63, through differential expression of its isoforms, plays important roles in tumorigenesis. All P63 isoforms share an immunoglobulin-like folded DNA binding domain responsible for binding to sequence-specific response elements (REs), whose overall consensus sequence is similar to that of the canonical p53 RE. Using a defined assay in yeast, where P63 isoforms and RE sequences are the only variables, and gene expression assays in human cell lines, we demonstrated that human TA- and ΔN-P63α proteins exhibited differences in transactivation specificity not observed with the corresponding P73 or P53 protein isoforms. These differences 1) were dependent on specific features of the RE sequence, 2) could be related to intrinsic differences in their oligomeric state and cooperative DNA binding, and 3) appeared to be conserved in evolution. Since genotoxic stress can change relative ratio of TA- and ΔN-P63α protein levels, the different transactivation specificity of each P63 isoform could potentially influence cellular responses to specific stresses. PMID:24926492

  18. Enlightenment of Yeast Mitochondrial Homoplasmy: Diversified Roles of Gene Conversion

    PubMed Central

    Ling, Feng; Mikawa, Tsutomu; Shibata, Takehiko

    2011-01-01

    Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell (“homoplasmy”) during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3′ single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes. PMID:24710143

  19. "First generation" automated DNA sequencing technology.

    PubMed

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  20. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    PubMed

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for revealing the misclassification of strain IFO 3283 into the species A. aceti.

  1. Reconstitution of wild type viral DNA in simian cells transfected with early and late SV40 defective genomes.

    PubMed

    O'Neill, F J; Gao, Y; Xu, X

    1993-11-01

    The DNAs of polyomaviruses ordinarily exist as a single circular molecule of approximately 5000 base pairs. Variants of SV40, BKV and JCV have been described which contain two complementing defective DNA molecules. These defectives, which form a bipartite genome structure, contain either the viral early region or the late region. The defectives have the unique property of being able to tolerate variable sized reiterations of regulatory and terminus region sequences, and portions of the coding region. They can also exchange coding region sequences with other polyomaviruses. It has been suggested that the bipartite genome structure might be a stage in the evolution of polyomaviruses which can uniquely sustain genome and sequence diversity. However, it is not known if the regulatory and terminus region sequences are highly mutable. Also, it is not known if the bipartite genome structure is reversible and what the conditions might be which would favor restoration of the monomolecular genome structure. We addressed the first question by sequencing the reiterated regulatory and terminus regions of E- and L-SV40 DNAs. This revealed a large number of mutations in the regulatory regions of the defective genomes, including deletions, insertions, rearrangements and base substitutions. We also detected insertions and base substitutions in the T-antigen gene. We addressed the second question by introducing into permissive simian cells, E- and L-SV40 genomes which had been engineered to contain only a single regulatory region. Analysis of viral DNA from transfected cells demonstrated recombined genomes containing a wild type monomolecular DNA structure. However, the complete defectives, containing reiterated regulatory regions, could often compete away the wild type genomes. The recombinant monomolecular genomes were isolated, cloned and found to be infectious. All of the DNA alterations identified in one of the regulatory regions of E-SV40 DNA were present in the recombinant monomolecular genomes. These and other findings indicate that the bipartite genome state can sustain many mutations which wtSV40 cannot directly sustain. However, the mutations can later be introduced into the wild type genomes when the E- and L-SV40 DNAs recombine to generate a new monomolecular genome structure.

  2. Influence of DNA sequence on the structure of minicircles under torsional stress

    PubMed Central

    Wang, Qian; Irobalieva, Rossitza N.; Chiu, Wah; Schmid, Michael F.; Fogg, Jonathan M.; Zechiedrich, Lynn

    2017-01-01

    Abstract The sequence dependence of the conformational distribution of DNA under various levels of torsional stress is an important unsolved problem. Combining theory and coarse-grained simulations shows that the DNA sequence and a structural correlation due to topology constraints of a circle are the main factors that dictate the 3D structure of a 336 bp DNA minicircle under torsional stress. We found that DNA minicircle topoisomers can have multiple bend locations under high torsional stress and that the positions of these sharp bends are determined by the sequence, and by a positive mechanical correlation along the sequence. We showed that simulations and theory are able to provide sequence-specific information about individual DNA minicircles observed by cryo-electron tomography (cryo-ET). We provided a sequence-specific cryo-ET tomogram fitting of DNA minicircles, registering the sequence within the geometric features. Our results indicate that the conformational distribution of minicircles under torsional stress can be designed, which has important implications for using minicircle DNA for gene therapy. PMID:28609782

  3. Analysis of DNA Sequences by an Optical Time-Integrating Correlator: Proof-of-Concept Experiments.

    DTIC Science & Technology

    1992-05-01

    DNA ANALYSIS STRATEGY 4 2.1 Representation of DNA Bases 4 2.2 DNA Analysis Strategy 6 3.0 CUSTOM GENERATORS FOR DNA SEQUENCES 10 3.1 Hardware Design 10...of the DNA bases where each base is represented by a 7-bits long pseudorandom sequence. 5 Figure 4: Coarse analysis of a DNA sequence. 7 Figure 5: Fine...a 20-bases long database. 32 xiii LIST OF TABLES PAGE Table 1: Short representations of the DNA bases where each base is represented by 7-bits long

  4. Regulation of pathogenicity in hop stunt viroid-related group II citrus viroids.

    PubMed

    Reanwarakorn, K; Semancik, J S

    1998-12-01

    Nucleotide sequences were determined for two hop stunt viroid-related Group II citrus viroids characterized as either a cachexia disease non-pathogenic variant (CVd-IIa) or a pathogenic variant (CVd-IIb). Sequence identity between the two variants of 95.6% indicated a conserved genome with the principal region of nucleotide difference clustered in the variable (V) domain. Full-length viroid RT-PCR cDNA products were cloned into plasmid SP72. Viroid cDNA clones as well as derived RNA transcripts were transmissible to citron (Citrus medica L.) and Luffa aegyptiaca Mill. To determine the locus of cachexia pathogenicity as well as symptom expression in Luffa, chimeric viroid cDNA clones were constructed from segments of either the left terminal, pathogenic and conserved (T1-P-C) domains or the conserved, variable and right terminal (C-V-T2) domains of CVd-IIa or CVd-IIb in reciprocal exchanges. Symptoms induced by the various chimeric constructs on the two bioassay hosts reflected the differential response observed with CVd-IIa and -IIb. Constructs with the C-V-T2 domains region from clone-IIa induced severe symptoms on Luffa typical of CVd-IIa, but were non-symptomatic on mandarin as a bioassay host for the cachexia disease. Constructs with the same region (C-V-T2) from the clone-IIb genome induced only mild symptoms on Luffa, but produced a severe reaction on mandarin, as observed for CVd-IIb. Specific site-directed mutations were introduced into the V domain of the CVd-IIa clone to construct viroid cDNA clones with either partial or complete conversions to the CVd-IIb sequence. With the introduction of six site-specific changes into the V domain of the clone-IIa genome, cachexia pathogenicity was acquired as well as a moderation of severe symptoms on Luffa.

  5. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  6. Micronuclear DNA of Oxytricha nova contains sequences with autonomously replicating activity in Saccharomyces cerevisiae.

    PubMed Central

    Colombo, M M; Swanton, M T; Donini, P; Prescott, D M

    1984-01-01

    Oxytricha nova is a hypotrichous ciliate with micronuclei and macronuclei. Micronuclei, which contain large, chromosomal-sized DNA, are genetically inert but undergo meiosis and exchange during cell mating. Macronuclei, which contain only small, gene-sized DNA molecules, provide all of the nuclear RNA needed to run the cell. After cell mating the macronucleus is derived from a micronucleus, a derivation that includes excision of the genes from chromosomes and elimination of the remaining DNA. The eliminated DNA includes all of the repetitious sequences and approximately 95% of the unique sequences. We cloned large restriction fragments from the micronucleus that confer replication ability on a replication-deficient plasmid in Saccharomyces cerevisiae. Sequences that confer replication ability are called autonomously replicating sequences. The frequency and effectiveness of autonomously replicating sequences in micronuclear DNA are similar to those reported for DNAs of other organisms introduced into yeast cells. Of the 12 micronuclear fragments with autonomously replicating sequence activity, 9 also showed homology to macronuclear DNA, indicating that they contain a macronuclear gene sequence. We conclude from this that autonomously replicating sequence activity is nonrandomly distributed throughout micronuclear DNA and is preferentially associated with those regions of micronuclear DNA that contain genes. Images PMID:6092934

  7. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    PubMed Central

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2014-01-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252

  8. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae

    PubMed Central

    de Cambiaire, Jean-Charles; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2007-01-01

    Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs) deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales) is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales). Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR) but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs) account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate that the IR was lost on at least two separate occasions. The intriguing similarities of the derived features exhibited by Leptosira cpDNA and its chlorophycean counterparts suggest that the same evolutionary forces shaped the IR-lacking chloroplast genomes in these two algal lineages. PMID:17610731

  9. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci

    USDA-ARS?s Scientific Manuscript database

    Wheat is grown around the world and has been plagued by three rust fungi for centuries. Leaf rust, stripe rust, and stem rust each cause significant damage and can adapt quickly to overcome resistance that is present in wheat cultivars. Using advanced DNA sequencing technology, the genomes of leaf ...

  10. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    PubMed

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks. Copyright © 2013. Published by Elsevier Ltd.

  11. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages.

    PubMed

    Bidon, Tobias; Janke, Axel; Fain, Steven R; Eiken, Hans Geir; Hagen, Snorre B; Saarma, Urmas; Hallström, Björn M; Lecomte, Nicolas; Hailer, Frank

    2014-06-01

    Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Qualitative and quantitative assessment of Illumina's forensic STR and SNP kits on MiSeq FGx™.

    PubMed

    Sharma, Vishakha; Chow, Hoi Yan; Siegel, Donald; Wurmbach, Elisa

    2017-01-01

    Massively parallel sequencing (MPS) is a powerful tool transforming DNA analysis in multiple fields ranging from medicine, to environmental science, to evolutionary biology. In forensic applications, MPS offers the ability to significantly increase the discriminatory power of human identification as well as aid in mixture deconvolution. However, before the benefits of any new technology can be employed, a thorough evaluation of its quality, consistency, sensitivity, and specificity must be rigorously evaluated in order to gain a detailed understanding of the technique including sources of error, error rates, and other restrictions/limitations. This extensive study assessed the performance of Illumina's MiSeq FGx MPS system and ForenSeq™ kit in nine experimental runs including 314 reaction samples. In-depth data analysis evaluated the consequences of different assay conditions on test results. Variables included: sample numbers per run, targets per run, DNA input per sample, and replications. Results are presented as heat maps revealing patterns for each locus. Data analysis focused on read numbers (allele coverage), drop-outs, drop-ins, and sequence analysis. The study revealed that loci with high read numbers performed better and resulted in fewer drop-outs and well balanced heterozygous alleles. Several loci were prone to drop-outs which led to falsely typed homozygotes and therefore to genotype errors. Sequence analysis of allele drop-in typically revealed a single nucleotide change (deletion, insertion, or substitution). Analyses of sequences, no template controls, and spurious alleles suggest no contamination during library preparation, pooling, and sequencing, but indicate that sequencing or PCR errors may have occurred due to DNA polymerase infidelities. Finally, we found utilizing Illumina's FGx System at recommended conditions does not guarantee 100% outcomes for all samples tested, including the positive control, and required manual editing due to low read numbers and/or allele drop-in. These findings are important for progressing towards implementation of MPS in forensic DNA testing.

  13. Affordable hands-on DNA sequencing and genotyping: an exercise for teaching DNA analysis to undergraduates.

    PubMed

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C Sanger sequencing reactions. They prepare and run the gels, perform Southern blots (which require only 10 min), and detect sequencing ladders using a colorimetric detection system. Students enlarge their sequencing ladders from digital images of their small nylon membranes, and read the sequence manually. They compare their reads with the actual DNA sequence using BLAST2. After mastering the DNA sequencing system, students prepare their own DNA from a cheek swab, polymerase chain reaction-amplify a region of their DNA that encompasses a SNP of interest, and perform sequencing to determine their genotype at the SNP position. A family pedigree can also be constructed. The SNP chosen by the instructor was rs17822931, which is in the ABCC11 gene and is the determinant of human earwax type. Genotypes at the rs178229931 site vary in different ethnic populations. © 2013 by The International Union of Biochemistry and Molecular Biology.

  14. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    PubMed

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  15. Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA.

    PubMed

    Kusaba, M; Tsuge, T

    1995-10-01

    The internal transcribed spacer regions (ITS1 and ITS2) of ribosomal DNA from Alternaria species, including seven fungi known to produce host-specific toxins, were analyzed by polymerase chain reaction-amplification and direct sequencing. Phylogenetic analysis of the sequence data by the Neighbor-joining method showed that the seven toxin-producing fungi belong to a monophyletic group together with A. alternata. In contract, A. dianthi, A. panax, A. dauci, A. bataticola, A. porri, A. sesami and A. solani, species that can be morphologically distinguished from A. alternata, could be clearly separated from A. alternata by phylogenetic of the ITS variation. These results suggest that Alternaria pathogens which produce host-specific toxins are pathogenic variants within a single variable species, A. alternata.

  16. A Validated Methodology for Genetic Identification of Tuna Species (Genus Thunnus)

    PubMed Central

    Viñas, Jordi; Tudela, Sergi

    2009-01-01

    Background Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue. Methodology After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR), followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1). This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples. Conclusions Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned. PMID:19898615

  17. A validated methodology for genetic identification of tuna species (genus Thunnus).

    PubMed

    Viñas, Jordi; Tudela, Sergi

    2009-10-27

    Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue. After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR), followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1). This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples. Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned.

  18. A DNA methylation map of human cancer at single base-pair resolution.

    PubMed

    Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M

    2017-10-05

    Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination.

  19. [Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants].

    PubMed

    Boronnikova, S V; Kalendar', R N

    2010-01-01

    Species-specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm' region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP-markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.

  20. Genetic analysis of human immunodeficiency virus type 1 envelope V3 region isolates from mothers and infants after perinatal transmission.

    PubMed Central

    Ahmad, N; Baroudy, B M; Baker, R C; Chappey, C

    1995-01-01

    The human immunodeficiency virus type 1 (HIV-1) sequences from variable region 3 (V3) of the envelope gene were analyzed from seven infected mother-infant pairs following perinatal transmission. The V3 region sequences directly derived from the DNA of the uncultured peripheral blood mononuclear cells from infected mothers displayed a heterogeneous population. In contrast, the infants' sequences were less diverse than those of their mothers. In addition, the sequences from the younger infants' peripheral blood mononuclear cell DNA were more homogeneous than the older infants' sequences. All infants' sequences were different but displayed patterns similar to those seen in their mothers. In the mother-infant pair sequences analyzed, a minor genotype or subtype found in the mothers predominated in their infants. The conserved N-linked glycosylation site proximal to the first cysteine of the V3 loop was absent only in one infant's sequence set and in some variants of two other infants' sequences. Furthermore, the HIV-1 sequences of the epidemiologically linked mother-infant pairs were closer than the sequences of epidemiologically unlinked individuals, suggesting that the sequence comparison of mother-infant pairs done in order to identify genetic variants transmitted from mother to infant could be performed even in older infants. There was no evidence for transmission of a major genotype or multiple genotypes from mother to infant. In conclusion, a minor genotype of maternal virus is transmitted to the infants, and this finding could be useful in developing strategies to prevent maternal transmission of HIV-1 by means of perinatal interventions. PMID:7815476

  1. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve whole mitochondrial genome sequences from even the most challenging samples. PMID:24289217

  2. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    PubMed

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  3. Deep Investigation of Arabidopsis thaliana Junk DNA Reveals a Continuum between Repetitive Elements and Genomic Dark Matter

    PubMed Central

    Maumus, Florian; Quesneville, Hadi

    2014-01-01

    Eukaryotic genomes contain highly variable amounts of DNA with no apparent function. This so-called junk DNA is composed of two components: repeated and repeat-derived sequences (together referred to as the repeatome), and non-annotated sequences also known as genomic dark matter. Because of their high duplication rates as compared to other genomic features, transposable elements are predominant contributors to the repeatome and the products of their decay is thought to be a major source of genomic dark matter. Determining the origin and composition of junk DNA is thus important to help understanding genome evolution as well as host biology. In this study, we have used a combination of tools enabling to show that the repeatome from the small and reducing A. thaliana genome is significantly larger than previously thought. Furthermore, we present the concepts and results from a series of innovative approaches suggesting that a significant amount of the A. thaliana dark matter is of repetitive origin. As a tentative standard for the community, we propose a deep compendium annotation of the A. thaliana repeatome that may help addressing farther genome evolution as well as transcriptional and epigenetic regulation in this model plant. PMID:24709859

  4. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    PubMed

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  5. Direct Detection and Sequencing of Damaged DNA Bases

    PubMed Central

    2011-01-01

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597

  6. Direct detection and sequencing of damaged DNA bases.

    PubMed

    Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas

    2011-12-20

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.

  7. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.

    PubMed

    Xu, Jianping

    2006-06-01

    Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.

  8. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1987-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3575113

  9. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1990-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227

  10. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1988-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3368330

  11. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1989-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2654889

  12. Evolutionary dynamics and sites of illegitimate recombination revealed in the interspersion and sequence junctions of two nonhomologous satellite DNAs in cactophilic Drosophila species.

    PubMed

    Kuhn, G C S; Teo, C H; Schwarzacher, T; Heslop-Harrison, J S

    2009-05-01

    Satellite DNA (satDNA) is a major component of genomes but relatively little is known about the fine-scale organization of unrelated satDNAs residing at the same chromosome location, and the sequence structure and dynamics of satDNA junctions. We studied the organization and sequence junctions of two nonhomologous satDNAs, pBuM and DBC-150, in three species from the neotropical Drosophila buzzatii cluster (repleta group). In situ hybridization to microchromosomes, interphase nuclei and extended DNA fibers showed frequent interspersion of the two satellites in D. gouveai, D. antonietae and, to a lesser extent, D. seriema. We isolated by PCR six pBuM x DBC-150 junctions: four are exclusive to D. gouveai and two are exclusive to D. antonietae. The six junction breakpoints occur at different positions within monomers, suggesting independent origin. Four junctions showed abrupt transitions between the two satellites, whereas two junctions showed a distinct 10 bp tandem duplication before the junction. Unlike pBuM, DBC-150 junction repeats are more variable than randomly cloned monomers and showed diagnostic features in common to a 3-monomer higher-order repeat seen in the sister species D. serido. The high levels of interspersion between pBuM and DBC-150 repeats suggest extensive rearrangements between the two satellites, maybe favored by specific features of the microchromosomes. Our interpretation is that the junctions evolved by multiples events of illegitimate recombination between nonhomologous satDNA repeats, with subsequent rounds of unequal crossing-over expanding the copy number of some of the junctions.

  13. Deciphering amphibian diversity through DNA barcoding: chances and challenges.

    PubMed

    Vences, Miguel; Thomas, Meike; Bonett, Ronald M; Vieites, David R

    2005-10-29

    Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.

  14. ScaffoldSeq: Software for characterization of directed evolution populations.

    PubMed

    Woldring, Daniel R; Holec, Patrick V; Hackel, Benjamin J

    2016-07-01

    ScaffoldSeq is software designed for the numerous applications-including directed evolution analysis-in which a user generates a population of DNA sequences encoding for partially diverse proteins with related functions and would like to characterize the single site and pairwise amino acid frequencies across the population. A common scenario for enzyme maturation, antibody screening, and alternative scaffold engineering involves naïve and evolved populations that contain diversified regions, varying in both sequence and length, within a conserved framework. Analyzing the diversified regions of such populations is facilitated by high-throughput sequencing platforms; however, length variability within these regions (e.g., antibody CDRs) encumbers the alignment process. To overcome this challenge, the ScaffoldSeq algorithm takes advantage of conserved framework sequences to quickly identify diverse regions. Beyond this, unintended biases in sequence frequency are generated throughout the experimental workflow required to evolve and isolate clones of interest prior to DNA sequencing. ScaffoldSeq software uniquely handles this issue by providing tools to quantify and remove background sequences, cluster similar protein families, and dampen the impact of dominant clones. The software produces graphical and tabular summaries for each region of interest, allowing users to evaluate diversity in a site-specific manner as well as identify epistatic pairwise interactions. The code and detailed information are freely available at http://research.cems.umn.edu/hackel. Proteins 2016; 84:869-874. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Kilo-sequencing: an ordered strategy for rapid DNA sequence data acquisition.

    PubMed Central

    Barnes, W M; Bevan, M

    1983-01-01

    A strategy for rapid DNA sequence acquisition in an ordered, nonrandom manner, while retaining all of the conveniences of the dideoxy method with M13 transducing phage DNA template, is described. Target DNA 3 to 14 kb in size can be stably carried by our M13 vectors. Suitable targets are stretches of DNA which lack an enzyme recognition site which is unique on our cloning vectors and adjacent to the sequencing primer; current sites that are so useful when lacking are Pst, Xba, HindIII, BglII, EcoRI. By an in vitro procedure, we cut RF DNA once randomly and once specifically, to create thousands of deletions which start at the unique restriction site adjacent to the dideoxy sequencing primer and extend various distances across the target DNA. Phage carrying a desired size of deletions, whose DNA as template will give rise to DNA sequence data in a desired location along the target DNA, may be purified by electrophoresis alive on agarose gels. Phage running in the same location on the agarose gel thus conveniently give rise to nucleotide sequence data from the same kilobase of target DNA. Images PMID:6298723

  16. Silicene nanoribbon as a new DNA sequencing device

    NASA Astrophysics Data System (ADS)

    Alesheikh, Sara; Shahtahmassebi, Nasser; Roknabadi, Mahmood Rezaee; Pilevar Shahri, Raheleh

    2018-02-01

    The importance of applying DNA sequencing in different fields, results in looking for fast and cheap methods. Nanotechnology helps this development by introducing nanostructures used for DNA sequencing. In this work we study the interaction between zigzag silicene nanoribbon and DNA nucleobases using DFT and non equilibrium Green's function approach, to investigate the possibility of using zigzag silicene nanoribbons as a biosensor for DNA sequencing.

  17. Isolation and characterization of target sequences of the chicken CdxA homeobox gene.

    PubMed Central

    Margalit, Y; Yarus, S; Shapira, E; Gruenbaum, Y; Fainsod, A

    1993-01-01

    The DNA binding specificity of the chicken homeodomain protein CDXA was studied. Using a CDXA-glutathione-S-transferase fusion protein, DNA fragments containing the binding site for this protein were isolated. The sources of DNA were oligonucleotides with random sequence and chicken genomic DNA. The DNA fragments isolated were sequenced and tested in DNA binding assays. Sequencing revealed that most DNA fragments are AT rich which is a common feature of homeodomain binding sites. By electrophoretic mobility shift assays it was shown that the different target sequences isolated bind to the CDXA protein with different affinities. The specific sequences bound by the CDXA protein in the genomic fragments isolated, were determined by DNase I footprinting. From the footprinted sequences, the CDXA consensus binding site was determined. The CDXA protein binds the consensus sequence A, A/T, T, A/T, A, T, A/G. The CAUDAL binding site in the ftz promoter is also included in this consensus sequence. When tested, some of the genomic target sequences were capable of enhancing the transcriptional activity of reporter plasmids when introduced into CDXA expressing cells. This study determined the DNA sequence specificity of the CDXA protein and it also shows that this protein can further activate transcription in cells in culture. Images PMID:7909943

  18. Sequence periodicity in nucleosomal DNA and intrinsic curvature.

    PubMed

    Nair, T Murlidharan

    2010-05-17

    Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

  19. Assessing the intra-species genetic variability in the clonal pathogen Campylobacter fetus: CRISPRs are highly polymorphic DNA markers.

    PubMed

    Calleros, Lucía; Betancor, Laura; Iraola, Gregorio; Méndez, Alejandra; Morsella, Claudia; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Pérez, Ruben

    2017-01-01

    Campylobacter fetus is a Gram-negative, microaerophilic bacterium that infects animals and humans. The subspecies Campylobacter fetus subsp. fetus (Cff) affects a broad range of vertebrate hosts and induces abortion in cows and sheep. Campylobacter fetus subsp. venerealis (Cfv) is restricted to cattle and causes the endemic disease bovine genital campylobacteriosis, which triggers reproductive problems and is responsible for major economic losses. Campylobacter fetus subsp. testudinum (Cft) has been isolated mostly from apparently healthy reptiles belonging to different species but also from ill snakes and humans. Genotypic differentiation of Cff and Cfv is difficult, and epidemiological information is scarce because there are few methods to study the genetic diversity of the strains. We analyze the efficacy of MLST, ribosomal sequences (23S gene and internal spacer region), and CRISPRs to assess the genetic variability of C. fetus in bovine and human isolates. Sequences retrieved from complete genomes were included in the analysis for comparative purposes. MLST and ribosomal sequences had scarce or null variability, while the CRISPR-cas system structure and the sequence of CRISPR1 locus showed remarkable diversity. None of the sequences here analyzed provided evidence of a genetic differentiation of Cff and Cfv in bovine isolates. Comparison of bovine and human isolates with Cft strains showed a striking divergence. Inter-host differences raise the possibility of determining the original host of human infections using CRISPR sequences. CRISPRs are the most variable sequences analyzed in C. fetus so far, and constitute excellent representatives of a dynamic fraction of the genome. CRISPR typing is a promising tool to characterize isolates and to track the source and transmission route of C. fetus infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.

    PubMed

    Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S

    2017-01-01

    Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.

  1. diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data.

    PubMed

    Lareau, Caleb A; Aryee, Martin J; Berger, Bonnie

    2018-02-15

    The 3D architecture of DNA within the nucleus is a key determinant of interactions between genes, regulatory elements, and transcriptional machinery. As a result, differences in DNA looping structure are associated with variation in gene expression and cell state. To systematically assess changes in DNA looping architecture between samples, we introduce diffloop, an R/Bioconductor package that provides a suite of functions for the quality control, statistical testing, annotation, and visualization of DNA loops. We demonstrate this functionality by detecting differences between ENCODE ChIA-PET samples and relate looping to variability in epigenetic state. Diffloop is implemented as an R/Bioconductor package available at https://bioconductor.org/packages/release/bioc/html/diffloop.html. aryee.martin@mgh.harvard.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    PubMed

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. DNA fingerprinting of red clover (Trifolium pratense L.) with Jeffrey's probes: detection of somaclonal variation and other applications.

    PubMed

    Nelke, M; Nowak, J; Wright, J M; McLean, N L

    1993-12-01

    DNA fingerprints generated by the Jeffreys' probes, 33.6 and 33.15, indicated the presence of minisatellite-like sequences in the red clover genome. The fingerprints generated by probe 33.6 gave less background and fewer but better defined bands than those obtained with probe 33.15. Assay of a regenerative somaclonal variant (F49R) by DNA fingerprinting with probe 33.6 detected mutation that was unlinked to the regenerative trait. The fingerprints obtained under the applied conditions also demonstrated genetic stability of consecutive generations of the regenerants in tissue culture. DNA fingerprints of F1 plants revealed that each polymorphic band was inherited from either one or the other parent. Both probes distinguished individual-specific genotypes in seven cultivars of red clover. Greater variability in DNA fingerprints was detected between (V=0.899) than within (0.417≤V≤0.548) cultivars.

  4. Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes

    PubMed Central

    Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske

    2006-01-01

    To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392

  5. [Current applications of high-throughput DNA sequencing technology in antibody drug research].

    PubMed

    Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong

    2012-03-01

    Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.

  6. Localization of the 5S and 45S rDNA Sites and cpDNA Sequence Analysis in Species of the Quadrifaria Group of Paspalum (Poaceae, Paniceae)

    PubMed Central

    VAIO, MAGDALENA; SPERANZA, PABLO; VALLS, JOSÉ FRANCISCO; GUERRA, MARCELO; MAZZELLA, CRISTINA

    2005-01-01

    • Background and Aims The Quadrifaria group of Paspalum (Poaceae, Paniceae) comprises species native to the subtropical and temperate regions of South America. The purpose of this research was to characterize the I genomes in five species of this group and to establish phylogenetic relationships among them. • Methods Prometaphase chromatin condensation patterns, the physical location of 5S and 45S rDNA sites by fluorescence in situ hybridization (FISH), and sequences of five chloroplast non-coding regions were analysed. • Key Results The condensation patterns observed were highly conserved among diploid and tetraploid accessions studied and not influenced by the dyes used or by the FISH procedure, allowing the identification of almost all the chromosome pairs that carried the rDNA signals. The FISH analysis of 5S rDNA sites showed the same localization and a correspondence between the number of sites and ploidy level. In contrast, the distribution of 45S rDNA sites was variable. Two general patterns were observed with respect to the location of the 45S rDNA. The species and cytotypes Paspalum haumanii 2x, P. intermedium 2x, P. quadrifarium 4x and P. exaltatum 4x showed proximal sites on chromosome 8 and two to four distal sites in other chromosomes, while P. quarinii 4x and P. quadrifarium 2x showed only distal sites located on a variable number of small chromosomes and on the long arm of chromosome 1. The single most-parsimonious tree found from the phylogenetic analysis showed the Quadrifaria species partitioned in two clades, one of them includes P. haumanii 2x and P. intermedium 2x together with P. quadrifarium 4x and P. exaltatum 4x, while the other contains P. quadrifarium 2x and P. quarinii 4x. • Conclusions The subdivision found with FISH is consistent with the clades recovered with cpDNA data and both analyses suggest that the Quadrifaria group, as presently defined, is not monophyletic and its species belong in at least two clades. PMID:15911540

  7. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    PubMed

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  8. Mammalian DNA enriched for replication origins is enriched for snap-back sequences.

    PubMed

    Zannis-Hadjopoulos, M; Kaufmann, G; Martin, R G

    1984-11-15

    Using the instability of replication loops as a method for the isolation of double-stranded nascent DNA, extruded DNA enriched for replication origins was obtained and denatured. Snap-back DNA, single-stranded DNA with inverted repeats (palindromic sequences), reassociates rapidly into stem-loop structures with zero-order kinetics when conditions are changed from denaturing to renaturing, and can be assayed by chromatography on hydroxyapatite. Origin-enriched nascent DNA strands from mouse, rat and monkey cells growing either synchronously or asynchronously were purified and assayed for the presence of snap-back sequences. The results show that origin-enriched DNA is also enriched for snap-back sequences, implying that some origins for mammalian DNA replication contain or lie near palindromic sequences.

  9. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): Unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer

    PubMed Central

    Brouard, Jean-Simon; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2008-01-01

    Background To gain insight into the branching order of the five main lineages currently recognized in the green algal class Chlorophyceae and to expand our understanding of chloroplast genome evolution, we have undertaken the sequencing of chloroplast DNA (cpDNA) from representative taxa. The complete cpDNA sequences previously reported for Chlamydomonas (Chlamydomonadales), Scenedesmus (Sphaeropleales), and Stigeoclonium (Chaetophorales) revealed tremendous variability in their architecture, the retention of only few ancestral gene clusters, and derived clusters shared by Chlamydomonas and Scenedesmus. Unexpectedly, our recent phylogenies inferred from these cpDNAs and the partial sequences of three other chlorophycean cpDNAs disclosed two major clades, one uniting the Chlamydomonadales and Sphaeropleales (CS clade) and the other uniting the Oedogoniales, Chaetophorales and Chaetopeltidales (OCC clade). Although molecular signatures provided strong support for this dichotomy and for the branching of the Oedogoniales as the earliest-diverging lineage of the OCC clade, more data are required to validate these phylogenies. We describe here the complete cpDNA sequence of Oedogonium cardiacum (Oedogoniales). Results Like its three chlorophycean homologues, the 196,547-bp Oedogonium chloroplast genome displays a distinctive architecture. This genome is one of the most compact among photosynthetic chlorophytes. It has an atypical quadripartite structure, is intron-rich (17 group I and 4 group II introns), and displays 99 different conserved genes and four long open reading frames (ORFs), three of which are clustered in the spacious inverted repeat of 35,493 bp. Intriguingly, two of these ORFs (int and dpoB) revealed high similarities to genes not usually found in cpDNA. At the gene content and gene order levels, the Oedogonium genome most closely resembles its Stigeoclonium counterpart. Characters shared by these chlorophyceans but missing in members of the CS clade include the retention of psaM, rpl32 and trnL(caa), the loss of petA, the disruption of three ancestral clusters and the presence of five derived gene clusters. Conclusion The Oedogonium chloroplast genome disclosed additional characters that bolster the evidence for a close alliance between the Oedogoniales and Chaetophorales. Our unprecedented finding of int and dpoB in this cpDNA provides a clear example that novel genes were acquired by the chloroplast genome through horizontal transfers, possibly from a mitochondrial genome donor. PMID:18558012

  10. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology(1.).

    PubMed

    Robarts, Daniel W H; Wolfe, Andrea D

    2014-07-01

    In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance.

  11. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology1

    PubMed Central

    Robarts, Daniel W. H.; Wolfe, Andrea D.

    2014-01-01

    In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance. PMID:25202637

  12. Analysis of the entire genomes of fifteen torque teno midi virus variants classifiable into a third group of genus Anellovirus.

    PubMed

    Ninomiya, M; Takahashi, M; Shimosegawa, T; Okamoto, H

    2007-01-01

    Recently, we identified a novel human virus with a circular DNA genome of 3.2 kb, tentatively designated as torque teno midi virus (TTMDV), with a genomic organization resembling those of torque teno virus (TTV) of 3.8-3.9 kb and torque teno mini virus (TTMV) of 2.8-2.9 kb. To investigate the extent of genomic variability of TTMDV genomes, the full-length sequence was determined for 15 TTMDV isolates obtained from viremic individuals in Japan. The 15 TTMDV isolates comprised 3175-3230 bases and shared 67.0-90.3% identities with each other, and were only 68.4-73.0% identical to the 3 reported TTMDV isolates over the entire genome. TTMDV possessed a genomic organization with four open reading frames (ORF1-ORF4) with characteristic sequence motifs and stem and loop structures with high GC content, similar to TTV and TTMV. The total of 18 TTMDV genomes differed by up to 60.7% from each other in the amino acid sequence of ORF1 (658-677 amino acids), but segregated phylogenetically into the same cluster, which was distantly related to the TTVs and TTMVs. These results indicate that TTMDV with a circular DNA genome of 3.2 kb, has an extremely high degree of genomic variability, and is classifiable into a third group in the genus Anellovirus.

  13. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications

    PubMed Central

    Marck, Christian; Kachouri-Lafond, Rym; Lafontaine, Ingrid; Westhof, Eric; Dujon, Bernard; Grosjean, Henri

    2006-01-01

    We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering. Analysis of decoding strategies showed that yeasts close to S.cerevisiae use bacterial decoding rules to read the Leu CUN and Arg CGN codons, in contrast to all other known Eukaryotes. In D.hansenii and C.albicans, we identified a novel tDNA-Leu (AAG), reading the Leu CUU/CUC/CUA codons with an unusual G at position 32. A systematic ‘p-distance tree’ using the 60 variable positions of the tRNA molecule revealed that most tDNAs cluster into amino acid-specific sub-trees, suggesting that, within hemiascomycetes, orthologous tDNAs are more closely related than paralogs. We finally determined the bipartite A- and B-box sequences recognized by TFIIIC. These minimal sequences are nearly conserved throughout hemiascomycetes and were satisfactorily retrieved at appropriate locations in other Pol III genes. PMID:16600899

  14. Next-Generation DNA Sequencing of VH/VL Repertoires: A Primer and Guide to Applications in Single-Domain Antibody Discovery.

    PubMed

    Henry, Kevin A

    2018-01-01

    Immunogenetic analyses of expressed antibody repertoires are becoming increasingly common experimental investigations and are critical to furthering our understanding of autoimmunity, infectious disease, and cancer. Next-generation DNA sequencing (NGS) technologies have now made it possible to interrogate antibody repertoires to unprecedented depths, typically by sequencing of cDNAs encoding immunoglobulin variable domains. In this chapter, we describe simple, fast, and reliable methods for producing and sequencing multiplex PCR amplicons derived from the variable regions (V H , V H H or V L ) of rearranged immunoglobulin heavy and light chain genes using the Illumina MiSeq platform. We include complete protocols and primer sets for amplicon sequencing of V H /V H H/V L repertoires directly from human, mouse, and llama lymphocytes as well as from phage-displayed V H /V H H/V L libraries; these can be easily be adapted to other types of amplicons with little modification. The resulting amplicons are diverse and representative, even using as few as 10 3 input B cells, and their generation is relatively inexpensive, requiring no special equipment and only a limited set of primers. In the absence of heavy-light chain pairing, single-domain antibodies are uniquely amenable to NGS analyses. We present a number of applications of NGS technology useful in discovery of single-domain antibodies from phage display libraries, including: (i) assessment of library functionality; (ii) confirmation of desired library randomization; (iii) estimation of library diversity; and (iv) monitoring the progress of panning experiments. While the case studies presented here are of phage-displayed single-domain antibody libraries, the principles extend to other types of in vitro display libraries.

  15. Genetic variation in parthenogenetic Caucasian rock lizards of the genus Lacerta (L. dahli, L. armeniaca, L. unisexualis) analyzed by DNA fingerprinting.

    PubMed

    Tokarskaya, O N; Kan, N G; Petrosyan, V G; Martirosyan, I A; Grechko, V V; Danielyan, F D; Darevsky, I S; Ryskov, A P

    2001-07-01

    Multilocus DNA fingerprinting has been used to study the variability of some mini- and microsatellite sequences in parthenogenetic species of Caucasian rock lizards of the genus Lacerta (L. dahli, L. armeniaca and L. unisexualis). We demonstrate that these clonally reproducing lizards possess species-specific DNA fingerprints with a low degree of intra- and interpopulation variation. Mean indices of similarity obtained using M13 DNA, (GACA)4 and (TCC)50 as probes were 0.962 and 0.966 in L. dahli and L. armeniaca, respectively. The mean index of similarity obtained using M 13 and GATA probes in L. unisexualis was estimated to be 0.95. However, despite the high degree of band-sharing, variable DNA fragments were revealed in all populations with the microsatellite probes. An particularly high level of variability was observed for (TCC)n microsatellites in populations of L. unisexualis. In fact TCC-derived DNA fingerprints were close to being individual-specific, with a mean index of similarity of 0.824. Fingerprint analysis of parthenogenetic families of L. armeniaca showed that all maternal fragments were inherited together by the progeny, and no differences in fingerprint patterns were observed. On the other hand, while identical DNA fingerprints were obtained from L. unisexualis families with M13 and (GATA)4 probes, use of the (TCC)50 probe revealed remarkable intrafamily variation in this species. It is assumed that the genetic heterogeneity observed in parthenogenetic populations may be explained, at least in part, by the existence of genetically unstable microsatellite loci. Our data serve to illustrate processes of spontaneous mutagenesis and the initial stages of clonal differentiation in natural populations of the lizard species studied.

  16. Specific minor groove solvation is a crucial determinant of DNA binding site recognition

    PubMed Central

    Harris, Lydia-Ann; Williams, Loren Dean; Koudelka, Gerald B.

    2014-01-01

    The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein. PMID:25429976

  17. A Method for Preparing DNA Sequencing Templates Using a DNA-Binding Microplate

    PubMed Central

    Yang, Yu; Hebron, Haroun R.; Hang, Jun

    2009-01-01

    A DNA-binding matrix was immobilized on the surface of a 96-well microplate and used for plasmid DNA preparation for DNA sequencing. The same DNA-binding plate was used for bacterial growth, cell lysis, DNA purification, and storage. In a single step using one buffer, bacterial cells were lysed by enzymes, and released DNA was captured on the plate simultaneously. After two wash steps, DNA was eluted and stored in the same plate. Inclusion of phosphates in the culture medium was found to enhance the yield of plasmid significantly. Purified DNA samples were used successfully in DNA sequencing with high consistency and reproducibility. Eleven vectors and nine libraries were tested using this method. In 10 μl sequencing reactions using 3 μl sample and 0.25 μl BigDye Terminator v3.1, the results from a 3730xl sequencer gave a success rate of 90–95% and read-lengths of 700 bases or more. The method is fully automatable and convenient for manual operation as well. It enables reproducible, high-throughput, rapid production of DNA with purity and yields sufficient for high-quality DNA sequencing at a substantially reduced cost. PMID:19568455

  18. Dendritic Cell-Based Immunotherapy of Breast Cancer: Modulation by CpG DNA

    DTIC Science & Technology

    2005-09-01

    tumor-associated antigens and bacterial DNA oligodeoxynucleotides containing unmethylated CpG sequences (CpG DNA) further augment the immune priming...associated antigens by cytotoxic T lymphocytes, and bacterial DNA oligodeoxy- nucleotides containing unmethylated CpG sequences (CpG DNA) can further...further amplify their immunostimulatory capacity and bacterial DNA oligodeoxynucleotides (ODN) containing unmethylated CpG sequences (CpG DNA) provide such

  19. A rapid and cost-effective method for sequencing pooled cDNA clones by using a combination of transposon insertion and Gateway technology.

    PubMed

    Morozumi, Takeya; Toki, Daisuke; Eguchi-Ogawa, Tomoko; Uenishi, Hirohide

    2011-09-01

    Large-scale cDNA-sequencing projects require an efficient strategy for mass sequencing. Here we describe a method for sequencing pooled cDNA clones using a combination of transposon insertion and Gateway technology. Our method reduces the number of shotgun clones that are unsuitable for reconstruction of cDNA sequences, and has the advantage of reducing the total costs of the sequencing project.

  20. Biological sequence compression algorithms.

    PubMed

    Matsumoto, T; Sadakane, K; Imai, H

    2000-01-01

    Today, more and more DNA sequences are becoming available. The information about DNA sequences are stored in molecular biology databases. The size and importance of these databases will be bigger and bigger in the future, therefore this information must be stored or communicated efficiently. Furthermore, sequence compression can be used to define similarities between biological sequences. The standard compression algorithms such as gzip or compress cannot compress DNA sequences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method) can compress DNA sequences less than two bits per symbol. These algorithms do not use special structures of biological sequences. Two characteristic structures of DNA sequences are known. One is called palindromes or reverse complements and the other structure is approximate repeats. Several specific algorithms for DNA sequences that use these structures can compress them less than two bits per symbol. In this paper, we improve the CTW so that characteristic structures of DNA sequences are available. Before encoding the next symbol, the algorithm searches an approximate repeat and palindrome using hash and dynamic programming. If there is a palindrome or an approximate repeat with enough length then our algorithm represents it with length and distance. By using this preprocessing, a new program achieves a little higher compression ratio than that of existing DNA-oriented compression algorithms. We also describe new compression algorithm for protein sequences.

  1. Factors That Affect Large Subunit Ribosomal DNA Amplicon Sequencing Studies of Fungal Communities: Classification Method, Primer Choice, and Error

    PubMed Central

    Porter, Teresita M.; Golding, G. Brian

    2012-01-01

    Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys. PMID:22558215

  2. Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing.

    PubMed

    Li, Qing; Hermanson, Peter J; Springer, Nathan M

    2018-01-01

    DNA methylation plays an important role in the regulation of the expression of transposons and genes. Various methods have been developed to assay DNA methylation levels. Bisulfite sequencing is considered to be the "gold standard" for single-base resolution measurement of DNA methylation levels. Coupled with next-generation sequencing, whole-genome bisulfite sequencing (WGBS) allows DNA methylation to be evaluated at a genome-wide scale. Here, we described a protocol for WGBS in plant species with large genomes. This protocol has been successfully applied to assay genome-wide DNA methylation levels in maize and barley. This protocol has also been successfully coupled with sequence capture technology to assay DNA methylation levels in a targeted set of genomic regions.

  3. Single-Molecule Electrical Random Resequencing of DNA and RNA

    NASA Astrophysics Data System (ADS)

    Ohshiro, Takahito; Matsubara, Kazuki; Tsutsui, Makusu; Furuhashi, Masayuki; Taniguchi, Masateru; Kawai, Tomoji

    2012-07-01

    Two paradigm shifts in DNA sequencing technologies--from bulk to single molecules and from optical to electrical detection--are expected to realize label-free, low-cost DNA sequencing that does not require PCR amplification. It will lead to development of high-throughput third-generation sequencing technologies for personalized medicine. Although nanopore devices have been proposed as third-generation DNA-sequencing devices, a significant milestone in these technologies has been attained by demonstrating a novel technique for resequencing DNA using electrical signals. Here we report single-molecule electrical resequencing of DNA and RNA using a hybrid method of identifying single-base molecules via tunneling currents and random sequencing. Our method reads sequences of nine types of DNA oligomers. The complete sequence of 5'-UGAGGUA-3' from the let-7 microRNA family was also identified by creating a composite of overlapping fragment sequences, which was randomly determined using tunneling current conducted by single-base molecules as they passed between a pair of nanoelectrodes.

  4. Molecular and morphological systematics of the sandfly Sergentomyia (Sintonius) clydei Sinton, 1928 and questions about its record in the Seychelles.

    PubMed

    Depaquit, J; Randrianambinintsoa, F J; Jaouadi, K; Payard, J; Bounamous, A; Augot, D; Krueger, A; Brengues, C; Couloux, A; Robert, V; Léger, N

    2014-01-01

    In the Phlebotomine sandflies, a few molecular studies related on the genus Sergentomyia have been published. The present study explored the genetic variability within Sergentomyia (Sintonius) clydei (Diptera, Psychodidae). The sampling included 15 populations originating from 12 countries. A morphological approach was coupled to the sequencing of two molecular markers (cytochrome b mtDNA and cacophony nuclear DNA). The most variable morphological characters resided in the cibarium of the females, especially (i) the pigment patch pattern and (ii) the number of cibarial teeth and denticles in the armature. However this morphological approach was unable to individualize any population within S. clydei. The NJ trees based on both molecular markers individualized the specimens from the Aldabra group of islands in the Seychelles. Surprisingly, cyt b variability was not compatible with the known data about the complete submersion of Aldabra occurring relatively recently some 125,000 years ago. The settlement of these islands by S. clydei from continental Africa, the Middle East or Asia, and the value of mtDNA markers are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID.

    PubMed

    Abdouni, Hala S; King, Justin J; Ghorbani, Atefeh; Fifield, Heather; Berghuis, Lesley; Larijani, Mani

    2018-01-01

    Activation-induced cytidine deaminase (AID) converts cytidine to uridine at Immunoglobulin (Ig) loci, initiating somatic hypermutation and class switching of antibodies. In vitro, AID acts on single stranded DNA (ssDNA), but neither double-stranded DNA (dsDNA) oligonucleotides nor RNA, and it is believed that transcription is the in vivo generator of ssDNA targeted by AID. It is also known that the Ig loci, particularly the switch (S) regions targeted by AID are rich in transcription-generated DNA/RNA hybrids. Here, we examined the binding and catalytic behavior of purified AID on DNA/RNA hybrid substrates bearing either random sequences or GC-rich sequences simulating Ig S regions. If substrates were made up of a random sequence, AID preferred substrates composed entirely of DNA over DNA/RNA hybrids. In contrast, if substrates were composed of S region sequences, AID preferred to mutate DNA/RNA hybrids over substrates composed entirely of DNA. Accordingly, AID exhibited a significantly higher affinity for binding DNA/RNA hybrid substrates composed specifically of S region sequences, than any other substrates composed of DNA. Thus, in the absence of any other cellular processes or factors, AID itself favors binding and mutating DNA/RNA hybrids composed of S region sequences. AID:DNA/RNA complex formation and supporting mutational analyses suggest that recognition of DNA/RNA hybrids is an inherent structural property of AID. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of the repetitive DNA elements in the genome of fish lymphocystis disease viruses.

    PubMed

    Schnitzler, P; Darai, G

    1989-09-01

    The complete DNA nucleotide sequence of the repetitive DNA elements in the genome of fish lymphocystis disease virus (FLDV) isolated from two different species (flounder and dab) was determined. The size of these repetitive DNA elements was found to be 1413 bp which corresponds to the DNA sequences of the 5' terminus of the EcoRI DNA fragment B (0.034 to 0.052 m.u.) and to the EcoRI DNA fragment M (0.718 to 0.736 m.u.) of the FLDV genome causing lymphocystis disease in flounder and plaice. The degree of DNA nucleotide homology between both regions was found to be 99%. The repetitive DNA element in the genome of FLDV isolated from other fish species (dab) was identified and is located within the EcoRI DNA fragment B and J of the viral genome. The DNA nucleotide sequence of one duplicate of this repetition (EcoRI DNA fragment J) was determined (1410 bp) and compared to the DNA nucleotide sequences of the repetitive DNA elements of the genome of FLDV isolated from flounder. It was found that the repetitive DNA elements of the genome of FLDV derived from two different fish species are highly conserved and possess a degree of DNA sequence homology of 94%. The DNA sequences of each strand of the individual repetitive element possess one open reading frame.

  7. Long-range correlations and charge transport properties of DNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui

    2010-04-01

    By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5

  8. Cross-shore and Vertical Distributions of Invertebrate Larvae Using Autonomous Sampling Coupled with Genetic Analysis

    NASA Astrophysics Data System (ADS)

    Govindarajan, A.; Pineda, J.; Purcell, M.; Tradd, K.; Packard, G.; Girard, A.; Dennett, M.; Breier, J. A., Jr.

    2016-02-01

    We present a new method to estimate the distribution of invertebrate larvae relative to environmental variables such as temperature, salinity, and circulation. A large volume in situ filtering system developed for discrete biogeochemical sampling in the deep-sea (the Suspended Particulate Rosette "SUPR" multisampler) was mounted to the autonomous underwater vehicle REMUS 600 for coastal larval and environmental sampling. We describe the results of SUPR-REMUS deployments conducted in Buzzards Bay, Massachusetts (2014) and west of Martha's Vineyard, Massachusetts (2015). We collected discrete samples cross-shore and from surface, middle, and bottom layers of the water column. Samples were preserved for DNA analysis. Our Buzzards Bay deployment targeted barnacle larvae, which are abundant in late winter and early spring. For these samples, we used morphological analysis and DNA barcodes generated by Sanger sequencing to obtain stage and species-specific cross-shore and vertical distributions. We targeted bivalve larvae in our 2015 deployments, and genetic analysis of larvae from these samples is underway. For these samples, we are comparing species barcode data derived from traditional Sanger sequencing of individuals to those obtained from next generation sequencing (NGS) of bulk plankton samples. Our results demonstrate the utility of autonomous sampling combined with DNA barcoding for studying larval distributions and transport dynamics.

  9. Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies.

    PubMed

    Panek, Marina; Čipčić Paljetak, Hana; Barešić, Anja; Perić, Mihaela; Matijašić, Mario; Lojkić, Ivana; Vranešić Bender, Darija; Krznarić, Željko; Verbanac, Donatella

    2018-03-23

    The information on microbiota composition in the human gastrointestinal tract predominantly originates from the analyses of human faeces by application of next generation sequencing (NGS). However, the detected composition of the faecal bacterial community can be affected by various factors including experimental design and procedures. This study evaluated the performance of different protocols for collection and storage of faecal samples (native and OMNIgene.GUT system) and bacterial DNA extraction (MP Biomedicals, QIAGEN and MO BIO kits), using two NGS platforms for 16S rRNA gene sequencing (Ilumina MiSeq and Ion Torrent PGM). OMNIgene.GUT proved as a reliable and convenient system for collection and storage of faecal samples although favouring Sutterella genus. MP provided superior DNA yield and quality, MO BIO depleted Gram positive organisms while using QIAGEN with OMNIgene.GUT resulted in greatest variability compared to other two kits. MiSeq and IT platforms in their supplier recommended setups provided comparable reproducibility of donor faecal microbiota. The differences included higher diversity observed with MiSeq and increased capacity of MiSeq to detect Akkermansia muciniphila, [Odoribacteraceae], Erysipelotrichaceae and Ruminococcaceae (primarily Faecalibacterium prausnitzii). The results of our study could assist the investigators using NGS technologies to make informed decisions on appropriate tools for their experimental pipelines.

  10. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication.

    PubMed

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-06-04

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information.

  11. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans).

    PubMed

    Finnerty, J R; Block, B A

    1992-06-01

    We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.

  12. Whole-Genome Sequencing in Microbial Forensic Analysis of Gamma-Irradiated Microbial Materials.

    PubMed

    Broomall, Stacey M; Ait Ichou, Mohamed; Krepps, Michael D; Johnsky, Lauren A; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; Betters, Janet L; Redmond, Brady W; Rivers, Bryan A; Liem, Alvin T; Hill, Jessica M; Fochler, Edward T; Roth, Pierce A; Rosenzweig, C Nicole; Skowronski, Evan W; Gibbons, Henry S

    2016-01-15

    Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    PubMed

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  14. Investigation of occult hepatitis B virus infection in anti-hbc positive patients from a liver clinic.

    PubMed

    Martinez, Maria Carmela; Kok, Chee Choy; Baleriola, Cristina; Robertson, Peter; Rawlinson, William D

    2015-01-01

    Occult hepatitis B infection (OBI) is manifested by presence of very low levels (<200IU/mL) of Hepatitis B viral DNA (HBV DNA) in the blood and the liver while exhibiting undetectable HBV surface antigen (HBsAg). The molecular mechanisms underlying this occurrence are still not completely understood. This study investigated the prevalence of OBI in a high-risk Australian population and compared the HBV S gene sequences of our cohort with reference sequences. Serum from HBV DNA positive, HBsAg negative, and hepatitis B core antibody (anti-HBc) positive patients (study cohort) were obtained from samples tested at SEALS Serology Laboratory using the Abbott Architect, as part of screening and diagnostic testing. From a total of 228,108 samples reviewed, 1,451 patients were tested for all three OBI markers. Only 10 patients (0.69%) out of the 1,451 patients were found to fit the selection criteria for OBI. Sequence analysis of the HBV S gene from 5 suspected OBI infected patients showed increased sequence variability in the 'a' epitope of the major hydrophilic region compared to reference sequences. In addition, a total of eight consistent nucleotide substitutions resulting in seven amino acid changes were observed, and three patients had truncated S gene sequence. These mutations appeared to be stable and may result in alterations in HBsAg conformation. These may negatively impact the affinity of hepatitis B surface antibody (anti-HBs) and may explain the false negative results in serological HBV diagnosis. These changes may also enable the virus to persist in the liver by evading immune surveillance. Further studies on a bigger cohort are required to determine whether these amino acid variations have been acquired in the process of immune escape and serve as markers of OBI.

  15. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    PubMed Central

    Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082

  16. Sequence periodicity in nucleosomal DNA and intrinsic curvature

    PubMed Central

    2010-01-01

    Background Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Results Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. Conclusions The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA. PMID:20487515

  17. A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents.

    PubMed

    Murray, V

    1999-01-01

    This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.

  18. Metagenomic Analysis of Milk of Healthy and Mastitis-Suffering Women.

    PubMed

    Jiménez, Esther; de Andrés, Javier; Manrique, Marina; Pareja-Tobes, Pablo; Tobes, Raquel; Martínez-Blanch, Juan F; Codoñer, Francisco M; Ramón, Daniel; Fernández, Leónides; Rodríguez, Juan M

    2015-08-01

    Some studies have been conducted to assess the composition of the bacterial communities inhabiting human milk, but they did not evaluate the presence of other microorganisms, such as fungi, archaea, protozoa, or viruses. This study aimed to compare the metagenome of human milk samples provided by healthy and mastitis-suffering women. DNA was isolated from human milk samples collected from 10 healthy women and 10 women with symptoms of lactational mastitis. Shotgun libraries from total extracted DNA were constructed and the libraries were sequenced by 454 pyrosequencing. The amount of human DNA sequences was ≥ 90% in all the samples. Among the bacterial sequences, the predominant phyla were Proteobacteria, Firmicutes, and Bacteroidetes. The healthy core microbiome included the genera Staphylococcus, Streptococcus, Bacteroides, Faecalibacterium, Ruminococcus, Lactobacillus, and Propionibacterium. At the species level, a high degree of inter-individual variability was observed among healthy women. In contrast, Staphylococcus aureus clearly dominated the microbiome in the samples from the women with acute mastitis whereas high increases in Staphylococcus epidermidis-related reads were observed in the milk of those suffering from subacute mastitis. Fungal and protozoa-related reads were identified in most of the samples, whereas Archaea reads were absent in samples from women with mastitis. Some viral-related sequence reads were also detected. Human milk contains a complex microbial metagenome constituted by the genomes of bacteria, archaea, viruses, fungi, and protozoa. In mastitis cases, the milk microbiome reflects a loss of bacterial diversity and a high increase of the sequences related to the presumptive etiological agents. © The Author(s) 2015.

  19. DNA Barcode for Identifying Folium Artemisiae Argyi from Counterfeits.

    PubMed

    Mei, Quanxi; Chen, Xiaolu; Xiang, Li; Liu, Yue; Su, Yanyan; Gao, Yuqiao; Dai, Weibo; Dong, Pengpeng; Chen, Shilin

    2016-01-01

    Folium Artemisiae Argyi is an important herb in traditional Chinese medicine. It is commonly used in moxibustion, medicine, etc. However, identifying Artemisia argyi is difficult because this herb exhibits similar morphological characteristics to closely related species and counterfeits. To verify the applicability of DNA barcoding, ITS2 and psbA-trnH were used to identify A. argyi from 15 closely related species and counterfeits. Results indicated that total DNA was easily extracted from all the samples and that both ITS2 and psbA-trnH fragments can be easily amplified. ITS2 was a more ideal barcode than psbA-trnH and ITS2+psbA-trnH to identify A. argyi from closely related species and counterfeits on the basis of sequence character, genetic distance, and tree methods. The sequence length was 225 bp for the 56 ITS2 sequences of A. argyi, and no variable site was detected. For the ITS2 sequences, A. capillaris, A. anomala, A. annua, A. igniaria, A. maximowicziana, A. princeps, Dendranthema vestitum, and D. indicum had single nucleotide polymorphisms (SNPs). The intraspecific Kimura 2-Parameter distance was zero, which is lower than the minimum interspecific distance (0.005). A. argyi, the closely related species, and counterfeits, except for Artemisia maximowicziana and Artemisia sieversiana, were separated into pairs of divergent clusters by using the neighbor joining, maximum parsimony, and maximum likelihood tree methods. Thus, the ITS2 sequence was an ideal barcode to identify A. argyi from closely related species and counterfeits to ensure the safe use of this plant.

  20. [Mitochondrial DNA polymorphisms shared between modern humans and neanderthals: adaptive convergence or evidence for interspecific hybridization?].

    PubMed

    Maliarchuk, B A

    2013-09-01

    An analysis of the variability of the nucleotide sequences in the mitochondrial genome of modern humans, neanderthals, Denisovans, and other primates has shown that there are shared polymorphisms at positions 2758 and 7146 between modern Homo sapiens (in phylogenetic cluster L2'3'4'5'6) and Homo neanderthalensis (in the group of European neanderthals younger than 48000 years). It is suggested that the convergence may be due to adaptive changes in the mitochondrial genomes of modern humans and neanderthals or interspecific hybridization associated with mtDNA recombination.

  1. Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing

    PubMed Central

    Chandran, Anandhakumar; Syed, Junetha; Taylor, Rhys D.; Kashiwazaki, Gengo; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2016-01-01

    Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2 showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing. PMID:27098039

  2. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies.

    PubMed

    Utturkar, Sagar M; Klingeman, Dawn M; Hurt, Richard A; Brown, Steven D

    2017-01-01

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.

  3. Haplotype Phasing and Inheritance of Copy Number Variants in Nuclear Families

    PubMed Central

    Palta, Priit; Kaplinski, Lauris; Nagirnaja, Liina; Veidenberg, Andres; Möls, Märt; Nelis, Mari; Esko, Tõnu; Metspalu, Andres; Laan, Maris; Remm, Maido

    2015-01-01

    DNA copy number variants (CNVs) that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i) phase normal and CNV-carrying haplotypes in the copy number variable regions, ii) resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii) infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring. PMID:25853576

  4. Haplotype phasing and inheritance of copy number variants in nuclear families.

    PubMed

    Palta, Priit; Kaplinski, Lauris; Nagirnaja, Liina; Veidenberg, Andres; Möls, Märt; Nelis, Mari; Esko, Tõnu; Metspalu, Andres; Laan, Maris; Remm, Maido

    2015-01-01

    DNA copy number variants (CNVs) that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i) phase normal and CNV-carrying haplotypes in the copy number variable regions, ii) resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii) infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring.

  5. Prasinoviruses reveal a complex evolutionary history and a patchy environmental distribution

    NASA Astrophysics Data System (ADS)

    Finke, J. F.; Suttle, C.

    2016-02-01

    Prasinophytes constitute a group of eukaryotic phytoplankton that has a global distribution and is a major component of coastal and oceanic communities. Members of this group are infected by large double-stranded DNA viruses that can be significant agents of mortality, and which show evidence of substantial horizontal transfer of genes from their hosts and other organisms. However, information on the genetic diversity of these viruses and their environmental distribution is limited. This study examines the genetic repertoire, phylogeny and environmental distribution of large double-stranded DNA viruses infecting Micromonas pusilla and other prasinophytes. The genomes of viruses infecting M. pusilla were sequenced and compared to those of viruses infecting other prasinophytes, revealing a relatively small set of core genes and a larger flexible pan genome. Comparing genomes among prasinoviruses highlights their variable genetic content and complex evolutionary history. While some of the pan genome is clearly host derived, many open reading frames are most similar to those found in other eukaryotes and bacteria. Gene content of the viruses is is congruent with phylogenetic analysis of viral DNA polymerase sequences and indicates that two clades of M. pusilla viruses are less related to each other than to other prasinoviruses. Moreover, the environmental distribution of prasinovirus DNA polymerase sequences indicates a complex pattern of virus-host interactions in nature. Ultimately, these patterns are influenced by the genetic repertoire encoded by prasinoviruses, and the distribution of the hosts they infect.

  6. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.

    PubMed

    Adalsteinsson, Viktor A; Ha, Gavin; Freeman, Samuel S; Choudhury, Atish D; Stover, Daniel G; Parsons, Heather A; Gydush, Gregory; Reed, Sarah C; Rotem, Denisse; Rhoades, Justin; Loginov, Denis; Livitz, Dimitri; Rosebrock, Daniel; Leshchiner, Ignaty; Kim, Jaegil; Stewart, Chip; Rosenberg, Mara; Francis, Joshua M; Zhang, Cheng-Zhong; Cohen, Ofir; Oh, Coyin; Ding, Huiming; Polak, Paz; Lloyd, Max; Mahmud, Sairah; Helvie, Karla; Merrill, Margaret S; Santiago, Rebecca A; O'Connor, Edward P; Jeong, Seong H; Leeson, Rachel; Barry, Rachel M; Kramkowski, Joseph F; Zhang, Zhenwei; Polacek, Laura; Lohr, Jens G; Schleicher, Molly; Lipscomb, Emily; Saltzman, Andrea; Oliver, Nelly M; Marini, Lori; Waks, Adrienne G; Harshman, Lauren C; Tolaney, Sara M; Van Allen, Eliezer M; Winer, Eric P; Lin, Nancy U; Nakabayashi, Mari; Taplin, Mary-Ellen; Johannessen, Cory M; Garraway, Levi A; Golub, Todd R; Boehm, Jesse S; Wagle, Nikhil; Getz, Gad; Love, J Christopher; Meyerson, Matthew

    2017-11-06

    Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.

  7. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    PubMed Central

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-01-01

    Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476

  8. Complete sequence of HLA-B27 cDNA identified through the characterization of structural markers unique to the HLA-A, -B, and -C allelic series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szoets, H.; Reithmueller, G.; Weiss, E.

    1986-03-01

    Antigen HLA-B27 is a high-risk genetic factor with respect to a group of rheumatoid disorders, especially ankylosing spondylitis. A cDNA library was constructed from an autozygous B-cell line expressing HLA-B27, HLA-Cw1, and the previously cloned HLA-A2 antigen. Clones detected with an HLA probe were isolated and sorted into homology groups by differential hybridization and restriction maps. Nucleotide sequencing allowed the unambiguous assignment of cDNAs to HLA-A, -B, and -C loci. The HLA-B27 mRNA has the structure features and the codon variability typical of an HLA class I transcript but it specifies two uncommon amino acid replacements: a cysteine in positionmore » 67 and a serine in position 131. The latter substitution may have functional consequences, because it occurs in a conserved region and at a position invariably occupied by a species-specific arginine in humans and lysine in mice. The availability of the complete sequence of HLA-B27 and of the partial sequence of HLA-Cw1 allows the recognition of locus-specific sequence markers, particularly, but not exclusively, in the transmembrane and cytoplasmic domains.« less

  9. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox.

    PubMed

    Gubser, Caroline; Smith, Geoffrey L

    2002-04-01

    Camelpox virus (CMPV) and variola virus (VAR) are orthopoxviruses (OPVs) that share several biological features and cause high mortality and morbidity in their single host species. The sequence of a virulent CMPV strain was determined; it is 202182 bp long, with inverted terminal repeats (ITRs) of 6045 bp and has 206 predicted open reading frames (ORFs). As for other poxviruses, the genes are tightly packed with little non-coding sequence. Most genes within 25 kb of each terminus are transcribed outwards towards the terminus, whereas genes within the centre of the genome are transcribed from either DNA strand. The central region of the genome contains genes that are highly conserved in other OPVs and 87 of these are conserved in all sequenced chordopoxviruses. In contrast, genes towards either terminus are more variable and encode proteins involved in host range, virulence or immunomodulation. In some cases, these are broken versions of genes found in other OPVs. The relationship of CMPV to other OPVs was analysed by comparisons of DNA and predicted protein sequences, repeats within the ITRs and arrangement of ORFs within the terminal regions. Each comparison gave the same conclusion: CMPV is the closest known virus to variola virus, the cause of smallpox.

  10. Barcode Identifiers as a Practical Tool for Reliable Species Assignment of Medically Important Black Yeast Species

    PubMed Central

    Heinrichs, Guido; de Hoog, G. Sybren

    2012-01-01

    Herpotrichiellaceous black yeasts and relatives comprise severe pathogens flanked by nonpathogenic environmental siblings. Reliable identification by conventional methods is notoriously difficult. Molecular identification is hampered by the sequence variability in the internal transcribed spacer (ITS) domain caused by difficult-to-sequence homopolymeric regions and by poor taxonomic attribution of sequences deposited in GenBank. Here, we present a potential solution using short barcode identifiers (27 to 50 bp) based on ITS2 ribosomal DNA (rDNA), which allows unambiguous definition of species-specific fragments. Starting from proven sequences of ex-type and authentic strains, we were able to describe 103 identifiers. Multiple BLAST searches of these proposed barcode identifiers in GenBank revealed uniqueness for 100 taxonomic entities, whereas the three remaining identifiers each matched with two entities, but the species of these identifiers could easily be discriminated by differences in the remaining ITS regions. Using the proposed barcode identifiers, a 4.1-fold increase of 100% matches in GenBank was achieved in comparison to the classical approach using the complete ITS sequences. The proposed barcode identifiers will be made accessible for the diagnostic laboratory in a permanently updated online database, thereby providing a highly practical, reliable, and cost-effective tool for identification of clinically important black yeasts and relatives. PMID:22785187

  11. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis

    PubMed Central

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611

  12. Synthesis of mouse centromere-targeted polyamides and physico-chemical studies of their interaction with the target double-stranded DNA.

    PubMed

    Nozeret, Karine; Bonan, Marc; Yarmoluk, Serguiy M; Novopashina, Darya S; Boutorine, Alexandre S

    2015-09-01

    Synthetic minor groove-binding pyrrole-imidazole polyamides labeled by fluorophores are promising candidates for fluorescence imaging of double-stranded DNA in isolated chromosomes or fixed and living cells. We synthesized nine hairpin and two head-to-head tandem polyamides targeting repeated sequences from mouse major satellites. Their interaction with synthetic target dsDNA has been studied by physico-chemical methods in vitro before and after coupling to various fluorophores. Great variability in affinities and fluorescence properties reveals a conclusion that these properties do not only rely on recognition rules, but also on other known and unknown structural factors. Individual testing of each probe is needed before cellular applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [Identification of common medicinal snakes in medicated liquor of Guangdong by COI barcode sequence].

    PubMed

    Liao, Jing; Chao, Zhi; Zhang, Liang

    2013-11-01

    To identify the common snakes in medicated liquor of Guangdong using COI barcode sequence,and to test the feasibility. The COI barcode sequences of collected medicinal snakes were amplified and sequenced. The sequences combined with the data from GenBank were analyzed for divergence and building a neighbor-joining(NJ) tree with MEGA 5.0. The genetic distance and NJ tree demonstrated that there were 241 variable sites in these species, and the average (A + T) content of 56.2% was higher than the average (G + C) content of 43.7%. The maximum interspecific genetic distance was 0.2568, and the minimum was 0. 1519. In the NJ tree,each species formed a monophyletic clade with bootstrap supports of 100%. DNA barcoding identification method based on the COI sequence is accurate and can be applied to identify the common medicinal snakes.

  14. Short-read, high-throughput sequencing technology for STR genotyping

    PubMed Central

    Bornman, Daniel M.; Hester, Mark E.; Schuetter, Jared M.; Kasoji, Manjula D.; Minard-Smith, Angela; Barden, Curt A.; Nelson, Scott C.; Godbold, Gene D.; Baker, Christine H.; Yang, Boyu; Walther, Jacquelyn E.; Tornes, Ivan E.; Yan, Pearlly S.; Rodriguez, Benjamin; Bundschuh, Ralf; Dickens, Michael L.; Young, Brian A.; Faith, Seth A.

    2013-01-01

    DNA-based methods for human identification principally rely upon genotyping of short tandem repeat (STR) loci. Electrophoretic-based techniques for variable-length classification of STRs are universally utilized, but are limited in that they have relatively low throughput and do not yield nucleotide sequence information. High-throughput sequencing technology may provide a more powerful instrument for human identification, but is not currently validated for forensic casework. Here, we present a systematic method to perform high-throughput genotyping analysis of the Combined DNA Index System (CODIS) STR loci using short-read (150 bp) massively parallel sequencing technology. Open source reference alignment tools were optimized to evaluate PCR-amplified STR loci using a custom designed STR genome reference. Evaluation of this approach demonstrated that the 13 CODIS STR loci and amelogenin (AMEL) locus could be accurately called from individual and mixture samples. Sensitivity analysis showed that as few as 18,500 reads, aligned to an in silico referenced genome, were required to genotype an individual (>99% confidence) for the CODIS loci. The power of this technology was further demonstrated by identification of variant alleles containing single nucleotide polymorphisms (SNPs) and the development of quantitative measurements (reads) for resolving mixed samples. PMID:25621315

  15. [A family of short retroposons (Squaml) from squamate reptiles (Reptilia: Squamata): structure, evolution and correlation with phylogeny].

    PubMed

    Kosushkin, S A; Borodulina, O R; Solov'eva, E N; Grechko, V V

    2008-01-01

    We have isolated and characterised sequences of a SINE family specific for squamate reptiles from a genome of lacertid lizard that we called Squam1. Copies are 360-390 bp in length and share a significant similarity with tRNA gene sequence on its 5'-end. This family was also detected by us in DNA of representatives of varanids, iguanids (anolis), gekkonids, and snakes. No signs of it were found in DNA of mammals, birds, amphibians, and crocodiles. Detailed analysis of primary structure of the retroposons obtained by us from genomic libraries or GenBank sequences was carried out. Most taxa possess 2-3 subfamilies of the SINE in their genomes with specific diagnostic features in their primary structure. Individual variability of copies in different families is about 85% and is just slightly lower on the genera level. Comparison of consensus sequences on family level reveals a high degree of structural similarity with a number of specific apomorphic features which makes it a useful marker of phylogeny for this group of reptiles. Snakes do not show specific affinity to varanids when compared to other lizards, as it was suggested earlier.

  16. Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsodikov, Oleg V.; Biswas, Tapan

    An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). Thesemore » structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.« less

  17. Molecular genetic identification of crustose representatives of the order Corallinales (Rhodophyta) in Chile.

    PubMed

    Vidal, Rodrigo; Meneses, Isabel; Smith, Macarena

    2003-09-01

    Knowledge on species of the order Corallinales along the coast of Chile is still scarce despite a number of studies and records of other divisions of seaweeds made since the early 20th century. This lack of information is more dramatic among crustose representatives of the order, thus depriving biogeographic studies of a thorough analysis and resulting in inadequately representative accounts of biodiversity. The currently changing taxonomy of the group makes it difficult to identify and differentiate among taxa based on morphological and developmental characters. Therefore, the use of molecular tools has been adopted in this study in order to facilitate identification and comparison of crustose corallines collected at the rocky intertidal between 27 degrees and 48 degrees S along the Pacific temperate coast of South America. A sequence 600bp (in length) from the SSU-rDNA gene was used to identify five taxa to the genus level: Lithophyllum, Spongites, Mesophyllum, Synarthrophyton, and Leptophytum. In all cases, the genus distinction based on morphological characters coincide with designations based on variation in the ribosomal DNA gene sequence. Spongites is the most frequently occurring genus and is found in all localities sampled while the others appear occasionally. Taxa recognition at species level must be examined with caution considering that morphological variability is not well understood in Chile because the SSU-rDNA region sequence does not always stand alone as an unambiguous means of identifying all coralline species. In such cases, more rapidly evolving markers are needed. For example, sequences from the ITS (rDNA) region often provide greater resolution among closely related species and genera. However, the methodology presented here remains a useful tool for species-level identification.

  18. DNA barcode analysis: a comparison of phylogenetic and statistical classification methods.

    PubMed

    Austerlitz, Frederic; David, Olivier; Schaeffer, Brigitte; Bleakley, Kevin; Olteanu, Madalina; Leblois, Raphael; Veuille, Michel; Laredo, Catherine

    2009-11-10

    DNA barcoding aims to assign individuals to given species according to their sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this raises the question of how to deal with within-species genetic variability and potential transpecific polymorphism. In this context, we examine several assignation methods belonging to two main categories: (i) phylogenetic methods (neighbour-joining and PhyML) that attempt to account for the genealogical framework of DNA evolution and (ii) supervised classification methods (k-nearest neighbour, CART, random forest and kernel methods). These methods range from basic to elaborate. We investigated the ability of each method to correctly classify query sequences drawn from samples of related species using both simulated and real data. Simulated data sets were generated using coalescent simulations in which we varied the genealogical history, mutation parameter, sample size and number of species. No method was found to be the best in all cases. The simplest method of all, "one nearest neighbour", was found to be the most reliable with respect to changes in the parameters of the data sets. The parameter most influencing the performance of the various methods was molecular diversity of the data. Addition of genetically independent loci--nuclear genes--improved the predictive performance of most methods. The study implies that taxonomists can influence the quality of their analyses either by choosing a method best-adapted to the configuration of their sample, or, given a certain method, increasing the sample size or altering the amount of molecular diversity. This can be achieved either by sequencing more mtDNA or by sequencing additional nuclear genes. In the latter case, they may also have to modify their data analysis method.

  19. Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis.

    PubMed

    Davila, Jaime I; Arrieta-Montiel, Maria P; Wamboldt, Yashitola; Cao, Jun; Hagmann, Joerg; Shedge, Vikas; Xu, Ying-Zhi; Weigel, Detlef; Mackenzie, Sally A

    2011-09-27

    The mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining (NHEJ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and expedites characterization of the mitochondrial recombination surveillance gene MSH1 (MutS 1 homolog), lending itself to detailed study of de novo mitochondrial genome activity. In the present study, we investigated the underlying basis for unusual plant features as they contribute to rapid mitochondrial genome evolution. We obtained evidence of double-strand break (DSB) repair, including NHEJ, sequence deletions and mitochondrial asymmetric recombination activity in Arabidopsis wild-type and msh1 mutants on the basis of data generated by Illumina deep sequencing and confirmed by DNA gel blot analysis. On a larger scale, with mitochondrial comparisons across 72 Arabidopsis ecotypes, similar evidence of DSB repair activity differentiated ecotypes. Forty-seven repeat pairs were active in DNA exchange in the msh1 mutant. Recombination sites showed asymmetrical DNA exchange within lengths of 50- to 556-bp sharing sequence identity as low as 85%. De novo asymmetrical recombination involved heteroduplex formation, gene conversion and mismatch repair activities. Substoichiometric shifting by asymmetrical exchange created the appearance of rapid sequence gain and loss in association with particular repeat classes. Extensive mitochondrial genomic variation within a single plant species derives largely from DSB activity and its repair. Observed gene conversion and mismatch repair activity contribute to the low nucleotide substitution rates seen in these genomes. On a phenotypic level, these patterns of rearrangement likely contribute to the reproductive versatility of higher plants.

  20. Chromosome-encoded narrow-spectrum Ambler class A beta-lactamase GIL-1 from Citrobacter gillenii.

    PubMed

    Naas, Thierry; Aubert, Daniel; Ozcan, Ayla; Nordmann, Patrice

    2007-04-01

    A novel beta-lactamase gene was cloned from the whole-cell DNA of an enterobacterial Citrobacter gillenii reference strain that displayed a weak narrow-spectrum beta-lactam-resistant phenotype and was expressed in Escherichia coli. It encoded a clavulanic acid-inhibited Ambler class A beta-lactamase, GIL-1, with a pI value of 7.5 and a molecular mass of ca. 29 kDa. GIL-1 had the highest percent amino acid sequence identity with TEM-1 and SHV-1, 77%, and 67%, respectively, and only 46%, 31%, and 32% amino acid sequence identity with CKO-1 (C. koseri), CdiA1 (C. diversus), and SED-1 (C. sedlaki), respectively. The substrate profile of the purified GIL-1 was similar to that of beta-lactamases TEM-1 and SHV-1. The blaGIL-1 gene was chromosomally located, as revealed by I-CeuI experiments, and was constitutively expressed at a low level in C. gillenii. No gene homologous to the regulatory ampR genes of chromosomal class C beta-lactamases was found upstream of the blaGIL-1 gene, which fits the noninducibility of beta-lactamase expression in C. gillenii. Rapid amplification of DNA 5' ends analysis of the promoter region revealed putative promoter sequences that diverge from what has been identified as the consensus sequence in E. coli. The blaGIL-1 gene was part of a 5.5-kb DNA fragment bracketed by a 9-bp duplication and inserted between the d-lactate dehydrogenase gene and the ydbH genes; this DNA fragment was absent in other Citrobacter species. This work further illustrates the heterogeneity of beta-lactamases in Citrobacter spp., which may indicate that the variability of Citrobacter species is greater than expected.

  1. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features.

    PubMed Central

    Marck, Christian; Grosjean, Henri

    2002-01-01

    From 50 genomes of the three domains of life (7 eukarya, 13 archaea, and 30 bacteria), we extracted, analyzed, and compared over 4,000 sequences corresponding to cytoplasmic, nonorganellar tRNAs. For each genome, the complete set of tRNAs required to read the 61 sense codons was identified, which permitted revelation of three major anticodon-sparing strategies. Other features and sequence peculiarities analyzed are the following: (1) fit to the standard cloverleaf structure, (2) characteristic consensus sequences for elongator and initiator tDNAs, (3) frequencies of bases at each sequence position, (4) type and frequencies of conserved 2D and 3D base pairs, (5) anticodon/tDNA usages and anticodon-sparing strategies, (6) identification of the tRNA-Ile with anticodon CAU reading AUA, (7) size of variable arm, (8) occurrence and location of introns, (9) occurrence of 3'-CCA and 5'-extra G encoded at the tDNA level, and (10) distribution of the tRNA genes in genomes and their mode of transcription. Among all tRNA isoacceptors, we found that initiator tDNA-iMet is the most conserved across the three domains, yet domain-specific signatures exist. Also, according to which tRNA feature is considered (5'-extra G encoded in tDNAs-His, AUA codon read by tRNA-Ile with anticodon CAU, presence of intron, absence of "two-out-of-three" reading mode and short V-arm in tDNA-Tyr) Archaea sequester either with Bacteria or Eukarya. No common features between Eukarya and Bacteria not shared with Archaea could be unveiled. Thus, from the tRNomic point of view, Archaea appears as an "intermediate domain" between Eukarya and Bacteria. PMID:12403461

  2. DNA barcode goes two-dimensions: DNA QR code web server.

    PubMed

    Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  3. TaxI: a software tool for DNA barcoding using distance methods

    PubMed Central

    Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel

    2005-01-01

    DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755

  4. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  5. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Autochthonous Hepatozoon infection in hunting dogs and foxes from the Czech Republic.

    PubMed

    Mitková, Barbora; Hrazdilová, Kristýna; Steinbauer, Vladimír; D'Amico, Gianluca; Mihalca, Andrei Daniel; Modrý, David

    2016-11-01

    Blood samples from 21 red foxes (Vulpes vulpes) and 8 hunting dogs from the same locality in the Czech Republic were examined for presence of Hepatozoon canis/Hepatozoon sp. The dogs were selected based on their close contact with foxes during fox bolting and because they had not traveled into known endemic areas. Using diagnostic PCR amplifying partial 18S rDNA fragment, Hepatozoon DNA was detected in 20 red foxes (95 %) and 4 dogs (50 %). From 8 positive foxes and 2 positive dogs, we obtained nearly complete 18S rDNA sequences. Phylogenetic analyses of these sequences revealed very low variability. Buffy coat smears from positive dogs were prepared and examined. No Hepatozoon gamonts were found. This study provides the first report of autochthonous infection of H. canis/Hepatozoon in dogs and foxes from the Czech Republic. Our study indirectly demonstrates cross infection between red foxes and dogs and confirms autochthonous infection of Hepatozoon canis in dogs living in a geographic area well outside the range of Rhipicephalus sanguineus sensu lato, which is so far the only known vector of H. canis in Europe.

  7. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability.

    PubMed

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise; Harmer, Jenny; Ramsay, Emma; Del Vecchio Duarte, Silvana; Zachariou, Anna; Hanks, Sandra; O'Brien, Eleanor; Aksglaede, Lise; Baralle, Diana; Dabir, Tabib; Gener, Blanca; Goudie, David; Homfray, Tessa; Kumar, Ajith; Pilz, Daniela T; Selicorni, Angelo; Temple, I Karen; Van Maldergem, Lionel; Yachelevich, Naomi; van Montfort, Robert; Rahman, Nazneen

    2014-04-01

    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies.

  8. A Multi-Omics Approach to Evaluate the Quality of Milk Whey Used in Ricotta Cheese Production

    PubMed Central

    Sattin, Eleonora; Andreani, Nadia A.; Carraro, Lisa; Lucchini, Rosaria; Fasolato, Luca; Telatin, Andrea; Balzan, Stefania; Novelli, Enrico; Simionati, Barbara; Cardazzo, Barbara

    2016-01-01

    In the past, milk whey was only a by-product of cheese production, but currently, it has a high commercial value for use in the food industries. However, the regulation of whey management (i.e., storage and hygienic properties) has not been updated, and as a consequence, its microbiological quality is very challenging for food safety. The Next Generation Sequencing (NGS) technique was applied to several whey samples used for Ricotta production to evaluate the microbial community composition in depth using both RNA and DNA as templates for NGS library construction. Whey samples demonstrating a high microbial and aerobic spore load contained mostly Firmicutes; although variable, some samples contained a relevant amount of Gammaproteobacteria. Several lots of whey acquired as raw material for Ricotta production presented defective organoleptic properties. To define the volatile compounds in normal and defective whey samples, a headspace gas chromatography/mass spectrometry (GC/MS) analysis was conducted. The statistical analysis demonstrated that different microbial communities resulted from DNA or cDNA library sequencing, and distinguishable microbiota composed the communities contained in the organoleptic-defective whey samples. PMID:27582735

  9. A DNA Barcode Library for Korean Chironomidae (Insecta: Diptera) and Indexes for Defining Barcode Gap

    PubMed Central

    Kim, Sungmin; Song, Kyo-Hong; Ree, Han-Il; Kim, Won

    2012-01-01

    Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified larvae. The interspecies and intraspecies COI sequence variations were analyzed. Sophisticated indexes were developed in order to properly evaluate indistinct barcode gaps that are created by insufficient sampling on both the interspecies and intraspecies levels and by variable mutation rates across taxa. In a variety of insect datasets, these indexes were useful for re-evaluating large barcode datasets and for defining COI barcode gaps. The COI-based DNA barcode library will provide a rapid and reliable tool for the molecular identification of Korean chironomid species. Furthermore, this reverse-taxonomic approach will be improved by the continuous addition of other speceis’ sequences to the library. PMID:22138764

  10. Selection of differently temporally regulated African swine fever virus promoters with variable expression activities and their application for transient and recombinant virus mediated gene expression.

    PubMed

    Portugal, Raquel S; Bauer, Anja; Keil, Guenther M

    2017-08-01

    African swine fever virus threatens pig production worldwide due to the lack of vaccines, for which generation of both deletion and insertion mutants is considered. For development of the latter, operational ASFV promoters of different temporal regulation and strengths are desirable. We therefore compared the capacities of putative promoter sequences from p72, CD2v, p30, viral DNA polymerase and U104L genes to mediate expression of luciferase from transfected plasmids after activation in trans, or p30-, DNA polymerase- and U104L promoters in cis, using respective ASFV recombinants. We identified sequences with promoter activities upstream the viral ORFs, and showed that they differ in both their expression intensity regulating properties and in their temporal regulation. In summary, p30 and DNA polymerase promoters are recommended for high level early regulated transgene expression. For late expression, the p72, CD2v and U104L promoter are suitable. The latter however, only if low level transgene expression is aimed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Sequence-Dependent Diastereospecific and Diastereodivergent Crosslinking of DNA by Decarbamoylmitomycin C.

    PubMed

    Aguilar, William; Paz, Manuel M; Vargas, Anayatzinc; Clement, Cristina C; Cheng, Shu-Yuan; Champeil, Elise

    2018-04-20

    Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sequencing historical specimens: successful preparation of small specimens with low amounts of degraded DNA.

    PubMed

    Sproul, John S; Maddison, David R

    2017-11-01

    Despite advances that allow DNA sequencing of old museum specimens, sequencing small-bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small-bodied (3-6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58-159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1-10 ng). We also explored low-cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low-input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens. © 2017 John Wiley & Sons Ltd.

  13. i-rDNA: alignment-free algorithm for rapid in silico detection of ribosomal gene fragments from metagenomic sequence data sets.

    PubMed

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Chadaram, Sudha; Mande, Sharmila S

    2011-11-30

    Obtaining accurate estimates of microbial diversity using rDNA profiling is the first step in most metagenomics projects. Consequently, most metagenomic projects spend considerable amounts of time, money and manpower for experimentally cloning, amplifying and sequencing the rDNA content in a metagenomic sample. In the second step, the entire genomic content of the metagenome is extracted, sequenced and analyzed. Since DNA sequences obtained in this second step also contain rDNA fragments, rapid in silico identification of these rDNA fragments would drastically reduce the cost, time and effort of current metagenomic projects by entirely bypassing the experimental steps of primer based rDNA amplification, cloning and sequencing. In this study, we present an algorithm called i-rDNA that can facilitate the rapid detection of 16S rDNA fragments from amongst millions of sequences in metagenomic data sets with high detection sensitivity. Performance evaluation with data sets/database variants simulating typical metagenomic scenarios indicates the significantly high detection sensitivity of i-rDNA. Moreover, i-rDNA can process a million sequences in less than an hour on a simple desktop with modest hardware specifications. In addition to the speed of execution, high sensitivity and low false positive rate, the utility of the algorithmic approach discussed in this paper is immense given that it would help in bypassing the entire experimental step of primer-based rDNA amplification, cloning and sequencing. Application of this algorithmic approach would thus drastically reduce the cost, time and human efforts invested in all metagenomic projects. A web-server for the i-rDNA algorithm is available at http://metagenomics.atc.tcs.com/i-rDNA/

  14. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  15. DNA Sequences from Formalin-Fixed Nematodes: Integrating Molecular and Morphological Approaches to Taxonomy

    PubMed Central

    Thomas, W. Kelley; Vida, J. T.; Frisse, Linda M.; Mundo, Manuel; Baldwin, James G.

    1997-01-01

    To effectively integrate DNA sequence analysis and classical nematode taxonomy, we must be able to obtain DNA sequences from formalin-fixed specimens. Microdissected sections of nematodes were removed from specimens fixed in formalin, using standard protocols and without destroying morphological features. The fixed sections provided sufficient template for multiple polymerase chain reaction-based DNA sequence analyses. PMID:19274156

  16. Mining the oral mycobiome: Methods, components, and meaning

    PubMed Central

    Diaz, Patricia I.; Hong, Bo-Young; Dupuy, Amanda K.; Strausbaugh, Linda D.

    2017-01-01

    ABSTRACT Research on oral fungi has centered on Candida. However, recent internal transcribed spacer (ITS)-based studies revealed a vast number of fungal taxa as potential oral residents. We review DNA-based studies of the oral mycobiome and contrast them with cultivation-based surveys, showing that most genera encountered by cultivation have also been detected molecularly. Some taxa such as Malassezia, however, appear in high prevalence and abundance in molecular studies but have not been cultivated. Important technical and bioinformatic challenges to ITS-based oral mycobiome studies are discussed. These include optimization of sample lysis, variability in length of ITS amplicons, high intra-species ITS sequence variability, high inter-species variability in ITS copy number and challenges in nomenclature and maintenance of curated reference databases. Molecular surveys are powerful first steps to characterize the oral mycobiome but further research is needed to unravel which fungi detected by DNA are true oral residents and what role they play in oral homeostasis. PMID:27791473

  17. Palindromic Sequence Artifacts Generated during Next Generation Sequencing Library Preparation from Historic and Ancient DNA

    PubMed Central

    Star, Bastiaan; Nederbragt, Alexander J.; Hansen, Marianne H. S.; Skage, Morten; Gilfillan, Gregor D.; Bradbury, Ian R.; Pampoulie, Christophe; Stenseth, Nils Chr; Jakobsen, Kjetill S.; Jentoft, Sissel

    2014-01-01

    Degradation-specific processes and variation in laboratory protocols can bias the DNA sequence composition from samples of ancient or historic origin. Here, we identify a novel artifact in sequences from historic samples of Atlantic cod (Gadus morhua), which forms interrupted palindromes consisting of reverse complementary sequence at the 5′ and 3′-ends of sequencing reads. The palindromic sequences themselves have specific properties – the bases at the 5′-end align well to the reference genome, whereas extensive misalignments exists among the bases at the terminal 3′-end. The terminal 3′ bases are artificial extensions likely caused by the occurrence of hairpin loops in single stranded DNA (ssDNA), which can be ligated and amplified in particular library creation protocols. We propose that such hairpin loops allow the inclusion of erroneous nucleotides, specifically at the 3′-end of DNA strands, with the 5′-end of the same strand providing the template. We also find these palindromes in previously published ancient DNA (aDNA) datasets, albeit at varying and substantially lower frequencies. This artifact can negatively affect the yield of endogenous DNA in these types of samples and introduces sequence bias. PMID:24608104

  18. Revisiting the TALE repeat.

    PubMed

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  19. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).

    PubMed

    Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Matsuda, Yoichi

    2004-03-01

    We isolated a new family of satellite DNA sequences from HaeIII- and EcoRI-digested genomic DNA of the Blakiston's fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobottka, Marcelo, E-mail: sobottka@mtm.ufsc.br; Hart, Andrew G., E-mail: ahart@dim.uchile.cl

    Highlights: {yields} We propose a simple stochastic model to construct primitive DNA sequences. {yields} The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. {yields} The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. {yields} We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. {yields} We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that themore » frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.« less

  1. Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic.

    PubMed

    Amosova, Alexandra V; Bolsheva, Nadezhda L; Samatadze, Tatiana E; Twardovska, Maryana O; Zoshchuk, Svyatoslav A; Andreev, Igor O; Badaeva, Ekaterina D; Kunakh, Viktor A; Muravenko, Olga V

    2015-01-01

    Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species.

  2. Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic

    PubMed Central

    Amosova, Alexandra V.; Bolsheva, Nadezhda L.; Samatadze, Tatiana E.; Twardovska, Maryana O.; Zoshchuk, Svyatoslav A.; Andreev, Igor O.; Badaeva, Ekaterina D.; Kunakh, Viktor A.; Muravenko, Olga V.

    2015-01-01

    Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species. PMID:26394331

  3. Cytochrome b sequences in black-crowned night-herons (Nycticorax nycticorax) from heronries exposed to genotoxic contaminants

    USGS Publications Warehouse

    Dahl, Christopher R.; Bickham, John W.; Wickliffe, Jeffery K.; Custer, Thomas W.

    2001-01-01

    DNA sequence analysis of a 215 base-pair region of the mitochondrial cytochrome b gene was used to examine genetic variation and search for evidence of an increased mutation rate in black-crowned night-herons. We examined five populations exposed to environmental contamination (primarily PAHs and PCBs) and one reference population from the eastern U.S. There was no evidence of a high mutation rate even within populations previously shown to exhibit increased variation in DNA content among somatic cells as a result of petroleum exposure. Three haplotypes were observed among 99 individuals. The low level of variability could be evidence for a genetic bottleneck, or that cytochrome b is too conservative for use in population genetic studies of this species. With the exception of one population from Louisiana, pair-wise Phist estimates were very low, indicative of little population structure and potentially high rates of effective migration among populations.

  4. Phylogenetic Relationships and Species Delimitation in Pinus Section Trifoliae Inferrred from Plastid DNA

    PubMed Central

    Hernández-León, Sergio; Gernandt, David S.; Pérez de la Rosa, Jorge A.; Jardón-Barbolla, Lev

    2013-01-01

    Recent diversification followed by secondary contact and hybridization may explain complex patterns of intra- and interspecific morphological and genetic variation in the North American hard pines (Pinus section Trifoliae), a group of approximately 49 tree species distributed in North and Central America and the Caribbean islands. We concatenated five plastid DNA markers for an average of 3.9 individuals per putative species and assessed the suitability of the five regions as DNA bar codes for species identification, species delimitation, and phylogenetic reconstruction. The ycf1 gene accounted for the greatest proportion of the alignment (46.9%), the greatest proportion of variable sites (74.9%), and the most unique sequences (75 haplotypes). Phylogenetic analysis recovered clades corresponding to subsections Australes, Contortae, and Ponderosae. Sequences for 23 of the 49 species were monophyletic and sequences for another 9 species were paraphyletic. Morphologically similar species within subsections usually grouped together, but there were exceptions consistent with incomplete lineage sorting or introgression. Bayesian relaxed molecular clock analyses indicated that all three subsections diversified relatively recently during the Miocene. The general mixed Yule-coalescent method gave a mixed model estimate of only 22 or 23 evolutionary entities for the plastid sequences, which corresponds to less than half the 49 species recognized based on morphological species assignments. Including more unique haplotypes per species may result in higher estimates, but low mutation rates, recent diversification, and large effective population sizes may limit the effectiveness of this method to detect evolutionary entities. PMID:23936218

  5. Phylogenetic relationships and species delimitation in pinus section trifoliae inferrred from plastid DNA.

    PubMed

    Hernández-León, Sergio; Gernandt, David S; Pérez de la Rosa, Jorge A; Jardón-Barbolla, Lev

    2013-01-01

    Recent diversification followed by secondary contact and hybridization may explain complex patterns of intra- and interspecific morphological and genetic variation in the North American hard pines (Pinus section Trifoliae), a group of approximately 49 tree species distributed in North and Central America and the Caribbean islands. We concatenated five plastid DNA markers for an average of 3.9 individuals per putative species and assessed the suitability of the five regions as DNA bar codes for species identification, species delimitation, and phylogenetic reconstruction. The ycf1 gene accounted for the greatest proportion of the alignment (46.9%), the greatest proportion of variable sites (74.9%), and the most unique sequences (75 haplotypes). Phylogenetic analysis recovered clades corresponding to subsections Australes, Contortae, and Ponderosae. Sequences for 23 of the 49 species were monophyletic and sequences for another 9 species were paraphyletic. Morphologically similar species within subsections usually grouped together, but there were exceptions consistent with incomplete lineage sorting or introgression. Bayesian relaxed molecular clock analyses indicated that all three subsections diversified relatively recently during the Miocene. The general mixed Yule-coalescent method gave a mixed model estimate of only 22 or 23 evolutionary entities for the plastid sequences, which corresponds to less than half the 49 species recognized based on morphological species assignments. Including more unique haplotypes per species may result in higher estimates, but low mutation rates, recent diversification, and large effective population sizes may limit the effectiveness of this method to detect evolutionary entities.

  6. A Simulation of DNA Sequencing Utilizing 3M Post-It[R] Notes

    ERIC Educational Resources Information Center

    Christensen, Doug

    2009-01-01

    An inexpensive and equipment free approach to teaching the technical aspects of DNA sequencing. The activity described requires an instructor with a familiarity of DNA sequencing technology but provides a straight forward method of teaching the technical aspects of sequencing in the absence of expensive sequencing equipment. The final sequence…

  7. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

    DOEpatents

    Lee, James W.; Thundat, Thomas G.

    2005-06-14

    An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.

  8. Characterization of Blue Mold Penicillium Species Isolated from Stored Fruits Using Multiple Highly Conserved Loci

    PubMed Central

    Yin, Guohua; Zhang, Yuliang; Pennerman, Kayla K.; Wu, Guangxi; Hua, Sui Sheng T.; Yu, Jiujiang; Jurick, Wayne M.; Guo, Anping; Bennett, Joan W.

    2017-01-01

    Penicillium is a large genus of common molds with over 400 described species; however, identification of individual species is difficult, including for those species that cause postharvest rots. In this study, blue rot fungi from stored apples and pears were isolated from a variety of hosts, locations, and years. Based on morphological and cultural characteristics and partial amplification of the β-tubulin locus, the isolates were provisionally identified as several different species of Penicillium. These isolates were investigated further using a suite of molecular DNA markers and compared to sequences of the ex-type for cognate species in GenBank, and were identified as P. expansum (3 isolates), P. solitum (3 isolates), P. carneum (1 isolate), and P. paneum (1 isolate). Three of the markers we used (ITS, internal transcribed spacer rDNA sequence; benA, β-tubulin; CaM, calmodulin) were suitable for distinguishing most of our isolates from one another at the species level. In contrast, we were unable to amplify RPB2 sequences from four of the isolates. Comparison of our sequences with cognate sequences in GenBank from isolates with the same species names did not always give coherent data, reinforcing earlier studies that have shown large intraspecific variability in many Penicillium species, as well as possible errors in some sequence data deposited in GenBank. PMID:29371531

  9. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    PubMed

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  10. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

    PubMed Central

    Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev

    2012-01-01

    B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350

  11. Ancient dna from pleistocene fossils: Preservation, recovery, and utility of ancient genetic information for quaternary research

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.

  12. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria

    DOE PAGES

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.; ...

    2016-04-29

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA genemore » sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. Furthermore, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.« less

  13. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA genemore » sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. Furthermore, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.« less

  14. Enantiospecific recognition of DNA sequences by a proflavine Tröger base.

    PubMed

    Bailly, C; Laine, W; Demeunynck, M; Lhomme, J

    2000-07-05

    The DNA interaction of a chiral Tröger base derived from proflavine was investigated by DNA melting temperature measurements and complementary biochemical assays. DNase I footprinting experiments demonstrate that the binding of the proflavine-based Tröger base is both enantio- and sequence-specific. The (+)-isomer poorly interacts with DNA in a non-sequence-selective fashion. In sharp contrast, the corresponding (-)-isomer recognizes preferentially certain DNA sequences containing both A. T and G. C base pairs, such as the motifs 5'-GTT. AAC and 5'-ATGA. TCAT. This is the first experimental demonstration that acridine-type Tröger bases can be used for enantiospecific recognition of DNA sequences. Copyright 2000 Academic Press.

  15. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao

    2015-02-01

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.

  16. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI.

    PubMed

    Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V

    2014-08-01

    In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase.

    PubMed

    Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V

    2006-10-15

    The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.

  18. Recent patents of nanopore DNA sequencing technology: progress and challenges.

    PubMed

    Zhou, Jianfeng; Xu, Bingqian

    2010-11-01

    DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.

  19. Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor.

    PubMed Central

    Benslimane, A A; Dron, M; Hartmann, C; Rode, A

    1986-01-01

    Several monomers (177 bp) of a tandemly arranged repetitive nuclear DNA sequence of Brassica oleracea have been cloned and sequenced. They share up to 95% homology between one another and up to 80% with other satellite DNA sequences of Cruciferae, suggesting a common ancestor. Both strands of these monomers show more than 50% homology with many tRNA genes; the best homologies have been obtained with Lys and His yeast mitochondrial tRNA genes (respectively 64% and 60%). These results suggest that small tandemly repeated DNA sequences of plants may have evolved from a tRNA gene ancestor. These tandem repeats have probably arisen via a process involving reverse transcription of polymerase III RNA intermediates, as is the case for interspersed DNA sequences of mammalians. A model is proposed to explain the formation of such small tandemly repeated DNA sequences. Images PMID:3774553

  20. Next-Generation Sequencing Platforms

    NASA Astrophysics Data System (ADS)

    Mardis, Elaine R.

    2013-06-01

    Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.

  1. Intraspecific variation between the ITS sequences of Toxocara canis, Toxocara cati and Toxascaris leonina from different host species in south-western Poland.

    PubMed

    Fogt-Wyrwas, R; Mizgajska-Wiktor, H; Pacoń, J; Jarosz, W

    2013-12-01

    Some parasitic nematodes can inhabit different definitive hosts, which raises the question of the intraspecific variability of the nematode genotype affecting their preferences to choose particular species as hosts. Additionally, the issue of a possible intraspecific DNA microheterogeneity in specimens from different parts of the world seems to be interesting, especially from the evolutionary point of view. The problem was analysed in three related species - Toxocara canis, Toxocara cati and Toxascaris leonina - specimens originating from Central Europe (Poland). Using specific primers for species identification, internal transcribed spacer (ITS)-1 and ITS-2 regions were amplified and then sequenced. The sequences obtained were compared with sequences previously described for specimens originating from other geographical locations. No differences in nucleotide sequences were established in T. canis isolated from two different hosts (dogs and foxes). A comparison of ITS sequences of T. canis from Poland with sequences deposited in GenBank showed that the scope of intraspecific variability of the species did not exceed 0.4%, while in T. cati the differences did not exceed 2%. Significant differences were found in T. leonina, where ITS-1 differed by 3% and ITS-2 by as much as 7.4% in specimens collected from foxes in Poland and dogs in Australia. Such scope of differences in the nucleotide sequence seems to exceed the intraspecific variation of the species.

  2. Regulatory link between DNA methylation and active demethylation in Arabidopsis

    PubMed Central

    Lei, Mingguang; Zhang, Huiming; Julian, Russell; Tang, Kai; Xie, Shaojun; Zhu, Jian-Kang

    2015-01-01

    De novo DNA methylation through the RNA-directed DNA methylation (RdDM) pathway and active DNA demethylation play important roles in controlling genome-wide DNA methylation patterns in plants. Little is known about how cells manage the balance between DNA methylation and active demethylation activities. Here, we report the identification of a unique RdDM target sequence, where DNA methylation is required for maintaining proper active DNA demethylation of the Arabidopsis genome. In a genetic screen for cellular antisilencing factors, we isolated several REPRESSOR OF SILENCING 1 (ros1) mutant alleles, as well as many RdDM mutants, which showed drastically reduced ROS1 gene expression and, consequently, transcriptional silencing of two reporter genes. A helitron transposon element (TE) in the ROS1 gene promoter negatively controls ROS1 expression, whereas DNA methylation of an RdDM target sequence between ROS1 5′ UTR and the promoter TE region antagonizes this helitron TE in regulating ROS1 expression. This RdDM target sequence is also targeted by ROS1, and defective DNA demethylation in loss-of-function ros1 mutant alleles causes DNA hypermethylation of this sequence and concomitantly causes increased ROS1 expression. Our results suggest that this sequence in the ROS1 promoter region serves as a DNA methylation monitoring sequence (MEMS) that senses DNA methylation and active DNA demethylation activities. Therefore, the ROS1 promoter functions like a thermostat (i.e., methylstat) to sense DNA methylation levels and regulates DNA methylation by controlling ROS1 expression. PMID:25733903

  3. Attomole-level Genomics with Single-molecule Direct DNA, cDNA and RNA Sequencing Technologies.

    PubMed

    Ozsolak, Fatih

    2016-01-01

    With the introduction of next-generation sequencing (NGS) technologies in 2005, the domination of microarrays in genomics quickly came to an end due to NGS's superior technical performance and cost advantages. By enabling genetic analysis capabilities that were not possible previously, NGS technologies have started to play an integral role in all areas of biomedical research. This chapter outlines the low-quantity DNA and cDNA sequencing capabilities and applications developed with the Helicos single molecule DNA sequencing technology.

  4. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene.

    PubMed Central

    Walker, M D; Park, C W; Rosen, A; Aronheim, A

    1990-01-01

    Cell specific expression of the insulin gene is achieved through transcriptional mechanisms operating on multiple DNA sequence elements located in the 5' flanking region of the gene. Of particular importance in the rat insulin I gene are two closely similar 9 bp sequences (IEB1 and IEB2): mutation of either of these leads to 5-10 fold reduction in transcriptional activity. We have screened an expression cDNA library derived from mouse pancreatic endocrine beta cells with a radioactive DNA probe containing multiple copies of the IEB1 sequence. A cDNA clone (A1) isolated by this procedure encodes a protein which shows efficient binding to the IEB1 probe, but much weaker binding to either an unrelated DNA probe or to a probe bearing a single base pair insertion within the recognition sequence. DNA sequence analysis indicates a protein belonging to the helix-loop-helix family of DNA-binding proteins. The ability of the protein encoded by clone A1 to recognize a number of wild type and mutant DNA sequences correlates closely with the ability of each sequence element to support transcription in vivo in the context of the insulin 5' flanking DNA. We conclude that the isolated cDNA may encode a transcription factor that participates in control of insulin gene expression. Images PMID:2181401

  5. Highly multiplexed targeted DNA sequencing from single nuclei.

    PubMed

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  6. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria

    PubMed Central

    2008-01-01

    Background Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa. PMID:18471296

  7. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria.

    PubMed

    Evans, Nathaniel M; Lindner, Alberto; Raikova, Ekaterina V; Collins, Allen G; Cartwright, Paulyn

    2008-05-09

    Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa.

  8. Use of molecular markers to compare Fusarium verticillioides pathogenic strains isolated from plants and humans.

    PubMed

    Chang, S C; Macêdo, D P C; Souza-Motta, C M; Oliveira, N T

    2013-08-12

    Fusarium verticillioides is a pathogen of agriculturally important crops, especially maize. It is considered one of the most important pathogens responsible for fumonisin contamination of food products, which causes severe, chronic, and acute intoxication in humans and animals. Moreover, it is recognized as a cause of localized infections in immunocompetent patients and disseminated infections among severely immunosuppressed patients. Several molecular tools have been used to analyze the intraspecific variability of fungi. The objective of this study was to use molecular markers to compare pathogenic isolates of F. verticillioides and isolates of the same species obtained from clinical samples of patients with Fusarium mycoses. The molecular markers that we used were inter-simple sequence repeat markers (primers GTG5 and GACA4), intron splice site primer (primer EI1), random amplified polymorphic DNA marker (primer OPW-6), and restriction fragment length polymorphism-internal transcribed spacer (ITS) from rDNA. From the data obtained, clusters were generated based on the UPGMA clustering method. The amplification products obtained using primers ITS4 and ITS5 and loci ITS1-5.8-ITS2 of the rDNA yielded fragments of approximately 600 bp for all the isolates. Digestion of the ITS region fragment using restriction enzymes such as EcoRI, DraI, BshI, AluI, HaeIII, HinfI, MspI, and PstI did not permit differentiation among pathogenic and clinical isolates. The inter-simple sequence repeat, intron splice site primer, and random amplified polymorphic DNA markers presented high genetic homogeneity among clinical isolates in contrast to the high variability found among the phytopathogenic isolates of F. verticillioides.

  9. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less

  10. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies

    DOE PAGES

    Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.; ...

    2017-07-18

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less

  11. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies

    PubMed Central

    Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Richard A.; Brown, Steven D.

    2017-01-01

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences. PMID:28769883

  12. Mapping the binding site of aflatoxin B/sub 1/ in DNA: systematic analysis of the reactivity of aflatoxin B/sub 1/ with guanines in different DNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benasutti, M.; Ejadi, S.; Whitlow, M.D.

    The mutagenic and carcinogenic chemical aflatoxin B/sub 1/ (AFB/sub 1/) reacts almost exclusively at the N(7)-position of guanine following activation to its reactive form, the 8,9-epoxide (AFB/sub 1/ oxide). In general N(7)-guanine adducts yield DNA strand breaks when heated in base, a property that serves as the basis for the Maxam-Gilbert DNA sequencing reaction specific for guanine. Using DNA sequencing methods, other workers have shown that AFB/sub 1/ oxide gives strand breaks at positions of guanines; however, the guanine bands varied in intensity. This phenomenon has been used to infer that AFB/sub 1/ oxide prefers to react with guanines inmore » some sequence contexts more than in others and has been referred to as sequence specificity of binding. Herein, data on the reaction of AFB/sub 1/ oxide with several synthetic DNA polymers with different sequences are presented, and (following hydrolysis) adduct levels are determine by high-pressure liquid chromatography. These results reveal that for AFB/sub 1/ oxide (1) the N(7)-guanine adduct is the major adduct found in all of the DNA polymers, (2) adduct levels vary in different sequences, and, thus, sequence specificity is also observed by this more direct method, and (3) the intensity of bands in DNA sequencing gels is likely to reflect adduct levels formed at the N(7)-position of guanine. Knowing this, a reinvestigation of the reactivity of guanines in different DNA sequences using DNA sequencing methods was undertaken. Methods are developed to determine the X (5'-side) base and the Y (3'-side) base are most influential in determining guanine reactivity. These rules in conjunction with molecular modeling studies were used to assess the binding sites that might be utilized by AFB/sub 1/ oxide in its reaction with DNA.« less

  13. Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers.

    PubMed

    Salimath, S S; de Oliveira, A C; Godwin, I D; Bennetzen, J L

    1995-08-01

    Finger millet (Eleusine coracana), an allotetraploid cereal, is widely cultivated in the arid and semiarid regions of the world. Three DNA marker techniques, restriction fragment length polymorphism (RFLP), randomly amplified polymorphic DNA (RAPD), and inter simple sequence repeat amplification (ISSR), were employed to analyze 22 accessions belonging to 5 species of Eleusine. An 8 probe--3 enzyme RFLP combination, 18 RAPD primers, and 6 ISSR primers, respectively, revealed 14, 10, and 26% polymorphism in 17 accessions of E. coracana from Africa and Asia. These results indicated a very low level of DNA sequence variability in the finger millets but did allow each line to be distinguished. The different Eleusine species could be easily identified by DNA marker technology and the 16% intraspecific polymorphism exhibited by the two analyzed accessions of E. floccifolia suggested a much higher level of diversity in this species than in E. coracana. Between species, E. coracana and E. indica shared the most markers, while E. indica and E. tristachya shared a considerable number of markers, indicating that these three species form a close genetic assemblage within the Eleusine. Eleusine floccifolia and E. compressa were found to be the most divergent among the species examined. Comparison of RFLP, RAPD, and ISSR technologies, in terms of the quantity and quality of data output, indicated that ISSRs are particularly promising for the analysis of plant genome diversity.

  14. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme.

    PubMed

    Vidone, Michele; Clima, Rosanna; Santorsola, Mariangela; Calabrese, Claudia; Girolimetti, Giulia; Kurelac, Ivana; Amato, Laura Benedetta; Iommarini, Luisa; Trevisan, Elisa; Leone, Marco; Soffietti, Riccardo; Morra, Isabella; Faccani, Giuliano; Attimonelli, Marcella; Porcelli, Anna Maria; Gasparre, Giuseppe

    2015-06-01

    Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Molecular definition and the ubiquity of species in the genus Naegleria.

    PubMed

    De Jonckheere, Johan F

    2004-03-01

    To investigate the variability within species of the genus Naegleria, the ITS1,5.8S and ITS2 rDNA were sequenced of several strains of N. lovaniensis and its Western Australian variants, N. australiensis, N. fowleri, N. andersoni, N. jamiesoni, N. tihangensis, N. pringsheimi, N. pagei, N. gruberi sensu lato and a Naegleria lineage that lost a group I intron from the SSUrDNA twintron. As a result, it is possible to define a molecular species within the Naegleria genus. In addition, one strain of each different allozyme cluster was sequenced to investigate whether they belong to described species or should be treated as distinct new species. This leads to the proposal of eleven new species. The sequencing results from those Naegleria spp. of which several strains are available indicate that these species are ubiquitous. The only exception might be the species represented by the WA variants. However, there are still many Naegleria spp. for which only one strain has been isolated, hence, it is important that the search for more isolates should be continued worldwide.

  16. Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes).

    PubMed

    Delport, Wayne; Ferguson, J Willem H; Bloomer, Paulette

    2002-06-01

    We determined the mitochondrial DNA control region sequences of six Bucerotiformes. Hornbills have the typical avian gene order and their control region is similar to other avian control regions in that it is partitioned into three domains: two variable domains that flank a central conserved domain. Two characteristics of the hornbill control region sequence differ from that of other birds. First, domain I is AT rich as opposed to AC rich, and second, the control region is approximately 500 bp longer than that of other birds. Both these deviations from typical avian control region sequence are explainable on the basis of repeat motifs in domain I of the hornbill control region. The repeat motifs probably originated from a duplication of CSB-1 as has been determined in chicken, quail, and snowgoose. Furthermore, the hornbill repeat motifs probably arose before the divergence of hornbills from each other but after the divergence of hornbills from other avian taxa. The mitochondrial control region of hornbills is suitable for both phylogenetic and population studies, with domains I and II probably more suited to population and phylogenetic analyses, respectively.

  17. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  18. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster.

    PubMed

    Pool, John E; Aquadro, Charles F

    2007-07-01

    In a broad survey of Drosophila melanogaster population samples, levels of abdominal pigmentation were found to be highly variable and geographically differentiated. A strong positive correlation was found between dark pigmentation and high altitude, suggesting adaptation to specific environments. DNA sequence polymorphism at the candidate gene ebony revealed a clear association with the pigmentation of homozygous third chromosome lines. The darkest lines sequenced had nearly identical haplotypes spanning 14.5 kb upstream of the protein-coding exons of ebony. Thus, natural selection may have elevated the frequency of an allele that confers dark abdominal pigmentation by influencing the regulation of ebony.

  19. Affordable Hands-On DNA Sequencing and Genotyping: An Exercise for Teaching DNA Analysis to Undergraduates

    ERIC Educational Resources Information Center

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C…

  20. DNA Barcode Goes Two-Dimensions: DNA QR Code Web Server

    PubMed Central

    Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, “DNA barcode” actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications. PMID:22574113

  1. A Bioinformatic Pipeline for Monitoring of the Mutational Stability of Viral Drug Targets with Deep-Sequencing Technology.

    PubMed

    Kravatsky, Yuri; Chechetkin, Vladimir; Fedoseeva, Daria; Gorbacheva, Maria; Kravatskaya, Galina; Kretova, Olga; Tchurikov, Nickolai

    2017-11-23

    The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs), requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s). Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s). The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi) targets in human immunodeficiency virus 1 (HIV-1) subtype A. The developed pipeline is freely available to download at the website http://virmut.eimb.ru/. Brief comments and comparisons between VirMut and other pipelines are also presented.

  2. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.

    PubMed

    Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie

    2015-06-17

    High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This sequence structure can be harnessed to improve bioinformatics algorithms, in particular for CNV and structural variant detection. Descriptive measures for cell-free DNA features developed here could also be used in biomarker analysis to monitor the changes that occur during different pathological conditions.

  3. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals.

    PubMed

    Luo, Arong; Zhang, Aibing; Ho, Simon Yw; Xu, Weijun; Zhang, Yanzhou; Shi, Weifeng; Cameron, Stephen L; Zhu, Chaodong

    2011-01-28

    A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.

  4. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals

    PubMed Central

    2011-01-01

    Background A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Results Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. Conclusions We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups. PMID:21276253

  5. Analysis of DNA Sequences by An Optical Time-Integrating Correlator: Proof-Of-Concept Experiments.

    DTIC Science & Technology

    1992-05-01

    TABLES xv LIST OF ABBREVIATIONS xvii 1.0 INTRODUCTION 1 2.0 DNA ANALYSIS STRATEGY 4 2.1 Representation of DNA Bases 4 2.2 DNA Analysis Strategy 6 3.0...Zehnder architecture. 3 Figure 3: Short representations of the DNA bases where each base is represented by a 7-bits long pseudorandom sequence. 5... DNA bases where each base is represented by 7-bits long pseudorandom sequences. 4 Table 2: Long representations of the DNA bases with 255-bits maximum

  6. SNP discovery through de novo deep sequencing using the next generation of DNA sequencers

    USDA-ARS?s Scientific Manuscript database

    The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....

  7. A simple procedure for parallel sequence analysis of both strands of 5'-labeled DNA.

    PubMed

    Razvi, F; Gargiulo, G; Worcel, A

    1983-08-01

    Ligation of a 5'-labeled DNA restriction fragment results in a circular DNA molecule carrying the two 32Ps at the reformed restriction site. Double digestions of the circular DNA with the original enzyme and a second restriction enzyme cleavage near the labeled site allows direct chemical sequencing of one 5'-labeled DNA strand. Similar double digestions, using an isoschizomer that cleaves differently at the 32P-labeled site, allows direct sequencing of the now 3'-labeled complementary DNA strand. It is possible to directly sequence both strands of cloned DNA inserts by using the above protocol and a multiple cloning site vector that provides the necessary restriction sites. The simultaneous and parallel visualization of both DNA strands eliminates sequence ambiguities. In addition, the labeled circular molecules are particularly useful for single-hit DNA cleavage studies and DNA footprint analysis. As an example, we show here an analysis of the micrococcal nuclease-induced breaks on the two strands of the somatic 5S RNA gene of Xenopus borealis, which suggests that the enzyme may recognize and cleave small AT-containing palindromes along the DNA helix.

  8. A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes)

    PubMed Central

    Utsunomia, Ricardo; Ruiz-Ruano, Francisco J.; Silva, Duílio M. Z. A.; Serrano, Érica A.; Rosa, Ivana F.; Scudeler, Patrícia E. S.; Hashimoto, Diogo T.; Oliveira, Claudio; Camacho, Juan Pedro M.; Foresti, Fausto

    2017-01-01

    Satellite DNA (satDNA) is an abundant fraction of repetitive DNA in eukaryotic genomes and plays an important role in genome organization and evolution. In general, satDNA sequences follow a concerted evolutionary pattern through the intragenomic homogenization of different repeat units. In addition, the satDNA library hypothesis predicts that related species share a series of satDNA variants descended from a common ancestor species, with differential amplification of different satDNA variants. The finding of a same satDNA family in species belonging to different genera within Characidae fish provided the opportunity to test both concerted evolution and library hypotheses. For this purpose, we analyzed here sequence variation and abundance of this satDNA family in ten species, by a combination of next generation sequencing (NGS), PCR and Sanger sequencing, and fluorescence in situ hybridization (FISH). We found extensive between-species variation for the number and size of pericentromeric FISH signals. At genomic level, the analysis of 1000s of DNA sequences obtained by Illumina sequencing and PCR amplification allowed defining 150 haplotypes which were linked in a common minimum spanning tree, where different patterns of concerted evolution were apparent. This also provided a glimpse into the satDNA library of this group of species. In consistency with the library hypothesis, different variants for this satDNA showed high differences in abundance between species, from highly abundant to simply relictual variants. PMID:28855916

  9. The Mitochondrial Cytochrome Oxidase Subunit I Gene Occurs on a Minichromosome with Extensive Heteroplasmy in Two Species of Chewing Lice, Geomydoecus aurei and Thomomydoecus minor

    PubMed Central

    Pietan, Lucas L.; Spradling, Theresa A.

    2016-01-01

    In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916–1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function. PMID:27589589

  10. Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent

    PubMed Central

    Li, Linlin; Deng, Xutao; Mee, Edward T.; Collot-Teixeira, Sophie; Anderson, Rob; Schepelmann, Silke; Minor, Philip D.; Delwart, Eric

    2014-01-01

    Unbiased metagenomic sequencing holds significant potential as a diagnostic tool for the simultaneous detection of any previously genetically described viral nucleic acids in clinical samples. Viral genome sequences can also inform on likely phenotypes including drug susceptibility or neutralization serotypes. In this study, different variables of the laboratory methods often used to generate viral metagenomics libraries on the efficiency of viral detection and virus genome coverage were compared. A biological reagent consisting of 25 different human RNA and DNA viral pathogens was used to estimate the effect of filtration and nuclease digestion, DNA/RNA extraction methods, pre-amplification and the use of different library preparation kits on the detection of viral nucleic acids. Filtration and nuclease treatment led to slight decreases in the percentage of viral sequence reads and number of viruses detected. For nucleic acid extractions silica spin columns improved viral sequence recovery relative to magnetic beads and Trizol extraction. Pre-amplification using random RT-PCR while generating more viral sequence reads resulted in detection of fewer viruses, more overlapping sequences, and lower genome coverage. The ScriptSeq library preparation method retrieved more viruses and a greater fraction of their genomes than the TruSeq and Nextera methods. Viral metagenomics sequencing was able to simultaneously detect up to 22 different viruses in the biological reagent analyzed including all those detected by qPCR. Further optimization will be required for the detection of viruses in biologically more complex samples such as tissues, blood, or feces. PMID:25497414

  11. Short, interspersed, and repetitive DNA sequences in Spiroplasma species.

    PubMed

    Nur, I; LeBlanc, D J; Tully, J G

    1987-03-01

    Small fragments of DNA from an 8-kbp plasmid, pRA1, from a plant pathogenic strain of Spiroplasma citri were shown previously to be present in the chromosomal DNA of at least two species of Spiroplasma. We describe here the shot-gun cloning of chromosomal DNA from S. citri Maroc and the identification of two distinct sequences exhibiting homology to pRA1. Further subcloning experiments provided specific molecular probes for the identification of these two sequences in chromosomal DNA from three distinct plant pathogenic species of Spiroplasma. The results of Southern blot hybridization indicated that each of the pRA1-associated sequences is present as multiple copies in short, dispersed, and repetitive sequences in the chromosomes of these three strains. None of the sequences was detectable in chromosomal DNA from an additional nine Spiroplasma strains examined.

  12. Laser Desorption Mass Spectrometry for DNA Sequencing and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Golovlev, V. V.; Isola, N. R.; Allman, S. L.

    1998-03-01

    Rapid DNA sequencing and/or analysis is critically important for biomedical research. In the past, gel electrophoresis has been the primary tool to achieve DNA analysis and sequencing. However, gel electrophoresis is a time-consuming and labor-extensive process. Recently, we have developed and used laser desorption mass spectrometry (LDMS) to achieve sequencing of ss-DNA longer than 100 nucleotides. With LDMS, we succeeded in sequencing DNA in seconds instead of hours or days required by gel electrophoresis. In addition to sequencing, we also applied LDMS for the detection of DNA probes for hybridization LDMS was also used to detect short tandem repeats for forensic applications. Clinical applications for disease diagnosis such as cystic fibrosis caused by base deletion and point mutation have also been demonstrated. Experimental details will be presented in the meeting. abstract.

  13. Constructing DNA Barcode Sets Based on Particle Swarm Optimization.

    PubMed

    Wang, Bin; Zheng, Xuedong; Zhou, Shihua; Zhou, Changjun; Wei, Xiaopeng; Zhang, Qiang; Wei, Ziqi

    2018-01-01

    Following the completion of the human genome project, a large amount of high-throughput bio-data was generated. To analyze these data, massively parallel sequencing, namely next-generation sequencing, was rapidly developed. DNA barcodes are used to identify the ownership between sequences and samples when they are attached at the beginning or end of sequencing reads. Constructing DNA barcode sets provides the candidate DNA barcodes for this application. To increase the accuracy of DNA barcode sets, a particle swarm optimization (PSO) algorithm has been modified and used to construct the DNA barcode sets in this paper. Compared with the extant results, some lower bounds of DNA barcode sets are improved. The results show that the proposed algorithm is effective in constructing DNA barcode sets.

  14. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    PubMed

    Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  15. Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries

    PubMed Central

    Carpenter, Meredith L.; Buenrostro, Jason D.; Valdiosera, Cristina; Schroeder, Hannes; Allentoft, Morten E.; Sikora, Martin; Rasmussen, Morten; Gravel, Simon; Guillén, Sonia; Nekhrizov, Georgi; Leshtakov, Krasimir; Dimitrova, Diana; Theodossiev, Nikola; Pettener, Davide; Luiselli, Donata; Sandoval, Karla; Moreno-Estrada, Andrés; Li, Yingrui; Wang, Jun; Gilbert, M. Thomas P.; Willerslev, Eske; Greenleaf, William J.; Bustamante, Carlos D.

    2013-01-01

    Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples. PMID:24568772

  16. Biological nanopore MspA for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Manrao, Elizabeth A.

    Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore. Using a DNA polymerase, DNA strands are stepped through MspA one nucleotide at a time. The steps are observable as distinct levels on the ionic-current time-trace and are related to the DNA sequence. These experiments overcome the two fundamental challenges to realizing MspA nanopore sequencing and pave the way to the development of a commercial technology.

  17. An efficient approach to BAC based assembly of complex genomes.

    PubMed

    Visendi, Paul; Berkman, Paul J; Hayashi, Satomi; Golicz, Agnieszka A; Bayer, Philipp E; Ruperao, Pradeep; Hurgobin, Bhavna; Montenegro, Juan; Chan, Chon-Kit Kenneth; Staňková, Helena; Batley, Jacqueline; Šimková, Hana; Doležel, Jaroslav; Edwards, David

    2016-01-01

    There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.

  18. Effects of sequence on DNA wrapping around histones

    NASA Astrophysics Data System (ADS)

    Ortiz, Vanessa

    2011-03-01

    A central question in biophysics is whether the sequence of a DNA strand affects its mechanical properties. In epigenetics, these are thought to influence nucleosome positioning and gene expression. Theoretical and experimental attempts to answer this question have been hindered by an inability to directly resolve DNA structure and dynamics at the base-pair level. In our previous studies we used a detailed model of DNA to measure the effects of sequence on the stability of naked DNA under bending. Sequence was shown to influence DNA's ability to form kinks, which arise when certain motifs slide past others to form non-native contacts. Here, we have now included histone-DNA interactions to see if the results obtained for naked DNA are transferable to the problem of nucleosome positioning. Different DNA sequences interacting with the histone protein complex are studied, and their equilibrium and mechanical properties are compared among themselves and with the naked case. NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM T15LM007359).

  19. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis

    PubMed Central

    Taggart, David J.; Camerlengo, Terry L.; Harrison, Jason K.; Sherrer, Shanen M.; Kshetry, Ajay K.; Taylor, John-Stephen; Huang, Kun; Suo, Zucai

    2013-01-01

    Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis–syn thymidine–thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases. PMID:23470999

  20. Rapid Identification of Cryptococcus neoformans and Cryptococcus gattii by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry ▿

    PubMed Central

    McTaggart, Lisa R.; Lei, Eric; Richardson, Susan E.; Hoang, Linda; Fothergill, Annette; Zhang, Sean X.

    2011-01-01

    Compared to DNA sequence analysis, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) correctly identified 100% of Cryptococcus species, distinguishing the notable pathogens Cryptococcus neoformans and C. gattii. Identification was greatly enhanced by supplementing a commercial spectral library with additional entries to account for subspecies variability. PMID:21653762

  1. A DNA methylation map of human cancer at single base-pair resolution

    PubMed Central

    Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M

    2017-01-01

    Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination. PMID:28581523

  2. Spread and global population structure of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoids Diadegma semiclausum and Diadegma fenestrale (Hymenoptera: Ichneumonidae) based on mtDNA.

    PubMed

    Juric, I; Salzburger, W; Balmer, O

    2017-04-01

    The diamondback moth (DBM) (Plutella xylostella) is one of the main pests of brassicaceous crops worldwide and shows resistance against a wide range of synthetic insecticides incurring millions of dollars in control costs every year. The DBM is a prime example of the introduction of an exotic species as a consequence of globalization. In this study we analyzed the genetic population structure of the DBM and two of its parasitic wasps, Diadegma semiclausum and Diadegma fenestrale, based on mitochondrial DNA sequences. We analyzed DBM samples from 13 regions worldwide (n = 278), and samples of the two wasp species from six European and African countries (n = 131), in an attempt to reconstruct the geographic origin and phylogeography of the DBM and its two parasitic wasps. We found high variability in COI sequences in the diamondback moth. Haplotype analysis showed three distinct genetic clusters, one of which could represent a cryptic species. Mismatch analysis confirmed the hypothesized recent spread of diamondback moths in North America, Australia and New Zealand. The highest genetic variability was found in African DBM samples. Our data corroborate prior claims of Africa as the most probable origin of the species but cannot preclude Asia as an alternative. No genetic variability was found in the two Diadegma species. The lack of variability in both wasp species suggests a very recent spread of bottlenecked populations, possibly facilitated by their use as biocontrol agents. Our data thus also contain no signals of host-parasitoid co-evolution.

  3. An extended sequence specificity for UV-induced DNA damage.

    PubMed

    Chung, Long H; Murray, Vincent

    2018-01-01

    The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Multiplex analysis of DNA

    DOEpatents

    Church, George M.; Kieffer-Higgins, Stephen

    1992-01-01

    This invention features vectors and a method for sequencing DNA. The method includes the steps of: a) ligating the DNA into a vector comprising a tag sequence, the tag sequence includes at least 15 bases, wherein the tag sequence will not hybridize to the DNA under stringent hybridization conditions and is unique in the vector, to form a hybrid vector, b) treating the hybrid vector in a plurality of vessels to produce fragments comprising the tag sequence, wherein the fragments differ in length and terminate at a fixed known base or bases, wherein the fixed known base or bases differs in each vessel, c) separating the fragments from each vessel according to their size, d) hybridizing the fragments with an oligonucleotide able to hybridize specifically with the tag sequence, and e) detecting the pattern of hybridization of the tag sequence, wherein the pattern reflects the nucleotide sequence of the DNA.

  5. BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing

    PubMed Central

    Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph

    2011-01-01

    Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797

  6. A DNA sequence analysis package for the IBM personal computer.

    PubMed Central

    Lagrimini, L M; Brentano, S T; Donelson, J E

    1984-01-01

    We present here a collection of DNA sequence analysis programs, called "PC Sequence" (PCS), which are designed to run on the IBM Personal Computer (PC). These programs are written in IBM PC compiled BASIC and take full advantage of the IBM PC's speed, error handling, and graphics capabilities. For a modest initial expense in hardware any laboratory can use these programs to quickly perform computer analysis on DNA sequences. They are written with the novice user in mind and require very little training or previous experience with computers. Also provided are a text editing program for creating and modifying DNA sequence files and a communications program which enables the PC to communicate with and collect information from mainframe computers and DNA sequence databases. PMID:6546433

  7. Influence of structural variation on nuclear localization of DNA-binding polyamide-fluorophore conjugates.

    PubMed

    Edelson, Benjamin S; Best, Timothy P; Olenyuk, Bogdan; Nickols, Nicholas G; Doss, Raymond M; Foister, Shane; Heckel, Alexander; Dervan, Peter B

    2004-01-01

    A pivotal step forward in chemical approaches to controlling gene expression is the development of sequence-specific DNA-binding molecules that can enter live cells and traffic to nuclei unaided. DNA-binding polyamides are a class of programmable, sequence-specific small molecules that have been shown to influence a wide variety of protein-DNA interactions. We have synthesized over 100 polyamide-fluorophore conjugates and assayed their nuclear uptake profiles in 13 mammalian cell lines. The compiled dataset, comprising 1300 entries, establishes a benchmark for the nuclear localization of polyamide-dye conjugates. Compounds in this series were chosen to provide systematic variation in several structural variables, including dye composition and placement, molecular weight, charge, ordering of the aromatic and aliphatic amino-acid building blocks and overall shape. Nuclear uptake does not appear to be correlated with polyamide molecular weight or with the number of imidazole residues, although the positions of imidazole residues affect nuclear access properties significantly. Generally negative determinants for nuclear access include the presence of a beta-Ala-tail residue and the lack of a cationic alkyl amine moiety, whereas the presence of an acetylated 2,4-diaminobutyric acid-turn is a positive factor for nuclear localization. We discuss implications of these data on the design of polyamide-dye conjugates for use in biological systems.

  8. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  9. Genomic sequencing of Pleistocene cave bears

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome,more » the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.« less

  10. Data characterizing the chloroplast genomes of extinct and endangered Hawaiian endemic mints (Lamiaceae) and their close relatives.

    PubMed

    Welch, Andreanna J; Collins, Katherine; Ratan, Aakrosh; Drautz-Moses, Daniela I; Schuster, Stephan C; Lindqvist, Charlotte

    2016-06-01

    These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, "The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)" [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material.

  11. Characterization of North American Armillaria species: Genetic relationships determined by ribosomal DNA sequences and AFLP markers

    Treesearch

    M. -S. Kim; N. B. Klopfenstein; J. W. Hanna; G. I. McDonald

    2006-01-01

    Phylogenetic and genetic relationships among 10 North American Armillaria species were analysed using sequence data from ribosomal DNA (rDNA), including intergenic spacer (IGS-1), internal transcribed spacers with associated 5.8S (ITS + 5.8S), and nuclear large subunit rDNA (nLSU), and amplified fragment length polymorphism (AFLP) markers. Based on rDNA sequence data,...

  12. Fractal landscape analysis of DNA walks

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-01-01

    By mapping nucleotide sequences onto a "DNA walk", we uncovered remarkably long-range power law correlations [Nature 356 (1992) 168] that imply a new scale invariant property of DNA. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences, but not in cDNA sequences or intron-less genes. In this paper, we present more explicit evidences to support our findings.

  13. [Genome-scale sequence data processing and epigenetic analysis of DNA methylation].

    PubMed

    Wang, Ting-Zhang; Shan, Gao; Xu, Jian-Hong; Xue, Qing-Zhong

    2013-06-01

    A new approach recently developed for detecting cytosine DNA methylation (mC) and analyzing the genome-scale DNA methylation profiling, is called BS-Seq which is based on bisulfite conversion of genomic DNA combined with next-generation sequencing. The method can not only provide an insight into the difference of genome-scale DNA methylation among different organisms, but also reveal the conservation of DNA methylation in all contexts and nucleotide preference for different genomic regions, including genes, exons, and repetitive DNA sequences. It will be helpful to under-stand the epigenetic impacts of cytosine DNA methylation on the regulation of gene expression and maintaining silence of repetitive sequences, such as transposable elements. In this paper, we introduce the preprocessing steps of DNA methylation data, by which cytosine (C) and guanine (G) in the reference sequence are transferred to thymine (T) and adenine (A), and cytosine in reads is transferred to thymine, respectively. We also comprehensively review the main content of the DNA methylation analysis on the genomic scale: (1) the cytosine methylation under the context of different sequences; (2) the distribution of genomic methylcytosine; (3) DNA methylation context and the preference for the nucleotides; (4) DNA- protein interaction sites of DNA methylation; (5) degree of methylation of cytosine in the different structural elements of genes. DNA methylation analysis technique provides a powerful tool for the epigenome study in human and other species, and genes and environment interaction, and founds the theoretical basis for further development of disease diagnostics and therapeutics in human.

  14. Extracting DNA words based on the sequence features: non-uniform distribution and integrity.

    PubMed

    Li, Zhi; Cao, Hongyan; Cui, Yuehua; Zhang, Yanbo

    2016-01-25

    DNA sequence can be viewed as an unknown language with words as its functional units. Given that most sequence alignment algorithms such as the motif discovery algorithms depend on the quality of background information about sequences, it is necessary to develop an ab initio algorithm for extracting the "words" based only on the DNA sequences. We considered that non-uniform distribution and integrity were two important features of a word, based on which we developed an ab initio algorithm to extract "DNA words" that have potential functional meaning. A Kolmogorov-Smirnov test was used for consistency test of uniform distribution of DNA sequences, and the integrity was judged by the sequence and position alignment. Two random base sequences were adopted as negative control, and an English book was used as positive control to verify our algorithm. We applied our algorithm to the genomes of Saccharomyces cerevisiae and 10 strains of Escherichia coli to show the utility of the methods. The results provide strong evidences that the algorithm is a promising tool for ab initio building a DNA dictionary. Our method provides a fast way for large scale screening of important DNA elements and offers potential insights into the understanding of a genome.

  15. Non-essential MCM-related proteins mediate a response to DNA damage in the archaeon Methanococcus maripaludis.

    PubMed

    Walters, Alison D; Chong, James P J

    2017-05-01

    The single minichromosome maintenance (MCM) protein found in most archaea has been widely studied as a simplified model for the MCM complex that forms the catalytic core of the eukaryotic replicative helicase. Organisms of the order Methanococcales are unusual in possessing multiple MCM homologues. The Methanococcus maripaludis S2 genome encodes four MCM homologues, McmA-McmD. DNA helicase assays reveal that the unwinding activity of the three MCM-like proteins is highly variable despite sequence similarities and suggests additional motifs that influence MCM function are yet to be identified. While the gene encoding McmA could not be deleted, strains harbouring individual deletions of genes encoding each of the other MCMs display phenotypes consistent with these proteins modulating DNA damage responses. M. maripaludis S2 is the first archaeon in which MCM proteins have been shown to influence the DNA damage response.

  16. CpG PatternFinder: a Windows-based utility program for easy and rapid identification of the CpG methylation status of DNA.

    PubMed

    Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C

    2007-09-01

    The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.

  17. DNA-based watermarks using the DNA-Crypt algorithm.

    PubMed

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  18. DNA-based watermarks using the DNA-Crypt algorithm

    PubMed Central

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  19. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  20. Karyotype variability in tropical maize sister inbred lines and hybrids compared with KYS standard line

    PubMed Central

    Mondin, Mateus; Santos-Serejo, Janay A.; Bertäo, Mônica R.; Laborda, Prianda; Pizzaia, Daniel; Aguiar-Perecin, Margarida L. R.

    2014-01-01

    Maize karyotype variability has been extensively investigated. The identification of maize somatic and pachytene chromosomes has improved with the development of fluorescence in situ hybridization (FISH) using tandemly repeated DNA sequences as probes. We identified the somatic chromosomes of sister inbred lines that were derived from a tropical flint maize population (Jac Duro [JD]), and hybrids between them, using FISH probes for the 180-bp knob repeat, centromeric satellite (CentC), centromeric satellite 4 (Cent4), subtelomeric clone 4-12-1, 5S ribosomal DNA and nucleolus organizing region DNA sequences. The observations were integrated with data based on C-banded mitotic metaphases and conventional analysis of pachytene chromosomes. Heterochromatic knobs visible at pachynema were coincident with C-bands and 180-bp FISH signals on somatic chromosomes, and most of them were large. Variation in the presence of some knobs was observed among lines. Small 180-bp knob signals were invariant on the short arms of chromosomes 1, 6, and 9. The subtelomeric 4-12-1 signal was also invariant and useful for identifying some chromosomes. The centromere location of chromosomes 2 and 4 differed from previous reports on standard maize lines. Somatic chromosomes of a JD line and the commonly used KYS line were compared by FISH in a hybrid of these lines. The pairing behavior of chromosomes 2 and 4 at pachytene stage in this hybrid was investigated using FISH with chromosome-specific probes. The homologues were fully synapsed, including the 5S rDNA and CentC sites on chromosome 2, and Cent4 and subtelomeric 4-12-1 sites on chromosome 4. This suggests that homologous chromosomes could pair through differential degrees of chromatin packaging in homologous arms differing in size. The results contribute to current knowledge of maize global diversity and also raise questions concerning the meiotic pairing of homologous chromosomes possibly differing in their amounts of repetitive DNA. PMID:25352856

Top